in6.c revision 1.90 1 /* $NetBSD: in6.c,v 1.90 2004/07/26 13:44:35 yamt Exp $ */
2 /* $KAME: in6.c,v 1.198 2001/07/18 09:12:38 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)in.c 8.2 (Berkeley) 11/15/93
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: in6.c,v 1.90 2004/07/26 13:44:35 yamt Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_pfil_hooks.h"
69
70 #include <sys/param.h>
71 #include <sys/ioctl.h>
72 #include <sys/errno.h>
73 #include <sys/malloc.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/systm.h>
78 #include <sys/proc.h>
79 #include <sys/time.h>
80 #include <sys/kernel.h>
81 #include <sys/syslog.h>
82
83 #include <net/if.h>
84 #include <net/if_types.h>
85 #include <net/route.h>
86 #include <net/if_dl.h>
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <net/if_ether.h>
91
92 #include <netinet/ip6.h>
93 #include <netinet6/ip6_var.h>
94 #include <netinet6/nd6.h>
95 #include <netinet6/mld6_var.h>
96 #include <netinet6/ip6_mroute.h>
97 #include <netinet6/in6_ifattach.h>
98
99 #include <net/net_osdep.h>
100
101 #ifdef PFIL_HOOKS
102 #include <net/pfil.h>
103 #endif
104
105 MALLOC_DEFINE(M_IP6OPT, "ip6_options", "IPv6 options");
106
107 /* enable backward compatibility code for obsoleted ioctls */
108 #define COMPAT_IN6IFIOCTL
109
110 /*
111 * Definitions of some constant IP6 addresses.
112 */
113 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
114 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
115 const struct in6_addr in6addr_nodelocal_allnodes =
116 IN6ADDR_NODELOCAL_ALLNODES_INIT;
117 const struct in6_addr in6addr_linklocal_allnodes =
118 IN6ADDR_LINKLOCAL_ALLNODES_INIT;
119 const struct in6_addr in6addr_linklocal_allrouters =
120 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
121
122 const struct in6_addr in6mask0 = IN6MASK0;
123 const struct in6_addr in6mask32 = IN6MASK32;
124 const struct in6_addr in6mask64 = IN6MASK64;
125 const struct in6_addr in6mask96 = IN6MASK96;
126 const struct in6_addr in6mask128 = IN6MASK128;
127
128 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6,
129 0, 0, IN6ADDR_ANY_INIT, 0};
130
131 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
132 struct ifnet *, struct proc *));
133 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *,
134 struct sockaddr_in6 *, int));
135 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *));
136
137 /*
138 * This structure is used to keep track of in6_multi chains which belong to
139 * deleted interface addresses.
140 */
141 static LIST_HEAD(, multi6_kludge) in6_mk; /* XXX BSS initialization */
142
143 struct multi6_kludge {
144 LIST_ENTRY(multi6_kludge) mk_entry;
145 struct ifnet *mk_ifp;
146 struct in6_multihead mk_head;
147 };
148
149 /*
150 * Subroutine for in6_ifaddloop() and in6_ifremloop().
151 * This routine does actual work.
152 */
153 static void
154 in6_ifloop_request(int cmd, struct ifaddr *ifa)
155 {
156 struct sockaddr_in6 lo_sa;
157 struct sockaddr_in6 all1_sa;
158 struct rtentry *nrt = NULL;
159 int e;
160
161 bzero(&lo_sa, sizeof(lo_sa));
162 bzero(&all1_sa, sizeof(all1_sa));
163 lo_sa.sin6_family = all1_sa.sin6_family = AF_INET6;
164 lo_sa.sin6_len = all1_sa.sin6_len = sizeof(struct sockaddr_in6);
165 lo_sa.sin6_addr = in6addr_loopback;
166 all1_sa.sin6_addr = in6mask128;
167
168 /*
169 * We specify the address itself as the gateway, and set the
170 * RTF_LLINFO flag, so that the corresponding host route would have
171 * the flag, and thus applications that assume traditional behavior
172 * would be happy. Note that we assume the caller of the function
173 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
174 * which changes the outgoing interface to the loopback interface.
175 */
176 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
177 (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
178 if (e != 0) {
179 log(LOG_ERR, "in6_ifloop_request: "
180 "%s operation failed for %s (errno=%d)\n",
181 cmd == RTM_ADD ? "ADD" : "DELETE",
182 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
183 e);
184 }
185
186 /*
187 * Make sure rt_ifa be equal to IFA, the second argument of the
188 * function.
189 * We need this because when we refer to rt_ifa->ia6_flags in
190 * ip6_input, we assume that the rt_ifa points to the address instead
191 * of the loopback address.
192 */
193 if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) {
194 IFAFREE(nrt->rt_ifa);
195 IFAREF(ifa);
196 nrt->rt_ifa = ifa;
197 }
198
199 /*
200 * Report the addition/removal of the address to the routing socket.
201 * XXX: since we called rtinit for a p2p interface with a destination,
202 * we end up reporting twice in such a case. Should we rather
203 * omit the second report?
204 */
205 if (nrt) {
206 rt_newaddrmsg(cmd, ifa, e, nrt);
207 if (cmd == RTM_DELETE) {
208 if (nrt->rt_refcnt <= 0) {
209 /* XXX: we should free the entry ourselves. */
210 nrt->rt_refcnt++;
211 rtfree(nrt);
212 }
213 } else {
214 /* the cmd must be RTM_ADD here */
215 nrt->rt_refcnt--;
216 }
217 }
218 }
219
220 /*
221 * Add ownaddr as loopback rtentry. We previously add the route only if
222 * necessary (ex. on a p2p link). However, since we now manage addresses
223 * separately from prefixes, we should always add the route. We can't
224 * rely on the cloning mechanism from the corresponding interface route
225 * any more.
226 */
227 static void
228 in6_ifaddloop(struct ifaddr *ifa)
229 {
230 struct rtentry *rt;
231
232 /* If there is no loopback entry, allocate one. */
233 rt = rtalloc1(ifa->ifa_addr, 0);
234 if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
235 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
236 in6_ifloop_request(RTM_ADD, ifa);
237 if (rt)
238 rt->rt_refcnt--;
239 }
240
241 /*
242 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
243 * if it exists.
244 */
245 static void
246 in6_ifremloop(struct ifaddr *ifa)
247 {
248 struct in6_ifaddr *ia;
249 struct rtentry *rt;
250 int ia_count = 0;
251
252 /*
253 * Some of BSD variants do not remove cloned routes
254 * from an interface direct route, when removing the direct route
255 * (see comments in net/net_osdep.h). Even for variants that do remove
256 * cloned routes, they could fail to remove the cloned routes when
257 * we handle multple addresses that share a common prefix.
258 * So, we should remove the route corresponding to the deleted address.
259 */
260
261 /*
262 * Delete the entry only if exact one ifa exists. More than one ifa
263 * can exist if we assign a same single address to multiple
264 * (probably p2p) interfaces.
265 * XXX: we should avoid such a configuration in IPv6...
266 */
267 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
268 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
269 ia_count++;
270 if (ia_count > 1)
271 break;
272 }
273 }
274
275 if (ia_count == 1) {
276 /*
277 * Before deleting, check if a corresponding loopbacked host
278 * route surely exists. With this check, we can avoid to
279 * delete an interface direct route whose destination is same
280 * as the address being removed. This can happen when removing
281 * a subnet-router anycast address on an interface attahced
282 * to a shared medium.
283 */
284 rt = rtalloc1(ifa->ifa_addr, 0);
285 if (rt != NULL && (rt->rt_flags & RTF_HOST) != 0 &&
286 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
287 rt->rt_refcnt--;
288 in6_ifloop_request(RTM_DELETE, ifa);
289 }
290 }
291 }
292
293 int
294 in6_ifindex2scopeid(idx)
295 int idx;
296 {
297 struct ifnet *ifp;
298 struct ifaddr *ifa;
299 struct sockaddr_in6 *sin6;
300
301 if (idx < 0 || if_indexlim <= idx)
302 return -1;
303 ifp = ifindex2ifnet[idx];
304 if (!ifp)
305 return -1;
306
307 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
308 {
309 if (ifa->ifa_addr->sa_family != AF_INET6)
310 continue;
311 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
312 if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))
313 return sin6->sin6_scope_id & 0xffff;
314 }
315
316 return -1;
317 }
318
319 int
320 in6_mask2len(mask, lim0)
321 struct in6_addr *mask;
322 u_char *lim0;
323 {
324 int x = 0, y;
325 u_char *lim = lim0, *p;
326
327 /* ignore the scope_id part */
328 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask))
329 lim = (u_char *)mask + sizeof(*mask);
330 for (p = (u_char *)mask; p < lim; x++, p++) {
331 if (*p != 0xff)
332 break;
333 }
334 y = 0;
335 if (p < lim) {
336 for (y = 0; y < 8; y++) {
337 if ((*p & (0x80 >> y)) == 0)
338 break;
339 }
340 }
341
342 /*
343 * when the limit pointer is given, do a stricter check on the
344 * remaining bits.
345 */
346 if (p < lim) {
347 if (y != 0 && (*p & (0x00ff >> y)) != 0)
348 return (-1);
349 for (p = p + 1; p < lim; p++)
350 if (*p != 0)
351 return (-1);
352 }
353
354 return x * 8 + y;
355 }
356
357 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa))
358 #define ia62ifa(ia6) (&((ia6)->ia_ifa))
359
360 int
361 in6_control(so, cmd, data, ifp, p)
362 struct socket *so;
363 u_long cmd;
364 caddr_t data;
365 struct ifnet *ifp;
366 struct proc *p;
367 {
368 struct in6_ifreq *ifr = (struct in6_ifreq *)data;
369 struct in6_ifaddr *ia = NULL;
370 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data;
371 struct sockaddr_in6 *sa6;
372 int privileged;
373
374 privileged = 0;
375 if (p && !suser(p->p_ucred, &p->p_acflag))
376 privileged++;
377
378 switch (cmd) {
379 case SIOCGETSGCNT_IN6:
380 case SIOCGETMIFCNT_IN6:
381 return (mrt6_ioctl(cmd, data));
382 }
383
384 if (ifp == NULL)
385 return (EOPNOTSUPP);
386
387 switch (cmd) {
388 case SIOCSNDFLUSH_IN6:
389 case SIOCSPFXFLUSH_IN6:
390 case SIOCSRTRFLUSH_IN6:
391 case SIOCSDEFIFACE_IN6:
392 case SIOCSIFINFO_FLAGS:
393 if (!privileged)
394 return (EPERM);
395 /* FALLTHROUGH */
396 case OSIOCGIFINFO_IN6:
397 case SIOCGIFINFO_IN6:
398 case SIOCGDRLST_IN6:
399 case SIOCGPRLST_IN6:
400 case SIOCGNBRINFO_IN6:
401 case SIOCGDEFIFACE_IN6:
402 return (nd6_ioctl(cmd, data, ifp));
403 }
404
405 switch (cmd) {
406 case SIOCSIFPREFIX_IN6:
407 case SIOCDIFPREFIX_IN6:
408 case SIOCAIFPREFIX_IN6:
409 case SIOCCIFPREFIX_IN6:
410 case SIOCSGIFPREFIX_IN6:
411 case SIOCGIFPREFIX_IN6:
412 log(LOG_NOTICE,
413 "prefix ioctls are now invalidated. "
414 "please use ifconfig.\n");
415 return (EOPNOTSUPP);
416 }
417
418 switch (cmd) {
419 case SIOCALIFADDR:
420 case SIOCDLIFADDR:
421 if (!privileged)
422 return (EPERM);
423 /* FALLTHROUGH */
424 case SIOCGLIFADDR:
425 return in6_lifaddr_ioctl(so, cmd, data, ifp, p);
426 }
427
428 /*
429 * Find address for this interface, if it exists.
