ip6_input.c revision 1.165 1 /* $NetBSD: ip6_input.c,v 1.165 2016/08/01 03:15:31 ozaki-r Exp $ */
2 /* $KAME: ip6_input.c,v 1.188 2001/03/29 05:34:31 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_input.c,v 1.165 2016/08/01 03:15:31 ozaki-r Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_gateway.h"
69 #include "opt_inet.h"
70 #include "opt_inet6.h"
71 #include "opt_ipsec.h"
72 #include "opt_compat_netbsd.h"
73 #endif
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/malloc.h>
78 #include <sys/mbuf.h>
79 #include <sys/domain.h>
80 #include <sys/protosw.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/errno.h>
84 #include <sys/time.h>
85 #include <sys/kernel.h>
86 #include <sys/syslog.h>
87 #include <sys/proc.h>
88 #include <sys/sysctl.h>
89 #include <sys/cprng.h>
90
91 #include <net/if.h>
92 #include <net/if_types.h>
93 #include <net/if_dl.h>
94 #include <net/route.h>
95 #include <net/pktqueue.h>
96 #include <net/pfil.h>
97
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #ifdef INET
101 #include <netinet/ip.h>
102 #include <netinet/ip_var.h>
103 #include <netinet/ip_icmp.h>
104 #endif /* INET */
105 #include <netinet/ip6.h>
106 #include <netinet/portalgo.h>
107 #include <netinet6/in6_var.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/ip6_private.h>
110 #include <netinet6/in6_pcb.h>
111 #include <netinet/icmp6.h>
112 #include <netinet6/scope6_var.h>
113 #include <netinet6/in6_ifattach.h>
114 #include <netinet6/nd6.h>
115
116 #ifdef IPSEC
117 #include <netipsec/ipsec.h>
118 #include <netipsec/ipsec6.h>
119 #include <netipsec/key.h>
120 #endif /* IPSEC */
121
122 #ifdef COMPAT_50
123 #include <compat/sys/time.h>
124 #include <compat/sys/socket.h>
125 #endif
126
127 #include <netinet6/ip6protosw.h>
128
129 #include "faith.h"
130
131 #include <net/net_osdep.h>
132
133 extern struct domain inet6domain;
134
135 u_char ip6_protox[IPPROTO_MAX];
136 pktqueue_t *ip6_pktq __read_mostly;
137
138 int ip6_forward_srcrt; /* XXX */
139 int ip6_sourcecheck; /* XXX */
140 int ip6_sourcecheck_interval; /* XXX */
141
142 pfil_head_t *inet6_pfil_hook;
143
144 percpu_t *ip6stat_percpu;
145
146 static void ip6_init2(void);
147 static void ip6intr(void *);
148 static struct m_tag *ip6_setdstifaddr(struct mbuf *, const struct in6_ifaddr *);
149
150 static int ip6_process_hopopts(struct mbuf *, u_int8_t *, int, u_int32_t *,
151 u_int32_t *);
152 static struct mbuf *ip6_pullexthdr(struct mbuf *, size_t, int);
153 static void sysctl_net_inet6_ip6_setup(struct sysctllog **);
154
155 /*
156 * IP6 initialization: fill in IP6 protocol switch table.
157 * All protocols not implemented in kernel go to raw IP6 protocol handler.
158 */
159 void
160 ip6_init(void)
161 {
162 const struct ip6protosw *pr;
163 int i;
164
165 in6_init();
166
167 sysctl_net_inet6_ip6_setup(NULL);
168 pr = (const struct ip6protosw *)pffindproto(PF_INET6, IPPROTO_RAW, SOCK_RAW);
169 if (pr == 0)
170 panic("ip6_init");
171 for (i = 0; i < IPPROTO_MAX; i++)
172 ip6_protox[i] = pr - inet6sw;
173 for (pr = (const struct ip6protosw *)inet6domain.dom_protosw;
174 pr < (const struct ip6protosw *)inet6domain.dom_protoswNPROTOSW; pr++)
175 if (pr->pr_domain->dom_family == PF_INET6 &&
176 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
177 ip6_protox[pr->pr_protocol] = pr - inet6sw;
178
179 ip6_pktq = pktq_create(IFQ_MAXLEN, ip6intr, NULL);
180 KASSERT(ip6_pktq != NULL);
181
182 scope6_init();
183 addrsel_policy_init();
184 nd6_init();
185 frag6_init();
186 ip6_desync_factor = cprng_fast32() % MAX_TEMP_DESYNC_FACTOR;
187
188 ip6_init2();
189 #ifdef GATEWAY
190 ip6flow_init(ip6_hashsize);
191 #endif
192 /* Register our Packet Filter hook. */
193 inet6_pfil_hook = pfil_head_create(PFIL_TYPE_AF, (void *)AF_INET6);
194 KASSERT(inet6_pfil_hook != NULL);
195
196 ip6stat_percpu = percpu_alloc(sizeof(uint64_t) * IP6_NSTATS);
197 }
198
199 static void
200 ip6_init2(void)
201 {
202
203 /* timer for regeneranation of temporary addresses randomize ID */
204 callout_init(&in6_tmpaddrtimer_ch, CALLOUT_MPSAFE);
205 callout_reset(&in6_tmpaddrtimer_ch,
206 (ip6_temp_preferred_lifetime - ip6_desync_factor -
207 ip6_temp_regen_advance) * hz,
208 in6_tmpaddrtimer, NULL);
209 }
210
211 /*
212 * IP6 input interrupt handling. Just pass the packet to ip6_input.
213 */
214 static void
215 ip6intr(void *arg __unused)
216 {
217 struct mbuf *m;
218
219 mutex_enter(softnet_lock);
220 while ((m = pktq_dequeue(ip6_pktq)) != NULL) {
221 struct psref psref;
222 struct ifnet *rcvif = m_get_rcvif_psref(m, &psref);
223
224 if (rcvif == NULL) {
225 m_freem(m);
226 continue;
227 }
228 /*
229 * Drop the packet if IPv6 is disabled on the interface.
230 */
231 if ((ND_IFINFO(rcvif)->flags & ND6_IFF_IFDISABLED)) {
232 m_put_rcvif_psref(rcvif, &psref);
233 m_freem(m);
234 continue;
235 }
236 ip6_input(m, rcvif);
237 m_put_rcvif_psref(rcvif, &psref);
238 }
239 mutex_exit(softnet_lock);
240 }
241
242 extern struct route ip6_forward_rt;
243
244 void
245 ip6_input(struct mbuf *m, struct ifnet *rcvif)
246 {
247 struct ip6_hdr *ip6;
248 int hit, off = sizeof(struct ip6_hdr), nest;
249 u_int32_t plen;
250 u_int32_t rtalert = ~0;
251 int nxt, ours = 0, rh_present = 0;
252 struct ifnet *deliverifp = NULL;
253 int srcrt = 0;
254 const struct rtentry *rt;
255 union {
256 struct sockaddr dst;
257 struct sockaddr_in6 dst6;
258 } u;
259
260 /*
261 * make sure we don't have onion peering information into m_tag.
262 */
263 ip6_delaux(m);
264
265 /*
266 * mbuf statistics
267 */
268 if (m->m_flags & M_EXT) {
269 if (m->m_next)
270 IP6_STATINC(IP6_STAT_MEXT2M);
271 else
272 IP6_STATINC(IP6_STAT_MEXT1);
273 } else {
274 #define M2MMAX 32
275 if (m->m_next) {
276 if (m->m_flags & M_LOOP)
277 /*XXX*/ IP6_STATINC(IP6_STAT_M2M + lo0ifp->if_index);
278 else if (rcvif->if_index < M2MMAX)
279 IP6_STATINC(IP6_STAT_M2M + rcvif->if_index);
280 else
281 IP6_STATINC(IP6_STAT_M2M);
282 } else
283 IP6_STATINC(IP6_STAT_M1);
284 #undef M2MMAX
285 }
286
287 in6_ifstat_inc(rcvif, ifs6_in_receive);
288 IP6_STATINC(IP6_STAT_TOTAL);
289
290 /*
291 * If the IPv6 header is not aligned, slurp it up into a new
292 * mbuf with space for link headers, in the event we forward
293 * it. Otherwise, if it is aligned, make sure the entire base
294 * IPv6 header is in the first mbuf of the chain.
295 */
296 if (IP6_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
297 if ((m = m_copyup(m, sizeof(struct ip6_hdr),
298 (max_linkhdr + 3) & ~3)) == NULL) {
299 /* XXXJRT new stat, please */
300 IP6_STATINC(IP6_STAT_TOOSMALL);
301 in6_ifstat_inc(rcvif, ifs6_in_hdrerr);
302 return;
303 }
304 } else if (__predict_false(m->m_len < sizeof(struct ip6_hdr))) {
305 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
306 IP6_STATINC(IP6_STAT_TOOSMALL);
307 in6_ifstat_inc(rcvif, ifs6_in_hdrerr);
308 return;
309 }
310 }
311
312 ip6 = mtod(m, struct ip6_hdr *);
313
314 if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
315 IP6_STATINC(IP6_STAT_BADVERS);
316 in6_ifstat_inc(rcvif, ifs6_in_hdrerr);
317 goto bad;
318 }
319
320 /*
321 * Assume that we can create a fast-forward IP flow entry
322 * based on this packet.
323 */
324 m->m_flags |= M_CANFASTFWD;
325
326 /*
327 * Run through list of hooks for input packets. If there are any
328 * filters which require that additional packets in the flow are
329 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
330 * Note that filters must _never_ set this flag, as another filter
331 * in the list may have previously cleared it.
332 */
333 /*
334 * let ipfilter look at packet on the wire,
335 * not the decapsulated packet.
