in6.c revision 1.75 1 /* $NetBSD: in6.c,v 1.75 2003/05/14 12:45:07 wiz Exp $ */
2 /* $KAME: in6.c,v 1.198 2001/07/18 09:12:38 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)in.c 8.2 (Berkeley) 11/15/93
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: in6.c,v 1.75 2003/05/14 12:45:07 wiz Exp $");
70
71 #include "opt_inet.h"
72
73 #include <sys/param.h>
74 #include <sys/ioctl.h>
75 #include <sys/errno.h>
76 #include <sys/malloc.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/sockio.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/time.h>
83 #include <sys/kernel.h>
84 #include <sys/syslog.h>
85
86 #include <net/if.h>
87 #include <net/if_types.h>
88 #include <net/route.h>
89 #include <net/if_dl.h>
90
91 #include <netinet/in.h>
92 #include <netinet/in_var.h>
93 #include <net/if_ether.h>
94
95 #include <netinet/ip6.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/nd6.h>
98 #include <netinet6/mld6_var.h>
99 #include <netinet6/ip6_mroute.h>
100 #include <netinet6/in6_ifattach.h>
101
102 #include <net/net_osdep.h>
103
104 MALLOC_DEFINE(M_IP6OPT, "ip6_options", "IPv6 options");
105
106 /* enable backward compatibility code for obsoleted ioctls */
107 #define COMPAT_IN6IFIOCTL
108
109 /*
110 * Definitions of some constant IP6 addresses.
111 */
112 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
113 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
114 const struct in6_addr in6addr_nodelocal_allnodes =
115 IN6ADDR_NODELOCAL_ALLNODES_INIT;
116 const struct in6_addr in6addr_linklocal_allnodes =
117 IN6ADDR_LINKLOCAL_ALLNODES_INIT;
118 const struct in6_addr in6addr_linklocal_allrouters =
119 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
120
121 const struct in6_addr in6mask0 = IN6MASK0;
122 const struct in6_addr in6mask32 = IN6MASK32;
123 const struct in6_addr in6mask64 = IN6MASK64;
124 const struct in6_addr in6mask96 = IN6MASK96;
125 const struct in6_addr in6mask128 = IN6MASK128;
126
127 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6,
128 0, 0, IN6ADDR_ANY_INIT, 0};
129
130 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
131 struct ifnet *, struct proc *));
132 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *,
133 struct sockaddr_in6 *, int));
134 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *));
135
136 /*
137 * This structure is used to keep track of in6_multi chains which belong to
138 * deleted interface addresses.
139 */
140 static LIST_HEAD(, multi6_kludge) in6_mk; /* XXX BSS initialization */
141
142 struct multi6_kludge {
143 LIST_ENTRY(multi6_kludge) mk_entry;
144 struct ifnet *mk_ifp;
145 struct in6_multihead mk_head;
146 };
147
148 /*
149 * Subroutine for in6_ifaddloop() and in6_ifremloop().
150 * This routine does actual work.
151 */
152 static void
153 in6_ifloop_request(int cmd, struct ifaddr *ifa)
154 {
155 struct sockaddr_in6 lo_sa;
156 struct sockaddr_in6 all1_sa;
157 struct rtentry *nrt = NULL;
158 int e;
159
160 bzero(&lo_sa, sizeof(lo_sa));
161 bzero(&all1_sa, sizeof(all1_sa));
162 lo_sa.sin6_family = all1_sa.sin6_family = AF_INET6;
163 lo_sa.sin6_len = all1_sa.sin6_len = sizeof(struct sockaddr_in6);
164 lo_sa.sin6_addr = in6addr_loopback;
165 all1_sa.sin6_addr = in6mask128;
166
167 /*
168 * We specify the address itself as the gateway, and set the
169 * RTF_LLINFO flag, so that the corresponding host route would have
170 * the flag, and thus applications that assume traditional behavior
171 * would be happy. Note that we assume the caller of the function
172 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
173 * which changes the outgoing interface to the loopback interface.
174 */
175 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
176 (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
177 if (e != 0) {
178 log(LOG_ERR, "in6_ifloop_request: "
179 "%s operation failed for %s (errno=%d)\n",
180 cmd == RTM_ADD ? "ADD" : "DELETE",
181 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
182 e);
183 }
184
185 /*
186 * Make sure rt_ifa be equal to IFA, the second argument of the
187 * function.
188 * We need this because when we refer to rt_ifa->ia6_flags in
189 * ip6_input, we assume that the rt_ifa points to the address instead
190 * of the loopback address.
191 */
192 if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) {
193 IFAFREE(nrt->rt_ifa);
194 IFAREF(ifa);
195 nrt->rt_ifa = ifa;
196 }
197
198 /*
199 * Report the addition/removal of the address to the routing socket.
200 * XXX: since we called rtinit for a p2p interface with a destination,
201 * we end up reporting twice in such a case. Should we rather
202 * omit the second report?
203 */
204 if (nrt) {
205 rt_newaddrmsg(cmd, ifa, e, nrt);
206 if (cmd == RTM_DELETE) {
207 if (nrt->rt_refcnt <= 0) {
208 /* XXX: we should free the entry ourselves. */
209 nrt->rt_refcnt++;
210 rtfree(nrt);
211 }
212 } else {
213 /* the cmd must be RTM_ADD here */
214 nrt->rt_refcnt--;
215 }
216 }
217 }
218
219 /*
220 * Add ownaddr as loopback rtentry. We previously add the route only if
221 * necessary (ex. on a p2p link). However, since we now manage addresses
222 * separately from prefixes, we should always add the route. We can't
223 * rely on the cloning mechanism from the corresponding interface route
224 * any more.
225 */
226 static void
227 in6_ifaddloop(struct ifaddr *ifa)
228 {
229 struct rtentry *rt;
230
231 /* If there is no loopback entry, allocate one. */
232 rt = rtalloc1(ifa->ifa_addr, 0);
233 if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
234 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
235 in6_ifloop_request(RTM_ADD, ifa);
236 if (rt)
237 rt->rt_refcnt--;
238 }
239
240 /*
241 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
242 * if it exists.
243 */
244 static void
245 in6_ifremloop(struct ifaddr *ifa)
246 {
247 struct in6_ifaddr *ia;
248 struct rtentry *rt;
249 int ia_count = 0;
250
251 /*
252 * Some of BSD variants do not remove cloned routes
253 * from an interface direct route, when removing the direct route
254 * (see comments in net/net_osdep.h). Even for variants that do remove
255 * cloned routes, they could fail to remove the cloned routes when
256 * we handle multple addresses that share a common prefix.
257 * So, we should remove the route corresponding to the deleted address.
258 */
259
260 /*
261 * Delete the entry only if exact one ifa exists. More than one ifa
262 * can exist if we assign a same single address to multiple
263 * (probably p2p) interfaces.
264 * XXX: we should avoid such a configuration in IPv6...
265 */
266 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
267 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
268 ia_count++;
269 if (ia_count > 1)
270 break;
271 }
272 }
273
274 if (ia_count == 1) {
275 /*
276 * Before deleting, check if a corresponding loopbacked host
277 * route surely exists. With this check, we can avoid to
278 * delete an interface direct route whose destination is same
279 * as the address being removed. This can happen when removing
280 * a subnet-router anycast address on an interface attahced
281 * to a shared medium.
282 */
283 rt = rtalloc1(ifa->ifa_addr, 0);
284 if (rt != NULL && (rt->rt_flags & RTF_HOST) != 0 &&
285 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
286 rt->rt_refcnt--;
287 in6_ifloop_request(RTM_DELETE, ifa);
288 }
289 }
290 }
291
292 int
293 in6_ifindex2scopeid(idx)
294 int idx;
295 {
296 struct ifnet *ifp;
297 struct ifaddr *ifa;
298 struct sockaddr_in6 *sin6;
299
300 if (idx < 0 || if_index < idx)
301 return -1;
302 ifp = ifindex2ifnet[idx];
303 if (!ifp)
304 return -1;
305
306 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
307 {
308 if (ifa->ifa_addr->sa_family != AF_INET6)
309 continue;
310 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
311 if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))
312 return sin6->sin6_scope_id & 0xffff;
313 }
314
315 return -1;
316 }
317
318 int
319 in6_mask2len(mask, lim0)
320 struct in6_addr *mask;
321 u_char *lim0;
322 {
323 int x = 0, y;
324 u_char *lim = lim0, *p;
325
326 /* ignore the scope_id part */
327 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask))
328 lim = (u_char *)mask + sizeof(*mask);
329 for (p = (u_char *)mask; p < lim; x++, p++) {
330 if (*p != 0xff)
331 break;
332 }
333 y = 0;
334 if (p < lim) {
335 for (y = 0; y < 8; y++) {
336 if ((*p & (0x80 >> y)) == 0)
337 break;
338 }
339 }
340
341 /*
342 * when the limit pointer is given, do a stricter check on the
343 * remaining bits.
344 */
345 if (p < lim) {
346 if (y != 0 && (*p & (0x00ff >> y)) != 0)
347 return (-1);
348 for (p = p + 1; p < lim; p++)
349 if (*p != 0)
350 return (-1);
351 }
352
353 return x * 8 + y;
354 }
355
356 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa))
357 #define ia62ifa(ia6) (&((ia6)->ia_ifa))
358
359 int
360 in6_control(so, cmd, data, ifp, p)
361 struct socket *so;
362 u_long cmd;
363 caddr_t data;
364 struct ifnet *ifp;
365 struct proc *p;
366 {
367 struct in6_ifreq *ifr = (struct in6_ifreq *)data;
368 struct in6_ifaddr *ia = NULL;
369 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data;
370 struct sockaddr_in6 *sa6;
371 time_t time_second = (time_t)time.tv_sec;
372 int privileged;
373
374 privileged = 0;
375 if (p && !suser(p->p_ucred, &p->p_acflag))
376 privileged++;
377
378 switch (cmd) {
379 case SIOCGETSGCNT_IN6:
380 case SIOCGETMIFCNT_IN6:
381 return (mrt6_ioctl(cmd, data));
382 }
383
384 if (ifp == NULL)
385 return (EOPNOTSUPP);
386
387 switch (cmd) {
388 case SIOCSNDFLUSH_IN6:
389 case SIOCSPFXFLUSH_IN6:
390 case SIOCSRTRFLUSH_IN6:
391 case SIOCSDEFIFACE_IN6:
392 case SIOCSIFINFO_FLAGS:
393 if (!privileged)
394 return (EPERM);
395 /* FALLTHROUGH */
396 case OSIOCGIFINFO_IN6:
397 case SIOCGIFINFO_IN6:
398 case SIOCGDRLST_IN6:
399 case SIOCGPRLST_IN6:
400 case SIOCGNBRINFO_IN6:
401 case SIOCGDEFIFACE_IN6:
402 return (nd6_ioctl(cmd, data, ifp));
403 }
404
405 switch (cmd) {
406 case SIOCSIFPREFIX_IN6:
407 case SIOCDIFPREFIX_IN6:
408 case SIOCAIFPREFIX_IN6:
409 case SIOCCIFPREFIX_IN6:
410 case SIOCSGIFPREFIX_IN6:
411 case SIOCGIFPREFIX_IN6:
412 log(LOG_NOTICE,
413 "prefix ioctls are now invalidated. "
414 "please use ifconfig.\n");
415 return (EOPNOTSUPP);
416 }
417
418 switch (cmd) {
419 case SIOCALIFADDR:
420 case SIOCDLIFADDR:
421 if (!privileged)
422 return (EPERM);
423 /* FALLTHROUGH */
424 case SIOCGLIFADDR:
425 return in6_lifaddr_ioctl(so, cmd, data, ifp, p);
426 }
427
428 /*
429 * Find address for this interface, if it exists.