430 *
431 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation
432 * only, and used the first interface address as the target of other
433 * operations (without checking ifra_addr). This was because netinet
434 * code/API assumed at most 1 interface address per interface.
435 * Since IPv6 allows a node to assign multiple addresses
436 * on a single interface, we almost always look and check the
437 * presence of ifra_addr, and reject invalid ones here.
438 * It also decreases duplicated code among SIOC*_IN6 operations.
439 */
440 switch (cmd) {
441 case SIOCAIFADDR_IN6:
442 case SIOCSIFPHYADDR_IN6:
443 sa6 = &ifra->ifra_addr;
444 break;
445 case SIOCSIFADDR_IN6:
446 case SIOCGIFADDR_IN6:
447 case SIOCSIFDSTADDR_IN6:
448 case SIOCSIFNETMASK_IN6:
449 case SIOCGIFDSTADDR_IN6:
450 case SIOCGIFNETMASK_IN6:
451 case SIOCDIFADDR_IN6:
452 case SIOCGIFPSRCADDR_IN6:
453 case SIOCGIFPDSTADDR_IN6:
454 case SIOCGIFAFLAG_IN6:
455 case SIOCSNDFLUSH_IN6:
456 case SIOCSPFXFLUSH_IN6:
457 case SIOCSRTRFLUSH_IN6:
458 case SIOCGIFALIFETIME_IN6:
459 case SIOCSIFALIFETIME_IN6:
460 case SIOCGIFSTAT_IN6:
461 case SIOCGIFSTAT_ICMP6:
462 sa6 = &ifr->ifr_addr;
463 break;
464 default:
465 sa6 = NULL;
466 break;
467 }
468 if (sa6 && sa6->sin6_family == AF_INET6) {
469 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) {
470 if (sa6->sin6_addr.s6_addr16[1] == 0) {
471 /* link ID is not embedded by the user */
472 sa6->sin6_addr.s6_addr16[1] =
473 htons(ifp->if_index);
474 } else if (sa6->sin6_addr.s6_addr16[1] !=
475 htons(ifp->if_index)) {
476 return (EINVAL); /* link ID contradicts */
477 }
478 if (sa6->sin6_scope_id) {
479 if (sa6->sin6_scope_id !=
480 (u_int32_t)ifp->if_index)
481 return (EINVAL);
482 sa6->sin6_scope_id = 0; /* XXX: good way? */
483 }
484 }
485 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr);
486 } else
487 ia = NULL;
488
489 switch (cmd) {
490 case SIOCSIFADDR_IN6:
491 case SIOCSIFDSTADDR_IN6:
492 case SIOCSIFNETMASK_IN6:
493 /*
494 * Since IPv6 allows a node to assign multiple addresses
495 * on a single interface, SIOCSIFxxx ioctls are deprecated.
496 */
497 return (EINVAL);
498
499 case SIOCDIFADDR_IN6:
500 /*
501 * for IPv4, we look for existing in_ifaddr here to allow
502 * "ifconfig if0 delete" to remove the first IPv4 address on
503 * the interface. For IPv6, as the spec allows multiple
504 * interface address from the day one, we consider "remove the
505 * first one" semantics to be not preferable.
506 */
507 if (ia == NULL)
508 return (EADDRNOTAVAIL);
509 /* FALLTHROUGH */
510 case SIOCAIFADDR_IN6:
511 /*
512 * We always require users to specify a valid IPv6 address for
513 * the corresponding operation.
514 */
515 if (ifra->ifra_addr.sin6_family != AF_INET6 ||
516 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
517 return (EAFNOSUPPORT);
518 if (!privileged)
519 return (EPERM);
520
521 break;
522
523 case SIOCGIFADDR_IN6:
524 /* This interface is basically deprecated. use SIOCGIFCONF. */
525 /* FALLTHROUGH */
526 case SIOCGIFAFLAG_IN6:
527 case SIOCGIFNETMASK_IN6:
528 case SIOCGIFDSTADDR_IN6:
529 case SIOCGIFALIFETIME_IN6:
530 /* must think again about its semantics */
531 if (ia == NULL)
532 return (EADDRNOTAVAIL);
533 break;
534 case SIOCSIFALIFETIME_IN6:
535 {
536 struct in6_addrlifetime *lt;
537
538 if (!privileged)
539 return (EPERM);
540 if (ia == NULL)
541 return (EADDRNOTAVAIL);
542 /* sanity for overflow - beware unsigned */
543 lt = &ifr->ifr_ifru.ifru_lifetime;
544 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
545 && lt->ia6t_vltime + time.tv_sec < time.tv_sec) {
546 return EINVAL;
547 }
548 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
549 && lt->ia6t_pltime + time.tv_sec < time.tv_sec) {
550 return EINVAL;
551 }
552 break;
553 }
554 }
555
556 switch (cmd) {
557
558 case SIOCGIFADDR_IN6:
559 ifr->ifr_addr = ia->ia_addr;
560 break;
561
562 case SIOCGIFDSTADDR_IN6:
563 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
564 return (EINVAL);
565 /*
566 * XXX: should we check if ifa_dstaddr is NULL and return
567 * an error?
568 */
569 ifr->ifr_dstaddr = ia->ia_dstaddr;
570 break;
571
572 case SIOCGIFNETMASK_IN6:
573 ifr->ifr_addr = ia->ia_prefixmask;
574 break;
575
576 case SIOCGIFAFLAG_IN6:
577 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
578 break;
579
580 case SIOCGIFSTAT_IN6:
581 if (ifp == NULL)
582 return EINVAL;
583 bzero(&ifr->ifr_ifru.ifru_stat,
584 sizeof(ifr->ifr_ifru.ifru_stat));
585 ifr->ifr_ifru.ifru_stat =
586 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
587 break;
588
589 case SIOCGIFSTAT_ICMP6:
590 if (ifp == NULL)
591 return EINVAL;
592 bzero(&ifr->ifr_ifru.ifru_stat,
593 sizeof(ifr->ifr_ifru.ifru_icmp6stat));
594 ifr->ifr_ifru.ifru_icmp6stat =
595 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
596 break;
597
598 case SIOCGIFALIFETIME_IN6:
599 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
600 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
601 time_t maxexpire;
602 struct in6_addrlifetime *retlt =
603 &ifr->ifr_ifru.ifru_lifetime;
604
605 /*
606 * XXX: adjust expiration time assuming time_t is
607 * signed.
608 */
609 maxexpire = (-1) &
610 ~(1 << ((sizeof(maxexpire) * 8) - 1));
611 if (ia->ia6_lifetime.ia6t_vltime <
612 maxexpire - ia->ia6_updatetime) {
613 retlt->ia6t_expire = ia->ia6_updatetime +
614 ia->ia6_lifetime.ia6t_vltime;
615 } else
616 retlt->ia6t_expire = maxexpire;
617 }
618 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
619 time_t maxexpire;
620 struct in6_addrlifetime *retlt =
621 &ifr->ifr_ifru.ifru_lifetime;
622
623 /*
624 * XXX: adjust expiration time assuming time_t is
625 * signed.
626 */
627 maxexpire = (-1) &
628 ~(1 << ((sizeof(maxexpire) * 8) - 1));
629 if (ia->ia6_lifetime.ia6t_pltime <
630 maxexpire - ia->ia6_updatetime) {
631 retlt->ia6t_preferred = ia->ia6_updatetime +
632 ia->ia6_lifetime.ia6t_pltime;
633 } else
634 retlt->ia6t_preferred = maxexpire;
635 }
636 break;
637
638 case SIOCSIFALIFETIME_IN6:
639 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
640 /* for sanity */
641 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
642 ia->ia6_lifetime.ia6t_expire =
643 time.tv_sec + ia->ia6_lifetime.ia6t_vltime;
644 } else
645 ia->ia6_lifetime.ia6t_expire = 0;
646 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
647 ia->ia6_lifetime.ia6t_preferred =
648 time.tv_sec + ia->ia6_lifetime.ia6t_pltime;
649 } else
650 ia->ia6_lifetime.ia6t_preferred = 0;
651 break;
652
653 case SIOCAIFADDR_IN6:
654 {
655 int i, error = 0;
656 struct nd_prefix pr0, *pr;
657
658 /* reject read-only flags */
659 if ((ifra->ifra_flags & IN6_IFF_DUPLICATED) != 0 ||
660 (ifra->ifra_flags & IN6_IFF_DETACHED) != 0 ||
661 (ifra->ifra_flags & IN6_IFF_NODAD) != 0 ||
662 (ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0) {
663 return (EINVAL);
664 }
665 /*
666 * first, make or update the interface address structure,
667 * and link it to the list.
668 */
669 if ((error = in6_update_ifa(ifp, ifra, ia)) != 0)
670 return (error);
671 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
672 == NULL) {
673 /*
674 * this can happen when the user specify the 0 valid
675 * lifetime.
676 */
677 break;
678 }
679
680 /*
681 * then, make the prefix on-link on the interface.
682 * XXX: we'd rather create the prefix before the address, but
683 * we need at least one address to install the corresponding
684 * interface route, so we configure the address first.
685 */
686
687 /*
688 * convert mask to prefix length (prefixmask has already
689 * been validated in in6_update_ifa().
690 */
691 bzero(&pr0, sizeof(pr0));
692 pr0.ndpr_ifp = ifp;
693 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
694 NULL);
695 if (pr0.ndpr_plen == 128) {
696 break; /* we don't need to install a host route. */
697 }
698 pr0.ndpr_prefix = ifra->ifra_addr;
699 pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr;
700 /* apply the mask for safety. */
701 for (i = 0; i < 4; i++) {
702 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
703 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
704 }
705 /*
706 * XXX: since we don't have an API to set prefix (not address)
707 * lifetimes, we just use the same lifetimes as addresses.
708 * The (temporarily) installed lifetimes can be overridden by
709 * later advertised RAs (when accept_rtadv is non 0), which is
710 * an intended behavior.
711 */
712 pr0.ndpr_raf_onlink = 1; /* should be configurable? */
713 pr0.ndpr_raf_auto =
714 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
715 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
716 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
717
718 /* add the prefix if not yet. */
719 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
720 /*
721 * nd6_prelist_add will install the corresponding
722 * interface route.
723 */
724 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
725 return (error);
726 if (pr == NULL) {
727 log(LOG_ERR, "nd6_prelist_add succeeded but "
728 "no prefix\n");
729 return (EINVAL); /* XXX panic here? */
730 }
731 }
732
733 /* relate the address to the prefix */
734 if (ia->ia6_ndpr == NULL) {
735 ia->ia6_ndpr = pr;
736 pr->ndpr_refcnt++;
737 }
738
739 /*
740 * this might affect the status of autoconfigured addresses,
741 * that is, this address might make other addresses detached.
