ip6_input.c revision 1.142 1 /* $NetBSD: ip6_input.c,v 1.142 2013/06/05 19:01:26 christos Exp $ */
2 /* $KAME: ip6_input.c,v 1.188 2001/03/29 05:34:31 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_input.c,v 1.142 2013/06/05 19:01:26 christos Exp $");
66
67 #include "opt_gateway.h"
68 #include "opt_inet.h"
69 #include "opt_inet6.h"
70 #include "opt_ipsec.h"
71 #include "opt_pfil_hooks.h"
72 #include "opt_compat_netbsd.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/domain.h>
79 #include <sys/protosw.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82 #include <sys/errno.h>
83 #include <sys/time.h>
84 #include <sys/kernel.h>
85 #include <sys/syslog.h>
86 #include <sys/proc.h>
87 #include <sys/sysctl.h>
88 #include <sys/cprng.h>
89
90 #include <net/if.h>
91 #include <net/if_types.h>
92 #include <net/if_dl.h>
93 #include <net/route.h>
94 #include <net/netisr.h>
95 #ifdef PFIL_HOOKS
96 #include <net/pfil.h>
97 #endif
98
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #ifdef INET
102 #include <netinet/ip.h>
103 #include <netinet/ip_icmp.h>
104 #endif /* INET */
105 #include <netinet/ip6.h>
106 #include <netinet/portalgo.h>
107 #include <netinet6/in6_var.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/ip6_private.h>
110 #include <netinet6/in6_pcb.h>
111 #include <netinet/icmp6.h>
112 #include <netinet6/scope6_var.h>
113 #include <netinet6/in6_ifattach.h>
114 #include <netinet6/nd6.h>
115
116 #ifdef IPSEC
117 #include <netipsec/ipsec.h>
118 #include <netipsec/ipsec6.h>
119 #include <netipsec/key.h>
120 #endif /* IPSEC */
121
122 #ifdef COMPAT_50
123 #include <compat/sys/time.h>
124 #include <compat/sys/socket.h>
125 #endif
126
127 #include <netinet6/ip6protosw.h>
128
129 #include "faith.h"
130 #include "gif.h"
131
132 #if NGIF > 0
133 #include <netinet6/in6_gif.h>
134 #endif
135
136 #include <net/net_osdep.h>
137
138 extern struct domain inet6domain;
139
140 u_char ip6_protox[IPPROTO_MAX];
141 static int ip6qmaxlen = IFQ_MAXLEN;
142 struct in6_ifaddr *in6_ifaddr;
143 struct ifqueue ip6intrq;
144
145 extern callout_t in6_tmpaddrtimer_ch;
146
147 int ip6_forward_srcrt; /* XXX */
148 int ip6_sourcecheck; /* XXX */
149 int ip6_sourcecheck_interval; /* XXX */
150
151 #ifdef PFIL_HOOKS
152 struct pfil_head inet6_pfil_hook;
153 #endif
154
155 percpu_t *ip6stat_percpu;
156
157 static void ip6_init2(void *);
158 static struct m_tag *ip6_setdstifaddr(struct mbuf *, const struct in6_ifaddr *);
159
160 static int ip6_process_hopopts(struct mbuf *, u_int8_t *, int, u_int32_t *,
161 u_int32_t *);
162 static struct mbuf *ip6_pullexthdr(struct mbuf *, size_t, int);
163 static void sysctl_net_inet6_ip6_setup(struct sysctllog **);
164
165 /*
166 * IP6 initialization: fill in IP6 protocol switch table.
167 * All protocols not implemented in kernel go to raw IP6 protocol handler.
168 */
169 void
170 ip6_init(void)
171 {
172 const struct ip6protosw *pr;
173 int i;
174
175 sysctl_net_inet6_ip6_setup(NULL);
176 pr = (const struct ip6protosw *)pffindproto(PF_INET6, IPPROTO_RAW, SOCK_RAW);
177 if (pr == 0)
178 panic("ip6_init");
179 for (i = 0; i < IPPROTO_MAX; i++)
180 ip6_protox[i] = pr - inet6sw;
181 for (pr = (const struct ip6protosw *)inet6domain.dom_protosw;
182 pr < (const struct ip6protosw *)inet6domain.dom_protoswNPROTOSW; pr++)
183 if (pr->pr_domain->dom_family == PF_INET6 &&
184 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
185 ip6_protox[pr->pr_protocol] = pr - inet6sw;
186 ip6intrq.ifq_maxlen = ip6qmaxlen;
187 scope6_init();
188 addrsel_policy_init();
189 nd6_init();
190 frag6_init();
191 ip6_desync_factor = cprng_fast32() % MAX_TEMP_DESYNC_FACTOR;
192
193 ip6_init2(NULL);
194 #ifdef GATEWAY
195 ip6flow_init(ip6_hashsize);
196 #endif
197
198 #ifdef PFIL_HOOKS
199 /* Register our Packet Filter hook. */
200 inet6_pfil_hook.ph_type = PFIL_TYPE_AF;
201 inet6_pfil_hook.ph_af = AF_INET6;
202 i = pfil_head_register(&inet6_pfil_hook);
203 if (i != 0)
204 printf("ip6_init: WARNING: unable to register pfil hook, "
205 "error %d\n", i);
206 #endif /* PFIL_HOOKS */
207
208 ip6stat_percpu = percpu_alloc(sizeof(uint64_t) * IP6_NSTATS);
209 }
210
211 static void
212 ip6_init2(void *dummy)
213 {
214
215 /* nd6_timer_init */
216 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
217 callout_reset(&nd6_timer_ch, hz, nd6_timer, NULL);
218
219 /* timer for regeneranation of temporary addresses randomize ID */
220 callout_init(&in6_tmpaddrtimer_ch, CALLOUT_MPSAFE);
221 callout_reset(&in6_tmpaddrtimer_ch,
222 (ip6_temp_preferred_lifetime - ip6_desync_factor -
223 ip6_temp_regen_advance) * hz,
224 in6_tmpaddrtimer, NULL);
225 }
226
227 /*
228 * IP6 input interrupt handling. Just pass the packet to ip6_input.
229 */
230 void
231 ip6intr(void)
232 {
233 int s;
234 struct mbuf *m;
235
236 mutex_enter(softnet_lock);
237 KERNEL_LOCK(1, NULL);
238 for (;;) {
239 s = splnet();
240 IF_DEQUEUE(&ip6intrq, m);
241 splx(s);
242 if (m == 0)
243 break;
244 /* drop the packet if IPv6 operation is disabled on the IF */
245 if ((ND_IFINFO(m->m_pkthdr.rcvif)->flags & ND6_IFF_IFDISABLED)) {
246 m_freem(m);
247 break;
248 }
249 ip6_input(m);
250 }
251 KERNEL_UNLOCK_ONE(NULL);
252 mutex_exit(softnet_lock);
253 }
254
255 extern struct route ip6_forward_rt;
256
257 void
258 ip6_input(struct mbuf *m)
259 {
260 struct ip6_hdr *ip6;
261 int hit, off = sizeof(struct ip6_hdr), nest;
262 u_int32_t plen;
263 u_int32_t rtalert = ~0;
264 int nxt, ours = 0, rh_present = 0;
265 struct ifnet *deliverifp = NULL;
266 int srcrt = 0;
267 const struct rtentry *rt;
268 union {
269 struct sockaddr dst;
270 struct sockaddr_in6 dst6;
271 } u;
272 #ifdef IPSEC
273 struct m_tag *mtag;
274 struct tdb_ident *tdbi;
275 struct secpolicy *sp;
276 int s, error;
277 #endif
278
279 /*
280 * make sure we don't have onion peering information into m_tag.
281 */
282 ip6_delaux(m);
283
284 /*
285 * mbuf statistics
286 */
287 if (m->m_flags & M_EXT) {
288 if (m->m_next)
289 IP6_STATINC(IP6_STAT_MEXT2M);
290 else
291 IP6_STATINC(IP6_STAT_MEXT1);
292 } else {
293 #define M2MMAX 32
294 if (m->m_next) {
295 if (m->m_flags & M_LOOP) {
296 /*XXX*/ IP6_STATINC(IP6_STAT_M2M + lo0ifp->if_index);
297 } else if (m->m_pkthdr.rcvif->if_index < M2MMAX) {
298 IP6_STATINC(IP6_STAT_M2M +
299 m->m_pkthdr.rcvif->if_index);
300 } else
301 IP6_STATINC(IP6_STAT_M2M);
302 } else
303 IP6_STATINC(IP6_STAT_M1);
304 #undef M2MMAX
305 }
306
307 in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_receive);
308 IP6_STATINC(IP6_STAT_TOTAL);
309
310 /*
311 * If the IPv6 header is not aligned, slurp it up into a new
312 * mbuf with space for link headers, in the event we forward
313 * it. Otherwise, if it is aligned, make sure the entire base
314 * IPv6 header is in the first mbuf of the chain.
315 */
316 if (IP6_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
317 struct ifnet *inifp = m->m_pkthdr.rcvif;
318 if ((m = m_copyup(m, sizeof(struct ip6_hdr),
319 (max_linkhdr + 3) & ~3)) == NULL) {
320 /* XXXJRT new stat, please */
321 IP6_STATINC(IP6_STAT_TOOSMALL);
322 in6_ifstat_inc(inifp, ifs6_in_hdrerr);
323 return;
324 }
325 } else if (__predict_false(m->m_len < sizeof(struct ip6_hdr))) {
326 struct ifnet *inifp = m->m_pkthdr.rcvif;
327 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
328 IP6_STATINC(IP6_STAT_TOOSMALL);
329 in6_ifstat_inc(inifp, ifs6_in_hdrerr);
330 return;
331 }
332 }
333
334 ip6 = mtod(m, struct ip6_hdr *);
335
336 if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
337 IP6_STATINC(IP6_STAT_BADVERS);
338 in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_hdrerr);
339 goto bad;
340 }
341
342 /*
343 * Assume that we can create a fast-forward IP flow entry
344 * based on this packet.
