Home | History | Annotate | Line # | Download | only in netinet6
in6.c revision 1.86
      1 /*	$NetBSD: in6.c,v 1.86 2004/03/28 08:28:06 christos Exp $	*/
      2 /*	$KAME: in6.c,v 1.198 2001/07/18 09:12:38 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)in.c	8.2 (Berkeley) 11/15/93
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: in6.c,v 1.86 2004/03/28 08:28:06 christos Exp $");
     66 
     67 #include "opt_inet.h"
     68 
     69 #include <sys/param.h>
     70 #include <sys/ioctl.h>
     71 #include <sys/errno.h>
     72 #include <sys/malloc.h>
     73 #include <sys/socket.h>
     74 #include <sys/socketvar.h>
     75 #include <sys/sockio.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/time.h>
     79 #include <sys/kernel.h>
     80 #include <sys/syslog.h>
     81 
     82 #include <net/if.h>
     83 #include <net/if_types.h>
     84 #include <net/route.h>
     85 #include <net/if_dl.h>
     86 
     87 #include <netinet/in.h>
     88 #include <netinet/in_var.h>
     89 #include <net/if_ether.h>
     90 
     91 #include <netinet/ip6.h>
     92 #include <netinet6/ip6_var.h>
     93 #include <netinet6/nd6.h>
     94 #include <netinet6/mld6_var.h>
     95 #include <netinet6/ip6_mroute.h>
     96 #include <netinet6/in6_ifattach.h>
     97 
     98 #include <net/net_osdep.h>
     99 
    100 MALLOC_DEFINE(M_IP6OPT, "ip6_options", "IPv6 options");
    101 
    102 /* enable backward compatibility code for obsoleted ioctls */
    103 #define COMPAT_IN6IFIOCTL
    104 
    105 /*
    106  * Definitions of some constant IP6 addresses.
    107  */
    108 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
    109 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
    110 const struct in6_addr in6addr_nodelocal_allnodes =
    111 	IN6ADDR_NODELOCAL_ALLNODES_INIT;
    112 const struct in6_addr in6addr_linklocal_allnodes =
    113 	IN6ADDR_LINKLOCAL_ALLNODES_INIT;
    114 const struct in6_addr in6addr_linklocal_allrouters =
    115 	IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
    116 
    117 const struct in6_addr in6mask0 = IN6MASK0;
    118 const struct in6_addr in6mask32 = IN6MASK32;
    119 const struct in6_addr in6mask64 = IN6MASK64;
    120 const struct in6_addr in6mask96 = IN6MASK96;
    121 const struct in6_addr in6mask128 = IN6MASK128;
    122 
    123 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6,
    124 				     0, 0, IN6ADDR_ANY_INIT, 0};
    125 
    126 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
    127 	struct ifnet *, struct proc *));
    128 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *,
    129 	struct sockaddr_in6 *, int));
    130 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *));
    131 
    132 /*
    133  * This structure is used to keep track of in6_multi chains which belong to
    134  * deleted interface addresses.
    135  */
    136 static LIST_HEAD(, multi6_kludge) in6_mk; /* XXX BSS initialization */
    137 
    138 struct multi6_kludge {
    139 	LIST_ENTRY(multi6_kludge) mk_entry;
    140 	struct ifnet *mk_ifp;
    141 	struct in6_multihead mk_head;
    142 };
    143 
    144 /*
    145  * Subroutine for in6_ifaddloop() and in6_ifremloop().
    146  * This routine does actual work.
    147  */
    148 static void
    149 in6_ifloop_request(int cmd, struct ifaddr *ifa)
    150 {
    151 	struct sockaddr_in6 lo_sa;
    152 	struct sockaddr_in6 all1_sa;
    153 	struct rtentry *nrt = NULL;
    154 	int e;
    155 
    156 	bzero(&lo_sa, sizeof(lo_sa));
    157 	bzero(&all1_sa, sizeof(all1_sa));
    158 	lo_sa.sin6_family = all1_sa.sin6_family = AF_INET6;
    159 	lo_sa.sin6_len = all1_sa.sin6_len = sizeof(struct sockaddr_in6);
    160 	lo_sa.sin6_addr = in6addr_loopback;
    161 	all1_sa.sin6_addr = in6mask128;
    162 
    163 	/*
    164 	 * We specify the address itself as the gateway, and set the
    165 	 * RTF_LLINFO flag, so that the corresponding host route would have
    166 	 * the flag, and thus applications that assume traditional behavior
    167 	 * would be happy.  Note that we assume the caller of the function
    168 	 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
    169 	 * which changes the outgoing interface to the loopback interface.
    170 	 */
    171 	e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
    172 	    (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
    173 	if (e != 0) {
    174 		log(LOG_ERR, "in6_ifloop_request: "
    175 		    "%s operation failed for %s (errno=%d)\n",
    176 		    cmd == RTM_ADD ? "ADD" : "DELETE",
    177 		    ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
    178 		    e);
    179 	}
    180 
    181 	/*
    182 	 * Make sure rt_ifa be equal to IFA, the second argument of the
    183 	 * function.
    184 	 * We need this because when we refer to rt_ifa->ia6_flags in
    185 	 * ip6_input, we assume that the rt_ifa points to the address instead
    186 	 * of the loopback address.
    187 	 */
    188 	if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) {
    189 		IFAFREE(nrt->rt_ifa);
    190 		IFAREF(ifa);
    191 		nrt->rt_ifa = ifa;
    192 	}
    193 
    194 	/*
    195 	 * Report the addition/removal of the address to the routing socket.
    196 	 * XXX: since we called rtinit for a p2p interface with a destination,
    197 	 *      we end up reporting twice in such a case.  Should we rather
    198 	 *      omit the second report?
    199 	 */
    200 	if (nrt) {
    201 		rt_newaddrmsg(cmd, ifa, e, nrt);
    202 		if (cmd == RTM_DELETE) {
    203 			if (nrt->rt_refcnt <= 0) {
    204 				/* XXX: we should free the entry ourselves. */
    205 				nrt->rt_refcnt++;
    206 				rtfree(nrt);
    207 			}
    208 		} else {
    209 			/* the cmd must be RTM_ADD here */
    210 			nrt->rt_refcnt--;
    211 		}
    212 	}
    213 }
    214 
    215 /*
    216  * Add ownaddr as loopback rtentry.  We previously add the route only if
    217  * necessary (ex. on a p2p link).  However, since we now manage addresses
    218  * separately from prefixes, we should always add the route.  We can't
    219  * rely on the cloning mechanism from the corresponding interface route
    220  * any more.
    221  */
    222 static void
    223 in6_ifaddloop(struct ifaddr *ifa)
    224 {
    225 	struct rtentry *rt;
    226 
    227 	/* If there is no loopback entry, allocate one. */
    228 	rt = rtalloc1(ifa->ifa_addr, 0);
    229 	if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
    230 	    (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
    231 		in6_ifloop_request(RTM_ADD, ifa);
    232 	if (rt)
    233 		rt->rt_refcnt--;
    234 }
    235 
    236 /*
    237  * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
    238  * if it exists.
    239  */
    240 static void
    241 in6_ifremloop(struct ifaddr *ifa)
    242 {
    243 	struct in6_ifaddr *ia;
    244 	struct rtentry *rt;
    245 	int ia_count = 0;
    246 
    247 	/*
    248 	 * Some of BSD variants do not remove cloned routes
    249 	 * from an interface direct route, when removing the direct route
    250 	 * (see comments in net/net_osdep.h).  Even for variants that do remove
    251 	 * cloned routes, they could fail to remove the cloned routes when
    252 	 * we handle multple addresses that share a common prefix.
    253 	 * So, we should remove the route corresponding to the deleted address.
    254 	 */
    255 
    256 	/*
    257 	 * Delete the entry only if exact one ifa exists.  More than one ifa
    258 	 * can exist if we assign a same single address to multiple
    259 	 * (probably p2p) interfaces.
    260 	 * XXX: we should avoid such a configuration in IPv6...
    261 	 */
    262 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
    263 		if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
    264 			ia_count++;
    265 			if (ia_count > 1)
    266 				break;
    267 		}
    268 	}
    269 
    270 	if (ia_count == 1) {
    271 		/*
    272 		 * Before deleting, check if a corresponding loopbacked host
    273 		 * route surely exists.  With this check, we can avoid to
    274 		 * delete an interface direct route whose destination is same
    275 		 * as the address being removed.  This can happen when removing
    276 		 * a subnet-router anycast address on an interface attahced
    277 		 * to a shared medium.
    278 		 */
    279 		rt = rtalloc1(ifa->ifa_addr, 0);
    280 		if (rt != NULL && (rt->rt_flags & RTF_HOST) != 0 &&
    281 		    (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
    282 			rt->rt_refcnt--;
    283 			in6_ifloop_request(RTM_DELETE, ifa);
    284 		}
    285 	}
    286 }
    287 
    288 int
    289 in6_ifindex2scopeid(idx)
    290 	int idx;
    291 {
    292 	struct ifnet *ifp;
    293 	struct ifaddr *ifa;
    294 	struct sockaddr_in6 *sin6;
    295 
    296 	if (idx < 0 || if_indexlim <= idx)
    297 		return -1;
    298 	ifp = ifindex2ifnet[idx];
    299 	if (!ifp)
    300 		return -1;
    301 
    302 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
    303 	{
    304 		if (ifa->ifa_addr->sa_family != AF_INET6)
    305 			continue;
    306 		sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
    307 		if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))
    308 			return sin6->sin6_scope_id & 0xffff;
    309 	}
    310 
    311 	return -1;
    312 }
    313 
    314 int
    315 in6_mask2len(mask, lim0)
    316 	struct in6_addr *mask;
    317 	u_char *lim0;
    318 {
    319 	int x = 0, y;
    320 	u_char *lim = lim0, *p;
    321 
    322 	/* ignore the scope_id part */
    323 	if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask))
    324 		lim = (u_char *)mask + sizeof(*mask);
    325 	for (p = (u_char *)mask; p < lim; x++, p++) {
    326 		if (*p != 0xff)
    327 			break;
    328 	}
    329 	y = 0;
    330 	if (p < lim) {
    331 		for (y = 0; y < 8; y++) {
    332 			if ((*p & (0x80 >> y)) == 0)
    333 				break;
    334 		}
    335 	}
    336 
    337 	/*
    338 	 * when the limit pointer is given, do a stricter check on the
    339 	 * remaining bits.
    340 	 */
    341 	if (p < lim) {
    342 		if (y != 0 && (*p & (0x00ff >> y)) != 0)
    343 			return (-1);
    344 		for (p = p + 1; p < lim; p++)
    345 			if (*p != 0)
    346 				return (-1);
    347 	}
    348 
    349 	return x * 8 + y;
    350 }
    351 
    352 #define ifa2ia6(ifa)	((struct in6_ifaddr *)(ifa))
    353 #define ia62ifa(ia6)	(&((ia6)->ia_ifa))
    354 
    355 int
    356 in6_control(so, cmd, data, ifp, p)
    357 	struct	socket *so;
    358 	u_long cmd;
    359 	caddr_t	data;
    360 	struct ifnet *ifp;
    361 	struct proc *p;
    362 {
    363 	struct	in6_ifreq *ifr = (struct in6_ifreq *)data;
    364 	struct	in6_ifaddr *ia = NULL;
    365 	struct	in6_aliasreq *ifra = (struct in6_aliasreq *)data;
    366 	struct sockaddr_in6 *sa6;
    367 	int privileged;
    368 
    369 	privileged = 0;
    370 	if (p && !suser(p->p_ucred, &p->p_acflag))
    371 		privileged++;
    372 
    373 	switch (cmd) {
    374 	case SIOCGETSGCNT_IN6:
    375 	case SIOCGETMIFCNT_IN6:
    376 		return (mrt6_ioctl(cmd, data));
    377 	}
    378 
    379 	if (ifp == NULL)
    380 		return (EOPNOTSUPP);
    381 
    382 	switch (cmd) {
    383 	case SIOCSNDFLUSH_IN6:
    384 	case SIOCSPFXFLUSH_IN6:
    385 	case SIOCSRTRFLUSH_IN6:
    386 	case SIOCSDEFIFACE_IN6:
    387 	case SIOCSIFINFO_FLAGS:
    388 		if (!privileged)
    389 			return (EPERM);
    390 		/* FALLTHROUGH */
    391 	case OSIOCGIFINFO_IN6:
    392 	case SIOCGIFINFO_IN6:
    393 	case SIOCGDRLST_IN6:
    394 	case SIOCGPRLST_IN6:
    395 	case SIOCGNBRINFO_IN6:
    396 	case SIOCGDEFIFACE_IN6:
    397 		return (nd6_ioctl(cmd, data, ifp));
    398 	}
    399 
    400 	switch (cmd) {
    401 	case SIOCSIFPREFIX_IN6:
    402 	case SIOCDIFPREFIX_IN6:
    403 	case SIOCAIFPREFIX_IN6:
    404 	case SIOCCIFPREFIX_IN6:
    405 	case SIOCSGIFPREFIX_IN6:
    406 	case SIOCGIFPREFIX_IN6:
    407 		log(LOG_NOTICE,
    408 		    "prefix ioctls are now invalidated. "
    409 		    "please use ifconfig.\n");
    410 		return (EOPNOTSUPP);
    411 	}
    412 
    413 	switch (cmd) {
    414 	case SIOCALIFADDR:
    415 	case SIOCDLIFADDR:
    416 		if (!privileged)
    417 			return (EPERM);
    418 		/* FALLTHROUGH */
    419 	case SIOCGLIFADDR:
    420 		return in6_lifaddr_ioctl(so, cmd, data, ifp, p);
    421 	}
    422 
    423 	/*
    424 	 * Find address for this interface, if it exists.