742 */
743 pfxlist_onlink_check();
744
745 #ifdef PFIL_HOOKS
746 (void)pfil_run_hooks(&if_pfil, (struct mbuf **)SIOCAIFADDR_IN6,
747 ifp, PFIL_IFADDR);
748 #endif
749
750 break;
751 }
752
753 case SIOCDIFADDR_IN6:
754 {
755 int i = 0, purgeprefix = 0;
756 struct nd_prefix pr0, *pr = NULL;
757
758 /*
759 * If the address being deleted is the only one that owns
760 * the corresponding prefix, expire the prefix as well.
761 * XXX: theoretically, we don't have to worry about such
762 * relationship, since we separate the address management
763 * and the prefix management. We do this, however, to provide
764 * as much backward compatibility as possible in terms of
765 * the ioctl operation.
766 */
767 bzero(&pr0, sizeof(pr0));
768 pr0.ndpr_ifp = ifp;
769 pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr,
770 NULL);
771 if (pr0.ndpr_plen == 128)
772 goto purgeaddr;
773 pr0.ndpr_prefix = ia->ia_addr;
774 pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr;
775 for (i = 0; i < 4; i++) {
776 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
777 ia->ia_prefixmask.sin6_addr.s6_addr32[i];
778 }
779 if ((pr = nd6_prefix_lookup(&pr0)) != NULL &&
780 pr == ia->ia6_ndpr) {
781 pr->ndpr_refcnt--;
782 if (pr->ndpr_refcnt == 0)
783 purgeprefix = 1;
784 }
785
786 purgeaddr:
787 in6_purgeaddr(&ia->ia_ifa);
788 if (pr && purgeprefix)
789 prelist_remove(pr);
790 #ifdef PFIL_HOOKS
791 (void)pfil_run_hooks(&if_pfil, (struct mbuf **)SIOCDIFADDR_IN6,
792 ifp, PFIL_IFADDR);
793 #endif
794 break;
795 }
796
797 default:
798 if (ifp == NULL || ifp->if_ioctl == 0)
799 return (EOPNOTSUPP);
800 return ((*ifp->if_ioctl)(ifp, cmd, data));
801 }
802
803 return (0);
804 }
805
806 /*
807 * Update parameters of an IPv6 interface address.
808 * If necessary, a new entry is created and linked into address chains.
809 * This function is separated from in6_control().
810 * XXX: should this be performed under splnet()?
811 */
812 int
813 in6_update_ifa(ifp, ifra, ia)
814 struct ifnet *ifp;
815 struct in6_aliasreq *ifra;
816 struct in6_ifaddr *ia;
817 {
818 int error = 0, hostIsNew = 0, plen = -1;
819 struct in6_ifaddr *oia;
820 struct sockaddr_in6 dst6;
821 struct in6_addrlifetime *lt;
822 struct in6_multi_mship *imm;
823 struct rtentry *rt;
824
825 /* Validate parameters */
826 if (ifp == NULL || ifra == NULL) /* this maybe redundant */
827 return (EINVAL);
828
829 /*
830 * The destination address for a p2p link must have a family
831 * of AF_UNSPEC or AF_INET6.
832 */
833 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
834 ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
835 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
836 return (EAFNOSUPPORT);
837 /*
838 * validate ifra_prefixmask. don't check sin6_family, netmask
839 * does not carry fields other than sin6_len.
840 */
841 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
842 return (EINVAL);
843 /*
844 * Because the IPv6 address architecture is classless, we require
845 * users to specify a (non 0) prefix length (mask) for a new address.
846 * We also require the prefix (when specified) mask is valid, and thus
847 * reject a non-consecutive mask.
848 */
849 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
850 return (EINVAL);
851 if (ifra->ifra_prefixmask.sin6_len != 0) {
852 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
853 (u_char *)&ifra->ifra_prefixmask +
854 ifra->ifra_prefixmask.sin6_len);
855 if (plen <= 0)
856 return (EINVAL);
857 } else {
858 /*
859 * In this case, ia must not be NULL. We just use its prefix
860 * length.
861 */
862 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
863 }
864 /*
865 * If the destination address on a p2p interface is specified,
866 * and the address is a scoped one, validate/set the scope
867 * zone identifier.
868 */
869 dst6 = ifra->ifra_dstaddr;
870 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 &&
871 (dst6.sin6_family == AF_INET6)) {
872 /* link-local index check: should be a separate function? */
873 if (IN6_IS_ADDR_LINKLOCAL(&dst6.sin6_addr)) {
874 if (dst6.sin6_addr.s6_addr16[1] == 0) {
875 /*
876 * interface ID is not embedded by
877 * the user
878 */
879 dst6.sin6_addr.s6_addr16[1] =
880 htons(ifp->if_index);
881 } else if (dst6.sin6_addr.s6_addr16[1] !=
882 htons(ifp->if_index)) {
883 return (EINVAL); /* ifid contradicts */
884 }
885 }
886 }
887 /*
888 * The destination address can be specified only for a p2p or a
889 * loopback interface. If specified, the corresponding prefix length
890 * must be 128.
891 */
892 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
893 #ifdef FORCE_P2PPLEN
894 int i;
895 #endif
896
897 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
898 /* XXX: noisy message */
899 nd6log((LOG_INFO, "in6_update_ifa: a destination can "
900 "be specified for a p2p or a loopback IF only\n"));
901 return (EINVAL);
902 }
903 if (plen != 128) {
904 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should "
905 "be 128 when dstaddr is specified\n"));
906 #ifdef FORCE_P2PPLEN
907 /*
908 * To be compatible with old configurations,
909 * such as ifconfig gif0 inet6 2001::1 2001::2
910 * prefixlen 126, we override the specified
911 * prefixmask as if the prefix length was 128.
912 */
913 ifra->ifra_prefixmask.sin6_len =
914 sizeof(struct sockaddr_in6);
915 for (i = 0; i < 4; i++)
916 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i] =
917 0xffffffff;
918 plen = 128;
919 #else
920 return (EINVAL);
921 #endif
922 }
923 }
924 /* lifetime consistency check */
925 lt = &ifra->ifra_lifetime;
926 if (lt->ia6t_pltime > lt->ia6t_vltime)
927 return (EINVAL);
928 if (lt->ia6t_vltime == 0) {
929 /*
930 * the following log might be noisy, but this is a typical
931 * configuration mistake or a tool's bug.
932 */
933 nd6log((LOG_INFO,
934 "in6_update_ifa: valid lifetime is 0 for %s\n",
935 ip6_sprintf(&ifra->ifra_addr.sin6_addr)));
936
937 if (ia == NULL)
938 return (0); /* there's nothing to do */
939 }
940
941 /*
942 * If this is a new address, allocate a new ifaddr and link it
943 * into chains.
944 */
945 if (ia == NULL) {
946 hostIsNew = 1;
947 /*
948 * When in6_update_ifa() is called in a process of a received
949 * RA, it is called under an interrupt context. So, we should
950 * call malloc with M_NOWAIT.
951 */
952 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR,
953 M_NOWAIT);
954 if (ia == NULL)
955 return (ENOBUFS);
956 bzero((caddr_t)ia, sizeof(*ia));
957 LIST_INIT(&ia->ia6_memberships);
958 /* Initialize the address and masks, and put time stamp */
959 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
960 ia->ia_addr.sin6_family = AF_INET6;
961 ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
962 ia->ia6_createtime = ia->ia6_updatetime = time.tv_sec;
963 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
964 /*
965 * XXX: some functions expect that ifa_dstaddr is not
966 * NULL for p2p interfaces.
967 */
968 ia->ia_ifa.ifa_dstaddr =
969 (struct sockaddr *)&ia->ia_dstaddr;
970 } else {
971 ia->ia_ifa.ifa_dstaddr = NULL;
972 }
973 ia->ia_ifa.ifa_netmask =
974 (struct sockaddr *)&ia->ia_prefixmask;
975
976 ia->ia_ifp = ifp;
977 if ((oia = in6_ifaddr) != NULL) {
978 for ( ; oia->ia_next; oia = oia->ia_next)
979 continue;
980 oia->ia_next = ia;
981 } else
982 in6_ifaddr = ia;
983 /* gain a refcnt for the link from in6_ifaddr */
984 IFAREF(&ia->ia_ifa);
985
986 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa,
987 ifa_list);
988 /* gain another refcnt for the link from if_addrlist */
989 IFAREF(&ia->ia_ifa);
990 }
991
992 /* set prefix mask */
993 if (ifra->ifra_prefixmask.sin6_len) {
994 /*
995 * We prohibit changing the prefix length of an existing
996 * address, because
997 * + such an operation should be rare in IPv6, and
998 * + the operation would confuse prefix management.
999 */
1000 if (ia->ia_prefixmask.sin6_len &&
1001 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
1002 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an"
1003 " existing (%s) address should not be changed\n",
1004 ip6_sprintf(&ia->ia_addr.sin6_addr)));
1005 error = EINVAL;
1006 goto unlink;
1007 }
1008 ia->ia_prefixmask = ifra->ifra_prefixmask;
1009 }
1010
1011 /*
1012 * If a new destination address is specified, scrub the old one and
1013 * install the new destination. Note that the interface must be
1014 * p2p or loopback (see the check above.)
1015 */
1016 if (dst6.sin6_family == AF_INET6 &&
1017 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) {
1018 if ((ia->ia_flags & IFA_ROUTE) != 0 &&
1019 rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST) != 0) {
1020 nd6log((LOG_ERR, "in6_update_ifa: failed to remove "
1021 "a route to the old destination: %s\n",
1022 ip6_sprintf(&ia->ia_addr.sin6_addr)));
1023 /* proceed anyway... */
1024 } else
1025 ia->ia_flags &= ~IFA_ROUTE;
1026 ia->ia_dstaddr = dst6;
1027 }
1028
1029 /*
1030 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred
1031 * to see if the address is deprecated or invalidated, but initialize
1032 * these members for applications.
1033 */
1034 ia->ia6_lifetime = ifra->ifra_lifetime;
1035 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
1036 ia->ia6_lifetime.ia6t_expire =
1037 time.tv_sec + ia->ia6_lifetime.ia6t_vltime;
1038 } else
1039 ia->ia6_lifetime.ia6t_expire = 0;
1040 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
1041 ia->ia6_lifetime.ia6t_preferred =
1042 time.tv_sec + ia->ia6_lifetime.ia6t_pltime;
1043 } else
1044 ia->ia6_lifetime.ia6t_preferred = 0;
1045
1046 /* reset the interface and routing table appropriately. */
1047 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
1048 goto unlink;
1049
1050 /*
1051 * configure address flags.
1052 */
1053 ia->ia6_flags = ifra->ifra_flags;
1054 /*
1055 * backward compatibility - if IN6_IFF_DEPRECATED is set from the
1056 * userland, make it deprecated.
1057 */
1058 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) {
1059 ia->ia6_lifetime.ia6t_pltime = 0;
1060 ia->ia6_lifetime.ia6t_preferred = time.tv_sec;
1061 }
1062 /*
1063 * Make the address tentative before joining multicast addresses,
1064 * so that corresponding MLD responses would not have a tentative
1065 * source address.
