Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.10
      1 /*	$NetBSD: ip6_output.c,v 1.10 2000/01/06 06:41:19 itojun Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed by the University of
     47  *	California, Berkeley and its contributors.
     48  * 4. Neither the name of the University nor the names of its contributors
     49  *    may be used to endorse or promote products derived from this software
     50  *    without specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     62  * SUCH DAMAGE.
     63  *
     64  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     65  */
     66 
     67 #ifdef __FreeBSD__
     68 #include "opt_ip6fw.h"
     69 #endif
     70 #if (defined(__FreeBSD__) && __FreeBSD__ >= 3) || defined(__NetBSD__)
     71 #include "opt_inet.h"
     72 #ifdef __NetBSD__	/*XXX*/
     73 #include "opt_ipsec.h"
     74 #endif
     75 #endif
     76 
     77 #include <sys/param.h>
     78 #include <sys/malloc.h>
     79 #include <sys/mbuf.h>
     80 #include <sys/errno.h>
     81 #include <sys/protosw.h>
     82 #include <sys/socket.h>
     83 #include <sys/socketvar.h>
     84 #include <sys/systm.h>
     85 #if (defined(__FreeBSD__) && __FreeBSD__ >= 3)
     86 #include <sys/kernel.h>
     87 #endif
     88 #if defined(__bsdi__) && _BSDI_VERSION >= 199802
     89 #include <machine/pcpu.h>
     90 #endif
     91 #include <sys/proc.h>
     92 
     93 #include <net/if.h>
     94 #include <net/route.h>
     95 
     96 #include <netinet/in.h>
     97 #include <netinet/in_var.h>
     98 #if defined(__OpenBSD__) || (defined(__bsdi__) && _BSDI_VERSION >= 199802)
     99 #include <netinet/in_systm.h>
    100 #include <netinet/ip.h>
    101 #endif
    102 #include <netinet6/ip6.h>
    103 #include <netinet6/icmp6.h>
    104 #include <netinet6/ip6_var.h>
    105 #if (defined(__FreeBSD__) && __FreeBSD__ >= 3) || defined(__OpenBSD__) || (defined(__bsdi__) && _BSDI_VERSION >= 199802)
    106 #include <netinet/in_pcb.h>
    107 #else
    108 #include <netinet6/in6_pcb.h>
    109 #endif
    110 #include <netinet6/nd6.h>
    111 
    112 #ifdef __OpenBSD__ /*KAME IPSEC*/
    113 #undef IPSEC
    114 #endif
    115 
    116 #ifdef IPSEC
    117 #include <netinet6/ipsec.h>
    118 #include <netkey/key.h>
    119 #include <netkey/key_debug.h>
    120 #endif /* IPSEC */
    121 
    122 #ifndef __bsdi__
    123 #include "loop.h"
    124 #endif
    125 
    126 #include <net/net_osdep.h>
    127 
    128 #ifdef IPV6FIREWALL
    129 #include <netinet6/ip6_fw.h>
    130 #endif
    131 
    132 #if defined(__FreeBSD__) && __FreeBSD__ >= 3
    133 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options");
    134 #endif
    135 
    136 struct ip6_exthdrs {
    137 	struct mbuf *ip6e_ip6;
    138 	struct mbuf *ip6e_hbh;
    139 	struct mbuf *ip6e_dest1;
    140 	struct mbuf *ip6e_rthdr;
    141 	struct mbuf *ip6e_dest2;
    142 };
    143 
    144 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
    145 			    struct socket *));
    146 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
    147 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
    148 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
    149 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
    150 				  struct ip6_frag **));
    151 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
    152 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
    153 #if (defined(__bsdi__) && _BSDI_VERSION < 199802) || defined(__OpenBSD__)
    154 extern struct ifnet loif;
    155 struct ifnet *loifp = &loif;
    156 #endif
    157 #if defined(__bsdi__) && _BSDI_VERSION >= 199802
    158 extern struct ifnet *loifp;
    159 #endif
    160 
    161 #ifdef __NetBSD__
    162 extern struct ifnet **ifindex2ifnet;
    163 extern struct ifnet loif[NLOOP];
    164 #endif
    165 
    166 /*
    167  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    168  * header (with pri, len, nxt, hlim, src, dst).
    169  * This function may modify ver and hlim only.
    170  * The mbuf chain containing the packet will be freed.
    171  * The mbuf opt, if present, will not be freed.
