Home | History | Annotate | Line # | Download | only in netinet6
in6.c revision 1.75
      1 /*	$NetBSD: in6.c,v 1.75 2003/05/14 12:45:07 wiz Exp $	*/
      2 /*	$KAME: in6.c,v 1.198 2001/07/18 09:12:38 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Berkeley and its contributors.
     49  * 4. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)in.c	8.2 (Berkeley) 11/15/93
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: in6.c,v 1.75 2003/05/14 12:45:07 wiz Exp $");
     70 
     71 #include "opt_inet.h"
     72 
     73 #include <sys/param.h>
     74 #include <sys/ioctl.h>
     75 #include <sys/errno.h>
     76 #include <sys/malloc.h>
     77 #include <sys/socket.h>
     78 #include <sys/socketvar.h>
     79 #include <sys/sockio.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/time.h>
     83 #include <sys/kernel.h>
     84 #include <sys/syslog.h>
     85 
     86 #include <net/if.h>
     87 #include <net/if_types.h>
     88 #include <net/route.h>
     89 #include <net/if_dl.h>
     90 
     91 #include <netinet/in.h>
     92 #include <netinet/in_var.h>
     93 #include <net/if_ether.h>
     94 
     95 #include <netinet/ip6.h>
     96 #include <netinet6/ip6_var.h>
     97 #include <netinet6/nd6.h>
     98 #include <netinet6/mld6_var.h>
     99 #include <netinet6/ip6_mroute.h>
    100 #include <netinet6/in6_ifattach.h>
    101 
    102 #include <net/net_osdep.h>
    103 
    104 MALLOC_DEFINE(M_IP6OPT, "ip6_options", "IPv6 options");
    105 
    106 /* enable backward compatibility code for obsoleted ioctls */
    107 #define COMPAT_IN6IFIOCTL
    108 
    109 /*
    110  * Definitions of some constant IP6 addresses.
    111  */
    112 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
    113 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
    114 const struct in6_addr in6addr_nodelocal_allnodes =
    115 	IN6ADDR_NODELOCAL_ALLNODES_INIT;
    116 const struct in6_addr in6addr_linklocal_allnodes =
    117 	IN6ADDR_LINKLOCAL_ALLNODES_INIT;
    118 const struct in6_addr in6addr_linklocal_allrouters =
    119 	IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
    120 
    121 const struct in6_addr in6mask0 = IN6MASK0;
    122 const struct in6_addr in6mask32 = IN6MASK32;
    123 const struct in6_addr in6mask64 = IN6MASK64;
    124 const struct in6_addr in6mask96 = IN6MASK96;
    125 const struct in6_addr in6mask128 = IN6MASK128;
    126 
    127 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6,
    128 				     0, 0, IN6ADDR_ANY_INIT, 0};
    129 
    130 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
    131 	struct ifnet *, struct proc *));
    132 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *,
    133 	struct sockaddr_in6 *, int));
    134 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *));
    135 
    136 /*
    137  * This structure is used to keep track of in6_multi chains which belong to
    138  * deleted interface addresses.
    139  */
    140 static LIST_HEAD(, multi6_kludge) in6_mk; /* XXX BSS initialization */
    141 
    142 struct multi6_kludge {
    143 	LIST_ENTRY(multi6_kludge) mk_entry;
    144 	struct ifnet *mk_ifp;
    145 	struct in6_multihead mk_head;
    146 };
    147 
    148 /*
    149  * Subroutine for in6_ifaddloop() and in6_ifremloop().
    150  * This routine does actual work.
    151  */
    152 static void
    153 in6_ifloop_request(int cmd, struct ifaddr *ifa)
    154 {
    155 	struct sockaddr_in6 lo_sa;
    156 	struct sockaddr_in6 all1_sa;
    157 	struct rtentry *nrt = NULL;
    158 	int e;
    159 
    160 	bzero(&lo_sa, sizeof(lo_sa));
    161 	bzero(&all1_sa, sizeof(all1_sa));
    162 	lo_sa.sin6_family = all1_sa.sin6_family = AF_INET6;
    163 	lo_sa.sin6_len = all1_sa.sin6_len = sizeof(struct sockaddr_in6);
    164 	lo_sa.sin6_addr = in6addr_loopback;
    165 	all1_sa.sin6_addr = in6mask128;
    166 
    167 	/*
    168 	 * We specify the address itself as the gateway, and set the
    169 	 * RTF_LLINFO flag, so that the corresponding host route would have
    170 	 * the flag, and thus applications that assume traditional behavior
    171 	 * would be happy.  Note that we assume the caller of the function
    172 	 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
    173 	 * which changes the outgoing interface to the loopback interface.
    174 	 */
    175 	e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
    176 	    (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
    177 	if (e != 0) {
    178 		log(LOG_ERR, "in6_ifloop_request: "
    179 		    "%s operation failed for %s (errno=%d)\n",
    180 		    cmd == RTM_ADD ? "ADD" : "DELETE",
    181 		    ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
    182 		    e);
    183 	}
    184 
    185 	/*
    186 	 * Make sure rt_ifa be equal to IFA, the second argument of the
    187 	 * function.
    188 	 * We need this because when we refer to rt_ifa->ia6_flags in
    189 	 * ip6_input, we assume that the rt_ifa points to the address instead
    190 	 * of the loopback address.
    191 	 */
    192 	if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) {
    193 		IFAFREE(nrt->rt_ifa);
    194 		IFAREF(ifa);
    195 		nrt->rt_ifa = ifa;
    196 	}
    197 
    198 	/*
    199 	 * Report the addition/removal of the address to the routing socket.
    200 	 * XXX: since we called rtinit for a p2p interface with a destination,
    201 	 *      we end up reporting twice in such a case.  Should we rather
    202 	 *      omit the second report?
    203 	 */
    204 	if (nrt) {
    205 		rt_newaddrmsg(cmd, ifa, e, nrt);
    206 		if (cmd == RTM_DELETE) {
    207 			if (nrt->rt_refcnt <= 0) {
    208 				/* XXX: we should free the entry ourselves. */
    209 				nrt->rt_refcnt++;
    210 				rtfree(nrt);
    211 			}
    212 		} else {
    213 			/* the cmd must be RTM_ADD here */
    214 			nrt->rt_refcnt--;
    215 		}
    216 	}
    217 }
    218 
    219 /*
    220  * Add ownaddr as loopback rtentry.  We previously add the route only if
    221  * necessary (ex. on a p2p link).  However, since we now manage addresses
    222  * separately from prefixes, we should always add the route.  We can't
    223  * rely on the cloning mechanism from the corresponding interface route
    224  * any more.
    225  */
    226 static void
    227 in6_ifaddloop(struct ifaddr *ifa)
    228 {
    229 	struct rtentry *rt;
    230 
    231 	/* If there is no loopback entry, allocate one. */
    232 	rt = rtalloc1(ifa->ifa_addr, 0);
    233 	if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
    234 	    (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
    235 		in6_ifloop_request(RTM_ADD, ifa);
    236 	if (rt)
    237 		rt->rt_refcnt--;
    238 }
    239 
    240 /*
    241  * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
    242  * if it exists.
    243  */
    244 static void
    245 in6_ifremloop(struct ifaddr *ifa)
    246 {
    247 	struct in6_ifaddr *ia;
    248 	struct rtentry *rt;
    249 	int ia_count = 0;
    250 
    251 	/*
    252 	 * Some of BSD variants do not remove cloned routes
    253 	 * from an interface direct route, when removing the direct route
    254 	 * (see comments in net/net_osdep.h).  Even for variants that do remove
    255 	 * cloned routes, they could fail to remove the cloned routes when
    256 	 * we handle multple addresses that share a common prefix.
    257 	 * So, we should remove the route corresponding to the deleted address.
    258 	 */
    259 
    260 	/*
    261 	 * Delete the entry only if exact one ifa exists.  More than one ifa
    262 	 * can exist if we assign a same single address to multiple
    263 	 * (probably p2p) interfaces.
    264 	 * XXX: we should avoid such a configuration in IPv6...
    265 	 */
    266 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
    267 		if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
    268 			ia_count++;
    269 			if (ia_count > 1)
    270 				break;
    271 		}
    272 	}
    273 
    274 	if (ia_count == 1) {
    275 		/*
    276 		 * Before deleting, check if a corresponding loopbacked host
    277 		 * route surely exists.  With this check, we can avoid to
    278 		 * delete an interface direct route whose destination is same
    279 		 * as the address being removed.  This can happen when removing
    280 		 * a subnet-router anycast address on an interface attahced
    281 		 * to a shared medium.
    282 		 */
    283 		rt = rtalloc1(ifa->ifa_addr, 0);
    284 		if (rt != NULL && (rt->rt_flags & RTF_HOST) != 0 &&
    285 		    (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
    286 			rt->rt_refcnt--;
    287 			in6_ifloop_request(RTM_DELETE, ifa);
    288 		}
    289 	}
    290 }
    291 
    292 int
    293 in6_ifindex2scopeid(idx)
    294 	int idx;
    295 {
    296 	struct ifnet *ifp;
    297 	struct ifaddr *ifa;
    298 	struct sockaddr_in6 *sin6;
    299 
    300 	if (idx < 0 || if_index < idx)
    301 		return -1;
    302 	ifp = ifindex2ifnet[idx];
    303 	if (!ifp)
    304 		return -1;
    305 
    306 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
    307 	{
    308 		if (ifa->ifa_addr->sa_family != AF_INET6)
    309 			continue;
    310 		sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
    311 		if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))
    312 			return sin6->sin6_scope_id & 0xffff;
    313 	}
    314 
    315 	return -1;
    316 }
    317 
    318 int
    319 in6_mask2len(mask, lim0)
    320 	struct in6_addr *mask;
    321 	u_char *lim0;
    322 {
    323 	int x = 0, y;
    324 	u_char *lim = lim0, *p;
    325 
    326 	/* ignore the scope_id part */
    327 	if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask))
    328 		lim = (u_char *)mask + sizeof(*mask);
    329 	for (p = (u_char *)mask; p < lim; x++, p++) {
    330 		if (*p != 0xff)
    331 			break;
    332 	}
    333 	y = 0;
    334 	if (p < lim) {
    335 		for (y = 0; y < 8; y++) {
    336 			if ((*p & (0x80 >> y)) == 0)
    337 				break;
    338 		}
    339 	}
    340 
    341 	/*
    342 	 * when the limit pointer is given, do a stricter check on the
    343 	 * remaining bits.
    344 	 */
    345 	if (p < lim) {
    346 		if (y != 0 && (*p & (0x00ff >> y)) != 0)
    347 			return (-1);
    348 		for (p = p + 1; p < lim; p++)
    349 			if (*p != 0)
    350 				return (-1);
    351 	}
    352 
    353 	return x * 8 + y;
    354 }
    355 
    356 #define ifa2ia6(ifa)	((struct in6_ifaddr *)(ifa))
    357 #define ia62ifa(ia6)	(&((ia6)->ia_ifa))
    358 
    359 int
    360 in6_control(so, cmd, data, ifp, p)
    361 	struct	socket *so;
    362 	u_long cmd;
    363 	caddr_t	data;
    364 	struct ifnet *ifp;
    365 	struct proc *p;
    366 {
    367 	struct	in6_ifreq *ifr = (struct in6_ifreq *)data;
    368 	struct	in6_ifaddr *ia = NULL;
    369 	struct	in6_aliasreq *ifra = (struct in6_aliasreq *)data;
    370 	struct sockaddr_in6 *sa6;
    371 	time_t time_second = (time_t)time.tv_sec;
    372 	int privileged;
    373 
    374 	privileged = 0;
    375 	if (p && !suser(p->p_ucred, &p->p_acflag))
    376 		privileged++;
    377 
    378 	switch (cmd) {
    379 	case SIOCGETSGCNT_IN6:
    380 	case SIOCGETMIFCNT_IN6:
    381 		return (mrt6_ioctl(cmd, data));
    382 	}
    383 
    384 	if (ifp == NULL)
    385 		return (EOPNOTSUPP);
    386 
    387 	switch (cmd) {
    388 	case SIOCSNDFLUSH_IN6:
    389 	case SIOCSPFXFLUSH_IN6:
    390 	case SIOCSRTRFLUSH_IN6:
    391 	case SIOCSDEFIFACE_IN6:
    392 	case SIOCSIFINFO_FLAGS:
    393 		if (!privileged)
    394 			return (EPERM);
    395 		/* FALLTHROUGH */
    396 	case OSIOCGIFINFO_IN6:
    397 	case SIOCGIFINFO_IN6:
    398 	case SIOCGDRLST_IN6:
    399 	case SIOCGPRLST_IN6:
    400 	case SIOCGNBRINFO_IN6:
    401 	case SIOCGDEFIFACE_IN6:
    402 		return (nd6_ioctl(cmd, data, ifp));
    403 	}
    404 
    405 	switch (cmd) {
    406 	case SIOCSIFPREFIX_IN6:
    407 	case SIOCDIFPREFIX_IN6:
    408 	case SIOCAIFPREFIX_IN6:
    409 	case SIOCCIFPREFIX_IN6:
    410 	case SIOCSGIFPREFIX_IN6:
    411 	case SIOCGIFPREFIX_IN6:
    412 		log(LOG_NOTICE,
    413 		    "prefix ioctls are now invalidated. "
    414 		    "please use ifconfig.\n");
    415 		return (EOPNOTSUPP);
    416 	}
    417 
    418 	switch (cmd) {
    419 	case SIOCALIFADDR:
    420 	case SIOCDLIFADDR:
    421 		if (!privileged)
    422 			return (EPERM);
    423 		/* FALLTHROUGH */
    424 	case SIOCGLIFADDR:
    425 		return in6_lifaddr_ioctl(so, cmd, data, ifp, p);
    426 	}
    427 
    428 	/*
    429 	 * Find address for this interface, if it exists.