1066 */
1067 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */
1068 if (hostIsNew && in6if_do_dad(ifp))
1069 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1070
1071 /*
1072 * We are done if we have simply modified an existing address.
1073 */
1074 if (!hostIsNew)
1075 return (error);
1076
1077 /*
1078 * Beyond this point, we should call in6_purgeaddr upon an error,
1079 * not just go to unlink.
1080 */
1081
1082 /* join necessary multiast groups */
1083 if ((ifp->if_flags & IFF_MULTICAST) != 0) {
1084 struct sockaddr_in6 mltaddr, mltmask;
1085 #ifndef SCOPEDROUTING
1086 u_int32_t zoneid = 0;
1087 #endif
1088
1089 /* join solicited multicast addr for new host id */
1090 struct sockaddr_in6 llsol;
1091
1092 bzero(&llsol, sizeof(llsol));
1093 llsol.sin6_family = AF_INET6;
1094 llsol.sin6_len = sizeof(llsol);
1095 llsol.sin6_addr.s6_addr16[0] = htons(0xff02);
1096 llsol.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
1097 llsol.sin6_addr.s6_addr32[1] = 0;
1098 llsol.sin6_addr.s6_addr32[2] = htonl(1);
1099 llsol.sin6_addr.s6_addr32[3] =
1100 ifra->ifra_addr.sin6_addr.s6_addr32[3];
1101 llsol.sin6_addr.s6_addr8[12] = 0xff;
1102 imm = in6_joingroup(ifp, &llsol.sin6_addr, &error);
1103 if (!imm) {
1104 nd6log((LOG_ERR,
1105 "in6_update_ifa: addmulti "
1106 "failed for %s on %s (errno=%d)\n",
1107 ip6_sprintf(&llsol.sin6_addr),
1108 if_name(ifp), error));
1109 goto cleanup;
1110 }
1111 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
1112
1113 bzero(&mltmask, sizeof(mltmask));
1114 mltmask.sin6_len = sizeof(struct sockaddr_in6);
1115 mltmask.sin6_family = AF_INET6;
1116 mltmask.sin6_addr = in6mask32;
1117
1118 /*
1119 * join link-local all-nodes address
1120 */
1121 bzero(&mltaddr, sizeof(mltaddr));
1122 mltaddr.sin6_len = sizeof(struct sockaddr_in6);
1123 mltaddr.sin6_family = AF_INET6;
1124 mltaddr.sin6_addr = in6addr_linklocal_allnodes;
1125 mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
1126
1127 /*
1128 * XXX: do we really need this automatic routes?
1129 * We should probably reconsider this stuff. Most applications
1130 * actually do not need the routes, since they usually specify
1131 * the outgoing interface.
1132 */
1133 rt = rtalloc1((struct sockaddr *)&mltaddr, 0);
1134 if (rt) {
1135 /*
1136 * 32bit came from "mltmask"
1137 * XXX: only works in !SCOPEDROUTING case.
1138 */
1139 if (memcmp(&mltaddr.sin6_addr,
1140 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1141 32 / 8)) {
1142 RTFREE(rt);
1143 rt = NULL;
1144 }
1145 }
1146 if (!rt) {
1147 struct rt_addrinfo info;
1148
1149 bzero(&info, sizeof(info));
1150 info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr;
1151 info.rti_info[RTAX_GATEWAY] =
1152 (struct sockaddr *)&ia->ia_addr;
1153 info.rti_info[RTAX_NETMASK] =
1154 (struct sockaddr *)&mltmask;
1155 info.rti_info[RTAX_IFA] =
1156 (struct sockaddr *)&ia->ia_addr;
1157 /* XXX: we need RTF_CLONING to fake nd6_rtrequest */
1158 info.rti_flags = RTF_UP | RTF_CLONING;
1159 error = rtrequest1(RTM_ADD, &info, NULL);
1160 if (error)
1161 goto cleanup;
1162 } else {
1163 RTFREE(rt);
1164 }
1165 #ifndef SCOPEDROUTING
1166 mltaddr.sin6_scope_id = zoneid; /* XXX */
1167 #endif
1168 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error);
1169 if (!imm) {
1170 nd6log((LOG_WARNING,
1171 "in6_update_ifa: addmulti failed for "
1172 "%s on %s (errno=%d)\n",
1173 ip6_sprintf(&mltaddr.sin6_addr),
1174 if_name(ifp), error));
1175 goto cleanup;
1176 }
1177 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
1178
1179 /*
1180 * join node information group address
1181 */
1182 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr) == 0) {
1183 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error);
1184 if (!imm) {
1185 nd6log((LOG_WARNING, "in6_update_ifa: "
1186 "addmulti failed for %s on %s (errno=%d)\n",
1187 ip6_sprintf(&mltaddr.sin6_addr),
1188 if_name(ifp), error));
1189 /* XXX not very fatal, go on... */
1190 } else {
1191 LIST_INSERT_HEAD(&ia->ia6_memberships,
1192 imm, i6mm_chain);
1193 }
1194 }
1195
1196 if (ifp->if_flags & IFF_LOOPBACK) {
1197 /*
1198 * join node-local all-nodes address, on loopback.
1199 * (ff01::1%ifN, and ff01::%ifN/32)
1200 */
1201 mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
1202
1203 /* XXX: again, do we really need the route? */
1204 rt = rtalloc1((struct sockaddr *)&mltaddr, 0);
1205 if (rt) {
1206 /* 32bit came from "mltmask" */
1207 if (memcmp(&mltaddr.sin6_addr,
1208 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1209 32 / 8)) {
1210 RTFREE(rt);
1211 rt = NULL;
1212 }
1213 }
1214 if (!rt) {
1215 struct rt_addrinfo info;
1216
1217 bzero(&info, sizeof(info));
1218 info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr;
1219 info.rti_info[RTAX_GATEWAY] =
1220 (struct sockaddr *)&ia->ia_addr;
1221 info.rti_info[RTAX_NETMASK] =
1222 (struct sockaddr *)&mltmask;
1223 info.rti_info[RTAX_IFA] =
1224 (struct sockaddr *)&ia->ia_addr;
1225 info.rti_flags = RTF_UP | RTF_CLONING;
1226 error = rtrequest1(RTM_ADD, &info, NULL);
1227 if (error)
1228 goto cleanup;
1229 } else {
1230 RTFREE(rt);
1231 }
1232 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error);
1233 if (!imm) {
1234 nd6log((LOG_WARNING, "in6_update_ifa: "
1235 "addmulti failed for %s on %s (errno=%d)\n",
1236 ip6_sprintf(&mltaddr.sin6_addr),
1237 if_name(ifp), error));
1238 goto cleanup;
1239 }
1240 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
1241 }
1242 }
1243
1244 /*
1245 * Perform DAD, if needed.
1246 * XXX It may be of use, if we can administratively
1247 * disable DAD.
1248 */
1249 if (hostIsNew && in6if_do_dad(ifp) &&
1250 (ifra->ifra_flags & IN6_IFF_NODAD) == 0)
1251 {
1252 nd6_dad_start((struct ifaddr *)ia, NULL);
1253 }
1254
1255 return (error);
1256
1257 unlink:
1258 /*
1259 * XXX: if a change of an existing address failed, keep the entry
1260 * anyway.
1261 */
1262 if (hostIsNew)
1263 in6_unlink_ifa(ia, ifp);
1264 return (error);
1265
1266 cleanup:
1267 in6_purgeaddr(&ia->ia_ifa);
1268 return error;
1269 }
1270
1271 void
1272 in6_purgeaddr(ifa)
1273 struct ifaddr *ifa;
1274 {
1275 struct ifnet *ifp = ifa->ifa_ifp;
1276 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
1277 struct in6_multi_mship *imm;
1278
1279 /* stop DAD processing */
1280 nd6_dad_stop(ifa);
1281
1282 /*
1283 * delete route to the destination of the address being purged.
1284 * The interface must be p2p or loopback in this case.
1285 */
1286 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
1287 int e;
1288
1289 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
1290 != 0) {
1291 log(LOG_ERR, "in6_purgeaddr: failed to remove "
1292 "a route to the p2p destination: %s on %s, "
1293 "errno=%d\n",
1294 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
1295 e);
1296 /* proceed anyway... */
1297 } else
1298 ia->ia_flags &= ~IFA_ROUTE;
1299 }
1300
1301 /* Remove ownaddr's loopback rtentry, if it exists. */
1302 in6_ifremloop(&(ia->ia_ifa));
1303
1304 /*
1305 * leave from multicast groups we have joined for the interface
1306 */
1307 while ((imm = ia->ia6_memberships.lh_first) != NULL) {
1308 LIST_REMOVE(imm, i6mm_chain);
1309 in6_leavegroup(imm);
1310 }
1311
1312 in6_unlink_ifa(ia, ifp);
1313 }
1314
1315 static void
1316 in6_unlink_ifa(ia, ifp)
1317 struct in6_ifaddr *ia;
1318 struct ifnet *ifp;
1319 {
1320 struct in6_ifaddr *oia;
1321 int s = splnet();
1322
1323 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
1324 /* release a refcnt for the link from if_addrlist */
1325 IFAFREE(&ia->ia_ifa);
1326
1327 oia = ia;
1328 if (oia == (ia = in6_ifaddr))
1329 in6_ifaddr = ia->ia_next;
1330 else {
1331 while (ia->ia_next && (ia->ia_next != oia))
1332 ia = ia->ia_next;
1333 if (ia->ia_next)
1334 ia->ia_next = oia->ia_next;
1335 else {
1336 /* search failed */
1337 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
1338 }
1339 }
1340
1341 if (oia->ia6_multiaddrs.lh_first != NULL) {
1342 /*
1343 * XXX thorpej (at) NetBSD.org -- if the interface is going
1344 * XXX away, don't save the multicast entries, delete them!
1345 */
1346 if (oia->ia_ifa.ifa_ifp->if_output == if_nulloutput) {
1347 struct in6_multi *in6m;
1348
1349 while ((in6m =
1350 LIST_FIRST(&oia->ia6_multiaddrs)) != NULL)
1351 in6_delmulti(in6m);
1352 } else
1353 in6_savemkludge(oia);
1354 }
1355
1356 /*
1357 * When an autoconfigured address is being removed, release the
1358 * reference to the base prefix. Also, since the release might
1359 * affect the status of other (detached) addresses, call
1360 * pfxlist_onlink_check().
1361 */
1362 if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) {
1363 if (oia->ia6_ndpr == NULL) {
1364 log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address "
1365 "%p has no prefix\n", oia);
1366 } else {
1367 oia->ia6_ndpr->ndpr_refcnt--;
1368 oia->ia6_flags &= ~IN6_IFF_AUTOCONF;
1369 oia->ia6_ndpr = NULL;
1370 }
1371
1372 pfxlist_onlink_check();
1373 }
1374
1375 /*
1376 * release another refcnt for the link from in6_ifaddr.
1377 * Note that we should decrement the refcnt at least once for all *BSD.
