ip6_mroute.c revision 1.72 1 /* $NetBSD: ip6_mroute.c,v 1.72 2006/06/07 22:34:03 kardel Exp $ */
2 /* $KAME: ip6_mroute.c,v 1.49 2001/07/25 09:21:18 jinmei Exp $ */
3
4 /*
5 * Copyright (C) 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /* BSDI ip_mroute.c,v 2.10 1996/11/14 00:29:52 jch Exp */
34
35 /*
36 * Copyright (c) 1992, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * This code is derived from software contributed to Berkeley by
40 * Stephen Deering of Stanford University.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
67 */
68
69 /*
70 * Copyright (c) 1989 Stephen Deering
71 *
72 * This code is derived from software contributed to Berkeley by
73 * Stephen Deering of Stanford University.
74 *
75 * Redistribution and use in source and binary forms, with or without
76 * modification, are permitted provided that the following conditions
77 * are met:
78 * 1. Redistributions of source code must retain the above copyright
79 * notice, this list of conditions and the following disclaimer.
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in the
82 * documentation and/or other materials provided with the distribution.
83 * 3. All advertising materials mentioning features or use of this software
84 * must display the following acknowledgement:
85 * This product includes software developed by the University of
86 * California, Berkeley and its contributors.
87 * 4. Neither the name of the University nor the names of its contributors
88 * may be used to endorse or promote products derived from this software
89 * without specific prior written permission.
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
92 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
94 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
95 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
96 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
97 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 * SUCH DAMAGE.
102 *
103 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
104 */
105
106 /*
107 * IP multicast forwarding procedures
108 *
109 * Written by David Waitzman, BBN Labs, August 1988.
110 * Modified by Steve Deering, Stanford, February 1989.
111 * Modified by Mark J. Steiglitz, Stanford, May, 1991
112 * Modified by Van Jacobson, LBL, January 1993
113 * Modified by Ajit Thyagarajan, PARC, August 1993
114 * Modified by Bill Fenner, PARC, April 1994
115 *
116 * MROUTING Revision: 3.5.1.2 + PIM-SMv2 (pimd) Support
117 */
118
119 #include <sys/cdefs.h>
120 __KERNEL_RCSID(0, "$NetBSD: ip6_mroute.c,v 1.72 2006/06/07 22:34:03 kardel Exp $");
121
122 #include "opt_inet.h"
123 #include "opt_mrouting.h"
124
125 #include <sys/param.h>
126 #include <sys/systm.h>
127 #include <sys/callout.h>
128 #include <sys/mbuf.h>
129 #include <sys/socket.h>
130 #include <sys/socketvar.h>
131 #include <sys/sockio.h>
132 #include <sys/protosw.h>
133 #include <sys/errno.h>
134 #include <sys/time.h>
135 #include <sys/kernel.h>
136 #include <sys/ioctl.h>
137 #include <sys/sysctl.h>
138 #include <sys/syslog.h>
139
140 #include <net/if.h>
141 #include <net/route.h>
142 #include <net/raw_cb.h>
143
144 #include <netinet/in.h>
145 #include <netinet/in_var.h>
146 #include <netinet/icmp6.h>
147
148 #include <netinet/ip6.h>
149 #include <netinet6/ip6_var.h>
150 #include <netinet6/ip6_mroute.h>
151 #include <netinet6/scope6_var.h>
152 #include <netinet6/pim6.h>
153 #include <netinet6/pim6_var.h>
154 #include <netinet6/nd6.h>
155
156 #include <net/net_osdep.h>
157
158 static int ip6_mdq __P((struct mbuf *, struct ifnet *, struct mf6c *));
159 static void phyint_send __P((struct ip6_hdr *, struct mif6 *, struct mbuf *));
160
161 static int set_pim6 __P((int *));
162 static int get_pim6 __P((struct mbuf *));
163 static int socket_send __P((struct socket *, struct mbuf *,
164 struct sockaddr_in6 *));
165 static int register_send __P((struct ip6_hdr *, struct mif6 *, struct mbuf *));
166
167 /*
168 * Globals. All but ip6_mrouter, ip6_mrtproto and mrt6stat could be static,
169 * except for netstat or debugging purposes.
170 */
171 struct socket *ip6_mrouter = NULL;
172 int ip6_mrouter_ver = 0;
173 int ip6_mrtproto = IPPROTO_PIM; /* for netstat only */
174 struct mrt6stat mrt6stat;
175
176 #define NO_RTE_FOUND 0x1
177 #define RTE_FOUND 0x2
178
179 struct mf6c *mf6ctable[MF6CTBLSIZ];
180 u_char n6expire[MF6CTBLSIZ];
181 struct mif6 mif6table[MAXMIFS];
182 #ifdef MRT6DEBUG
183 u_int mrt6debug = 0; /* debug level */
184 #define DEBUG_MFC 0x02
185 #define DEBUG_FORWARD 0x04
186 #define DEBUG_EXPIRE 0x08
187 #define DEBUG_XMIT 0x10
188 #define DEBUG_REG 0x20
189 #define DEBUG_PIM 0x40
190 #endif
191
192 static void expire_upcalls __P((void *));
193 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
194 #define UPCALL_EXPIRE 6 /* number of timeouts */
195
196 #ifdef INET
197 #ifdef MROUTING
198 extern struct socket *ip_mrouter;
199 #endif
200 #endif
201
202 /*
203 * 'Interfaces' associated with decapsulator (so we can tell
204 * packets that went through it from ones that get reflected
205 * by a broken gateway). These interfaces are never linked into
206 * the system ifnet list & no routes point to them. I.e., packets
207 * can't be sent this way. They only exist as a placeholder for
208 * multicast source verification.
209 */
210 struct ifnet multicast_register_if6;
211
212 #define ENCAP_HOPS 64
213
214 /*
215 * Private variables.
216 */
217 static mifi_t nummifs = 0;
218 static mifi_t reg_mif_num = (mifi_t)-1;
219
220 struct pim6stat pim6stat;
221 static int pim6;
222
223 /*
224 * Hash function for a source, group entry
225 */
226 #define MF6CHASH(a, g) MF6CHASHMOD((a).s6_addr32[0] ^ (a).s6_addr32[1] ^ \
227 (a).s6_addr32[2] ^ (a).s6_addr32[3] ^ \
228 (g).s6_addr32[0] ^ (g).s6_addr32[1] ^ \
229 (g).s6_addr32[2] ^ (g).s6_addr32[3])
230
231 /*
232 * Find a route for a given origin IPv6 address and Multicast group address.
233 * Quality of service parameter to be added in the future!!!
234 */
235
236 #define MF6CFIND(o, g, rt) do { \
237 struct mf6c *_rt = mf6ctable[MF6CHASH(o,g)]; \
238 rt = NULL; \
239 mrt6stat.mrt6s_mfc_lookups++; \
240 while (_rt) { \
241 if (IN6_ARE_ADDR_EQUAL(&_rt->mf6c_origin.sin6_addr, &(o)) && \
242 IN6_ARE_ADDR_EQUAL(&_rt->mf6c_mcastgrp.sin6_addr, &(g)) && \
243 (_rt->mf6c_stall == NULL)) { \
244 rt = _rt; \
245 break; \
246 } \
247 _rt = _rt->mf6c_next; \
248 } \
249 if (rt == NULL) { \
250 mrt6stat.mrt6s_mfc_misses++; \
251 } \
252 } while (/*CONSTCOND*/ 0)
253
254 /*
255 * Macros to compute elapsed time efficiently
256 * Borrowed from Van Jacobson's scheduling code
257 */
258 #define TV_DELTA(a, b, delta) do { \
259 int xxs; \
260 \
261 delta = (a).tv_usec - (b).tv_usec; \
262 if ((xxs = (a).tv_sec - (b).tv_sec)) { \
263 switch (xxs) { \
264 case 2: \
265 delta += 1000000; \
266 /* FALLTHROUGH */ \
267 case 1: \
268 delta += 1000000; \
269 break; \
270 default: \
271 delta += (1000000 * xxs); \
272 } \
273 } \
274 } while (/*CONSTCOND*/ 0)
275
276 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
277 (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
278
279 #ifdef UPCALL_TIMING
280 #define UPCALL_MAX 50
281 u_long upcall_data[UPCALL_MAX + 1];
282 static void collate();
283 #endif /* UPCALL_TIMING */
284
285 static int get_sg_cnt __P((struct sioc_sg_req6 *));
286 static int get_mif6_cnt __P((struct sioc_mif_req6 *));
287 static int ip6_mrouter_init __P((struct socket *, int, int));
288 static int add_m6if __P((struct mif6ctl *));
289 static int del_m6if __P((mifi_t *));
290 static int add_m6fc __P((struct mf6cctl *));
291 static int del_m6fc __P((struct mf6cctl *));
292
293 static struct callout expire_upcalls_ch = CALLOUT_INITIALIZER;
294
295 /*
296 * Handle MRT setsockopt commands to modify the multicast routing tables.