345 */
346 m->m_flags |= M_CANFASTFWD;
347
348 #ifdef PFIL_HOOKS
349 /*
350 * Run through list of hooks for input packets. If there are any
351 * filters which require that additional packets in the flow are
352 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
353 * Note that filters must _never_ set this flag, as another filter
354 * in the list may have previously cleared it.
355 */
356 /*
357 * let ipfilter look at packet on the wire,
358 * not the decapsulated packet.
359 */
360 #if defined(IPSEC)
361 if (!ipsec_indone(m))
362 #else
363 if (1)
364 #endif
365 {
366 struct in6_addr odst;
367
368 odst = ip6->ip6_dst;
369 if (pfil_run_hooks(&inet6_pfil_hook, &m, m->m_pkthdr.rcvif,
370 PFIL_IN) != 0)
371 return;
372 if (m == NULL)
373 return;
374 ip6 = mtod(m, struct ip6_hdr *);
375 srcrt = !IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst);
376 }
377 #endif /* PFIL_HOOKS */
378
379 IP6_STATINC(IP6_STAT_NXTHIST + ip6->ip6_nxt);
380
381 #ifdef ALTQ
382 if (altq_input != NULL && (*altq_input)(m, AF_INET6) == 0) {
383 /* packet is dropped by traffic conditioner */
384 return;
385 }
386 #endif
387
388 /*
389 * Check against address spoofing/corruption.
390 */
391 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src) ||
392 IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_dst)) {
393 /*
394 * XXX: "badscope" is not very suitable for a multicast source.
395 */
396 IP6_STATINC(IP6_STAT_BADSCOPE);
397 in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_addrerr);
398 goto bad;
399 }
400 /*
401 * The following check is not documented in specs. A malicious
402 * party may be able to use IPv4 mapped addr to confuse tcp/udp stack
403 * and bypass security checks (act as if it was from 127.0.0.1 by using
404 * IPv6 src ::ffff:127.0.0.1). Be cautious.
405 *
406 * This check chokes if we are in an SIIT cloud. As none of BSDs
407 * support IPv4-less kernel compilation, we cannot support SIIT
408 * environment at all. So, it makes more sense for us to reject any
409 * malicious packets for non-SIIT environment, than try to do a
410 * partial support for SIIT environment.
411 */
412 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
413 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
414 IP6_STATINC(IP6_STAT_BADSCOPE);
415 in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_addrerr);
416 goto bad;
417 }
418 #if 0
419 /*
420 * Reject packets with IPv4 compatible addresses (auto tunnel).
421 *
422 * The code forbids auto tunnel relay case in RFC1933 (the check is
423 * stronger than RFC1933). We may want to re-enable it if mech-xx
424 * is revised to forbid relaying case.
425 */
426 if (IN6_IS_ADDR_V4COMPAT(&ip6->ip6_src) ||
427 IN6_IS_ADDR_V4COMPAT(&ip6->ip6_dst)) {
428 IP6_STATINC(IP6_STAT_BADSCOPE);
429 in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_addrerr);
430 goto bad;
431 }
432 #endif
433
434 /*
435 * Disambiguate address scope zones (if there is ambiguity).
436 * We first make sure that the original source or destination address
437 * is not in our internal form for scoped addresses. Such addresses
438 * are not necessarily invalid spec-wise, but we cannot accept them due
439 * to the usage conflict.
440 * in6_setscope() then also checks and rejects the cases where src or
441 * dst are the loopback address and the receiving interface
442 * is not loopback.
443 */
444 if (__predict_false(
445 m_makewritable(&m, 0, sizeof(struct ip6_hdr), M_DONTWAIT)))
446 goto bad;
447 ip6 = mtod(m, struct ip6_hdr *);
448 if (in6_clearscope(&ip6->ip6_src) || in6_clearscope(&ip6->ip6_dst)) {
449 IP6_STATINC(IP6_STAT_BADSCOPE); /* XXX */
450 goto bad;
451 }
452 if (in6_setscope(&ip6->ip6_src, m->m_pkthdr.rcvif, NULL) ||
453 in6_setscope(&ip6->ip6_dst, m->m_pkthdr.rcvif, NULL)) {
454 IP6_STATINC(IP6_STAT_BADSCOPE);
455 goto bad;
456 }
457
458 /*
459 * Multicast check
460 */
461 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
462 struct in6_multi *in6m = 0;
463
464 in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_mcast);
465 /*
466 * See if we belong to the destination multicast group on the
467 * arrival interface.
468 */
469 IN6_LOOKUP_MULTI(ip6->ip6_dst, m->m_pkthdr.rcvif, in6m);
470 if (in6m)
471 ours = 1;
472 else if (!ip6_mrouter) {
473 uint64_t *ip6s = IP6_STAT_GETREF();
474 ip6s[IP6_STAT_NOTMEMBER]++;
475 ip6s[IP6_STAT_CANTFORWARD]++;
476 IP6_STAT_PUTREF();
477 in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_discard);
478 goto bad;
479 }
480 deliverifp = m->m_pkthdr.rcvif;
481 goto hbhcheck;
482 }
483
484 sockaddr_in6_init(&u.dst6, &ip6->ip6_dst, 0, 0, 0);
485
486 /*
487 * Unicast check
488 */
489 rt = rtcache_lookup2(&ip6_forward_rt, &u.dst, 1, &hit);
490 if (hit)
491 IP6_STATINC(IP6_STAT_FORWARD_CACHEHIT);
492 else
493 IP6_STATINC(IP6_STAT_FORWARD_CACHEMISS);
494
495 #define rt6_getkey(__rt) satocsin6(rt_getkey(__rt))
496
497 /*
498 * Accept the packet if the forwarding interface to the destination
499 * according to the routing table is the loopback interface,
500 * unless the associated route has a gateway.
501 * Note that this approach causes to accept a packet if there is a
502 * route to the loopback interface for the destination of the packet.
503 * But we think it's even useful in some situations, e.g. when using
504 * a special daemon which wants to intercept the packet.
505 */
506 if (rt != NULL &&
507 (rt->rt_flags & (RTF_HOST|RTF_GATEWAY)) == RTF_HOST &&
508 !(rt->rt_flags & RTF_CLONED) &&
509 #if 0
510 /*
511 * The check below is redundant since the comparison of
512 * the destination and the key of the rtentry has
513 * already done through looking up the routing table.
514 */
515 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &rt6_getkey(rt)->sin6_addr) &&
516 #endif
517 rt->rt_ifp->if_type == IFT_LOOP) {
518 struct in6_ifaddr *ia6 = (struct in6_ifaddr *)rt->rt_ifa;
519 if (ia6->ia6_flags & IN6_IFF_ANYCAST)
520 m->m_flags |= M_ANYCAST6;
521 /*
522 * packets to a tentative, duplicated, or somehow invalid
523 * address must not be accepted.
524 */
525 if (!(ia6->ia6_flags & IN6_IFF_NOTREADY)) {
526 /* this address is ready */
527 ours = 1;
528 deliverifp = ia6->ia_ifp; /* correct? */
529 goto hbhcheck;
530 } else {
531 /* address is not ready, so discard the packet. */
532 nd6log((LOG_INFO,
533 "ip6_input: packet to an unready address %s->%s\n",
534 ip6_sprintf(&ip6->ip6_src),
535 ip6_sprintf(&ip6->ip6_dst)));
536
537 goto bad;
538 }
539 }
540
541 /*
542 * FAITH (Firewall Aided Internet Translator)
543 */
544 #if defined(NFAITH) && 0 < NFAITH
545 if (ip6_keepfaith) {
546 if (rt != NULL && rt->rt_ifp != NULL &&
547 rt->rt_ifp->if_type == IFT_FAITH) {
548 /* XXX do we need more sanity checks? */
549 ours = 1;
550 deliverifp = rt->rt_ifp; /* faith */
551 goto hbhcheck;
552 }
553 }
554 #endif
555
556 #if 0
557 {
558 /*
559 * Last resort: check in6_ifaddr for incoming interface.
560 * The code is here until I update the "goto ours hack" code above
561 * working right.
562 */
563 struct ifaddr *ifa;
564 IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
565 if (ifa->ifa_addr == NULL)
566 continue; /* just for safety */
567 if (ifa->ifa_addr->sa_family != AF_INET6)
568 continue;
569 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ip6->ip6_dst)) {
570 ours = 1;
571 deliverifp = ifa->ifa_ifp;
572 goto hbhcheck;
573 }
574 }
575 }
576 #endif
577
578 /*
579 * Now there is no reason to process the packet if it's not our own
580 * and we're not a router.
581 */
582 if (!ip6_forwarding) {
583 IP6_STATINC(IP6_STAT_CANTFORWARD);
584 in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_discard);
585 goto bad;
586 }
587
588 hbhcheck:
589 /*
590 * record address information into m_tag, if we don't have one yet.
591 * note that we are unable to record it, if the address is not listed
592 * as our interface address (e.g. multicast addresses, addresses
593 * within FAITH prefixes and such).
594 */
595 if (deliverifp && ip6_getdstifaddr(m) == NULL) {
596 struct in6_ifaddr *ia6;
597
598 ia6 = in6_ifawithifp(deliverifp, &ip6->ip6_dst);
599 if (ia6 != NULL && ip6_setdstifaddr(m, ia6) == NULL) {
600 /*
601 * XXX maybe we should drop the packet here,
602 * as we could not provide enough information
603 * to the upper layers.
604 */
605 }
606 }
607
608 /*
609 * Process Hop-by-Hop options header if it's contained.
610 * m may be modified in ip6_hopopts_input().