1378 */
1379 IFAFREE(&oia->ia_ifa);
1380
1381 splx(s);
1382 }
1383
1384 void
1385 in6_purgeif(ifp)
1386 struct ifnet *ifp;
1387 {
1388 struct ifaddr *ifa, *nifa;
1389
1390 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa)
1391 {
1392 nifa = TAILQ_NEXT(ifa, ifa_list);
1393 if (ifa->ifa_addr->sa_family != AF_INET6)
1394 continue;
1395 in6_purgeaddr(ifa);
1396 }
1397
1398 in6_ifdetach(ifp);
1399 }
1400
1401 /*
1402 * SIOC[GAD]LIFADDR.
1403 * SIOCGLIFADDR: get first address. (?)
1404 * SIOCGLIFADDR with IFLR_PREFIX:
1405 * get first address that matches the specified prefix.
1406 * SIOCALIFADDR: add the specified address.
1407 * SIOCALIFADDR with IFLR_PREFIX:
1408 * add the specified prefix, filling hostid part from
1409 * the first link-local address. prefixlen must be <= 64.
1410 * SIOCDLIFADDR: delete the specified address.
1411 * SIOCDLIFADDR with IFLR_PREFIX:
1412 * delete the first address that matches the specified prefix.
1413 * return values:
1414 * EINVAL on invalid parameters
1415 * EADDRNOTAVAIL on prefix match failed/specified address not found
1416 * other values may be returned from in6_ioctl()
1417 *
1418 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
1419 * this is to accomodate address naming scheme other than RFC2374,
1420 * in the future.
1421 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
1422 * address encoding scheme. (see figure on page 8)
1423 */
1424 static int
1425 in6_lifaddr_ioctl(so, cmd, data, ifp, p)
1426 struct socket *so;
1427 u_long cmd;
1428 caddr_t data;
1429 struct ifnet *ifp;
1430 struct proc *p;
1431 {
1432 struct if_laddrreq *iflr = (struct if_laddrreq *)data;
1433 struct ifaddr *ifa;
1434 struct sockaddr *sa;
1435
1436 /* sanity checks */
1437 if (!data || !ifp) {
1438 panic("invalid argument to in6_lifaddr_ioctl");
1439 /* NOTREACHED */
1440 }
1441
1442 switch (cmd) {
1443 case SIOCGLIFADDR:
1444 /* address must be specified on GET with IFLR_PREFIX */
1445 if ((iflr->flags & IFLR_PREFIX) == 0)
1446 break;
1447 /* FALLTHROUGH */
1448 case SIOCALIFADDR:
1449 case SIOCDLIFADDR:
1450 /* address must be specified on ADD and DELETE */
1451 sa = (struct sockaddr *)&iflr->addr;
1452 if (sa->sa_family != AF_INET6)
1453 return EINVAL;
1454 if (sa->sa_len != sizeof(struct sockaddr_in6))
1455 return EINVAL;
1456 /* XXX need improvement */
1457 sa = (struct sockaddr *)&iflr->dstaddr;
1458 if (sa->sa_family && sa->sa_family != AF_INET6)
1459 return EINVAL;
1460 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
1461 return EINVAL;
1462 break;
1463 default: /* shouldn't happen */
1464 #if 0
1465 panic("invalid cmd to in6_lifaddr_ioctl");
1466 /* NOTREACHED */
1467 #else
1468 return EOPNOTSUPP;
1469 #endif
1470 }
1471 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
1472 return EINVAL;
1473
1474 switch (cmd) {
1475 case SIOCALIFADDR:
1476 {
1477 struct in6_aliasreq ifra;
1478 struct in6_addr *hostid = NULL;
1479 int prefixlen;
1480
1481 if ((iflr->flags & IFLR_PREFIX) != 0) {
1482 struct sockaddr_in6 *sin6;
1483
1484 /*
1485 * hostid is to fill in the hostid part of the
1486 * address. hostid points to the first link-local
1487 * address attached to the interface.
1488 */
1489 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
1490 if (!ifa)
1491 return EADDRNOTAVAIL;
1492 hostid = IFA_IN6(ifa);
1493
1494 /* prefixlen must be <= 64. */
1495 if (64 < iflr->prefixlen)
1496 return EINVAL;
1497 prefixlen = iflr->prefixlen;
1498
1499 /* hostid part must be zero. */
1500 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1501 if (sin6->sin6_addr.s6_addr32[2] != 0
1502 || sin6->sin6_addr.s6_addr32[3] != 0) {
1503 return EINVAL;
1504 }
1505 } else
1506 prefixlen = iflr->prefixlen;
1507
1508 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
1509 bzero(&ifra, sizeof(ifra));
1510 bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name));
1511
1512 bcopy(&iflr->addr, &ifra.ifra_addr,
1513 ((struct sockaddr *)&iflr->addr)->sa_len);
1514 if (hostid) {
1515 /* fill in hostid part */
1516 ifra.ifra_addr.sin6_addr.s6_addr32[2] =
1517 hostid->s6_addr32[2];
1518 ifra.ifra_addr.sin6_addr.s6_addr32[3] =
1519 hostid->s6_addr32[3];
1520 }
1521
1522 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */
1523 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
1524 ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1525 if (hostid) {
1526 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
1527 hostid->s6_addr32[2];
1528 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
1529 hostid->s6_addr32[3];
1530 }
1531 }
1532
1533 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
1534 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
1535
1536 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
1537 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, p);
1538 }
1539 case SIOCGLIFADDR:
1540 case SIOCDLIFADDR:
1541 {
1542 struct in6_ifaddr *ia;
1543 struct in6_addr mask, candidate, match;
1544 struct sockaddr_in6 *sin6;
1545 int cmp;
1546
1547 bzero(&mask, sizeof(mask));
1548 if (iflr->flags & IFLR_PREFIX) {
1549 /* lookup a prefix rather than address. */
1550 in6_prefixlen2mask(&mask, iflr->prefixlen);
1551
1552 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1553 bcopy(&sin6->sin6_addr, &match, sizeof(match));
1554 match.s6_addr32[0] &= mask.s6_addr32[0];
1555 match.s6_addr32[1] &= mask.s6_addr32[1];
1556 match.s6_addr32[2] &= mask.s6_addr32[2];
1557 match.s6_addr32[3] &= mask.s6_addr32[3];
1558
1559 /* if you set extra bits, that's wrong */
1560 if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
1561 return EINVAL;
1562
1563 cmp = 1;
1564 } else {
1565 if (cmd == SIOCGLIFADDR) {
1566 /* on getting an address, take the 1st match */
1567 cmp = 0; /* XXX */
1568 } else {
1569 /* on deleting an address, do exact match */
1570 in6_prefixlen2mask(&mask, 128);
1571 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1572 bcopy(&sin6->sin6_addr, &match, sizeof(match));
1573
1574 cmp = 1;
1575 }
1576 }
1577
1578 for (ifa = ifp->if_addrlist.tqh_first;
1579 ifa;
1580 ifa = ifa->ifa_list.tqe_next)
1581 {
1582 if (ifa->ifa_addr->sa_family != AF_INET6)
1583 continue;
1584 if (!cmp)
1585 break;
1586
1587 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
1588 candidate.s6_addr32[0] &= mask.s6_addr32[0];
1589 candidate.s6_addr32[1] &= mask.s6_addr32[1];
1590 candidate.s6_addr32[2] &= mask.s6_addr32[2];
1591 candidate.s6_addr32[3] &= mask.s6_addr32[3];
1592 if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
1593 break;
1594 }
1595 if (!ifa)
1596 return EADDRNOTAVAIL;
1597 ia = ifa2ia6(ifa);
1598
1599 if (cmd == SIOCGLIFADDR) {
1600 /* fill in the if_laddrreq structure */
1601 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
1602 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1603 bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
1604 ia->ia_dstaddr.sin6_len);
1605 } else
1606 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
1607
1608 iflr->prefixlen =
1609 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
1610
1611 iflr->flags = ia->ia6_flags; /* XXX */
1612
1613 return 0;
1614 } else {
1615 struct in6_aliasreq ifra;
1616
1617 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
1618 bzero(&ifra, sizeof(ifra));
1619 bcopy(iflr->iflr_name, ifra.ifra_name,
1620 sizeof(ifra.ifra_name));
1621
1622 bcopy(&ia->ia_addr, &ifra.ifra_addr,
1623 ia->ia_addr.sin6_len);
1624 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1625 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
1626 ia->ia_dstaddr.sin6_len);
1627 } else {
1628 bzero(&ifra.ifra_dstaddr,
1629 sizeof(ifra.ifra_dstaddr));
1630 }
1631 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
1632 ia->ia_prefixmask.sin6_len);
1633
1634 ifra.ifra_flags = ia->ia6_flags;
1635 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
1636 ifp, p);
1637 }
1638 }
1639 }
1640
1641 return EOPNOTSUPP; /* just for safety */
1642 }
1643
1644 /*
1645 * Initialize an interface's intetnet6 address
1646 * and routing table entry.
1647 */
1648 static int
1649 in6_ifinit(ifp, ia, sin6, newhost)
1650 struct ifnet *ifp;
1651 struct in6_ifaddr *ia;
1652 struct sockaddr_in6 *sin6;
1653 int newhost;
1654 {
1655 int error = 0, plen, ifacount = 0;
1656 int s = splnet();
1657 struct ifaddr *ifa;
1658
1659 /*
1660 * Give the interface a chance to initialize
1661 * if this is its first address,
1662 * and to validate the address if necessary.
1663 */
1664 for (ifa = ifp->if_addrlist.tqh_first; ifa;
1665 ifa = ifa->ifa_list.tqe_next)
1666 {
1667 if (ifa->ifa_addr == NULL)
1668 continue; /* just for safety */
1669 if (ifa->ifa_addr->sa_family != AF_INET6)
1670 continue;
1671 ifacount++;
1672 }
1673
1674 ia->ia_addr = *sin6;
1675
1676 if (ifacount <= 1 && ifp->if_ioctl &&
1677 (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) {
1678 splx(s);
1679 return (error);
1680 }
1681 splx(s);
1682
1683 ia->ia_ifa.ifa_metric = ifp->if_metric;
1684
1685 /* we could do in(6)_socktrim here, but just omit it at this moment. */
1686
1687 /*
1688 * Special case:
1689 * If the destination address is specified for a point-to-point
1690 * interface, install a route to the destination as an interface
1691 * direct route.
1692 */
1693 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
1694 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) {
1695 if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD,
1696 RTF_UP | RTF_HOST)) != 0)
1697 return (error);
1698 ia->ia_flags |= IFA_ROUTE;
1699 }
1700
1701 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
1702 if (newhost) {
1703 /* set the rtrequest function to create llinfo */
1704 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
1705 in6_ifaddloop(&(ia->ia_ifa));
1706 }
1707
1708 if (ifp->if_flags & IFF_MULTICAST)
1709 in6_restoremkludge(ia, ifp);
1710
1711 return (error);
1712 }
1713
1714 /*
1715 * Multicast address kludge:
1716 * If there were any multicast addresses attached to this interface address,
1717 * either move them to another address on this interface, or save them until
1718 * such time as this interface is reconfigured for IPv6.