    430 	 *
    431 	 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation
    432 	 * only, and used the first interface address as the target of other
    433 	 * operations (without checking ifra_addr).  This was because netinet
    434 	 * code/API assumed at most 1 interface address per interface.
    435 	 * Since IPv6 allows a node to assign multiple addresses
    436 	 * on a single interface, we almost always look and check the
    437 	 * presence of ifra_addr, and reject invalid ones here.
    438 	 * It also decreases duplicated code among SIOC*_IN6 operations.
    439 	 */
    440 	switch (cmd) {
    441 	case SIOCAIFADDR_IN6:
    442 	case SIOCSIFPHYADDR_IN6:
    443 		sa6 = &ifra->ifra_addr;
    444 		break;
    445 	case SIOCSIFADDR_IN6:
    446 	case SIOCGIFADDR_IN6:
    447 	case SIOCSIFDSTADDR_IN6:
    448 	case SIOCSIFNETMASK_IN6:
    449 	case SIOCGIFDSTADDR_IN6:
    450 	case SIOCGIFNETMASK_IN6:
    451 	case SIOCDIFADDR_IN6:
    452 	case SIOCGIFPSRCADDR_IN6:
    453 	case SIOCGIFPDSTADDR_IN6:
    454 	case SIOCGIFAFLAG_IN6:
    455 	case SIOCSNDFLUSH_IN6:
    456 	case SIOCSPFXFLUSH_IN6:
    457 	case SIOCSRTRFLUSH_IN6:
    458 	case SIOCGIFALIFETIME_IN6:
    459 	case SIOCSIFALIFETIME_IN6:
    460 	case SIOCGIFSTAT_IN6:
    461 	case SIOCGIFSTAT_ICMP6:
    462 		sa6 = &ifr->ifr_addr;
    463 		break;
    464 	default:
    465 		sa6 = NULL;
    466 		break;
    467 	}
    468 	if (sa6 && sa6->sin6_family == AF_INET6) {
    469 		if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) {
    470 			if (sa6->sin6_addr.s6_addr16[1] == 0) {
    471 				/* link ID is not embedded by the user */
    472 				sa6->sin6_addr.s6_addr16[1] =
    473 				    htons(ifp->if_index);
    474 			} else if (sa6->sin6_addr.s6_addr16[1] !=
    475 			    htons(ifp->if_index)) {
    476 				return (EINVAL);	/* link ID contradicts */
    477 			}
    478 			if (sa6->sin6_scope_id) {
    479 				if (sa6->sin6_scope_id !=
    480 				    (u_int32_t)ifp->if_index)
    481 					return (EINVAL);
    482 				sa6->sin6_scope_id = 0; /* XXX: good way? */
    483 			}
    484 		}
    485 		ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr);
    486 	} else
    487 		ia = NULL;
    488 
    489 	switch (cmd) {
    490 	case SIOCSIFADDR_IN6:
    491 	case SIOCSIFDSTADDR_IN6:
    492 	case SIOCSIFNETMASK_IN6:
    493 		/*
    494 		 * Since IPv6 allows a node to assign multiple addresses
    495 		 * on a single interface, SIOCSIFxxx ioctls are deprecated.
    496 		 */
    497 		return (EINVAL);
    498 
    499 	case SIOCDIFADDR_IN6:
    500 		/*
    501 		 * for IPv4, we look for existing in_ifaddr here to allow
    502 		 * "ifconfig if0 delete" to remove the first IPv4 address on
    503 		 * the interface.  For IPv6, as the spec allows multiple
    504 		 * interface address from the day one, we consider "remove the
    505 		 * first one" semantics to be not preferable.
    506 		 */
    507 		if (ia == NULL)
    508 			return (EADDRNOTAVAIL);
    509 		/* FALLTHROUGH */
    510 	case SIOCAIFADDR_IN6:
    511 		/*
    512 		 * We always require users to specify a valid IPv6 address for
    513 		 * the corresponding operation.
    514 		 */
    515 		if (ifra->ifra_addr.sin6_family != AF_INET6 ||
    516 		    ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
    517 			return (EAFNOSUPPORT);
    518 		if (!privileged)
    519 			return (EPERM);
    520 
    521 		break;
    522 
    523 	case SIOCGIFADDR_IN6:
    524 		/* This interface is basically deprecated. use SIOCGIFCONF. */
    525 		/* FALLTHROUGH */
    526 	case SIOCGIFAFLAG_IN6:
    527 	case SIOCGIFNETMASK_IN6:
    528 	case SIOCGIFDSTADDR_IN6:
    529 	case SIOCGIFALIFETIME_IN6:
    530 		/* must think again about its semantics */
    531 		if (ia == NULL)
    532 			return (EADDRNOTAVAIL);
    533 		break;
    534 	case SIOCSIFALIFETIME_IN6:
    535 	    {
    536 		struct in6_addrlifetime *lt;
    537 
    538 		if (!privileged)
    539 			return (EPERM);
    540 		if (ia == NULL)
    541 			return (EADDRNOTAVAIL);
    542 		/* sanity for overflow - beware unsigned */
    543 		lt = &ifr->ifr_ifru.ifru_lifetime;
    544 		if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
    545 		 && lt->ia6t_vltime + time_second < time_second) {
    546 			return EINVAL;
    547 		}
    548 		if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
    549 		 && lt->ia6t_pltime + time_second < time_second) {
    550 			return EINVAL;
    551 		}
    552 		break;
    553 	    }
    554 	}
    555 
    556 	switch (cmd) {
    557 
    558 	case SIOCGIFADDR_IN6:
    559 		ifr->ifr_addr = ia->ia_addr;
    560 		break;
    561 
    562 	case SIOCGIFDSTADDR_IN6:
    563 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
    564 			return (EINVAL);
    565 		/*
    566 		 * XXX: should we check if ifa_dstaddr is NULL and return
    567 		 * an error?
    568 		 */
    569 		ifr->ifr_dstaddr = ia->ia_dstaddr;
    570 		break;
    571 
    572 	case SIOCGIFNETMASK_IN6:
    573 		ifr->ifr_addr = ia->ia_prefixmask;
    574 		break;
    575 
    576 	case SIOCGIFAFLAG_IN6:
    577 		ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
    578 		break;
    579 
    580 	case SIOCGIFSTAT_IN6:
    581 		if (ifp == NULL)
    582 			return EINVAL;
    583 		bzero(&ifr->ifr_ifru.ifru_stat,
    584 		    sizeof(ifr->ifr_ifru.ifru_stat));
    585 		ifr->ifr_ifru.ifru_stat =
    586 		    *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
    587 		break;
    588 
    589 	case SIOCGIFSTAT_ICMP6:
    590 		if (ifp == NULL)
    591 			return EINVAL;
    592 		bzero(&ifr->ifr_ifru.ifru_stat,
    593 		    sizeof(ifr->ifr_ifru.ifru_icmp6stat));
    594 		ifr->ifr_ifru.ifru_icmp6stat =
    595 		    *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
    596 		break;
    597 
    598 	case SIOCGIFALIFETIME_IN6:
    599 		ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
    600 		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
    601 			time_t maxexpire;
    602 			struct in6_addrlifetime *retlt =
    603 			    &ifr->ifr_ifru.ifru_lifetime;
    604 
    605 			/*
    606 			 * XXX: adjust expiration time assuming time_t is
    607 			 * signed.
    608 			 */
    609 			maxexpire = (-1) &
    610 			    ~(1 << ((sizeof(maxexpire) * 8) - 1));
    611 			if (ia->ia6_lifetime.ia6t_vltime <
    612 			    maxexpire - ia->ia6_updatetime) {
    613 				retlt->ia6t_expire = ia->ia6_updatetime +
    614 				    ia->ia6_lifetime.ia6t_vltime;
    615 			} else
    616 				retlt->ia6t_expire = maxexpire;
    617 		}
    618 		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
    619 			time_t maxexpire;
    620 			struct in6_addrlifetime *retlt =
    621 			    &ifr->ifr_ifru.ifru_lifetime;
    622 
    623 			/*
    624 			 * XXX: adjust expiration time assuming time_t is
    625 			 * signed.
    626 			 */
    627 			maxexpire = (-1) &
    628 			    ~(1 << ((sizeof(maxexpire) * 8) - 1));
    629 			if (ia->ia6_lifetime.ia6t_pltime <
    630 			    maxexpire - ia->ia6_updatetime) {
    631 				retlt->ia6t_preferred = ia->ia6_updatetime +
    632 				    ia->ia6_lifetime.ia6t_pltime;
    633 			} else
    634 				retlt->ia6t_preferred = maxexpire;
    635 		}
    636 		break;
    637 
    638 	case SIOCSIFALIFETIME_IN6:
    639 		ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
    640 		/* for sanity */
    641 		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
    642 			ia->ia6_lifetime.ia6t_expire =
    643 				time_second + ia->ia6_lifetime.ia6t_vltime;
    644 		} else
    645 			ia->ia6_lifetime.ia6t_expire = 0;
    646 		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
    647 			ia->ia6_lifetime.ia6t_preferred =
    648 				time_second + ia->ia6_lifetime.ia6t_pltime;
    649 		} else
    650 			ia->ia6_lifetime.ia6t_preferred = 0;
    651 		break;
    652 
    653 	case SIOCAIFADDR_IN6:
    654 	{
    655 		int i, error = 0;
    656 		struct nd_prefix pr0, *pr;
    657 
    658 		/* reject read-only flags */
    659 		if ((ifra->ifra_flags & IN6_IFF_DUPLICATED) != 0 ||
    660 		    (ifra->ifra_flags & IN6_IFF_DETACHED) != 0 ||
    661 		    (ifra->ifra_flags & IN6_IFF_NODAD) != 0 ||
    662 		    (ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0) {
    663 			return (EINVAL);
    664 		}
    665 		/*
    666 		 * first, make or update the interface address structure,
    667 		 * and link it to the list.
    668 		 */
    669 		if ((error = in6_update_ifa(ifp, ifra, ia)) != 0)
    670 			return (error);
    671 		if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
    672 		    == NULL) {
    673 		    	/*
    674 			 * this can happen when the user specify the 0 valid
    675 			 * lifetime.
    676 			 */
    677 			break;
    678 		}
    679 
    680 		/*
    681 		 * then, make the prefix on-link on the interface.
    682 		 * XXX: we'd rather create the prefix before the address, but
    683 		 * we need at least one address to install the corresponding
    684 		 * interface route, so we configure the address first.
    685 		 */
    686 
    687 		/*
    688 		 * convert mask to prefix length (prefixmask has already
    689 		 * been validated in in6_update_ifa().
    690 		 */
    691 		bzero(&pr0, sizeof(pr0));
    692 		pr0.ndpr_ifp = ifp;
    693 		pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
    694 		    NULL);
    695 		if (pr0.ndpr_plen == 128) {
    696 			break;	/* we don't need to install a host route. */
    697 		}
    698 		pr0.ndpr_prefix = ifra->ifra_addr;
    699 		pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr;
    700 		/* apply the mask for safety. */
    701 		for (i = 0; i < 4; i++) {
    702 			pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
    703 			    ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
    704 		}
    705 		/*
    706 		 * XXX: since we don't have an API to set prefix (not address)
    707 		 * lifetimes, we just use the same lifetimes as addresses.
    708 		 * The (temporarily) installed lifetimes can be overridden by
    709 		 * later advertised RAs (when accept_rtadv is non 0), which is
    710 		 * an intended behavior.
    711 		 */
    712 		pr0.ndpr_raf_onlink = 1; /* should be configurable? */
    713 		pr0.ndpr_raf_auto =
    714 		    ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
    715 		pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
    716 		pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
    717 
    718 		/* add the prefix if not yet. */
    719 		if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
    720 			/*
    721 			 * nd6_prelist_add will install the corresponding
    722 			 * interface route.