430 *
431 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation
432 * only, and used the first interface address as the target of other
433 * operations (without checking ifra_addr). This was because netinet
434 * code/API assumed at most 1 interface address per interface.
435 * Since IPv6 allows a node to assign multiple addresses
436 * on a single interface, we almost always look and check the
437 * presence of ifra_addr, and reject invalid ones here.
438 * It also decreases duplicated code among SIOC*_IN6 operations.
439 */
440 switch (cmd) {
441 case SIOCAIFADDR_IN6:
442 case SIOCSIFPHYADDR_IN6:
443 sa6 = &ifra->ifra_addr;
444 break;
445 case SIOCSIFADDR_IN6:
446 case SIOCGIFADDR_IN6:
447 case SIOCSIFDSTADDR_IN6:
448 case SIOCSIFNETMASK_IN6:
449 case SIOCGIFDSTADDR_IN6:
450 case SIOCGIFNETMASK_IN6:
451 case SIOCDIFADDR_IN6:
452 case SIOCGIFPSRCADDR_IN6:
453 case SIOCGIFPDSTADDR_IN6:
454 case SIOCGIFAFLAG_IN6:
455 case SIOCSNDFLUSH_IN6:
456 case SIOCSPFXFLUSH_IN6:
457 case SIOCSRTRFLUSH_IN6:
458 case SIOCGIFALIFETIME_IN6:
459 case SIOCSIFALIFETIME_IN6:
460 case SIOCGIFSTAT_IN6:
461 case SIOCGIFSTAT_ICMP6:
462 sa6 = &ifr->ifr_addr;
463 break;
464 default:
465 sa6 = NULL;
466 break;
467 }
468 if (sa6 && sa6->sin6_family == AF_INET6) {
469 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) {
470 if (sa6->sin6_addr.s6_addr16[1] == 0) {
471 /* link ID is not embedded by the user */
472 sa6->sin6_addr.s6_addr16[1] =
473 htons(ifp->if_index);
474 } else if (sa6->sin6_addr.s6_addr16[1] !=
475 htons(ifp->if_index)) {
476 return (EINVAL); /* link ID contradicts */
477 }
478 if (sa6->sin6_scope_id) {
479 if (sa6->sin6_scope_id !=
480 (u_int32_t)ifp->if_index)
481 return (EINVAL);
482 sa6->sin6_scope_id = 0; /* XXX: good way? */
483 }
484 }
485 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr);
486 } else
487 ia = NULL;
488
489 switch (cmd) {
490 case SIOCSIFADDR_IN6:
491 case SIOCSIFDSTADDR_IN6:
492 case SIOCSIFNETMASK_IN6:
493 /*
494 * Since IPv6 allows a node to assign multiple addresses
495 * on a single interface, SIOCSIFxxx ioctls are deprecated.
496 */
497 return (EINVAL);
498
499 case SIOCDIFADDR_IN6:
500 /*
501 * for IPv4, we look for existing in_ifaddr here to allow
502 * "ifconfig if0 delete" to remove the first IPv4 address on
503 * the interface. For IPv6, as the spec allows multiple
504 * interface address from the day one, we consider "remove the
505 * first one" semantics to be not preferable.
506 */
507 if (ia == NULL)
508 return (EADDRNOTAVAIL);
509 /* FALLTHROUGH */
510 case SIOCAIFADDR_IN6:
511 /*
512 * We always require users to specify a valid IPv6 address for
513 * the corresponding operation.
514 */
515 if (ifra->ifra_addr.sin6_family != AF_INET6 ||
516 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
517 return (EAFNOSUPPORT);
518 if (!privileged)
519 return (EPERM);
520
521 break;
522
523 case SIOCGIFADDR_IN6:
524 /* This interface is basically deprecated. use SIOCGIFCONF. */
525 /* FALLTHROUGH */
526 case SIOCGIFAFLAG_IN6:
527 case SIOCGIFNETMASK_IN6:
528 case SIOCGIFDSTADDR_IN6:
529 case SIOCGIFALIFETIME_IN6:
530 /* must think again about its semantics */
531 if (ia == NULL)
532 return (EADDRNOTAVAIL);
533 break;
534 case SIOCSIFALIFETIME_IN6:
535 {
536 struct in6_addrlifetime *lt;
537
538 if (!privileged)
539 return (EPERM);
540 if (ia == NULL)
541 return (EADDRNOTAVAIL);
542 /* sanity for overflow - beware unsigned */
543 lt = &ifr->ifr_ifru.ifru_lifetime;
544 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
545 && lt->ia6t_vltime + time_second < time_second) {
546 return EINVAL;
547 }
548 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
549 && lt->ia6t_pltime + time_second < time_second) {
550 return EINVAL;
551 }
552 break;
553 }
554 }
555
556 switch (cmd) {
557
558 case SIOCGIFADDR_IN6:
559 ifr->ifr_addr = ia->ia_addr;
560 break;
561
562 case SIOCGIFDSTADDR_IN6:
563 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
564 return (EINVAL);
565 /*
566 * XXX: should we check if ifa_dstaddr is NULL and return
567 * an error?
568 */
569 ifr->ifr_dstaddr = ia->ia_dstaddr;
570 break;
571
572 case SIOCGIFNETMASK_IN6:
573 ifr->ifr_addr = ia->ia_prefixmask;
574 break;
575
576 case SIOCGIFAFLAG_IN6:
577 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
578 break;
579
580 case SIOCGIFSTAT_IN6:
581 if (ifp == NULL)
582 return EINVAL;
583 bzero(&ifr->ifr_ifru.ifru_stat,
584 sizeof(ifr->ifr_ifru.ifru_stat));
585 ifr->ifr_ifru.ifru_stat =
586 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
587 break;
588
589 case SIOCGIFSTAT_ICMP6:
590 if (ifp == NULL)
591 return EINVAL;
592 bzero(&ifr->ifr_ifru.ifru_stat,
593 sizeof(ifr->ifr_ifru.ifru_icmp6stat));
594 ifr->ifr_ifru.ifru_icmp6stat =
595 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
596 break;
597
598 case SIOCGIFALIFETIME_IN6:
599 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
600 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
601 time_t maxexpire;
602 struct in6_addrlifetime *retlt =
603 &ifr->ifr_ifru.ifru_lifetime;
604
605 /*
606 * XXX: adjust expiration time assuming time_t is
607 * signed.
608 */
609 maxexpire = (-1) &
610 ~(1 << ((sizeof(maxexpire) * 8) - 1));
611 if (ia->ia6_lifetime.ia6t_vltime <
612 maxexpire - ia->ia6_updatetime) {
613 retlt->ia6t_expire = ia->ia6_updatetime +
614 ia->ia6_lifetime.ia6t_vltime;
615 } else
616 retlt->ia6t_expire = maxexpire;
617 }
618 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
619 time_t maxexpire;
620 struct in6_addrlifetime *retlt =
621 &ifr->ifr_ifru.ifru_lifetime;
622
623 /*
624 * XXX: adjust expiration time assuming time_t is
625 * signed.
626 */
627 maxexpire = (-1) &
628 ~(1 << ((sizeof(maxexpire) * 8) - 1));
629 if (ia->ia6_lifetime.ia6t_pltime <
630 maxexpire - ia->ia6_updatetime) {
631 retlt->ia6t_preferred = ia->ia6_updatetime +
632 ia->ia6_lifetime.ia6t_pltime;
633 } else
634 retlt->ia6t_preferred = maxexpire;
635 }
636 break;
637
638 case SIOCSIFALIFETIME_IN6:
639 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
640 /* for sanity */
641 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
642 ia->ia6_lifetime.ia6t_expire =
643 time_second + ia->ia6_lifetime.ia6t_vltime;
644 } else
645 ia->ia6_lifetime.ia6t_expire = 0;
646 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
647 ia->ia6_lifetime.ia6t_preferred =
648 time_second + ia->ia6_lifetime.ia6t_pltime;
649 } else
650 ia->ia6_lifetime.ia6t_preferred = 0;
651 break;
652
653 case SIOCAIFADDR_IN6:
654 {
655 int i, error = 0;
656 struct nd_prefix pr0, *pr;
657
658 /* reject read-only flags */
659 if ((ifra->ifra_flags & IN6_IFF_DUPLICATED) != 0 ||
660 (ifra->ifra_flags & IN6_IFF_DETACHED) != 0 ||
661 (ifra->ifra_flags & IN6_IFF_NODAD) != 0 ||
662 (ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0) {
663 return (EINVAL);
664 }
665 /*
666 * first, make or update the interface address structure,
667 * and link it to the list.
668 */
669 if ((error = in6_update_ifa(ifp, ifra, ia)) != 0)
670 return (error);
671 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
672 == NULL) {
673 /*
674 * this can happen when the user specify the 0 valid
675 * lifetime.
676 */
677 break;
678 }
679
680 /*
681 * then, make the prefix on-link on the interface.
682 * XXX: we'd rather create the prefix before the address, but
683 * we need at least one address to install the corresponding
684 * interface route, so we configure the address first.
685 */
686
687 /*
688 * convert mask to prefix length (prefixmask has already
689 * been validated in in6_update_ifa().
690 */
691 bzero(&pr0, sizeof(pr0));
692 pr0.ndpr_ifp = ifp;
693 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
694 NULL);
695 if (pr0.ndpr_plen == 128) {
696 break; /* we don't need to install a host route. */
697 }
698 pr0.ndpr_prefix = ifra->ifra_addr;
699 pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr;
700 /* apply the mask for safety. */
701 for (i = 0; i < 4; i++) {
702 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
703 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
704 }
705 /*
706 * XXX: since we don't have an API to set prefix (not address)
707 * lifetimes, we just use the same lifetimes as addresses.
708 * The (temporarily) installed lifetimes can be overridden by
709 * later advertised RAs (when accept_rtadv is non 0), which is
710 * an intended behavior.
711 */
712 pr0.ndpr_raf_onlink = 1; /* should be configurable? */
713 pr0.ndpr_raf_auto =
714 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
715 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
716 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
717
718 /* add the prefix if not yet. */
719 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
720 /*
721 * nd6_prelist_add will install the corresponding
722 * interface route.
723 */
724 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
725 return (error);
726 if (pr == NULL) {
727 log(LOG_ERR, "nd6_prelist_add succeeded but "
728 "no prefix\n");
729 return (EINVAL); /* XXX panic here? */
730 }
731 }
732
733 /* relate the address to the prefix */
734 if (ia->ia6_ndpr == NULL) {
735 ia->ia6_ndpr = pr;
736 pr->ndpr_refcnt++;
737 }
738
739 /*
740 * this might affect the status of autoconfigured addresses,
741 * that is, this address might make other addresses detached.