    172  */
    173 int
    174 ip6_output(m0, opt, ro, flags, im6o, ifpp)
    175 	struct mbuf *m0;
    176 	struct ip6_pktopts *opt;
    177 	struct route_in6 *ro;
    178 	int flags;
    179 	struct ip6_moptions *im6o;
    180 	struct ifnet **ifpp;		/* XXX: just for statistics */
    181 {
    182 	struct ip6_hdr *ip6, *mhip6;
    183 	struct ifnet *ifp;
    184 	struct mbuf *m = m0;
    185 	int hlen, tlen, len, off;
    186 	struct route_in6 ip6route;
    187 	struct sockaddr_in6 *dst;
    188 	int error = 0;
    189 	struct in6_ifaddr *ia;
    190 	u_long mtu;
    191 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    192 	struct ip6_exthdrs exthdrs;
    193 	struct in6_addr finaldst;
    194 	struct route_in6 *ro_pmtu = NULL;
    195 	int hdrsplit = 0;
    196 	int needipsec = 0;
    197 #ifdef IPSEC
    198 	int needipsectun = 0;
    199 	struct socket *so;
    200 	struct secpolicy *sp = NULL;
    201 
    202 	/* for AH processing. stupid to have "socket" variable in IP layer... */
    203 	so = (struct socket *)m->m_pkthdr.rcvif;
    204 	m->m_pkthdr.rcvif = NULL;
    205 	ip6 = mtod(m, struct ip6_hdr *);
    206 #endif /* IPSEC */
    207 
    208 #define MAKE_EXTHDR(hp,mp)						\
    209     {									\
    210 	if (hp) {							\
    211 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    212 		error = ip6_copyexthdr((mp), (caddr_t)(hp), 		\
    213 				       ((eh)->ip6e_len + 1) << 3);	\
    214 		if (error)						\
    215 			goto freehdrs;					\
    216 	}								\
    217     }
    218 
    219 	bzero(&exthdrs, sizeof(exthdrs));
    220 	if (opt) {
    221 		/* Hop-by-Hop options header */
    222 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    223 		/* Destination options header(1st part) */
    224 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    225 		/* Routing header */
    226 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    227 		/* Destination options header(2nd part) */
    228 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    229 	}
    230 
    231 #ifdef IPSEC
    232 	/* get a security policy for this packet */
    233 	if (so == NULL)
    234 		sp = ipsec6_getpolicybyaddr(m, 0, &error);
    235 	else
    236 		sp = ipsec6_getpolicybysock(m, so, &error);
    237 
    238 	if (sp == NULL) {
    239 		ipsec6stat.out_inval++;
    240 		goto bad;
    241 	}
    242 
    243 	error = 0;
    244 
    245 	/* check policy */
    246 	switch (sp->policy) {
    247 	case IPSEC_POLICY_DISCARD:
    248 		/*
    249 		 * This packet is just discarded.
    250 		 */
    251 		ipsec6stat.out_polvio++;
    252 		goto bad;
    253 
    254 	case IPSEC_POLICY_BYPASS:
    255 	case IPSEC_POLICY_NONE:
    256 		/* no need to do IPsec. */
    257 		needipsec = 0;
    258 		break;
    259 
    260 	case IPSEC_POLICY_IPSEC:
    261 		if (sp->req == NULL) {
    262 			/* XXX should be panic ? */
    263 			printf("ip6_output: No IPsec request specified.\n");
    264 			error = EINVAL;
    265 			goto bad;
    266 		}
    267 		needipsec = 1;
    268 		break;
    269 
    270 	case IPSEC_POLICY_ENTRUST:
    271 	default:
    272 		printf("ip6_output: Invalid policy found. %d\n", sp->policy);
    273 	}
    274 #endif /* IPSEC */
    275 
    276 	/*
    277 	 * Calculate the total length of the extension header chain.
    278 	 * Keep the length of the unfragmentable part for fragmentation.
    279 	 */
    280 	optlen = 0;
    281 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    282 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    283 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    284 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    285 	/* NOTE: we don't add AH/ESP length here. do that later. */
    286 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    287 
    288 	/*
    289 	 * If we need IPsec, or there is at least one extension header,
    290 	 * separate IP6 header from the payload.
    291 	 */
    292 	if ((needipsec || optlen) && !hdrsplit) {
    293 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    294 			m = NULL;
    295 			goto freehdrs;
    296 		}
    297 		m = exthdrs.ip6e_ip6;
    298 		hdrsplit++;
    299 	}
    300 
    301 	/* adjust pointer */
    302 	ip6 = mtod(m, struct ip6_hdr *);
    303 
    304 	/* adjust mbuf packet header length */
    305 	m->m_pkthdr.len += optlen;
    306 	plen = m->m_pkthdr.len - sizeof(*ip6);
    307 
    308 	/* If this is a jumbo payload, insert a jumbo payload option. */
    309 	if (plen > IPV6_MAXPACKET) {
    310 		if (!hdrsplit) {
    311 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    312 				m = NULL;
    313 				goto freehdrs;
    314 			}
    315 			m = exthdrs.ip6e_ip6;
    316 			hdrsplit++;
    317 		}
    318 		/* adjust pointer */
    319 		ip6 = mtod(m, struct ip6_hdr *);
    320 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    321 			goto freehdrs;
    322 		ip6->ip6_plen = 0;
    323 	} else
    324 		ip6->ip6_plen = htons(plen);
    325 
    326 	/*
    327 	 * Concatenate headers and fill in next header fields.