    723 			 */
    724 			if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
    725 				return (error);
    726 			if (pr == NULL) {
    727 				log(LOG_ERR, "nd6_prelist_add succeeded but "
    728 				    "no prefix\n");
    729 				return (EINVAL); /* XXX panic here? */
    730 			}
    731 		}
    732 
    733 		/* relate the address to the prefix */
    734 		if (ia->ia6_ndpr == NULL) {
    735 			ia->ia6_ndpr = pr;
    736 			pr->ndpr_refcnt++;
    737 		}
    738 
    739 		/*
    740 		 * this might affect the status of autoconfigured addresses,
    741 		 * that is, this address might make other addresses detached.
    742 		 */
    743 		pfxlist_onlink_check();
    744 
    745 		break;
    746 	}
    747 
    748 	case SIOCDIFADDR_IN6:
    749 	{
    750 		int i = 0, purgeprefix = 0;
    751 		struct nd_prefix pr0, *pr = NULL;
    752 
    753 		/*
    754 		 * If the address being deleted is the only one that owns
    755 		 * the corresponding prefix, expire the prefix as well.
    756 		 * XXX: theoretically, we don't have to worry about such
    757 		 * relationship, since we separate the address management
    758 		 * and the prefix management.  We do this, however, to provide
    759 		 * as much backward compatibility as possible in terms of
    760 		 * the ioctl operation.
    761 		 */
    762 		bzero(&pr0, sizeof(pr0));
    763 		pr0.ndpr_ifp = ifp;
    764 		pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr,
    765 		    NULL);
    766 		if (pr0.ndpr_plen == 128)
    767 			goto purgeaddr;
    768 		pr0.ndpr_prefix = ia->ia_addr;
    769 		pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr;
    770 		for (i = 0; i < 4; i++) {
    771 			pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
    772 			    ia->ia_prefixmask.sin6_addr.s6_addr32[i];
    773 		}
    774 		if ((pr = nd6_prefix_lookup(&pr0)) != NULL &&
    775 		    pr == ia->ia6_ndpr) {
    776 			pr->ndpr_refcnt--;
    777 			if (pr->ndpr_refcnt == 0)
    778 				purgeprefix = 1;
    779 		}
    780 
    781 	  purgeaddr:
    782 		in6_purgeaddr(&ia->ia_ifa);
    783 		if (pr && purgeprefix)
    784 			prelist_remove(pr);
    785 		break;
    786 	}
    787 
    788 	default:
    789 		if (ifp == NULL || ifp->if_ioctl == 0)
    790 			return (EOPNOTSUPP);
    791 		return ((*ifp->if_ioctl)(ifp, cmd, data));
    792 	}
    793 
    794 	return (0);
    795 }
    796 
    797 /*
    798  * Update parameters of an IPv6 interface address.
    799  * If necessary, a new entry is created and linked into address chains.
    800  * This function is separated from in6_control().
    801  * XXX: should this be performed under splnet()?
    802  */
    803 int
    804 in6_update_ifa(ifp, ifra, ia)
    805 	struct ifnet *ifp;
    806 	struct in6_aliasreq *ifra;
    807 	struct in6_ifaddr *ia;
    808 {
    809 	int error = 0, hostIsNew = 0, plen = -1;
    810 	struct in6_ifaddr *oia;
    811 	struct sockaddr_in6 dst6;
    812 	struct in6_addrlifetime *lt;
    813 	struct in6_multi_mship *imm;
    814 	time_t time_second = (time_t)time.tv_sec;
    815 	struct rtentry *rt;
    816 
    817 	/* Validate parameters */
    818 	if (ifp == NULL || ifra == NULL) /* this maybe redundant */
    819 		return (EINVAL);
    820 
    821 	/*
    822 	 * The destination address for a p2p link must have a family
    823 	 * of AF_UNSPEC or AF_INET6.
    824 	 */
    825 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
    826 	    ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
    827 	    ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
    828 		return (EAFNOSUPPORT);
    829 	/*
    830 	 * validate ifra_prefixmask.  don't check sin6_family, netmask
    831 	 * does not carry fields other than sin6_len.
    832 	 */
    833 	if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
    834 		return (EINVAL);
    835 	/*
    836 	 * Because the IPv6 address architecture is classless, we require
    837 	 * users to specify a (non 0) prefix length (mask) for a new address.
    838 	 * We also require the prefix (when specified) mask is valid, and thus
    839 	 * reject a non-consecutive mask.
    840 	 */
    841 	if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
    842 		return (EINVAL);
    843 	if (ifra->ifra_prefixmask.sin6_len != 0) {
    844 		plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
    845 		    (u_char *)&ifra->ifra_prefixmask +
    846 		    ifra->ifra_prefixmask.sin6_len);
    847 		if (plen <= 0)
    848 			return (EINVAL);
    849 	} else {
    850 		/*
    851 		 * In this case, ia must not be NULL.  We just use its prefix
    852 		 * length.
    853 		 */
    854 		plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
    855 	}
    856 	/*
    857 	 * If the destination address on a p2p interface is specified,
    858 	 * and the address is a scoped one, validate/set the scope
    859 	 * zone identifier.
    860 	 */
    861 	dst6 = ifra->ifra_dstaddr;
    862 	if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 &&
    863 	    (dst6.sin6_family == AF_INET6)) {
    864 		/* link-local index check: should be a separate function? */
    865 		if (IN6_IS_ADDR_LINKLOCAL(&dst6.sin6_addr)) {
    866 			if (dst6.sin6_addr.s6_addr16[1] == 0) {
    867 				/*
    868 				 * interface ID is not embedded by
    869 				 * the user
    870 				 */
    871 				dst6.sin6_addr.s6_addr16[1] =
    872 				    htons(ifp->if_index);
    873 			} else if (dst6.sin6_addr.s6_addr16[1] !=
    874 			    htons(ifp->if_index)) {
    875 				return (EINVAL);	/* ifid contradicts */
    876 			}
    877 		}
    878 	}
    879 	/*
    880 	 * The destination address can be specified only for a p2p or a
    881 	 * loopback interface.  If specified, the corresponding prefix length
    882 	 * must be 128.
    883 	 */
    884 	if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
    885 #ifdef FORCE_P2PPLEN
    886 		int i;
    887 #endif
    888 
    889 		if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
    890 			/* XXX: noisy message */
    891 			nd6log((LOG_INFO, "in6_update_ifa: a destination can "
    892 			    "be specified for a p2p or a loopback IF only\n"));
    893 			return (EINVAL);
    894 		}
    895 		if (plen != 128) {
    896 			nd6log((LOG_INFO, "in6_update_ifa: prefixlen should "
    897 			    "be 128 when dstaddr is specified\n"));
    898 #ifdef FORCE_P2PPLEN
    899 			/*
    900 			 * To be compatible with old configurations,
    901 			 * such as ifconfig gif0 inet6 2001::1 2001::2
    902 			 * prefixlen 126, we override the specified
    903 			 * prefixmask as if the prefix length was 128.
    904 			 */
    905 			ifra->ifra_prefixmask.sin6_len =
    906 			    sizeof(struct sockaddr_in6);
    907 			for (i = 0; i < 4; i++)
    908 				ifra->ifra_prefixmask.sin6_addr.s6_addr32[i] =
    909 				    0xffffffff;
    910 			plen = 128;
    911 #else
    912 			return (EINVAL);
    913 #endif
    914 		}
    915 	}
    916 	/* lifetime consistency check */
    917 	lt = &ifra->ifra_lifetime;
    918 	if (lt->ia6t_pltime > lt->ia6t_vltime)
    919 		return (EINVAL);
    920 	if (lt->ia6t_vltime == 0) {
    921 		/*
    922 		 * the following log might be noisy, but this is a typical
    923 		 * configuration mistake or a tool's bug.
    924 		 */
    925 		nd6log((LOG_INFO,
    926 		    "in6_update_ifa: valid lifetime is 0 for %s\n",
    927 		    ip6_sprintf(&ifra->ifra_addr.sin6_addr)));
    928 
    929 		if (ia == NULL)
    930 			return (0); /* there's nothing to do */
    931 	}
    932 
    933 	/*
    934 	 * If this is a new address, allocate a new ifaddr and link it
    935 	 * into chains.
    936 	 */
    937 	if (ia == NULL) {
    938 		hostIsNew = 1;
    939 		/*
    940 		 * When in6_update_ifa() is called in a process of a received
    941 		 * RA, it is called under an interrupt context.  So, we should
    942 		 * call malloc with M_NOWAIT.
    943 		 */
    944 		ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR,
    945 		    M_NOWAIT);
    946 		if (ia == NULL)
    947 			return (ENOBUFS);
    948 		bzero((caddr_t)ia, sizeof(*ia));
    949 		LIST_INIT(&ia->ia6_memberships);
    950 		/* Initialize the address and masks, and put time stamp */
    951 		ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
    952 		ia->ia_addr.sin6_family = AF_INET6;
    953 		ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
    954 		ia->ia6_createtime = ia->ia6_updatetime = time_second;
    955 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
    956 			/*
    957 			 * XXX: some functions expect that ifa_dstaddr is not
    958 			 * NULL for p2p interfaces.
    959 			 */
    960 			ia->ia_ifa.ifa_dstaddr =
    961 			    (struct sockaddr *)&ia->ia_dstaddr;
    962 		} else {
    963 			ia->ia_ifa.ifa_dstaddr = NULL;
    964 		}
    965 		ia->ia_ifa.ifa_netmask =
    966 		    (struct sockaddr *)&ia->ia_prefixmask;
    967 
    968 		ia->ia_ifp = ifp;
    969 		if ((oia = in6_ifaddr) != NULL) {
    970 			for ( ; oia->ia_next; oia = oia->ia_next)
    971 				continue;
    972 			oia->ia_next = ia;
    973 		} else
    974 			in6_ifaddr = ia;
    975 		/* gain a refcnt for the link from in6_ifaddr */
    976 		IFAREF(&ia->ia_ifa);
    977 
    978 		TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa,
    979 				  ifa_list);
    980 		/* gain another refcnt for the link from if_addrlist */
    981 		IFAREF(&ia->ia_ifa);
    982 	}
    983 
    984 	/* set prefix mask */
    985 	if (ifra->ifra_prefixmask.sin6_len) {
    986 		/*
    987 		 * We prohibit changing the prefix length of an existing
    988 		 * address, because
    989 		 * + such an operation should be rare in IPv6, and
    990 		 * + the operation would confuse prefix management.
    991 		 */
    992 		if (ia->ia_prefixmask.sin6_len &&
    993 		    in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
    994 			nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an"
    995 			    " existing (%s) address should not be changed\n",
    996 			    ip6_sprintf(&ia->ia_addr.sin6_addr)));
    997 			error = EINVAL;
    998 			goto unlink;
    999 		}
   1000 		ia->ia_prefixmask = ifra->ifra_prefixmask;
   1001 	}
   1002 
   1003 	/*
   1004 	 * If a new destination address is specified, scrub the old one and
   1005 	 * install the new destination.  Note that the interface must be
   1006 	 * p2p or loopback (see the check above.)
   1007 	 */
   1008 	if (dst6.sin6_family == AF_INET6 &&
   1009 	    !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) {
   1010 		int e;
   1011 
   1012 		if ((ia->ia_flags & IFA_ROUTE) != 0 &&
   1013 		    (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) {
   1014 			nd6log((LOG_ERR, "in6_update_ifa: failed to remove "
   1015 			    "a route to the old destination: %s\n",
   1016 			    ip6_sprintf(&ia->ia_addr.sin6_addr)));
   1017 			/* proceed anyway... */
   1018 		} else
   1019 			ia->ia_flags &= ~IFA_ROUTE;
   1020 		ia->ia_dstaddr = dst6;
   1021 	}
   1022 
   1023 	/*
   1024 	 * Set lifetimes.  We do not refer to ia6t_expire and ia6t_preferred
   1025 	 * to see if the address is deprecated or invalidated, but initialize
   1026 	 * these members for applications.
   1027 	 */
   1028 	ia->ia6_lifetime = ifra->ifra_lifetime;
   1029 	if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
   1030 		ia->ia6_lifetime.ia6t_expire =
   1031 		    time_second + ia->ia6_lifetime.ia6t_vltime;
   1032 	} else
   1033 		ia->ia6_lifetime.ia6t_expire = 0;
   1034 	if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
   1035 		ia->ia6_lifetime.ia6t_preferred =
   1036 		    time_second + ia->ia6_lifetime.ia6t_pltime;
   1037 	} else
   1038 		ia->ia6_lifetime.ia6t_preferred = 0;
   1039 
   1040 	/* reset the interface and routing table appropriately. */
   1041 	if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
   1042 		goto unlink;
   1043 
   1044 	/*
   1045 	 * configure address flags.
   1046 	 */
   1047 	ia->ia6_flags = ifra->ifra_flags;
   1048 	/*
   1049 	 * backward compatibility - if IN6_IFF_DEPRECATED is set from the
   1050 	 * userland, make it deprecated.
   1051 	 */
   1052 	if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) {
   1053 		ia->ia6_lifetime.ia6t_pltime = 0;
   1054 		ia->ia6_lifetime.ia6t_preferred = time_second;
   1055 	}
   1056 	/*
   1057 	 * Make the address tentative before joining multicast addresses,
   1058 	 * so that corresponding MLD responses would not have a tentative
   1059 	 * source address.