    425 	 *
    426 	 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation
    427 	 * only, and used the first interface address as the target of other
    428 	 * operations (without checking ifra_addr).  This was because netinet
    429 	 * code/API assumed at most 1 interface address per interface.
    430 	 * Since IPv6 allows a node to assign multiple addresses
    431 	 * on a single interface, we almost always look and check the
    432 	 * presence of ifra_addr, and reject invalid ones here.
    433 	 * It also decreases duplicated code among SIOC*_IN6 operations.
    434 	 */
    435 	switch (cmd) {
    436 	case SIOCAIFADDR_IN6:
    437 	case SIOCSIFPHYADDR_IN6:
    438 		sa6 = &ifra->ifra_addr;
    439 		break;
    440 	case SIOCSIFADDR_IN6:
    441 	case SIOCGIFADDR_IN6:
    442 	case SIOCSIFDSTADDR_IN6:
    443 	case SIOCSIFNETMASK_IN6:
    444 	case SIOCGIFDSTADDR_IN6:
    445 	case SIOCGIFNETMASK_IN6:
    446 	case SIOCDIFADDR_IN6:
    447 	case SIOCGIFPSRCADDR_IN6:
    448 	case SIOCGIFPDSTADDR_IN6:
    449 	case SIOCGIFAFLAG_IN6:
    450 	case SIOCSNDFLUSH_IN6:
    451 	case SIOCSPFXFLUSH_IN6:
    452 	case SIOCSRTRFLUSH_IN6:
    453 	case SIOCGIFALIFETIME_IN6:
    454 	case SIOCSIFALIFETIME_IN6:
    455 	case SIOCGIFSTAT_IN6:
    456 	case SIOCGIFSTAT_ICMP6:
    457 		sa6 = &ifr->ifr_addr;
    458 		break;
    459 	default:
    460 		sa6 = NULL;
    461 		break;
    462 	}
    463 	if (sa6 && sa6->sin6_family == AF_INET6) {
    464 		if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) {
    465 			if (sa6->sin6_addr.s6_addr16[1] == 0) {
    466 				/* link ID is not embedded by the user */
    467 				sa6->sin6_addr.s6_addr16[1] =
    468 				    htons(ifp->if_index);
    469 			} else if (sa6->sin6_addr.s6_addr16[1] !=
    470 			    htons(ifp->if_index)) {
    471 				return (EINVAL);	/* link ID contradicts */
    472 			}
    473 			if (sa6->sin6_scope_id) {
    474 				if (sa6->sin6_scope_id !=
    475 				    (u_int32_t)ifp->if_index)
    476 					return (EINVAL);
    477 				sa6->sin6_scope_id = 0; /* XXX: good way? */
    478 			}
    479 		}
    480 		ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr);
    481 	} else
    482 		ia = NULL;
    483 
    484 	switch (cmd) {
    485 	case SIOCSIFADDR_IN6:
    486 	case SIOCSIFDSTADDR_IN6:
    487 	case SIOCSIFNETMASK_IN6:
    488 		/*
    489 		 * Since IPv6 allows a node to assign multiple addresses
    490 		 * on a single interface, SIOCSIFxxx ioctls are deprecated.
    491 		 */
    492 		return (EINVAL);
    493 
    494 	case SIOCDIFADDR_IN6:
    495 		/*
    496 		 * for IPv4, we look for existing in_ifaddr here to allow
    497 		 * "ifconfig if0 delete" to remove the first IPv4 address on
    498 		 * the interface.  For IPv6, as the spec allows multiple
    499 		 * interface address from the day one, we consider "remove the
    500 		 * first one" semantics to be not preferable.
    501 		 */
    502 		if (ia == NULL)
    503 			return (EADDRNOTAVAIL);
    504 		/* FALLTHROUGH */
    505 	case SIOCAIFADDR_IN6:
    506 		/*
    507 		 * We always require users to specify a valid IPv6 address for
    508 		 * the corresponding operation.
    509 		 */
    510 		if (ifra->ifra_addr.sin6_family != AF_INET6 ||
    511 		    ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
    512 			return (EAFNOSUPPORT);
    513 		if (!privileged)
    514 			return (EPERM);
    515 
    516 		break;
    517 
    518 	case SIOCGIFADDR_IN6:
    519 		/* This interface is basically deprecated. use SIOCGIFCONF. */
    520 		/* FALLTHROUGH */
    521 	case SIOCGIFAFLAG_IN6:
    522 	case SIOCGIFNETMASK_IN6:
    523 	case SIOCGIFDSTADDR_IN6:
    524 	case SIOCGIFALIFETIME_IN6:
    525 		/* must think again about its semantics */
    526 		if (ia == NULL)
    527 			return (EADDRNOTAVAIL);
    528 		break;
    529 	case SIOCSIFALIFETIME_IN6:
    530 	    {
    531 		struct in6_addrlifetime *lt;
    532 
    533 		if (!privileged)
    534 			return (EPERM);
    535 		if (ia == NULL)
    536 			return (EADDRNOTAVAIL);
    537 		/* sanity for overflow - beware unsigned */
    538 		lt = &ifr->ifr_ifru.ifru_lifetime;
    539 		if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
    540 		 && lt->ia6t_vltime + time.tv_sec < time.tv_sec) {
    541 			return EINVAL;
    542 		}
    543 		if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
    544 		 && lt->ia6t_pltime + time.tv_sec < time.tv_sec) {
    545 			return EINVAL;
    546 		}
    547 		break;
    548 	    }
    549 	}
    550 
    551 	switch (cmd) {
    552 
    553 	case SIOCGIFADDR_IN6:
    554 		ifr->ifr_addr = ia->ia_addr;
    555 		break;
    556 
    557 	case SIOCGIFDSTADDR_IN6:
    558 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
    559 			return (EINVAL);
    560 		/*
    561 		 * XXX: should we check if ifa_dstaddr is NULL and return
    562 		 * an error?
    563 		 */
    564 		ifr->ifr_dstaddr = ia->ia_dstaddr;
    565 		break;
    566 
    567 	case SIOCGIFNETMASK_IN6:
    568 		ifr->ifr_addr = ia->ia_prefixmask;
    569 		break;
    570 
    571 	case SIOCGIFAFLAG_IN6:
    572 		ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
    573 		break;
    574 
    575 	case SIOCGIFSTAT_IN6:
    576 		if (ifp == NULL)
    577 			return EINVAL;
    578 		bzero(&ifr->ifr_ifru.ifru_stat,
    579 		    sizeof(ifr->ifr_ifru.ifru_stat));
    580 		ifr->ifr_ifru.ifru_stat =
    581 		    *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
    582 		break;
    583 
    584 	case SIOCGIFSTAT_ICMP6:
    585 		if (ifp == NULL)
    586 			return EINVAL;
    587 		bzero(&ifr->ifr_ifru.ifru_stat,
    588 		    sizeof(ifr->ifr_ifru.ifru_icmp6stat));
    589 		ifr->ifr_ifru.ifru_icmp6stat =
    590 		    *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
    591 		break;
    592 
    593 	case SIOCGIFALIFETIME_IN6:
    594 		ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
    595 		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
    596 			time_t maxexpire;
    597 			struct in6_addrlifetime *retlt =
    598 			    &ifr->ifr_ifru.ifru_lifetime;
    599 
    600 			/*
    601 			 * XXX: adjust expiration time assuming time_t is
    602 			 * signed.
    603 			 */
    604 			maxexpire = (-1) &
    605 			    ~(1 << ((sizeof(maxexpire) * 8) - 1));
    606 			if (ia->ia6_lifetime.ia6t_vltime <
    607 			    maxexpire - ia->ia6_updatetime) {
    608 				retlt->ia6t_expire = ia->ia6_updatetime +
    609 				    ia->ia6_lifetime.ia6t_vltime;
    610 			} else
    611 				retlt->ia6t_expire = maxexpire;
    612 		}
    613 		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
    614 			time_t maxexpire;
    615 			struct in6_addrlifetime *retlt =
    616 			    &ifr->ifr_ifru.ifru_lifetime;
    617 
    618 			/*
    619 			 * XXX: adjust expiration time assuming time_t is
    620 			 * signed.
    621 			 */
    622 			maxexpire = (-1) &
    623 			    ~(1 << ((sizeof(maxexpire) * 8) - 1));
    624 			if (ia->ia6_lifetime.ia6t_pltime <
    625 			    maxexpire - ia->ia6_updatetime) {
    626 				retlt->ia6t_preferred = ia->ia6_updatetime +
    627 				    ia->ia6_lifetime.ia6t_pltime;
    628 			} else
    629 				retlt->ia6t_preferred = maxexpire;
    630 		}
    631 		break;
    632 
    633 	case SIOCSIFALIFETIME_IN6:
    634 		ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
    635 		/* for sanity */
    636 		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
    637 			ia->ia6_lifetime.ia6t_expire =
    638 				time.tv_sec + ia->ia6_lifetime.ia6t_vltime;
    639 		} else
    640 			ia->ia6_lifetime.ia6t_expire = 0;
    641 		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
    642 			ia->ia6_lifetime.ia6t_preferred =
    643 				time.tv_sec + ia->ia6_lifetime.ia6t_pltime;
    644 		} else
    645 			ia->ia6_lifetime.ia6t_preferred = 0;
    646 		break;
    647 
    648 	case SIOCAIFADDR_IN6:
    649 	{
    650 		int i, error = 0;
    651 		struct nd_prefix pr0, *pr;
    652 
    653 		/* reject read-only flags */
    654 		if ((ifra->ifra_flags & IN6_IFF_DUPLICATED) != 0 ||
    655 		    (ifra->ifra_flags & IN6_IFF_DETACHED) != 0 ||
    656 		    (ifra->ifra_flags & IN6_IFF_NODAD) != 0 ||
    657 		    (ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0) {
    658 			return (EINVAL);
    659 		}
    660 		/*
    661 		 * first, make or update the interface address structure,
    662 		 * and link it to the list.
    663 		 */
    664 		if ((error = in6_update_ifa(ifp, ifra, ia)) != 0)
    665 			return (error);
    666 		if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
    667 		    == NULL) {
    668 		    	/*
    669 			 * this can happen when the user specify the 0 valid
    670 			 * lifetime.
    671 			 */
    672 			break;
    673 		}
    674 
    675 		/*
    676 		 * then, make the prefix on-link on the interface.
    677 		 * XXX: we'd rather create the prefix before the address, but
    678 		 * we need at least one address to install the corresponding
    679 		 * interface route, so we configure the address first.
    680 		 */
    681 
    682 		/*
    683 		 * convert mask to prefix length (prefixmask has already
    684 		 * been validated in in6_update_ifa().
    685 		 */
    686 		bzero(&pr0, sizeof(pr0));
    687 		pr0.ndpr_ifp = ifp;
    688 		pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
    689 		    NULL);
    690 		if (pr0.ndpr_plen == 128) {
    691 			break;	/* we don't need to install a host route. */
    692 		}
    693 		pr0.ndpr_prefix = ifra->ifra_addr;
    694 		pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr;
    695 		/* apply the mask for safety. */
    696 		for (i = 0; i < 4; i++) {
    697 			pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
    698 			    ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
    699 		}
    700 		/*
    701 		 * XXX: since we don't have an API to set prefix (not address)
    702 		 * lifetimes, we just use the same lifetimes as addresses.
    703 		 * The (temporarily) installed lifetimes can be overridden by
    704 		 * later advertised RAs (when accept_rtadv is non 0), which is
    705 		 * an intended behavior.
    706 		 */
    707 		pr0.ndpr_raf_onlink = 1; /* should be configurable? */
    708 		pr0.ndpr_raf_auto =
    709 		    ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
    710 		pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
    711 		pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
    712 
    713 		/* add the prefix if not yet. */
    714 		if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
    715 			/*
    716 			 * nd6_prelist_add will install the corresponding
    717 			 * interface route.
    718 			 */
    719 			if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
    720 				return (error);
    721 			if (pr == NULL) {
    722 				log(LOG_ERR, "nd6_prelist_add succeeded but "
    723 				    "no prefix\n");
    724 				return (EINVAL); /* XXX panic here? */
    725 			}
    726 		}
    727 
    728 		/* relate the address to the prefix */
    729 		if (ia->ia6_ndpr == NULL) {
    730 			ia->ia6_ndpr = pr;
    731 			pr->ndpr_refcnt++;
    732 		}
    733 
    734 		/*
    735 		 * this might affect the status of autoconfigured addresses,
    736 		 * that is, this address might make other addresses detached.