    328 	 * Here we have, on "m"
    329 	 *	IPv6 payload
    330 	 * and we insert headers accordingly.  Finally, we should be getting:
    331 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    332 	 *
    333 	 * during the header composing process, "m" points to IPv6 header.
    334 	 * "mprev" points to an extension header prior to esp.
    335 	 */
    336 	{
    337 		u_char *nexthdrp = &ip6->ip6_nxt;
    338 		struct mbuf *mprev = m;
    339 
    340 		/*
    341 		 * we treat dest2 specially.  this makes IPsec processing
    342 		 * much easier.
    343 		 *
    344 		 * result: IPv6 dest2 payload
    345 		 * m and mprev will point to IPv6 header.
    346 		 */
    347 		if (exthdrs.ip6e_dest2) {
    348 			if (!hdrsplit)
    349 				panic("assumption failed: hdr not split");
    350 			exthdrs.ip6e_dest2->m_next = m->m_next;
    351 			m->m_next = exthdrs.ip6e_dest2;
    352 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    353 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    354 		}
    355 
    356 #define MAKE_CHAIN(m,mp,p,i)\
    357     {\
    358 	if (m) {\
    359 		if (!hdrsplit) \
    360 			panic("assumption failed: hdr not split"); \
    361 		*mtod((m), u_char *) = *(p);\
    362 		*(p) = (i);\
    363 		p = mtod((m), u_char *);\
    364 		(m)->m_next = (mp)->m_next;\
    365 		(mp)->m_next = (m);\
    366 		(mp) = (m);\
    367 	}\
    368     }
    369 		/*
    370 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    371 		 * m will point to IPv6 header.  mprev will point to the
    372 		 * extension header prior to dest2 (rthdr in the above case).
    373 		 */
    374 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
    375 			   nexthdrp, IPPROTO_HOPOPTS);
    376 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
    377 			   nexthdrp, IPPROTO_DSTOPTS);
    378 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
    379 			   nexthdrp, IPPROTO_ROUTING);
    380 
    381 #ifdef IPSEC
    382 		if (!needipsec)
    383 			goto skip_ipsec2;
    384 
    385 		/*
    386 		 * pointers after IPsec headers are not valid any more.
    387 		 * other pointers need a great care too.
    388 		 * (IPsec routines should not mangle mbufs prior to AH/ESP)
    389 		 */
    390 		exthdrs.ip6e_dest2 = NULL;
    391 
    392 	    {
    393 		struct ip6_rthdr *rh = NULL;
    394 		int segleft_org = 0;
    395 		struct ipsec_output_state state;
    396 
    397 		if (exthdrs.ip6e_rthdr) {
    398 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
    399 			segleft_org = rh->ip6r_segleft;
    400 			rh->ip6r_segleft = 0;
    401 		}
    402 
    403 		bzero(&state, sizeof(state));
    404 		state.m = m;
    405 		error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
    406 			&needipsectun);
    407 		m = state.m;
    408 		if (error) {
    409 			/* mbuf is already reclaimed in ipsec6_output_trans. */
    410 			m = NULL;
    411 			switch (error) {
    412 			case EHOSTUNREACH:
    413 			case ENETUNREACH:
    414 			case EMSGSIZE:
    415 			case ENOBUFS:
    416 			case ENOMEM:
    417 				break;
    418 			default:
    419 				printf("ip6_output (ipsec): error code %d\n", error);
    420 				/*fall through*/
    421 			case ENOENT:
    422 				/* don't show these error codes to the user */
    423 				error = 0;
    424 				break;
    425 			}
    426 			goto bad;
    427 		}
    428 		if (exthdrs.ip6e_rthdr) {
    429 			/* ah6_output doesn't modify mbuf chain */
    430 			rh->ip6r_segleft = segleft_org;
    431 		}
    432 	    }
    433 skip_ipsec2:;
    434 #endif
    435 	}
    436 
    437 	/*
    438 	 * If there is a routing header, replace destination address field
    439 	 * with the first hop of the routing header.