297 */
298 int
299 ip6_mrouter_set(cmd, so, m)
300 int cmd;
301 struct socket *so;
302 struct mbuf *m;
303 {
304 if (cmd != MRT6_INIT && so != ip6_mrouter)
305 return (EACCES);
306
307 switch (cmd) {
308 #ifdef MRT6_OINIT
309 case MRT6_OINIT:
310 #endif
311 case MRT6_INIT:
312 if (m == NULL || m->m_len < sizeof(int))
313 return (EINVAL);
314 return (ip6_mrouter_init(so, *mtod(m, int *), cmd));
315 case MRT6_DONE:
316 return (ip6_mrouter_done());
317 case MRT6_ADD_MIF:
318 if (m == NULL || m->m_len < sizeof(struct mif6ctl))
319 return (EINVAL);
320 return (add_m6if(mtod(m, struct mif6ctl *)));
321 case MRT6_DEL_MIF:
322 if (m == NULL || m->m_len < sizeof(mifi_t))
323 return (EINVAL);
324 return (del_m6if(mtod(m, mifi_t *)));
325 case MRT6_ADD_MFC:
326 if (m == NULL || m->m_len < sizeof(struct mf6cctl))
327 return (EINVAL);
328 return (add_m6fc(mtod(m, struct mf6cctl *)));
329 case MRT6_DEL_MFC:
330 if (m == NULL || m->m_len < sizeof(struct mf6cctl))
331 return (EINVAL);
332 return (del_m6fc(mtod(m, struct mf6cctl *)));
333 case MRT6_PIM:
334 if (m == NULL || m->m_len < sizeof(int))
335 return (EINVAL);
336 return (set_pim6(mtod(m, int *)));
337 default:
338 return (EOPNOTSUPP);
339 }
340 }
341
342 /*
343 * Handle MRT getsockopt commands
344 */
345 int
346 ip6_mrouter_get(cmd, so, m)
347 int cmd;
348 struct socket *so;
349 struct mbuf **m;
350 {
351 struct mbuf *mb;
352
353 if (so != ip6_mrouter) return EACCES;
354
355 *m = mb = m_get(M_WAIT, MT_SOOPTS);
356
357 switch (cmd) {
358 case MRT6_PIM:
359 return get_pim6(mb);
360 default:
361 m_free(mb);
362 return EOPNOTSUPP;
363 }
364 }
365
366 /*
367 * Handle ioctl commands to obtain information from the cache
368 */
369 int
370 mrt6_ioctl(cmd, data)
371 int cmd;
372 caddr_t data;
373 {
374
375 switch (cmd) {
376 case SIOCGETSGCNT_IN6:
377 return (get_sg_cnt((struct sioc_sg_req6 *)data));
378 case SIOCGETMIFCNT_IN6:
379 return (get_mif6_cnt((struct sioc_mif_req6 *)data));
380 default:
381 return (EINVAL);
382 }
383 }
384
385 /*
386 * returns the packet, byte, rpf-failure count for the source group provided
387 */
388 static int
389 get_sg_cnt(req)
390 struct sioc_sg_req6 *req;
391 {
392 struct mf6c *rt;
393 int s;
394
395 s = splsoftnet();
396 MF6CFIND(req->src.sin6_addr, req->grp.sin6_addr, rt);
397 splx(s);
398 if (rt != NULL) {
399 req->pktcnt = rt->mf6c_pkt_cnt;
400 req->bytecnt = rt->mf6c_byte_cnt;
401 req->wrong_if = rt->mf6c_wrong_if;
402 } else
403 return (ESRCH);
404 #if 0
405 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
406 #endif
407
408 return 0;
409 }
410
411 /*
412 * returns the input and output packet and byte counts on the mif provided
413 */
414 static int
415 get_mif6_cnt(req)
416 struct sioc_mif_req6 *req;
417 {
418 mifi_t mifi = req->mifi;
419
420 if (mifi >= nummifs)
421 return EINVAL;
422
423 req->icount = mif6table[mifi].m6_pkt_in;
424 req->ocount = mif6table[mifi].m6_pkt_out;
425 req->ibytes = mif6table[mifi].m6_bytes_in;
426 req->obytes = mif6table[mifi].m6_bytes_out;
427
428 return 0;
429 }
430
431 /*
432 * Get PIM processiong global
433 */
434 static int
435 get_pim6(m)
436 struct mbuf *m;
437 {
438 int *i;
439
440 i = mtod(m, int *);
441
442 *i = pim6;
443
444 return 0;
445 }
446
447 static int
448 set_pim6(i)
449 int *i;
450 {
451 if ((*i != 1) && (*i != 0))
452 return EINVAL;
453
454 pim6 = *i;
455
456 return 0;
457 }
458
459 /*
460 * Enable multicast routing
461 */
462 static int
463 ip6_mrouter_init(so, v, cmd)
464 struct socket *so;
465 int v;
466 int cmd;
467 {
468 #ifdef MRT6DEBUG
469 if (mrt6debug)
470 log(LOG_DEBUG,
471 "ip6_mrouter_init: so_type = %d, pr_protocol = %d\n",
472 so->so_type, so->so_proto->pr_protocol);
473 #endif
474
475 if (so->so_type != SOCK_RAW ||
476 so->so_proto->pr_protocol != IPPROTO_ICMPV6)
477 return (EOPNOTSUPP);
478
479 if (v != 1)
480 return (ENOPROTOOPT);
481
482 if (ip6_mrouter != NULL)
483 return (EADDRINUSE);
484
485 ip6_mrouter = so;
486 ip6_mrouter_ver = cmd;
487
488 bzero((caddr_t)mf6ctable, sizeof(mf6ctable));
489 bzero((caddr_t)n6expire, sizeof(n6expire));
490
491 pim6 = 0;/* used for stubbing out/in pim stuff */
492
493 callout_init(&expire_upcalls_ch);
494 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
495 expire_upcalls, NULL);
496
497 #ifdef MRT6DEBUG
498 if (mrt6debug)
499 log(LOG_DEBUG, "ip6_mrouter_init\n");
500 #endif
501
502 return 0;
503 }
504
505 /*
506 * Disable multicast routing
507 */
508 int
509 ip6_mrouter_done()
510 {
511 mifi_t mifi;
512 int i;
513 struct ifnet *ifp;
514 struct in6_ifreq ifr;
515 struct mf6c *rt;
516 struct rtdetq *rte;
517 int s;
518
519 s = splsoftnet();
520
521 /*
522 * For each phyint in use, disable promiscuous reception of all IPv6
523 * multicasts.
524 */
525 #ifdef INET
526 #ifdef MROUTING
527 /*
528 * If there is still IPv4 multicast routing daemon,
529 * we remain interfaces to receive all muliticasted packets.
530 * XXX: there may be an interface in which the IPv4 multicast
531 * daemon is not interested...
532 */
533 if (!ip_mrouter)
534 #endif
535 #endif
536 {
537 for (mifi = 0; mifi < nummifs; mifi++) {
538 if (mif6table[mifi].m6_ifp &&
539 !(mif6table[mifi].m6_flags & MIFF_REGISTER)) {
540 ifr.ifr_addr.sin6_family = AF_INET6;
541 ifr.ifr_addr.sin6_addr= in6addr_any;
542 ifp = mif6table[mifi].m6_ifp;
543 (*ifp->if_ioctl)(ifp, SIOCDELMULTI,
544 (caddr_t)&ifr);
545 }
546 }
547 }
548 #ifdef notyet
549 bzero((caddr_t)qtable, sizeof(qtable));
550 bzero((caddr_t)tbftable, sizeof(tbftable));
551 #endif
552 bzero((caddr_t)mif6table, sizeof(mif6table));
553 nummifs = 0;
554
555 pim6 = 0; /* used to stub out/in pim specific code */
556
557 callout_stop(&expire_upcalls_ch);
558
559 /*
560 * Free all multicast forwarding cache entries.
561 */
562 for (i = 0; i < MF6CTBLSIZ; i++) {
563 rt = mf6ctable[i];
564 while (rt) {
565 struct mf6c *frt;
566
567 for (rte = rt->mf6c_stall; rte != NULL; ) {
568 struct rtdetq *n = rte->next;
569
570 m_free(rte->m);
571 free(rte, M_MRTABLE);
572 rte = n;
573 }
574 frt = rt;
575 rt = rt->mf6c_next;
576 free(frt, M_MRTABLE);
577 }
578 }
579
580 bzero((caddr_t)mf6ctable, sizeof(mf6ctable));
581
582 /*
583 * Reset register interface
584 */
585 if (reg_mif_num != (mifi_t)-1) {
586 if_detach(&multicast_register_if6);
587 reg_mif_num = (mifi_t)-1;
588 }
589
590 ip6_mrouter = NULL;
591 ip6_mrouter_ver = 0;
592
593 splx(s);
594
595 #ifdef MRT6DEBUG
596 if (mrt6debug)
597 log(LOG_DEBUG, "ip6_mrouter_done\n");
598 #endif
599
600 return 0;
601 }
602
603 void
604 ip6_mrouter_detach(ifp)
605 struct ifnet *ifp;
606 {
607 struct rtdetq *rte;
608 struct mf6c *mfc;
609 mifi_t mifi;
610 int i;
611
612 if (ip6_mrouter == NULL)
613 return;
614
615 /*
616 * Delete a mif which points to ifp.