336 */
337 #if defined(IPSEC)
338 if (!ipsec_used || !ipsec_indone(m))
339 #else
340 if (1)
341 #endif
342 {
343 struct in6_addr odst;
344
345 odst = ip6->ip6_dst;
346 if (pfil_run_hooks(inet6_pfil_hook, &m, rcvif, PFIL_IN) != 0)
347 return;
348 if (m == NULL)
349 return;
350 ip6 = mtod(m, struct ip6_hdr *);
351 srcrt = !IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst);
352 }
353
354 IP6_STATINC(IP6_STAT_NXTHIST + ip6->ip6_nxt);
355
356 #ifdef ALTQ
357 if (altq_input != NULL && (*altq_input)(m, AF_INET6) == 0) {
358 /* packet is dropped by traffic conditioner */
359 return;
360 }
361 #endif
362
363 /*
364 * Check against address spoofing/corruption.
365 */
366 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src) ||
367 IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_dst)) {
368 /*
369 * XXX: "badscope" is not very suitable for a multicast source.
370 */
371 IP6_STATINC(IP6_STAT_BADSCOPE);
372 in6_ifstat_inc(rcvif, ifs6_in_addrerr);
373 goto bad;
374 }
375 /*
376 * The following check is not documented in specs. A malicious
377 * party may be able to use IPv4 mapped addr to confuse tcp/udp stack
378 * and bypass security checks (act as if it was from 127.0.0.1 by using
379 * IPv6 src ::ffff:127.0.0.1). Be cautious.
380 *
381 * This check chokes if we are in an SIIT cloud. As none of BSDs
382 * support IPv4-less kernel compilation, we cannot support SIIT
383 * environment at all. So, it makes more sense for us to reject any
384 * malicious packets for non-SIIT environment, than try to do a
385 * partial support for SIIT environment.
386 */
387 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
388 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
389 IP6_STATINC(IP6_STAT_BADSCOPE);
390 in6_ifstat_inc(rcvif, ifs6_in_addrerr);
391 goto bad;
392 }
393 #if 0
394 /*
395 * Reject packets with IPv4 compatible addresses (auto tunnel).
396 *
397 * The code forbids auto tunnel relay case in RFC1933 (the check is
398 * stronger than RFC1933). We may want to re-enable it if mech-xx
399 * is revised to forbid relaying case.
400 */
401 if (IN6_IS_ADDR_V4COMPAT(&ip6->ip6_src) ||
402 IN6_IS_ADDR_V4COMPAT(&ip6->ip6_dst)) {
403 IP6_STATINC(IP6_STAT_BADSCOPE);
404 in6_ifstat_inc(rcvif, ifs6_in_addrerr);
405 goto bad;
406 }
407 #endif
408
409 /*
410 * Disambiguate address scope zones (if there is ambiguity).
411 * We first make sure that the original source or destination address
412 * is not in our internal form for scoped addresses. Such addresses
413 * are not necessarily invalid spec-wise, but we cannot accept them due
414 * to the usage conflict.
415 * in6_setscope() then also checks and rejects the cases where src or
416 * dst are the loopback address and the receiving interface
417 * is not loopback.
418 */
419 if (__predict_false(
420 m_makewritable(&m, 0, sizeof(struct ip6_hdr), M_DONTWAIT)))
421 goto bad;
422 ip6 = mtod(m, struct ip6_hdr *);
423 if (in6_clearscope(&ip6->ip6_src) || in6_clearscope(&ip6->ip6_dst)) {
424 IP6_STATINC(IP6_STAT_BADSCOPE); /* XXX */
425 goto bad;
426 }
427 if (in6_setscope(&ip6->ip6_src, rcvif, NULL) ||
428 in6_setscope(&ip6->ip6_dst, rcvif, NULL)) {
429 IP6_STATINC(IP6_STAT_BADSCOPE);
430 goto bad;
431 }
432
433 /*
434 * Multicast check
435 */
436 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
437 struct in6_multi *in6m = 0;
438
439 in6_ifstat_inc(rcvif, ifs6_in_mcast);
440 /*
441 * See if we belong to the destination multicast group on the
442 * arrival interface.
443 */
444 IN6_LOOKUP_MULTI(ip6->ip6_dst, rcvif, in6m);
445 if (in6m)
446 ours = 1;
447 else if (!ip6_mrouter) {
448 uint64_t *ip6s = IP6_STAT_GETREF();
449 ip6s[IP6_STAT_NOTMEMBER]++;
450 ip6s[IP6_STAT_CANTFORWARD]++;
451 IP6_STAT_PUTREF();
452 in6_ifstat_inc(rcvif, ifs6_in_discard);
453 goto bad;
454 }
455 deliverifp = rcvif;
456 goto hbhcheck;
457 }
458
459 sockaddr_in6_init(&u.dst6, &ip6->ip6_dst, 0, 0, 0);
460
461 /*
462 * Unicast check
463 */
464 rt = rtcache_lookup2(&ip6_forward_rt, &u.dst, 1, &hit);
465 if (hit)
466 IP6_STATINC(IP6_STAT_FORWARD_CACHEHIT);
467 else
468 IP6_STATINC(IP6_STAT_FORWARD_CACHEMISS);
469
470 #define rt6_getkey(__rt) satocsin6(rt_getkey(__rt))
471
472 /*
473 * Accept the packet if the forwarding interface to the destination
474 * according to the routing table is the loopback interface,
475 * unless the associated route has a gateway.
476 * Note that this approach causes to accept a packet if there is a
477 * route to the loopback interface for the destination of the packet.
478 * But we think it's even useful in some situations, e.g. when using
479 * a special daemon which wants to intercept the packet.
480 */
481 if (rt != NULL &&
482 (rt->rt_flags & (RTF_HOST|RTF_GATEWAY)) == RTF_HOST &&
483 #if 0
484 /*
485 * The check below is redundant since the comparison of
486 * the destination and the key of the rtentry has
487 * already done through looking up the routing table.
488 */
489 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &rt6_getkey(rt)->sin6_addr) &&
490 #endif
491 rt->rt_ifp->if_type == IFT_LOOP) {
492 struct in6_ifaddr *ia6 = (struct in6_ifaddr *)rt->rt_ifa;
493 if (ia6->ia6_flags & IN6_IFF_ANYCAST)
494 m->m_flags |= M_ANYCAST6;
495 /*
496 * packets to a tentative, duplicated, or somehow invalid
497 * address must not be accepted.
498 */
499 if (!(ia6->ia6_flags & IN6_IFF_NOTREADY)) {
500 /* this address is ready */
501 ours = 1;
502 deliverifp = ia6->ia_ifp; /* correct? */
503 goto hbhcheck;
504 } else {
505 /* address is not ready, so discard the packet. */
506 nd6log(LOG_INFO, "packet to an unready address %s->%s\n",
507 ip6_sprintf(&ip6->ip6_src),
508 ip6_sprintf(&ip6->ip6_dst));
509
510 goto bad;
511 }
512 }
513
514 /*
515 * FAITH (Firewall Aided Internet Translator)
516 */
517 #if defined(NFAITH) && 0 < NFAITH
518 if (ip6_keepfaith) {
519 if (rt != NULL && rt->rt_ifp != NULL &&
520 rt->rt_ifp->if_type == IFT_FAITH) {
521 /* XXX do we need more sanity checks? */
522 ours = 1;
523 deliverifp = rt->rt_ifp; /* faith */
524 goto hbhcheck;
525 }
526 }
527 #endif
528
529 #if 0
530 {
531 /*
532 * Last resort: check in6_ifaddr for incoming interface.
533 * The code is here until I update the "goto ours hack" code above
534 * working right.
535 */
536 struct ifaddr *ifa;
537 IFADDR_READER_FOREACH(ifa, rcvif) {
538 if (ifa->ifa_addr->sa_family != AF_INET6)
539 continue;
540 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ip6->ip6_dst)) {
541 ours = 1;
542 deliverifp = ifa->ifa_ifp;
543 goto hbhcheck;
544 }
545 }
546 }
547 #endif
548
549 /*
550 * Now there is no reason to process the packet if it's not our own
551 * and we're not a router.
552 */
553 if (!ip6_forwarding) {
554 IP6_STATINC(IP6_STAT_CANTFORWARD);
555 in6_ifstat_inc(rcvif, ifs6_in_discard);
556 goto bad;
557 }
558
559 hbhcheck:
560 /*
561 * record address information into m_tag, if we don't have one yet.
562 * note that we are unable to record it, if the address is not listed
563 * as our interface address (e.g. multicast addresses, addresses
564 * within FAITH prefixes and such).
565 */
566 if (deliverifp && ip6_getdstifaddr(m) == NULL) {
567 struct in6_ifaddr *ia6;
568 int s = pserialize_read_enter();
569
570 ia6 = in6_ifawithifp(deliverifp, &ip6->ip6_dst);
571 /* Depends on ip6_setdstifaddr never sleep */
572 if (ia6 != NULL && ip6_setdstifaddr(m, ia6) == NULL) {
573 /*
574 * XXX maybe we should drop the packet here,
575 * as we could not provide enough information
576 * to the upper layers.
577 */
578 }
579 pserialize_read_exit(s);
580 }
581
582 /*
583 * Process Hop-by-Hop options header if it's contained.
584 * m may be modified in ip6_hopopts_input().
585 * If a JumboPayload option is included, plen will also be modified.
586 */
587 plen = (u_int32_t)ntohs(ip6->ip6_plen);
588 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
589 struct ip6_hbh *hbh;
590
591 if (ip6_hopopts_input(&plen, &rtalert, &m, &off)) {
592 #if 0 /*touches NULL pointer*/
593 in6_ifstat_inc(rcvif, ifs6_in_discard);
594 #endif
595 return; /* m have already been freed */
596 }
597
598 /* adjust pointer */
599 ip6 = mtod(m, struct ip6_hdr *);
600
601 /*
602 * if the payload length field is 0 and the next header field
603 * indicates Hop-by-Hop Options header, then a Jumbo Payload
604 * option MUST be included.