742 */
743 pfxlist_onlink_check();
744
745 break;
746 }
747
748 case SIOCDIFADDR_IN6:
749 {
750 int i = 0, purgeprefix = 0;
751 struct nd_prefix pr0, *pr = NULL;
752
753 /*
754 * If the address being deleted is the only one that owns
755 * the corresponding prefix, expire the prefix as well.
756 * XXX: theoretically, we don't have to worry about such
757 * relationship, since we separate the address management
758 * and the prefix management. We do this, however, to provide
759 * as much backward compatibility as possible in terms of
760 * the ioctl operation.
761 */
762 bzero(&pr0, sizeof(pr0));
763 pr0.ndpr_ifp = ifp;
764 pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr,
765 NULL);
766 if (pr0.ndpr_plen == 128)
767 goto purgeaddr;
768 pr0.ndpr_prefix = ia->ia_addr;
769 pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr;
770 for (i = 0; i < 4; i++) {
771 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
772 ia->ia_prefixmask.sin6_addr.s6_addr32[i];
773 }
774 if ((pr = nd6_prefix_lookup(&pr0)) != NULL &&
775 pr == ia->ia6_ndpr) {
776 pr->ndpr_refcnt--;
777 if (pr->ndpr_refcnt == 0)
778 purgeprefix = 1;
779 }
780
781 purgeaddr:
782 in6_purgeaddr(&ia->ia_ifa);
783 if (pr && purgeprefix)
784 prelist_remove(pr);
785 break;
786 }
787
788 default:
789 if (ifp == NULL || ifp->if_ioctl == 0)
790 return (EOPNOTSUPP);
791 return ((*ifp->if_ioctl)(ifp, cmd, data));
792 }
793
794 return (0);
795 }
796
797 /*
798 * Update parameters of an IPv6 interface address.
799 * If necessary, a new entry is created and linked into address chains.
800 * This function is separated from in6_control().
801 * XXX: should this be performed under splnet()?
802 */
803 int
804 in6_update_ifa(ifp, ifra, ia)
805 struct ifnet *ifp;
806 struct in6_aliasreq *ifra;
807 struct in6_ifaddr *ia;
808 {
809 int error = 0, hostIsNew = 0, plen = -1;
810 struct in6_ifaddr *oia;
811 struct sockaddr_in6 dst6;
812 struct in6_addrlifetime *lt;
813 struct in6_multi_mship *imm;
814 time_t time_second = (time_t)time.tv_sec;
815 struct rtentry *rt;
816
817 /* Validate parameters */
818 if (ifp == NULL || ifra == NULL) /* this maybe redundant */
819 return (EINVAL);
820
821 /*
822 * The destination address for a p2p link must have a family
823 * of AF_UNSPEC or AF_INET6.
824 */
825 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
826 ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
827 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
828 return (EAFNOSUPPORT);
829 /*
830 * validate ifra_prefixmask. don't check sin6_family, netmask
831 * does not carry fields other than sin6_len.
832 */
833 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
834 return (EINVAL);
835 /*
836 * Because the IPv6 address architecture is classless, we require
837 * users to specify a (non 0) prefix length (mask) for a new address.
838 * We also require the prefix (when specified) mask is valid, and thus
839 * reject a non-consecutive mask.
840 */
841 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
842 return (EINVAL);
843 if (ifra->ifra_prefixmask.sin6_len != 0) {
844 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
845 (u_char *)&ifra->ifra_prefixmask +
846 ifra->ifra_prefixmask.sin6_len);
847 if (plen <= 0)
848 return (EINVAL);
849 } else {
850 /*
851 * In this case, ia must not be NULL. We just use its prefix
852 * length.
853 */
854 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
855 }
856 /*
857 * If the destination address on a p2p interface is specified,
858 * and the address is a scoped one, validate/set the scope
859 * zone identifier.
860 */
861 dst6 = ifra->ifra_dstaddr;
862 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 &&
863 (dst6.sin6_family == AF_INET6)) {
864 /* link-local index check: should be a separate function? */
865 if (IN6_IS_ADDR_LINKLOCAL(&dst6.sin6_addr)) {
866 if (dst6.sin6_addr.s6_addr16[1] == 0) {
867 /*
868 * interface ID is not embedded by
869 * the user
870 */
871 dst6.sin6_addr.s6_addr16[1] =
872 htons(ifp->if_index);
873 } else if (dst6.sin6_addr.s6_addr16[1] !=
874 htons(ifp->if_index)) {
875 return (EINVAL); /* ifid contradicts */
876 }
877 }
878 }
879 /*
880 * The destination address can be specified only for a p2p or a
881 * loopback interface. If specified, the corresponding prefix length
882 * must be 128.
883 */
884 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
885 #ifdef FORCE_P2PPLEN
886 int i;
887 #endif
888
889 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
890 /* XXX: noisy message */
891 nd6log((LOG_INFO, "in6_update_ifa: a destination can "
892 "be specified for a p2p or a loopback IF only\n"));
893 return (EINVAL);
894 }
895 if (plen != 128) {
896 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should "
897 "be 128 when dstaddr is specified\n"));
898 #ifdef FORCE_P2PPLEN
899 /*
900 * To be compatible with old configurations,
901 * such as ifconfig gif0 inet6 2001::1 2001::2
902 * prefixlen 126, we override the specified
903 * prefixmask as if the prefix length was 128.
904 */
905 ifra->ifra_prefixmask.sin6_len =
906 sizeof(struct sockaddr_in6);
907 for (i = 0; i < 4; i++)
908 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i] =
909 0xffffffff;
910 plen = 128;
911 #else
912 return (EINVAL);
913 #endif
914 }
915 }
916 /* lifetime consistency check */
917 lt = &ifra->ifra_lifetime;
918 if (lt->ia6t_pltime > lt->ia6t_vltime)
919 return (EINVAL);
920 if (lt->ia6t_vltime == 0) {
921 /*
922 * the following log might be noisy, but this is a typical
923 * configuration mistake or a tool's bug.
924 */
925 nd6log((LOG_INFO,
926 "in6_update_ifa: valid lifetime is 0 for %s\n",
927 ip6_sprintf(&ifra->ifra_addr.sin6_addr)));
928
929 if (ia == NULL)
930 return (0); /* there's nothing to do */
931 }
932
933 /*
934 * If this is a new address, allocate a new ifaddr and link it
935 * into chains.
936 */
937 if (ia == NULL) {
938 hostIsNew = 1;
939 /*
940 * When in6_update_ifa() is called in a process of a received
941 * RA, it is called under an interrupt context. So, we should
942 * call malloc with M_NOWAIT.
943 */
944 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR,
945 M_NOWAIT);
946 if (ia == NULL)
947 return (ENOBUFS);
948 bzero((caddr_t)ia, sizeof(*ia));
949 LIST_INIT(&ia->ia6_memberships);
950 /* Initialize the address and masks, and put time stamp */
951 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
952 ia->ia_addr.sin6_family = AF_INET6;
953 ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
954 ia->ia6_createtime = ia->ia6_updatetime = time_second;
955 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
956 /*
957 * XXX: some functions expect that ifa_dstaddr is not
958 * NULL for p2p interfaces.
959 */
960 ia->ia_ifa.ifa_dstaddr =
961 (struct sockaddr *)&ia->ia_dstaddr;
962 } else {
963 ia->ia_ifa.ifa_dstaddr = NULL;
964 }
965 ia->ia_ifa.ifa_netmask =
966 (struct sockaddr *)&ia->ia_prefixmask;
967
968 ia->ia_ifp = ifp;
969 if ((oia = in6_ifaddr) != NULL) {
970 for ( ; oia->ia_next; oia = oia->ia_next)
971 continue;
972 oia->ia_next = ia;
973 } else
974 in6_ifaddr = ia;
975 /* gain a refcnt for the link from in6_ifaddr */
976 IFAREF(&ia->ia_ifa);
977
978 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa,
979 ifa_list);
980 /* gain another refcnt for the link from if_addrlist */
981 IFAREF(&ia->ia_ifa);
982 }
983
984 /* set prefix mask */
985 if (ifra->ifra_prefixmask.sin6_len) {
986 /*
987 * We prohibit changing the prefix length of an existing
988 * address, because
989 * + such an operation should be rare in IPv6, and
990 * + the operation would confuse prefix management.
991 */
992 if (ia->ia_prefixmask.sin6_len &&
993 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
994 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an"
995 " existing (%s) address should not be changed\n",
996 ip6_sprintf(&ia->ia_addr.sin6_addr)));
997 error = EINVAL;
998 goto unlink;
999 }
1000 ia->ia_prefixmask = ifra->ifra_prefixmask;
1001 }
1002
1003 /*
1004 * If a new destination address is specified, scrub the old one and
1005 * install the new destination. Note that the interface must be
1006 * p2p or loopback (see the check above.)
1007 */
1008 if (dst6.sin6_family == AF_INET6 &&
1009 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) {
1010 int e;
1011
1012 if ((ia->ia_flags & IFA_ROUTE) != 0 &&
1013 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) {
1014 nd6log((LOG_ERR, "in6_update_ifa: failed to remove "
1015 "a route to the old destination: %s\n",
1016 ip6_sprintf(&ia->ia_addr.sin6_addr)));
1017 /* proceed anyway... */
1018 } else
1019 ia->ia_flags &= ~IFA_ROUTE;
1020 ia->ia_dstaddr = dst6;
1021 }
1022
1023 /*
1024 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred
1025 * to see if the address is deprecated or invalidated, but initialize
1026 * these members for applications.
1027 */
1028 ia->ia6_lifetime = ifra->ifra_lifetime;
1029 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
1030 ia->ia6_lifetime.ia6t_expire =
1031 time_second + ia->ia6_lifetime.ia6t_vltime;
1032 } else
1033 ia->ia6_lifetime.ia6t_expire = 0;
1034 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
1035 ia->ia6_lifetime.ia6t_preferred =
1036 time_second + ia->ia6_lifetime.ia6t_pltime;
1037 } else
1038 ia->ia6_lifetime.ia6t_preferred = 0;
1039
1040 /* reset the interface and routing table appropriately. */
1041 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
1042 goto unlink;
1043
1044 /*
1045 * configure address flags.
1046 */
1047 ia->ia6_flags = ifra->ifra_flags;
1048 /*
1049 * backward compatibility - if IN6_IFF_DEPRECATED is set from the
1050 * userland, make it deprecated.
1051 */
1052 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) {
1053 ia->ia6_lifetime.ia6t_pltime = 0;
1054 ia->ia6_lifetime.ia6t_preferred = time_second;
1055 }
1056 /*
1057 * Make the address tentative before joining multicast addresses,
1058 * so that corresponding MLD responses would not have a tentative
1059 * source address.