1719 */
1720 void
1721 in6_savemkludge(oia)
1722 struct in6_ifaddr *oia;
1723 {
1724 struct in6_ifaddr *ia;
1725 struct in6_multi *in6m, *next;
1726
1727 IFP_TO_IA6(oia->ia_ifp, ia);
1728 if (ia) { /* there is another address */
1729 for (in6m = oia->ia6_multiaddrs.lh_first; in6m; in6m = next){
1730 next = in6m->in6m_entry.le_next;
1731 IFAFREE(&in6m->in6m_ia->ia_ifa);
1732 IFAREF(&ia->ia_ifa);
1733 in6m->in6m_ia = ia;
1734 LIST_INSERT_HEAD(&ia->ia6_multiaddrs, in6m, in6m_entry);
1735 }
1736 } else { /* last address on this if deleted, save */
1737 struct multi6_kludge *mk;
1738
1739 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
1740 if (mk->mk_ifp == oia->ia_ifp)
1741 break;
1742 }
1743 if (mk == NULL) /* this should not happen! */
1744 panic("in6_savemkludge: no kludge space");
1745
1746 for (in6m = oia->ia6_multiaddrs.lh_first; in6m; in6m = next){
1747 next = in6m->in6m_entry.le_next;
1748 IFAFREE(&in6m->in6m_ia->ia_ifa); /* release reference */
1749 in6m->in6m_ia = NULL;
1750 LIST_INSERT_HEAD(&mk->mk_head, in6m, in6m_entry);
1751 }
1752 }
1753 }
1754
1755 /*
1756 * Continuation of multicast address hack:
1757 * If there was a multicast group list previously saved for this interface,
1758 * then we re-attach it to the first address configured on the i/f.
1759 */
1760 void
1761 in6_restoremkludge(ia, ifp)
1762 struct in6_ifaddr *ia;
1763 struct ifnet *ifp;
1764 {
1765 struct multi6_kludge *mk;
1766
1767 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
1768 if (mk->mk_ifp == ifp) {
1769 struct in6_multi *in6m, *next;
1770
1771 for (in6m = mk->mk_head.lh_first; in6m; in6m = next) {
1772 next = in6m->in6m_entry.le_next;
1773 in6m->in6m_ia = ia;
1774 IFAREF(&ia->ia_ifa);
1775 LIST_INSERT_HEAD(&ia->ia6_multiaddrs,
1776 in6m, in6m_entry);
1777 }
1778 LIST_INIT(&mk->mk_head);
1779 break;
1780 }
1781 }
1782 }
1783
1784 /*
1785 * Allocate space for the kludge at interface initialization time.
1786 * Formerly, we dynamically allocated the space in in6_savemkludge() with
1787 * malloc(M_WAITOK). However, it was wrong since the function could be called
1788 * under an interrupt context (software timer on address lifetime expiration).
1789 * Also, we cannot just give up allocating the strucutre, since the group
1790 * membership structure is very complex and we need to keep it anyway.
1791 * Of course, this function MUST NOT be called under an interrupt context.
1792 * Specifically, it is expected to be called only from in6_ifattach(), though
1793 * it is a global function.
1794 */
1795 void
1796 in6_createmkludge(ifp)
1797 struct ifnet *ifp;
1798 {
1799 struct multi6_kludge *mk;
1800
1801 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
1802 /* If we've already had one, do not allocate. */
1803 if (mk->mk_ifp == ifp)
1804 return;
1805 }
1806
1807 mk = malloc(sizeof(*mk), M_IPMADDR, M_WAITOK);
1808
1809 bzero(mk, sizeof(*mk));
1810 LIST_INIT(&mk->mk_head);
1811 mk->mk_ifp = ifp;
1812 LIST_INSERT_HEAD(&in6_mk, mk, mk_entry);
1813 }
1814
1815 void
1816 in6_purgemkludge(ifp)
1817 struct ifnet *ifp;
1818 {
1819 struct multi6_kludge *mk;
1820 struct in6_multi *in6m;
1821
1822 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
1823 if (mk->mk_ifp != ifp)
1824 continue;
1825
1826 /* leave from all multicast groups joined */
1827 while ((in6m = LIST_FIRST(&mk->mk_head)) != NULL)
1828 in6_delmulti(in6m);
1829 LIST_REMOVE(mk, mk_entry);
1830 free(mk, M_IPMADDR);
1831 break;
1832 }
1833 }
1834
1835 /*
1836 * Add an address to the list of IP6 multicast addresses for a
1837 * given interface.
1838 */
1839 struct in6_multi *
1840 in6_addmulti(maddr6, ifp, errorp)
1841 struct in6_addr *maddr6;
1842 struct ifnet *ifp;
1843 int *errorp;
1844 {
1845 struct in6_ifaddr *ia;
1846 struct in6_ifreq ifr;
1847 struct in6_multi *in6m;
1848 int s = splsoftnet();
1849
1850 *errorp = 0;
1851 /*
1852 * See if address already in list.
1853 */
1854 IN6_LOOKUP_MULTI(*maddr6, ifp, in6m);
1855 if (in6m != NULL) {
1856 /*
1857 * Found it; just increment the refrence count.
1858 */
1859 in6m->in6m_refcount++;
1860 } else {
1861 /*
1862 * New address; allocate a new multicast record
1863 * and link it into the interface's multicast list.
1864 */
1865 in6m = (struct in6_multi *)
1866 malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT);
1867 if (in6m == NULL) {
1868 splx(s);
1869 *errorp = ENOBUFS;
1870 return (NULL);
1871 }
1872 in6m->in6m_addr = *maddr6;
1873 in6m->in6m_ifp = ifp;
1874 in6m->in6m_refcount = 1;
1875 IFP_TO_IA6(ifp, ia);
1876 if (ia == NULL) {
1877 free(in6m, M_IPMADDR);
1878 splx(s);
1879 *errorp = EADDRNOTAVAIL; /* appropriate? */
1880 return (NULL);
1881 }
1882 in6m->in6m_ia = ia;
1883 IFAREF(&ia->ia_ifa); /* gain a reference */
1884 LIST_INSERT_HEAD(&ia->ia6_multiaddrs, in6m, in6m_entry);
1885
1886 /*
1887 * Ask the network driver to update its multicast reception
1888 * filter appropriately for the new address.
1889 */
1890 bzero(&ifr.ifr_addr, sizeof(struct sockaddr_in6));
1891 ifr.ifr_addr.sin6_len = sizeof(struct sockaddr_in6);
1892 ifr.ifr_addr.sin6_family = AF_INET6;
1893 ifr.ifr_addr.sin6_addr = *maddr6;
1894 if (ifp->if_ioctl == NULL)
1895 *errorp = ENXIO; /* XXX: appropriate? */
1896 else
1897 *errorp = (*ifp->if_ioctl)(ifp, SIOCADDMULTI,
1898 (caddr_t)&ifr);
1899 if (*errorp) {
1900 LIST_REMOVE(in6m, in6m_entry);
1901 free(in6m, M_IPMADDR);
1902 IFAFREE(&ia->ia_ifa);
1903 splx(s);
1904 return (NULL);
1905 }
1906 /*
1907 * Let MLD6 know that we have joined a new IP6 multicast
1908 * group.
1909 */
1910 mld6_start_listening(in6m);
1911 }
1912 splx(s);
1913 return (in6m);
1914 }
1915
1916 /*
1917 * Delete a multicast address record.
1918 */
1919 void
1920 in6_delmulti(in6m)
1921 struct in6_multi *in6m;
1922 {
1923 struct in6_ifreq ifr;
1924 struct in6_ifaddr *ia;
1925 int s = splsoftnet();
1926
1927 if (--in6m->in6m_refcount == 0) {
1928 /*
1929 * No remaining claims to this record; let MLD6 know
1930 * that we are leaving the multicast group.
1931 */
1932 mld6_stop_listening(in6m);
1933
1934 /*
1935 * Unlink from list.
1936 */
1937 LIST_REMOVE(in6m, in6m_entry);
1938 if (in6m->in6m_ia) {
1939 IFAFREE(&in6m->in6m_ia->ia_ifa); /* release reference */
1940 }
1941 /*
1942 * Delete all references of this multicasting group from
1943 * the membership arrays
1944 */
1945 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1946 struct in6_multi_mship *imm;
1947 LIST_FOREACH(imm, &ia->ia6_memberships,
1948 i6mm_chain) {
1949 if (imm->i6mm_maddr == in6m)
1950 imm->i6mm_maddr = NULL;
1951 }
1952 }
1953
1954 /*
1955 * Notify the network driver to update its multicast
1956 * reception filter.
1957 */
1958 bzero(&ifr.ifr_addr, sizeof(struct sockaddr_in6));
1959 ifr.ifr_addr.sin6_len = sizeof(struct sockaddr_in6);
1960 ifr.ifr_addr.sin6_family = AF_INET6;
1961 ifr.ifr_addr.sin6_addr = in6m->in6m_addr;
1962 (*in6m->in6m_ifp->if_ioctl)(in6m->in6m_ifp,
1963 SIOCDELMULTI, (caddr_t)&ifr);
1964 free(in6m, M_IPMADDR);
1965 }
1966 splx(s);
1967 }
1968
1969 struct in6_multi_mship *
1970 in6_joingroup(ifp, addr, errorp)
1971 struct ifnet *ifp;
1972 struct in6_addr *addr;
1973 int *errorp;
1974 {
1975 struct in6_multi_mship *imm;
1976
1977 imm = malloc(sizeof(*imm), M_IPMADDR, M_NOWAIT);
1978 if (!imm) {
1979 *errorp = ENOBUFS;
1980 return NULL;
1981 }
1982 imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp);
1983 if (!imm->i6mm_maddr) {
1984 /* *errorp is alrady set */
1985 free(imm, M_IPMADDR);
1986 return NULL;
1987 }
1988 return imm;
1989 }
1990
1991 int
1992 in6_leavegroup(imm)
1993 struct in6_multi_mship *imm;
1994 {
1995
1996 if (imm->i6mm_maddr)
1997 in6_delmulti(imm->i6mm_maddr);
1998 free(imm, M_IPMADDR);
1999 return 0;
2000 }
2001
2002 /*
2003 * Find an IPv6 interface link-local address specific to an interface.
2004 */
2005 struct in6_ifaddr *
2006 in6ifa_ifpforlinklocal(ifp, ignoreflags)
2007 struct ifnet *ifp;
2008 int ignoreflags;
2009 {
2010 struct ifaddr *ifa;
2011
2012 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
2013 {
2014 if (ifa->ifa_addr == NULL)
2015 continue; /* just for safety */
2016 if (ifa->ifa_addr->sa_family != AF_INET6)
2017 continue;
2018 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
2019 if ((((struct in6_ifaddr *)ifa)->ia6_flags &
2020 ignoreflags) != 0)
2021 continue;
2022 break;
2023 }
2024 }
2025
2026 return ((struct in6_ifaddr *)ifa);
2027 }
2028
2029
2030 /*
2031 * find the internet address corresponding to a given interface and address.