    737 		 */
    738 		pfxlist_onlink_check();
    739 
    740 		break;
    741 	}
    742 
    743 	case SIOCDIFADDR_IN6:
    744 	{
    745 		int i = 0, purgeprefix = 0;
    746 		struct nd_prefix pr0, *pr = NULL;
    747 
    748 		/*
    749 		 * If the address being deleted is the only one that owns
    750 		 * the corresponding prefix, expire the prefix as well.
    751 		 * XXX: theoretically, we don't have to worry about such
    752 		 * relationship, since we separate the address management
    753 		 * and the prefix management.  We do this, however, to provide
    754 		 * as much backward compatibility as possible in terms of
    755 		 * the ioctl operation.
    756 		 */
    757 		bzero(&pr0, sizeof(pr0));
    758 		pr0.ndpr_ifp = ifp;
    759 		pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr,
    760 		    NULL);
    761 		if (pr0.ndpr_plen == 128)
    762 			goto purgeaddr;
    763 		pr0.ndpr_prefix = ia->ia_addr;
    764 		pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr;
    765 		for (i = 0; i < 4; i++) {
    766 			pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
    767 			    ia->ia_prefixmask.sin6_addr.s6_addr32[i];
    768 		}
    769 		if ((pr = nd6_prefix_lookup(&pr0)) != NULL &&
    770 		    pr == ia->ia6_ndpr) {
    771 			pr->ndpr_refcnt--;
    772 			if (pr->ndpr_refcnt == 0)
    773 				purgeprefix = 1;
    774 		}
    775 
    776 	  purgeaddr:
    777 		in6_purgeaddr(&ia->ia_ifa);
    778 		if (pr && purgeprefix)
    779 			prelist_remove(pr);
    780 		break;
    781 	}
    782 
    783 	default:
    784 		if (ifp == NULL || ifp->if_ioctl == 0)
    785 			return (EOPNOTSUPP);
    786 		return ((*ifp->if_ioctl)(ifp, cmd, data));
    787 	}
    788 
    789 	return (0);
    790 }
    791 
    792 /*
    793  * Update parameters of an IPv6 interface address.
    794  * If necessary, a new entry is created and linked into address chains.
    795  * This function is separated from in6_control().
    796  * XXX: should this be performed under splnet()?
    797  */
    798 int
    799 in6_update_ifa(ifp, ifra, ia)
    800 	struct ifnet *ifp;
    801 	struct in6_aliasreq *ifra;
    802 	struct in6_ifaddr *ia;
    803 {
    804 	int error = 0, hostIsNew = 0, plen = -1;
    805 	struct in6_ifaddr *oia;
    806 	struct sockaddr_in6 dst6;
    807 	struct in6_addrlifetime *lt;
    808 	struct in6_multi_mship *imm;
    809 	struct rtentry *rt;
    810 
    811 	/* Validate parameters */
    812 	if (ifp == NULL || ifra == NULL) /* this maybe redundant */
    813 		return (EINVAL);
    814 
    815 	/*
    816 	 * The destination address for a p2p link must have a family
    817 	 * of AF_UNSPEC or AF_INET6.
    818 	 */
    819 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
    820 	    ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
    821 	    ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
    822 		return (EAFNOSUPPORT);
    823 	/*
    824 	 * validate ifra_prefixmask.  don't check sin6_family, netmask
    825 	 * does not carry fields other than sin6_len.
    826 	 */
    827 	if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
    828 		return (EINVAL);
    829 	/*
    830 	 * Because the IPv6 address architecture is classless, we require
    831 	 * users to specify a (non 0) prefix length (mask) for a new address.
    832 	 * We also require the prefix (when specified) mask is valid, and thus
    833 	 * reject a non-consecutive mask.
    834 	 */
    835 	if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
    836 		return (EINVAL);
    837 	if (ifra->ifra_prefixmask.sin6_len != 0) {
    838 		plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
    839 		    (u_char *)&ifra->ifra_prefixmask +
    840 		    ifra->ifra_prefixmask.sin6_len);
    841 		if (plen <= 0)
    842 			return (EINVAL);
    843 	} else {
    844 		/*
    845 		 * In this case, ia must not be NULL.  We just use its prefix
    846 		 * length.
    847 		 */
    848 		plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
    849 	}
    850 	/*
    851 	 * If the destination address on a p2p interface is specified,
    852 	 * and the address is a scoped one, validate/set the scope
    853 	 * zone identifier.
    854 	 */
    855 	dst6 = ifra->ifra_dstaddr;
    856 	if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 &&
    857 	    (dst6.sin6_family == AF_INET6)) {
    858 		/* link-local index check: should be a separate function? */
    859 		if (IN6_IS_ADDR_LINKLOCAL(&dst6.sin6_addr)) {
    860 			if (dst6.sin6_addr.s6_addr16[1] == 0) {
    861 				/*
    862 				 * interface ID is not embedded by
    863 				 * the user
    864 				 */
    865 				dst6.sin6_addr.s6_addr16[1] =
    866 				    htons(ifp->if_index);
    867 			} else if (dst6.sin6_addr.s6_addr16[1] !=
    868 			    htons(ifp->if_index)) {
    869 				return (EINVAL);	/* ifid contradicts */
    870 			}
    871 		}
    872 	}
    873 	/*
    874 	 * The destination address can be specified only for a p2p or a
    875 	 * loopback interface.  If specified, the corresponding prefix length
    876 	 * must be 128.
    877 	 */
    878 	if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
    879 #ifdef FORCE_P2PPLEN
    880 		int i;
    881 #endif
    882 
    883 		if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
    884 			/* XXX: noisy message */
    885 			nd6log((LOG_INFO, "in6_update_ifa: a destination can "
    886 			    "be specified for a p2p or a loopback IF only\n"));
    887 			return (EINVAL);
    888 		}
    889 		if (plen != 128) {
    890 			nd6log((LOG_INFO, "in6_update_ifa: prefixlen should "
    891 			    "be 128 when dstaddr is specified\n"));
    892 #ifdef FORCE_P2PPLEN
    893 			/*
    894 			 * To be compatible with old configurations,
    895 			 * such as ifconfig gif0 inet6 2001::1 2001::2
    896 			 * prefixlen 126, we override the specified
    897 			 * prefixmask as if the prefix length was 128.
    898 			 */
    899 			ifra->ifra_prefixmask.sin6_len =
    900 			    sizeof(struct sockaddr_in6);
    901 			for (i = 0; i < 4; i++)
    902 				ifra->ifra_prefixmask.sin6_addr.s6_addr32[i] =
    903 				    0xffffffff;
    904 			plen = 128;
    905 #else
    906 			return (EINVAL);
    907 #endif
    908 		}
    909 	}
    910 	/* lifetime consistency check */
    911 	lt = &ifra->ifra_lifetime;
    912 	if (lt->ia6t_pltime > lt->ia6t_vltime)
    913 		return (EINVAL);
    914 	if (lt->ia6t_vltime == 0) {
    915 		/*
    916 		 * the following log might be noisy, but this is a typical
    917 		 * configuration mistake or a tool's bug.
    918 		 */
    919 		nd6log((LOG_INFO,
    920 		    "in6_update_ifa: valid lifetime is 0 for %s\n",
    921 		    ip6_sprintf(&ifra->ifra_addr.sin6_addr)));
    922 
    923 		if (ia == NULL)
    924 			return (0); /* there's nothing to do */
    925 	}
    926 
    927 	/*
    928 	 * If this is a new address, allocate a new ifaddr and link it
    929 	 * into chains.
    930 	 */
    931 	if (ia == NULL) {
    932 		hostIsNew = 1;
    933 		/*
    934 		 * When in6_update_ifa() is called in a process of a received
    935 		 * RA, it is called under an interrupt context.  So, we should
    936 		 * call malloc with M_NOWAIT.
    937 		 */
    938 		ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR,
    939 		    M_NOWAIT);
    940 		if (ia == NULL)
    941 			return (ENOBUFS);
    942 		bzero((caddr_t)ia, sizeof(*ia));
    943 		LIST_INIT(&ia->ia6_memberships);
    944 		/* Initialize the address and masks, and put time stamp */
    945 		ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
    946 		ia->ia_addr.sin6_family = AF_INET6;
    947 		ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
    948 		ia->ia6_createtime = ia->ia6_updatetime = time.tv_sec;
    949 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
    950 			/*
    951 			 * XXX: some functions expect that ifa_dstaddr is not
    952 			 * NULL for p2p interfaces.
    953 			 */
    954 			ia->ia_ifa.ifa_dstaddr =
    955 			    (struct sockaddr *)&ia->ia_dstaddr;
    956 		} else {
    957 			ia->ia_ifa.ifa_dstaddr = NULL;
    958 		}
    959 		ia->ia_ifa.ifa_netmask =
    960 		    (struct sockaddr *)&ia->ia_prefixmask;
    961 
    962 		ia->ia_ifp = ifp;
    963 		if ((oia = in6_ifaddr) != NULL) {
    964 			for ( ; oia->ia_next; oia = oia->ia_next)
    965 				continue;
    966 			oia->ia_next = ia;
    967 		} else
    968 			in6_ifaddr = ia;
    969 		/* gain a refcnt for the link from in6_ifaddr */
    970 		IFAREF(&ia->ia_ifa);
    971 
    972 		TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa,
    973 				  ifa_list);
    974 		/* gain another refcnt for the link from if_addrlist */
    975 		IFAREF(&ia->ia_ifa);
    976 	}
    977 
    978 	/* set prefix mask */
    979 	if (ifra->ifra_prefixmask.sin6_len) {
    980 		/*
    981 		 * We prohibit changing the prefix length of an existing
    982 		 * address, because
    983 		 * + such an operation should be rare in IPv6, and
    984 		 * + the operation would confuse prefix management.
    985 		 */
    986 		if (ia->ia_prefixmask.sin6_len &&
    987 		    in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
    988 			nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an"
    989 			    " existing (%s) address should not be changed\n",
    990 			    ip6_sprintf(&ia->ia_addr.sin6_addr)));
    991 			error = EINVAL;
    992 			goto unlink;
    993 		}
    994 		ia->ia_prefixmask = ifra->ifra_prefixmask;
    995 	}
    996 
    997 	/*
    998 	 * If a new destination address is specified, scrub the old one and
    999 	 * install the new destination.  Note that the interface must be
   1000 	 * p2p or loopback (see the check above.)
   1001 	 */
   1002 	if (dst6.sin6_family == AF_INET6 &&
   1003 	    !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) {
   1004 		if ((ia->ia_flags & IFA_ROUTE) != 0 &&
   1005 		    rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST) != 0) {
   1006 			nd6log((LOG_ERR, "in6_update_ifa: failed to remove "
   1007 			    "a route to the old destination: %s\n",
   1008 			    ip6_sprintf(&ia->ia_addr.sin6_addr)));
   1009 			/* proceed anyway... */
   1010 		} else
   1011 			ia->ia_flags &= ~IFA_ROUTE;
   1012 		ia->ia_dstaddr = dst6;
   1013 	}
   1014 
   1015 	/*
   1016 	 * Set lifetimes.  We do not refer to ia6t_expire and ia6t_preferred
   1017 	 * to see if the address is deprecated or invalidated, but initialize
   1018 	 * these members for applications.
   1019 	 */
   1020 	ia->ia6_lifetime = ifra->ifra_lifetime;
   1021 	if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
   1022 		ia->ia6_lifetime.ia6t_expire =
   1023 		    time.tv_sec + ia->ia6_lifetime.ia6t_vltime;
   1024 	} else
   1025 		ia->ia6_lifetime.ia6t_expire = 0;
   1026 	if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
   1027 		ia->ia6_lifetime.ia6t_preferred =
   1028 		    time.tv_sec + ia->ia6_lifetime.ia6t_pltime;
   1029 	} else
   1030 		ia->ia6_lifetime.ia6t_preferred = 0;
   1031 
   1032 	/* reset the interface and routing table appropriately. */
   1033 	if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
   1034 		goto unlink;
   1035 
   1036 	/*
   1037 	 * configure address flags.
   1038 	 */
   1039 	ia->ia6_flags = ifra->ifra_flags;
   1040 	/*
   1041 	 * backward compatibility - if IN6_IFF_DEPRECATED is set from the
   1042 	 * userland, make it deprecated.
   1043 	 */
   1044 	if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) {
   1045 		ia->ia6_lifetime.ia6t_pltime = 0;
   1046 		ia->ia6_lifetime.ia6t_preferred = time.tv_sec;
   1047 	}
   1048 	/*
   1049 	 * Make the address tentative before joining multicast addresses,
   1050 	 * so that corresponding MLD responses would not have a tentative
   1051 	 * source address.