605 */
606 if (ip6->ip6_plen == 0 && plen == 0) {
607 /*
608 * Note that if a valid jumbo payload option is
609 * contained, ip6_hopopts_input() must set a valid
610 * (non-zero) payload length to the variable plen.
611 */
612 IP6_STATINC(IP6_STAT_BADOPTIONS);
613 in6_ifstat_inc(rcvif, ifs6_in_discard);
614 in6_ifstat_inc(rcvif, ifs6_in_hdrerr);
615 icmp6_error(m, ICMP6_PARAM_PROB,
616 ICMP6_PARAMPROB_HEADER,
617 (char *)&ip6->ip6_plen - (char *)ip6);
618 return;
619 }
620 IP6_EXTHDR_GET(hbh, struct ip6_hbh *, m, sizeof(struct ip6_hdr),
621 sizeof(struct ip6_hbh));
622 if (hbh == NULL) {
623 IP6_STATINC(IP6_STAT_TOOSHORT);
624 return;
625 }
626 KASSERT(IP6_HDR_ALIGNED_P(hbh));
627 nxt = hbh->ip6h_nxt;
628
629 /*
630 * accept the packet if a router alert option is included
631 * and we act as an IPv6 router.
632 */
633 if (rtalert != ~0 && ip6_forwarding)
634 ours = 1;
635 } else
636 nxt = ip6->ip6_nxt;
637
638 /*
639 * Check that the amount of data in the buffers
640 * is as at least much as the IPv6 header would have us expect.
641 * Trim mbufs if longer than we expect.
642 * Drop packet if shorter than we expect.
643 */
644 if (m->m_pkthdr.len - sizeof(struct ip6_hdr) < plen) {
645 IP6_STATINC(IP6_STAT_TOOSHORT);
646 in6_ifstat_inc(rcvif, ifs6_in_truncated);
647 goto bad;
648 }
649 if (m->m_pkthdr.len > sizeof(struct ip6_hdr) + plen) {
650 if (m->m_len == m->m_pkthdr.len) {
651 m->m_len = sizeof(struct ip6_hdr) + plen;
652 m->m_pkthdr.len = sizeof(struct ip6_hdr) + plen;
653 } else
654 m_adj(m, sizeof(struct ip6_hdr) + plen - m->m_pkthdr.len);
655 }
656
657 /*
658 * Forward if desirable.
659 */
660 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
661 /*
662 * If we are acting as a multicast router, all
663 * incoming multicast packets are passed to the
664 * kernel-level multicast forwarding function.
665 * The packet is returned (relatively) intact; if
666 * ip6_mforward() returns a non-zero value, the packet
667 * must be discarded, else it may be accepted below.
668 */
669 if (ip6_mrouter && ip6_mforward(ip6, rcvif, m)) {
670 IP6_STATINC(IP6_STAT_CANTFORWARD);
671 m_freem(m);
672 return;
673 }
674 if (!ours) {
675 m_freem(m);
676 return;
677 }
678 } else if (!ours) {
679 ip6_forward(m, srcrt);
680 return;
681 }
682
683 ip6 = mtod(m, struct ip6_hdr *);
684
685 /*
686 * Malicious party may be able to use IPv4 mapped addr to confuse
687 * tcp/udp stack and bypass security checks (act as if it was from
688 * 127.0.0.1 by using IPv6 src ::ffff:127.0.0.1). Be cautious.
689 *
690 * For SIIT end node behavior, you may want to disable the check.
691 * However, you will become vulnerable to attacks using IPv4 mapped
692 * source.
693 */
694 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
695 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
696 IP6_STATINC(IP6_STAT_BADSCOPE);
697 in6_ifstat_inc(rcvif, ifs6_in_addrerr);
698 goto bad;
699 }
700
701 /*
702 * Tell launch routine the next header
703 */
704 #ifdef IFA_STATS
705 if (deliverifp != NULL) {
706 struct in6_ifaddr *ia6;
707 int s = pserialize_read_enter();
708 ia6 = in6_ifawithifp(deliverifp, &ip6->ip6_dst);
709 if (ia6)
710 ia6->ia_ifa.ifa_data.ifad_inbytes += m->m_pkthdr.len;
711 pserialize_read_exit(s);
712 }
713 #endif
714 IP6_STATINC(IP6_STAT_DELIVERED);
715 in6_ifstat_inc(deliverifp, ifs6_in_deliver);
716 nest = 0;
717
718 rh_present = 0;
719 while (nxt != IPPROTO_DONE) {
720 if (ip6_hdrnestlimit && (++nest > ip6_hdrnestlimit)) {
721 IP6_STATINC(IP6_STAT_TOOMANYHDR);
722 in6_ifstat_inc(rcvif, ifs6_in_hdrerr);
723 goto bad;
724 }
725
726 /*
727 * protection against faulty packet - there should be
728 * more sanity checks in header chain processing.
729 */
730 if (m->m_pkthdr.len < off) {
731 IP6_STATINC(IP6_STAT_TOOSHORT);
732 in6_ifstat_inc(rcvif, ifs6_in_truncated);
733 goto bad;
734 }
735
736 if (nxt == IPPROTO_ROUTING) {
737 if (rh_present++) {
738 in6_ifstat_inc(rcvif, ifs6_in_hdrerr);
739 IP6_STATINC(IP6_STAT_BADOPTIONS);
740 goto bad;
741 }
742 }
743
744 #ifdef IPSEC
745 if (ipsec_used) {
746 /*
747 * enforce IPsec policy checking if we are seeing last
748 * header. note that we do not visit this with
749 * protocols with pcb layer code - like udp/tcp/raw ip.
750 */
751 if ((inet6sw[ip_protox[nxt]].pr_flags
752 & PR_LASTHDR) != 0) {
753 int error = ipsec6_input(m);
754 if (error)
755 goto bad;
756 }
757 }
758 #endif /* IPSEC */
759
760 nxt = (*inet6sw[ip6_protox[nxt]].pr_input)(&m, &off, nxt);
761 }
762 return;
763 bad:
764 m_freem(m);
765 }
766
767 /*
768 * set/grab in6_ifaddr correspond to IPv6 destination address.
769 */
770 static struct m_tag *
771 ip6_setdstifaddr(struct mbuf *m, const struct in6_ifaddr *ia)
772 {
773 struct m_tag *mtag;
774 struct ip6aux *ip6a;
775
776 mtag = ip6_addaux(m);
777 if (mtag == NULL)
778 return NULL;
779
780 ip6a = (struct ip6aux *)(mtag + 1);
781 if (in6_setscope(&ip6a->ip6a_src, ia->ia_ifp, &ip6a->ip6a_scope_id)) {
782 IP6_STATINC(IP6_STAT_BADSCOPE);
783 return NULL;
784 }
785
786 ip6a->ip6a_src = ia->ia_addr.sin6_addr;
787 ip6a->ip6a_flags = ia->ia6_flags;
788 return mtag;
789 }
790
791 const struct ip6aux *
792 ip6_getdstifaddr(struct mbuf *m)
793 {
794 struct m_tag *mtag;
795
796 mtag = ip6_findaux(m);
797 if (mtag != NULL)
798 return (struct ip6aux *)(mtag + 1);
799 else
800 return NULL;
801 }
802
803 /*
804 * Hop-by-Hop options header processing. If a valid jumbo payload option is
805 * included, the real payload length will be stored in plenp.
806 *
807 * rtalertp - XXX: should be stored more smart way
808 */
809 int
810 ip6_hopopts_input(u_int32_t *plenp, u_int32_t *rtalertp,
811 struct mbuf **mp, int *offp)
812 {
813 struct mbuf *m = *mp;
814 int off = *offp, hbhlen;
815 struct ip6_hbh *hbh;
816
817 /* validation of the length of the header */
818 IP6_EXTHDR_GET(hbh, struct ip6_hbh *, m,
819 sizeof(struct ip6_hdr), sizeof(struct ip6_hbh));
820 if (hbh == NULL) {
821 IP6_STATINC(IP6_STAT_TOOSHORT);
822 return -1;
823 }
824 hbhlen = (hbh->ip6h_len + 1) << 3;
825 IP6_EXTHDR_GET(hbh, struct ip6_hbh *, m, sizeof(struct ip6_hdr),
826 hbhlen);
827 if (hbh == NULL) {
828 IP6_STATINC(IP6_STAT_TOOSHORT);
829 return -1;
830 }
831 KASSERT(IP6_HDR_ALIGNED_P(hbh));
832 off += hbhlen;
833 hbhlen -= sizeof(struct ip6_hbh);
834
835 if (ip6_process_hopopts(m, (u_int8_t *)hbh + sizeof(struct ip6_hbh),
836 hbhlen, rtalertp, plenp) < 0)
837 return (-1);
838
839 *offp = off;
840 *mp = m;
841 return (0);
842 }
843
844 /*
845 * Search header for all Hop-by-hop options and process each option.
846 * This function is separate from ip6_hopopts_input() in order to
847 * handle a case where the sending node itself process its hop-by-hop
848 * options header. In such a case, the function is called from ip6_output().
849 *
850 * The function assumes that hbh header is located right after the IPv6 header
851 * (RFC2460 p7), opthead is pointer into data content in m, and opthead to
852 * opthead + hbhlen is located in continuous memory region.