611 * If a JumboPayload option is included, plen will also be modified.
612 */
613 plen = (u_int32_t)ntohs(ip6->ip6_plen);
614 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
615 struct ip6_hbh *hbh;
616
617 if (ip6_hopopts_input(&plen, &rtalert, &m, &off)) {
618 #if 0 /*touches NULL pointer*/
619 in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_discard);
620 #endif
621 return; /* m have already been freed */
622 }
623
624 /* adjust pointer */
625 ip6 = mtod(m, struct ip6_hdr *);
626
627 /*
628 * if the payload length field is 0 and the next header field
629 * indicates Hop-by-Hop Options header, then a Jumbo Payload
630 * option MUST be included.
631 */
632 if (ip6->ip6_plen == 0 && plen == 0) {
633 /*
634 * Note that if a valid jumbo payload option is
635 * contained, ip6_hopopts_input() must set a valid
636 * (non-zero) payload length to the variable plen.
637 */
638 IP6_STATINC(IP6_STAT_BADOPTIONS);
639 in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_discard);
640 in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_hdrerr);
641 icmp6_error(m, ICMP6_PARAM_PROB,
642 ICMP6_PARAMPROB_HEADER,
643 (char *)&ip6->ip6_plen - (char *)ip6);
644 return;
645 }
646 IP6_EXTHDR_GET(hbh, struct ip6_hbh *, m, sizeof(struct ip6_hdr),
647 sizeof(struct ip6_hbh));
648 if (hbh == NULL) {
649 IP6_STATINC(IP6_STAT_TOOSHORT);
650 return;
651 }
652 KASSERT(IP6_HDR_ALIGNED_P(hbh));
653 nxt = hbh->ip6h_nxt;
654
655 /*
656 * accept the packet if a router alert option is included
657 * and we act as an IPv6 router.
658 */
659 if (rtalert != ~0 && ip6_forwarding)
660 ours = 1;
661 } else
662 nxt = ip6->ip6_nxt;
663
664 /*
665 * Check that the amount of data in the buffers
666 * is as at least much as the IPv6 header would have us expect.
667 * Trim mbufs if longer than we expect.
668 * Drop packet if shorter than we expect.
669 */
670 if (m->m_pkthdr.len - sizeof(struct ip6_hdr) < plen) {
671 IP6_STATINC(IP6_STAT_TOOSHORT);
672 in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_truncated);
673 goto bad;
674 }
675 if (m->m_pkthdr.len > sizeof(struct ip6_hdr) + plen) {
676 if (m->m_len == m->m_pkthdr.len) {
677 m->m_len = sizeof(struct ip6_hdr) + plen;
678 m->m_pkthdr.len = sizeof(struct ip6_hdr) + plen;
679 } else
680 m_adj(m, sizeof(struct ip6_hdr) + plen - m->m_pkthdr.len);
681 }
682
683 /*
684 * Forward if desirable.
685 */
686 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
687 /*
688 * If we are acting as a multicast router, all
689 * incoming multicast packets are passed to the
690 * kernel-level multicast forwarding function.
691 * The packet is returned (relatively) intact; if
692 * ip6_mforward() returns a non-zero value, the packet
693 * must be discarded, else it may be accepted below.
694 */
695 if (ip6_mrouter && ip6_mforward(ip6, m->m_pkthdr.rcvif, m)) {
696 IP6_STATINC(IP6_STAT_CANTFORWARD);
697 m_freem(m);
698 return;
699 }
700 if (!ours) {
701 m_freem(m);
702 return;
703 }
704 } else if (!ours) {
705 ip6_forward(m, srcrt);
706 return;
707 }
708
709 ip6 = mtod(m, struct ip6_hdr *);
710
711 /*
712 * Malicious party may be able to use IPv4 mapped addr to confuse
713 * tcp/udp stack and bypass security checks (act as if it was from
714 * 127.0.0.1 by using IPv6 src ::ffff:127.0.0.1). Be cautious.
715 *
716 * For SIIT end node behavior, you may want to disable the check.
717 * However, you will become vulnerable to attacks using IPv4 mapped
718 * source.
719 */
720 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
721 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
722 IP6_STATINC(IP6_STAT_BADSCOPE);
723 in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_addrerr);
724 goto bad;
725 }
726
727 /*
728 * Tell launch routine the next header
729 */
730 #ifdef IFA_STATS
731 if (deliverifp != NULL) {
732 struct in6_ifaddr *ia6;
733 ia6 = in6_ifawithifp(deliverifp, &ip6->ip6_dst);
734 if (ia6)
735 ia6->ia_ifa.ifa_data.ifad_inbytes += m->m_pkthdr.len;
736 }
737 #endif
738 IP6_STATINC(IP6_STAT_DELIVERED);
739 in6_ifstat_inc(deliverifp, ifs6_in_deliver);
740 nest = 0;
741
742 rh_present = 0;
743 while (nxt != IPPROTO_DONE) {
744 if (ip6_hdrnestlimit && (++nest > ip6_hdrnestlimit)) {
745 IP6_STATINC(IP6_STAT_TOOMANYHDR);
746 in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_hdrerr);
747 goto bad;
748 }
749
750 /*
751 * protection against faulty packet - there should be
752 * more sanity checks in header chain processing.
753 */
754 if (m->m_pkthdr.len < off) {
755 IP6_STATINC(IP6_STAT_TOOSHORT);
756 in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_truncated);
757 goto bad;
758 }
759
760 if (nxt == IPPROTO_ROUTING) {
761 if (rh_present++) {
762 in6_ifstat_inc(m->m_pkthdr.rcvif,
763 ifs6_in_hdrerr);
764 IP6_STATINC(IP6_STAT_BADOPTIONS);
765 goto bad;
766 }
767 }
768
769 #ifdef IPSEC
770 /*
771 * enforce IPsec policy checking if we are seeing last header.
772 * note that we do not visit this with protocols with pcb layer
773 * code - like udp/tcp/raw ip.
774 */
775 if ((inet6sw[ip_protox[nxt]].pr_flags & PR_LASTHDR) != 0) {
776 /*
777 * Check if the packet has already had IPsec processing
778 * done. If so, then just pass it along. This tag gets
779 * set during AH, ESP, etc. input handling, before the
780 * packet is returned to the ip input queue for delivery.
781 */
782 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
783 s = splsoftnet();
784 if (mtag != NULL) {
785 tdbi = (struct tdb_ident *)(mtag + 1);
786 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
787 } else {
788 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
789 IP_FORWARDING, &error);
790 }
791 if (sp != NULL) {
792 /*
793 * Check security policy against packet attributes.
794 */
795 error = ipsec_in_reject(sp, m);
796 KEY_FREESP(&sp);
797 } else {
798 /* XXX error stat??? */
799 error = EINVAL;
800 DPRINTF(("ip6_input: no SP, packet discarded\n"));/*XXX*/
801 }
802 splx(s);
803 if (error)
804 goto bad;
805 }
806 #endif /* IPSEC */
807
808
809 nxt = (*inet6sw[ip6_protox[nxt]].pr_input)(&m, &off, nxt);
810 }
811 return;
812 bad:
813 m_freem(m);
814 }
815
816 /*
817 * set/grab in6_ifaddr correspond to IPv6 destination address.
818 */
819 static struct m_tag *
820 ip6_setdstifaddr(struct mbuf *m, const struct in6_ifaddr *ia)
821 {
822 struct m_tag *mtag;
823
824 mtag = ip6_addaux(m);
825 if (mtag != NULL) {
826 struct ip6aux *ip6a;
827
828 ip6a = (struct ip6aux *)(mtag + 1);
829 in6_setscope(&ip6a->ip6a_src, ia->ia_ifp, &ip6a->ip6a_scope_id);
830 ip6a->ip6a_src = ia->ia_addr.sin6_addr;
831 ip6a->ip6a_flags = ia->ia6_flags;
832 }
833 return mtag; /* NULL if failed to set */
834 }
835
836 const struct ip6aux *
837 ip6_getdstifaddr(struct mbuf *m)
838 {
839 struct m_tag *mtag;
840
841 mtag = ip6_findaux(m);
842 if (mtag != NULL)
843 return (struct ip6aux *)(mtag + 1);
844 else
845 return NULL;
846 }
847
848 /*
849 * Hop-by-Hop options header processing. If a valid jumbo payload option is
850 * included, the real payload length will be stored in plenp.
851 *
852 * rtalertp - XXX: should be stored more smart way
853 */
854 int
855 ip6_hopopts_input(u_int32_t *plenp, u_int32_t *rtalertp,
856 struct mbuf **mp, int *offp)
857 {
858 struct mbuf *m = *mp;
859 int off = *offp, hbhlen;
860 struct ip6_hbh *hbh;
861
862 /* validation of the length of the header */
863 IP6_EXTHDR_GET(hbh, struct ip6_hbh *, m,
864 sizeof(struct ip6_hdr), sizeof(struct ip6_hbh));
865 if (hbh == NULL) {
866 IP6_STATINC(IP6_STAT_TOOSHORT);
867 return -1;
868 }
869 hbhlen = (hbh->ip6h_len + 1) << 3;
870 IP6_EXTHDR_GET(hbh, struct ip6_hbh *, m, sizeof(struct ip6_hdr),
871 hbhlen);
872 if (hbh == NULL) {
873 IP6_STATINC(IP6_STAT_TOOSHORT);
874 return -1;
875 }
876 KASSERT(IP6_HDR_ALIGNED_P(hbh));
877 off += hbhlen;
878 hbhlen -= sizeof(struct ip6_hbh);
879
880 if (ip6_process_hopopts(m, (u_int8_t *)hbh + sizeof(struct ip6_hbh),
881 hbhlen, rtalertp, plenp) < 0)
882 return (-1);
883
884 *offp = off;
885 *mp = m;
886 return (0);
887 }
888
889 /*
890 * Search header for all Hop-by-hop options and process each option.