617 */
618 for (mifi = 0; mifi < nummifs; mifi++)
619 if (mif6table[mifi].m6_ifp == ifp)
620 del_m6if(&mifi);
621
622 /*
623 * Clear rte->ifp of cache entries received on ifp.
624 */
625 for (i = 0; i < MF6CTBLSIZ; i++) {
626 if (n6expire[i] == 0)
627 continue;
628
629 for (mfc = mf6ctable[i]; mfc != NULL; mfc = mfc->mf6c_next) {
630 for (rte = mfc->mf6c_stall; rte != NULL; rte = rte->next) {
631 if (rte->ifp == ifp)
632 rte->ifp = NULL;
633 }
634 }
635 }
636 }
637
638
639 /*
640 * Add a mif to the mif table
641 */
642 static int
643 add_m6if(mifcp)
644 struct mif6ctl *mifcp;
645 {
646 struct mif6 *mifp;
647 struct ifnet *ifp;
648 struct in6_ifreq ifr;
649 int error, s;
650 #ifdef notyet
651 struct tbf *m_tbf = tbftable + mifcp->mif6c_mifi;
652 #endif
653
654 if (mifcp->mif6c_mifi >= MAXMIFS)
655 return EINVAL;
656 mifp = mif6table + mifcp->mif6c_mifi;
657 if (mifp->m6_ifp)
658 return EADDRINUSE; /* XXX: is it appropriate? */
659 if (mifcp->mif6c_pifi == 0 || mifcp->mif6c_pifi >= if_indexlim)
660 return ENXIO;
661 /*
662 * XXX: some OSes can remove ifp and clear ifindex2ifnet[id]
663 * even for id between 0 and if_index.
664 */
665 if ((ifp = ifindex2ifnet[mifcp->mif6c_pifi]) == NULL)
666 return ENXIO;
667
668 if (mifcp->mif6c_flags & MIFF_REGISTER) {
669 ifp = &multicast_register_if6;
670
671 if (reg_mif_num == (mifi_t)-1) {
672 strlcpy(ifp->if_xname, "register_mif",
673 sizeof(ifp->if_xname));
674 ifp->if_flags |= IFF_LOOPBACK;
675 ifp->if_index = mifcp->mif6c_mifi;
676 reg_mif_num = mifcp->mif6c_mifi;
677 if_attach(ifp);
678 }
679
680 } /* if REGISTER */
681 else {
682 /* Make sure the interface supports multicast */
683 if ((ifp->if_flags & IFF_MULTICAST) == 0)
684 return EOPNOTSUPP;
685
686 s = splsoftnet();
687 /*
688 * Enable promiscuous reception of all IPv6 multicasts
689 * from the interface.
690 */
691 ifr.ifr_addr.sin6_family = AF_INET6;
692 ifr.ifr_addr.sin6_addr = in6addr_any;
693 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
694 splx(s);
695 if (error)
696 return error;
697 }
698
699 s = splsoftnet();
700 mifp->m6_flags = mifcp->mif6c_flags;
701 mifp->m6_ifp = ifp;
702 #ifdef notyet
703 /* scaling up here allows division by 1024 in critical code */
704 mifp->m6_rate_limit = mifcp->mif6c_rate_limit * 1024 / 1000;
705 #endif
706 /* initialize per mif pkt counters */
707 mifp->m6_pkt_in = 0;
708 mifp->m6_pkt_out = 0;
709 mifp->m6_bytes_in = 0;
710 mifp->m6_bytes_out = 0;
711 splx(s);
712
713 /* Adjust nummifs up if the mifi is higher than nummifs */
714 if (nummifs <= mifcp->mif6c_mifi)
715 nummifs = mifcp->mif6c_mifi + 1;
716
717 #ifdef MRT6DEBUG
718 if (mrt6debug)
719 log(LOG_DEBUG,
720 "add_mif #%d, phyint %s%d\n",
721 mifcp->mif6c_mifi,
722 ifp->if_name, ifp->if_unit);
723 #endif
724
725 return 0;
726 }
727
728 /*
729 * Delete a mif from the mif table
730 */
731 static int
732 del_m6if(mifip)
733 mifi_t *mifip;
734 {
735 struct mif6 *mifp = mif6table + *mifip;
736 mifi_t mifi;
737 struct ifnet *ifp;
738 struct in6_ifreq ifr;
739 int s;
740
741 if (*mifip >= nummifs)
742 return EINVAL;
743 if (mifp->m6_ifp == NULL)
744 return EINVAL;
745
746 s = splsoftnet();
747
748 if (!(mifp->m6_flags & MIFF_REGISTER)) {
749 /*
750 * XXX: what if there is yet IPv4 multicast daemon
751 * using the interface?
752 */
753 ifp = mifp->m6_ifp;
754
755 ifr.ifr_addr.sin6_family = AF_INET6;
756 ifr.ifr_addr.sin6_addr = in6addr_any;
757 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
758 } else {
759 if (reg_mif_num != (mifi_t)-1) {
760 if_detach(&multicast_register_if6);
761 reg_mif_num = (mifi_t)-1;
762 }
763 }
764
765 #ifdef notyet
766 bzero((caddr_t)qtable[*mifip], sizeof(qtable[*mifip]));
767 bzero((caddr_t)mifp->m6_tbf, sizeof(*(mifp->m6_tbf)));
768 #endif
769 bzero((caddr_t)mifp, sizeof (*mifp));
770
771 /* Adjust nummifs down */
772 for (mifi = nummifs; mifi > 0; mifi--)
773 if (mif6table[mifi - 1].m6_ifp)
774 break;
775 nummifs = mifi;
776
777 splx(s);
778
779 #ifdef MRT6DEBUG
780 if (mrt6debug)
781 log(LOG_DEBUG, "del_m6if %d, nummifs %d\n", *mifip, nummifs);
782 #endif
783
784 return 0;
785 }
786
787 /*
788 * Add an mfc entry
789 */
790 static int
791 add_m6fc(mfccp)
792 struct mf6cctl *mfccp;
793 {
794 struct mf6c *rt;
795 u_long hash;
796 struct rtdetq *rte;
797 u_short nstl;
798 int s;
799
800 MF6CFIND(mfccp->mf6cc_origin.sin6_addr,
801 mfccp->mf6cc_mcastgrp.sin6_addr, rt);
802
803 /* If an entry already exists, just update the fields */
804 if (rt) {
805 #ifdef MRT6DEBUG
806 if (mrt6debug & DEBUG_MFC)
807 log(LOG_DEBUG,"add_m6fc update o %s g %s p %x\n",
808 ip6_sprintf(&mfccp->mf6cc_origin.sin6_addr),
809 ip6_sprintf(&mfccp->mf6cc_mcastgrp.sin6_addr),
810 mfccp->mf6cc_parent);
811 #endif
812
813 s = splsoftnet();
814 rt->mf6c_parent = mfccp->mf6cc_parent;
815 rt->mf6c_ifset = mfccp->mf6cc_ifset;
816 splx(s);
817 return 0;
818 }
819
820 /*
821 * Find the entry for which the upcall was made and update
822 */
823 s = splsoftnet();
824 hash = MF6CHASH(mfccp->mf6cc_origin.sin6_addr,
825 mfccp->mf6cc_mcastgrp.sin6_addr);
826 for (rt = mf6ctable[hash], nstl = 0; rt; rt = rt->mf6c_next) {
827 if (IN6_ARE_ADDR_EQUAL(&rt->mf6c_origin.sin6_addr,
828 &mfccp->mf6cc_origin.sin6_addr) &&
829 IN6_ARE_ADDR_EQUAL(&rt->mf6c_mcastgrp.sin6_addr,
830 &mfccp->mf6cc_mcastgrp.sin6_addr) &&
831 (rt->mf6c_stall != NULL)) {
832
833 if (nstl++)
834 log(LOG_ERR,
835 "add_m6fc: %s o %s g %s p %x dbx %p\n",
836 "multiple kernel entries",
837 ip6_sprintf(&mfccp->mf6cc_origin.sin6_addr),
838 ip6_sprintf(&mfccp->mf6cc_mcastgrp.sin6_addr),
839 mfccp->mf6cc_parent, rt->mf6c_stall);
840
841 #ifdef MRT6DEBUG
842 if (mrt6debug & DEBUG_MFC)
843 log(LOG_DEBUG,