2032 */
2033 struct in6_ifaddr *
2034 in6ifa_ifpwithaddr(ifp, addr)
2035 struct ifnet *ifp;
2036 struct in6_addr *addr;
2037 {
2038 struct ifaddr *ifa;
2039
2040 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
2041 {
2042 if (ifa->ifa_addr == NULL)
2043 continue; /* just for safety */
2044 if (ifa->ifa_addr->sa_family != AF_INET6)
2045 continue;
2046 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
2047 break;
2048 }
2049
2050 return ((struct in6_ifaddr *)ifa);
2051 }
2052
2053 /*
2054 * Convert IP6 address to printable (loggable) representation.
2055 */
2056 static char digits[] = "0123456789abcdef";
2057 static int ip6round = 0;
2058 char *
2059 ip6_sprintf(addr)
2060 const struct in6_addr *addr;
2061 {
2062 static char ip6buf[8][48];
2063 int i;
2064 char *cp;
2065 const u_int16_t *a = (const u_int16_t *)addr;
2066 const u_int8_t *d;
2067 int dcolon = 0;
2068
2069 ip6round = (ip6round + 1) & 7;
2070 cp = ip6buf[ip6round];
2071
2072 for (i = 0; i < 8; i++) {
2073 if (dcolon == 1) {
2074 if (*a == 0) {
2075 if (i == 7)
2076 *cp++ = ':';
2077 a++;
2078 continue;
2079 } else
2080 dcolon = 2;
2081 }
2082 if (*a == 0) {
2083 if (dcolon == 0 && *(a + 1) == 0) {
2084 if (i == 0)
2085 *cp++ = ':';
2086 *cp++ = ':';
2087 dcolon = 1;
2088 } else {
2089 *cp++ = '0';
2090 *cp++ = ':';
2091 }
2092 a++;
2093 continue;
2094 }
2095 d = (const u_char *)a;
2096 *cp++ = digits[*d >> 4];
2097 *cp++ = digits[*d++ & 0xf];
2098 *cp++ = digits[*d >> 4];
2099 *cp++ = digits[*d & 0xf];
2100 *cp++ = ':';
2101 a++;
2102 }
2103 *--cp = 0;
2104 return (ip6buf[ip6round]);
2105 }
2106
2107 /*
2108 * Determine if an address is on a local network.
2109 */
2110 int
2111 in6_localaddr(in6)
2112 struct in6_addr *in6;
2113 {
2114 struct in6_ifaddr *ia;
2115
2116 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
2117 return (1);
2118
2119 for (ia = in6_ifaddr; ia; ia = ia->ia_next)
2120 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
2121 &ia->ia_prefixmask.sin6_addr))
2122 return (1);
2123
2124 return (0);
2125 }
2126
2127 /*
2128 * Get a scope of the address. Node-local, link-local, site-local or global.
2129 */
2130 int
2131 in6_addrscope (addr)
2132 struct in6_addr *addr;
2133 {
2134 int scope;
2135
2136 if (addr->s6_addr8[0] == 0xfe) {
2137 scope = addr->s6_addr8[1] & 0xc0;
2138
2139 switch (scope) {
2140 case 0x80:
2141 return IPV6_ADDR_SCOPE_LINKLOCAL;
2142 case 0xc0:
2143 return IPV6_ADDR_SCOPE_SITELOCAL;
2144 default:
2145 return IPV6_ADDR_SCOPE_GLOBAL; /* just in case */
2146 }
2147 }
2148
2149
2150 if (addr->s6_addr8[0] == 0xff) {
2151 scope = addr->s6_addr8[1] & 0x0f;
2152
2153 /*
2154 * due to other scope such as reserved,
2155 * return scope doesn't work.
2156 */
2157 switch (scope) {
2158 case IPV6_ADDR_SCOPE_NODELOCAL:
2159 return IPV6_ADDR_SCOPE_NODELOCAL;
2160 case IPV6_ADDR_SCOPE_LINKLOCAL:
2161 return IPV6_ADDR_SCOPE_LINKLOCAL;
2162 case IPV6_ADDR_SCOPE_SITELOCAL:
2163 return IPV6_ADDR_SCOPE_SITELOCAL;
2164 default:
2165 return IPV6_ADDR_SCOPE_GLOBAL;
2166 }
2167 }
2168
2169 if (bcmp(&in6addr_loopback, addr, sizeof(*addr) - 1) == 0) {
2170 if (addr->s6_addr8[15] == 1) /* loopback */
2171 return IPV6_ADDR_SCOPE_NODELOCAL;
2172 if (addr->s6_addr8[15] == 0) /* unspecified */
2173 return IPV6_ADDR_SCOPE_LINKLOCAL;
2174 }
2175
2176 return IPV6_ADDR_SCOPE_GLOBAL;
2177 }
2178
2179 int
2180 in6_addr2scopeid(ifp, addr)
2181 struct ifnet *ifp; /* must not be NULL */
2182 struct in6_addr *addr; /* must not be NULL */
2183 {
2184 int scope = in6_addrscope(addr);
2185
2186 switch (scope) {
2187 case IPV6_ADDR_SCOPE_NODELOCAL:
2188 return (-1); /* XXX: is this an appropriate value? */
2189
2190 case IPV6_ADDR_SCOPE_LINKLOCAL:
2191 /* XXX: we do not distinguish between a link and an I/F. */
2192 return (ifp->if_index);
2193
2194 case IPV6_ADDR_SCOPE_SITELOCAL:
2195 return (0); /* XXX: invalid. */
2196
2197 default:
2198 return (0); /* XXX: treat as global. */
2199 }
2200 }
2201
2202 int
2203 in6_is_addr_deprecated(sa6)
2204 struct sockaddr_in6 *sa6;
2205 {
2206 struct in6_ifaddr *ia;
2207
2208 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
2209 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
2210 &sa6->sin6_addr) &&
2211 #ifdef SCOPEDROUTING
2212 ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id &&
2213 #endif
2214 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
2215 return (1); /* true */
2216
2217 /* XXX: do we still have to go thru the rest of the list? */
2218 }
2219
2220 return (0); /* false */
2221 }
2222
2223 /*
2224 * return length of part which dst and src are equal
2225 * hard coding...
2226 */
2227 int
2228 in6_matchlen(src, dst)
2229 struct in6_addr *src, *dst;
2230 {
2231 int match = 0;
2232 u_char *s = (u_char *)src, *d = (u_char *)dst;
2233 u_char *lim = s + 16, r;
2234
2235 while (s < lim)
2236 if ((r = (*d++ ^ *s++)) != 0) {
2237 while (r < 128) {
2238 match++;
2239 r <<= 1;
2240 }
2241 break;
2242 } else
2243 match += 8;
2244 return match;
2245 }
2246
2247 /* XXX: to be scope conscious */
2248 int
2249 in6_are_prefix_equal(p1, p2, len)
2250 struct in6_addr *p1, *p2;
2251 int len;
2252 {
2253 int bytelen, bitlen;
2254
2255 /* sanity check */
2256 if (0 > len || len > 128) {
2257 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
2258 len);
2259 return (0);
2260 }
2261
2262 bytelen = len / 8;
2263 bitlen = len % 8;
2264
2265 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
2266 return (0);
2267 if (bitlen != 0 &&
2268 p1->s6_addr[bytelen] >> (8 - bitlen) !=
2269 p2->s6_addr[bytelen] >> (8 - bitlen))
2270 return (0);
2271
2272 return (1);
2273 }
2274
2275 void
2276 in6_prefixlen2mask(maskp, len)
2277 struct in6_addr *maskp;
2278 int len;
2279 {
2280 static const u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
2281 int bytelen, bitlen, i;
2282
2283 /* sanity check */
2284 if (0 > len || len > 128) {
2285 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
2286 len);
2287 return;
2288 }
2289
2290 bzero(maskp, sizeof(*maskp));
2291 bytelen = len / 8;
2292 bitlen = len % 8;
2293 for (i = 0; i < bytelen; i++)
2294 maskp->s6_addr[i] = 0xff;
2295 if (bitlen)
2296 maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
2297 }
2298
2299 /*
2300 * return the best address out of the same scope
2301 */
2302 struct in6_ifaddr *
2303 in6_ifawithscope(oifp, dst)
2304 struct ifnet *oifp;
2305 struct in6_addr *dst;
2306 {
2307 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0;
2308 int blen = -1;
2309 struct ifaddr *ifa;
2310 struct ifnet *ifp;
2311 struct in6_ifaddr *ifa_best = NULL;
2312
2313 if (oifp == NULL) {
2314 printf("in6_ifawithscope: output interface is not specified\n");
2315 return (NULL);
2316 }
2317
2318 /*
2319 * We search for all addresses on all interfaces from the beginning.
2320 * Comparing an interface with the outgoing interface will be done
2321 * only at the final stage of tiebreaking.
2322 */
2323 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
2324 {
2325 /*
2326 * We can never take an address that breaks the scope zone
2327 * of the destination.
2328 */
2329 if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst))
2330 continue;
2331
2332 for (ifa = ifp->if_addrlist.tqh_first; ifa;
2333 ifa = ifa->ifa_list.tqe_next)
2334 {
2335 int tlen = -1, dscopecmp, bscopecmp, matchcmp;
2336
2337 if (ifa->ifa_addr->sa_family != AF_INET6)
2338 continue;
2339
2340 src_scope = in6_addrscope(IFA_IN6(ifa));
2341
2342 #ifdef ADDRSELECT_DEBUG /* should be removed after stabilization */
2343 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
2344 printf("in6_ifawithscope: dst=%s bestaddr=%s, "
2345 "newaddr=%s, scope=%x, dcmp=%d, bcmp=%d, "
2346 "matchlen=%d, flgs=%x\n",
2347 ip6_sprintf(dst),
2348 ifa_best ? ip6_sprintf(&ifa_best->ia_addr.sin6_addr) : "none",
2349 ip6_sprintf(IFA_IN6(ifa)), src_scope,
2350 dscopecmp,
2351 ifa_best ? IN6_ARE_SCOPE_CMP(src_scope, best_scope) : -1,
2352 in6_matchlen(IFA_IN6(ifa), dst),
2353 ((struct in6_ifaddr *)ifa)->ia6_flags);
2354 #endif
2355
2356 /*
2357 * Don't use an address before completing DAD
2358 * nor a duplicated address.
2359 */
2360 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2361 IN6_IFF_NOTREADY)
2362 continue;
2363
2364 /* XXX: is there any case to allow anycasts? */
2365 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2366 IN6_IFF_ANYCAST)
2367 continue;
2368
2369 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2370 IN6_IFF_DETACHED)
2371 continue;
2372
2373 /*
2374 * If this is the first address we find,
2375 * keep it anyway.
2376 */
2377 if (ifa_best == NULL)
2378 goto replace;
2379
2380 /*
2381 * ifa_best is never NULL beyond this line except
2382 * within the block labeled "replace".
2383 */
2384
2385 /*
2386 * If ifa_best has a smaller scope than dst and
2387 * the current address has a larger one than
2388 * (or equal to) dst, always replace ifa_best.
2389 * Also, if the current address has a smaller scope
2390 * than dst, ignore it unless ifa_best also has a
2391 * smaller scope.
2392 */
2393 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 &&
2394 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0)
2395 goto replace;
2396 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 &&
2397 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0)
2398 continue;
2399
2400 /*
2401 * A deprecated address SHOULD NOT be used in new
2402 * communications if an alternate (non-deprecated)
2403 * address is available and has sufficient scope.