1060 */
1061 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */
1062 if (hostIsNew && in6if_do_dad(ifp))
1063 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1064
1065 /*
1066 * Beyond this point, we should call in6_purgeaddr upon an error,
1067 * not just go to unlink.
1068 */
1069
1070 if ((ifp->if_flags & IFF_MULTICAST) != 0) {
1071 struct sockaddr_in6 mltaddr, mltmask;
1072 #ifndef SCOPEDROUTING
1073 u_int32_t zoneid = 0;
1074 #endif
1075
1076 if (hostIsNew) {
1077 /* join solicited multicast addr for new host id */
1078 struct sockaddr_in6 llsol;
1079
1080 bzero(&llsol, sizeof(llsol));
1081 llsol.sin6_family = AF_INET6;
1082 llsol.sin6_len = sizeof(llsol);
1083 llsol.sin6_addr.s6_addr16[0] = htons(0xff02);
1084 llsol.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
1085 llsol.sin6_addr.s6_addr32[1] = 0;
1086 llsol.sin6_addr.s6_addr32[2] = htonl(1);
1087 llsol.sin6_addr.s6_addr32[3] =
1088 ifra->ifra_addr.sin6_addr.s6_addr32[3];
1089 llsol.sin6_addr.s6_addr8[12] = 0xff;
1090 imm = in6_joingroup(ifp, &llsol.sin6_addr, &error);
1091 if (imm) {
1092 LIST_INSERT_HEAD(&ia->ia6_memberships, imm,
1093 i6mm_chain);
1094 } else {
1095 nd6log((LOG_ERR, "in6_update_ifa: addmulti "
1096 "failed for %s on %s (errno=%d)\n",
1097 ip6_sprintf(&llsol.sin6_addr),
1098 if_name(ifp), error));
1099 goto cleanup;
1100 }
1101 }
1102
1103 bzero(&mltmask, sizeof(mltmask));
1104 mltmask.sin6_len = sizeof(struct sockaddr_in6);
1105 mltmask.sin6_family = AF_INET6;
1106 mltmask.sin6_addr = in6mask32;
1107
1108 /*
1109 * join link-local all-nodes address
1110 */
1111 bzero(&mltaddr, sizeof(mltaddr));
1112 mltaddr.sin6_len = sizeof(struct sockaddr_in6);
1113 mltaddr.sin6_family = AF_INET6;
1114 mltaddr.sin6_addr = in6addr_linklocal_allnodes;
1115 mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
1116
1117 /*
1118 * XXX: do we really need this automatic routes?
1119 * We should probably reconsider this stuff. Most applications
1120 * actually do not need the routes, since they usually specify
1121 * the outgoing interface.
1122 */
1123 rt = rtalloc1((struct sockaddr *)&mltaddr, 0);
1124 if (rt) {
1125 /*
1126 * 32bit came from "mltmask"
1127 * XXX: only works in !SCOPEDROUTING case.
1128 */
1129 if (memcmp(&mltaddr.sin6_addr,
1130 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1131 32 / 8)) {
1132 RTFREE(rt);
1133 rt = NULL;
1134 }
1135 }
1136 if (!rt) {
1137 struct rt_addrinfo info;
1138
1139 bzero(&info, sizeof(info));
1140 info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr;
1141 info.rti_info[RTAX_GATEWAY] =
1142 (struct sockaddr *)&ia->ia_addr;
1143 info.rti_info[RTAX_NETMASK] =
1144 (struct sockaddr *)&mltmask;
1145 info.rti_info[RTAX_IFA] =
1146 (struct sockaddr *)&ia->ia_addr;
1147 /* XXX: we need RTF_CLONING to fake nd6_rtrequest */
1148 info.rti_flags = RTF_UP | RTF_CLONING;
1149 error = rtrequest1(RTM_ADD, &info, NULL);
1150 if (error)
1151 goto cleanup;
1152 } else {
1153 RTFREE(rt);
1154 }
1155 #ifndef SCOPEDROUTING
1156 mltaddr.sin6_scope_id = zoneid; /* XXX */
1157 #endif
1158 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error);
1159 if (imm) {
1160 LIST_INSERT_HEAD(&ia->ia6_memberships, imm,
1161 i6mm_chain);
1162 } else {
1163 nd6log((LOG_WARNING,
1164 "in6_update_ifa: addmulti failed for "
1165 "%s on %s (errno=%d)\n",
1166 ip6_sprintf(&mltaddr.sin6_addr),
1167 if_name(ifp), error));
1168 goto cleanup;
1169 }
1170
1171 /*
1172 * join node information group address
1173 */
1174 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr) == 0) {
1175 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error);
1176 if (imm) {
1177 LIST_INSERT_HEAD(&ia->ia6_memberships, imm,
1178 i6mm_chain);
1179 } else {
1180 nd6log((LOG_WARNING, "in6_update_ifa: "
1181 "addmulti failed for %s on %s (errno=%d)\n",
1182 ip6_sprintf(&mltaddr.sin6_addr),
1183 if_name(ifp), error));
1184 /* XXX not very fatal, go on... */
1185 }
1186 }
1187
1188 if (ifp->if_flags & IFF_LOOPBACK) {
1189 /*
1190 * join node-local all-nodes address, on loopback.
1191 * (ff01::1%ifN, and ff01::%ifN/32)
1192 */
1193 mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
1194
1195 /* XXX: again, do we really need the route? */
1196 rt = rtalloc1((struct sockaddr *)&mltaddr, 0);
1197 if (rt) {
1198 /* 32bit came from "mltmask" */
1199 if (memcmp(&mltaddr.sin6_addr,
1200 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1201 32 / 8)) {
1202 RTFREE(rt);
1203 rt = NULL;
1204 }
1205 }
1206 if (!rt) {
1207 struct rt_addrinfo info;
1208
1209 bzero(&info, sizeof(info));
1210 info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr;
1211 info.rti_info[RTAX_GATEWAY] =
1212 (struct sockaddr *)&ia->ia_addr;
1213 info.rti_info[RTAX_NETMASK] =
1214 (struct sockaddr *)&mltmask;
1215 info.rti_info[RTAX_IFA] =
1216 (struct sockaddr *)&ia->ia_addr;
1217 info.rti_flags = RTF_UP | RTF_CLONING;
1218 error = rtrequest1(RTM_ADD, &info, NULL);
1219 if (error)
1220 goto cleanup;
1221 } else {
1222 RTFREE(rt);
1223 }
1224 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error);
1225 if (imm) {
1226 LIST_INSERT_HEAD(&ia->ia6_memberships, imm,
1227 i6mm_chain);
1228 } else {
1229 nd6log((LOG_WARNING, "in6_update_ifa: "
1230 "addmulti failed for %s on %s "
1231 "(errno=%d)\n",
1232 ip6_sprintf(&mltaddr.sin6_addr),
1233 if_name(ifp), error));
1234 goto cleanup;
1235 }
1236 }
1237 }
1238
1239 /*
1240 * Perform DAD, if needed.
1241 * XXX It may be of use, if we can administratively
1242 * disable DAD.
1243 */
1244 if (hostIsNew && in6if_do_dad(ifp) &&
1245 (ifra->ifra_flags & IN6_IFF_NODAD) == 0)
1246 {
1247 nd6_dad_start((struct ifaddr *)ia, NULL);
1248 }
1249
1250 return (error);
1251
1252 unlink:
1253 /*
1254 * XXX: if a change of an existing address failed, keep the entry
1255 * anyway.
1256 */
1257 if (hostIsNew)
1258 in6_unlink_ifa(ia, ifp);
1259 return (error);
1260
1261 cleanup:
1262 in6_purgeaddr(&ia->ia_ifa);
1263 return error;
1264 }
1265
1266 void
1267 in6_purgeaddr(ifa)
1268 struct ifaddr *ifa;
1269 {
1270 struct ifnet *ifp = ifa->ifa_ifp;
1271 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
1272 struct in6_multi_mship *imm;
1273
1274 /* stop DAD processing */
1275 nd6_dad_stop(ifa);
1276
1277 /*
1278 * delete route to the destination of the address being purged.
1279 * The interface must be p2p or loopback in this case.
1280 */
1281 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
1282 int e;
1283
1284 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
1285 != 0) {
1286 log(LOG_ERR, "in6_purgeaddr: failed to remove "
1287 "a route to the p2p destination: %s on %s, "
1288 "errno=%d\n",
1289 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
1290 e);
1291 /* proceed anyway... */
1292 } else
1293 ia->ia_flags &= ~IFA_ROUTE;
1294 }
1295
1296 /* Remove ownaddr's loopback rtentry, if it exists. */
1297 in6_ifremloop(&(ia->ia_ifa));
1298
1299 /*
1300 * leave from multicast groups we have joined for the interface
1301 */
1302 while ((imm = ia->ia6_memberships.lh_first) != NULL) {
1303 LIST_REMOVE(imm, i6mm_chain);
1304 in6_leavegroup(imm);
1305 }
1306
1307 in6_unlink_ifa(ia, ifp);
1308 }
1309
1310 static void
1311 in6_unlink_ifa(ia, ifp)
1312 struct in6_ifaddr *ia;
1313 struct ifnet *ifp;
1314 {
1315 struct in6_ifaddr *oia;
1316 int s = splnet();
1317
1318 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
1319 /* release a refcnt for the link from if_addrlist */
1320 IFAFREE(&ia->ia_ifa);
1321
1322 oia = ia;
1323 if (oia == (ia = in6_ifaddr))
1324 in6_ifaddr = ia->ia_next;
1325 else {
1326 while (ia->ia_next && (ia->ia_next != oia))
1327 ia = ia->ia_next;
1328 if (ia->ia_next)
1329 ia->ia_next = oia->ia_next;
1330 else {
1331 /* search failed */
1332 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
1333 }
1334 }
1335
1336 if (oia->ia6_multiaddrs.lh_first != NULL) {
1337 /*
1338 * XXX thorpej (at) netbsd.org -- if the interface is going
1339 * XXX away, don't save the multicast entries, delete them!
1340 */
1341 if (oia->ia_ifa.ifa_ifp->if_output == if_nulloutput) {
1342 struct in6_multi *in6m;
1343
1344 while ((in6m =
1345 LIST_FIRST(&oia->ia6_multiaddrs)) != NULL)
1346 in6_delmulti(in6m);
1347 } else
1348 in6_savemkludge(oia);
1349 }
1350
1351 /*
1352 * When an autoconfigured address is being removed, release the
1353 * reference to the base prefix. Also, since the release might
1354 * affect the status of other (detached) addresses, call
1355 * pfxlist_onlink_check().
1356 */
1357 if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) {
1358 if (oia->ia6_ndpr == NULL) {
1359 log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address "
1360 "%p has no prefix\n", oia);
1361 } else {
1362 oia->ia6_ndpr->ndpr_refcnt--;
1363 oia->ia6_flags &= ~IN6_IFF_AUTOCONF;
1364 oia->ia6_ndpr = NULL;
1365 }
1366
1367 pfxlist_onlink_check();
1368 }
1369
1370 /*
1371 * release another refcnt for the link from in6_ifaddr.
1372 * Note that we should decrement the refcnt at least once for all *BSD.