844 "add_m6fc o %s g %s p %x dbg %x\n",
845 ip6_sprintf(&mfccp->mf6cc_origin.sin6_addr),
846 ip6_sprintf(&mfccp->mf6cc_mcastgrp.sin6_addr),
847 mfccp->mf6cc_parent, rt->mf6c_stall);
848 #endif
849
850 rt->mf6c_origin = mfccp->mf6cc_origin;
851 rt->mf6c_mcastgrp = mfccp->mf6cc_mcastgrp;
852 rt->mf6c_parent = mfccp->mf6cc_parent;
853 rt->mf6c_ifset = mfccp->mf6cc_ifset;
854 /* initialize pkt counters per src-grp */
855 rt->mf6c_pkt_cnt = 0;
856 rt->mf6c_byte_cnt = 0;
857 rt->mf6c_wrong_if = 0;
858
859 rt->mf6c_expire = 0; /* Don't clean this guy up */
860 n6expire[hash]--;
861
862 /* free packets Qed at the end of this entry */
863 for (rte = rt->mf6c_stall; rte != NULL; ) {
864 struct rtdetq *n = rte->next;
865 if (rte->ifp) {
866 ip6_mdq(rte->m, rte->ifp, rt);
867 }
868 m_freem(rte->m);
869 #ifdef UPCALL_TIMING
870 collate(&(rte->t));
871 #endif /* UPCALL_TIMING */
872 free(rte, M_MRTABLE);
873 rte = n;
874 }
875 rt->mf6c_stall = NULL;
876 }
877 }
878
879 /*
880 * It is possible that an entry is being inserted without an upcall
881 */
882 if (nstl == 0) {
883 #ifdef MRT6DEBUG
884 if (mrt6debug & DEBUG_MFC)
885 log(LOG_DEBUG,
886 "add_mfc no upcall h %d o %s g %s p %x\n",
887 hash,
888 ip6_sprintf(&mfccp->mf6cc_origin.sin6_addr),
889 ip6_sprintf(&mfccp->mf6cc_mcastgrp.sin6_addr),
890 mfccp->mf6cc_parent);
891 #endif
892
893 for (rt = mf6ctable[hash]; rt; rt = rt->mf6c_next) {
894
895 if (IN6_ARE_ADDR_EQUAL(&rt->mf6c_origin.sin6_addr,
896 &mfccp->mf6cc_origin.sin6_addr)&&
897 IN6_ARE_ADDR_EQUAL(&rt->mf6c_mcastgrp.sin6_addr,
898 &mfccp->mf6cc_mcastgrp.sin6_addr)) {
899
900 rt->mf6c_origin = mfccp->mf6cc_origin;
901 rt->mf6c_mcastgrp = mfccp->mf6cc_mcastgrp;
902 rt->mf6c_parent = mfccp->mf6cc_parent;
903 rt->mf6c_ifset = mfccp->mf6cc_ifset;
904 /* initialize pkt counters per src-grp */
905 rt->mf6c_pkt_cnt = 0;
906 rt->mf6c_byte_cnt = 0;
907 rt->mf6c_wrong_if = 0;
908
909 if (rt->mf6c_expire)
910 n6expire[hash]--;
911 rt->mf6c_expire = 0;
912 }
913 }
914 if (rt == NULL) {
915 /* no upcall, so make a new entry */
916 rt = (struct mf6c *)malloc(sizeof(*rt), M_MRTABLE,
917 M_NOWAIT);
918 if (rt == NULL) {
919 splx(s);
920 return ENOBUFS;
921 }
922
923 /* insert new entry at head of hash chain */
924 rt->mf6c_origin = mfccp->mf6cc_origin;
925 rt->mf6c_mcastgrp = mfccp->mf6cc_mcastgrp;
926 rt->mf6c_parent = mfccp->mf6cc_parent;
927 rt->mf6c_ifset = mfccp->mf6cc_ifset;
928 /* initialize pkt counters per src-grp */
929 rt->mf6c_pkt_cnt = 0;
930 rt->mf6c_byte_cnt = 0;
931 rt->mf6c_wrong_if = 0;
932 rt->mf6c_expire = 0;
933 rt->mf6c_stall = NULL;
934
935 /* link into table */
936 rt->mf6c_next = mf6ctable[hash];
937 mf6ctable[hash] = rt;
938 }
939 }
940 splx(s);
941 return 0;
942 }
943
944 #ifdef UPCALL_TIMING
945 /*
946 * collect delay statistics on the upcalls
947 */
948 static void
949 collate(t)
950 struct timeval *t;
951 {
952 u_long d;
953 struct timeval tp;
954 u_long delta;
955
956 GET_TIME(tp);
957
958 if (TV_LT(*t, tp))
959 {
960 TV_DELTA(tp, *t, delta);
961
962 d = delta >> 10;
963 if (d > UPCALL_MAX)
964 d = UPCALL_MAX;
965
966 ++upcall_data[d];
967 }
968 }
969 #endif /* UPCALL_TIMING */
970
971 /*
972 * Delete an mfc entry
973 */
974 static int
975 del_m6fc(mfccp)
976 struct mf6cctl *mfccp;
977 {
978 struct sockaddr_in6 origin;
979 struct sockaddr_in6 mcastgrp;
980 struct mf6c *rt;
981 struct mf6c **nptr;
982 u_long hash;
983 int s;
984
985 origin = mfccp->mf6cc_origin;
986 mcastgrp = mfccp->mf6cc_mcastgrp;
987 hash = MF6CHASH(origin.sin6_addr, mcastgrp.sin6_addr);
988
989 #ifdef MRT6DEBUG
990 if (mrt6debug & DEBUG_MFC)
991 log(LOG_DEBUG,"del_m6fc orig %s mcastgrp %s\n",
992 ip6_sprintf(&origin.sin6_addr),
993 ip6_sprintf(&mcastgrp.sin6_addr));
994 #endif
995
996 s = splsoftnet();
997
998 nptr = &mf6ctable[hash];
999 while ((rt = *nptr) != NULL) {
1000 if (IN6_ARE_ADDR_EQUAL(&origin.sin6_addr,
1001 &rt->mf6c_origin.sin6_addr) &&
1002 IN6_ARE_ADDR_EQUAL(&mcastgrp.sin6_addr,
1003 &rt->mf6c_mcastgrp.sin6_addr) &&
1004 rt->mf6c_stall == NULL)
1005 break;
1006
1007 nptr = &rt->mf6c_next;
1008 }
1009 if (rt == NULL) {
1010 splx(s);
1011 return EADDRNOTAVAIL;
1012 }
1013
1014 *nptr = rt->mf6c_next;
1015 free(rt, M_MRTABLE);
1016
1017 splx(s);
1018
1019 return 0;
1020 }
1021
1022 static int
1023 socket_send(s, mm, src)
1024 struct socket *s;
1025 struct mbuf *mm;
1026 struct sockaddr_in6 *src;
1027 {
1028 if (s) {
1029 if (sbappendaddr(&s->so_rcv,
1030 (struct sockaddr *)src,
1031 mm, (struct mbuf *)0) != 0) {
1032 sorwakeup(s);
1033 return 0;
1034 }
1035 }
1036 m_freem(mm);
1037 return -1;
1038 }
1039
1040 /*
1041 * IPv6 multicast forwarding function. This function assumes that the packet
1042 * pointed to by "ip6" has arrived on (or is about to be sent to) the interface
1043 * pointed to by "ifp", and the packet is to be relayed to other networks
1044 * that have members of the packet's destination IPv6 multicast group.
1045 *
1046 * The packet is returned unscathed to the caller, unless it is
1047 * erroneous, in which case a non-zero return value tells the caller to
1048 * discard it.
1049 */
1050
1051 int
1052 ip6_mforward(ip6, ifp, m)
1053 struct ip6_hdr *ip6;
1054 struct ifnet *ifp;
1055 struct mbuf *m;
1056 {
1057 struct mf6c *rt;
1058 struct mif6 *mifp;
1059 struct mbuf *mm;
1060 int s;
1061 mifi_t mifi;
1062 struct sockaddr_in6 sin6;
1063
1064 #ifdef MRT6DEBUG
1065 if (mrt6debug & DEBUG_FORWARD)
1066 log(LOG_DEBUG, "ip6_mforward: src %s, dst %s, ifindex %d\n",
1067 ip6_sprintf(&ip6->ip6_src), ip6_sprintf(&ip6->ip6_dst),
1068 ifp->if_index);
1069 #endif
1070
1071 /*
1072 * Don't forward a packet with Hop limit of zero or one,
1073 * or a packet destined to a local-only group.