   1052 	 */
   1053 	ia->ia6_flags &= ~IN6_IFF_DUPLICATED;	/* safety */
   1054 	if (hostIsNew && in6if_do_dad(ifp))
   1055 		ia->ia6_flags |= IN6_IFF_TENTATIVE;
   1056 
   1057 	/*
   1058 	 * Beyond this point, we should call in6_purgeaddr upon an error,
   1059 	 * not just go to unlink.
   1060 	 */
   1061 
   1062 	if ((ifp->if_flags & IFF_MULTICAST) != 0) {
   1063 		struct sockaddr_in6 mltaddr, mltmask;
   1064 #ifndef SCOPEDROUTING
   1065 		u_int32_t zoneid = 0;
   1066 #endif
   1067 
   1068 		if (hostIsNew) {
   1069 			/* join solicited multicast addr for new host id */
   1070 			struct sockaddr_in6 llsol;
   1071 
   1072 			bzero(&llsol, sizeof(llsol));
   1073 			llsol.sin6_family = AF_INET6;
   1074 			llsol.sin6_len = sizeof(llsol);
   1075 			llsol.sin6_addr.s6_addr16[0] = htons(0xff02);
   1076 			llsol.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
   1077 			llsol.sin6_addr.s6_addr32[1] = 0;
   1078 			llsol.sin6_addr.s6_addr32[2] = htonl(1);
   1079 			llsol.sin6_addr.s6_addr32[3] =
   1080 			    ifra->ifra_addr.sin6_addr.s6_addr32[3];
   1081 			llsol.sin6_addr.s6_addr8[12] = 0xff;
   1082 			imm = in6_joingroup(ifp, &llsol.sin6_addr, &error);
   1083 			if (imm) {
   1084 				LIST_INSERT_HEAD(&ia->ia6_memberships, imm,
   1085 				    i6mm_chain);
   1086 			} else {
   1087 				nd6log((LOG_ERR, "in6_update_ifa: addmulti "
   1088 				    "failed for %s on %s (errno=%d)\n",
   1089 				    ip6_sprintf(&llsol.sin6_addr),
   1090 				    if_name(ifp), error));
   1091 				goto cleanup;
   1092 			}
   1093 		}
   1094 
   1095 		bzero(&mltmask, sizeof(mltmask));
   1096 		mltmask.sin6_len = sizeof(struct sockaddr_in6);
   1097 		mltmask.sin6_family = AF_INET6;
   1098 		mltmask.sin6_addr = in6mask32;
   1099 
   1100 		/*
   1101 		 * join link-local all-nodes address
   1102 		 */
   1103 		bzero(&mltaddr, sizeof(mltaddr));
   1104 		mltaddr.sin6_len = sizeof(struct sockaddr_in6);
   1105 		mltaddr.sin6_family = AF_INET6;
   1106 		mltaddr.sin6_addr = in6addr_linklocal_allnodes;
   1107 		mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
   1108 
   1109 		/*
   1110 		 * XXX: do we really need this automatic routes?
   1111 		 * We should probably reconsider this stuff.  Most applications
   1112 		 * actually do not need the routes, since they usually specify
   1113 		 * the outgoing interface.
   1114 		 */
   1115 		rt = rtalloc1((struct sockaddr *)&mltaddr, 0);
   1116 		if (rt) {
   1117 			/*
   1118 			 * 32bit came from "mltmask"
   1119 			 * XXX: only works in !SCOPEDROUTING case.
   1120 			 */
   1121 			if (memcmp(&mltaddr.sin6_addr,
   1122 			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
   1123 			    32 / 8)) {
   1124 				RTFREE(rt);
   1125 				rt = NULL;
   1126 			}
   1127 		}
   1128 		if (!rt) {
   1129 			struct rt_addrinfo info;
   1130 
   1131 			bzero(&info, sizeof(info));
   1132 			info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr;
   1133 			info.rti_info[RTAX_GATEWAY] =
   1134 			    (struct sockaddr *)&ia->ia_addr;
   1135 			info.rti_info[RTAX_NETMASK] =
   1136 			    (struct sockaddr *)&mltmask;
   1137 			info.rti_info[RTAX_IFA] =
   1138 			    (struct sockaddr *)&ia->ia_addr;
   1139 			/* XXX: we need RTF_CLONING to fake nd6_rtrequest */
   1140 			info.rti_flags = RTF_UP | RTF_CLONING;
   1141 			error = rtrequest1(RTM_ADD, &info, NULL);
   1142 			if (error)
   1143 				goto cleanup;
   1144 		} else {
   1145 			RTFREE(rt);
   1146 		}
   1147 #ifndef SCOPEDROUTING
   1148 		mltaddr.sin6_scope_id = zoneid;	/* XXX */
   1149 #endif
   1150 		imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error);
   1151 		if (imm) {
   1152 			LIST_INSERT_HEAD(&ia->ia6_memberships, imm,
   1153 			    i6mm_chain);
   1154 		} else {
   1155 			nd6log((LOG_WARNING,
   1156 			    "in6_update_ifa: addmulti failed for "
   1157 			    "%s on %s (errno=%d)\n",
   1158 			    ip6_sprintf(&mltaddr.sin6_addr),
   1159 			    if_name(ifp), error));
   1160 			goto cleanup;
   1161 		}
   1162 
   1163 		/*
   1164 		 * join node information group address
   1165 		 */
   1166 		if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr) == 0) {
   1167 			imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error);
   1168 			if (imm) {
   1169 				LIST_INSERT_HEAD(&ia->ia6_memberships, imm,
   1170 				    i6mm_chain);
   1171 			} else {
   1172 				nd6log((LOG_WARNING, "in6_update_ifa: "
   1173 				    "addmulti failed for %s on %s (errno=%d)\n",
   1174 				    ip6_sprintf(&mltaddr.sin6_addr),
   1175 				    if_name(ifp), error));
   1176 				/* XXX not very fatal, go on... */
   1177 			}
   1178 		}
   1179 
   1180 		if (ifp->if_flags & IFF_LOOPBACK) {
   1181 			/*
   1182 			 * join node-local all-nodes address, on loopback.
   1183 			 * (ff01::1%ifN, and ff01::%ifN/32)
   1184 			 */
   1185 			mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
   1186 
   1187 			/* XXX: again, do we really need the route? */
   1188 			rt = rtalloc1((struct sockaddr *)&mltaddr, 0);
   1189 			if (rt) {
   1190 				/* 32bit came from "mltmask" */
   1191 				if (memcmp(&mltaddr.sin6_addr,
   1192 				    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
   1193 				    32 / 8)) {
   1194 					RTFREE(rt);
   1195 					rt = NULL;
   1196 				}
   1197 			}
   1198 			if (!rt) {
   1199 				struct rt_addrinfo info;
   1200 
   1201 				bzero(&info, sizeof(info));
   1202 				info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr;
   1203 				info.rti_info[RTAX_GATEWAY] =
   1204 				    (struct sockaddr *)&ia->ia_addr;
   1205 				info.rti_info[RTAX_NETMASK] =
   1206 				    (struct sockaddr *)&mltmask;
   1207 				info.rti_info[RTAX_IFA] =
   1208 				    (struct sockaddr *)&ia->ia_addr;
   1209 				info.rti_flags = RTF_UP | RTF_CLONING;
   1210 				error = rtrequest1(RTM_ADD, &info, NULL);
   1211 				if (error)
   1212 					goto cleanup;
   1213 			} else {
   1214 				RTFREE(rt);
   1215 			}
   1216 			imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error);
   1217 			if (imm) {
   1218 				LIST_INSERT_HEAD(&ia->ia6_memberships, imm,
   1219 				    i6mm_chain);
   1220 			} else {
   1221 				nd6log((LOG_WARNING, "in6_update_ifa: "
   1222 				    "addmulti failed for %s on %s "
   1223 				    "(errno=%d)\n",
   1224 				    ip6_sprintf(&mltaddr.sin6_addr),
   1225 				    if_name(ifp), error));
   1226 				goto cleanup;
   1227 			}
   1228 		}
   1229 	}
   1230 
   1231 	/*
   1232 	 * Perform DAD, if needed.
   1233 	 * XXX It may be of use, if we can administratively
   1234 	 * disable DAD.
   1235 	 */
   1236 	if (hostIsNew && in6if_do_dad(ifp) &&
   1237 	    (ifra->ifra_flags & IN6_IFF_NODAD) == 0)
   1238 	{
   1239 		nd6_dad_start((struct ifaddr *)ia, NULL);
   1240 	}
   1241 
   1242 	return (error);
   1243 
   1244   unlink:
   1245 	/*
   1246 	 * XXX: if a change of an existing address failed, keep the entry
   1247 	 * anyway.
   1248 	 */
   1249 	if (hostIsNew)
   1250 		in6_unlink_ifa(ia, ifp);
   1251 	return (error);
   1252 
   1253   cleanup:
   1254 	in6_purgeaddr(&ia->ia_ifa);
   1255 	return error;
   1256 }
   1257 
   1258 void
   1259 in6_purgeaddr(ifa)
   1260 	struct ifaddr *ifa;
   1261 {
   1262 	struct ifnet *ifp = ifa->ifa_ifp;
   1263 	struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
   1264 	struct in6_multi_mship *imm;
   1265 
   1266 	/* stop DAD processing */
   1267 	nd6_dad_stop(ifa);
   1268 
   1269 	/*
   1270 	 * delete route to the destination of the address being purged.
   1271 	 * The interface must be p2p or loopback in this case.
   1272 	 */
   1273 	if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
   1274 		int e;
   1275 
   1276 		if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
   1277 		    != 0) {
   1278 			log(LOG_ERR, "in6_purgeaddr: failed to remove "
   1279 			    "a route to the p2p destination: %s on %s, "
   1280 			    "errno=%d\n",
   1281 			    ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
   1282 			    e);
   1283 			/* proceed anyway... */
   1284 		} else
   1285 			ia->ia_flags &= ~IFA_ROUTE;
   1286 	}
   1287 
   1288 	/* Remove ownaddr's loopback rtentry, if it exists. */
   1289 	in6_ifremloop(&(ia->ia_ifa));
   1290 
   1291 	/*
   1292 	 * leave from multicast groups we have joined for the interface
   1293 	 */
   1294 	while ((imm = ia->ia6_memberships.lh_first) != NULL) {
   1295 		LIST_REMOVE(imm, i6mm_chain);
   1296 		in6_leavegroup(imm);
   1297 	}
   1298 
   1299 	in6_unlink_ifa(ia, ifp);
   1300 }
   1301 
   1302 static void
   1303 in6_unlink_ifa(ia, ifp)
   1304 	struct in6_ifaddr *ia;
   1305 	struct ifnet *ifp;
   1306 {
   1307 	struct in6_ifaddr *oia;
   1308 	int	s = splnet();
   1309 
   1310 	TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
   1311 	/* release a refcnt for the link from if_addrlist */
   1312 	IFAFREE(&ia->ia_ifa);
   1313 
   1314 	oia = ia;
   1315 	if (oia == (ia = in6_ifaddr))
   1316 		in6_ifaddr = ia->ia_next;
   1317 	else {
   1318 		while (ia->ia_next && (ia->ia_next != oia))
   1319 			ia = ia->ia_next;
   1320 		if (ia->ia_next)
   1321 			ia->ia_next = oia->ia_next;
   1322 		else {
   1323 			/* search failed */
   1324 			printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
   1325 		}
   1326 	}
   1327 
   1328 	if (oia->ia6_multiaddrs.lh_first != NULL) {
   1329 		/*
   1330 		 * XXX thorpej (at) NetBSD.org -- if the interface is going
   1331 		 * XXX away, don't save the multicast entries, delete them!
   1332 		 */
   1333 		if (oia->ia_ifa.ifa_ifp->if_output == if_nulloutput) {
   1334 			struct in6_multi *in6m;
   1335 
   1336 			while ((in6m =
   1337 			    LIST_FIRST(&oia->ia6_multiaddrs)) != NULL)
   1338 				in6_delmulti(in6m);
   1339 		} else
   1340 			in6_savemkludge(oia);
   1341 	}
   1342 
   1343 	/*
   1344 	 * When an autoconfigured address is being removed, release the
   1345 	 * reference to the base prefix.  Also, since the release might
   1346 	 * affect the status of other (detached) addresses, call
   1347 	 * pfxlist_onlink_check().
   1348 	 */
   1349 	if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) {
   1350 		if (oia->ia6_ndpr == NULL) {
   1351 			log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address "
   1352 			    "%p has no prefix\n", oia);
   1353 		} else {
   1354 			oia->ia6_ndpr->ndpr_refcnt--;
   1355 			oia->ia6_flags &= ~IN6_IFF_AUTOCONF;
   1356 			oia->ia6_ndpr = NULL;
   1357 		}
   1358 
   1359 		pfxlist_onlink_check();
   1360 	}
   1361 
   1362 	/*
   1363 	 * release another refcnt for the link from in6_ifaddr.
   1364 	 * Note that we should decrement the refcnt at least once for all *BSD.