1373 */
1374 IFAFREE(&oia->ia_ifa);
1375
1376 splx(s);
1377 }
1378
1379 void
1380 in6_purgeif(ifp)
1381 struct ifnet *ifp;
1382 {
1383 struct ifaddr *ifa, *nifa;
1384
1385 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa)
1386 {
1387 nifa = TAILQ_NEXT(ifa, ifa_list);
1388 if (ifa->ifa_addr->sa_family != AF_INET6)
1389 continue;
1390 in6_purgeaddr(ifa);
1391 }
1392
1393 in6_ifdetach(ifp);
1394 }
1395
1396 /*
1397 * SIOC[GAD]LIFADDR.
1398 * SIOCGLIFADDR: get first address. (?)
1399 * SIOCGLIFADDR with IFLR_PREFIX:
1400 * get first address that matches the specified prefix.
1401 * SIOCALIFADDR: add the specified address.
1402 * SIOCALIFADDR with IFLR_PREFIX:
1403 * add the specified prefix, filling hostid part from
1404 * the first link-local address. prefixlen must be <= 64.
1405 * SIOCDLIFADDR: delete the specified address.
1406 * SIOCDLIFADDR with IFLR_PREFIX:
1407 * delete the first address that matches the specified prefix.
1408 * return values:
1409 * EINVAL on invalid parameters
1410 * EADDRNOTAVAIL on prefix match failed/specified address not found
1411 * other values may be returned from in6_ioctl()
1412 *
1413 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
1414 * this is to accomodate address naming scheme other than RFC2374,
1415 * in the future.
1416 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
1417 * address encoding scheme. (see figure on page 8)
1418 */
1419 static int
1420 in6_lifaddr_ioctl(so, cmd, data, ifp, p)
1421 struct socket *so;
1422 u_long cmd;
1423 caddr_t data;
1424 struct ifnet *ifp;
1425 struct proc *p;
1426 {
1427 struct if_laddrreq *iflr = (struct if_laddrreq *)data;
1428 struct ifaddr *ifa;
1429 struct sockaddr *sa;
1430
1431 /* sanity checks */
1432 if (!data || !ifp) {
1433 panic("invalid argument to in6_lifaddr_ioctl");
1434 /* NOTREACHED */
1435 }
1436
1437 switch (cmd) {
1438 case SIOCGLIFADDR:
1439 /* address must be specified on GET with IFLR_PREFIX */
1440 if ((iflr->flags & IFLR_PREFIX) == 0)
1441 break;
1442 /* FALLTHROUGH */
1443 case SIOCALIFADDR:
1444 case SIOCDLIFADDR:
1445 /* address must be specified on ADD and DELETE */
1446 sa = (struct sockaddr *)&iflr->addr;
1447 if (sa->sa_family != AF_INET6)
1448 return EINVAL;
1449 if (sa->sa_len != sizeof(struct sockaddr_in6))
1450 return EINVAL;
1451 /* XXX need improvement */
1452 sa = (struct sockaddr *)&iflr->dstaddr;
1453 if (sa->sa_family && sa->sa_family != AF_INET6)
1454 return EINVAL;
1455 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
1456 return EINVAL;
1457 break;
1458 default: /* shouldn't happen */
1459 #if 0
1460 panic("invalid cmd to in6_lifaddr_ioctl");
1461 /* NOTREACHED */
1462 #else
1463 return EOPNOTSUPP;
1464 #endif
1465 }
1466 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
1467 return EINVAL;
1468
1469 switch (cmd) {
1470 case SIOCALIFADDR:
1471 {
1472 struct in6_aliasreq ifra;
1473 struct in6_addr *hostid = NULL;
1474 int prefixlen;
1475
1476 if ((iflr->flags & IFLR_PREFIX) != 0) {
1477 struct sockaddr_in6 *sin6;
1478
1479 /*
1480 * hostid is to fill in the hostid part of the
1481 * address. hostid points to the first link-local
1482 * address attached to the interface.
1483 */
1484 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
1485 if (!ifa)
1486 return EADDRNOTAVAIL;
1487 hostid = IFA_IN6(ifa);
1488
1489 /* prefixlen must be <= 64. */
1490 if (64 < iflr->prefixlen)
1491 return EINVAL;
1492 prefixlen = iflr->prefixlen;
1493
1494 /* hostid part must be zero. */
1495 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1496 if (sin6->sin6_addr.s6_addr32[2] != 0
1497 || sin6->sin6_addr.s6_addr32[3] != 0) {
1498 return EINVAL;
1499 }
1500 } else
1501 prefixlen = iflr->prefixlen;
1502
1503 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
1504 bzero(&ifra, sizeof(ifra));
1505 bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name));
1506
1507 bcopy(&iflr->addr, &ifra.ifra_addr,
1508 ((struct sockaddr *)&iflr->addr)->sa_len);
1509 if (hostid) {
1510 /* fill in hostid part */
1511 ifra.ifra_addr.sin6_addr.s6_addr32[2] =
1512 hostid->s6_addr32[2];
1513 ifra.ifra_addr.sin6_addr.s6_addr32[3] =
1514 hostid->s6_addr32[3];
1515 }
1516
1517 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */
1518 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
1519 ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1520 if (hostid) {
1521 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
1522 hostid->s6_addr32[2];
1523 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
1524 hostid->s6_addr32[3];
1525 }
1526 }
1527
1528 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
1529 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
1530
1531 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
1532 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, p);
1533 }
1534 case SIOCGLIFADDR:
1535 case SIOCDLIFADDR:
1536 {
1537 struct in6_ifaddr *ia;
1538 struct in6_addr mask, candidate, match;
1539 struct sockaddr_in6 *sin6;
1540 int cmp;
1541
1542 bzero(&mask, sizeof(mask));
1543 if (iflr->flags & IFLR_PREFIX) {
1544 /* lookup a prefix rather than address. */
1545 in6_prefixlen2mask(&mask, iflr->prefixlen);
1546
1547 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1548 bcopy(&sin6->sin6_addr, &match, sizeof(match));
1549 match.s6_addr32[0] &= mask.s6_addr32[0];
1550 match.s6_addr32[1] &= mask.s6_addr32[1];
1551 match.s6_addr32[2] &= mask.s6_addr32[2];
1552 match.s6_addr32[3] &= mask.s6_addr32[3];
1553
1554 /* if you set extra bits, that's wrong */
1555 if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
1556 return EINVAL;
1557
1558 cmp = 1;
1559 } else {
1560 if (cmd == SIOCGLIFADDR) {
1561 /* on getting an address, take the 1st match */
1562 cmp = 0; /* XXX */
1563 } else {
1564 /* on deleting an address, do exact match */
1565 in6_prefixlen2mask(&mask, 128);
1566 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1567 bcopy(&sin6->sin6_addr, &match, sizeof(match));
1568
1569 cmp = 1;
1570 }
1571 }
1572
1573 for (ifa = ifp->if_addrlist.tqh_first;
1574 ifa;
1575 ifa = ifa->ifa_list.tqe_next)
1576 {
1577 if (ifa->ifa_addr->sa_family != AF_INET6)
1578 continue;
1579 if (!cmp)
1580 break;
1581
1582 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
1583 candidate.s6_addr32[0] &= mask.s6_addr32[0];
1584 candidate.s6_addr32[1] &= mask.s6_addr32[1];
1585 candidate.s6_addr32[2] &= mask.s6_addr32[2];
1586 candidate.s6_addr32[3] &= mask.s6_addr32[3];
1587 if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
1588 break;
1589 }
1590 if (!ifa)
1591 return EADDRNOTAVAIL;
1592 ia = ifa2ia6(ifa);
1593
1594 if (cmd == SIOCGLIFADDR) {
1595 /* fill in the if_laddrreq structure */
1596 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
1597 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1598 bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
1599 ia->ia_dstaddr.sin6_len);
1600 } else
1601 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
1602
1603 iflr->prefixlen =
1604 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
1605
1606 iflr->flags = ia->ia6_flags; /* XXX */
1607
1608 return 0;
1609 } else {
1610 struct in6_aliasreq ifra;
1611
1612 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
1613 bzero(&ifra, sizeof(ifra));
1614 bcopy(iflr->iflr_name, ifra.ifra_name,
1615 sizeof(ifra.ifra_name));
1616
1617 bcopy(&ia->ia_addr, &ifra.ifra_addr,
1618 ia->ia_addr.sin6_len);
1619 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1620 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
1621 ia->ia_dstaddr.sin6_len);
1622 } else {
1623 bzero(&ifra.ifra_dstaddr,
1624 sizeof(ifra.ifra_dstaddr));
1625 }
1626 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
1627 ia->ia_prefixmask.sin6_len);
1628
1629 ifra.ifra_flags = ia->ia6_flags;
1630 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
1631 ifp, p);
1632 }
1633 }
1634 }
1635
1636 return EOPNOTSUPP; /* just for safety */
1637 }
1638
1639 /*
1640 * Initialize an interface's intetnet6 address
1641 * and routing table entry.
1642 */
1643 static int
1644 in6_ifinit(ifp, ia, sin6, newhost)
1645 struct ifnet *ifp;
1646 struct in6_ifaddr *ia;
1647 struct sockaddr_in6 *sin6;
1648 int newhost;
1649 {
1650 int error = 0, plen, ifacount = 0;
1651 int s = splnet();
1652 struct ifaddr *ifa;
1653
1654 /*
1655 * Give the interface a chance to initialize
1656 * if this is its first address,
1657 * and to validate the address if necessary.
1658 */
1659 for (ifa = ifp->if_addrlist.tqh_first; ifa;
1660 ifa = ifa->ifa_list.tqe_next)
1661 {
1662 if (ifa->ifa_addr == NULL)
1663 continue; /* just for safety */
1664 if (ifa->ifa_addr->sa_family != AF_INET6)
1665 continue;
1666 ifacount++;
1667 }
1668
1669 ia->ia_addr = *sin6;
1670
1671 if (ifacount <= 1 && ifp->if_ioctl &&
1672 (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) {
1673 splx(s);
1674 return (error);
1675 }
1676 splx(s);
1677
1678 ia->ia_ifa.ifa_metric = ifp->if_metric;
1679
1680 /* we could do in(6)_socktrim here, but just omit it at this moment. */
1681
1682 /*
1683 * Special case:
1684 * If the destination address is specified for a point-to-point
1685 * interface, install a route to the destination as an interface
1686 * direct route.
1687 */
1688 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
1689 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) {
1690 if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD,
1691 RTF_UP | RTF_HOST)) != 0)
1692 return (error);
1693 ia->ia_flags |= IFA_ROUTE;
1694 }
1695
1696 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
1697 if (newhost) {
1698 /* set the rtrequest function to create llinfo */
1699 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
1700 in6_ifaddloop(&(ia->ia_ifa));
1701 }
1702
1703 if (ifp->if_flags & IFF_MULTICAST)
1704 in6_restoremkludge(ia, ifp);
1705
1706 return (error);
1707 }
1708
1709 /*
1710 * Multicast address kludge:
1711 * If there were any multicast addresses attached to this interface address,
1712 * either move them to another address on this interface, or save them until
1713 * such time as this interface is reconfigured for IPv6.