1074 */
1075 if (ip6->ip6_hlim <= 1 || IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst) ||
1076 IN6_IS_ADDR_MC_LINKLOCAL(&ip6->ip6_dst))
1077 return 0;
1078 ip6->ip6_hlim--;
1079
1080 /*
1081 * Source address check: do not forward packets with unspecified
1082 * source. It was discussed in July 2000, on ipngwg mailing list.
1083 * This is rather more serious than unicast cases, because some
1084 * MLD packets can be sent with the unspecified source address
1085 * (although such packets must normally set the hop limit field to 1).
1086 */
1087 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1088 ip6stat.ip6s_cantforward++;
1089 if (ip6_log_time + ip6_log_interval < time_second) {
1090 ip6_log_time = time_second;
1091 log(LOG_DEBUG,
1092 "cannot forward "
1093 "from %s to %s nxt %d received on %s\n",
1094 ip6_sprintf(&ip6->ip6_src),
1095 ip6_sprintf(&ip6->ip6_dst),
1096 ip6->ip6_nxt,
1097 m->m_pkthdr.rcvif ?
1098 if_name(m->m_pkthdr.rcvif) : "?");
1099 }
1100 return 0;
1101 }
1102
1103 /*
1104 * Determine forwarding mifs from the forwarding cache table
1105 */
1106 s = splsoftnet();
1107 MF6CFIND(ip6->ip6_src, ip6->ip6_dst, rt);
1108
1109 /* Entry exists, so forward if necessary */
1110 if (rt) {
1111 splx(s);
1112 return (ip6_mdq(m, ifp, rt));
1113 } else {
1114 /*
1115 * If we don't have a route for packet's origin,
1116 * Make a copy of the packet &
1117 * send message to routing daemon
1118 */
1119
1120 struct mbuf *mb0;
1121 struct rtdetq *rte;
1122 u_long hash;
1123 /* int i, npkts;*/
1124 #ifdef UPCALL_TIMING
1125 struct timeval tp;
1126
1127 GET_TIME(tp);
1128 #endif /* UPCALL_TIMING */
1129
1130 mrt6stat.mrt6s_no_route++;
1131 #ifdef MRT6DEBUG
1132 if (mrt6debug & (DEBUG_FORWARD | DEBUG_MFC))
1133 log(LOG_DEBUG, "ip6_mforward: no rte s %s g %s\n",
1134 ip6_sprintf(&ip6->ip6_src),
1135 ip6_sprintf(&ip6->ip6_dst));
1136 #endif
1137
1138 /*
1139 * Allocate mbufs early so that we don't do extra work if we
1140 * are just going to fail anyway.
1141 */
1142 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE,
1143 M_NOWAIT);
1144 if (rte == NULL) {
1145 splx(s);
1146 return ENOBUFS;
1147 }
1148 mb0 = m_copy(m, 0, M_COPYALL);
1149 /*
1150 * Pullup packet header if needed before storing it,
1151 * as other references may modify it in the meantime.
1152 */
1153 if (mb0 &&
1154 (M_READONLY(mb0) || mb0->m_len < sizeof(struct ip6_hdr)))
1155 mb0 = m_pullup(mb0, sizeof(struct ip6_hdr));
1156 if (mb0 == NULL) {
1157 free(rte, M_MRTABLE);
1158 splx(s);
1159 return ENOBUFS;
1160 }
1161
1162 /* is there an upcall waiting for this packet? */
1163 hash = MF6CHASH(ip6->ip6_src, ip6->ip6_dst);
1164 for (rt = mf6ctable[hash]; rt; rt = rt->mf6c_next) {
1165 if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
1166 &rt->mf6c_origin.sin6_addr) &&
1167 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1168 &rt->mf6c_mcastgrp.sin6_addr) &&
1169 (rt->mf6c_stall != NULL))
1170 break;
1171 }
1172
1173 if (rt == NULL) {
1174 struct mrt6msg *im;
1175 struct omrt6msg *oim;
1176
1177 /* no upcall, so make a new entry */
1178 rt = (struct mf6c *)malloc(sizeof(*rt), M_MRTABLE,
1179 M_NOWAIT);
1180 if (rt == NULL) {
1181 free(rte, M_MRTABLE);
1182 m_freem(mb0);
1183 splx(s);
1184 return ENOBUFS;
1185 }
1186 /*
1187 * Make a copy of the header to send to the user
1188 * level process
1189 */
1190 mm = m_copy(mb0, 0, sizeof(struct ip6_hdr));
1191
1192 if (mm == NULL) {
1193 free(rte, M_MRTABLE);
1194 m_freem(mb0);
1195 free(rt, M_MRTABLE);
1196 splx(s);
1197 return ENOBUFS;
1198 }
1199
1200 /*
1201 * Send message to routing daemon
1202 */
1203 (void)memset(&sin6, 0, sizeof(sin6));
1204 sin6.sin6_len = sizeof(sin6);
1205 sin6.sin6_family = AF_INET6;
1206 sin6.sin6_addr = ip6->ip6_src;
1207
1208 im = NULL;
1209 oim = NULL;
1210 switch (ip6_mrouter_ver) {
1211 case MRT6_OINIT:
1212 oim = mtod(mm, struct omrt6msg *);
1213 oim->im6_msgtype = MRT6MSG_NOCACHE;
1214 oim->im6_mbz = 0;
1215 break;
1216 case MRT6_INIT:
1217 im = mtod(mm, struct mrt6msg *);
1218 im->im6_msgtype = MRT6MSG_NOCACHE;
1219 im->im6_mbz = 0;
1220 break;
1221 default:
1222 free(rte, M_MRTABLE);
1223 m_freem(mb0);
1224 free(rt, M_MRTABLE);
1225 splx(s);
1226 return EINVAL;
1227 }
1228
1229 #ifdef MRT6DEBUG
1230 if (mrt6debug & DEBUG_FORWARD)
1231 log(LOG_DEBUG,
1232 "getting the iif info in the kernel\n");
1233 #endif
1234
1235 for (mifp = mif6table, mifi = 0;
1236 mifi < nummifs && mifp->m6_ifp != ifp;
1237 mifp++, mifi++)
1238 ;
1239
1240 switch (ip6_mrouter_ver) {
1241 case MRT6_OINIT:
1242 oim->im6_mif = mifi;
1243 break;
1244 case MRT6_INIT:
1245 im->im6_mif = mifi;
1246 break;
1247 }
1248
1249 if (socket_send(ip6_mrouter, mm, &sin6) < 0) {
1250 log(LOG_WARNING, "ip6_mforward: ip6_mrouter "
1251 "socket queue full\n");
1252 mrt6stat.mrt6s_upq_sockfull++;
1253 free(rte, M_MRTABLE);
1254 m_freem(mb0);
1255 free(rt, M_MRTABLE);
1256 splx(s);
1257 return ENOBUFS;
1258 }
1259
1260 mrt6stat.mrt6s_upcalls++;
1261
1262 /* insert new entry at head of hash chain */
1263 bzero(rt, sizeof(*rt));
1264 rt->mf6c_origin.sin6_family = AF_INET6;
1265 rt->mf6c_origin.sin6_len = sizeof(struct sockaddr_in6);
1266 rt->mf6c_origin.sin6_addr = ip6->ip6_src;
1267 rt->mf6c_mcastgrp.sin6_family = AF_INET6;
1268 rt->mf6c_mcastgrp.sin6_len = sizeof(struct sockaddr_in6);
1269 rt->mf6c_mcastgrp.sin6_addr = ip6->ip6_dst;
1270 rt->mf6c_expire = UPCALL_EXPIRE;
1271 n6expire[hash]++;
1272 rt->mf6c_parent = MF6C_INCOMPLETE_PARENT;
1273
1274 /* link into table */
1275 rt->mf6c_next = mf6ctable[hash];
1276 mf6ctable[hash] = rt;
1277 /* Add this entry to the end of the queue */
1278 rt->mf6c_stall = rte;
1279 } else {
1280 /* determine if q has overflowed */
1281 struct rtdetq **p;
1282 int npkts = 0;
1283
1284 for (p = &rt->mf6c_stall; *p != NULL; p = &(*p)->next)
1285 if (++npkts > MAX_UPQ6) {
1286 mrt6stat.mrt6s_upq_ovflw++;
1287 free(rte, M_MRTABLE);
1288 m_freem(mb0);
1289 splx(s);
1290 return 0;
1291 }
1292
1293 /* Add this entry to the end of the queue */
1294 *p = rte;
1295 }
1296
1297 rte->next = NULL;
1298 rte->m = mb0;
1299 rte->ifp = ifp;
1300 #ifdef UPCALL_TIMING
1301 rte->t = tp;
1302 #endif /* UPCALL_TIMING */
1303
1304 splx(s);
1305
1306 return 0;
1307 }
1308 }
1309
1310 /*
1311 * Clean up cache entries if upcalls are not serviced
1312 * Call from the Slow Timeout mechanism, every 0.25 seconds.