   1060 	 */
   1061 	ia->ia6_flags &= ~IN6_IFF_DUPLICATED;	/* safety */
   1062 	if (hostIsNew && in6if_do_dad(ifp))
   1063 		ia->ia6_flags |= IN6_IFF_TENTATIVE;
   1064 
   1065 	/*
   1066 	 * Beyond this point, we should call in6_purgeaddr upon an error,
   1067 	 * not just go to unlink.
   1068 	 */
   1069 
   1070 	if ((ifp->if_flags & IFF_MULTICAST) != 0) {
   1071 		struct sockaddr_in6 mltaddr, mltmask;
   1072 #ifndef SCOPEDROUTING
   1073 		u_int32_t zoneid = 0;
   1074 #endif
   1075 
   1076 		if (hostIsNew) {
   1077 			/* join solicited multicast addr for new host id */
   1078 			struct sockaddr_in6 llsol;
   1079 
   1080 			bzero(&llsol, sizeof(llsol));
   1081 			llsol.sin6_family = AF_INET6;
   1082 			llsol.sin6_len = sizeof(llsol);
   1083 			llsol.sin6_addr.s6_addr16[0] = htons(0xff02);
   1084 			llsol.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
   1085 			llsol.sin6_addr.s6_addr32[1] = 0;
   1086 			llsol.sin6_addr.s6_addr32[2] = htonl(1);
   1087 			llsol.sin6_addr.s6_addr32[3] =
   1088 			    ifra->ifra_addr.sin6_addr.s6_addr32[3];
   1089 			llsol.sin6_addr.s6_addr8[12] = 0xff;
   1090 			imm = in6_joingroup(ifp, &llsol.sin6_addr, &error);
   1091 			if (imm) {
   1092 				LIST_INSERT_HEAD(&ia->ia6_memberships, imm,
   1093 				    i6mm_chain);
   1094 			} else {
   1095 				nd6log((LOG_ERR, "in6_update_ifa: addmulti "
   1096 				    "failed for %s on %s (errno=%d)\n",
   1097 				    ip6_sprintf(&llsol.sin6_addr),
   1098 				    if_name(ifp), error));
   1099 				goto cleanup;
   1100 			}
   1101 		}
   1102 
   1103 		bzero(&mltmask, sizeof(mltmask));
   1104 		mltmask.sin6_len = sizeof(struct sockaddr_in6);
   1105 		mltmask.sin6_family = AF_INET6;
   1106 		mltmask.sin6_addr = in6mask32;
   1107 
   1108 		/*
   1109 		 * join link-local all-nodes address
   1110 		 */
   1111 		bzero(&mltaddr, sizeof(mltaddr));
   1112 		mltaddr.sin6_len = sizeof(struct sockaddr_in6);
   1113 		mltaddr.sin6_family = AF_INET6;
   1114 		mltaddr.sin6_addr = in6addr_linklocal_allnodes;
   1115 		mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
   1116 
   1117 		/*
   1118 		 * XXX: do we really need this automatic routes?
   1119 		 * We should probably reconsider this stuff.  Most applications
   1120 		 * actually do not need the routes, since they usually specify
   1121 		 * the outgoing interface.
   1122 		 */
   1123 		rt = rtalloc1((struct sockaddr *)&mltaddr, 0);
   1124 		if (rt) {
   1125 			/*
   1126 			 * 32bit came from "mltmask"
   1127 			 * XXX: only works in !SCOPEDROUTING case.
   1128 			 */
   1129 			if (memcmp(&mltaddr.sin6_addr,
   1130 			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
   1131 			    32 / 8)) {
   1132 				RTFREE(rt);
   1133 				rt = NULL;
   1134 			}
   1135 		}
   1136 		if (!rt) {
   1137 			struct rt_addrinfo info;
   1138 
   1139 			bzero(&info, sizeof(info));
   1140 			info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr;
   1141 			info.rti_info[RTAX_GATEWAY] =
   1142 			    (struct sockaddr *)&ia->ia_addr;
   1143 			info.rti_info[RTAX_NETMASK] =
   1144 			    (struct sockaddr *)&mltmask;
   1145 			info.rti_info[RTAX_IFA] =
   1146 			    (struct sockaddr *)&ia->ia_addr;
   1147 			/* XXX: we need RTF_CLONING to fake nd6_rtrequest */
   1148 			info.rti_flags = RTF_UP | RTF_CLONING;
   1149 			error = rtrequest1(RTM_ADD, &info, NULL);
   1150 			if (error)
   1151 				goto cleanup;
   1152 		} else {
   1153 			RTFREE(rt);
   1154 		}
   1155 #ifndef SCOPEDROUTING
   1156 		mltaddr.sin6_scope_id = zoneid;	/* XXX */
   1157 #endif
   1158 		imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error);
   1159 		if (imm) {
   1160 			LIST_INSERT_HEAD(&ia->ia6_memberships, imm,
   1161 			    i6mm_chain);
   1162 		} else {
   1163 			nd6log((LOG_WARNING,
   1164 			    "in6_update_ifa: addmulti failed for "
   1165 			    "%s on %s (errno=%d)\n",
   1166 			    ip6_sprintf(&mltaddr.sin6_addr),
   1167 			    if_name(ifp), error));
   1168 			goto cleanup;
   1169 		}
   1170 
   1171 		/*
   1172 		 * join node information group address
   1173 		 */
   1174 		if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr) == 0) {
   1175 			imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error);
   1176 			if (imm) {
   1177 				LIST_INSERT_HEAD(&ia->ia6_memberships, imm,
   1178 				    i6mm_chain);
   1179 			} else {
   1180 				nd6log((LOG_WARNING, "in6_update_ifa: "
   1181 				    "addmulti failed for %s on %s (errno=%d)\n",
   1182 				    ip6_sprintf(&mltaddr.sin6_addr),
   1183 				    if_name(ifp), error));
   1184 				/* XXX not very fatal, go on... */
   1185 			}
   1186 		}
   1187 
   1188 		if (ifp->if_flags & IFF_LOOPBACK) {
   1189 			/*
   1190 			 * join node-local all-nodes address, on loopback.
   1191 			 * (ff01::1%ifN, and ff01::%ifN/32)
   1192 			 */
   1193 			mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
   1194 
   1195 			/* XXX: again, do we really need the route? */
   1196 			rt = rtalloc1((struct sockaddr *)&mltaddr, 0);
   1197 			if (rt) {
   1198 				/* 32bit came from "mltmask" */
   1199 				if (memcmp(&mltaddr.sin6_addr,
   1200 				    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
   1201 				    32 / 8)) {
   1202 					RTFREE(rt);
   1203 					rt = NULL;
   1204 				}
   1205 			}
   1206 			if (!rt) {
   1207 				struct rt_addrinfo info;
   1208 
   1209 				bzero(&info, sizeof(info));
   1210 				info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr;
   1211 				info.rti_info[RTAX_GATEWAY] =
   1212 				    (struct sockaddr *)&ia->ia_addr;
   1213 				info.rti_info[RTAX_NETMASK] =
   1214 				    (struct sockaddr *)&mltmask;
   1215 				info.rti_info[RTAX_IFA] =
   1216 				    (struct sockaddr *)&ia->ia_addr;
   1217 				info.rti_flags = RTF_UP | RTF_CLONING;
   1218 				error = rtrequest1(RTM_ADD, &info, NULL);
   1219 				if (error)
   1220 					goto cleanup;
   1221 			} else {
   1222 				RTFREE(rt);
   1223 			}
   1224 			imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error);
   1225 			if (imm) {
   1226 				LIST_INSERT_HEAD(&ia->ia6_memberships, imm,
   1227 				    i6mm_chain);
   1228 			} else {
   1229 				nd6log((LOG_WARNING, "in6_update_ifa: "
   1230 				    "addmulti failed for %s on %s "
   1231 				    "(errno=%d)\n",
   1232 				    ip6_sprintf(&mltaddr.sin6_addr),
   1233 				    if_name(ifp), error));
   1234 				goto cleanup;
   1235 			}
   1236 		}
   1237 	}
   1238 
   1239 	/*
   1240 	 * Perform DAD, if needed.
   1241 	 * XXX It may be of use, if we can administratively
   1242 	 * disable DAD.
   1243 	 */
   1244 	if (hostIsNew && in6if_do_dad(ifp) &&
   1245 	    (ifra->ifra_flags & IN6_IFF_NODAD) == 0)
   1246 	{
   1247 		nd6_dad_start((struct ifaddr *)ia, NULL);
   1248 	}
   1249 
   1250 	return (error);
   1251 
   1252   unlink:
   1253 	/*
   1254 	 * XXX: if a change of an existing address failed, keep the entry
   1255 	 * anyway.
   1256 	 */
   1257 	if (hostIsNew)
   1258 		in6_unlink_ifa(ia, ifp);
   1259 	return (error);
   1260 
   1261   cleanup:
   1262 	in6_purgeaddr(&ia->ia_ifa);
   1263 	return error;
   1264 }
   1265 
   1266 void
   1267 in6_purgeaddr(ifa)
   1268 	struct ifaddr *ifa;
   1269 {
   1270 	struct ifnet *ifp = ifa->ifa_ifp;
   1271 	struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
   1272 	struct in6_multi_mship *imm;
   1273 
   1274 	/* stop DAD processing */
   1275 	nd6_dad_stop(ifa);
   1276 
   1277 	/*
   1278 	 * delete route to the destination of the address being purged.
   1279 	 * The interface must be p2p or loopback in this case.
   1280 	 */
   1281 	if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
   1282 		int e;
   1283 
   1284 		if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
   1285 		    != 0) {
   1286 			log(LOG_ERR, "in6_purgeaddr: failed to remove "
   1287 			    "a route to the p2p destination: %s on %s, "
   1288 			    "errno=%d\n",
   1289 			    ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
   1290 			    e);
   1291 			/* proceed anyway... */
   1292 		} else
   1293 			ia->ia_flags &= ~IFA_ROUTE;
   1294 	}
   1295 
   1296 	/* Remove ownaddr's loopback rtentry, if it exists. */
   1297 	in6_ifremloop(&(ia->ia_ifa));
   1298 
   1299 	/*
   1300 	 * leave from multicast groups we have joined for the interface
   1301 	 */
   1302 	while ((imm = ia->ia6_memberships.lh_first) != NULL) {
   1303 		LIST_REMOVE(imm, i6mm_chain);
   1304 		in6_leavegroup(imm);
   1305 	}
   1306 
   1307 	in6_unlink_ifa(ia, ifp);
   1308 }
   1309 
   1310 static void
   1311 in6_unlink_ifa(ia, ifp)
   1312 	struct in6_ifaddr *ia;
   1313 	struct ifnet *ifp;
   1314 {
   1315 	struct in6_ifaddr *oia;
   1316 	int	s = splnet();
   1317 
   1318 	TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
   1319 	/* release a refcnt for the link from if_addrlist */
   1320 	IFAFREE(&ia->ia_ifa);
   1321 
   1322 	oia = ia;
   1323 	if (oia == (ia = in6_ifaddr))
   1324 		in6_ifaddr = ia->ia_next;
   1325 	else {
   1326 		while (ia->ia_next && (ia->ia_next != oia))
   1327 			ia = ia->ia_next;
   1328 		if (ia->ia_next)
   1329 			ia->ia_next = oia->ia_next;
   1330 		else {
   1331 			/* search failed */
   1332 			printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
   1333 		}
   1334 	}
   1335 
   1336 	if (oia->ia6_multiaddrs.lh_first != NULL) {
   1337 		/*
   1338 		 * XXX thorpej (at) netbsd.org -- if the interface is going
   1339 		 * XXX away, don't save the multicast entries, delete them!
   1340 		 */
   1341 		if (oia->ia_ifa.ifa_ifp->if_output == if_nulloutput) {
   1342 			struct in6_multi *in6m;
   1343 
   1344 			while ((in6m =
   1345 			    LIST_FIRST(&oia->ia6_multiaddrs)) != NULL)
   1346 				in6_delmulti(in6m);
   1347 		} else
   1348 			in6_savemkludge(oia);
   1349 	}
   1350 
   1351 	/*
   1352 	 * When an autoconfigured address is being removed, release the
   1353 	 * reference to the base prefix.  Also, since the release might
   1354 	 * affect the status of other (detached) addresses, call
   1355 	 * pfxlist_onlink_check().
   1356 	 */
   1357 	if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) {
   1358 		if (oia->ia6_ndpr == NULL) {
   1359 			log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address "
   1360 			    "%p has no prefix\n", oia);
   1361 		} else {
   1362 			oia->ia6_ndpr->ndpr_refcnt--;
   1363 			oia->ia6_flags &= ~IN6_IFF_AUTOCONF;
   1364 			oia->ia6_ndpr = NULL;
   1365 		}
   1366 
   1367 		pfxlist_onlink_check();
   1368 	}
   1369 
   1370 	/*
   1371 	 * release another refcnt for the link from in6_ifaddr.