   1365 	 */
   1366 	IFAFREE(&oia->ia_ifa);
   1367 
   1368 	splx(s);
   1369 }
   1370 
   1371 void
   1372 in6_purgeif(ifp)
   1373 	struct ifnet *ifp;
   1374 {
   1375 	struct ifaddr *ifa, *nifa;
   1376 
   1377 	for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa)
   1378 	{
   1379 		nifa = TAILQ_NEXT(ifa, ifa_list);
   1380 		if (ifa->ifa_addr->sa_family != AF_INET6)
   1381 			continue;
   1382 		in6_purgeaddr(ifa);
   1383 	}
   1384 
   1385 	in6_ifdetach(ifp);
   1386 }
   1387 
   1388 /*
   1389  * SIOC[GAD]LIFADDR.
   1390  *	SIOCGLIFADDR: get first address. (?)
   1391  *	SIOCGLIFADDR with IFLR_PREFIX:
   1392  *		get first address that matches the specified prefix.
   1393  *	SIOCALIFADDR: add the specified address.
   1394  *	SIOCALIFADDR with IFLR_PREFIX:
   1395  *		add the specified prefix, filling hostid part from
   1396  *		the first link-local address.  prefixlen must be <= 64.
   1397  *	SIOCDLIFADDR: delete the specified address.
   1398  *	SIOCDLIFADDR with IFLR_PREFIX:
   1399  *		delete the first address that matches the specified prefix.
   1400  * return values:
   1401  *	EINVAL on invalid parameters
   1402  *	EADDRNOTAVAIL on prefix match failed/specified address not found
   1403  *	other values may be returned from in6_ioctl()
   1404  *
   1405  * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
   1406  * this is to accomodate address naming scheme other than RFC2374,
   1407  * in the future.
   1408  * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
   1409  * address encoding scheme. (see figure on page 8)
   1410  */
   1411 static int
   1412 in6_lifaddr_ioctl(so, cmd, data, ifp, p)
   1413 	struct socket *so;
   1414 	u_long cmd;
   1415 	caddr_t	data;
   1416 	struct ifnet *ifp;
   1417 	struct proc *p;
   1418 {
   1419 	struct if_laddrreq *iflr = (struct if_laddrreq *)data;
   1420 	struct ifaddr *ifa;
   1421 	struct sockaddr *sa;
   1422 
   1423 	/* sanity checks */
   1424 	if (!data || !ifp) {
   1425 		panic("invalid argument to in6_lifaddr_ioctl");
   1426 		/* NOTREACHED */
   1427 	}
   1428 
   1429 	switch (cmd) {
   1430 	case SIOCGLIFADDR:
   1431 		/* address must be specified on GET with IFLR_PREFIX */
   1432 		if ((iflr->flags & IFLR_PREFIX) == 0)
   1433 			break;
   1434 		/* FALLTHROUGH */
   1435 	case SIOCALIFADDR:
   1436 	case SIOCDLIFADDR:
   1437 		/* address must be specified on ADD and DELETE */
   1438 		sa = (struct sockaddr *)&iflr->addr;
   1439 		if (sa->sa_family != AF_INET6)
   1440 			return EINVAL;
   1441 		if (sa->sa_len != sizeof(struct sockaddr_in6))
   1442 			return EINVAL;
   1443 		/* XXX need improvement */
   1444 		sa = (struct sockaddr *)&iflr->dstaddr;
   1445 		if (sa->sa_family && sa->sa_family != AF_INET6)
   1446 			return EINVAL;
   1447 		if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
   1448 			return EINVAL;
   1449 		break;
   1450 	default: /* shouldn't happen */
   1451 #if 0
   1452 		panic("invalid cmd to in6_lifaddr_ioctl");
   1453 		/* NOTREACHED */
   1454 #else
   1455 		return EOPNOTSUPP;
   1456 #endif
   1457 	}
   1458 	if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
   1459 		return EINVAL;
   1460 
   1461 	switch (cmd) {
   1462 	case SIOCALIFADDR:
   1463 	    {
   1464 		struct in6_aliasreq ifra;
   1465 		struct in6_addr *hostid = NULL;
   1466 		int prefixlen;
   1467 
   1468 		if ((iflr->flags & IFLR_PREFIX) != 0) {
   1469 			struct sockaddr_in6 *sin6;
   1470 
   1471 			/*
   1472 			 * hostid is to fill in the hostid part of the
   1473 			 * address.  hostid points to the first link-local
   1474 			 * address attached to the interface.
   1475 			 */
   1476 			ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
   1477 			if (!ifa)
   1478 				return EADDRNOTAVAIL;
   1479 			hostid = IFA_IN6(ifa);
   1480 
   1481 		 	/* prefixlen must be <= 64. */
   1482 			if (64 < iflr->prefixlen)
   1483 				return EINVAL;
   1484 			prefixlen = iflr->prefixlen;
   1485 
   1486 			/* hostid part must be zero. */
   1487 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
   1488 			if (sin6->sin6_addr.s6_addr32[2] != 0
   1489 			 || sin6->sin6_addr.s6_addr32[3] != 0) {
   1490 				return EINVAL;
   1491 			}
   1492 		} else
   1493 			prefixlen = iflr->prefixlen;
   1494 
   1495 		/* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
   1496 		bzero(&ifra, sizeof(ifra));
   1497 		bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name));
   1498 
   1499 		bcopy(&iflr->addr, &ifra.ifra_addr,
   1500 		    ((struct sockaddr *)&iflr->addr)->sa_len);
   1501 		if (hostid) {
   1502 			/* fill in hostid part */
   1503 			ifra.ifra_addr.sin6_addr.s6_addr32[2] =
   1504 			    hostid->s6_addr32[2];
   1505 			ifra.ifra_addr.sin6_addr.s6_addr32[3] =
   1506 			    hostid->s6_addr32[3];
   1507 		}
   1508 
   1509 		if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */
   1510 			bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
   1511 			    ((struct sockaddr *)&iflr->dstaddr)->sa_len);
   1512 			if (hostid) {
   1513 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
   1514 				    hostid->s6_addr32[2];
   1515 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
   1516 				    hostid->s6_addr32[3];
   1517 			}
   1518 		}
   1519 
   1520 		ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
   1521 		in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
   1522 
   1523 		ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
   1524 		return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, p);
   1525 	    }
   1526 	case SIOCGLIFADDR:
   1527 	case SIOCDLIFADDR:
   1528 	    {
   1529 		struct in6_ifaddr *ia;
   1530 		struct in6_addr mask, candidate, match;
   1531 		struct sockaddr_in6 *sin6;
   1532 		int cmp;
   1533 
   1534 		bzero(&mask, sizeof(mask));
   1535 		if (iflr->flags & IFLR_PREFIX) {
   1536 			/* lookup a prefix rather than address. */
   1537 			in6_prefixlen2mask(&mask, iflr->prefixlen);
   1538 
   1539 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
   1540 			bcopy(&sin6->sin6_addr, &match, sizeof(match));
   1541 			match.s6_addr32[0] &= mask.s6_addr32[0];
   1542 			match.s6_addr32[1] &= mask.s6_addr32[1];
   1543 			match.s6_addr32[2] &= mask.s6_addr32[2];
   1544 			match.s6_addr32[3] &= mask.s6_addr32[3];
   1545 
   1546 			/* if you set extra bits, that's wrong */
   1547 			if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
   1548 				return EINVAL;
   1549 
   1550 			cmp = 1;
   1551 		} else {
   1552 			if (cmd == SIOCGLIFADDR) {
   1553 				/* on getting an address, take the 1st match */
   1554 				cmp = 0;	/* XXX */
   1555 			} else {
   1556 				/* on deleting an address, do exact match */
   1557 				in6_prefixlen2mask(&mask, 128);
   1558 				sin6 = (struct sockaddr_in6 *)&iflr->addr;
   1559 				bcopy(&sin6->sin6_addr, &match, sizeof(match));
   1560 
   1561 				cmp = 1;
   1562 			}
   1563 		}
   1564 
   1565 		for (ifa = ifp->if_addrlist.tqh_first;
   1566 		     ifa;
   1567 		     ifa = ifa->ifa_list.tqe_next)
   1568 		{
   1569 			if (ifa->ifa_addr->sa_family != AF_INET6)
   1570 				continue;
   1571 			if (!cmp)
   1572 				break;
   1573 
   1574 			bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
   1575 			candidate.s6_addr32[0] &= mask.s6_addr32[0];
   1576 			candidate.s6_addr32[1] &= mask.s6_addr32[1];
   1577 			candidate.s6_addr32[2] &= mask.s6_addr32[2];
   1578 			candidate.s6_addr32[3] &= mask.s6_addr32[3];
   1579 			if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
   1580 				break;
   1581 		}
   1582 		if (!ifa)
   1583 			return EADDRNOTAVAIL;
   1584 		ia = ifa2ia6(ifa);
   1585 
   1586 		if (cmd == SIOCGLIFADDR) {
   1587 			/* fill in the if_laddrreq structure */
   1588 			bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
   1589 			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
   1590 				bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
   1591 				    ia->ia_dstaddr.sin6_len);
   1592 			} else
   1593 				bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
   1594 
   1595 			iflr->prefixlen =
   1596 			    in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
   1597 
   1598 			iflr->flags = ia->ia6_flags;	/* XXX */
   1599 
   1600 			return 0;
   1601 		} else {
   1602 			struct in6_aliasreq ifra;
   1603 
   1604 			/* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
   1605 			bzero(&ifra, sizeof(ifra));
   1606 			bcopy(iflr->iflr_name, ifra.ifra_name,
   1607 			    sizeof(ifra.ifra_name));
   1608 
   1609 			bcopy(&ia->ia_addr, &ifra.ifra_addr,
   1610 			    ia->ia_addr.sin6_len);
   1611 			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
   1612 				bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
   1613 				    ia->ia_dstaddr.sin6_len);
   1614 			} else {
   1615 				bzero(&ifra.ifra_dstaddr,
   1616 				    sizeof(ifra.ifra_dstaddr));
   1617 			}
   1618 			bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
   1619 			    ia->ia_prefixmask.sin6_len);
   1620 
   1621 			ifra.ifra_flags = ia->ia6_flags;
   1622 			return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
   1623 			    ifp, p);
   1624 		}
   1625 	    }
   1626 	}
   1627 
   1628 	return EOPNOTSUPP;	/* just for safety */
   1629 }
   1630 
   1631 /*
   1632  * Initialize an interface's intetnet6 address
   1633  * and routing table entry.
   1634  */
   1635 static int
   1636 in6_ifinit(ifp, ia, sin6, newhost)
   1637 	struct ifnet *ifp;
   1638 	struct in6_ifaddr *ia;
   1639 	struct sockaddr_in6 *sin6;
   1640 	int newhost;
   1641 {
   1642 	int	error = 0, plen, ifacount = 0;
   1643 	int	s = splnet();
   1644 	struct ifaddr *ifa;
   1645 
   1646 	/*
   1647 	 * Give the interface a chance to initialize
   1648 	 * if this is its first address,
   1649 	 * and to validate the address if necessary.
   1650 	 */
   1651 	for (ifa = ifp->if_addrlist.tqh_first; ifa;
   1652 	     ifa = ifa->ifa_list.tqe_next)
   1653 	{
   1654 		if (ifa->ifa_addr == NULL)
   1655 			continue;	/* just for safety */
   1656 		if (ifa->ifa_addr->sa_family != AF_INET6)
   1657 			continue;
   1658 		ifacount++;
   1659 	}
   1660 
   1661 	ia->ia_addr = *sin6;
   1662 
   1663 	if (ifacount <= 1 && ifp->if_ioctl &&
   1664 	    (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) {
   1665 		splx(s);
   1666 		return (error);
   1667 	}
   1668 	splx(s);
   1669 
   1670 	ia->ia_ifa.ifa_metric = ifp->if_metric;
   1671 
   1672 	/* we could do in(6)_socktrim here, but just omit it at this moment. */
   1673 
   1674 	/*
   1675 	 * Special case:
   1676 	 * If the destination address is specified for a point-to-point
   1677 	 * interface, install a route to the destination as an interface
   1678 	 * direct route.
   1679 	 */
   1680 	plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
   1681 	if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) {
   1682 		if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD,
   1683 				    RTF_UP | RTF_HOST)) != 0)
   1684 			return (error);
   1685 		ia->ia_flags |= IFA_ROUTE;
   1686 	}
   1687 
   1688 	/* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
   1689 	if (newhost) {
   1690 		/* set the rtrequest function to create llinfo */
   1691 		ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
   1692 		in6_ifaddloop(&(ia->ia_ifa));
   1693 	}
   1694 
   1695 	if (ifp->if_flags & IFF_MULTICAST)
   1696 		in6_restoremkludge(ia, ifp);
   1697 
   1698 	return (error);
   1699 }
   1700 
   1701 /*
   1702  * Multicast address kludge:
   1703  * If there were any multicast addresses attached to this interface address,
   1704  * either move them to another address on this interface, or save them until
   1705  * such time as this interface is reconfigured for IPv6.