1313 */
1314 static void
1315 expire_upcalls(unused)
1316 void *unused;
1317 {
1318 struct rtdetq *rte;
1319 struct mf6c *mfc, **nptr;
1320 int i;
1321 int s;
1322
1323 s = splsoftnet();
1324 for (i = 0; i < MF6CTBLSIZ; i++) {
1325 if (n6expire[i] == 0)
1326 continue;
1327 nptr = &mf6ctable[i];
1328 while ((mfc = *nptr) != NULL) {
1329 rte = mfc->mf6c_stall;
1330 /*
1331 * Skip real cache entries
1332 * Make sure it wasn't marked to not expire (shouldn't happen)
1333 * If it expires now
1334 */
1335 if (rte != NULL &&
1336 mfc->mf6c_expire != 0 &&
1337 --mfc->mf6c_expire == 0) {
1338 #ifdef MRT6DEBUG
1339 if (mrt6debug & DEBUG_EXPIRE)
1340 log(LOG_DEBUG, "expire_upcalls: expiring (%s %s)\n",
1341 ip6_sprintf(&mfc->mf6c_origin.sin6_addr),
1342 ip6_sprintf(&mfc->mf6c_mcastgrp.sin6_addr));
1343 #endif
1344 /*
1345 * drop all the packets
1346 * free the mbuf with the pkt, if, timing info
1347 */
1348 do {
1349 struct rtdetq *n = rte->next;
1350 m_freem(rte->m);
1351 free(rte, M_MRTABLE);
1352 rte = n;
1353 } while (rte != NULL);
1354 mrt6stat.mrt6s_cache_cleanups++;
1355 n6expire[i]--;
1356
1357 *nptr = mfc->mf6c_next;
1358 free(mfc, M_MRTABLE);
1359 } else {
1360 nptr = &mfc->mf6c_next;
1361 }
1362 }
1363 }
1364 splx(s);
1365 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
1366 expire_upcalls, NULL);
1367 }
1368
1369 /*
1370 * Packet forwarding routine once entry in the cache is made
1371 */
1372 static int
1373 ip6_mdq(m, ifp, rt)
1374 struct mbuf *m;
1375 struct ifnet *ifp;
1376 struct mf6c *rt;
1377 {
1378 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1379 mifi_t mifi, iif;
1380 struct mif6 *mifp;
1381 int plen = m->m_pkthdr.len;
1382 struct in6_addr src0, dst0; /* copies for local work */
1383 u_int32_t iszone, idzone, oszone, odzone;
1384 int error = 0;
1385
1386 /*
1387 * Macro to send packet on mif. Since RSVP packets don't get counted on
1388 * input, they shouldn't get counted on output, so statistics keeping is
1389 * separate.
1390 */
1391
1392 #define MC6_SEND(ip6, mifp, m) do { \
1393 if ((mifp)->m6_flags & MIFF_REGISTER) \
1394 register_send((ip6), (mifp), (m)); \
1395 else \
1396 phyint_send((ip6), (mifp), (m)); \
1397 } while (/*CONSTCOND*/ 0)
1398
1399 /*
1400 * Don't forward if it didn't arrive from the parent mif
1401 * for its origin.
1402 */
1403 mifi = rt->mf6c_parent;
1404 if ((mifi >= nummifs) || (mif6table[mifi].m6_ifp != ifp)) {
1405 /* came in the wrong interface */
1406 #ifdef MRT6DEBUG
1407 if (mrt6debug & DEBUG_FORWARD)
1408 log(LOG_DEBUG,
1409 "wrong if: ifid %d mifi %d mififid %x\n",
1410 ifp->if_index, mifi,
1411 mif6table[mifi].m6_ifp ?
1412 mif6table[mifi].m6_ifp->if_index : -1);
1413 #endif
1414 mrt6stat.mrt6s_wrong_if++;
1415 rt->mf6c_wrong_if++;
1416 /*
1417 * If we are doing PIM processing, and we are forwarding
1418 * packets on this interface, send a message to the
1419 * routing daemon.
1420 */
1421 /* have to make sure this is a valid mif */
1422 if (mifi < nummifs && mif6table[mifi].m6_ifp)
1423 if (pim6 && (m->m_flags & M_LOOP) == 0) {
1424 /*
1425 * Check the M_LOOP flag to avoid an
1426 * unnecessary PIM assert.
1427 * XXX: M_LOOP is an ad-hoc hack...
1428 */
1429 struct sockaddr_in6 sin6;
1430
1431 struct mbuf *mm;
1432 struct mrt6msg *im;
1433 struct omrt6msg *oim;
1434
1435 mm = m_copy(m, 0, sizeof(struct ip6_hdr));
1436 if (mm &&
1437 (M_READONLY(mm) ||
1438 mm->m_len < sizeof(struct ip6_hdr)))
1439 mm = m_pullup(mm, sizeof(struct ip6_hdr));
1440 if (mm == NULL)
1441 return ENOBUFS;
1442
1443 oim = NULL;
1444 im = NULL;
1445 switch (ip6_mrouter_ver) {
1446 case MRT6_OINIT:
1447 oim = mtod(mm, struct omrt6msg *);
1448 oim->im6_msgtype = MRT6MSG_WRONGMIF;
1449 oim->im6_mbz = 0;
1450 break;
1451 case MRT6_INIT:
1452 im = mtod(mm, struct mrt6msg *);
1453 im->im6_msgtype = MRT6MSG_WRONGMIF;
1454 im->im6_mbz = 0;
1455 break;
1456 default:
1457 m_freem(mm);
1458 return EINVAL;
1459 }
1460
1461 for (mifp = mif6table, iif = 0;
1462 iif < nummifs && mifp &&
1463 mifp->m6_ifp != ifp;
1464 mifp++, iif++)
1465 ;
1466
1467 bzero(&sin6, sizeof(sin6));
1468 sin6.sin6_len = sizeof(sin6);
1469 sin6.sin6_family = AF_INET6;
1470 switch (ip6_mrouter_ver) {
1471 case MRT6_OINIT:
1472 oim->im6_mif = iif;
1473 sin6.sin6_addr = oim->im6_src;
1474 break;
1475 case MRT6_INIT:
1476 im->im6_mif = iif;
1477 sin6.sin6_addr = im->im6_src;
1478 break;
1479 }
1480
1481 mrt6stat.mrt6s_upcalls++;
1482
1483 if (socket_send(ip6_mrouter, mm, &sin6) < 0) {
1484 #ifdef MRT6DEBUG
1485 if (mrt6debug)
1486 log(LOG_WARNING, "mdq, ip6_mrouter socket queue full\n");
1487 #endif
1488 ++mrt6stat.mrt6s_upq_sockfull;
1489 return ENOBUFS;
1490 } /* if socket Q full */
1491 } /* if PIM */
1492 return 0;
1493 } /* if wrong iif */
1494
1495 /* If I sourced this packet, it counts as output, else it was input. */
1496 if (m->m_pkthdr.rcvif == NULL) {
1497 /* XXX: is rcvif really NULL when output?? */
1498 mif6table[mifi].m6_pkt_out++;
1499 mif6table[mifi].m6_bytes_out += plen;
1500 } else {
1501 mif6table[mifi].m6_pkt_in++;
1502 mif6table[mifi].m6_bytes_in += plen;
1503 }
1504 rt->mf6c_pkt_cnt++;
1505 rt->mf6c_byte_cnt += plen;
1506
1507 /*
1508 * For each mif, forward a copy of the packet if there are group
1509 * members downstream on the interface.
1510 */
1511 src0 = ip6->ip6_src;
1512 dst0 = ip6->ip6_dst;
1513 if ((error = in6_setscope(&src0, ifp, &iszone)) != 0 ||
1514 (error = in6_setscope(&dst0, ifp, &idzone)) != 0) {
1515 ip6stat.ip6s_badscope++;
1516 return (error);
1517 }
1518 for (mifp = mif6table, mifi = 0; mifi < nummifs; mifp++, mifi++)
1519 if (IF_ISSET(mifi, &rt->mf6c_ifset)) {
1520 if (mif6table[mifi].m6_ifp == NULL)
1521 continue;
1522 /*
1523 * check if the outgoing packet is going to break
1524 * a scope boundary.
1525 * XXX: For packets through PIM register tunnel
1526 * interface, we believe the routing daemon.