891 * This function is separate from ip6_hopopts_input() in order to
892 * handle a case where the sending node itself process its hop-by-hop
893 * options header. In such a case, the function is called from ip6_output().
894 *
895 * The function assumes that hbh header is located right after the IPv6 header
896 * (RFC2460 p7), opthead is pointer into data content in m, and opthead to
897 * opthead + hbhlen is located in continuous memory region.
898 */
899 static int
900 ip6_process_hopopts(struct mbuf *m, u_int8_t *opthead, int hbhlen,
901 u_int32_t *rtalertp, u_int32_t *plenp)
902 {
903 struct ip6_hdr *ip6;
904 int optlen = 0;
905 u_int8_t *opt = opthead;
906 u_int16_t rtalert_val;
907 u_int32_t jumboplen;
908 const int erroff = sizeof(struct ip6_hdr) + sizeof(struct ip6_hbh);
909
910 for (; hbhlen > 0; hbhlen -= optlen, opt += optlen) {
911 switch (*opt) {
912 case IP6OPT_PAD1:
913 optlen = 1;
914 break;
915 case IP6OPT_PADN:
916 if (hbhlen < IP6OPT_MINLEN) {
917 IP6_STATINC(IP6_STAT_TOOSMALL);
918 goto bad;
919 }
920 optlen = *(opt + 1) + 2;
921 break;
922 case IP6OPT_RTALERT:
923 /* XXX may need check for alignment */
924 if (hbhlen < IP6OPT_RTALERT_LEN) {
925 IP6_STATINC(IP6_STAT_TOOSMALL);
926 goto bad;
927 }
928 if (*(opt + 1) != IP6OPT_RTALERT_LEN - 2) {
929 /* XXX stat */
930 icmp6_error(m, ICMP6_PARAM_PROB,
931 ICMP6_PARAMPROB_HEADER,
932 erroff + opt + 1 - opthead);
933 return (-1);
934 }
935 optlen = IP6OPT_RTALERT_LEN;
936 memcpy((void *)&rtalert_val, (void *)(opt + 2), 2);
937 *rtalertp = ntohs(rtalert_val);
938 break;
939 case IP6OPT_JUMBO:
940 /* XXX may need check for alignment */
941 if (hbhlen < IP6OPT_JUMBO_LEN) {
942 IP6_STATINC(IP6_STAT_TOOSMALL);
943 goto bad;
944 }
945 if (*(opt + 1) != IP6OPT_JUMBO_LEN - 2) {
946 /* XXX stat */
947 icmp6_error(m, ICMP6_PARAM_PROB,
948 ICMP6_PARAMPROB_HEADER,
949 erroff + opt + 1 - opthead);
950 return (-1);
951 }
952 optlen = IP6OPT_JUMBO_LEN;
953
954 /*
955 * IPv6 packets that have non 0 payload length
956 * must not contain a jumbo payload option.
957 */
958 ip6 = mtod(m, struct ip6_hdr *);
959 if (ip6->ip6_plen) {
960 IP6_STATINC(IP6_STAT_BADOPTIONS);
961 icmp6_error(m, ICMP6_PARAM_PROB,
962 ICMP6_PARAMPROB_HEADER,
963 erroff + opt - opthead);
964 return (-1);
965 }
966
967 /*
968 * We may see jumbolen in unaligned location, so
969 * we'd need to perform bcopy().
970 */
971 memcpy(&jumboplen, opt + 2, sizeof(jumboplen));
972 jumboplen = (u_int32_t)htonl(jumboplen);
973
974 #if 1
975 /*
976 * if there are multiple jumbo payload options,
977 * *plenp will be non-zero and the packet will be
978 * rejected.
979 * the behavior may need some debate in ipngwg -
980 * multiple options does not make sense, however,
981 * there's no explicit mention in specification.
982 */
983 if (*plenp != 0) {
984 IP6_STATINC(IP6_STAT_BADOPTIONS);
985 icmp6_error(m, ICMP6_PARAM_PROB,
986 ICMP6_PARAMPROB_HEADER,
987 erroff + opt + 2 - opthead);
988 return (-1);
989 }
990 #endif
991
992 /*
993 * jumbo payload length must be larger than 65535.
994 */
995 if (jumboplen <= IPV6_MAXPACKET) {
996 IP6_STATINC(IP6_STAT_BADOPTIONS);
997 icmp6_error(m, ICMP6_PARAM_PROB,
998 ICMP6_PARAMPROB_HEADER,
999 erroff + opt + 2 - opthead);
1000 return (-1);
1001 }
1002 *plenp = jumboplen;
1003
1004 break;
1005 default: /* unknown option */
1006 if (hbhlen < IP6OPT_MINLEN) {
1007 IP6_STATINC(IP6_STAT_TOOSMALL);
1008 goto bad;
1009 }
1010 optlen = ip6_unknown_opt(opt, m,
1011 erroff + opt - opthead);
1012 if (optlen == -1)
1013 return (-1);
1014 optlen += 2;
1015 break;
1016 }
1017 }
1018
1019 return (0);
1020
1021 bad:
1022 m_freem(m);
1023 return (-1);
1024 }
1025
1026 /*
1027 * Unknown option processing.
1028 * The third argument `off' is the offset from the IPv6 header to the option,
1029 * which is necessary if the IPv6 header the and option header and IPv6 header
1030 * is not continuous in order to return an ICMPv6 error.
1031 */
1032 int
1033 ip6_unknown_opt(u_int8_t *optp, struct mbuf *m, int off)
1034 {
1035 struct ip6_hdr *ip6;
1036
1037 switch (IP6OPT_TYPE(*optp)) {
1038 case IP6OPT_TYPE_SKIP: /* ignore the option */
1039 return ((int)*(optp + 1));
1040 case IP6OPT_TYPE_DISCARD: /* silently discard */
1041 m_freem(m);
1042 return (-1);
1043 case IP6OPT_TYPE_FORCEICMP: /* send ICMP even if multicasted */
1044 IP6_STATINC(IP6_STAT_BADOPTIONS);
1045 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_OPTION, off);
1046 return (-1);
1047 case IP6OPT_TYPE_ICMP: /* send ICMP if not multicasted */
1048 IP6_STATINC(IP6_STAT_BADOPTIONS);
1049 ip6 = mtod(m, struct ip6_hdr *);
1050 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1051 (m->m_flags & (M_BCAST|M_MCAST)))
1052 m_freem(m);
1053 else
1054 icmp6_error(m, ICMP6_PARAM_PROB,
1055 ICMP6_PARAMPROB_OPTION, off);
1056 return (-1);
1057 }
1058
1059 m_freem(m); /* XXX: NOTREACHED */
1060 return (-1);
1061 }
1062
1063 /*
1064 * Create the "control" list for this pcb.
1065 *
1066 * The routine will be called from upper layer handlers like tcp6_input().
1067 * Thus the routine assumes that the caller (tcp6_input) have already
1068 * called IP6_EXTHDR_CHECK() and all the extension headers are located in the
1069 * very first mbuf on the mbuf chain.
1070 * We may want to add some infinite loop prevention or sanity checks for safety.
1071 * (This applies only when you are using KAME mbuf chain restriction, i.e.
1072 * you are using IP6_EXTHDR_CHECK() not m_pulldown())
1073 */
1074 void
1075 ip6_savecontrol(struct in6pcb *in6p, struct mbuf **mp,
1076 struct ip6_hdr *ip6, struct mbuf *m)
1077 {
1078 #ifdef RFC2292
1079 #define IS2292(x, y) ((in6p->in6p_flags & IN6P_RFC2292) ? (x) : (y))
1080 #else
1081 #define IS2292(x, y) (y)
1082 #endif
1083
1084 if (in6p->in6p_socket->so_options & SO_TIMESTAMP
1085 #ifdef SO_OTIMESTAMP
1086 || in6p->in6p_socket->so_options & SO_OTIMESTAMP
1087 #endif
1088 ) {
1089 struct timeval tv;
1090
1091 microtime(&tv);
1092 #ifdef SO_OTIMESTAMP
1093 if (in6p->in6p_socket->so_options & SO_OTIMESTAMP) {
1094 struct timeval50 tv50;
1095 timeval_to_timeval50(&tv, &tv50);
1096 *mp = sbcreatecontrol((void *) &tv50, sizeof(tv50),
1097 SCM_OTIMESTAMP, SOL_SOCKET);
1098 } else
1099 #endif
1100 *mp = sbcreatecontrol((void *) &tv, sizeof(tv),
1101 SCM_TIMESTAMP, SOL_SOCKET);
1102 if (*mp)
1103 mp = &(*mp)->m_next;
1104 }
1105
1106 /* some OSes call this logic with IPv4 packet, for SO_TIMESTAMP */
1107 if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION)
1108 return;
1109
1110 /* RFC 2292 sec. 5 */
1111 if ((in6p->in6p_flags & IN6P_PKTINFO) != 0) {
1112 struct in6_pktinfo pi6;
1113
1114 memcpy(&pi6.ipi6_addr, &ip6->ip6_dst, sizeof(struct in6_addr));
1115 in6_clearscope(&pi6.ipi6_addr); /* XXX */
1116 pi6.ipi6_ifindex = m->m_pkthdr.rcvif ?