   1706  */
   1707 void
   1708 in6_savemkludge(oia)
   1709 	struct in6_ifaddr *oia;
   1710 {
   1711 	struct in6_ifaddr *ia;
   1712 	struct in6_multi *in6m, *next;
   1713 
   1714 	IFP_TO_IA6(oia->ia_ifp, ia);
   1715 	if (ia) {	/* there is another address */
   1716 		for (in6m = oia->ia6_multiaddrs.lh_first; in6m; in6m = next){
   1717 			next = in6m->in6m_entry.le_next;
   1718 			IFAFREE(&in6m->in6m_ia->ia_ifa);
   1719 			IFAREF(&ia->ia_ifa);
   1720 			in6m->in6m_ia = ia;
   1721 			LIST_INSERT_HEAD(&ia->ia6_multiaddrs, in6m, in6m_entry);
   1722 		}
   1723 	} else {	/* last address on this if deleted, save */
   1724 		struct multi6_kludge *mk;
   1725 
   1726 		for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
   1727 			if (mk->mk_ifp == oia->ia_ifp)
   1728 				break;
   1729 		}
   1730 		if (mk == NULL) /* this should not happen! */
   1731 			panic("in6_savemkludge: no kludge space");
   1732 
   1733 		for (in6m = oia->ia6_multiaddrs.lh_first; in6m; in6m = next){
   1734 			next = in6m->in6m_entry.le_next;
   1735 			IFAFREE(&in6m->in6m_ia->ia_ifa); /* release reference */
   1736 			in6m->in6m_ia = NULL;
   1737 			LIST_INSERT_HEAD(&mk->mk_head, in6m, in6m_entry);
   1738 		}
   1739 	}
   1740 }
   1741 
   1742 /*
   1743  * Continuation of multicast address hack:
   1744  * If there was a multicast group list previously saved for this interface,
   1745  * then we re-attach it to the first address configured on the i/f.
   1746  */
   1747 void
   1748 in6_restoremkludge(ia, ifp)
   1749 	struct in6_ifaddr *ia;
   1750 	struct ifnet *ifp;
   1751 {
   1752 	struct multi6_kludge *mk;
   1753 
   1754 	for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
   1755 		if (mk->mk_ifp == ifp) {
   1756 			struct in6_multi *in6m, *next;
   1757 
   1758 			for (in6m = mk->mk_head.lh_first; in6m; in6m = next) {
   1759 				next = in6m->in6m_entry.le_next;
   1760 				in6m->in6m_ia = ia;
   1761 				IFAREF(&ia->ia_ifa);
   1762 				LIST_INSERT_HEAD(&ia->ia6_multiaddrs,
   1763 						 in6m, in6m_entry);
   1764 			}
   1765 			LIST_INIT(&mk->mk_head);
   1766 			break;
   1767 		}
   1768 	}
   1769 }
   1770 
   1771 /*
   1772  * Allocate space for the kludge at interface initialization time.
   1773  * Formerly, we dynamically allocated the space in in6_savemkludge() with
   1774  * malloc(M_WAITOK).  However, it was wrong since the function could be called
   1775  * under an interrupt context (software timer on address lifetime expiration).
   1776  * Also, we cannot just give up allocating the strucutre, since the group
   1777  * membership structure is very complex and we need to keep it anyway.
   1778  * Of course, this function MUST NOT be called under an interrupt context.
   1779  * Specifically, it is expected to be called only from in6_ifattach(), though
   1780  * it is a global function.
   1781  */
   1782 void
   1783 in6_createmkludge(ifp)
   1784 	struct ifnet *ifp;
   1785 {
   1786 	struct multi6_kludge *mk;
   1787 
   1788 	for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
   1789 		/* If we've already had one, do not allocate. */
   1790 		if (mk->mk_ifp == ifp)
   1791 			return;
   1792 	}
   1793 
   1794 	mk = malloc(sizeof(*mk), M_IPMADDR, M_WAITOK);
   1795 
   1796 	bzero(mk, sizeof(*mk));
   1797 	LIST_INIT(&mk->mk_head);
   1798 	mk->mk_ifp = ifp;
   1799 	LIST_INSERT_HEAD(&in6_mk, mk, mk_entry);
   1800 }
   1801 
   1802 void
   1803 in6_purgemkludge(ifp)
   1804 	struct ifnet *ifp;
   1805 {
   1806 	struct multi6_kludge *mk;
   1807 	struct in6_multi *in6m;
   1808 
   1809 	for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
   1810 		if (mk->mk_ifp != ifp)
   1811 			continue;
   1812 
   1813 		/* leave from all multicast groups joined */
   1814 		while ((in6m = LIST_FIRST(&mk->mk_head)) != NULL)
   1815 			in6_delmulti(in6m);
   1816 		LIST_REMOVE(mk, mk_entry);
   1817 		free(mk, M_IPMADDR);
   1818 		break;
   1819 	}
   1820 }
   1821 
   1822 /*
   1823  * Add an address to the list of IP6 multicast addresses for a
   1824  * given interface.
   1825  */
   1826 struct	in6_multi *
   1827 in6_addmulti(maddr6, ifp, errorp)
   1828 	struct in6_addr *maddr6;
   1829 	struct ifnet *ifp;
   1830 	int *errorp;
   1831 {
   1832 	struct	in6_ifaddr *ia;
   1833 	struct	in6_ifreq ifr;
   1834 	struct	in6_multi *in6m;
   1835 	int	s = splsoftnet();
   1836 
   1837 	*errorp = 0;
   1838 	/*
   1839 	 * See if address already in list.
   1840 	 */
   1841 	IN6_LOOKUP_MULTI(*maddr6, ifp, in6m);
   1842 	if (in6m != NULL) {
   1843 		/*
   1844 		 * Found it; just increment the refrence count.
   1845 		 */
   1846 		in6m->in6m_refcount++;
   1847 	} else {
   1848 		/*
   1849 		 * New address; allocate a new multicast record
   1850 		 * and link it into the interface's multicast list.
   1851 		 */
   1852 		in6m = (struct in6_multi *)
   1853 			malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT);
   1854 		if (in6m == NULL) {
   1855 			splx(s);
   1856 			*errorp = ENOBUFS;
   1857 			return (NULL);
   1858 		}
   1859 		in6m->in6m_addr = *maddr6;
   1860 		in6m->in6m_ifp = ifp;
   1861 		in6m->in6m_refcount = 1;
   1862 		IFP_TO_IA6(ifp, ia);
   1863 		if (ia == NULL) {
   1864 			free(in6m, M_IPMADDR);
   1865 			splx(s);
   1866 			*errorp = EADDRNOTAVAIL; /* appropriate? */
   1867 			return (NULL);
   1868 		}
   1869 		in6m->in6m_ia = ia;
   1870 		IFAREF(&ia->ia_ifa); /* gain a reference */
   1871 		LIST_INSERT_HEAD(&ia->ia6_multiaddrs, in6m, in6m_entry);
   1872 
   1873 		/*
   1874 		 * Ask the network driver to update its multicast reception
   1875 		 * filter appropriately for the new address.
   1876 		 */
   1877 		bzero(&ifr.ifr_addr, sizeof(struct sockaddr_in6));
   1878 		ifr.ifr_addr.sin6_len = sizeof(struct sockaddr_in6);
   1879 		ifr.ifr_addr.sin6_family = AF_INET6;
   1880 		ifr.ifr_addr.sin6_addr = *maddr6;
   1881 		if (ifp->if_ioctl == NULL)
   1882 			*errorp = ENXIO; /* XXX: appropriate? */
   1883 		else
   1884 			*errorp = (*ifp->if_ioctl)(ifp, SIOCADDMULTI,
   1885 			    (caddr_t)&ifr);
   1886 		if (*errorp) {
   1887 			LIST_REMOVE(in6m, in6m_entry);
   1888 			free(in6m, M_IPMADDR);
   1889 			IFAFREE(&ia->ia_ifa);
   1890 			splx(s);
   1891 			return (NULL);
   1892 		}
   1893 		/*
   1894 		 * Let MLD6 know that we have joined a new IP6 multicast
   1895 		 * group.
   1896 		 */
   1897 		mld6_start_listening(in6m);
   1898 	}
   1899 	splx(s);
   1900 	return (in6m);
   1901 }
   1902 
   1903 /*
   1904  * Delete a multicast address record.
   1905  */
   1906 void
   1907 in6_delmulti(in6m)
   1908 	struct in6_multi *in6m;
   1909 {
   1910 	struct	in6_ifreq ifr;
   1911 	struct	in6_ifaddr *ia;
   1912 	int	s = splsoftnet();
   1913 
   1914 	if (--in6m->in6m_refcount == 0) {
   1915 		/*
   1916 		 * No remaining claims to this record; let MLD6 know
   1917 		 * that we are leaving the multicast group.
   1918 		 */
   1919 		mld6_stop_listening(in6m);
   1920 
   1921 		/*
   1922 		 * Unlink from list.
   1923 		 */
   1924 		LIST_REMOVE(in6m, in6m_entry);
   1925 		if (in6m->in6m_ia) {
   1926 			IFAFREE(&in6m->in6m_ia->ia_ifa); /* release reference */
   1927 		}
   1928 		/*
   1929 		 * Delete all references of this multicasting group from
   1930 		 * the membership arrays
   1931 		 */
   1932 		for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
   1933 			struct in6_multi_mship *imm;
   1934 			LIST_FOREACH(imm, &ia->ia6_memberships,
   1935 			    i6mm_chain) {
   1936 				if (imm->i6mm_maddr == in6m)
   1937 					imm->i6mm_maddr = NULL;
   1938 			}
   1939 		}
   1940 
   1941 		/*
   1942 		 * Notify the network driver to update its multicast
   1943 		 * reception filter.
   1944 		 */
   1945 		bzero(&ifr.ifr_addr, sizeof(struct sockaddr_in6));
   1946 		ifr.ifr_addr.sin6_len = sizeof(struct sockaddr_in6);
   1947 		ifr.ifr_addr.sin6_family = AF_INET6;
   1948 		ifr.ifr_addr.sin6_addr = in6m->in6m_addr;
   1949 		(*in6m->in6m_ifp->if_ioctl)(in6m->in6m_ifp,
   1950 					    SIOCDELMULTI, (caddr_t)&ifr);
   1951 		free(in6m, M_IPMADDR);
   1952 	}
   1953 	splx(s);
   1954 }
   1955 
   1956 struct in6_multi_mship *
   1957 in6_joingroup(ifp, addr, errorp)
   1958 	struct ifnet *ifp;
   1959 	struct in6_addr *addr;
   1960 	int *errorp;
   1961 {
   1962 	struct in6_multi_mship *imm;
   1963 
   1964 	imm = malloc(sizeof(*imm), M_IPMADDR, M_NOWAIT);
   1965 	if (!imm) {
   1966 		*errorp = ENOBUFS;
   1967 		return NULL;
   1968 	}
   1969 	imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp);
   1970 	if (!imm->i6mm_maddr) {
   1971 		/* *errorp is alrady set */
   1972 		free(imm, M_IPMADDR);
   1973 		return NULL;
   1974 	}
   1975 	return imm;
   1976 }
   1977 
   1978 int
   1979 in6_leavegroup(imm)
   1980 	struct in6_multi_mship *imm;
   1981 {
   1982 
   1983 	if (imm->i6mm_maddr)
   1984 		in6_delmulti(imm->i6mm_maddr);
   1985 	free(imm,  M_IPMADDR);
   1986 	return 0;
   1987 }
   1988 
   1989 /*
   1990  * Find an IPv6 interface link-local address specific to an interface.
   1991  */
   1992 struct in6_ifaddr *
   1993 in6ifa_ifpforlinklocal(ifp, ignoreflags)
   1994 	struct ifnet *ifp;
   1995 	int ignoreflags;
   1996 {
   1997 	struct ifaddr *ifa;
   1998 
   1999 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
   2000 	{
   2001 		if (ifa->ifa_addr == NULL)
   2002 			continue;	/* just for safety */
   2003 		if (ifa->ifa_addr->sa_family != AF_INET6)
   2004 			continue;
   2005 		if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
   2006 			if ((((struct in6_ifaddr *)ifa)->ia6_flags &
   2007 			     ignoreflags) != 0)
   2008 				continue;
   2009 			break;
   2010 		}
   2011 	}
   2012 
   2013 	return ((struct in6_ifaddr *)ifa);
   2014 }
   2015 
   2016 
   2017 /*
   2018  * find the internet address corresponding to a given interface and address.
   2019  */
   2020 struct in6_ifaddr *
   2021 in6ifa_ifpwithaddr(ifp, addr)
   2022 	struct ifnet *ifp;
   2023 	struct in6_addr *addr;
   2024 {
   2025 	struct ifaddr *ifa;
   2026 
   2027 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
   2028 	{
   2029 		if (ifa->ifa_addr == NULL)
   2030 			continue;	/* just for safety */
   2031 		if (ifa->ifa_addr->sa_family != AF_INET6)
   2032 			continue;
   2033 		if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
   2034 			break;
   2035 	}
   2036 
   2037 	return ((struct in6_ifaddr *)ifa);
   2038 }
   2039 
   2040 /*
   2041  * Convert IP6 address to printable (loggable) representation.