1527 */
1528 if ((mif6table[rt->mf6c_parent].m6_flags &
1529 MIFF_REGISTER) == 0 &&
1530 (mif6table[mifi].m6_flags & MIFF_REGISTER) == 0) {
1531 if (in6_setscope(&src0, mif6table[mifi].m6_ifp,
1532 &oszone) ||
1533 in6_setscope(&dst0, mif6table[mifi].m6_ifp,
1534 &odzone) ||
1535 iszone != oszone || idzone != odzone) {
1536 ip6stat.ip6s_badscope++;
1537 continue;
1538 }
1539 }
1540
1541 mifp->m6_pkt_out++;
1542 mifp->m6_bytes_out += plen;
1543 MC6_SEND(ip6, mifp, m);
1544 }
1545 return 0;
1546 }
1547
1548 static void
1549 phyint_send(ip6, mifp, m)
1550 struct ip6_hdr *ip6;
1551 struct mif6 *mifp;
1552 struct mbuf *m;
1553 {
1554 struct mbuf *mb_copy;
1555 struct ifnet *ifp = mifp->m6_ifp;
1556 int error = 0;
1557 int s = splsoftnet();
1558 static struct route_in6 ro;
1559 struct in6_multi *in6m;
1560 struct sockaddr_in6 dst6;
1561 u_long linkmtu;
1562
1563 /*
1564 * Make a new reference to the packet; make sure that
1565 * the IPv6 header is actually copied, not just referenced,
1566 * so that ip6_output() only scribbles on the copy.
1567 */
1568 mb_copy = m_copy(m, 0, M_COPYALL);
1569 if (mb_copy &&
1570 (M_READONLY(mb_copy) || mb_copy->m_len < sizeof(struct ip6_hdr)))
1571 mb_copy = m_pullup(mb_copy, sizeof(struct ip6_hdr));
1572 if (mb_copy == NULL) {
1573 splx(s);
1574 return;
1575 }
1576 /* set MCAST flag to the outgoing packet */
1577 mb_copy->m_flags |= M_MCAST;
1578
1579 /*
1580 * If we sourced the packet, call ip6_output since we may divide
1581 * the packet into fragments when the packet is too big for the
1582 * outgoing interface.
1583 * Otherwise, we can simply send the packet to the interface
1584 * sending queue.
1585 */
1586 if (m->m_pkthdr.rcvif == NULL) {
1587 struct ip6_moptions im6o;
1588
1589 im6o.im6o_multicast_ifp = ifp;
1590 /* XXX: ip6_output will override ip6->ip6_hlim */
1591 im6o.im6o_multicast_hlim = ip6->ip6_hlim;
1592 im6o.im6o_multicast_loop = 1;
1593 error = ip6_output(mb_copy, NULL, &ro, IPV6_FORWARDING,
1594 &im6o, (struct socket *)0, NULL);
1595
1596 #ifdef MRT6DEBUG
1597 if (mrt6debug & DEBUG_XMIT)
1598 log(LOG_DEBUG, "phyint_send on mif %d err %d\n",
1599 mifp - mif6table, error);
1600 #endif
1601 splx(s);
1602 return;
1603 }
1604
1605 /*
1606 * If we belong to the destination multicast group
1607 * on the outgoing interface, loop back a copy.
1608 */
1609 /*
1610 * Does not have to check source info, as it's alreay covered by
1611 * ip6_input
1612 */
1613 memset(&dst6, 0, sizeof(dst6));
1614 dst6.sin6_family = AF_INET6;
1615 dst6.sin6_len = sizeof(struct sockaddr_in6);
1616 dst6.sin6_addr = ip6->ip6_dst;
1617
1618 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
1619 if (in6m != NULL)
1620 ip6_mloopback(ifp, m, (struct sockaddr_in6 *)&ro.ro_dst);
1621
1622 /*
1623 * Put the packet into the sending queue of the outgoing interface
1624 * if it would fit in the MTU of the interface.
1625 */
1626 linkmtu = IN6_LINKMTU(ifp);
1627 if (mb_copy->m_pkthdr.len <= linkmtu || linkmtu < IPV6_MMTU) {
1628 /*
1629 * We could call if_output directly here, but we use
1630 * nd6_output on purpose to see if IPv6 operation is allowed
1631 * on the interface.
1632 */
1633 error = nd6_output(ifp, ifp, mb_copy, &dst6, NULL);
1634 #ifdef MRT6DEBUG
1635 if (mrt6debug & DEBUG_XMIT)
1636 log(LOG_DEBUG, "phyint_send on mif %d err %d\n",
1637 mifp - mif6table, error);
1638 #endif
1639 } else {
1640 /*
1641 * pMTU discovery is intentionally disabled by default, since
1642 * various router may notify pMTU in multicast, which can be
1643 * a DDoS to a router
1644 */
1645 if (ip6_mcast_pmtu)
1646 icmp6_error(mb_copy, ICMP6_PACKET_TOO_BIG, 0, linkmtu);
1647 else {
1648 #ifdef MRT6DEBUG
1649 if (mrt6debug & DEBUG_XMIT)
1650 log(LOG_DEBUG,
1651 "phyint_send: packet too big on %s o %s g %s"
1652 " size %d(discarded)\n",
1653 if_name(ifp),
1654 ip6_sprintf(&ip6->ip6_src),
1655 ip6_sprintf(&ip6->ip6_dst),
1656 mb_copy->m_pkthdr.len);
1657 #endif /* MRT6DEBUG */
1658 m_freem(mb_copy); /* simply discard the packet */
1659 }
1660 }
1661
1662 splx(s);
1663 }
1664
1665 static int
1666 register_send(ip6, mif, m)
1667 struct ip6_hdr *ip6;
1668 struct mif6 *mif;
1669 struct mbuf *m;
1670 {
1671 struct mbuf *mm;
1672 int i, len = m->m_pkthdr.len;
1673 struct sockaddr_in6 sin6;
1674 struct mrt6msg *im6;
1675
1676 #ifdef MRT6DEBUG
1677 if (mrt6debug)
1678 log(LOG_DEBUG, "** IPv6 register_send **\n src %s dst %s\n",
1679 ip6_sprintf(&ip6->ip6_src), ip6_sprintf(&ip6->ip6_dst));
1680 #endif
1681 ++pim6stat.pim6s_snd_registers;
1682
1683 /* Make a copy of the packet to send to the user level process */
1684 MGETHDR(mm, M_DONTWAIT, MT_HEADER);
1685 if (mm == NULL)
1686 return ENOBUFS;
1687 mm->m_data += max_linkhdr;
1688 mm->m_len = sizeof(struct ip6_hdr);
1689
1690 if ((mm->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1691 m_freem(mm);
1692 return ENOBUFS;
1693 }
1694 i = MHLEN - M_LEADINGSPACE(mm);
1695 if (i > len)
1696 i = len;
1697 mm = m_pullup(mm, i);
1698 if (mm == NULL)
1699 return ENOBUFS;
1700 /* TODO: check it! */
1701 mm->m_pkthdr.len = len + sizeof(struct ip6_hdr);
1702
1703 /*
1704 * Send message to routing daemon
1705 */
1706 (void)memset(&sin6, 0, sizeof(sin6));
1707 sin6.sin6_len = sizeof(sin6);
1708 sin6.sin6_family = AF_INET6;
1709 sin6.sin6_addr = ip6->ip6_src;
1710
1711 im6 = mtod(mm, struct mrt6msg *);
1712 im6->im6_msgtype = MRT6MSG_WHOLEPKT;
1713 im6->im6_mbz = 0;
1714
1715 im6->im6_mif = mif - mif6table;
1716
1717 /* iif info is not given for reg. encap.n */
1718 mrt6stat.mrt6s_upcalls++;
1719
1720 if (socket_send(ip6_mrouter, mm, &sin6) < 0) {
1721 #ifdef MRT6DEBUG
1722 if (mrt6debug)
1723 log(LOG_WARNING,
1724 "register_send: ip6_mrouter socket queue full\n");
1725 #endif
1726 ++mrt6stat.mrt6s_upq_sockfull;
1727 return ENOBUFS;
1728 }
1729 return 0;
1730 }
1731
1732 /*
1733 * PIM sparse mode hook
1734 * Receives the pim control messages, and passes them up to the listening
1735 * socket, using rip6_input.
1736 * The only message processed is the REGISTER pim message; the pim header
1737 * is stripped off, and the inner packet is passed to register_mforward.
1738 */
1739 int
1740 pim6_input(mp, offp, proto)
1741 struct mbuf **mp;
1742 int *offp, proto;
1743 {
1744 struct pim *pim; /* pointer to a pim struct */
1745 struct ip6_hdr *ip6;
1746 int pimlen;
1747 struct mbuf *m = *mp;
1748 int minlen;
1749 int off = *offp;
1750
1751 ++pim6stat.pim6s_rcv_total;
1752
1753 ip6 = mtod(m, struct ip6_hdr *);
1754 pimlen = m->m_pkthdr.len - *offp;
1755
1756 /*
1757 * Validate lengths
1758 */
1759 if (pimlen < PIM_MINLEN) {
1760 ++pim6stat.pim6s_rcv_tooshort;
1761 #ifdef MRT6DEBUG
1762 if (mrt6debug & DEBUG_PIM)
1763 log(LOG_DEBUG,"pim6_input: PIM packet too short\n");
1764 #endif
1765 m_freem(m);
1766 return (IPPROTO_DONE);
1767 }
1768
1769 /*
1770 * if the packet is at least as big as a REGISTER, go ahead
1771 * and grab the PIM REGISTER header size, to avoid another
1772 * possible m_pullup() later.