1117 m->m_pkthdr.rcvif->if_index : 0;
1118 *mp = sbcreatecontrol((void *) &pi6,
1119 sizeof(struct in6_pktinfo),
1120 IS2292(IPV6_2292PKTINFO, IPV6_PKTINFO), IPPROTO_IPV6);
1121 if (*mp)
1122 mp = &(*mp)->m_next;
1123 }
1124
1125 if (in6p->in6p_flags & IN6P_HOPLIMIT) {
1126 int hlim = ip6->ip6_hlim & 0xff;
1127
1128 *mp = sbcreatecontrol((void *) &hlim, sizeof(int),
1129 IS2292(IPV6_2292HOPLIMIT, IPV6_HOPLIMIT), IPPROTO_IPV6);
1130 if (*mp)
1131 mp = &(*mp)->m_next;
1132 }
1133
1134 if ((in6p->in6p_flags & IN6P_TCLASS) != 0) {
1135 u_int32_t flowinfo;
1136 int tclass;
1137
1138 flowinfo = (u_int32_t)ntohl(ip6->ip6_flow & IPV6_FLOWINFO_MASK);
1139 flowinfo >>= 20;
1140
1141 tclass = flowinfo & 0xff;
1142 *mp = sbcreatecontrol((void *)&tclass, sizeof(tclass),
1143 IPV6_TCLASS, IPPROTO_IPV6);
1144
1145 if (*mp)
1146 mp = &(*mp)->m_next;
1147 }
1148
1149 /*
1150 * IPV6_HOPOPTS socket option. Recall that we required super-user
1151 * privilege for the option (see ip6_ctloutput), but it might be too
1152 * strict, since there might be some hop-by-hop options which can be
1153 * returned to normal user.
1154 * See also RFC3542 section 8 (or RFC2292 section 6).
1155 */
1156 if ((in6p->in6p_flags & IN6P_HOPOPTS) != 0) {
1157 /*
1158 * Check if a hop-by-hop options header is contatined in the
1159 * received packet, and if so, store the options as ancillary
1160 * data. Note that a hop-by-hop options header must be
1161 * just after the IPv6 header, which fact is assured through
1162 * the IPv6 input processing.
1163 */
1164 struct ip6_hdr *xip6 = mtod(m, struct ip6_hdr *);
1165 if (xip6->ip6_nxt == IPPROTO_HOPOPTS) {
1166 struct ip6_hbh *hbh;
1167 int hbhlen;
1168 struct mbuf *ext;
1169
1170 ext = ip6_pullexthdr(m, sizeof(struct ip6_hdr),
1171 xip6->ip6_nxt);
1172 if (ext == NULL) {
1173 IP6_STATINC(IP6_STAT_TOOSHORT);
1174 return;
1175 }
1176 hbh = mtod(ext, struct ip6_hbh *);
1177 hbhlen = (hbh->ip6h_len + 1) << 3;
1178 if (hbhlen != ext->m_len) {
1179 m_freem(ext);
1180 IP6_STATINC(IP6_STAT_TOOSHORT);
1181 return;
1182 }
1183
1184 /*
1185 * XXX: We copy whole the header even if a jumbo
1186 * payload option is included, which option is to
1187 * be removed before returning in the RFC 2292.
1188 * Note: this constraint is removed in RFC3542.
1189 */
1190 *mp = sbcreatecontrol((void *)hbh, hbhlen,
1191 IS2292(IPV6_2292HOPOPTS, IPV6_HOPOPTS),
1192 IPPROTO_IPV6);
1193 if (*mp)
1194 mp = &(*mp)->m_next;
1195 m_freem(ext);
1196 }
1197 }
1198
1199 /* IPV6_DSTOPTS and IPV6_RTHDR socket options */
1200 if (in6p->in6p_flags & (IN6P_DSTOPTS | IN6P_RTHDR)) {
1201 struct ip6_hdr *xip6 = mtod(m, struct ip6_hdr *);
1202 int nxt = xip6->ip6_nxt, off = sizeof(struct ip6_hdr);
1203
1204 /*
1205 * Search for destination options headers or routing
1206 * header(s) through the header chain, and stores each
1207 * header as ancillary data.
1208 * Note that the order of the headers remains in
1209 * the chain of ancillary data.
1210 */
1211 for (;;) { /* is explicit loop prevention necessary? */
1212 struct ip6_ext *ip6e = NULL;
1213 int elen;
1214 struct mbuf *ext = NULL;
1215
1216 /*
1217 * if it is not an extension header, don't try to
1218 * pull it from the chain.
1219 */
1220 switch (nxt) {
1221 case IPPROTO_DSTOPTS:
1222 case IPPROTO_ROUTING:
1223 case IPPROTO_HOPOPTS:
1224 case IPPROTO_AH: /* is it possible? */
1225 break;
1226 default:
1227 goto loopend;
1228 }
1229
1230 ext = ip6_pullexthdr(m, off, nxt);
1231 if (ext == NULL) {
1232 IP6_STATINC(IP6_STAT_TOOSHORT);
1233 return;
1234 }
1235 ip6e = mtod(ext, struct ip6_ext *);
1236 if (nxt == IPPROTO_AH)
1237 elen = (ip6e->ip6e_len + 2) << 2;
1238 else
1239 elen = (ip6e->ip6e_len + 1) << 3;
1240 if (elen != ext->m_len) {
1241 m_freem(ext);
1242 IP6_STATINC(IP6_STAT_TOOSHORT);
1243 return;
1244 }
1245 KASSERT(IP6_HDR_ALIGNED_P(ip6e));
1246
1247 switch (nxt) {
1248 case IPPROTO_DSTOPTS:
1249 if (!(in6p->in6p_flags & IN6P_DSTOPTS))
1250 break;
1251
1252 *mp = sbcreatecontrol((void *)ip6e, elen,
1253 IS2292(IPV6_2292DSTOPTS, IPV6_DSTOPTS),
1254 IPPROTO_IPV6);
1255 if (*mp)
1256 mp = &(*mp)->m_next;
1257 break;
1258
1259 case IPPROTO_ROUTING:
1260 if (!(in6p->in6p_flags & IN6P_RTHDR))
1261 break;
1262
1263 *mp = sbcreatecontrol((void *)ip6e, elen,
1264 IS2292(IPV6_2292RTHDR, IPV6_RTHDR),
1265 IPPROTO_IPV6);
1266 if (*mp)
1267 mp = &(*mp)->m_next;
1268 break;
1269
1270 case IPPROTO_HOPOPTS:
1271 case IPPROTO_AH: /* is it possible? */
1272 break;
1273
1274 default:
1275 /*
1276 * other cases have been filtered in the above.
1277 * none will visit this case. here we supply
1278 * the code just in case (nxt overwritten or
1279 * other cases).
1280 */
1281 m_freem(ext);
1282 goto loopend;
1283
1284 }
1285
1286 /* proceed with the next header. */
1287 off += elen;
1288 nxt = ip6e->ip6e_nxt;
1289 ip6e = NULL;
1290 m_freem(ext);
1291 ext = NULL;
1292 }
1293 loopend:
1294 ;
1295 }
1296 }
1297 #undef IS2292
1298
1299
1300 void
1301 ip6_notify_pmtu(struct in6pcb *in6p, const struct sockaddr_in6 *dst,
1302 uint32_t *mtu)
1303 {
1304 struct socket *so;
1305 struct mbuf *m_mtu;
1306 struct ip6_mtuinfo mtuctl;
1307
1308 so = in6p->in6p_socket;
1309
1310 if (mtu == NULL)
1311 return;
1312
1313 #ifdef DIAGNOSTIC
1314 if (so == NULL) /* I believe this is impossible */
1315 panic("ip6_notify_pmtu: socket is NULL");
1316 #endif
1317
1318 memset(&mtuctl, 0, sizeof(mtuctl)); /* zero-clear for safety */
1319 mtuctl.ip6m_mtu = *mtu;
1320 mtuctl.ip6m_addr = *dst;
1321 if (sa6_recoverscope(&mtuctl.ip6m_addr))
1322 return;
1323
1324 if ((m_mtu = sbcreatecontrol((void *)&mtuctl, sizeof(mtuctl),
1325 IPV6_PATHMTU, IPPROTO_IPV6)) == NULL)
1326 return;
1327
1328 if (sbappendaddr(&so->so_rcv, (const struct sockaddr *)dst, NULL, m_mtu)
1329 == 0) {
1330 m_freem(m_mtu);
1331 /* XXX: should count statistics */
1332 } else
1333 sorwakeup(so);
1334
1335 return;
1336 }
1337
1338 /*
1339 * pull single extension header from mbuf chain. returns single mbuf that
1340 * contains the result, or NULL on error.
1341 */
1342 static struct mbuf *
1343 ip6_pullexthdr(struct mbuf *m, size_t off, int nxt)
1344 {
1345 struct ip6_ext ip6e;
1346 size_t elen;
1347 struct mbuf *n;
1348
1349 #ifdef DIAGNOSTIC
1350 switch (nxt) {
1351 case IPPROTO_DSTOPTS:
1352 case IPPROTO_ROUTING:
1353 case IPPROTO_HOPOPTS:
1354 case IPPROTO_AH: /* is it possible? */
1355 break;
1356 default:
1357 printf("ip6_pullexthdr: invalid nxt=%d\n", nxt);
1358 }
1359 #endif
1360
1361 m_copydata(m, off, sizeof(ip6e), (void *)&ip6e);
1362 if (nxt == IPPROTO_AH)
1363 elen = (ip6e.ip6e_len + 2) << 2;
1364 else
1365 elen = (ip6e.ip6e_len + 1) << 3;
1366
1367 MGET(n, M_DONTWAIT, MT_DATA);
1368 if (n && elen >= MLEN) {
1369 MCLGET(n, M_DONTWAIT);
1370 if ((n->m_flags & M_EXT) == 0) {
1371 m_free(n);
1372 n = NULL;
1373 }
1374 }
1375 if (!n)
1376 return NULL;
1377
1378 n->m_len = 0;
1379 if (elen >= M_TRAILINGSPACE(n)) {
1380 m_free(n);
1381 return NULL;
1382 }
1383
1384 m_copydata(m, off, elen, mtod(n, void *));
1385 n->m_len = elen;
1386 return n;
1387 }
1388
1389 /*
1390 * Get pointer to the previous header followed by the header
1391 * currently processed.