1714 */
1715 void
1716 in6_savemkludge(oia)
1717 struct in6_ifaddr *oia;
1718 {
1719 struct in6_ifaddr *ia;
1720 struct in6_multi *in6m, *next;
1721
1722 IFP_TO_IA6(oia->ia_ifp, ia);
1723 if (ia) { /* there is another address */
1724 for (in6m = oia->ia6_multiaddrs.lh_first; in6m; in6m = next){
1725 next = in6m->in6m_entry.le_next;
1726 IFAFREE(&in6m->in6m_ia->ia_ifa);
1727 IFAREF(&ia->ia_ifa);
1728 in6m->in6m_ia = ia;
1729 LIST_INSERT_HEAD(&ia->ia6_multiaddrs, in6m, in6m_entry);
1730 }
1731 } else { /* last address on this if deleted, save */
1732 struct multi6_kludge *mk;
1733
1734 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
1735 if (mk->mk_ifp == oia->ia_ifp)
1736 break;
1737 }
1738 if (mk == NULL) /* this should not happen! */
1739 panic("in6_savemkludge: no kludge space");
1740
1741 for (in6m = oia->ia6_multiaddrs.lh_first; in6m; in6m = next){
1742 next = in6m->in6m_entry.le_next;
1743 IFAFREE(&in6m->in6m_ia->ia_ifa); /* release reference */
1744 in6m->in6m_ia = NULL;
1745 LIST_INSERT_HEAD(&mk->mk_head, in6m, in6m_entry);
1746 }
1747 }
1748 }
1749
1750 /*
1751 * Continuation of multicast address hack:
1752 * If there was a multicast group list previously saved for this interface,
1753 * then we re-attach it to the first address configured on the i/f.
1754 */
1755 void
1756 in6_restoremkludge(ia, ifp)
1757 struct in6_ifaddr *ia;
1758 struct ifnet *ifp;
1759 {
1760 struct multi6_kludge *mk;
1761
1762 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
1763 if (mk->mk_ifp == ifp) {
1764 struct in6_multi *in6m, *next;
1765
1766 for (in6m = mk->mk_head.lh_first; in6m; in6m = next) {
1767 next = in6m->in6m_entry.le_next;
1768 in6m->in6m_ia = ia;
1769 IFAREF(&ia->ia_ifa);
1770 LIST_INSERT_HEAD(&ia->ia6_multiaddrs,
1771 in6m, in6m_entry);
1772 }
1773 LIST_INIT(&mk->mk_head);
1774 break;
1775 }
1776 }
1777 }
1778
1779 /*
1780 * Allocate space for the kludge at interface initialization time.
1781 * Formerly, we dynamically allocated the space in in6_savemkludge() with
1782 * malloc(M_WAITOK). However, it was wrong since the function could be called
1783 * under an interrupt context (software timer on address lifetime expiration).
1784 * Also, we cannot just give up allocating the strucutre, since the group
1785 * membership structure is very complex and we need to keep it anyway.
1786 * Of course, this function MUST NOT be called under an interrupt context.
1787 * Specifically, it is expected to be called only from in6_ifattach(), though
1788 * it is a global function.
1789 */
1790 void
1791 in6_createmkludge(ifp)
1792 struct ifnet *ifp;
1793 {
1794 struct multi6_kludge *mk;
1795
1796 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
1797 /* If we've already had one, do not allocate. */
1798 if (mk->mk_ifp == ifp)
1799 return;
1800 }
1801
1802 mk = malloc(sizeof(*mk), M_IPMADDR, M_WAITOK);
1803
1804 bzero(mk, sizeof(*mk));
1805 LIST_INIT(&mk->mk_head);
1806 mk->mk_ifp = ifp;
1807 LIST_INSERT_HEAD(&in6_mk, mk, mk_entry);
1808 }
1809
1810 void
1811 in6_purgemkludge(ifp)
1812 struct ifnet *ifp;
1813 {
1814 struct multi6_kludge *mk;
1815 struct in6_multi *in6m;
1816
1817 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
1818 if (mk->mk_ifp != ifp)
1819 continue;
1820
1821 /* leave from all multicast groups joined */
1822 while ((in6m = LIST_FIRST(&mk->mk_head)) != NULL)
1823 in6_delmulti(in6m);
1824 LIST_REMOVE(mk, mk_entry);
1825 free(mk, M_IPMADDR);
1826 break;
1827 }
1828 }
1829
1830 /*
1831 * Add an address to the list of IP6 multicast addresses for a
1832 * given interface.
1833 */
1834 struct in6_multi *
1835 in6_addmulti(maddr6, ifp, errorp)
1836 struct in6_addr *maddr6;
1837 struct ifnet *ifp;
1838 int *errorp;
1839 {
1840 struct in6_ifaddr *ia;
1841 struct in6_ifreq ifr;
1842 struct in6_multi *in6m;
1843 int s = splsoftnet();
1844
1845 *errorp = 0;
1846 /*
1847 * See if address already in list.
1848 */
1849 IN6_LOOKUP_MULTI(*maddr6, ifp, in6m);
1850 if (in6m != NULL) {
1851 /*
1852 * Found it; just increment the refrence count.
1853 */
1854 in6m->in6m_refcount++;
1855 } else {
1856 /*
1857 * New address; allocate a new multicast record
1858 * and link it into the interface's multicast list.
1859 */
1860 in6m = (struct in6_multi *)
1861 malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT);
1862 if (in6m == NULL) {
1863 splx(s);
1864 *errorp = ENOBUFS;
1865 return (NULL);
1866 }
1867 in6m->in6m_addr = *maddr6;
1868 in6m->in6m_ifp = ifp;
1869 in6m->in6m_refcount = 1;
1870 IFP_TO_IA6(ifp, ia);
1871 if (ia == NULL) {
1872 free(in6m, M_IPMADDR);
1873 splx(s);
1874 *errorp = EADDRNOTAVAIL; /* appropriate? */
1875 return (NULL);
1876 }
1877 in6m->in6m_ia = ia;
1878 IFAREF(&ia->ia_ifa); /* gain a reference */
1879 LIST_INSERT_HEAD(&ia->ia6_multiaddrs, in6m, in6m_entry);
1880
1881 /*
1882 * Ask the network driver to update its multicast reception
1883 * filter appropriately for the new address.
1884 */
1885 bzero(&ifr.ifr_addr, sizeof(struct sockaddr_in6));
1886 ifr.ifr_addr.sin6_len = sizeof(struct sockaddr_in6);
1887 ifr.ifr_addr.sin6_family = AF_INET6;
1888 ifr.ifr_addr.sin6_addr = *maddr6;
1889 if (ifp->if_ioctl == NULL)
1890 *errorp = ENXIO; /* XXX: appropriate? */
1891 else
1892 *errorp = (*ifp->if_ioctl)(ifp, SIOCADDMULTI,
1893 (caddr_t)&ifr);
1894 if (*errorp) {
1895 LIST_REMOVE(in6m, in6m_entry);
1896 free(in6m, M_IPMADDR);
1897 IFAFREE(&ia->ia_ifa);
1898 splx(s);
1899 return (NULL);
1900 }
1901 /*
1902 * Let MLD6 know that we have joined a new IP6 multicast
1903 * group.
1904 */
1905 mld6_start_listening(in6m);
1906 }
1907 splx(s);
1908 return (in6m);
1909 }
1910
1911 /*
1912 * Delete a multicast address record.
1913 */
1914 void
1915 in6_delmulti(in6m)
1916 struct in6_multi *in6m;
1917 {
1918 struct in6_ifreq ifr;
1919 int s = splsoftnet();
1920
1921 if (--in6m->in6m_refcount == 0) {
1922 /*
1923 * No remaining claims to this record; let MLD6 know
1924 * that we are leaving the multicast group.
1925 */
1926 mld6_stop_listening(in6m);
1927
1928 /*
1929 * Unlink from list.
1930 */
1931 LIST_REMOVE(in6m, in6m_entry);
1932 if (in6m->in6m_ia) {
1933 IFAFREE(&in6m->in6m_ia->ia_ifa); /* release reference */
1934 }
1935
1936 /*
1937 * Notify the network driver to update its multicast
1938 * reception filter.
1939 */
1940 bzero(&ifr.ifr_addr, sizeof(struct sockaddr_in6));
1941 ifr.ifr_addr.sin6_len = sizeof(struct sockaddr_in6);
1942 ifr.ifr_addr.sin6_family = AF_INET6;
1943 ifr.ifr_addr.sin6_addr = in6m->in6m_addr;
1944 (*in6m->in6m_ifp->if_ioctl)(in6m->in6m_ifp,
1945 SIOCDELMULTI, (caddr_t)&ifr);
1946 free(in6m, M_IPMADDR);
1947 }
1948 splx(s);
1949 }
1950
1951 struct in6_multi_mship *
1952 in6_joingroup(ifp, addr, errorp)
1953 struct ifnet *ifp;
1954 struct in6_addr *addr;
1955 int *errorp;
1956 {
1957 struct in6_multi_mship *imm;
1958
1959 imm = malloc(sizeof(*imm), M_IPMADDR, M_NOWAIT);
1960 if (!imm) {
1961 *errorp = ENOBUFS;
1962 return NULL;
1963 }
1964 imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp);
1965 if (!imm->i6mm_maddr) {
1966 /* *errorp is alrady set */
1967 free(imm, M_IPMADDR);
1968 return NULL;
1969 }
1970 return imm;
1971 }
1972
1973 int
1974 in6_leavegroup(imm)
1975 struct in6_multi_mship *imm;
1976 {
1977
1978 if (imm->i6mm_maddr)
1979 in6_delmulti(imm->i6mm_maddr);
1980 free(imm, M_IPMADDR);
1981 return 0;
1982 }
1983
1984 /*
1985 * Find an IPv6 interface link-local address specific to an interface.
1986 */
1987 struct in6_ifaddr *
1988 in6ifa_ifpforlinklocal(ifp, ignoreflags)
1989 struct ifnet *ifp;
1990 int ignoreflags;
1991 {
1992 struct ifaddr *ifa;
1993
1994 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
1995 {
1996 if (ifa->ifa_addr == NULL)
1997 continue; /* just for safety */
1998 if (ifa->ifa_addr->sa_family != AF_INET6)
1999 continue;
2000 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
2001 if ((((struct in6_ifaddr *)ifa)->ia6_flags &
2002 ignoreflags) != 0)
2003 continue;
2004 break;
2005 }
2006 }
2007
2008 return ((struct in6_ifaddr *)ifa);
2009 }
2010
2011
2012 /*
2013 * find the internet address corresponding to a given interface and address.
2014 */
2015 struct in6_ifaddr *
2016 in6ifa_ifpwithaddr(ifp, addr)
2017 struct ifnet *ifp;
2018 struct in6_addr *addr;
2019 {
2020 struct ifaddr *ifa;
2021
2022 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
2023 {
2024 if (ifa->ifa_addr == NULL)
2025 continue; /* just for safety */
2026 if (ifa->ifa_addr->sa_family != AF_INET6)
2027 continue;
2028 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
2029 break;
2030 }
2031
2032 return ((struct in6_ifaddr *)ifa);
2033 }
2034
2035 /*
2036 * Convert IP6 address to printable (loggable) representation.