1773 *
1774 * PIM_MINLEN == pimhdr + u_int32 == 8
1775 * PIM6_REG_MINLEN == pimhdr + reghdr + eip6hdr == 4 + 4 + 40
1776 */
1777 minlen = (pimlen >= PIM6_REG_MINLEN) ? PIM6_REG_MINLEN : PIM_MINLEN;
1778
1779 /*
1780 * Make sure that the IP6 and PIM headers in contiguous memory, and
1781 * possibly the PIM REGISTER header
1782 */
1783 IP6_EXTHDR_GET(pim, struct pim *, m, off, minlen);
1784 if (pim == NULL) {
1785 pim6stat.pim6s_rcv_tooshort++;
1786 return IPPROTO_DONE;
1787 }
1788
1789 /* PIM version check */
1790 if (pim->pim_ver != PIM_VERSION) {
1791 ++pim6stat.pim6s_rcv_badversion;
1792 #ifdef MRT6DEBUG
1793 log(LOG_ERR,
1794 "pim6_input: incorrect version %d, expecting %d\n",
1795 pim->pim_ver, PIM_VERSION);
1796 #endif
1797 m_freem(m);
1798 return (IPPROTO_DONE);
1799 }
1800
1801 #define PIM6_CHECKSUM
1802 #ifdef PIM6_CHECKSUM
1803 {
1804 int cksumlen;
1805
1806 /*
1807 * Validate checksum.
1808 * If PIM REGISTER, exclude the data packet
1809 */
1810 if (pim->pim_type == PIM_REGISTER)
1811 cksumlen = PIM_MINLEN;
1812 else
1813 cksumlen = pimlen;
1814
1815 if (in6_cksum(m, IPPROTO_PIM, off, cksumlen)) {
1816 ++pim6stat.pim6s_rcv_badsum;
1817 #ifdef MRT6DEBUG
1818 if (mrt6debug & DEBUG_PIM)
1819 log(LOG_DEBUG,
1820 "pim6_input: invalid checksum\n");
1821 #endif
1822 m_freem(m);
1823 return (IPPROTO_DONE);
1824 }
1825 }
1826 #endif /* PIM_CHECKSUM */
1827
1828 if (pim->pim_type == PIM_REGISTER) {
1829 /*
1830 * since this is a REGISTER, we'll make a copy of the register
1831 * headers ip6+pim+u_int32_t+encap_ip6, to be passed up to the
1832 * routing daemon.
1833 */
1834 static struct sockaddr_in6 dst = { sizeof(dst), AF_INET6 };
1835
1836 struct mbuf *mcp;
1837 struct ip6_hdr *eip6;
1838 u_int32_t *reghdr;
1839
1840 ++pim6stat.pim6s_rcv_registers;
1841
1842 if ((reg_mif_num >= nummifs) || (reg_mif_num == (mifi_t) -1)) {
1843 #ifdef MRT6DEBUG
1844 if (mrt6debug & DEBUG_PIM)
1845 log(LOG_DEBUG,
1846 "pim6_input: register mif not set: %d\n",
1847 reg_mif_num);
1848 #endif
1849 m_freem(m);
1850 return (IPPROTO_DONE);
1851 }
1852
1853 reghdr = (u_int32_t *)(pim + 1);
1854
1855 if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
1856 goto pim6_input_to_daemon;
1857
1858 /*
1859 * Validate length
1860 */
1861 if (pimlen < PIM6_REG_MINLEN) {
1862 ++pim6stat.pim6s_rcv_tooshort;
1863 ++pim6stat.pim6s_rcv_badregisters;
1864 #ifdef MRT6DEBUG
1865 log(LOG_ERR,
1866 "pim6_input: register packet size too "
1867 "small %d from %s\n",
1868 pimlen, ip6_sprintf(&ip6->ip6_src));
1869 #endif
1870 m_freem(m);
1871 return (IPPROTO_DONE);
1872 }
1873
1874 eip6 = (struct ip6_hdr *) (reghdr + 1);
1875 #ifdef MRT6DEBUG
1876 if (mrt6debug & DEBUG_PIM)
1877 log(LOG_DEBUG,
1878 "pim6_input[register], eip6: %s -> %s, "
1879 "eip6 plen %d\n",
1880 ip6_sprintf(&eip6->ip6_src),
1881 ip6_sprintf(&eip6->ip6_dst),
1882 ntohs(eip6->ip6_plen));
1883 #endif
1884
1885 /* verify the version number of the inner packet */
1886 if ((eip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
1887 ++pim6stat.pim6s_rcv_badregisters;
1888 #ifdef MRT6DEBUG
1889 log(LOG_DEBUG, "pim6_input: invalid IP version (%d) "
1890 "of the inner packet\n",
1891 (eip6->ip6_vfc & IPV6_VERSION));
1892 #endif
1893 m_freem(m);
1894 return (IPPROTO_NONE);
1895 }
1896
1897 /* verify the inner packet is destined to a mcast group */
1898 if (!IN6_IS_ADDR_MULTICAST(&eip6->ip6_dst)) {
1899 ++pim6stat.pim6s_rcv_badregisters;
1900 #ifdef MRT6DEBUG
1901 if (mrt6debug & DEBUG_PIM)
1902 log(LOG_DEBUG,
1903 "pim6_input: inner packet of register "
1904 "is not multicast %s\n",
1905 ip6_sprintf(&eip6->ip6_dst));
1906 #endif
1907 m_freem(m);
1908 return (IPPROTO_DONE);
1909 }
1910
1911 /*
1912 * make a copy of the whole header to pass to the daemon later.
1913 */
1914 mcp = m_copy(m, 0, off + PIM6_REG_MINLEN);
1915 if (mcp == NULL) {
1916 #ifdef MRT6DEBUG
1917 log(LOG_ERR,
1918 "pim6_input: pim register: "
1919 "could not copy register head\n");
1920 #endif
1921 m_freem(m);
1922 return (IPPROTO_DONE);
1923 }
1924
1925 /*
1926 * forward the inner ip6 packet; point m_data at the inner ip6.
1927 */
1928 m_adj(m, off + PIM_MINLEN);
1929 #ifdef MRT6DEBUG
1930 if (mrt6debug & DEBUG_PIM) {
1931 log(LOG_DEBUG,
1932 "pim6_input: forwarding decapsulated register: "
1933 "src %s, dst %s, mif %d\n",
1934 ip6_sprintf(&eip6->ip6_src),
1935 ip6_sprintf(&eip6->ip6_dst),
1936 reg_mif_num);
1937 }
1938 #endif
1939
1940 looutput(mif6table[reg_mif_num].m6_ifp, m,
1941 (struct sockaddr *) &dst,
1942 (struct rtentry *) NULL);
1943
1944 /* prepare the register head to send to the mrouting daemon */
1945 m = mcp;
1946 }
1947
1948 /*
1949 * Pass the PIM message up to the daemon; if it is a register message
1950 * pass the 'head' only up to the daemon. This includes the
1951 * encapsulator ip6 header, pim header, register header and the
1952 * encapsulated ip6 header.
1953 */
1954 pim6_input_to_daemon:
1955 rip6_input(&m, offp, proto);
1956 return (IPPROTO_DONE);
1957 }
1958
1959 SYSCTL_SETUP(sysctl_net_inet6_pim6_setup, "sysctl net.inet6.pim6 subtree setup")
1960 {
1961 sysctl_createv(clog, 0, NULL, NULL,
1962 CTLFLAG_PERMANENT,
1963 CTLTYPE_NODE, "net", NULL,
1964 NULL, 0, NULL, 0,
1965 CTL_NET, CTL_EOL);
1966 sysctl_createv(clog, 0, NULL, NULL,
1967 CTLFLAG_PERMANENT,
1968 CTLTYPE_NODE, "inet6", NULL,
1969 NULL, 0, NULL, 0,
1970 CTL_NET, PF_INET6, CTL_EOL);
1971 sysctl_createv(clog, 0, NULL, NULL,
1972 CTLFLAG_PERMANENT,
1973 CTLTYPE_NODE, "pim6",
1974 SYSCTL_DESCR("PIMv6 settings"),
1975 NULL, 0, NULL, 0,
1976 CTL_NET, PF_INET6, IPPROTO_PIM, CTL_EOL);
1977
1978 sysctl_createv(clog, 0, NULL, NULL,
1979 CTLFLAG_PERMANENT,
1980 CTLTYPE_STRUCT, "stats",
1981 SYSCTL_DESCR("PIMv6 statistics"),
1982 NULL, 0, &pim6stat, sizeof(pim6stat),
1983 CTL_NET, PF_INET6, IPPROTO_PIM, PIM6CTL_STATS,
1984 CTL_EOL);
1985 }
1986