853 */
854 static int
855 ip6_process_hopopts(struct mbuf *m, u_int8_t *opthead, int hbhlen,
856 u_int32_t *rtalertp, u_int32_t *plenp)
857 {
858 struct ip6_hdr *ip6;
859 int optlen = 0;
860 u_int8_t *opt = opthead;
861 u_int16_t rtalert_val;
862 u_int32_t jumboplen;
863 const int erroff = sizeof(struct ip6_hdr) + sizeof(struct ip6_hbh);
864
865 for (; hbhlen > 0; hbhlen -= optlen, opt += optlen) {
866 switch (*opt) {
867 case IP6OPT_PAD1:
868 optlen = 1;
869 break;
870 case IP6OPT_PADN:
871 if (hbhlen < IP6OPT_MINLEN) {
872 IP6_STATINC(IP6_STAT_TOOSMALL);
873 goto bad;
874 }
875 optlen = *(opt + 1) + 2;
876 break;
877 case IP6OPT_RTALERT:
878 /* XXX may need check for alignment */
879 if (hbhlen < IP6OPT_RTALERT_LEN) {
880 IP6_STATINC(IP6_STAT_TOOSMALL);
881 goto bad;
882 }
883 if (*(opt + 1) != IP6OPT_RTALERT_LEN - 2) {
884 /* XXX stat */
885 icmp6_error(m, ICMP6_PARAM_PROB,
886 ICMP6_PARAMPROB_HEADER,
887 erroff + opt + 1 - opthead);
888 return (-1);
889 }
890 optlen = IP6OPT_RTALERT_LEN;
891 memcpy((void *)&rtalert_val, (void *)(opt + 2), 2);
892 *rtalertp = ntohs(rtalert_val);
893 break;
894 case IP6OPT_JUMBO:
895 /* XXX may need check for alignment */
896 if (hbhlen < IP6OPT_JUMBO_LEN) {
897 IP6_STATINC(IP6_STAT_TOOSMALL);
898 goto bad;
899 }
900 if (*(opt + 1) != IP6OPT_JUMBO_LEN - 2) {
901 /* XXX stat */
902 icmp6_error(m, ICMP6_PARAM_PROB,
903 ICMP6_PARAMPROB_HEADER,
904 erroff + opt + 1 - opthead);
905 return (-1);
906 }
907 optlen = IP6OPT_JUMBO_LEN;
908
909 /*
910 * IPv6 packets that have non 0 payload length
911 * must not contain a jumbo payload option.
912 */
913 ip6 = mtod(m, struct ip6_hdr *);
914 if (ip6->ip6_plen) {
915 IP6_STATINC(IP6_STAT_BADOPTIONS);
916 icmp6_error(m, ICMP6_PARAM_PROB,
917 ICMP6_PARAMPROB_HEADER,
918 erroff + opt - opthead);
919 return (-1);
920 }
921
922 /*
923 * We may see jumbolen in unaligned location, so
924 * we'd need to perform bcopy().
925 */
926 memcpy(&jumboplen, opt + 2, sizeof(jumboplen));
927 jumboplen = (u_int32_t)htonl(jumboplen);
928
929 #if 1
930 /*
931 * if there are multiple jumbo payload options,
932 * *plenp will be non-zero and the packet will be
933 * rejected.
934 * the behavior may need some debate in ipngwg -
935 * multiple options does not make sense, however,
936 * there's no explicit mention in specification.
937 */
938 if (*plenp != 0) {
939 IP6_STATINC(IP6_STAT_BADOPTIONS);
940 icmp6_error(m, ICMP6_PARAM_PROB,
941 ICMP6_PARAMPROB_HEADER,
942 erroff + opt + 2 - opthead);
943 return (-1);
944 }
945 #endif
946
947 /*
948 * jumbo payload length must be larger than 65535.
949 */
950 if (jumboplen <= IPV6_MAXPACKET) {
951 IP6_STATINC(IP6_STAT_BADOPTIONS);
952 icmp6_error(m, ICMP6_PARAM_PROB,
953 ICMP6_PARAMPROB_HEADER,
954 erroff + opt + 2 - opthead);
955 return (-1);
956 }
957 *plenp = jumboplen;
958
959 break;
960 default: /* unknown option */
961 if (hbhlen < IP6OPT_MINLEN) {
962 IP6_STATINC(IP6_STAT_TOOSMALL);
963 goto bad;
964 }
965 optlen = ip6_unknown_opt(opt, m,
966 erroff + opt - opthead);
967 if (optlen == -1)
968 return (-1);
969 optlen += 2;
970 break;
971 }
972 }
973
974 return (0);
975
976 bad:
977 m_freem(m);
978 return (-1);
979 }
980
981 /*
982 * Unknown option processing.
983 * The third argument `off' is the offset from the IPv6 header to the option,
984 * which is necessary if the IPv6 header the and option header and IPv6 header
985 * is not continuous in order to return an ICMPv6 error.
986 */
987 int
988 ip6_unknown_opt(u_int8_t *optp, struct mbuf *m, int off)
989 {
990 struct ip6_hdr *ip6;
991
992 switch (IP6OPT_TYPE(*optp)) {
993 case IP6OPT_TYPE_SKIP: /* ignore the option */
994 return ((int)*(optp + 1));
995 case IP6OPT_TYPE_DISCARD: /* silently discard */
996 m_freem(m);
997 return (-1);
998 case IP6OPT_TYPE_FORCEICMP: /* send ICMP even if multicasted */
999 IP6_STATINC(IP6_STAT_BADOPTIONS);
1000 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_OPTION, off);
1001 return (-1);
1002 case IP6OPT_TYPE_ICMP: /* send ICMP if not multicasted */
1003 IP6_STATINC(IP6_STAT_BADOPTIONS);
1004 ip6 = mtod(m, struct ip6_hdr *);
1005 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1006 (m->m_flags & (M_BCAST|M_MCAST)))
1007 m_freem(m);
1008 else
1009 icmp6_error(m, ICMP6_PARAM_PROB,
1010 ICMP6_PARAMPROB_OPTION, off);
1011 return (-1);
1012 }
1013
1014 m_freem(m); /* XXX: NOTREACHED */
1015 return (-1);
1016 }
1017
1018 /*
1019 * Create the "control" list for this pcb.
1020 *
1021 * The routine will be called from upper layer handlers like tcp6_input().
1022 * Thus the routine assumes that the caller (tcp6_input) have already
1023 * called IP6_EXTHDR_CHECK() and all the extension headers are located in the
1024 * very first mbuf on the mbuf chain.
1025 * We may want to add some infinite loop prevention or sanity checks for safety.
1026 * (This applies only when you are using KAME mbuf chain restriction, i.e.
1027 * you are using IP6_EXTHDR_CHECK() not m_pulldown())
1028 */
1029 void
1030 ip6_savecontrol(struct in6pcb *in6p, struct mbuf **mp,
1031 struct ip6_hdr *ip6, struct mbuf *m)
1032 {
1033 #ifdef RFC2292
1034 #define IS2292(x, y) ((in6p->in6p_flags & IN6P_RFC2292) ? (x) : (y))
1035 #else
1036 #define IS2292(x, y) (y)
1037 #endif
1038
1039 if (in6p->in6p_socket->so_options & SO_TIMESTAMP
1040 #ifdef SO_OTIMESTAMP
1041 || in6p->in6p_socket->so_options & SO_OTIMESTAMP
1042 #endif
1043 ) {
1044 struct timeval tv;
1045
1046 microtime(&tv);
1047 #ifdef SO_OTIMESTAMP
1048 if (in6p->in6p_socket->so_options & SO_OTIMESTAMP) {
1049 struct timeval50 tv50;
1050 timeval_to_timeval50(&tv, &tv50);
1051 *mp = sbcreatecontrol((void *) &tv50, sizeof(tv50),
1052 SCM_OTIMESTAMP, SOL_SOCKET);
1053 } else
1054 #endif
1055 *mp = sbcreatecontrol((void *) &tv, sizeof(tv),
1056 SCM_TIMESTAMP, SOL_SOCKET);
1057 if (*mp)
1058 mp = &(*mp)->m_next;
1059 }
1060
1061 /* some OSes call this logic with IPv4 packet, for SO_TIMESTAMP */
1062 if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION)
1063 return;
1064
1065 /* RFC 2292 sec. 5 */
1066 if ((in6p->in6p_flags & IN6P_PKTINFO) != 0) {
1067 struct in6_pktinfo pi6;
1068
1069 memcpy(&pi6.ipi6_addr, &ip6->ip6_dst, sizeof(struct in6_addr));
1070 in6_clearscope(&pi6.ipi6_addr); /* XXX */
1071 pi6.ipi6_ifindex = m->m_pkthdr.rcvif_index;
1072 *mp = sbcreatecontrol((void *) &pi6,
1073 sizeof(struct in6_pktinfo),
1074 IS2292(IPV6_2292PKTINFO, IPV6_PKTINFO), IPPROTO_IPV6);
1075 if (*mp)
1076 mp = &(*mp)->m_next;
1077 }
1078
1079 if (in6p->in6p_flags & IN6P_HOPLIMIT) {
1080 int hlim = ip6->ip6_hlim & 0xff;
1081
1082 *mp = sbcreatecontrol((void *) &hlim, sizeof(int),
1083 IS2292(IPV6_2292HOPLIMIT, IPV6_HOPLIMIT), IPPROTO_IPV6);
1084 if (*mp)
1085 mp = &(*mp)->m_next;
1086 }
1087
1088 if ((in6p->in6p_flags & IN6P_TCLASS) != 0) {
1089 u_int32_t flowinfo;
1090 int tclass;
1091
1092 flowinfo = (u_int32_t)ntohl(ip6->ip6_flow & IPV6_FLOWINFO_MASK);
1093 flowinfo >>= 20;
1094
1095 tclass = flowinfo & 0xff;
1096 *mp = sbcreatecontrol((void *)&tclass, sizeof(tclass),
1097 IPV6_TCLASS, IPPROTO_IPV6);
1098
1099 if (*mp)
1100 mp = &(*mp)->m_next;
1101 }
1102
1103 /*
1104 * IPV6_HOPOPTS socket option. Recall that we required super-user
1105 * privilege for the option (see ip6_ctloutput), but it might be too
1106 * strict, since there might be some hop-by-hop options which can be
1107 * returned to normal user.