   1372 	 * Note that we should decrement the refcnt at least once for all *BSD.
   1373 	 */
   1374 	IFAFREE(&oia->ia_ifa);
   1375 
   1376 	splx(s);
   1377 }
   1378 
   1379 void
   1380 in6_purgeif(ifp)
   1381 	struct ifnet *ifp;
   1382 {
   1383 	struct ifaddr *ifa, *nifa;
   1384 
   1385 	for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa)
   1386 	{
   1387 		nifa = TAILQ_NEXT(ifa, ifa_list);
   1388 		if (ifa->ifa_addr->sa_family != AF_INET6)
   1389 			continue;
   1390 		in6_purgeaddr(ifa);
   1391 	}
   1392 
   1393 	in6_ifdetach(ifp);
   1394 }
   1395 
   1396 /*
   1397  * SIOC[GAD]LIFADDR.
   1398  *	SIOCGLIFADDR: get first address. (?)
   1399  *	SIOCGLIFADDR with IFLR_PREFIX:
   1400  *		get first address that matches the specified prefix.
   1401  *	SIOCALIFADDR: add the specified address.
   1402  *	SIOCALIFADDR with IFLR_PREFIX:
   1403  *		add the specified prefix, filling hostid part from
   1404  *		the first link-local address.  prefixlen must be <= 64.
   1405  *	SIOCDLIFADDR: delete the specified address.
   1406  *	SIOCDLIFADDR with IFLR_PREFIX:
   1407  *		delete the first address that matches the specified prefix.
   1408  * return values:
   1409  *	EINVAL on invalid parameters
   1410  *	EADDRNOTAVAIL on prefix match failed/specified address not found
   1411  *	other values may be returned from in6_ioctl()
   1412  *
   1413  * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
   1414  * this is to accomodate address naming scheme other than RFC2374,
   1415  * in the future.
   1416  * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
   1417  * address encoding scheme. (see figure on page 8)
   1418  */
   1419 static int
   1420 in6_lifaddr_ioctl(so, cmd, data, ifp, p)
   1421 	struct socket *so;
   1422 	u_long cmd;
   1423 	caddr_t	data;
   1424 	struct ifnet *ifp;
   1425 	struct proc *p;
   1426 {
   1427 	struct if_laddrreq *iflr = (struct if_laddrreq *)data;
   1428 	struct ifaddr *ifa;
   1429 	struct sockaddr *sa;
   1430 
   1431 	/* sanity checks */
   1432 	if (!data || !ifp) {
   1433 		panic("invalid argument to in6_lifaddr_ioctl");
   1434 		/* NOTREACHED */
   1435 	}
   1436 
   1437 	switch (cmd) {
   1438 	case SIOCGLIFADDR:
   1439 		/* address must be specified on GET with IFLR_PREFIX */
   1440 		if ((iflr->flags & IFLR_PREFIX) == 0)
   1441 			break;
   1442 		/* FALLTHROUGH */
   1443 	case SIOCALIFADDR:
   1444 	case SIOCDLIFADDR:
   1445 		/* address must be specified on ADD and DELETE */
   1446 		sa = (struct sockaddr *)&iflr->addr;
   1447 		if (sa->sa_family != AF_INET6)
   1448 			return EINVAL;
   1449 		if (sa->sa_len != sizeof(struct sockaddr_in6))
   1450 			return EINVAL;
   1451 		/* XXX need improvement */
   1452 		sa = (struct sockaddr *)&iflr->dstaddr;
   1453 		if (sa->sa_family && sa->sa_family != AF_INET6)
   1454 			return EINVAL;
   1455 		if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
   1456 			return EINVAL;
   1457 		break;
   1458 	default: /* shouldn't happen */
   1459 #if 0
   1460 		panic("invalid cmd to in6_lifaddr_ioctl");
   1461 		/* NOTREACHED */
   1462 #else
   1463 		return EOPNOTSUPP;
   1464 #endif
   1465 	}
   1466 	if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
   1467 		return EINVAL;
   1468 
   1469 	switch (cmd) {
   1470 	case SIOCALIFADDR:
   1471 	    {
   1472 		struct in6_aliasreq ifra;
   1473 		struct in6_addr *hostid = NULL;
   1474 		int prefixlen;
   1475 
   1476 		if ((iflr->flags & IFLR_PREFIX) != 0) {
   1477 			struct sockaddr_in6 *sin6;
   1478 
   1479 			/*
   1480 			 * hostid is to fill in the hostid part of the
   1481 			 * address.  hostid points to the first link-local
   1482 			 * address attached to the interface.
   1483 			 */
   1484 			ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
   1485 			if (!ifa)
   1486 				return EADDRNOTAVAIL;
   1487 			hostid = IFA_IN6(ifa);
   1488 
   1489 		 	/* prefixlen must be <= 64. */
   1490 			if (64 < iflr->prefixlen)
   1491 				return EINVAL;
   1492 			prefixlen = iflr->prefixlen;
   1493 
   1494 			/* hostid part must be zero. */
   1495 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
   1496 			if (sin6->sin6_addr.s6_addr32[2] != 0
   1497 			 || sin6->sin6_addr.s6_addr32[3] != 0) {
   1498 				return EINVAL;
   1499 			}
   1500 		} else
   1501 			prefixlen = iflr->prefixlen;
   1502 
   1503 		/* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
   1504 		bzero(&ifra, sizeof(ifra));
   1505 		bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name));
   1506 
   1507 		bcopy(&iflr->addr, &ifra.ifra_addr,
   1508 		    ((struct sockaddr *)&iflr->addr)->sa_len);
   1509 		if (hostid) {
   1510 			/* fill in hostid part */
   1511 			ifra.ifra_addr.sin6_addr.s6_addr32[2] =
   1512 			    hostid->s6_addr32[2];
   1513 			ifra.ifra_addr.sin6_addr.s6_addr32[3] =
   1514 			    hostid->s6_addr32[3];
   1515 		}
   1516 
   1517 		if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */
   1518 			bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
   1519 			    ((struct sockaddr *)&iflr->dstaddr)->sa_len);
   1520 			if (hostid) {
   1521 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
   1522 				    hostid->s6_addr32[2];
   1523 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
   1524 				    hostid->s6_addr32[3];
   1525 			}
   1526 		}
   1527 
   1528 		ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
   1529 		in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
   1530 
   1531 		ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
   1532 		return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, p);
   1533 	    }
   1534 	case SIOCGLIFADDR:
   1535 	case SIOCDLIFADDR:
   1536 	    {
   1537 		struct in6_ifaddr *ia;
   1538 		struct in6_addr mask, candidate, match;
   1539 		struct sockaddr_in6 *sin6;
   1540 		int cmp;
   1541 
   1542 		bzero(&mask, sizeof(mask));
   1543 		if (iflr->flags & IFLR_PREFIX) {
   1544 			/* lookup a prefix rather than address. */
   1545 			in6_prefixlen2mask(&mask, iflr->prefixlen);
   1546 
   1547 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
   1548 			bcopy(&sin6->sin6_addr, &match, sizeof(match));
   1549 			match.s6_addr32[0] &= mask.s6_addr32[0];
   1550 			match.s6_addr32[1] &= mask.s6_addr32[1];
   1551 			match.s6_addr32[2] &= mask.s6_addr32[2];
   1552 			match.s6_addr32[3] &= mask.s6_addr32[3];
   1553 
   1554 			/* if you set extra bits, that's wrong */
   1555 			if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
   1556 				return EINVAL;
   1557 
   1558 			cmp = 1;
   1559 		} else {
   1560 			if (cmd == SIOCGLIFADDR) {
   1561 				/* on getting an address, take the 1st match */
   1562 				cmp = 0;	/* XXX */
   1563 			} else {
   1564 				/* on deleting an address, do exact match */
   1565 				in6_prefixlen2mask(&mask, 128);
   1566 				sin6 = (struct sockaddr_in6 *)&iflr->addr;
   1567 				bcopy(&sin6->sin6_addr, &match, sizeof(match));
   1568 
   1569 				cmp = 1;
   1570 			}
   1571 		}
   1572 
   1573 		for (ifa = ifp->if_addrlist.tqh_first;
   1574 		     ifa;
   1575 		     ifa = ifa->ifa_list.tqe_next)
   1576 		{
   1577 			if (ifa->ifa_addr->sa_family != AF_INET6)
   1578 				continue;
   1579 			if (!cmp)
   1580 				break;
   1581 
   1582 			bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
   1583 			candidate.s6_addr32[0] &= mask.s6_addr32[0];
   1584 			candidate.s6_addr32[1] &= mask.s6_addr32[1];
   1585 			candidate.s6_addr32[2] &= mask.s6_addr32[2];
   1586 			candidate.s6_addr32[3] &= mask.s6_addr32[3];
   1587 			if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
   1588 				break;
   1589 		}
   1590 		if (!ifa)
   1591 			return EADDRNOTAVAIL;
   1592 		ia = ifa2ia6(ifa);
   1593 
   1594 		if (cmd == SIOCGLIFADDR) {
   1595 			/* fill in the if_laddrreq structure */
   1596 			bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
   1597 			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
   1598 				bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
   1599 				    ia->ia_dstaddr.sin6_len);
   1600 			} else
   1601 				bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
   1602 
   1603 			iflr->prefixlen =
   1604 			    in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
   1605 
   1606 			iflr->flags = ia->ia6_flags;	/* XXX */
   1607 
   1608 			return 0;
   1609 		} else {
   1610 			struct in6_aliasreq ifra;
   1611 
   1612 			/* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
   1613 			bzero(&ifra, sizeof(ifra));
   1614 			bcopy(iflr->iflr_name, ifra.ifra_name,
   1615 			    sizeof(ifra.ifra_name));
   1616 
   1617 			bcopy(&ia->ia_addr, &ifra.ifra_addr,
   1618 			    ia->ia_addr.sin6_len);
   1619 			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
   1620 				bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
   1621 				    ia->ia_dstaddr.sin6_len);
   1622 			} else {
   1623 				bzero(&ifra.ifra_dstaddr,
   1624 				    sizeof(ifra.ifra_dstaddr));
   1625 			}
   1626 			bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
   1627 			    ia->ia_prefixmask.sin6_len);
   1628 
   1629 			ifra.ifra_flags = ia->ia6_flags;
   1630 			return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
   1631 			    ifp, p);
   1632 		}
   1633 	    }
   1634 	}
   1635 
   1636 	return EOPNOTSUPP;	/* just for safety */
   1637 }
   1638 
   1639 /*
   1640  * Initialize an interface's intetnet6 address
   1641  * and routing table entry.
   1642  */
   1643 static int
   1644 in6_ifinit(ifp, ia, sin6, newhost)
   1645 	struct ifnet *ifp;
   1646 	struct in6_ifaddr *ia;
   1647 	struct sockaddr_in6 *sin6;
   1648 	int newhost;
   1649 {
   1650 	int	error = 0, plen, ifacount = 0;
   1651 	int	s = splnet();
   1652 	struct ifaddr *ifa;
   1653 
   1654 	/*
   1655 	 * Give the interface a chance to initialize
   1656 	 * if this is its first address,
   1657 	 * and to validate the address if necessary.
   1658 	 */
   1659 	for (ifa = ifp->if_addrlist.tqh_first; ifa;
   1660 	     ifa = ifa->ifa_list.tqe_next)
   1661 	{
   1662 		if (ifa->ifa_addr == NULL)
   1663 			continue;	/* just for safety */
   1664 		if (ifa->ifa_addr->sa_family != AF_INET6)
   1665 			continue;
   1666 		ifacount++;
   1667 	}
   1668 
   1669 	ia->ia_addr = *sin6;
   1670 
   1671 	if (ifacount <= 1 && ifp->if_ioctl &&
   1672 	    (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) {
   1673 		splx(s);
   1674 		return (error);
   1675 	}
   1676 	splx(s);
   1677 
   1678 	ia->ia_ifa.ifa_metric = ifp->if_metric;
   1679 
   1680 	/* we could do in(6)_socktrim here, but just omit it at this moment. */
   1681 
   1682 	/*
   1683 	 * Special case:
   1684 	 * If the destination address is specified for a point-to-point
   1685 	 * interface, install a route to the destination as an interface
   1686 	 * direct route.
   1687 	 */
   1688 	plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
   1689 	if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) {
   1690 		if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD,
   1691 				    RTF_UP | RTF_HOST)) != 0)
   1692 			return (error);
   1693 		ia->ia_flags |= IFA_ROUTE;
   1694 	}
   1695 
   1696 	/* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
   1697 	if (newhost) {
   1698 		/* set the rtrequest function to create llinfo */
   1699 		ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
   1700 		in6_ifaddloop(&(ia->ia_ifa));
   1701 	}
   1702 
   1703 	if (ifp->if_flags & IFF_MULTICAST)
   1704 		in6_restoremkludge(ia, ifp);
   1705 
   1706 	return (error);
   1707 }
   1708 
   1709 /*
   1710  * Multicast address kludge:
   1711  * If there were any multicast addresses attached to this interface address,
   1712  * either move them to another address on this interface, or save them until
   1713  * such time as this interface is reconfigured for IPv6.