2404 * RFC 2462, Section 5.5.4.
2405 */
2406 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2407 IN6_IFF_DEPRECATED) {
2408 /*
2409 * Ignore any deprecated addresses if
2410 * specified by configuration.
2411 */
2412 if (!ip6_use_deprecated)
2413 continue;
2414
2415 /*
2416 * If we have already found a non-deprecated
2417 * candidate, just ignore deprecated addresses.
2418 */
2419 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED)
2420 == 0)
2421 continue;
2422 }
2423
2424 /*
2425 * A non-deprecated address is always preferred
2426 * to a deprecated one regardless of scopes and
2427 * address matching.
2428 */
2429 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) &&
2430 (((struct in6_ifaddr *)ifa)->ia6_flags &
2431 IN6_IFF_DEPRECATED) == 0)
2432 goto replace;
2433
2434 /*
2435 * At this point, we have two cases:
2436 * 1. we are looking at a non-deprecated address,
2437 * and ifa_best is also non-deprecated.
2438 * 2. we are looking at a deprecated address,
2439 * and ifa_best is also deprecated.
2440 * Also, we do not have to consider a case where
2441 * the scope of if_best is larger(smaller) than dst and
2442 * the scope of the current address is smaller(larger)
2443 * than dst. Such a case has already been covered.
2444 * Tiebreaking is done according to the following
2445 * items:
2446 * - the scope comparison between the address and
2447 * dst (dscopecmp)
2448 * - the scope comparison between the address and
2449 * ifa_best (bscopecmp)
2450 * - if the address match dst longer than ifa_best
2451 * (matchcmp)
2452 * - if the address is on the outgoing I/F (outI/F)
2453 *
2454 * Roughly speaking, the selection policy is
2455 * - the most important item is scope. The same scope
2456 * is best. Then search for a larger scope.
2457 * Smaller scopes are the last resort.
2458 * - A deprecated address is chosen only when we have
2459 * no address that has an enough scope, but is
2460 * prefered to any addresses of smaller scopes.
2461 * - Longest address match against dst is considered
2462 * only for addresses that has the same scope of dst.
2463 * - If there is no other reasons to choose one,
2464 * addresses on the outgoing I/F are preferred.
2465 *
2466 * The precise decision table is as follows:
2467 * dscopecmp bscopecmp matchcmp outI/F | replace?
2468 * !equal equal N/A Yes | Yes (1)
2469 * !equal equal N/A No | No (2)
2470 * larger larger N/A N/A | No (3)
2471 * larger smaller N/A N/A | Yes (4)
2472 * smaller larger N/A N/A | Yes (5)
2473 * smaller smaller N/A N/A | No (6)
2474 * equal smaller N/A N/A | Yes (7)
2475 * equal larger (already done)
2476 * equal equal larger N/A | Yes (8)
2477 * equal equal smaller N/A | No (9)
2478 * equal equal equal Yes | Yes (a)
2479 * eaual eqaul equal No | No (b)
2480 */
2481 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
2482 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope);
2483
2484 if (dscopecmp && bscopecmp == 0) {
2485 if (oifp == ifp) /* (1) */
2486 goto replace;
2487 continue; /* (2) */
2488 }
2489 if (dscopecmp > 0) {
2490 if (bscopecmp > 0) /* (3) */
2491 continue;
2492 goto replace; /* (4) */
2493 }
2494 if (dscopecmp < 0) {
2495 if (bscopecmp > 0) /* (5) */
2496 goto replace;
2497 continue; /* (6) */
2498 }
2499
2500 /* now dscopecmp must be 0 */
2501 if (bscopecmp < 0)
2502 goto replace; /* (7) */
2503
2504 /*
2505 * At last both dscopecmp and bscopecmp must be 0.
2506 * We need address matching against dst for
2507 * tiebreaking.
2508 */
2509 tlen = in6_matchlen(IFA_IN6(ifa), dst);
2510 matchcmp = tlen - blen;
2511 if (matchcmp > 0) /* (8) */
2512 goto replace;
2513 if (matchcmp < 0) /* (9) */
2514 continue;
2515 if (oifp == ifp) /* (a) */
2516 goto replace;
2517 continue; /* (b) */
2518
2519 replace:
2520 ifa_best = (struct in6_ifaddr *)ifa;
2521 blen = tlen >= 0 ? tlen :
2522 in6_matchlen(IFA_IN6(ifa), dst);
2523 best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr);
2524 }
2525 }
2526
2527 /* count statistics for future improvements */
2528 if (ifa_best == NULL)
2529 ip6stat.ip6s_sources_none++;
2530 else {
2531 if (oifp == ifa_best->ia_ifp)
2532 ip6stat.ip6s_sources_sameif[best_scope]++;
2533 else
2534 ip6stat.ip6s_sources_otherif[best_scope]++;
2535
2536 if (best_scope == dst_scope)
2537 ip6stat.ip6s_sources_samescope[best_scope]++;
2538 else
2539 ip6stat.ip6s_sources_otherscope[best_scope]++;
2540
2541 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0)
2542 ip6stat.ip6s_sources_deprecated[best_scope]++;
2543 }
2544
2545 return (ifa_best);
2546 }
2547
2548 /*
2549 * return the best address out of the same scope. if no address was
2550 * found, return the first valid address from designated IF.
2551 */
2552 struct in6_ifaddr *
2553 in6_ifawithifp(ifp, dst)
2554 struct ifnet *ifp;
2555 struct in6_addr *dst;
2556 {
2557 int dst_scope = in6_addrscope(dst), blen = -1, tlen;
2558 struct ifaddr *ifa;
2559 struct in6_ifaddr *besta = 0;
2560 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */
2561
2562 dep[0] = dep[1] = NULL;
2563
2564 /*
2565 * We first look for addresses in the same scope.
2566 * If there is one, return it.
2567 * If two or more, return one which matches the dst longest.
2568 * If none, return one of global addresses assigned other ifs.
2569 */
2570 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
2571 {
2572 if (ifa->ifa_addr->sa_family != AF_INET6)
2573 continue;
2574 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2575 continue; /* XXX: is there any case to allow anycast? */
2576 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2577 continue; /* don't use this interface */
2578 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2579 continue;
2580 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2581 if (ip6_use_deprecated)
2582 dep[0] = (struct in6_ifaddr *)ifa;
2583 continue;
2584 }
2585
2586 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
2587 /*
2588 * call in6_matchlen() as few as possible
2589 */
2590 if (besta) {
2591 if (blen == -1)
2592 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
2593 tlen = in6_matchlen(IFA_IN6(ifa), dst);
2594 if (tlen > blen) {
2595 blen = tlen;
2596 besta = (struct in6_ifaddr *)ifa;
2597 }
2598 } else
2599 besta = (struct in6_ifaddr *)ifa;
2600 }
2601 }
2602 if (besta)
2603 return (besta);
2604
2605 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
2606 {
2607 if (ifa->ifa_addr->sa_family != AF_INET6)
2608 continue;
2609 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2610 continue; /* XXX: is there any case to allow anycast? */
2611 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2612 continue; /* don't use this interface */
2613 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2614 continue;
2615 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2616 if (ip6_use_deprecated)
2617 dep[1] = (struct in6_ifaddr *)ifa;
2618 continue;
2619 }
2620
2621 return (struct in6_ifaddr *)ifa;
2622 }
2623
2624 /* use the last-resort values, that are, deprecated addresses */
2625 if (dep[0])
2626 return dep[0];
2627 if (dep[1])
2628 return dep[1];
2629
2630 return NULL;
2631 }
2632
2633 /*
2634 * perform DAD when interface becomes IFF_UP.
2635 */
2636 void
2637 in6_if_up(ifp)
2638 struct ifnet *ifp;
2639 {
2640 struct ifaddr *ifa;
2641 struct in6_ifaddr *ia;
2642 int dad_delay; /* delay ticks before DAD output */
2643
2644 /*
2645 * special cases, like 6to4, are handled in in6_ifattach
2646 */
2647 in6_ifattach(ifp, NULL);
2648
2649 dad_delay = 0;
2650 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
2651 {
2652 if (ifa->ifa_addr->sa_family != AF_INET6)
2653 continue;
2654 ia = (struct in6_ifaddr *)ifa;
2655 if (ia->ia6_flags & IN6_IFF_TENTATIVE)
2656 nd6_dad_start(ifa, &dad_delay);
2657 }
2658 }
2659
2660 int
2661 in6if_do_dad(ifp)
2662 struct ifnet *ifp;
2663 {
2664 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2665 return (0);
2666
2667 switch (ifp->if_type) {
2668 case IFT_FAITH:
2669 /*
2670 * These interfaces do not have the IFF_LOOPBACK flag,
2671 * but loop packets back. We do not have to do DAD on such
2672 * interfaces. We should even omit it, because loop-backed
2673 * NS would confuse the DAD procedure.
2674 */
2675 return (0);
2676 default:
2677 /*
2678 * Our DAD routine requires the interface up and running.
2679 * However, some interfaces can be up before the RUNNING
2680 * status. Additionaly, users may try to assign addresses
2681 * before the interface becomes up (or running).
2682 * We simply skip DAD in such a case as a work around.
2683 * XXX: we should rather mark "tentative" on such addresses,
2684 * and do DAD after the interface becomes ready.
2685 */
2686 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2687 (IFF_UP|IFF_RUNNING))
2688 return (0);
2689
2690 return (1);
2691 }
2692 }
2693
2694 /*
2695 * Calculate max IPv6 MTU through all the interfaces and store it
2696 * to in6_maxmtu.
2697 */
2698 void
2699 in6_setmaxmtu()
2700 {
2701 unsigned long maxmtu = 0;
2702 struct ifnet *ifp;
2703
2704 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
2705 {
2706 /* this function can be called during ifnet initialization */
2707 if (!ifp->if_afdata[AF_INET6])
2708 continue;
2709 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
2710 IN6_LINKMTU(ifp) > maxmtu)
2711 maxmtu = IN6_LINKMTU(ifp);
2712 }
2713 if (maxmtu) /* update only when maxmtu is positive */
2714 in6_maxmtu = maxmtu;
2715 }
2716
2717 void *
2718 in6_domifattach(ifp)
2719 struct ifnet *ifp;
2720 {
2721 struct in6_ifextra *ext;
2722
2723 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK);
2724 bzero(ext, sizeof(*ext));
2725
2726 ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat),
2727 M_IFADDR, M_WAITOK);
2728 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat));
2729
2730 ext->icmp6_ifstat =
2731 (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat),
2732 M_IFADDR, M_WAITOK);
2733 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat));
2734
2735 ext->nd_ifinfo = nd6_ifattach(ifp);
2736 return ext;
2737 }
2738
2739 void
2740 in6_domifdetach(ifp, aux)
2741 struct ifnet *ifp;
2742 void *aux;
2743 {
2744 struct in6_ifextra *ext = (struct in6_ifextra *)aux;
2745
2746 nd6_ifdetach(ext->nd_ifinfo);
2747 free(ext->in6_ifstat, M_IFADDR);
2748 free(ext->icmp6_ifstat, M_IFADDR);
2749 free(ext, M_IFADDR);
2750 }
2751