1108 * See also RFC3542 section 8 (or RFC2292 section 6).
1109 */
1110 if ((in6p->in6p_flags & IN6P_HOPOPTS) != 0) {
1111 /*
1112 * Check if a hop-by-hop options header is contatined in the
1113 * received packet, and if so, store the options as ancillary
1114 * data. Note that a hop-by-hop options header must be
1115 * just after the IPv6 header, which fact is assured through
1116 * the IPv6 input processing.
1117 */
1118 struct ip6_hdr *xip6 = mtod(m, struct ip6_hdr *);
1119 if (xip6->ip6_nxt == IPPROTO_HOPOPTS) {
1120 struct ip6_hbh *hbh;
1121 int hbhlen;
1122 struct mbuf *ext;
1123
1124 ext = ip6_pullexthdr(m, sizeof(struct ip6_hdr),
1125 xip6->ip6_nxt);
1126 if (ext == NULL) {
1127 IP6_STATINC(IP6_STAT_TOOSHORT);
1128 return;
1129 }
1130 hbh = mtod(ext, struct ip6_hbh *);
1131 hbhlen = (hbh->ip6h_len + 1) << 3;
1132 if (hbhlen != ext->m_len) {
1133 m_freem(ext);
1134 IP6_STATINC(IP6_STAT_TOOSHORT);
1135 return;
1136 }
1137
1138 /*
1139 * XXX: We copy whole the header even if a jumbo
1140 * payload option is included, which option is to
1141 * be removed before returning in the RFC 2292.
1142 * Note: this constraint is removed in RFC3542.
1143 */
1144 *mp = sbcreatecontrol((void *)hbh, hbhlen,
1145 IS2292(IPV6_2292HOPOPTS, IPV6_HOPOPTS),
1146 IPPROTO_IPV6);
1147 if (*mp)
1148 mp = &(*mp)->m_next;
1149 m_freem(ext);
1150 }
1151 }
1152
1153 /* IPV6_DSTOPTS and IPV6_RTHDR socket options */
1154 if (in6p->in6p_flags & (IN6P_DSTOPTS | IN6P_RTHDR)) {
1155 struct ip6_hdr *xip6 = mtod(m, struct ip6_hdr *);
1156 int nxt = xip6->ip6_nxt, off = sizeof(struct ip6_hdr);
1157
1158 /*
1159 * Search for destination options headers or routing
1160 * header(s) through the header chain, and stores each
1161 * header as ancillary data.
1162 * Note that the order of the headers remains in
1163 * the chain of ancillary data.
1164 */
1165 for (;;) { /* is explicit loop prevention necessary? */
1166 struct ip6_ext *ip6e = NULL;
1167 int elen;
1168 struct mbuf *ext = NULL;
1169
1170 /*
1171 * if it is not an extension header, don't try to
1172 * pull it from the chain.
1173 */
1174 switch (nxt) {
1175 case IPPROTO_DSTOPTS:
1176 case IPPROTO_ROUTING:
1177 case IPPROTO_HOPOPTS:
1178 case IPPROTO_AH: /* is it possible? */
1179 break;
1180 default:
1181 goto loopend;
1182 }
1183
1184 ext = ip6_pullexthdr(m, off, nxt);
1185 if (ext == NULL) {
1186 IP6_STATINC(IP6_STAT_TOOSHORT);
1187 return;
1188 }
1189 ip6e = mtod(ext, struct ip6_ext *);
1190 if (nxt == IPPROTO_AH)
1191 elen = (ip6e->ip6e_len + 2) << 2;
1192 else
1193 elen = (ip6e->ip6e_len + 1) << 3;
1194 if (elen != ext->m_len) {
1195 m_freem(ext);
1196 IP6_STATINC(IP6_STAT_TOOSHORT);
1197 return;
1198 }
1199 KASSERT(IP6_HDR_ALIGNED_P(ip6e));
1200
1201 switch (nxt) {
1202 case IPPROTO_DSTOPTS:
1203 if (!(in6p->in6p_flags & IN6P_DSTOPTS))
1204 break;
1205
1206 *mp = sbcreatecontrol((void *)ip6e, elen,
1207 IS2292(IPV6_2292DSTOPTS, IPV6_DSTOPTS),
1208 IPPROTO_IPV6);
1209 if (*mp)
1210 mp = &(*mp)->m_next;
1211 break;
1212
1213 case IPPROTO_ROUTING:
1214 if (!(in6p->in6p_flags & IN6P_RTHDR))
1215 break;
1216
1217 *mp = sbcreatecontrol((void *)ip6e, elen,
1218 IS2292(IPV6_2292RTHDR, IPV6_RTHDR),
1219 IPPROTO_IPV6);
1220 if (*mp)
1221 mp = &(*mp)->m_next;
1222 break;
1223
1224 case IPPROTO_HOPOPTS:
1225 case IPPROTO_AH: /* is it possible? */
1226 break;
1227
1228 default:
1229 /*
1230 * other cases have been filtered in the above.
1231 * none will visit this case. here we supply
1232 * the code just in case (nxt overwritten or
1233 * other cases).
1234 */
1235 m_freem(ext);
1236 goto loopend;
1237
1238 }
1239
1240 /* proceed with the next header. */
1241 off += elen;
1242 nxt = ip6e->ip6e_nxt;
1243 ip6e = NULL;
1244 m_freem(ext);
1245 ext = NULL;
1246 }
1247 loopend:
1248 ;
1249 }
1250 }
1251 #undef IS2292
1252
1253
1254 void
1255 ip6_notify_pmtu(struct in6pcb *in6p, const struct sockaddr_in6 *dst,
1256 uint32_t *mtu)
1257 {
1258 struct socket *so;
1259 struct mbuf *m_mtu;
1260 struct ip6_mtuinfo mtuctl;
1261
1262 so = in6p->in6p_socket;
1263
1264 if (mtu == NULL)
1265 return;
1266
1267 #ifdef DIAGNOSTIC
1268 if (so == NULL) /* I believe this is impossible */
1269 panic("ip6_notify_pmtu: socket is NULL");
1270 #endif
1271
1272 memset(&mtuctl, 0, sizeof(mtuctl)); /* zero-clear for safety */
1273 mtuctl.ip6m_mtu = *mtu;
1274 mtuctl.ip6m_addr = *dst;
1275 if (sa6_recoverscope(&mtuctl.ip6m_addr))
1276 return;
1277
1278 if ((m_mtu = sbcreatecontrol((void *)&mtuctl, sizeof(mtuctl),
1279 IPV6_PATHMTU, IPPROTO_IPV6)) == NULL)
1280 return;
1281
1282 if (sbappendaddr(&so->so_rcv, (const struct sockaddr *)dst, NULL, m_mtu)
1283 == 0) {
1284 m_freem(m_mtu);
1285 /* XXX: should count statistics */
1286 } else
1287 sorwakeup(so);
1288
1289 return;
1290 }
1291
1292 /*
1293 * pull single extension header from mbuf chain. returns single mbuf that
1294 * contains the result, or NULL on error.
1295 */
1296 static struct mbuf *
1297 ip6_pullexthdr(struct mbuf *m, size_t off, int nxt)
1298 {
1299 struct ip6_ext ip6e;
1300 size_t elen;
1301 struct mbuf *n;
1302
1303 #ifdef DIAGNOSTIC
1304 switch (nxt) {
1305 case IPPROTO_DSTOPTS:
1306 case IPPROTO_ROUTING:
1307 case IPPROTO_HOPOPTS:
1308 case IPPROTO_AH: /* is it possible? */
1309 break;
1310 default:
1311 printf("ip6_pullexthdr: invalid nxt=%d\n", nxt);
1312 }
1313 #endif
1314
1315 m_copydata(m, off, sizeof(ip6e), (void *)&ip6e);
1316 if (nxt == IPPROTO_AH)
1317 elen = (ip6e.ip6e_len + 2) << 2;
1318 else
1319 elen = (ip6e.ip6e_len + 1) << 3;
1320
1321 MGET(n, M_DONTWAIT, MT_DATA);
1322 if (n && elen >= MLEN) {
1323 MCLGET(n, M_DONTWAIT);
1324 if ((n->m_flags & M_EXT) == 0) {
1325 m_free(n);
1326 n = NULL;
1327 }
1328 }
1329 if (!n)
1330 return NULL;
1331
1332 n->m_len = 0;
1333 if (elen >= M_TRAILINGSPACE(n)) {
1334 m_free(n);
1335 return NULL;
1336 }
1337
1338 m_copydata(m, off, elen, mtod(n, void *));
1339 n->m_len = elen;
1340 return n;
1341 }
1342
1343 /*
1344 * Get pointer to the previous header followed by the header
1345 * currently processed.
1346 * XXX: This function supposes that
1347 * M includes all headers,
1348 * the next header field and the header length field of each header
1349 * are valid, and
1350 * the sum of each header length equals to OFF.
1351 * Because of these assumptions, this function must be called very
1352 * carefully. Moreover, it will not be used in the near future when
1353 * we develop `neater' mechanism to process extension headers.