   1714  */
   1715 void
   1716 in6_savemkludge(oia)
   1717 	struct in6_ifaddr *oia;
   1718 {
   1719 	struct in6_ifaddr *ia;
   1720 	struct in6_multi *in6m, *next;
   1721 
   1722 	IFP_TO_IA6(oia->ia_ifp, ia);
   1723 	if (ia) {	/* there is another address */
   1724 		for (in6m = oia->ia6_multiaddrs.lh_first; in6m; in6m = next){
   1725 			next = in6m->in6m_entry.le_next;
   1726 			IFAFREE(&in6m->in6m_ia->ia_ifa);
   1727 			IFAREF(&ia->ia_ifa);
   1728 			in6m->in6m_ia = ia;
   1729 			LIST_INSERT_HEAD(&ia->ia6_multiaddrs, in6m, in6m_entry);
   1730 		}
   1731 	} else {	/* last address on this if deleted, save */
   1732 		struct multi6_kludge *mk;
   1733 
   1734 		for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
   1735 			if (mk->mk_ifp == oia->ia_ifp)
   1736 				break;
   1737 		}
   1738 		if (mk == NULL) /* this should not happen! */
   1739 			panic("in6_savemkludge: no kludge space");
   1740 
   1741 		for (in6m = oia->ia6_multiaddrs.lh_first; in6m; in6m = next){
   1742 			next = in6m->in6m_entry.le_next;
   1743 			IFAFREE(&in6m->in6m_ia->ia_ifa); /* release reference */
   1744 			in6m->in6m_ia = NULL;
   1745 			LIST_INSERT_HEAD(&mk->mk_head, in6m, in6m_entry);
   1746 		}
   1747 	}
   1748 }
   1749 
   1750 /*
   1751  * Continuation of multicast address hack:
   1752  * If there was a multicast group list previously saved for this interface,
   1753  * then we re-attach it to the first address configured on the i/f.
   1754  */
   1755 void
   1756 in6_restoremkludge(ia, ifp)
   1757 	struct in6_ifaddr *ia;
   1758 	struct ifnet *ifp;
   1759 {
   1760 	struct multi6_kludge *mk;
   1761 
   1762 	for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
   1763 		if (mk->mk_ifp == ifp) {
   1764 			struct in6_multi *in6m, *next;
   1765 
   1766 			for (in6m = mk->mk_head.lh_first; in6m; in6m = next) {
   1767 				next = in6m->in6m_entry.le_next;
   1768 				in6m->in6m_ia = ia;
   1769 				IFAREF(&ia->ia_ifa);
   1770 				LIST_INSERT_HEAD(&ia->ia6_multiaddrs,
   1771 						 in6m, in6m_entry);
   1772 			}
   1773 			LIST_INIT(&mk->mk_head);
   1774 			break;
   1775 		}
   1776 	}
   1777 }
   1778 
   1779 /*
   1780  * Allocate space for the kludge at interface initialization time.
   1781  * Formerly, we dynamically allocated the space in in6_savemkludge() with
   1782  * malloc(M_WAITOK).  However, it was wrong since the function could be called
   1783  * under an interrupt context (software timer on address lifetime expiration).
   1784  * Also, we cannot just give up allocating the strucutre, since the group
   1785  * membership structure is very complex and we need to keep it anyway.
   1786  * Of course, this function MUST NOT be called under an interrupt context.
   1787  * Specifically, it is expected to be called only from in6_ifattach(), though
   1788  * it is a global function.
   1789  */
   1790 void
   1791 in6_createmkludge(ifp)
   1792 	struct ifnet *ifp;
   1793 {
   1794 	struct multi6_kludge *mk;
   1795 
   1796 	for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
   1797 		/* If we've already had one, do not allocate. */
   1798 		if (mk->mk_ifp == ifp)
   1799 			return;
   1800 	}
   1801 
   1802 	mk = malloc(sizeof(*mk), M_IPMADDR, M_WAITOK);
   1803 
   1804 	bzero(mk, sizeof(*mk));
   1805 	LIST_INIT(&mk->mk_head);
   1806 	mk->mk_ifp = ifp;
   1807 	LIST_INSERT_HEAD(&in6_mk, mk, mk_entry);
   1808 }
   1809 
   1810 void
   1811 in6_purgemkludge(ifp)
   1812 	struct ifnet *ifp;
   1813 {
   1814 	struct multi6_kludge *mk;
   1815 	struct in6_multi *in6m;
   1816 
   1817 	for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
   1818 		if (mk->mk_ifp != ifp)
   1819 			continue;
   1820 
   1821 		/* leave from all multicast groups joined */
   1822 		while ((in6m = LIST_FIRST(&mk->mk_head)) != NULL)
   1823 			in6_delmulti(in6m);
   1824 		LIST_REMOVE(mk, mk_entry);
   1825 		free(mk, M_IPMADDR);
   1826 		break;
   1827 	}
   1828 }
   1829 
   1830 /*
   1831  * Add an address to the list of IP6 multicast addresses for a
   1832  * given interface.
   1833  */
   1834 struct	in6_multi *
   1835 in6_addmulti(maddr6, ifp, errorp)
   1836 	struct in6_addr *maddr6;
   1837 	struct ifnet *ifp;
   1838 	int *errorp;
   1839 {
   1840 	struct	in6_ifaddr *ia;
   1841 	struct	in6_ifreq ifr;
   1842 	struct	in6_multi *in6m;
   1843 	int	s = splsoftnet();
   1844 
   1845 	*errorp = 0;
   1846 	/*
   1847 	 * See if address already in list.
   1848 	 */
   1849 	IN6_LOOKUP_MULTI(*maddr6, ifp, in6m);
   1850 	if (in6m != NULL) {
   1851 		/*
   1852 		 * Found it; just increment the refrence count.
   1853 		 */
   1854 		in6m->in6m_refcount++;
   1855 	} else {
   1856 		/*
   1857 		 * New address; allocate a new multicast record
   1858 		 * and link it into the interface's multicast list.
   1859 		 */
   1860 		in6m = (struct in6_multi *)
   1861 			malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT);
   1862 		if (in6m == NULL) {
   1863 			splx(s);
   1864 			*errorp = ENOBUFS;
   1865 			return (NULL);
   1866 		}
   1867 		in6m->in6m_addr = *maddr6;
   1868 		in6m->in6m_ifp = ifp;
   1869 		in6m->in6m_refcount = 1;
   1870 		IFP_TO_IA6(ifp, ia);
   1871 		if (ia == NULL) {
   1872 			free(in6m, M_IPMADDR);
   1873 			splx(s);
   1874 			*errorp = EADDRNOTAVAIL; /* appropriate? */
   1875 			return (NULL);
   1876 		}
   1877 		in6m->in6m_ia = ia;
   1878 		IFAREF(&ia->ia_ifa); /* gain a reference */
   1879 		LIST_INSERT_HEAD(&ia->ia6_multiaddrs, in6m, in6m_entry);
   1880 
   1881 		/*
   1882 		 * Ask the network driver to update its multicast reception
   1883 		 * filter appropriately for the new address.
   1884 		 */
   1885 		bzero(&ifr.ifr_addr, sizeof(struct sockaddr_in6));
   1886 		ifr.ifr_addr.sin6_len = sizeof(struct sockaddr_in6);
   1887 		ifr.ifr_addr.sin6_family = AF_INET6;
   1888 		ifr.ifr_addr.sin6_addr = *maddr6;
   1889 		if (ifp->if_ioctl == NULL)
   1890 			*errorp = ENXIO; /* XXX: appropriate? */
   1891 		else
   1892 			*errorp = (*ifp->if_ioctl)(ifp, SIOCADDMULTI,
   1893 			    (caddr_t)&ifr);
   1894 		if (*errorp) {
   1895 			LIST_REMOVE(in6m, in6m_entry);
   1896 			free(in6m, M_IPMADDR);
   1897 			IFAFREE(&ia->ia_ifa);
   1898 			splx(s);
   1899 			return (NULL);
   1900 		}
   1901 		/*
   1902 		 * Let MLD6 know that we have joined a new IP6 multicast
   1903 		 * group.
   1904 		 */
   1905 		mld6_start_listening(in6m);
   1906 	}
   1907 	splx(s);
   1908 	return (in6m);
   1909 }
   1910 
   1911 /*
   1912  * Delete a multicast address record.
   1913  */
   1914 void
   1915 in6_delmulti(in6m)
   1916 	struct in6_multi *in6m;
   1917 {
   1918 	struct	in6_ifreq ifr;
   1919 	int	s = splsoftnet();
   1920 
   1921 	if (--in6m->in6m_refcount == 0) {
   1922 		/*
   1923 		 * No remaining claims to this record; let MLD6 know
   1924 		 * that we are leaving the multicast group.
   1925 		 */
   1926 		mld6_stop_listening(in6m);
   1927 
   1928 		/*
   1929 		 * Unlink from list.
   1930 		 */
   1931 		LIST_REMOVE(in6m, in6m_entry);
   1932 		if (in6m->in6m_ia) {
   1933 			IFAFREE(&in6m->in6m_ia->ia_ifa); /* release reference */
   1934 		}
   1935 
   1936 		/*
   1937 		 * Notify the network driver to update its multicast
   1938 		 * reception filter.
   1939 		 */
   1940 		bzero(&ifr.ifr_addr, sizeof(struct sockaddr_in6));
   1941 		ifr.ifr_addr.sin6_len = sizeof(struct sockaddr_in6);
   1942 		ifr.ifr_addr.sin6_family = AF_INET6;
   1943 		ifr.ifr_addr.sin6_addr = in6m->in6m_addr;
   1944 		(*in6m->in6m_ifp->if_ioctl)(in6m->in6m_ifp,
   1945 					    SIOCDELMULTI, (caddr_t)&ifr);
   1946 		free(in6m, M_IPMADDR);
   1947 	}
   1948 	splx(s);
   1949 }
   1950 
   1951 struct in6_multi_mship *
   1952 in6_joingroup(ifp, addr, errorp)
   1953 	struct ifnet *ifp;
   1954 	struct in6_addr *addr;
   1955 	int *errorp;
   1956 {
   1957 	struct in6_multi_mship *imm;
   1958 
   1959 	imm = malloc(sizeof(*imm), M_IPMADDR, M_NOWAIT);
   1960 	if (!imm) {
   1961 		*errorp = ENOBUFS;
   1962 		return NULL;
   1963 	}
   1964 	imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp);
   1965 	if (!imm->i6mm_maddr) {
   1966 		/* *errorp is alrady set */
   1967 		free(imm, M_IPMADDR);
   1968 		return NULL;
   1969 	}
   1970 	return imm;
   1971 }
   1972 
   1973 int
   1974 in6_leavegroup(imm)
   1975 	struct in6_multi_mship *imm;
   1976 {
   1977 
   1978 	if (imm->i6mm_maddr)
   1979 		in6_delmulti(imm->i6mm_maddr);
   1980 	free(imm,  M_IPMADDR);
   1981 	return 0;
   1982 }
   1983 
   1984 /*
   1985  * Find an IPv6 interface link-local address specific to an interface.
   1986  */
   1987 struct in6_ifaddr *
   1988 in6ifa_ifpforlinklocal(ifp, ignoreflags)
   1989 	struct ifnet *ifp;
   1990 	int ignoreflags;
   1991 {
   1992 	struct ifaddr *ifa;
   1993 
   1994 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
   1995 	{
   1996 		if (ifa->ifa_addr == NULL)
   1997 			continue;	/* just for safety */
   1998 		if (ifa->ifa_addr->sa_family != AF_INET6)
   1999 			continue;
   2000 		if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
   2001 			if ((((struct in6_ifaddr *)ifa)->ia6_flags &
   2002 			     ignoreflags) != 0)
   2003 				continue;
   2004 			break;
   2005 		}
   2006 	}
   2007 
   2008 	return ((struct in6_ifaddr *)ifa);
   2009 }
   2010 
   2011 
   2012 /*
   2013  * find the internet address corresponding to a given interface and address.
   2014  */
   2015 struct in6_ifaddr *
   2016 in6ifa_ifpwithaddr(ifp, addr)
   2017 	struct ifnet *ifp;
   2018 	struct in6_addr *addr;
   2019 {
   2020 	struct ifaddr *ifa;
   2021 
   2022 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
   2023 	{
   2024 		if (ifa->ifa_addr == NULL)
   2025 			continue;	/* just for safety */
   2026 		if (ifa->ifa_addr->sa_family != AF_INET6)
   2027 			continue;
   2028 		if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
   2029 			break;
   2030 	}
   2031 
   2032 	return ((struct in6_ifaddr *)ifa);
   2033 }
   2034 
   2035 /*
   2036  * Convert IP6 address to printable (loggable) representation.