1392 * XXX: This function supposes that
1393 * M includes all headers,
1394 * the next header field and the header length field of each header
1395 * are valid, and
1396 * the sum of each header length equals to OFF.
1397 * Because of these assumptions, this function must be called very
1398 * carefully. Moreover, it will not be used in the near future when
1399 * we develop `neater' mechanism to process extension headers.
1400 */
1401 u_int8_t *
1402 ip6_get_prevhdr(struct mbuf *m, int off)
1403 {
1404 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1405
1406 if (off == sizeof(struct ip6_hdr))
1407 return (&ip6->ip6_nxt);
1408 else {
1409 int len, nxt;
1410 struct ip6_ext *ip6e = NULL;
1411
1412 nxt = ip6->ip6_nxt;
1413 len = sizeof(struct ip6_hdr);
1414 while (len < off) {
1415 ip6e = (struct ip6_ext *)(mtod(m, char *) + len);
1416
1417 switch (nxt) {
1418 case IPPROTO_FRAGMENT:
1419 len += sizeof(struct ip6_frag);
1420 break;
1421 case IPPROTO_AH:
1422 len += (ip6e->ip6e_len + 2) << 2;
1423 break;
1424 default:
1425 len += (ip6e->ip6e_len + 1) << 3;
1426 break;
1427 }
1428 nxt = ip6e->ip6e_nxt;
1429 }
1430 if (ip6e)
1431 return (&ip6e->ip6e_nxt);
1432 else
1433 return NULL;
1434 }
1435 }
1436
1437 /*
1438 * get next header offset. m will be retained.
1439 */
1440 int
1441 ip6_nexthdr(struct mbuf *m, int off, int proto, int *nxtp)
1442 {
1443 struct ip6_hdr ip6;
1444 struct ip6_ext ip6e;
1445 struct ip6_frag fh;
1446
1447 /* just in case */
1448 if (m == NULL)
1449 panic("ip6_nexthdr: m == NULL");
1450 if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len < off)
1451 return -1;
1452
1453 switch (proto) {
1454 case IPPROTO_IPV6:
1455 /* do not chase beyond intermediate IPv6 headers */
1456 if (off != 0)
1457 return -1;
1458 if (m->m_pkthdr.len < off + sizeof(ip6))
1459 return -1;
1460 m_copydata(m, off, sizeof(ip6), (void *)&ip6);
1461 if (nxtp)
1462 *nxtp = ip6.ip6_nxt;
1463 off += sizeof(ip6);
1464 return off;
1465
1466 case IPPROTO_FRAGMENT:
1467 /*
1468 * terminate parsing if it is not the first fragment,
1469 * it does not make sense to parse through it.
1470 */
1471 if (m->m_pkthdr.len < off + sizeof(fh))
1472 return -1;
1473 m_copydata(m, off, sizeof(fh), (void *)&fh);
1474 if ((fh.ip6f_offlg & IP6F_OFF_MASK) != 0)
1475 return -1;
1476 if (nxtp)
1477 *nxtp = fh.ip6f_nxt;
1478 off += sizeof(struct ip6_frag);
1479 return off;
1480
1481 case IPPROTO_AH:
1482 if (m->m_pkthdr.len < off + sizeof(ip6e))
1483 return -1;
1484 m_copydata(m, off, sizeof(ip6e), (void *)&ip6e);
1485 if (nxtp)
1486 *nxtp = ip6e.ip6e_nxt;
1487 off += (ip6e.ip6e_len + 2) << 2;
1488 if (m->m_pkthdr.len < off)
1489 return -1;
1490 return off;
1491
1492 case IPPROTO_HOPOPTS:
1493 case IPPROTO_ROUTING:
1494 case IPPROTO_DSTOPTS:
1495 if (m->m_pkthdr.len < off + sizeof(ip6e))
1496 return -1;
1497 m_copydata(m, off, sizeof(ip6e), (void *)&ip6e);
1498 if (nxtp)
1499 *nxtp = ip6e.ip6e_nxt;
1500 off += (ip6e.ip6e_len + 1) << 3;
1501 if (m->m_pkthdr.len < off)
1502 return -1;
1503 return off;
1504
1505 case IPPROTO_NONE:
1506 case IPPROTO_ESP:
1507 case IPPROTO_IPCOMP:
1508 /* give up */
1509 return -1;
1510
1511 default:
1512 return -1;
1513 }
1514 }
1515
1516 /*
1517 * get offset for the last header in the chain. m will be kept untainted.
1518 */
1519 int
1520 ip6_lasthdr(struct mbuf *m, int off, int proto, int *nxtp)
1521 {
1522 int newoff;
1523 int nxt;
1524
1525 if (!nxtp) {
1526 nxt = -1;
1527 nxtp = &nxt;
1528 }
1529 for (;;) {
1530 newoff = ip6_nexthdr(m, off, proto, nxtp);
1531 if (newoff < 0)
1532 return off;
1533 else if (newoff < off)
1534 return -1; /* invalid */
1535 else if (newoff == off)
1536 return newoff;
1537
1538 off = newoff;
1539 proto = *nxtp;
1540 }
1541 }
1542
1543 struct m_tag *
1544 ip6_addaux(struct mbuf *m)
1545 {
1546 struct m_tag *mtag;
1547
1548 mtag = m_tag_find(m, PACKET_TAG_INET6, NULL);
1549 if (!mtag) {
1550 mtag = m_tag_get(PACKET_TAG_INET6, sizeof(struct ip6aux),
1551 M_NOWAIT);
1552 if (mtag) {
1553 m_tag_prepend(m, mtag);
1554 memset(mtag + 1, 0, sizeof(struct ip6aux));
1555 }
1556 }
1557 return mtag;
1558 }
1559
1560 struct m_tag *
1561 ip6_findaux(struct mbuf *m)
1562 {
1563 struct m_tag *mtag;
1564
1565 mtag = m_tag_find(m, PACKET_TAG_INET6, NULL);
1566 return mtag;
1567 }
1568
1569 void
1570 ip6_delaux(struct mbuf *m)
1571 {
1572 struct m_tag *mtag;
1573
1574 mtag = m_tag_find(m, PACKET_TAG_INET6, NULL);
1575 if (mtag)
1576 m_tag_delete(m, mtag);
1577 }
1578
1579 #ifdef GATEWAY
1580 /*
1581 * sysctl helper routine for net.inet.ip6.maxflows. Since
1582 * we could reduce this value, call ip6flow_reap();
1583 */
1584 static int
1585 sysctl_net_inet6_ip6_maxflows(SYSCTLFN_ARGS)
1586 {
1587 int error;
1588
1589 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
1590 if (error || newp == NULL)
1591 return (error);
1592
1593 mutex_enter(softnet_lock);
1594 KERNEL_LOCK(1, NULL);
1595
1596 ip6flow_reap(0);
1597
1598 KERNEL_UNLOCK_ONE(NULL);
1599 mutex_exit(softnet_lock);
1600
1601 return (0);
1602 }
1603
1604 static int
1605 sysctl_net_inet6_ip6_hashsize(SYSCTLFN_ARGS)
1606 {
1607 int error, tmp;
1608 struct sysctlnode node;
1609
1610 node = *rnode;
1611 tmp = ip6_hashsize;
1612 node.sysctl_data = &tmp;
1613 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1614 if (error || newp == NULL)
1615 return (error);
1616
1617 if ((tmp & (tmp - 1)) == 0 && tmp != 0) {
1618 /*
1619 * Can only fail due to malloc()
1620 */
1621 mutex_enter(softnet_lock);
1622 KERNEL_LOCK(1, NULL);
1623
1624 error = ip6flow_invalidate_all(tmp);
1625
1626 KERNEL_UNLOCK_ONE(NULL);
1627 mutex_exit(softnet_lock);
1628 } else {
1629 /*
1630 * EINVAL if not a power of 2
1631 */
1632 error = EINVAL;
1633 }
1634
1635 return error;
1636 }
1637 #endif /* GATEWAY */
1638
1639 /*
1640 * System control for IP6
1641 */
1642
1643 const u_char inet6ctlerrmap[PRC_NCMDS] = {
1644 0, 0, 0, 0,
1645 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1646 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1647 EMSGSIZE, EHOSTUNREACH, 0, 0,
1648 0, 0, 0, 0,
1649 ENOPROTOOPT
1650 };
1651
1652 static int
1653 sysctl_net_inet6_ip6_stats(SYSCTLFN_ARGS)
1654 {
1655
1656 return (NETSTAT_SYSCTL(ip6stat_percpu, IP6_NSTATS));
1657 }
1658
1659 static void
1660 sysctl_net_inet6_ip6_setup(struct sysctllog **clog)
1661 {
1662 #ifdef RFC2292
1663 #define IS2292(x, y) ((in6p->in6p_flags & IN6P_RFC2292) ? (x) : (y))
1664 #else
1665 #define IS2292(x, y) (y)
1666 #endif
1667
1668 sysctl_createv(clog, 0, NULL, NULL,
1669 CTLFLAG_PERMANENT,
1670 CTLTYPE_NODE, "net", NULL,
1671 NULL, 0, NULL, 0,
1672 CTL_NET, CTL_EOL);
1673 sysctl_createv(clog, 0, NULL, NULL,
1674 CTLFLAG_PERMANENT,
1675 CTLTYPE_NODE, "inet6",
1676 SYSCTL_DESCR("PF_INET6 related settings"),
1677 NULL, 0, NULL, 0,
1678 CTL_NET, PF_INET6, CTL_EOL);
1679 sysctl_createv(clog, 0, NULL, NULL,
1680 CTLFLAG_PERMANENT,
1681 CTLTYPE_NODE, "ip6",