1354 */
1355 u_int8_t *
1356 ip6_get_prevhdr(struct mbuf *m, int off)
1357 {
1358 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1359
1360 if (off == sizeof(struct ip6_hdr))
1361 return (&ip6->ip6_nxt);
1362 else {
1363 int len, nxt;
1364 struct ip6_ext *ip6e = NULL;
1365
1366 nxt = ip6->ip6_nxt;
1367 len = sizeof(struct ip6_hdr);
1368 while (len < off) {
1369 ip6e = (struct ip6_ext *)(mtod(m, char *) + len);
1370
1371 switch (nxt) {
1372 case IPPROTO_FRAGMENT:
1373 len += sizeof(struct ip6_frag);
1374 break;
1375 case IPPROTO_AH:
1376 len += (ip6e->ip6e_len + 2) << 2;
1377 break;
1378 default:
1379 len += (ip6e->ip6e_len + 1) << 3;
1380 break;
1381 }
1382 nxt = ip6e->ip6e_nxt;
1383 }
1384 if (ip6e)
1385 return (&ip6e->ip6e_nxt);
1386 else
1387 return NULL;
1388 }
1389 }
1390
1391 /*
1392 * get next header offset. m will be retained.
1393 */
1394 int
1395 ip6_nexthdr(struct mbuf *m, int off, int proto, int *nxtp)
1396 {
1397 struct ip6_hdr ip6;
1398 struct ip6_ext ip6e;
1399 struct ip6_frag fh;
1400
1401 /* just in case */
1402 if (m == NULL)
1403 panic("ip6_nexthdr: m == NULL");
1404 if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len < off)
1405 return -1;
1406
1407 switch (proto) {
1408 case IPPROTO_IPV6:
1409 /* do not chase beyond intermediate IPv6 headers */
1410 if (off != 0)
1411 return -1;
1412 if (m->m_pkthdr.len < off + sizeof(ip6))
1413 return -1;
1414 m_copydata(m, off, sizeof(ip6), (void *)&ip6);
1415 if (nxtp)
1416 *nxtp = ip6.ip6_nxt;
1417 off += sizeof(ip6);
1418 return off;
1419
1420 case IPPROTO_FRAGMENT:
1421 /*
1422 * terminate parsing if it is not the first fragment,
1423 * it does not make sense to parse through it.
1424 */
1425 if (m->m_pkthdr.len < off + sizeof(fh))
1426 return -1;
1427 m_copydata(m, off, sizeof(fh), (void *)&fh);
1428 if ((fh.ip6f_offlg & IP6F_OFF_MASK) != 0)
1429 return -1;
1430 if (nxtp)
1431 *nxtp = fh.ip6f_nxt;
1432 off += sizeof(struct ip6_frag);
1433 return off;
1434
1435 case IPPROTO_AH:
1436 if (m->m_pkthdr.len < off + sizeof(ip6e))
1437 return -1;
1438 m_copydata(m, off, sizeof(ip6e), (void *)&ip6e);
1439 if (nxtp)
1440 *nxtp = ip6e.ip6e_nxt;
1441 off += (ip6e.ip6e_len + 2) << 2;
1442 if (m->m_pkthdr.len < off)
1443 return -1;
1444 return off;
1445
1446 case IPPROTO_HOPOPTS:
1447 case IPPROTO_ROUTING:
1448 case IPPROTO_DSTOPTS:
1449 if (m->m_pkthdr.len < off + sizeof(ip6e))
1450 return -1;
1451 m_copydata(m, off, sizeof(ip6e), (void *)&ip6e);
1452 if (nxtp)
1453 *nxtp = ip6e.ip6e_nxt;
1454 off += (ip6e.ip6e_len + 1) << 3;
1455 if (m->m_pkthdr.len < off)
1456 return -1;
1457 return off;
1458
1459 case IPPROTO_NONE:
1460 case IPPROTO_ESP:
1461 case IPPROTO_IPCOMP:
1462 /* give up */
1463 return -1;
1464
1465 default:
1466 return -1;
1467 }
1468 }
1469
1470 /*
1471 * get offset for the last header in the chain. m will be kept untainted.
1472 */
1473 int
1474 ip6_lasthdr(struct mbuf *m, int off, int proto, int *nxtp)
1475 {
1476 int newoff;
1477 int nxt;
1478
1479 if (!nxtp) {
1480 nxt = -1;
1481 nxtp = &nxt;
1482 }
1483 for (;;) {
1484 newoff = ip6_nexthdr(m, off, proto, nxtp);
1485 if (newoff < 0)
1486 return off;
1487 else if (newoff < off)
1488 return -1; /* invalid */
1489 else if (newoff == off)
1490 return newoff;
1491
1492 off = newoff;
1493 proto = *nxtp;
1494 }
1495 }
1496
1497 struct m_tag *
1498 ip6_addaux(struct mbuf *m)
1499 {
1500 struct m_tag *mtag;
1501
1502 mtag = m_tag_find(m, PACKET_TAG_INET6, NULL);
1503 if (!mtag) {
1504 mtag = m_tag_get(PACKET_TAG_INET6, sizeof(struct ip6aux),
1505 M_NOWAIT);
1506 if (mtag) {
1507 m_tag_prepend(m, mtag);
1508 memset(mtag + 1, 0, sizeof(struct ip6aux));
1509 }
1510 }
1511 return mtag;
1512 }
1513
1514 struct m_tag *
1515 ip6_findaux(struct mbuf *m)
1516 {
1517 struct m_tag *mtag;
1518
1519 mtag = m_tag_find(m, PACKET_TAG_INET6, NULL);
1520 return mtag;
1521 }
1522
1523 void
1524 ip6_delaux(struct mbuf *m)
1525 {
1526 struct m_tag *mtag;
1527
1528 mtag = m_tag_find(m, PACKET_TAG_INET6, NULL);
1529 if (mtag)
1530 m_tag_delete(m, mtag);
1531 }
1532
1533 #ifdef GATEWAY
1534 /*
1535 * sysctl helper routine for net.inet.ip6.maxflows. Since
1536 * we could reduce this value, call ip6flow_reap();
1537 */
1538 static int
1539 sysctl_net_inet6_ip6_maxflows(SYSCTLFN_ARGS)
1540 {
1541 int error;
1542
1543 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
1544 if (error || newp == NULL)
1545 return (error);
1546
1547 mutex_enter(softnet_lock);
1548 KERNEL_LOCK(1, NULL);
1549
1550 ip6flow_reap(0);
1551
1552 KERNEL_UNLOCK_ONE(NULL);
1553 mutex_exit(softnet_lock);
1554
1555 return (0);
1556 }
1557
1558 static int
1559 sysctl_net_inet6_ip6_hashsize(SYSCTLFN_ARGS)
1560 {
1561 int error, tmp;
1562 struct sysctlnode node;
1563
1564 node = *rnode;
1565 tmp = ip6_hashsize;
1566 node.sysctl_data = &tmp;
1567 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1568 if (error || newp == NULL)
1569 return (error);
1570
1571 if ((tmp & (tmp - 1)) == 0 && tmp != 0) {
1572 /*
1573 * Can only fail due to malloc()
1574 */
1575 mutex_enter(softnet_lock);
1576 KERNEL_LOCK(1, NULL);
1577
1578 error = ip6flow_invalidate_all(tmp);
1579
1580 KERNEL_UNLOCK_ONE(NULL);
1581 mutex_exit(softnet_lock);
1582 } else {
1583 /*
1584 * EINVAL if not a power of 2
1585 */
1586 error = EINVAL;
1587 }
1588
1589 return error;
1590 }
1591 #endif /* GATEWAY */
1592
1593 /*
1594 * System control for IP6
1595 */
1596
1597 const u_char inet6ctlerrmap[PRC_NCMDS] = {
1598 0, 0, 0, 0,
1599 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1600 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1601 EMSGSIZE, EHOSTUNREACH, 0, 0,
1602 0, 0, 0, 0,
1603 ENOPROTOOPT
1604 };
1605
1606 extern int sysctl_net_inet6_addrctlpolicy(SYSCTLFN_ARGS);
1607
1608 static int
1609 sysctl_net_inet6_ip6_stats(SYSCTLFN_ARGS)
1610 {
1611
1612 return (NETSTAT_SYSCTL(ip6stat_percpu, IP6_NSTATS));
1613 }
1614
1615 static void
1616 sysctl_net_inet6_ip6_setup(struct sysctllog **clog)
1617 {
1618 #ifdef RFC2292
1619 #define IS2292(x, y) ((in6p->in6p_flags & IN6P_RFC2292) ? (x) : (y))
1620 #else
1621 #define IS2292(x, y) (y)
1622 #endif
1623
1624 sysctl_createv(clog, 0, NULL, NULL,
1625 CTLFLAG_PERMANENT,
1626 CTLTYPE_NODE, "inet6",
1627 SYSCTL_DESCR("PF_INET6 related settings"),
1628 NULL, 0, NULL, 0,
1629 CTL_NET, PF_INET6, CTL_EOL);
1630 sysctl_createv(clog, 0, NULL, NULL,
1631 CTLFLAG_PERMANENT,
1632 CTLTYPE_NODE, "ip6",
1633 SYSCTL_DESCR("IPv6 related settings"),
1634 NULL, 0, NULL, 0,
1635 CTL_NET, PF_INET6, IPPROTO_IPV6, CTL_EOL);
1636
1637 sysctl_createv(clog, 0, NULL, NULL,
1638 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1639 CTLTYPE_INT, "forwarding",
1640 SYSCTL_DESCR("Enable forwarding of INET6 datagrams"),
1641 NULL, 0, &ip6_forwarding, 0,
1642 CTL_NET, PF_INET6, IPPROTO_IPV6,
1643 IPV6CTL_FORWARDING, CTL_EOL);
1644 sysctl_createv(clog, 0, NULL, NULL,
1645 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1646 CTLTYPE_INT, "redirect",