   2042  */
   2043 static char digits[] = "0123456789abcdef";
   2044 static int ip6round = 0;
   2045 char *
   2046 ip6_sprintf(addr)
   2047 	const struct in6_addr *addr;
   2048 {
   2049 	static char ip6buf[8][48];
   2050 	int i;
   2051 	char *cp;
   2052 	const u_int16_t *a = (const u_int16_t *)addr;
   2053 	const u_int8_t *d;
   2054 	int dcolon = 0;
   2055 
   2056 	ip6round = (ip6round + 1) & 7;
   2057 	cp = ip6buf[ip6round];
   2058 
   2059 	for (i = 0; i < 8; i++) {
   2060 		if (dcolon == 1) {
   2061 			if (*a == 0) {
   2062 				if (i == 7)
   2063 					*cp++ = ':';
   2064 				a++;
   2065 				continue;
   2066 			} else
   2067 				dcolon = 2;
   2068 		}
   2069 		if (*a == 0) {
   2070 			if (dcolon == 0 && *(a + 1) == 0) {
   2071 				if (i == 0)
   2072 					*cp++ = ':';
   2073 				*cp++ = ':';
   2074 				dcolon = 1;
   2075 			} else {
   2076 				*cp++ = '0';
   2077 				*cp++ = ':';
   2078 			}
   2079 			a++;
   2080 			continue;
   2081 		}
   2082 		d = (const u_char *)a;
   2083 		*cp++ = digits[*d >> 4];
   2084 		*cp++ = digits[*d++ & 0xf];
   2085 		*cp++ = digits[*d >> 4];
   2086 		*cp++ = digits[*d & 0xf];
   2087 		*cp++ = ':';
   2088 		a++;
   2089 	}
   2090 	*--cp = 0;
   2091 	return (ip6buf[ip6round]);
   2092 }
   2093 
   2094 /*
   2095  * Determine if an address is on a local network.
   2096  */
   2097 int
   2098 in6_localaddr(in6)
   2099 	struct in6_addr *in6;
   2100 {
   2101 	struct in6_ifaddr *ia;
   2102 
   2103 	if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
   2104 		return (1);
   2105 
   2106 	for (ia = in6_ifaddr; ia; ia = ia->ia_next)
   2107 		if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
   2108 					      &ia->ia_prefixmask.sin6_addr))
   2109 			return (1);
   2110 
   2111 	return (0);
   2112 }
   2113 
   2114 /*
   2115  * Get a scope of the address. Node-local, link-local, site-local or global.
   2116  */
   2117 int
   2118 in6_addrscope (addr)
   2119 struct in6_addr *addr;
   2120 {
   2121 	int scope;
   2122 
   2123 	if (addr->s6_addr8[0] == 0xfe) {
   2124 		scope = addr->s6_addr8[1] & 0xc0;
   2125 
   2126 		switch (scope) {
   2127 		case 0x80:
   2128 			return IPV6_ADDR_SCOPE_LINKLOCAL;
   2129 		case 0xc0:
   2130 			return IPV6_ADDR_SCOPE_SITELOCAL;
   2131 		default:
   2132 			return IPV6_ADDR_SCOPE_GLOBAL; /* just in case */
   2133 		}
   2134 	}
   2135 
   2136 
   2137 	if (addr->s6_addr8[0] == 0xff) {
   2138 		scope = addr->s6_addr8[1] & 0x0f;
   2139 
   2140 		/*
   2141 		 * due to other scope such as reserved,
   2142 		 * return scope doesn't work.
   2143 		 */
   2144 		switch (scope) {
   2145 		case IPV6_ADDR_SCOPE_NODELOCAL:
   2146 			return IPV6_ADDR_SCOPE_NODELOCAL;
   2147 		case IPV6_ADDR_SCOPE_LINKLOCAL:
   2148 			return IPV6_ADDR_SCOPE_LINKLOCAL;
   2149 		case IPV6_ADDR_SCOPE_SITELOCAL:
   2150 			return IPV6_ADDR_SCOPE_SITELOCAL;
   2151 		default:
   2152 			return IPV6_ADDR_SCOPE_GLOBAL;
   2153 		}
   2154 	}
   2155 
   2156 	if (bcmp(&in6addr_loopback, addr, sizeof(*addr) - 1) == 0) {
   2157 		if (addr->s6_addr8[15] == 1) /* loopback */
   2158 			return IPV6_ADDR_SCOPE_NODELOCAL;
   2159 		if (addr->s6_addr8[15] == 0) /* unspecified */
   2160 			return IPV6_ADDR_SCOPE_LINKLOCAL;
   2161 	}
   2162 
   2163 	return IPV6_ADDR_SCOPE_GLOBAL;
   2164 }
   2165 
   2166 int
   2167 in6_addr2scopeid(ifp, addr)
   2168 	struct ifnet *ifp;	/* must not be NULL */
   2169 	struct in6_addr *addr;	/* must not be NULL */
   2170 {
   2171 	int scope = in6_addrscope(addr);
   2172 
   2173 	switch (scope) {
   2174 	case IPV6_ADDR_SCOPE_NODELOCAL:
   2175 		return (-1);	/* XXX: is this an appropriate value? */
   2176 
   2177 	case IPV6_ADDR_SCOPE_LINKLOCAL:
   2178 		/* XXX: we do not distinguish between a link and an I/F. */
   2179 		return (ifp->if_index);
   2180 
   2181 	case IPV6_ADDR_SCOPE_SITELOCAL:
   2182 		return (0);	/* XXX: invalid. */
   2183 
   2184 	default:
   2185 		return (0);	/* XXX: treat as global. */
   2186 	}
   2187 }
   2188 
   2189 int
   2190 in6_is_addr_deprecated(sa6)
   2191 	struct sockaddr_in6 *sa6;
   2192 {
   2193 	struct in6_ifaddr *ia;
   2194 
   2195 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
   2196 		if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
   2197 		    &sa6->sin6_addr) &&
   2198 #ifdef SCOPEDROUTING
   2199 		    ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id &&
   2200 #endif
   2201 		    (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
   2202 			return (1); /* true */
   2203 
   2204 		/* XXX: do we still have to go thru the rest of the list? */
   2205 	}
   2206 
   2207 	return (0);		/* false */
   2208 }
   2209 
   2210 /*
   2211  * return length of part which dst and src are equal
   2212  * hard coding...
   2213  */
   2214 int
   2215 in6_matchlen(src, dst)
   2216 struct in6_addr *src, *dst;
   2217 {
   2218 	int match = 0;
   2219 	u_char *s = (u_char *)src, *d = (u_char *)dst;
   2220 	u_char *lim = s + 16, r;
   2221 
   2222 	while (s < lim)
   2223 		if ((r = (*d++ ^ *s++)) != 0) {
   2224 			while (r < 128) {
   2225 				match++;
   2226 				r <<= 1;
   2227 			}
   2228 			break;
   2229 		} else
   2230 			match += 8;
   2231 	return match;
   2232 }
   2233 
   2234 /* XXX: to be scope conscious */
   2235 int
   2236 in6_are_prefix_equal(p1, p2, len)
   2237 	struct in6_addr *p1, *p2;
   2238 	int len;
   2239 {
   2240 	int bytelen, bitlen;
   2241 
   2242 	/* sanity check */
   2243 	if (0 > len || len > 128) {
   2244 		log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
   2245 		    len);
   2246 		return (0);
   2247 	}
   2248 
   2249 	bytelen = len / 8;
   2250 	bitlen = len % 8;
   2251 
   2252 	if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
   2253 		return (0);
   2254 	if (bitlen != 0 &&
   2255 	    p1->s6_addr[bytelen] >> (8 - bitlen) !=
   2256 	    p2->s6_addr[bytelen] >> (8 - bitlen))
   2257 		return (0);
   2258 
   2259 	return (1);
   2260 }
   2261 
   2262 void
   2263 in6_prefixlen2mask(maskp, len)
   2264 	struct in6_addr *maskp;
   2265 	int len;
   2266 {
   2267 	static const u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
   2268 	int bytelen, bitlen, i;
   2269 
   2270 	/* sanity check */
   2271 	if (0 > len || len > 128) {
   2272 		log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
   2273 		    len);
   2274 		return;
   2275 	}
   2276 
   2277 	bzero(maskp, sizeof(*maskp));
   2278 	bytelen = len / 8;
   2279 	bitlen = len % 8;
   2280 	for (i = 0; i < bytelen; i++)
   2281 		maskp->s6_addr[i] = 0xff;
   2282 	if (bitlen)
   2283 		maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
   2284 }
   2285 
   2286 /*
   2287  * return the best address out of the same scope
   2288  */
   2289 struct in6_ifaddr *
   2290 in6_ifawithscope(oifp, dst)
   2291 	struct ifnet *oifp;
   2292 	struct in6_addr *dst;
   2293 {
   2294 	int dst_scope =	in6_addrscope(dst), src_scope, best_scope = 0;
   2295 	int blen = -1;
   2296 	struct ifaddr *ifa;
   2297 	struct ifnet *ifp;
   2298 	struct in6_ifaddr *ifa_best = NULL;
   2299 
   2300 	if (oifp == NULL) {
   2301 		printf("in6_ifawithscope: output interface is not specified\n");
   2302 		return (NULL);
   2303 	}
   2304 
   2305 	/*
   2306 	 * We search for all addresses on all interfaces from the beginning.
   2307 	 * Comparing an interface with the outgoing interface will be done
   2308 	 * only at the final stage of tiebreaking.
   2309 	 */
   2310 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
   2311 	{
   2312 		/*
   2313 		 * We can never take an address that breaks the scope zone
   2314 		 * of the destination.
   2315 		 */
   2316 		if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst))
   2317 			continue;
   2318 
   2319 		for (ifa = ifp->if_addrlist.tqh_first; ifa;
   2320 		     ifa = ifa->ifa_list.tqe_next)
   2321 		{
   2322 			int tlen = -1, dscopecmp, bscopecmp, matchcmp;
   2323 
   2324 			if (ifa->ifa_addr->sa_family != AF_INET6)
   2325 				continue;
   2326 
   2327 			src_scope = in6_addrscope(IFA_IN6(ifa));
   2328 
   2329 #ifdef ADDRSELECT_DEBUG		/* should be removed after stabilization */
   2330 			dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
   2331 			printf("in6_ifawithscope: dst=%s bestaddr=%s, "
   2332 			       "newaddr=%s, scope=%x, dcmp=%d, bcmp=%d, "
   2333 			       "matchlen=%d, flgs=%x\n",
   2334 			       ip6_sprintf(dst),
   2335 			       ifa_best ? ip6_sprintf(&ifa_best->ia_addr.sin6_addr) : "none",
   2336 			       ip6_sprintf(IFA_IN6(ifa)), src_scope,
   2337 			       dscopecmp,
   2338 			       ifa_best ? IN6_ARE_SCOPE_CMP(src_scope, best_scope) : -1,
   2339 			       in6_matchlen(IFA_IN6(ifa), dst),
   2340 			       ((struct in6_ifaddr *)ifa)->ia6_flags);
   2341 #endif
   2342 
   2343 			/*
   2344 			 * Don't use an address before completing DAD
   2345 			 * nor a duplicated address.
   2346 			 */
   2347 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
   2348 			    IN6_IFF_NOTREADY)
   2349 				continue;
   2350 
   2351 			/* XXX: is there any case to allow anycasts? */
   2352 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
   2353 			    IN6_IFF_ANYCAST)
   2354 				continue;
   2355 
   2356 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
   2357 			    IN6_IFF_DETACHED)
   2358 				continue;
   2359 
   2360 			/*
   2361 			 * If this is the first address we find,
   2362 			 * keep it anyway.
   2363 			 */
   2364 			if (ifa_best == NULL)
   2365 				goto replace;
   2366 
   2367 			/*
   2368 			 * ifa_best is never NULL beyond this line except
   2369 			 * within the block labeled "replace".
   2370 			 */
   2371 
   2372 			/*
   2373 			 * If ifa_best has a smaller scope than dst and
   2374 			 * the current address has a larger one than
   2375 			 * (or equal to) dst, always replace ifa_best.
   2376 			 * Also, if the current address has a smaller scope
   2377 			 * than dst, ignore it unless ifa_best also has a
   2378 			 * smaller scope.
   2379 			 */
   2380 			if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 &&
   2381 			    IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0)
   2382 				goto replace;
   2383 			if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 &&
   2384 			    IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0)
   2385 				continue;
   2386 
   2387 			/*
   2388 			 * A deprecated address SHOULD NOT be used in new
   2389 			 * communications if an alternate (non-deprecated)
   2390 			 * address is available and has sufficient scope.
   2391 			 * RFC 2462, Section 5.5.4.
   2392 			 */
   2393 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
   2394 			    IN6_IFF_DEPRECATED) {
   2395 				/*
   2396 				 * Ignore any deprecated addresses if
   2397 				 * specified by configuration.