2037 */
2038 static char digits[] = "0123456789abcdef";
2039 static int ip6round = 0;
2040 char *
2041 ip6_sprintf(addr)
2042 const struct in6_addr *addr;
2043 {
2044 static char ip6buf[8][48];
2045 int i;
2046 char *cp;
2047 const u_short *a = (const u_short *)addr;
2048 const u_char *d;
2049 int dcolon = 0;
2050
2051 ip6round = (ip6round + 1) & 7;
2052 cp = ip6buf[ip6round];
2053
2054 for (i = 0; i < 8; i++) {
2055 if (dcolon == 1) {
2056 if (*a == 0) {
2057 if (i == 7)
2058 *cp++ = ':';
2059 a++;
2060 continue;
2061 } else
2062 dcolon = 2;
2063 }
2064 if (*a == 0) {
2065 if (dcolon == 0 && *(a + 1) == 0) {
2066 if (i == 0)
2067 *cp++ = ':';
2068 *cp++ = ':';
2069 dcolon = 1;
2070 } else {
2071 *cp++ = '0';
2072 *cp++ = ':';
2073 }
2074 a++;
2075 continue;
2076 }
2077 d = (const u_char *)a;
2078 *cp++ = digits[*d >> 4];
2079 *cp++ = digits[*d++ & 0xf];
2080 *cp++ = digits[*d >> 4];
2081 *cp++ = digits[*d & 0xf];
2082 *cp++ = ':';
2083 a++;
2084 }
2085 *--cp = 0;
2086 return (ip6buf[ip6round]);
2087 }
2088
2089 /*
2090 * Determine if an address is on a local network.
2091 */
2092 int
2093 in6_localaddr(in6)
2094 struct in6_addr *in6;
2095 {
2096 struct in6_ifaddr *ia;
2097
2098 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
2099 return (1);
2100
2101 for (ia = in6_ifaddr; ia; ia = ia->ia_next)
2102 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
2103 &ia->ia_prefixmask.sin6_addr))
2104 return (1);
2105
2106 return (0);
2107 }
2108
2109 /*
2110 * Get a scope of the address. Node-local, link-local, site-local or global.
2111 */
2112 int
2113 in6_addrscope (addr)
2114 struct in6_addr *addr;
2115 {
2116 int scope;
2117
2118 if (addr->s6_addr8[0] == 0xfe) {
2119 scope = addr->s6_addr8[1] & 0xc0;
2120
2121 switch (scope) {
2122 case 0x80:
2123 return IPV6_ADDR_SCOPE_LINKLOCAL;
2124 case 0xc0:
2125 return IPV6_ADDR_SCOPE_SITELOCAL;
2126 default:
2127 return IPV6_ADDR_SCOPE_GLOBAL; /* just in case */
2128 }
2129 }
2130
2131
2132 if (addr->s6_addr8[0] == 0xff) {
2133 scope = addr->s6_addr8[1] & 0x0f;
2134
2135 /*
2136 * due to other scope such as reserved,
2137 * return scope doesn't work.
2138 */
2139 switch (scope) {
2140 case IPV6_ADDR_SCOPE_NODELOCAL:
2141 return IPV6_ADDR_SCOPE_NODELOCAL;
2142 case IPV6_ADDR_SCOPE_LINKLOCAL:
2143 return IPV6_ADDR_SCOPE_LINKLOCAL;
2144 case IPV6_ADDR_SCOPE_SITELOCAL:
2145 return IPV6_ADDR_SCOPE_SITELOCAL;
2146 default:
2147 return IPV6_ADDR_SCOPE_GLOBAL;
2148 }
2149 }
2150
2151 if (bcmp(&in6addr_loopback, addr, sizeof(*addr) - 1) == 0) {
2152 if (addr->s6_addr8[15] == 1) /* loopback */
2153 return IPV6_ADDR_SCOPE_NODELOCAL;
2154 if (addr->s6_addr8[15] == 0) /* unspecified */
2155 return IPV6_ADDR_SCOPE_LINKLOCAL;
2156 }
2157
2158 return IPV6_ADDR_SCOPE_GLOBAL;
2159 }
2160
2161 int
2162 in6_addr2scopeid(ifp, addr)
2163 struct ifnet *ifp; /* must not be NULL */
2164 struct in6_addr *addr; /* must not be NULL */
2165 {
2166 int scope = in6_addrscope(addr);
2167
2168 switch (scope) {
2169 case IPV6_ADDR_SCOPE_NODELOCAL:
2170 return (-1); /* XXX: is this an appropriate value? */
2171
2172 case IPV6_ADDR_SCOPE_LINKLOCAL:
2173 /* XXX: we do not distinguish between a link and an I/F. */
2174 return (ifp->if_index);
2175
2176 case IPV6_ADDR_SCOPE_SITELOCAL:
2177 return (0); /* XXX: invalid. */
2178
2179 default:
2180 return (0); /* XXX: treat as global. */
2181 }
2182 }
2183
2184 int
2185 in6_is_addr_deprecated(sa6)
2186 struct sockaddr_in6 *sa6;
2187 {
2188 struct in6_ifaddr *ia;
2189
2190 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
2191 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
2192 &sa6->sin6_addr) &&
2193 #ifdef SCOPEDROUTING
2194 ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id &&
2195 #endif
2196 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
2197 return (1); /* true */
2198
2199 /* XXX: do we still have to go thru the rest of the list? */
2200 }
2201
2202 return (0); /* false */
2203 }
2204
2205 /*
2206 * return length of part which dst and src are equal
2207 * hard coding...
2208 */
2209 int
2210 in6_matchlen(src, dst)
2211 struct in6_addr *src, *dst;
2212 {
2213 int match = 0;
2214 u_char *s = (u_char *)src, *d = (u_char *)dst;
2215 u_char *lim = s + 16, r;
2216
2217 while (s < lim)
2218 if ((r = (*d++ ^ *s++)) != 0) {
2219 while (r < 128) {
2220 match++;
2221 r <<= 1;
2222 }
2223 break;
2224 } else
2225 match += 8;
2226 return match;
2227 }
2228
2229 /* XXX: to be scope conscious */
2230 int
2231 in6_are_prefix_equal(p1, p2, len)
2232 struct in6_addr *p1, *p2;
2233 int len;
2234 {
2235 int bytelen, bitlen;
2236
2237 /* sanity check */
2238 if (0 > len || len > 128) {
2239 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
2240 len);
2241 return (0);
2242 }
2243
2244 bytelen = len / 8;
2245 bitlen = len % 8;
2246
2247 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
2248 return (0);
2249 if (p1->s6_addr[bytelen] >> (8 - bitlen) !=
2250 p2->s6_addr[bytelen] >> (8 - bitlen))
2251 return (0);
2252
2253 return (1);
2254 }
2255
2256 void
2257 in6_prefixlen2mask(maskp, len)
2258 struct in6_addr *maskp;
2259 int len;
2260 {
2261 static const u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
2262 int bytelen, bitlen, i;
2263
2264 /* sanity check */
2265 if (0 > len || len > 128) {
2266 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
2267 len);
2268 return;
2269 }
2270
2271 bzero(maskp, sizeof(*maskp));
2272 bytelen = len / 8;
2273 bitlen = len % 8;
2274 for (i = 0; i < bytelen; i++)
2275 maskp->s6_addr[i] = 0xff;
2276 if (bitlen)
2277 maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
2278 }
2279
2280 /*
2281 * return the best address out of the same scope
2282 */
2283 struct in6_ifaddr *
2284 in6_ifawithscope(oifp, dst)
2285 struct ifnet *oifp;
2286 struct in6_addr *dst;
2287 {
2288 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0;
2289 int blen = -1;
2290 struct ifaddr *ifa;
2291 struct ifnet *ifp;
2292 struct in6_ifaddr *ifa_best = NULL;
2293
2294 if (oifp == NULL) {
2295 printf("in6_ifawithscope: output interface is not specified\n");
2296 return (NULL);
2297 }
2298
2299 /*
2300 * We search for all addresses on all interfaces from the beginning.
2301 * Comparing an interface with the outgoing interface will be done
2302 * only at the final stage of tiebreaking.
2303 */
2304 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
2305 {
2306 /*
2307 * We can never take an address that breaks the scope zone
2308 * of the destination.
2309 */
2310 if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst))
2311 continue;
2312
2313 for (ifa = ifp->if_addrlist.tqh_first; ifa;
2314 ifa = ifa->ifa_list.tqe_next)
2315 {
2316 int tlen = -1, dscopecmp, bscopecmp, matchcmp;
2317
2318 if (ifa->ifa_addr->sa_family != AF_INET6)
2319 continue;
2320
2321 src_scope = in6_addrscope(IFA_IN6(ifa));
2322
2323 #ifdef ADDRSELECT_DEBUG /* should be removed after stabilization */
2324 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
2325 printf("in6_ifawithscope: dst=%s bestaddr=%s, "
2326 "newaddr=%s, scope=%x, dcmp=%d, bcmp=%d, "
2327 "matchlen=%d, flgs=%x\n",
2328 ip6_sprintf(dst),
2329 ifa_best ? ip6_sprintf(&ifa_best->ia_addr.sin6_addr) : "none",
2330 ip6_sprintf(IFA_IN6(ifa)), src_scope,
2331 dscopecmp,
2332 ifa_best ? IN6_ARE_SCOPE_CMP(src_scope, best_scope) : -1,
2333 in6_matchlen(IFA_IN6(ifa), dst),
2334 ((struct in6_ifaddr *)ifa)->ia6_flags);
2335 #endif
2336
2337 /*
2338 * Don't use an address before completing DAD
2339 * nor a duplicated address.
2340 */
2341 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2342 IN6_IFF_NOTREADY)
2343 continue;
2344
2345 /* XXX: is there any case to allow anycasts? */
2346 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2347 IN6_IFF_ANYCAST)
2348 continue;
2349
2350 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2351 IN6_IFF_DETACHED)
2352 continue;
2353
2354 /*
2355 * If this is the first address we find,
2356 * keep it anyway.
2357 */
2358 if (ifa_best == NULL)
2359 goto replace;
2360
2361 /*
2362 * ifa_best is never NULL beyond this line except
2363 * within the block labeled "replace".
2364 */
2365
2366 /*
2367 * If ifa_best has a smaller scope than dst and
2368 * the current address has a larger one than
2369 * (or equal to) dst, always replace ifa_best.
2370 * Also, if the current address has a smaller scope
2371 * than dst, ignore it unless ifa_best also has a
2372 * smaller scope.
2373 */
2374 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 &&
2375 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0)
2376 goto replace;
2377 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 &&
2378 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0)
2379 continue;
2380
2381 /*
2382 * A deprecated address SHOULD NOT be used in new
2383 * communications if an alternate (non-deprecated)
2384 * address is available and has sufficient scope.
2385 * RFC 2462, Section 5.5.4.