1647 SYSCTL_DESCR("Enable sending of ICMPv6 redirect messages"),
1648 NULL, 0, &ip6_sendredirects, 0,
1649 CTL_NET, PF_INET6, IPPROTO_IPV6,
1650 IPV6CTL_SENDREDIRECTS, CTL_EOL);
1651 sysctl_createv(clog, 0, NULL, NULL,
1652 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1653 CTLTYPE_INT, "hlim",
1654 SYSCTL_DESCR("Hop limit for an INET6 datagram"),
1655 NULL, 0, &ip6_defhlim, 0,
1656 CTL_NET, PF_INET6, IPPROTO_IPV6,
1657 IPV6CTL_DEFHLIM, CTL_EOL);
1658 #ifdef notyet
1659 sysctl_createv(clog, 0, NULL, NULL,
1660 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1661 CTLTYPE_INT, "mtu", NULL,
1662 NULL, 0, &, 0,
1663 CTL_NET, PF_INET6, IPPROTO_IPV6,
1664 IPV6CTL_DEFMTU, CTL_EOL);
1665 #endif
1666 #ifdef __no_idea__
1667 sysctl_createv(clog, 0, NULL, NULL,
1668 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1669 CTLTYPE_INT, "forwsrcrt", NULL,
1670 NULL, 0, &?, 0,
1671 CTL_NET, PF_INET6, IPPROTO_IPV6,
1672 IPV6CTL_FORWSRCRT, CTL_EOL);
1673 sysctl_createv(clog, 0, NULL, NULL,
1674 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1675 CTLTYPE_STRUCT, "mrtstats", NULL,
1676 NULL, 0, &?, sizeof(?),
1677 CTL_NET, PF_INET6, IPPROTO_IPV6,
1678 IPV6CTL_MRTSTATS, CTL_EOL);
1679 sysctl_createv(clog, 0, NULL, NULL,
1680 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1681 CTLTYPE_?, "mrtproto", NULL,
1682 NULL, 0, &?, sizeof(?),
1683 CTL_NET, PF_INET6, IPPROTO_IPV6,
1684 IPV6CTL_MRTPROTO, CTL_EOL);
1685 #endif
1686 sysctl_createv(clog, 0, NULL, NULL,
1687 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1688 CTLTYPE_INT, "maxfragpackets",
1689 SYSCTL_DESCR("Maximum number of fragments to buffer "
1690 "for reassembly"),
1691 NULL, 0, &ip6_maxfragpackets, 0,
1692 CTL_NET, PF_INET6, IPPROTO_IPV6,
1693 IPV6CTL_MAXFRAGPACKETS, CTL_EOL);
1694 #ifdef __no_idea__
1695 sysctl_createv(clog, 0, NULL, NULL,
1696 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1697 CTLTYPE_INT, "sourcecheck", NULL,
1698 NULL, 0, &?, 0,
1699 CTL_NET, PF_INET6, IPPROTO_IPV6,
1700 IPV6CTL_SOURCECHECK, CTL_EOL);
1701 sysctl_createv(clog, 0, NULL, NULL,
1702 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1703 CTLTYPE_INT, "sourcecheck_logint", NULL,
1704 NULL, 0, &?, 0,
1705 CTL_NET, PF_INET6, IPPROTO_IPV6,
1706 IPV6CTL_SOURCECHECK_LOGINT, CTL_EOL);
1707 #endif
1708 sysctl_createv(clog, 0, NULL, NULL,
1709 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1710 CTLTYPE_INT, "accept_rtadv",
1711 SYSCTL_DESCR("Accept router advertisements"),
1712 NULL, 0, &ip6_accept_rtadv, 0,
1713 CTL_NET, PF_INET6, IPPROTO_IPV6,
1714 IPV6CTL_ACCEPT_RTADV, CTL_EOL);
1715 sysctl_createv(clog, 0, NULL, NULL,
1716 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1717 CTLTYPE_INT, "rtadv_maxroutes",
1718 SYSCTL_DESCR("Maximum number of routes accepted via router advertisements"),
1719 NULL, 0, &ip6_rtadv_maxroutes, 0,
1720 CTL_NET, PF_INET6, IPPROTO_IPV6,
1721 IPV6CTL_RTADV_MAXROUTES, CTL_EOL);
1722 sysctl_createv(clog, 0, NULL, NULL,
1723 CTLFLAG_PERMANENT,
1724 CTLTYPE_INT, "rtadv_numroutes",
1725 SYSCTL_DESCR("Current number of routes accepted via router advertisements"),
1726 NULL, 0, &nd6_numroutes, 0,
1727 CTL_NET, PF_INET6, IPPROTO_IPV6,
1728 IPV6CTL_RTADV_NUMROUTES, CTL_EOL);
1729 sysctl_createv(clog, 0, NULL, NULL,
1730 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1731 CTLTYPE_INT, "keepfaith",
1732 SYSCTL_DESCR("Activate faith interface"),
1733 NULL, 0, &ip6_keepfaith, 0,
1734 CTL_NET, PF_INET6, IPPROTO_IPV6,
1735 IPV6CTL_KEEPFAITH, CTL_EOL);
1736 sysctl_createv(clog, 0, NULL, NULL,
1737 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1738 CTLTYPE_INT, "log_interval",
1739 SYSCTL_DESCR("Minumum interval between logging "
1740 "unroutable packets"),
1741 NULL, 0, &ip6_log_interval, 0,
1742 CTL_NET, PF_INET6, IPPROTO_IPV6,
1743 IPV6CTL_LOG_INTERVAL, CTL_EOL);
1744 sysctl_createv(clog, 0, NULL, NULL,
1745 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1746 CTLTYPE_INT, "hdrnestlimit",
1747 SYSCTL_DESCR("Maximum number of nested IPv6 headers"),
1748 NULL, 0, &ip6_hdrnestlimit, 0,
1749 CTL_NET, PF_INET6, IPPROTO_IPV6,
1750 IPV6CTL_HDRNESTLIMIT, CTL_EOL);
1751 sysctl_createv(clog, 0, NULL, NULL,
1752 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1753 CTLTYPE_INT, "dad_count",
1754 SYSCTL_DESCR("Number of Duplicate Address Detection "
1755 "probes to send"),
1756 NULL, 0, &ip6_dad_count, 0,
1757 CTL_NET, PF_INET6, IPPROTO_IPV6,
1758 IPV6CTL_DAD_COUNT, CTL_EOL);
1759 sysctl_createv(clog, 0, NULL, NULL,
1760 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1761 CTLTYPE_INT, "auto_flowlabel",
1762 SYSCTL_DESCR("Assign random IPv6 flow labels"),
1763 NULL, 0, &ip6_auto_flowlabel, 0,
1764 CTL_NET, PF_INET6, IPPROTO_IPV6,
1765 IPV6CTL_AUTO_FLOWLABEL, CTL_EOL);
1766 sysctl_createv(clog, 0, NULL, NULL,
1767 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1768 CTLTYPE_INT, "defmcasthlim",
1769 SYSCTL_DESCR("Default multicast hop limit"),
1770 NULL, 0, &ip6_defmcasthlim, 0,
1771 CTL_NET, PF_INET6, IPPROTO_IPV6,
1772 IPV6CTL_DEFMCASTHLIM, CTL_EOL);
1773 sysctl_createv(clog, 0, NULL, NULL,
1774 CTLFLAG_PERMANENT,
1775 CTLTYPE_STRING, "kame_version",
1776 SYSCTL_DESCR("KAME Version"),
1777 NULL, 0, __UNCONST(__KAME_VERSION), 0,
1778 CTL_NET, PF_INET6, IPPROTO_IPV6,
1779 IPV6CTL_KAME_VERSION, CTL_EOL);
1780 sysctl_createv(clog, 0, NULL, NULL,
1781 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1782 CTLTYPE_INT, "use_deprecated",
1783 SYSCTL_DESCR("Allow use of deprecated addresses as "
1784 "source addresses"),
1785 NULL, 0, &ip6_use_deprecated, 0,
1786 CTL_NET, PF_INET6, IPPROTO_IPV6,
1787 IPV6CTL_USE_DEPRECATED, CTL_EOL);
1788 sysctl_createv(clog, 0, NULL, NULL,
1789 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1790 CTLTYPE_INT, "rr_prune", NULL,
1791 NULL, 0, &ip6_rr_prune, 0,
1792 CTL_NET, PF_INET6, IPPROTO_IPV6,
1793 IPV6CTL_RR_PRUNE, CTL_EOL);
1794 sysctl_createv(clog, 0, NULL, NULL,
1795 CTLFLAG_PERMANENT
1796 #ifndef INET6_BINDV6ONLY
1797 |CTLFLAG_READWRITE,
1798 #endif
1799 CTLTYPE_INT, "v6only",
1800 SYSCTL_DESCR("Disallow PF_INET6 sockets from connecting "
1801 "to PF_INET sockets"),
1802 NULL, 0, &ip6_v6only, 0,
1803 CTL_NET, PF_INET6, IPPROTO_IPV6,
1804 IPV6CTL_V6ONLY, CTL_EOL);
1805 sysctl_createv(clog, 0, NULL, NULL,
1806 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1807 CTLTYPE_INT, "anonportmin",
1808 SYSCTL_DESCR("Lowest ephemeral port number to assign"),
1809 sysctl_net_inet_ip_ports, 0, &ip6_anonportmin, 0,
1810 CTL_NET, PF_INET6, IPPROTO_IPV6,
1811 IPV6CTL_ANONPORTMIN, CTL_EOL);
1812 sysctl_createv(clog, 0, NULL, NULL,
1813 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1814 CTLTYPE_INT, "anonportmax",
1815 SYSCTL_DESCR("Highest ephemeral port number to assign"),
1816 sysctl_net_inet_ip_ports, 0, &ip6_anonportmax, 0,
1817 CTL_NET, PF_INET6, IPPROTO_IPV6,
1818 IPV6CTL_ANONPORTMAX, CTL_EOL);
1819 #ifndef IPNOPRIVPORTS
1820 sysctl_createv(clog, 0, NULL, NULL,