   2037  */
   2038 static char digits[] = "0123456789abcdef";
   2039 static int ip6round = 0;
   2040 char *
   2041 ip6_sprintf(addr)
   2042 	const struct in6_addr *addr;
   2043 {
   2044 	static char ip6buf[8][48];
   2045 	int i;
   2046 	char *cp;
   2047 	const u_short *a = (const u_short *)addr;
   2048 	const u_char *d;
   2049 	int dcolon = 0;
   2050 
   2051 	ip6round = (ip6round + 1) & 7;
   2052 	cp = ip6buf[ip6round];
   2053 
   2054 	for (i = 0; i < 8; i++) {
   2055 		if (dcolon == 1) {
   2056 			if (*a == 0) {
   2057 				if (i == 7)
   2058 					*cp++ = ':';
   2059 				a++;
   2060 				continue;
   2061 			} else
   2062 				dcolon = 2;
   2063 		}
   2064 		if (*a == 0) {
   2065 			if (dcolon == 0 && *(a + 1) == 0) {
   2066 				if (i == 0)
   2067 					*cp++ = ':';
   2068 				*cp++ = ':';
   2069 				dcolon = 1;
   2070 			} else {
   2071 				*cp++ = '0';
   2072 				*cp++ = ':';
   2073 			}
   2074 			a++;
   2075 			continue;
   2076 		}
   2077 		d = (const u_char *)a;
   2078 		*cp++ = digits[*d >> 4];
   2079 		*cp++ = digits[*d++ & 0xf];
   2080 		*cp++ = digits[*d >> 4];
   2081 		*cp++ = digits[*d & 0xf];
   2082 		*cp++ = ':';
   2083 		a++;
   2084 	}
   2085 	*--cp = 0;
   2086 	return (ip6buf[ip6round]);
   2087 }
   2088 
   2089 /*
   2090  * Determine if an address is on a local network.
   2091  */
   2092 int
   2093 in6_localaddr(in6)
   2094 	struct in6_addr *in6;
   2095 {
   2096 	struct in6_ifaddr *ia;
   2097 
   2098 	if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
   2099 		return (1);
   2100 
   2101 	for (ia = in6_ifaddr; ia; ia = ia->ia_next)
   2102 		if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
   2103 					      &ia->ia_prefixmask.sin6_addr))
   2104 			return (1);
   2105 
   2106 	return (0);
   2107 }
   2108 
   2109 /*
   2110  * Get a scope of the address. Node-local, link-local, site-local or global.
   2111  */
   2112 int
   2113 in6_addrscope (addr)
   2114 struct in6_addr *addr;
   2115 {
   2116 	int scope;
   2117 
   2118 	if (addr->s6_addr8[0] == 0xfe) {
   2119 		scope = addr->s6_addr8[1] & 0xc0;
   2120 
   2121 		switch (scope) {
   2122 		case 0x80:
   2123 			return IPV6_ADDR_SCOPE_LINKLOCAL;
   2124 		case 0xc0:
   2125 			return IPV6_ADDR_SCOPE_SITELOCAL;
   2126 		default:
   2127 			return IPV6_ADDR_SCOPE_GLOBAL; /* just in case */
   2128 		}
   2129 	}
   2130 
   2131 
   2132 	if (addr->s6_addr8[0] == 0xff) {
   2133 		scope = addr->s6_addr8[1] & 0x0f;
   2134 
   2135 		/*
   2136 		 * due to other scope such as reserved,
   2137 		 * return scope doesn't work.
   2138 		 */
   2139 		switch (scope) {
   2140 		case IPV6_ADDR_SCOPE_NODELOCAL:
   2141 			return IPV6_ADDR_SCOPE_NODELOCAL;
   2142 		case IPV6_ADDR_SCOPE_LINKLOCAL:
   2143 			return IPV6_ADDR_SCOPE_LINKLOCAL;
   2144 		case IPV6_ADDR_SCOPE_SITELOCAL:
   2145 			return IPV6_ADDR_SCOPE_SITELOCAL;
   2146 		default:
   2147 			return IPV6_ADDR_SCOPE_GLOBAL;
   2148 		}
   2149 	}
   2150 
   2151 	if (bcmp(&in6addr_loopback, addr, sizeof(*addr) - 1) == 0) {
   2152 		if (addr->s6_addr8[15] == 1) /* loopback */
   2153 			return IPV6_ADDR_SCOPE_NODELOCAL;
   2154 		if (addr->s6_addr8[15] == 0) /* unspecified */
   2155 			return IPV6_ADDR_SCOPE_LINKLOCAL;
   2156 	}
   2157 
   2158 	return IPV6_ADDR_SCOPE_GLOBAL;
   2159 }
   2160 
   2161 int
   2162 in6_addr2scopeid(ifp, addr)
   2163 	struct ifnet *ifp;	/* must not be NULL */
   2164 	struct in6_addr *addr;	/* must not be NULL */
   2165 {
   2166 	int scope = in6_addrscope(addr);
   2167 
   2168 	switch (scope) {
   2169 	case IPV6_ADDR_SCOPE_NODELOCAL:
   2170 		return (-1);	/* XXX: is this an appropriate value? */
   2171 
   2172 	case IPV6_ADDR_SCOPE_LINKLOCAL:
   2173 		/* XXX: we do not distinguish between a link and an I/F. */
   2174 		return (ifp->if_index);
   2175 
   2176 	case IPV6_ADDR_SCOPE_SITELOCAL:
   2177 		return (0);	/* XXX: invalid. */
   2178 
   2179 	default:
   2180 		return (0);	/* XXX: treat as global. */
   2181 	}
   2182 }
   2183 
   2184 int
   2185 in6_is_addr_deprecated(sa6)
   2186 	struct sockaddr_in6 *sa6;
   2187 {
   2188 	struct in6_ifaddr *ia;
   2189 
   2190 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
   2191 		if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
   2192 		    &sa6->sin6_addr) &&
   2193 #ifdef SCOPEDROUTING
   2194 		    ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id &&
   2195 #endif
   2196 		    (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
   2197 			return (1); /* true */
   2198 
   2199 		/* XXX: do we still have to go thru the rest of the list? */
   2200 	}
   2201 
   2202 	return (0);		/* false */
   2203 }
   2204 
   2205 /*
   2206  * return length of part which dst and src are equal
   2207  * hard coding...
   2208  */
   2209 int
   2210 in6_matchlen(src, dst)
   2211 struct in6_addr *src, *dst;
   2212 {
   2213 	int match = 0;
   2214 	u_char *s = (u_char *)src, *d = (u_char *)dst;
   2215 	u_char *lim = s + 16, r;
   2216 
   2217 	while (s < lim)
   2218 		if ((r = (*d++ ^ *s++)) != 0) {
   2219 			while (r < 128) {
   2220 				match++;
   2221 				r <<= 1;
   2222 			}
   2223 			break;
   2224 		} else
   2225 			match += 8;
   2226 	return match;
   2227 }
   2228 
   2229 /* XXX: to be scope conscious */
   2230 int
   2231 in6_are_prefix_equal(p1, p2, len)
   2232 	struct in6_addr *p1, *p2;
   2233 	int len;
   2234 {
   2235 	int bytelen, bitlen;
   2236 
   2237 	/* sanity check */
   2238 	if (0 > len || len > 128) {
   2239 		log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
   2240 		    len);
   2241 		return (0);
   2242 	}
   2243 
   2244 	bytelen = len / 8;
   2245 	bitlen = len % 8;
   2246 
   2247 	if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
   2248 		return (0);
   2249 	if (p1->s6_addr[bytelen] >> (8 - bitlen) !=
   2250 	    p2->s6_addr[bytelen] >> (8 - bitlen))
   2251 		return (0);
   2252 
   2253 	return (1);
   2254 }
   2255 
   2256 void
   2257 in6_prefixlen2mask(maskp, len)
   2258 	struct in6_addr *maskp;
   2259 	int len;
   2260 {
   2261 	static const u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
   2262 	int bytelen, bitlen, i;
   2263 
   2264 	/* sanity check */
   2265 	if (0 > len || len > 128) {
   2266 		log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
   2267 		    len);
   2268 		return;
   2269 	}
   2270 
   2271 	bzero(maskp, sizeof(*maskp));
   2272 	bytelen = len / 8;
   2273 	bitlen = len % 8;
   2274 	for (i = 0; i < bytelen; i++)
   2275 		maskp->s6_addr[i] = 0xff;
   2276 	if (bitlen)
   2277 		maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
   2278 }
   2279 
   2280 /*
   2281  * return the best address out of the same scope
   2282  */
   2283 struct in6_ifaddr *
   2284 in6_ifawithscope(oifp, dst)
   2285 	struct ifnet *oifp;
   2286 	struct in6_addr *dst;
   2287 {
   2288 	int dst_scope =	in6_addrscope(dst), src_scope, best_scope = 0;
   2289 	int blen = -1;
   2290 	struct ifaddr *ifa;
   2291 	struct ifnet *ifp;
   2292 	struct in6_ifaddr *ifa_best = NULL;
   2293 
   2294 	if (oifp == NULL) {
   2295 		printf("in6_ifawithscope: output interface is not specified\n");
   2296 		return (NULL);
   2297 	}
   2298 
   2299 	/*
   2300 	 * We search for all addresses on all interfaces from the beginning.
   2301 	 * Comparing an interface with the outgoing interface will be done
   2302 	 * only at the final stage of tiebreaking.
   2303 	 */
   2304 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
   2305 	{
   2306 		/*
   2307 		 * We can never take an address that breaks the scope zone
   2308 		 * of the destination.
   2309 		 */
   2310 		if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst))
   2311 			continue;
   2312 
   2313 		for (ifa = ifp->if_addrlist.tqh_first; ifa;
   2314 		     ifa = ifa->ifa_list.tqe_next)
   2315 		{
   2316 			int tlen = -1, dscopecmp, bscopecmp, matchcmp;
   2317 
   2318 			if (ifa->ifa_addr->sa_family != AF_INET6)
   2319 				continue;
   2320 
   2321 			src_scope = in6_addrscope(IFA_IN6(ifa));
   2322 
   2323 #ifdef ADDRSELECT_DEBUG		/* should be removed after stabilization */
   2324 			dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
   2325 			printf("in6_ifawithscope: dst=%s bestaddr=%s, "
   2326 			       "newaddr=%s, scope=%x, dcmp=%d, bcmp=%d, "
   2327 			       "matchlen=%d, flgs=%x\n",
   2328 			       ip6_sprintf(dst),
   2329 			       ifa_best ? ip6_sprintf(&ifa_best->ia_addr.sin6_addr) : "none",
   2330 			       ip6_sprintf(IFA_IN6(ifa)), src_scope,
   2331 			       dscopecmp,
   2332 			       ifa_best ? IN6_ARE_SCOPE_CMP(src_scope, best_scope) : -1,
   2333 			       in6_matchlen(IFA_IN6(ifa), dst),
   2334 			       ((struct in6_ifaddr *)ifa)->ia6_flags);
   2335 #endif
   2336 
   2337 			/*
   2338 			 * Don't use an address before completing DAD
   2339 			 * nor a duplicated address.
   2340 			 */
   2341 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
   2342 			    IN6_IFF_NOTREADY)
   2343 				continue;
   2344 
   2345 			/* XXX: is there any case to allow anycasts? */
   2346 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
   2347 			    IN6_IFF_ANYCAST)
   2348 				continue;
   2349 
   2350 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
   2351 			    IN6_IFF_DETACHED)
   2352 				continue;
   2353 
   2354 			/*
   2355 			 * If this is the first address we find,
   2356 			 * keep it anyway.
   2357 			 */
   2358 			if (ifa_best == NULL)
   2359 				goto replace;
   2360 
   2361 			/*
   2362 			 * ifa_best is never NULL beyond this line except
   2363 			 * within the block labeled "replace".
   2364 			 */
   2365 
   2366 			/*
   2367 			 * If ifa_best has a smaller scope than dst and
   2368 			 * the current address has a larger one than
   2369 			 * (or equal to) dst, always replace ifa_best.
   2370 			 * Also, if the current address has a smaller scope
   2371 			 * than dst, ignore it unless ifa_best also has a
   2372 			 * smaller scope.
   2373 			 */
   2374 			if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 &&
   2375 			    IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0)
   2376 				goto replace;
   2377 			if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 &&
   2378 			    IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0)
   2379 				continue;
   2380 
   2381 			/*
   2382 			 * A deprecated address SHOULD NOT be used in new
   2383 			 * communications if an alternate (non-deprecated)
   2384 			 * address is available and has sufficient scope.
   2385 			 * RFC 2462, Section 5.5.4.
   2386 			 */
   2387 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
   2388 			    IN6_IFF_DEPRECATED) {
   2389 				/*
   2390 				 * Ignore any deprecated addresses if
   2391 				 * specified by configuration.