1682 SYSCTL_DESCR("IPv6 related settings"),
1683 NULL, 0, NULL, 0,
1684 CTL_NET, PF_INET6, IPPROTO_IPV6, CTL_EOL);
1685
1686 sysctl_createv(clog, 0, NULL, NULL,
1687 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1688 CTLTYPE_INT, "forwarding",
1689 SYSCTL_DESCR("Enable forwarding of INET6 datagrams"),
1690 NULL, 0, &ip6_forwarding, 0,
1691 CTL_NET, PF_INET6, IPPROTO_IPV6,
1692 IPV6CTL_FORWARDING, CTL_EOL);
1693 sysctl_createv(clog, 0, NULL, NULL,
1694 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1695 CTLTYPE_INT, "redirect",
1696 SYSCTL_DESCR("Enable sending of ICMPv6 redirect messages"),
1697 NULL, 0, &ip6_sendredirects, 0,
1698 CTL_NET, PF_INET6, IPPROTO_IPV6,
1699 IPV6CTL_SENDREDIRECTS, CTL_EOL);
1700 sysctl_createv(clog, 0, NULL, NULL,
1701 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1702 CTLTYPE_INT, "hlim",
1703 SYSCTL_DESCR("Hop limit for an INET6 datagram"),
1704 NULL, 0, &ip6_defhlim, 0,
1705 CTL_NET, PF_INET6, IPPROTO_IPV6,
1706 IPV6CTL_DEFHLIM, CTL_EOL);
1707 #ifdef notyet
1708 sysctl_createv(clog, 0, NULL, NULL,
1709 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1710 CTLTYPE_INT, "mtu", NULL,
1711 NULL, 0, &, 0,
1712 CTL_NET, PF_INET6, IPPROTO_IPV6,
1713 IPV6CTL_DEFMTU, CTL_EOL);
1714 #endif
1715 #ifdef __no_idea__
1716 sysctl_createv(clog, 0, NULL, NULL,
1717 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1718 CTLTYPE_INT, "forwsrcrt", NULL,
1719 NULL, 0, &?, 0,
1720 CTL_NET, PF_INET6, IPPROTO_IPV6,
1721 IPV6CTL_FORWSRCRT, CTL_EOL);
1722 sysctl_createv(clog, 0, NULL, NULL,
1723 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1724 CTLTYPE_STRUCT, "mrtstats", NULL,
1725 NULL, 0, &?, sizeof(?),
1726 CTL_NET, PF_INET6, IPPROTO_IPV6,
1727 IPV6CTL_MRTSTATS, CTL_EOL);
1728 sysctl_createv(clog, 0, NULL, NULL,
1729 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1730 CTLTYPE_?, "mrtproto", NULL,
1731 NULL, 0, &?, sizeof(?),
1732 CTL_NET, PF_INET6, IPPROTO_IPV6,
1733 IPV6CTL_MRTPROTO, CTL_EOL);
1734 #endif
1735 sysctl_createv(clog, 0, NULL, NULL,
1736 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1737 CTLTYPE_INT, "maxfragpackets",
1738 SYSCTL_DESCR("Maximum number of fragments to buffer "
1739 "for reassembly"),
1740 NULL, 0, &ip6_maxfragpackets, 0,
1741 CTL_NET, PF_INET6, IPPROTO_IPV6,
1742 IPV6CTL_MAXFRAGPACKETS, CTL_EOL);
1743 #ifdef __no_idea__
1744 sysctl_createv(clog, 0, NULL, NULL,
1745 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1746 CTLTYPE_INT, "sourcecheck", NULL,
1747 NULL, 0, &?, 0,
1748 CTL_NET, PF_INET6, IPPROTO_IPV6,
1749 IPV6CTL_SOURCECHECK, CTL_EOL);
1750 sysctl_createv(clog, 0, NULL, NULL,
1751 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1752 CTLTYPE_INT, "sourcecheck_logint", NULL,
1753 NULL, 0, &?, 0,
1754 CTL_NET, PF_INET6, IPPROTO_IPV6,
1755 IPV6CTL_SOURCECHECK_LOGINT, CTL_EOL);
1756 #endif
1757 sysctl_createv(clog, 0, NULL, NULL,
1758 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1759 CTLTYPE_INT, "accept_rtadv",
1760 SYSCTL_DESCR("Accept router advertisements"),
1761 NULL, 0, &ip6_accept_rtadv, 0,
1762 CTL_NET, PF_INET6, IPPROTO_IPV6,
1763 IPV6CTL_ACCEPT_RTADV, CTL_EOL);
1764 sysctl_createv(clog, 0, NULL, NULL,
1765 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1766 CTLTYPE_INT, "rtadv_maxroutes",
1767 SYSCTL_DESCR("Maximum number of routes accepted via router advertisements"),
1768 NULL, 0, &ip6_rtadv_maxroutes, 0,
1769 CTL_NET, PF_INET6, IPPROTO_IPV6,
1770 IPV6CTL_RTADV_MAXROUTES, CTL_EOL);
1771 sysctl_createv(clog, 0, NULL, NULL,
1772 CTLFLAG_PERMANENT,
1773 CTLTYPE_INT, "rtadv_numroutes",
1774 SYSCTL_DESCR("Current number of routes accepted via router advertisements"),
1775 NULL, 0, &nd6_numroutes, 0,
1776 CTL_NET, PF_INET6, IPPROTO_IPV6,
1777 IPV6CTL_RTADV_NUMROUTES, CTL_EOL);
1778 sysctl_createv(clog, 0, NULL, NULL,
1779 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1780 CTLTYPE_INT, "keepfaith",
1781 SYSCTL_DESCR("Activate faith interface"),
1782 NULL, 0, &ip6_keepfaith, 0,
1783 CTL_NET, PF_INET6, IPPROTO_IPV6,
1784 IPV6CTL_KEEPFAITH, CTL_EOL);
1785 sysctl_createv(clog, 0, NULL, NULL,
1786 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1787 CTLTYPE_INT, "log_interval",
1788 SYSCTL_DESCR("Minumum interval between logging "
1789 "unroutable packets"),
1790 NULL, 0, &ip6_log_interval, 0,
1791 CTL_NET, PF_INET6, IPPROTO_IPV6,
1792 IPV6CTL_LOG_INTERVAL, CTL_EOL);
1793 sysctl_createv(clog, 0, NULL, NULL,
1794 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1795 CTLTYPE_INT, "hdrnestlimit",
1796 SYSCTL_DESCR("Maximum number of nested IPv6 headers"),
1797 NULL, 0, &ip6_hdrnestlimit, 0,
1798 CTL_NET, PF_INET6, IPPROTO_IPV6,
1799 IPV6CTL_HDRNESTLIMIT, CTL_EOL);
1800 sysctl_createv(clog, 0, NULL, NULL,
1801 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1802 CTLTYPE_INT, "dad_count",
1803 SYSCTL_DESCR("Number of Duplicate Address Detection "
1804 "probes to send"),
1805 NULL, 0, &ip6_dad_count, 0,
1806 CTL_NET, PF_INET6, IPPROTO_IPV6,
1807 IPV6CTL_DAD_COUNT, CTL_EOL);
1808 sysctl_createv(clog, 0, NULL, NULL,
1809 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1810 CTLTYPE_INT, "auto_flowlabel",
1811 SYSCTL_DESCR("Assign random IPv6 flow labels"),
1812 NULL, 0, &ip6_auto_flowlabel, 0,
1813 CTL_NET, PF_INET6, IPPROTO_IPV6,
1814 IPV6CTL_AUTO_FLOWLABEL, CTL_EOL);
1815 sysctl_createv(clog, 0, NULL, NULL,
1816 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1817 CTLTYPE_INT, "defmcasthlim",
1818 SYSCTL_DESCR("Default multicast hop limit"),
1819 NULL, 0, &ip6_defmcasthlim, 0,
1820 CTL_NET, PF_INET6, IPPROTO_IPV6,
1821 IPV6CTL_DEFMCASTHLIM, CTL_EOL);
1822 #if NGIF > 0
1823 sysctl_createv(clog, 0, NULL, NULL,
1824 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1825 CTLTYPE_INT, "gifhlim",
1826 SYSCTL_DESCR("Default hop limit for a gif tunnel datagram"),
1827 NULL, 0, &ip6_gif_hlim, 0,
1828 CTL_NET, PF_INET6, IPPROTO_IPV6,
1829 IPV6CTL_GIF_HLIM, CTL_EOL);
1830 #endif /* NGIF */
1831 sysctl_createv(clog, 0, NULL, NULL,
1832 CTLFLAG_PERMANENT,
1833 CTLTYPE_STRING, "kame_version",
1834 SYSCTL_DESCR("KAME Version"),
1835 NULL, 0, __UNCONST(__KAME_VERSION), 0,
1836 CTL_NET, PF_INET6, IPPROTO_IPV6,
1837 IPV6CTL_KAME_VERSION, CTL_EOL);
1838 sysctl_createv(clog, 0, NULL, NULL,
1839 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1840 CTLTYPE_INT, "use_deprecated",
1841 SYSCTL_DESCR("Allow use of deprecated addresses as "
1842 "source addresses"),
1843 NULL, 0, &ip6_use_deprecated, 0,
1844 CTL_NET, PF_INET6, IPPROTO_IPV6,
1845 IPV6CTL_USE_DEPRECATED, CTL_EOL);
1846 sysctl_createv(clog, 0, NULL, NULL,
1847 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1848 CTLTYPE_INT, "rr_prune", NULL,
1849 NULL, 0, &ip6_rr_prune, 0,
1850 CTL_NET, PF_INET6, IPPROTO_IPV6,
1851 IPV6CTL_RR_PRUNE, CTL_EOL);
1852 sysctl_createv(clog, 0, NULL, NULL,
1853 CTLFLAG_PERMANENT
1854 #ifndef INET6_BINDV6ONLY