1821 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1822 CTLTYPE_INT, "lowportmin",
1823 SYSCTL_DESCR("Lowest privileged ephemeral port number "
1824 "to assign"),
1825 sysctl_net_inet_ip_ports, 0, &ip6_lowportmin, 0,
1826 CTL_NET, PF_INET6, IPPROTO_IPV6,
1827 IPV6CTL_LOWPORTMIN, CTL_EOL);
1828 sysctl_createv(clog, 0, NULL, NULL,
1829 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1830 CTLTYPE_INT, "lowportmax",
1831 SYSCTL_DESCR("Highest privileged ephemeral port number "
1832 "to assign"),
1833 sysctl_net_inet_ip_ports, 0, &ip6_lowportmax, 0,
1834 CTL_NET, PF_INET6, IPPROTO_IPV6,
1835 IPV6CTL_LOWPORTMAX, CTL_EOL);
1836 #endif /* IPNOPRIVPORTS */
1837 sysctl_createv(clog, 0, NULL, NULL,
1838 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1839 CTLTYPE_INT, "auto_linklocal",
1840 SYSCTL_DESCR("Default value of per-interface flag for "
1841 "adding an IPv6 link-local address to "
1842 "interfaces when attached"),
1843 NULL, 0, &ip6_auto_linklocal, 0,
1844 CTL_NET, PF_INET6, IPPROTO_IPV6,
1845 IPV6CTL_AUTO_LINKLOCAL, CTL_EOL);
1846 sysctl_createv(clog, 0, NULL, NULL,
1847 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1848 CTLTYPE_STRUCT, "addctlpolicy",
1849 SYSCTL_DESCR("Return the current address control"
1850 " policy"),
1851 sysctl_net_inet6_addrctlpolicy, 0, NULL, 0,
1852 CTL_NET, PF_INET6, IPPROTO_IPV6,
1853 IPV6CTL_ADDRCTLPOLICY, CTL_EOL);
1854 sysctl_createv(clog, 0, NULL, NULL,
1855 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1856 CTLTYPE_INT, "use_tempaddr",
1857 SYSCTL_DESCR("Use temporary address"),
1858 NULL, 0, &ip6_use_tempaddr, 0,
1859 CTL_NET, PF_INET6, IPPROTO_IPV6,
1860 CTL_CREATE, CTL_EOL);
1861 sysctl_createv(clog, 0, NULL, NULL,
1862 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1863 CTLTYPE_INT, "prefer_tempaddr",
1864 SYSCTL_DESCR("Prefer temporary address as source "
1865 "address"),
1866 NULL, 0, &ip6_prefer_tempaddr, 0,
1867 CTL_NET, PF_INET6, IPPROTO_IPV6,
1868 CTL_CREATE, CTL_EOL);
1869 sysctl_createv(clog, 0, NULL, NULL,
1870 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1871 CTLTYPE_INT, "temppltime",
1872 SYSCTL_DESCR("preferred lifetime of a temporary address"),
1873 NULL, 0, &ip6_temp_preferred_lifetime, 0,
1874 CTL_NET, PF_INET6, IPPROTO_IPV6,
1875 CTL_CREATE, CTL_EOL);
1876 sysctl_createv(clog, 0, NULL, NULL,
1877 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1878 CTLTYPE_INT, "tempvltime",
1879 SYSCTL_DESCR("valid lifetime of a temporary address"),
1880 NULL, 0, &ip6_temp_valid_lifetime, 0,
1881 CTL_NET, PF_INET6, IPPROTO_IPV6,
1882 CTL_CREATE, CTL_EOL);
1883 sysctl_createv(clog, 0, NULL, NULL,
1884 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1885 CTLTYPE_INT, "maxfrags",
1886 SYSCTL_DESCR("Maximum fragments in reassembly queue"),
1887 NULL, 0, &ip6_maxfrags, 0,
1888 CTL_NET, PF_INET6, IPPROTO_IPV6,
1889 IPV6CTL_MAXFRAGS, CTL_EOL);
1890 sysctl_createv(clog, 0, NULL, NULL,
1891 CTLFLAG_PERMANENT,
1892 CTLTYPE_STRUCT, "stats",
1893 SYSCTL_DESCR("IPv6 statistics"),
1894 sysctl_net_inet6_ip6_stats, 0, NULL, 0,
1895 CTL_NET, PF_INET6, IPPROTO_IPV6,
1896 IPV6CTL_STATS, CTL_EOL);
1897 sysctl_createv(clog, 0, NULL, NULL,
1898 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1899 CTLTYPE_INT, "use_defaultzone",
1900 SYSCTL_DESCR("Whether to use the default scope zones"),
1901 NULL, 0, &ip6_use_defzone, 0,
1902 CTL_NET, PF_INET6, IPPROTO_IPV6,
1903 IPV6CTL_USE_DEFAULTZONE, CTL_EOL);
1904 sysctl_createv(clog, 0, NULL, NULL,
1905 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1906 CTLTYPE_INT, "mcast_pmtu",
1907 SYSCTL_DESCR("Enable pMTU discovery for multicast packet"),
1908 NULL, 0, &ip6_mcast_pmtu, 0,
1909 CTL_NET, PF_INET6, IPPROTO_IPV6,
1910 CTL_CREATE, CTL_EOL);
1911 #ifdef GATEWAY
1912 sysctl_createv(clog, 0, NULL, NULL,
1913 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1914 CTLTYPE_INT, "maxflows",
1915 SYSCTL_DESCR("Number of flows for fast forwarding (IPv6)"),
1916 sysctl_net_inet6_ip6_maxflows, 0, &ip6_maxflows, 0,
1917 CTL_NET, PF_INET6, IPPROTO_IPV6,
1918 CTL_CREATE, CTL_EOL);
1919 sysctl_createv(clog, 0, NULL, NULL,
1920 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1921 CTLTYPE_INT, "hashsize",
1922 SYSCTL_DESCR("Size of hash table for fast forwarding (IPv6)"),
1923 sysctl_net_inet6_ip6_hashsize, 0, &ip6_hashsize, 0,
1924 CTL_NET, PF_INET6, IPPROTO_IPV6,
1925 CTL_CREATE, CTL_EOL);
1926 #endif
1927 /* anonportalgo RFC6056 subtree */
1928 const struct sysctlnode *portalgo_node;
1929 sysctl_createv(clog, 0, NULL, &portalgo_node,
1930 CTLFLAG_PERMANENT,
1931 CTLTYPE_NODE, "anonportalgo",
1932 SYSCTL_DESCR("Anonymous port algorithm selection (RFC 6056)"),
1933 NULL, 0, NULL, 0,
1934 CTL_NET, PF_INET6, IPPROTO_IPV6, CTL_CREATE, CTL_EOL);
1935 sysctl_createv(clog, 0, &portalgo_node, NULL,
1936 CTLFLAG_PERMANENT,
1937 CTLTYPE_STRING, "available",
1938 SYSCTL_DESCR("available algorithms"),
1939 sysctl_portalgo_available, 0, NULL, PORTALGO_MAXLEN,
1940 CTL_CREATE, CTL_EOL);
1941 sysctl_createv(clog, 0, &portalgo_node, NULL,
1942 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1943 CTLTYPE_STRING, "selected",
1944 SYSCTL_DESCR("selected algorithm"),
1945 sysctl_portalgo_selected6, 0, NULL, PORTALGO_MAXLEN,
1946 CTL_CREATE, CTL_EOL);
1947 sysctl_createv(clog, 0, &portalgo_node, NULL,
1948 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1949 CTLTYPE_STRUCT, "reserve",
1950 SYSCTL_DESCR("bitmap of reserved ports"),
1951 sysctl_portalgo_reserve6, 0, NULL, 0,
1952 CTL_CREATE, CTL_EOL);
1953 sysctl_createv(clog, 0, NULL, NULL,
1954 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1955 CTLTYPE_INT, "neighborgcthresh",
1956 SYSCTL_DESCR("Maximum number of entries in neighbor"
1957 " cache"),
1958 NULL, 1, &ip6_neighborgcthresh, 0,
1959 CTL_NET, PF_INET6, IPPROTO_IPV6,
1960 CTL_CREATE, CTL_EOL);
1961 sysctl_createv(clog, 0, NULL, NULL,
1962 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1963 CTLTYPE_INT, "maxifprefixes",
1964 SYSCTL_DESCR("Maximum number of prefixes created by"
1965 " route advertisement per interface"),
1966 NULL, 1, &ip6_maxifprefixes, 0,
1967 CTL_NET, PF_INET6, IPPROTO_IPV6,
1968 CTL_CREATE, CTL_EOL);
1969 sysctl_createv(clog, 0, NULL, NULL,
1970 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1971 CTLTYPE_INT, "maxifdefrouters",
1972 SYSCTL_DESCR("Maximum number of default routers created"
1973 " by route advertisement per interface"),
1974 NULL, 1, &ip6_maxifdefrouters, 0,
1975 CTL_NET, PF_INET6, IPPROTO_IPV6,
1976 CTL_CREATE, CTL_EOL);
1977 sysctl_createv(clog, 0, NULL, NULL,
1978 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1979 CTLTYPE_INT, "maxdynroutes",
1980 SYSCTL_DESCR("Maximum number of routes created via"
1981 " redirect"),
1982 NULL, 1, &ip6_maxdynroutes, 0,
1983 CTL_NET, PF_INET6, IPPROTO_IPV6,
1984 CTL_CREATE, CTL_EOL);
1985 }
1986
1987 void
1988 ip6_statinc(u_int stat)
1989 {
1990
1991 KASSERT(stat < IP6_NSTATS);
1992 IP6_STATINC(stat);
1993 }
1994