   2392 				 */
   2393 				if (!ip6_use_deprecated)
   2394 					continue;
   2395 
   2396 				/*
   2397 				 * If we have already found a non-deprecated
   2398 				 * candidate, just ignore deprecated addresses.
   2399 				 */
   2400 				if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED)
   2401 				    == 0)
   2402 					continue;
   2403 			}
   2404 
   2405 			/*
   2406 			 * A non-deprecated address is always preferred
   2407 			 * to a deprecated one regardless of scopes and
   2408 			 * address matching.
   2409 			 */
   2410 			if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) &&
   2411 			    (((struct in6_ifaddr *)ifa)->ia6_flags &
   2412 			     IN6_IFF_DEPRECATED) == 0)
   2413 				goto replace;
   2414 
   2415 			/*
   2416 			 * At this point, we have two cases:
   2417 			 * 1. we are looking at a non-deprecated address,
   2418 			 *    and ifa_best is also non-deprecated.
   2419 			 * 2. we are looking at a deprecated address,
   2420 			 *    and ifa_best is also deprecated.
   2421 			 * Also, we do not have to consider a case where
   2422 			 * the scope of if_best is larger(smaller) than dst and
   2423 			 * the scope of the current address is smaller(larger)
   2424 			 * than dst. Such a case has already been covered.
   2425 			 * Tiebreaking is done according to the following
   2426 			 * items:
   2427 			 * - the scope comparison between the address and
   2428 			 *   dst (dscopecmp)
   2429 			 * - the scope comparison between the address and
   2430 			 *   ifa_best (bscopecmp)
   2431 			 * - if the address match dst longer than ifa_best
   2432 			 *   (matchcmp)
   2433 			 * - if the address is on the outgoing I/F (outI/F)
   2434 			 *
   2435 			 * Roughly speaking, the selection policy is
   2436 			 * - the most important item is scope. The same scope
   2437 			 *   is best. Then search for a larger scope.
   2438 			 *   Smaller scopes are the last resort.
   2439 			 * - A deprecated address is chosen only when we have
   2440 			 *   no address that has an enough scope, but is
   2441 			 *   prefered to any addresses of smaller scopes.
   2442 			 * - Longest address match against dst is considered
   2443 			 *   only for addresses that has the same scope of dst.
   2444 			 * - If there is no other reasons to choose one,
   2445 			 *   addresses on the outgoing I/F are preferred.
   2446 			 *
   2447 			 * The precise decision table is as follows:
   2448 			 * dscopecmp bscopecmp matchcmp outI/F | replace?
   2449 			 *    !equal     equal      N/A    Yes |      Yes (1)
   2450 			 *    !equal     equal      N/A     No |       No (2)
   2451 			 *    larger    larger      N/A    N/A |       No (3)
   2452 			 *    larger   smaller      N/A    N/A |      Yes (4)
   2453 			 *   smaller    larger      N/A    N/A |      Yes (5)
   2454 			 *   smaller   smaller      N/A    N/A |       No (6)
   2455 			 *     equal   smaller      N/A    N/A |      Yes (7)
   2456 			 *     equal    larger       (already done)
   2457 			 *     equal     equal   larger    N/A |      Yes (8)
   2458 			 *     equal     equal  smaller    N/A |       No (9)
   2459 			 *     equal     equal    equal    Yes |      Yes (a)
   2460 			 *     eaual     eqaul    equal     No |       No (b)
   2461 			 */
   2462 			dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
   2463 			bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope);
   2464 
   2465 			if (dscopecmp && bscopecmp == 0) {
   2466 				if (oifp == ifp) /* (1) */
   2467 					goto replace;
   2468 				continue; /* (2) */
   2469 			}
   2470 			if (dscopecmp > 0) {
   2471 				if (bscopecmp > 0) /* (3) */
   2472 					continue;
   2473 				goto replace; /* (4) */
   2474 			}
   2475 			if (dscopecmp < 0) {
   2476 				if (bscopecmp > 0) /* (5) */
   2477 					goto replace;
   2478 				continue; /* (6) */
   2479 			}
   2480 
   2481 			/* now dscopecmp must be 0 */
   2482 			if (bscopecmp < 0)
   2483 				goto replace; /* (7) */
   2484 
   2485 			/*
   2486 			 * At last both dscopecmp and bscopecmp must be 0.
   2487 			 * We need address matching against dst for
   2488 			 * tiebreaking.
   2489 			 */
   2490 			tlen = in6_matchlen(IFA_IN6(ifa), dst);
   2491 			matchcmp = tlen - blen;
   2492 			if (matchcmp > 0) /* (8) */
   2493 				goto replace;
   2494 			if (matchcmp < 0) /* (9) */
   2495 				continue;
   2496 			if (oifp == ifp) /* (a) */
   2497 				goto replace;
   2498 			continue; /* (b) */
   2499 
   2500 		  replace:
   2501 			ifa_best = (struct in6_ifaddr *)ifa;
   2502 			blen = tlen >= 0 ? tlen :
   2503 				in6_matchlen(IFA_IN6(ifa), dst);
   2504 			best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr);
   2505 		}
   2506 	}
   2507 
   2508 	/* count statistics for future improvements */
   2509 	if (ifa_best == NULL)
   2510 		ip6stat.ip6s_sources_none++;
   2511 	else {
   2512 		if (oifp == ifa_best->ia_ifp)
   2513 			ip6stat.ip6s_sources_sameif[best_scope]++;
   2514 		else
   2515 			ip6stat.ip6s_sources_otherif[best_scope]++;
   2516 
   2517 		if (best_scope == dst_scope)
   2518 			ip6stat.ip6s_sources_samescope[best_scope]++;
   2519 		else
   2520 			ip6stat.ip6s_sources_otherscope[best_scope]++;
   2521 
   2522 		if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0)
   2523 			ip6stat.ip6s_sources_deprecated[best_scope]++;
   2524 	}
   2525 
   2526 	return (ifa_best);
   2527 }
   2528 
   2529 /*
   2530  * return the best address out of the same scope. if no address was
   2531  * found, return the first valid address from designated IF.
   2532  */
   2533 struct in6_ifaddr *
   2534 in6_ifawithifp(ifp, dst)
   2535 	struct ifnet *ifp;
   2536 	struct in6_addr *dst;
   2537 {
   2538 	int dst_scope =	in6_addrscope(dst), blen = -1, tlen;
   2539 	struct ifaddr *ifa;
   2540 	struct in6_ifaddr *besta = 0;
   2541 	struct in6_ifaddr *dep[2];	/* last-resort: deprecated */
   2542 
   2543 	dep[0] = dep[1] = NULL;
   2544 
   2545 	/*
   2546 	 * We first look for addresses in the same scope.
   2547 	 * If there is one, return it.
   2548 	 * If two or more, return one which matches the dst longest.
   2549 	 * If none, return one of global addresses assigned other ifs.
   2550 	 */
   2551 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
   2552 	{
   2553 		if (ifa->ifa_addr->sa_family != AF_INET6)
   2554 			continue;
   2555 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
   2556 			continue; /* XXX: is there any case to allow anycast? */
   2557 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
   2558 			continue; /* don't use this interface */
   2559 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
   2560 			continue;
   2561 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
   2562 			if (ip6_use_deprecated)
   2563 				dep[0] = (struct in6_ifaddr *)ifa;
   2564 			continue;
   2565 		}
   2566 
   2567 		if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
   2568 			/*
   2569 			 * call in6_matchlen() as few as possible
   2570 			 */
   2571 			if (besta) {
   2572 				if (blen == -1)
   2573 					blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
   2574 				tlen = in6_matchlen(IFA_IN6(ifa), dst);
   2575 				if (tlen > blen) {
   2576 					blen = tlen;
   2577 					besta = (struct in6_ifaddr *)ifa;
   2578 				}
   2579 			} else
   2580 				besta = (struct in6_ifaddr *)ifa;
   2581 		}
   2582 	}
   2583 	if (besta)
   2584 		return (besta);
   2585 
   2586 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
   2587 	{
   2588 		if (ifa->ifa_addr->sa_family != AF_INET6)
   2589 			continue;
   2590 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
   2591 			continue; /* XXX: is there any case to allow anycast? */
   2592 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
   2593 			continue; /* don't use this interface */
   2594 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
   2595 			continue;
   2596 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
   2597 			if (ip6_use_deprecated)
   2598 				dep[1] = (struct in6_ifaddr *)ifa;
   2599 			continue;
   2600 		}
   2601 
   2602 		return (struct in6_ifaddr *)ifa;
   2603 	}
   2604 
   2605 	/* use the last-resort values, that are, deprecated addresses */
   2606 	if (dep[0])
   2607 		return dep[0];
   2608 	if (dep[1])
   2609 		return dep[1];
   2610 
   2611 	return NULL;
   2612 }
   2613 
   2614 /*
   2615  * perform DAD when interface becomes IFF_UP.
   2616  */
   2617 void
   2618 in6_if_up(ifp)
   2619 	struct ifnet *ifp;
   2620 {
   2621 	struct ifaddr *ifa;
   2622 	struct in6_ifaddr *ia;
   2623 	int dad_delay;		/* delay ticks before DAD output */
   2624 
   2625 	/*
   2626 	 * special cases, like 6to4, are handled in in6_ifattach
   2627 	 */
   2628 	in6_ifattach(ifp, NULL);
   2629 
   2630 	dad_delay = 0;
   2631 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
   2632 	{
   2633 		if (ifa->ifa_addr->sa_family != AF_INET6)
   2634 			continue;
   2635 		ia = (struct in6_ifaddr *)ifa;
   2636 		if (ia->ia6_flags & IN6_IFF_TENTATIVE)
   2637 			nd6_dad_start(ifa, &dad_delay);
   2638 	}
   2639 }
   2640 
   2641 int
   2642 in6if_do_dad(ifp)
   2643 	struct ifnet *ifp;
   2644 {
   2645 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
   2646 		return (0);
   2647 
   2648 	switch (ifp->if_type) {
   2649 	case IFT_FAITH:
   2650 		/*
   2651 		 * These interfaces do not have the IFF_LOOPBACK flag,
   2652 		 * but loop packets back.  We do not have to do DAD on such
   2653 		 * interfaces.  We should even omit it, because loop-backed
   2654 		 * NS would confuse the DAD procedure.
   2655 		 */
   2656 		return (0);
   2657 	default:
   2658 		/*
   2659 		 * Our DAD routine requires the interface up and running.
   2660 		 * However, some interfaces can be up before the RUNNING
   2661 		 * status.  Additionaly, users may try to assign addresses
   2662 		 * before the interface becomes up (or running).
   2663 		 * We simply skip DAD in such a case as a work around.
   2664 		 * XXX: we should rather mark "tentative" on such addresses,
   2665 		 * and do DAD after the interface becomes ready.
   2666 		 */
   2667 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
   2668 		    (IFF_UP|IFF_RUNNING))
   2669 			return (0);
   2670 
   2671 		return (1);
   2672 	}
   2673 }
   2674 
   2675 /*
   2676  * Calculate max IPv6 MTU through all the interfaces and store it
   2677  * to in6_maxmtu.
   2678  */
   2679 void
   2680 in6_setmaxmtu()
   2681 {
   2682 	unsigned long maxmtu = 0;
   2683 	struct ifnet *ifp;
   2684 
   2685 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
   2686 	{
   2687 		/* this function can be called during ifnet initialization */
   2688 		if (!ifp->if_afdata[AF_INET6])
   2689 			continue;
   2690 		if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
   2691 		    IN6_LINKMTU(ifp) > maxmtu)
   2692 			maxmtu = IN6_LINKMTU(ifp);
   2693 	}
   2694 	if (maxmtu)	     /* update only when maxmtu is positive */
   2695 		in6_maxmtu = maxmtu;
   2696 }
   2697 
   2698 void *
   2699 in6_domifattach(ifp)
   2700 	struct ifnet *ifp;
   2701 {
   2702 	struct in6_ifextra *ext;
   2703 
   2704 	ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK);
   2705 	bzero(ext, sizeof(*ext));
   2706 
   2707 	ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat),
   2708 	    M_IFADDR, M_WAITOK);
   2709 	bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat));
   2710 
   2711 	ext->icmp6_ifstat =
   2712 	    (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat),
   2713 	    M_IFADDR, M_WAITOK);
   2714 	bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat));
   2715 
   2716 	ext->nd_ifinfo = nd6_ifattach(ifp);
   2717 	return ext;
   2718 }
   2719 
   2720 void
   2721 in6_domifdetach(ifp, aux)
   2722 	struct ifnet *ifp;
   2723 	void *aux;
   2724 {
   2725 	struct in6_ifextra *ext = (struct in6_ifextra *)aux;
   2726 
   2727 	nd6_ifdetach(ext->nd_ifinfo);
   2728 	free(ext->in6_ifstat, M_IFADDR);
   2729 	free(ext->icmp6_ifstat, M_IFADDR);
   2730 	free(ext, M_IFADDR);
   2731 }
   2732