   2398 				 */
   2399 				if (!ip6_use_deprecated)
   2400 					continue;
   2401 
   2402 				/*
   2403 				 * If we have already found a non-deprecated
   2404 				 * candidate, just ignore deprecated addresses.
   2405 				 */
   2406 				if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED)
   2407 				    == 0)
   2408 					continue;
   2409 			}
   2410 
   2411 			/*
   2412 			 * A non-deprecated address is always preferred
   2413 			 * to a deprecated one regardless of scopes and
   2414 			 * address matching.
   2415 			 */
   2416 			if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) &&
   2417 			    (((struct in6_ifaddr *)ifa)->ia6_flags &
   2418 			     IN6_IFF_DEPRECATED) == 0)
   2419 				goto replace;
   2420 
   2421 			/*
   2422 			 * At this point, we have two cases:
   2423 			 * 1. we are looking at a non-deprecated address,
   2424 			 *    and ifa_best is also non-deprecated.
   2425 			 * 2. we are looking at a deprecated address,
   2426 			 *    and ifa_best is also deprecated.
   2427 			 * Also, we do not have to consider a case where
   2428 			 * the scope of if_best is larger(smaller) than dst and
   2429 			 * the scope of the current address is smaller(larger)
   2430 			 * than dst. Such a case has already been covered.
   2431 			 * Tiebreaking is done according to the following
   2432 			 * items:
   2433 			 * - the scope comparison between the address and
   2434 			 *   dst (dscopecmp)
   2435 			 * - the scope comparison between the address and
   2436 			 *   ifa_best (bscopecmp)
   2437 			 * - if the address match dst longer than ifa_best
   2438 			 *   (matchcmp)
   2439 			 * - if the address is on the outgoing I/F (outI/F)
   2440 			 *
   2441 			 * Roughly speaking, the selection policy is
   2442 			 * - the most important item is scope. The same scope
   2443 			 *   is best. Then search for a larger scope.
   2444 			 *   Smaller scopes are the last resort.
   2445 			 * - A deprecated address is chosen only when we have
   2446 			 *   no address that has an enough scope, but is
   2447 			 *   prefered to any addresses of smaller scopes.
   2448 			 * - Longest address match against dst is considered
   2449 			 *   only for addresses that has the same scope of dst.
   2450 			 * - If there is no other reasons to choose one,
   2451 			 *   addresses on the outgoing I/F are preferred.
   2452 			 *
   2453 			 * The precise decision table is as follows:
   2454 			 * dscopecmp bscopecmp matchcmp outI/F | replace?
   2455 			 *    !equal     equal      N/A    Yes |      Yes (1)
   2456 			 *    !equal     equal      N/A     No |       No (2)
   2457 			 *    larger    larger      N/A    N/A |       No (3)
   2458 			 *    larger   smaller      N/A    N/A |      Yes (4)
   2459 			 *   smaller    larger      N/A    N/A |      Yes (5)
   2460 			 *   smaller   smaller      N/A    N/A |       No (6)
   2461 			 *     equal   smaller      N/A    N/A |      Yes (7)
   2462 			 *     equal    larger       (already done)
   2463 			 *     equal     equal   larger    N/A |      Yes (8)
   2464 			 *     equal     equal  smaller    N/A |       No (9)
   2465 			 *     equal     equal    equal    Yes |      Yes (a)
   2466 			 *     eaual     eqaul    equal     No |       No (b)
   2467 			 */
   2468 			dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
   2469 			bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope);
   2470 
   2471 			if (dscopecmp && bscopecmp == 0) {
   2472 				if (oifp == ifp) /* (1) */
   2473 					goto replace;
   2474 				continue; /* (2) */
   2475 			}
   2476 			if (dscopecmp > 0) {
   2477 				if (bscopecmp > 0) /* (3) */
   2478 					continue;
   2479 				goto replace; /* (4) */
   2480 			}
   2481 			if (dscopecmp < 0) {
   2482 				if (bscopecmp > 0) /* (5) */
   2483 					goto replace;
   2484 				continue; /* (6) */
   2485 			}
   2486 
   2487 			/* now dscopecmp must be 0 */
   2488 			if (bscopecmp < 0)
   2489 				goto replace; /* (7) */
   2490 
   2491 			/*
   2492 			 * At last both dscopecmp and bscopecmp must be 0.
   2493 			 * We need address matching against dst for
   2494 			 * tiebreaking.
   2495 			 */
   2496 			tlen = in6_matchlen(IFA_IN6(ifa), dst);
   2497 			matchcmp = tlen - blen;
   2498 			if (matchcmp > 0) /* (8) */
   2499 				goto replace;
   2500 			if (matchcmp < 0) /* (9) */
   2501 				continue;
   2502 			if (oifp == ifp) /* (a) */
   2503 				goto replace;
   2504 			continue; /* (b) */
   2505 
   2506 		  replace:
   2507 			ifa_best = (struct in6_ifaddr *)ifa;
   2508 			blen = tlen >= 0 ? tlen :
   2509 				in6_matchlen(IFA_IN6(ifa), dst);
   2510 			best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr);
   2511 		}
   2512 	}
   2513 
   2514 	/* count statistics for future improvements */
   2515 	if (ifa_best == NULL)
   2516 		ip6stat.ip6s_sources_none++;
   2517 	else {
   2518 		if (oifp == ifa_best->ia_ifp)
   2519 			ip6stat.ip6s_sources_sameif[best_scope]++;
   2520 		else
   2521 			ip6stat.ip6s_sources_otherif[best_scope]++;
   2522 
   2523 		if (best_scope == dst_scope)
   2524 			ip6stat.ip6s_sources_samescope[best_scope]++;
   2525 		else
   2526 			ip6stat.ip6s_sources_otherscope[best_scope]++;
   2527 
   2528 		if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0)
   2529 			ip6stat.ip6s_sources_deprecated[best_scope]++;
   2530 	}
   2531 
   2532 	return (ifa_best);
   2533 }
   2534 
   2535 /*
   2536  * return the best address out of the same scope. if no address was
   2537  * found, return the first valid address from designated IF.
   2538  */
   2539 struct in6_ifaddr *
   2540 in6_ifawithifp(ifp, dst)
   2541 	struct ifnet *ifp;
   2542 	struct in6_addr *dst;
   2543 {
   2544 	int dst_scope =	in6_addrscope(dst), blen = -1, tlen;
   2545 	struct ifaddr *ifa;
   2546 	struct in6_ifaddr *besta = 0;
   2547 	struct in6_ifaddr *dep[2];	/* last-resort: deprecated */
   2548 
   2549 	dep[0] = dep[1] = NULL;
   2550 
   2551 	/*
   2552 	 * We first look for addresses in the same scope.
   2553 	 * If there is one, return it.
   2554 	 * If two or more, return one which matches the dst longest.
   2555 	 * If none, return one of global addresses assigned other ifs.
   2556 	 */
   2557 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
   2558 	{
   2559 		if (ifa->ifa_addr->sa_family != AF_INET6)
   2560 			continue;
   2561 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
   2562 			continue; /* XXX: is there any case to allow anycast? */
   2563 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
   2564 			continue; /* don't use this interface */
   2565 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
   2566 			continue;
   2567 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
   2568 			if (ip6_use_deprecated)
   2569 				dep[0] = (struct in6_ifaddr *)ifa;
   2570 			continue;
   2571 		}
   2572 
   2573 		if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
   2574 			/*
   2575 			 * call in6_matchlen() as few as possible
   2576 			 */
   2577 			if (besta) {
   2578 				if (blen == -1)
   2579 					blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
   2580 				tlen = in6_matchlen(IFA_IN6(ifa), dst);
   2581 				if (tlen > blen) {
   2582 					blen = tlen;
   2583 					besta = (struct in6_ifaddr *)ifa;
   2584 				}
   2585 			} else
   2586 				besta = (struct in6_ifaddr *)ifa;
   2587 		}
   2588 	}
   2589 	if (besta)
   2590 		return (besta);
   2591 
   2592 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
   2593 	{
   2594 		if (ifa->ifa_addr->sa_family != AF_INET6)
   2595 			continue;
   2596 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
   2597 			continue; /* XXX: is there any case to allow anycast? */
   2598 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
   2599 			continue; /* don't use this interface */
   2600 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
   2601 			continue;
   2602 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
   2603 			if (ip6_use_deprecated)
   2604 				dep[1] = (struct in6_ifaddr *)ifa;
   2605 			continue;
   2606 		}
   2607 
   2608 		return (struct in6_ifaddr *)ifa;
   2609 	}
   2610 
   2611 	/* use the last-resort values, that are, deprecated addresses */
   2612 	if (dep[0])
   2613 		return dep[0];
   2614 	if (dep[1])
   2615 		return dep[1];
   2616 
   2617 	return NULL;
   2618 }
   2619 
   2620 /*
   2621  * perform DAD when interface becomes IFF_UP.
   2622  */
   2623 void
   2624 in6_if_up(ifp)
   2625 	struct ifnet *ifp;
   2626 {
   2627 	struct ifaddr *ifa;
   2628 	struct in6_ifaddr *ia;
   2629 	int dad_delay;		/* delay ticks before DAD output */
   2630 
   2631 	/*
   2632 	 * special cases, like 6to4, are handled in in6_ifattach
   2633 	 */
   2634 	in6_ifattach(ifp, NULL);
   2635 
   2636 	dad_delay = 0;
   2637 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
   2638 	{
   2639 		if (ifa->ifa_addr->sa_family != AF_INET6)
   2640 			continue;
   2641 		ia = (struct in6_ifaddr *)ifa;
   2642 		if (ia->ia6_flags & IN6_IFF_TENTATIVE)
   2643 			nd6_dad_start(ifa, &dad_delay);
   2644 	}
   2645 }
   2646 
   2647 int
   2648 in6if_do_dad(ifp)
   2649 	struct ifnet *ifp;
   2650 {
   2651 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
   2652 		return (0);
   2653 
   2654 	switch (ifp->if_type) {
   2655 	case IFT_FAITH:
   2656 		/*
   2657 		 * These interfaces do not have the IFF_LOOPBACK flag,
   2658 		 * but loop packets back.  We do not have to do DAD on such
   2659 		 * interfaces.  We should even omit it, because loop-backed
   2660 		 * NS would confuse the DAD procedure.
   2661 		 */
   2662 		return (0);
   2663 	default:
   2664 		/*
   2665 		 * Our DAD routine requires the interface up and running.
   2666 		 * However, some interfaces can be up before the RUNNING
   2667 		 * status.  Additionaly, users may try to assign addresses
   2668 		 * before the interface becomes up (or running).
   2669 		 * We simply skip DAD in such a case as a work around.
   2670 		 * XXX: we should rather mark "tentative" on such addresses,
   2671 		 * and do DAD after the interface becomes ready.
   2672 		 */
   2673 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
   2674 		    (IFF_UP|IFF_RUNNING))
   2675 			return (0);
   2676 
   2677 		return (1);
   2678 	}
   2679 }
   2680 
   2681 /*
   2682  * Calculate max IPv6 MTU through all the interfaces and store it
   2683  * to in6_maxmtu.
   2684  */
   2685 void
   2686 in6_setmaxmtu()
   2687 {
   2688 	unsigned long maxmtu = 0;
   2689 	struct ifnet *ifp;
   2690 
   2691 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
   2692 	{
   2693 		/* this function can be called during ifnet initialization */
   2694 		if (!ifp->if_afdata[AF_INET6])
   2695 			continue;
   2696 		if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
   2697 		    IN6_LINKMTU(ifp) > maxmtu)
   2698 			maxmtu = IN6_LINKMTU(ifp);
   2699 	}
   2700 	if (maxmtu)	     /* update only when maxmtu is positive */
   2701 		in6_maxmtu = maxmtu;
   2702 }
   2703 
   2704 void *
   2705 in6_domifattach(ifp)
   2706 	struct ifnet *ifp;
   2707 {
   2708 	struct in6_ifextra *ext;
   2709 
   2710 	ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK);
   2711 	bzero(ext, sizeof(*ext));
   2712 
   2713 	ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat),
   2714 	    M_IFADDR, M_WAITOK);
   2715 	bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat));
   2716 
   2717 	ext->icmp6_ifstat =
   2718 	    (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat),
   2719 	    M_IFADDR, M_WAITOK);
   2720 	bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat));
   2721 
   2722 	ext->nd_ifinfo = nd6_ifattach(ifp);
   2723 	return ext;
   2724 }
   2725 
   2726 void
   2727 in6_domifdetach(ifp, aux)
   2728 	struct ifnet *ifp;
   2729 	void *aux;
   2730 {
   2731 	struct in6_ifextra *ext = (struct in6_ifextra *)aux;
   2732 
   2733 	nd6_ifdetach(ext->nd_ifinfo);
   2734 	free(ext->in6_ifstat, M_IFADDR);
   2735 	free(ext->icmp6_ifstat, M_IFADDR);
   2736 	free(ext, M_IFADDR);
   2737 }
   2738