2386 */
2387 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2388 IN6_IFF_DEPRECATED) {
2389 /*
2390 * Ignore any deprecated addresses if
2391 * specified by configuration.
2392 */
2393 if (!ip6_use_deprecated)
2394 continue;
2395
2396 /*
2397 * If we have already found a non-deprecated
2398 * candidate, just ignore deprecated addresses.
2399 */
2400 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED)
2401 == 0)
2402 continue;
2403 }
2404
2405 /*
2406 * A non-deprecated address is always preferred
2407 * to a deprecated one regardless of scopes and
2408 * address matching.
2409 */
2410 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) &&
2411 (((struct in6_ifaddr *)ifa)->ia6_flags &
2412 IN6_IFF_DEPRECATED) == 0)
2413 goto replace;
2414
2415 /*
2416 * At this point, we have two cases:
2417 * 1. we are looking at a non-deprecated address,
2418 * and ifa_best is also non-deprecated.
2419 * 2. we are looking at a deprecated address,
2420 * and ifa_best is also deprecated.
2421 * Also, we do not have to consider a case where
2422 * the scope of if_best is larger(smaller) than dst and
2423 * the scope of the current address is smaller(larger)
2424 * than dst. Such a case has already been covered.
2425 * Tiebreaking is done according to the following
2426 * items:
2427 * - the scope comparison between the address and
2428 * dst (dscopecmp)
2429 * - the scope comparison between the address and
2430 * ifa_best (bscopecmp)
2431 * - if the address match dst longer than ifa_best
2432 * (matchcmp)
2433 * - if the address is on the outgoing I/F (outI/F)
2434 *
2435 * Roughly speaking, the selection policy is
2436 * - the most important item is scope. The same scope
2437 * is best. Then search for a larger scope.
2438 * Smaller scopes are the last resort.
2439 * - A deprecated address is chosen only when we have
2440 * no address that has an enough scope, but is
2441 * prefered to any addresses of smaller scopes.
2442 * - Longest address match against dst is considered
2443 * only for addresses that has the same scope of dst.
2444 * - If there is no other reasons to choose one,
2445 * addresses on the outgoing I/F are preferred.
2446 *
2447 * The precise decision table is as follows:
2448 * dscopecmp bscopecmp matchcmp outI/F | replace?
2449 * !equal equal N/A Yes | Yes (1)
2450 * !equal equal N/A No | No (2)
2451 * larger larger N/A N/A | No (3)
2452 * larger smaller N/A N/A | Yes (4)
2453 * smaller larger N/A N/A | Yes (5)
2454 * smaller smaller N/A N/A | No (6)
2455 * equal smaller N/A N/A | Yes (7)
2456 * equal larger (already done)
2457 * equal equal larger N/A | Yes (8)
2458 * equal equal smaller N/A | No (9)
2459 * equal equal equal Yes | Yes (a)
2460 * eaual eqaul equal No | No (b)
2461 */
2462 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
2463 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope);
2464
2465 if (dscopecmp && bscopecmp == 0) {
2466 if (oifp == ifp) /* (1) */
2467 goto replace;
2468 continue; /* (2) */
2469 }
2470 if (dscopecmp > 0) {
2471 if (bscopecmp > 0) /* (3) */
2472 continue;
2473 goto replace; /* (4) */
2474 }
2475 if (dscopecmp < 0) {
2476 if (bscopecmp > 0) /* (5) */
2477 goto replace;
2478 continue; /* (6) */
2479 }
2480
2481 /* now dscopecmp must be 0 */
2482 if (bscopecmp < 0)
2483 goto replace; /* (7) */
2484
2485 /*
2486 * At last both dscopecmp and bscopecmp must be 0.
2487 * We need address matching against dst for
2488 * tiebreaking.
2489 */
2490 tlen = in6_matchlen(IFA_IN6(ifa), dst);
2491 matchcmp = tlen - blen;
2492 if (matchcmp > 0) /* (8) */
2493 goto replace;
2494 if (matchcmp < 0) /* (9) */
2495 continue;
2496 if (oifp == ifp) /* (a) */
2497 goto replace;
2498 continue; /* (b) */
2499
2500 replace:
2501 ifa_best = (struct in6_ifaddr *)ifa;
2502 blen = tlen >= 0 ? tlen :
2503 in6_matchlen(IFA_IN6(ifa), dst);
2504 best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr);
2505 }
2506 }
2507
2508 /* count statistics for future improvements */
2509 if (ifa_best == NULL)
2510 ip6stat.ip6s_sources_none++;
2511 else {
2512 if (oifp == ifa_best->ia_ifp)
2513 ip6stat.ip6s_sources_sameif[best_scope]++;
2514 else
2515 ip6stat.ip6s_sources_otherif[best_scope]++;
2516
2517 if (best_scope == dst_scope)
2518 ip6stat.ip6s_sources_samescope[best_scope]++;
2519 else
2520 ip6stat.ip6s_sources_otherscope[best_scope]++;
2521
2522 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0)
2523 ip6stat.ip6s_sources_deprecated[best_scope]++;
2524 }
2525
2526 return (ifa_best);
2527 }
2528
2529 /*
2530 * return the best address out of the same scope. if no address was
2531 * found, return the first valid address from designated IF.
2532 */
2533 struct in6_ifaddr *
2534 in6_ifawithifp(ifp, dst)
2535 struct ifnet *ifp;
2536 struct in6_addr *dst;
2537 {
2538 int dst_scope = in6_addrscope(dst), blen = -1, tlen;
2539 struct ifaddr *ifa;
2540 struct in6_ifaddr *besta = 0;
2541 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */
2542
2543 dep[0] = dep[1] = NULL;
2544
2545 /*
2546 * We first look for addresses in the same scope.
2547 * If there is one, return it.
2548 * If two or more, return one which matches the dst longest.
2549 * If none, return one of global addresses assigned other ifs.
2550 */
2551 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
2552 {
2553 if (ifa->ifa_addr->sa_family != AF_INET6)
2554 continue;
2555 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2556 continue; /* XXX: is there any case to allow anycast? */
2557 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2558 continue; /* don't use this interface */
2559 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2560 continue;
2561 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2562 if (ip6_use_deprecated)
2563 dep[0] = (struct in6_ifaddr *)ifa;
2564 continue;
2565 }
2566
2567 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
2568 /*
2569 * call in6_matchlen() as few as possible
2570 */
2571 if (besta) {
2572 if (blen == -1)
2573 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
2574 tlen = in6_matchlen(IFA_IN6(ifa), dst);
2575 if (tlen > blen) {
2576 blen = tlen;
2577 besta = (struct in6_ifaddr *)ifa;
2578 }
2579 } else
2580 besta = (struct in6_ifaddr *)ifa;
2581 }
2582 }
2583 if (besta)
2584 return (besta);
2585
2586 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
2587 {
2588 if (ifa->ifa_addr->sa_family != AF_INET6)
2589 continue;
2590 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2591 continue; /* XXX: is there any case to allow anycast? */
2592 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2593 continue; /* don't use this interface */
2594 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2595 continue;
2596 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2597 if (ip6_use_deprecated)
2598 dep[1] = (struct in6_ifaddr *)ifa;
2599 continue;
2600 }
2601
2602 return (struct in6_ifaddr *)ifa;
2603 }
2604
2605 /* use the last-resort values, that are, deprecated addresses */
2606 if (dep[0])
2607 return dep[0];
2608 if (dep[1])
2609 return dep[1];
2610
2611 return NULL;
2612 }
2613
2614 /*
2615 * perform DAD when interface becomes IFF_UP.
2616 */
2617 void
2618 in6_if_up(ifp)
2619 struct ifnet *ifp;
2620 {
2621 struct ifaddr *ifa;
2622 struct in6_ifaddr *ia;
2623 int dad_delay; /* delay ticks before DAD output */
2624
2625 /*
2626 * special cases, like 6to4, are handled in in6_ifattach
2627 */
2628 in6_ifattach(ifp, NULL);
2629
2630 dad_delay = 0;
2631 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
2632 {
2633 if (ifa->ifa_addr->sa_family != AF_INET6)
2634 continue;
2635 ia = (struct in6_ifaddr *)ifa;
2636 if (ia->ia6_flags & IN6_IFF_TENTATIVE)
2637 nd6_dad_start(ifa, &dad_delay);
2638 }
2639 }
2640
2641 int
2642 in6if_do_dad(ifp)
2643 struct ifnet *ifp;
2644 {
2645 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2646 return (0);
2647
2648 switch (ifp->if_type) {
2649 case IFT_FAITH:
2650 /*
2651 * These interfaces do not have the IFF_LOOPBACK flag,
2652 * but loop packets back. We do not have to do DAD on such
2653 * interfaces. We should even omit it, because loop-backed
2654 * NS would confuse the DAD procedure.
2655 */
2656 return (0);
2657 default:
2658 /*
2659 * Our DAD routine requires the interface up and running.
2660 * However, some interfaces can be up before the RUNNING
2661 * status. Additionaly, users may try to assign addresses
2662 * before the interface becomes up (or running).
2663 * We simply skip DAD in such a case as a work around.
2664 * XXX: we should rather mark "tentative" on such addresses,
2665 * and do DAD after the interface becomes ready.
2666 */
2667 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2668 (IFF_UP|IFF_RUNNING))
2669 return (0);
2670
2671 return (1);
2672 }
2673 }
2674
2675 /*
2676 * Calculate max IPv6 MTU through all the interfaces and store it
2677 * to in6_maxmtu.
2678 */
2679 void
2680 in6_setmaxmtu()
2681 {
2682 unsigned long maxmtu = 0;
2683 struct ifnet *ifp;
2684
2685 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
2686 {
2687 /* this function can be called during ifnet initialization */
2688 if (!ifp->if_afdata[AF_INET6])
2689 continue;
2690 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
2691 IN6_LINKMTU(ifp) > maxmtu)
2692 maxmtu = IN6_LINKMTU(ifp);
2693 }
2694 if (maxmtu) /* update only when maxmtu is positive */
2695 in6_maxmtu = maxmtu;
2696 }
2697
2698 void *
2699 in6_domifattach(ifp)
2700 struct ifnet *ifp;
2701 {
2702 struct in6_ifextra *ext;
2703
2704 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK);
2705 bzero(ext, sizeof(*ext));
2706
2707 ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat),
2708 M_IFADDR, M_WAITOK);
2709 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat));
2710
2711 ext->icmp6_ifstat =
2712 (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat),
2713 M_IFADDR, M_WAITOK);
2714 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat));
2715
2716 ext->nd_ifinfo = nd6_ifattach(ifp);
2717 return ext;
2718 }
2719
2720 void
2721 in6_domifdetach(ifp, aux)
2722 struct ifnet *ifp;
2723 void *aux;
2724 {
2725 struct in6_ifextra *ext = (struct in6_ifextra *)aux;
2726
2727 nd6_ifdetach(ext->nd_ifinfo);
2728 free(ext->in6_ifstat, M_IFADDR);
2729 free(ext->icmp6_ifstat, M_IFADDR);
2730 free(ext, M_IFADDR);
2731 }
2732