1855 |CTLFLAG_READWRITE,
1856 #endif
1857 CTLTYPE_INT, "v6only",
1858 SYSCTL_DESCR("Disallow PF_INET6 sockets from connecting "
1859 "to PF_INET sockets"),
1860 NULL, 0, &ip6_v6only, 0,
1861 CTL_NET, PF_INET6, IPPROTO_IPV6,
1862 IPV6CTL_V6ONLY, CTL_EOL);
1863 sysctl_createv(clog, 0, NULL, NULL,
1864 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1865 CTLTYPE_INT, "anonportmin",
1866 SYSCTL_DESCR("Lowest ephemeral port number to assign"),
1867 sysctl_net_inet_ip_ports, 0, &ip6_anonportmin, 0,
1868 CTL_NET, PF_INET6, IPPROTO_IPV6,
1869 IPV6CTL_ANONPORTMIN, CTL_EOL);
1870 sysctl_createv(clog, 0, NULL, NULL,
1871 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1872 CTLTYPE_INT, "anonportmax",
1873 SYSCTL_DESCR("Highest ephemeral port number to assign"),
1874 sysctl_net_inet_ip_ports, 0, &ip6_anonportmax, 0,
1875 CTL_NET, PF_INET6, IPPROTO_IPV6,
1876 IPV6CTL_ANONPORTMAX, CTL_EOL);
1877 #ifndef IPNOPRIVPORTS
1878 sysctl_createv(clog, 0, NULL, NULL,
1879 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1880 CTLTYPE_INT, "lowportmin",
1881 SYSCTL_DESCR("Lowest privileged ephemeral port number "
1882 "to assign"),
1883 sysctl_net_inet_ip_ports, 0, &ip6_lowportmin, 0,
1884 CTL_NET, PF_INET6, IPPROTO_IPV6,
1885 IPV6CTL_LOWPORTMIN, CTL_EOL);
1886 sysctl_createv(clog, 0, NULL, NULL,
1887 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1888 CTLTYPE_INT, "lowportmax",
1889 SYSCTL_DESCR("Highest privileged ephemeral port number "
1890 "to assign"),
1891 sysctl_net_inet_ip_ports, 0, &ip6_lowportmax, 0,
1892 CTL_NET, PF_INET6, IPPROTO_IPV6,
1893 IPV6CTL_LOWPORTMAX, CTL_EOL);
1894 #endif /* IPNOPRIVPORTS */
1895 sysctl_createv(clog, 0, NULL, NULL,
1896 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1897 CTLTYPE_INT, "use_tempaddr",
1898 SYSCTL_DESCR("Use temporary address"),
1899 NULL, 0, &ip6_use_tempaddr, 0,
1900 CTL_NET, PF_INET6, IPPROTO_IPV6,
1901 CTL_CREATE, CTL_EOL);
1902 sysctl_createv(clog, 0, NULL, NULL,
1903 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1904 CTLTYPE_INT, "temppltime",
1905 SYSCTL_DESCR("preferred lifetime of a temporary address"),
1906 NULL, 0, &ip6_temp_preferred_lifetime, 0,
1907 CTL_NET, PF_INET6, IPPROTO_IPV6,
1908 CTL_CREATE, CTL_EOL);
1909 sysctl_createv(clog, 0, NULL, NULL,
1910 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1911 CTLTYPE_INT, "tempvltime",
1912 SYSCTL_DESCR("valid lifetime of a temporary address"),
1913 NULL, 0, &ip6_temp_valid_lifetime, 0,
1914 CTL_NET, PF_INET6, IPPROTO_IPV6,
1915 CTL_CREATE, CTL_EOL);
1916 sysctl_createv(clog, 0, NULL, NULL,
1917 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1918 CTLTYPE_INT, "maxfrags",
1919 SYSCTL_DESCR("Maximum fragments in reassembly queue"),
1920 NULL, 0, &ip6_maxfrags, 0,
1921 CTL_NET, PF_INET6, IPPROTO_IPV6,
1922 IPV6CTL_MAXFRAGS, CTL_EOL);
1923 sysctl_createv(clog, 0, NULL, NULL,
1924 CTLFLAG_PERMANENT,
1925 CTLTYPE_STRUCT, "stats",
1926 SYSCTL_DESCR("IPv6 statistics"),
1927 sysctl_net_inet6_ip6_stats, 0, NULL, 0,
1928 CTL_NET, PF_INET6, IPPROTO_IPV6,
1929 IPV6CTL_STATS, CTL_EOL);
1930 sysctl_createv(clog, 0, NULL, NULL,
1931 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1932 CTLTYPE_INT, "use_defaultzone",
1933 SYSCTL_DESCR("Whether to use the default scope zones"),
1934 NULL, 0, &ip6_use_defzone, 0,
1935 CTL_NET, PF_INET6, IPPROTO_IPV6,
1936 IPV6CTL_USE_DEFAULTZONE, CTL_EOL);
1937 sysctl_createv(clog, 0, NULL, NULL,
1938 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1939 CTLTYPE_INT, "mcast_pmtu",
1940 SYSCTL_DESCR("Enable pMTU discovery for multicast packet"),
1941 NULL, 0, &ip6_mcast_pmtu, 0,
1942 CTL_NET, PF_INET6, IPPROTO_IPV6,
1943 CTL_CREATE, CTL_EOL);
1944 #ifdef GATEWAY
1945 sysctl_createv(clog, 0, NULL, NULL,
1946 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1947 CTLTYPE_INT, "maxflows",
1948 SYSCTL_DESCR("Number of flows for fast forwarding (IPv6)"),
1949 sysctl_net_inet6_ip6_maxflows, 0, &ip6_maxflows, 0,
1950 CTL_NET, PF_INET6, IPPROTO_IPV6,
1951 CTL_CREATE, CTL_EOL);
1952 sysctl_createv(clog, 0, NULL, NULL,
1953 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1954 CTLTYPE_INT, "hashsize",
1955 SYSCTL_DESCR("Size of hash table for fast forwarding (IPv6)"),
1956 sysctl_net_inet6_ip6_hashsize, 0, &ip6_hashsize, 0,
1957 CTL_NET, PF_INET6, IPPROTO_IPV6,
1958 CTL_CREATE, CTL_EOL);
1959 #endif
1960 /* anonportalgo RFC6056 subtree */
1961 const struct sysctlnode *portalgo_node;
1962 sysctl_createv(clog, 0, NULL, &portalgo_node,
1963 CTLFLAG_PERMANENT,
1964 CTLTYPE_NODE, "anonportalgo",
1965 SYSCTL_DESCR("Anonymous port algorithm selection (RFC 6056)"),
1966 NULL, 0, NULL, 0,
1967 CTL_NET, PF_INET6, IPPROTO_IPV6, CTL_CREATE, CTL_EOL);
1968 sysctl_createv(clog, 0, &portalgo_node, NULL,
1969 CTLFLAG_PERMANENT,
1970 CTLTYPE_STRING, "available",
1971 SYSCTL_DESCR("available algorithms"),
1972 sysctl_portalgo_available, 0, NULL, PORTALGO_MAXLEN,
1973 CTL_CREATE, CTL_EOL);
1974 sysctl_createv(clog, 0, &portalgo_node, NULL,
1975 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1976 CTLTYPE_STRING, "selected",
1977 SYSCTL_DESCR("selected algorithm"),
1978 sysctl_portalgo_selected6, 0, NULL, PORTALGO_MAXLEN,
1979 CTL_CREATE, CTL_EOL);
1980 sysctl_createv(clog, 0, &portalgo_node, NULL,
1981 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1982 CTLTYPE_STRUCT, "reserve",
1983 SYSCTL_DESCR("bitmap of reserved ports"),
1984 sysctl_portalgo_reserve6, 0, NULL, 0,
1985 CTL_CREATE, CTL_EOL);
1986 sysctl_createv(clog, 0, NULL, NULL,
1987 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1988 CTLTYPE_INT, "neighborgcthresh",
1989 SYSCTL_DESCR("Maximum number of entries in neighbor"
1990 " cache"),
1991 NULL, 1, &ip6_neighborgcthresh, 0,
1992 CTL_NET, PF_INET6, IPPROTO_IPV6,
1993 CTL_CREATE, CTL_EOL);
1994 sysctl_createv(clog, 0, NULL, NULL,
1995 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1996 CTLTYPE_INT, "maxifprefixes",
1997 SYSCTL_DESCR("Maximum number of prefixes created by"
1998 " route advertisement per interface"),
1999 NULL, 1, &ip6_maxifprefixes, 0,
2000 CTL_NET, PF_INET6, IPPROTO_IPV6,
2001 CTL_CREATE, CTL_EOL);
2002 sysctl_createv(clog, 0, NULL, NULL,
2003 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2004 CTLTYPE_INT, "maxifdefrouters",
2005 SYSCTL_DESCR("Maximum number of default routers created"
2006 " by route advertisement per interface"),
2007 NULL, 1, &ip6_maxifdefrouters, 0,
2008 CTL_NET, PF_INET6, IPPROTO_IPV6,
2009 CTL_CREATE, CTL_EOL);
2010 sysctl_createv(clog, 0, NULL, NULL,
2011 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2012 CTLTYPE_INT, "maxdynroutes",
2013 SYSCTL_DESCR("Maximum number of routes created via"
2014 " redirect"),
2015 NULL, 1, &ip6_maxdynroutes, 0,
2016 CTL_NET, PF_INET6, IPPROTO_IPV6,
2017 CTL_CREATE, CTL_EOL);
2018 }
2019
2020 void
2021 ip6_statinc(u_int stat)
2022 {
2023
2024 KASSERT(stat < IP6_NSTATS);
2025 IP6_STATINC(stat);
2026 }
2027