    440 	 */
    441 	if (exthdrs.ip6e_rthdr) {
    442 		struct ip6_rthdr *rh =
    443 			(struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    444 						  struct ip6_rthdr *));
    445 		struct ip6_rthdr0 *rh0;
    446 
    447 		finaldst = ip6->ip6_dst;
    448 		switch(rh->ip6r_type) {
    449 		case IPV6_RTHDR_TYPE_0:
    450 			 rh0 = (struct ip6_rthdr0 *)rh;
    451 			 ip6->ip6_dst = rh0->ip6r0_addr[0];
    452 			 bcopy((caddr_t)&rh0->ip6r0_addr[1],
    453 				 (caddr_t)&rh0->ip6r0_addr[0],
    454 				 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1)
    455 				 );
    456 			 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
    457 			 break;
    458 		default:	/* is it possible? */
    459 			 error = EINVAL;
    460 			 goto bad;
    461 		}
    462 	}
    463 
    464 	/* Source address validation */
    465 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    466 	    (flags & IPV6_DADOUTPUT) == 0) {
    467 		error = EOPNOTSUPP;
    468 		ip6stat.ip6s_badscope++;
    469 		goto bad;
    470 	}
    471 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    472 		error = EOPNOTSUPP;
    473 		ip6stat.ip6s_badscope++;
    474 		goto bad;
    475 	}
    476 
    477 	ip6stat.ip6s_localout++;
    478 
    479 	/*
    480 	 * Route packet.
    481 	 */
    482 	if (ro == 0) {
    483 		ro = &ip6route;
    484 		bzero((caddr_t)ro, sizeof(*ro));
    485 	}
    486 	ro_pmtu = ro;
    487 	if (opt && opt->ip6po_rthdr)
    488 		ro = &opt->ip6po_route;
    489 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
    490 	/*
    491 	 * If there is a cached route,
    492 	 * check that it is to the same destination
    493 	 * and is still up. If not, free it and try again.
    494 	 */
    495 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
    496 			 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
    497 		RTFREE(ro->ro_rt);
    498 		ro->ro_rt = (struct rtentry *)0;
    499 	}
    500 	if (ro->ro_rt == 0) {
    501 		bzero(dst, sizeof(*dst));
    502 		dst->sin6_family = AF_INET6;
    503 		dst->sin6_len = sizeof(struct sockaddr_in6);
    504 		dst->sin6_addr = ip6->ip6_dst;
    505 	}
    506 #ifdef IPSEC
    507 	if (needipsec && needipsectun) {
    508 		struct ipsec_output_state state;
    509 
    510 		/*
    511 		 * All the extension headers will become inaccessible
    512 		 * (since they can be encrypted).
    513 		 * Don't panic, we need no more updates to extension headers
    514 		 * on inner IPv6 packet (since they are now encapsulated).
    515 		 *
    516 		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
    517 		 */
    518 		bzero(&exthdrs, sizeof(exthdrs));
    519 		exthdrs.ip6e_ip6 = m;
    520 
    521 		bzero(&state, sizeof(state));
    522 		state.m = m;
    523 		state.ro = (struct route *)ro;
    524 		state.dst = (struct sockaddr *)dst;
    525 
    526 		error = ipsec6_output_tunnel(&state, sp, flags);
    527 
    528 		m = state.m;
    529 		ro = (struct route_in6 *)state.ro;
    530 		dst = (struct sockaddr_in6 *)state.dst;
    531 		if (error) {
    532 			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
    533 			m0 = m = NULL;
    534 			m = NULL;
    535 			switch (error) {
    536 			case EHOSTUNREACH:
    537 			case ENETUNREACH:
    538 			case EMSGSIZE:
    539 			case ENOBUFS:
    540 			case ENOMEM:
    541 				break;
    542 			default:
    543 				printf("ip6_output (ipsec): error code %d\n", error);
    544 				/*fall through*/
    545 			case ENOENT:
    546 				/* don't show these error codes to the user */
    547 				error = 0;
    548 				break;
    549 			}
    550 			goto bad;
    551 		}
    552 
    553 		exthdrs.ip6e_ip6 = m;
    554 	}
    555 #endif /*IPESC*/
    556 
    557 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    558 		/* Unicast */
    559 
    560 #define ifatoia6(ifa)	((struct in6_ifaddr *)(ifa))
    561 #define sin6tosa(sin6)	((struct sockaddr *)(sin6))
    562 		/* xxx
    563 		 * interface selection comes here
    564 		 * if an interface is specified from an upper layer,
    565 		 * ifp must point it.
    566 		 */
    567 		if (ro->ro_rt == 0) {
    568 #if defined(__NetBSD__) || defined(__OpenBSD__)
    569 			/*
    570 			 * NetBSD/OpenBSD always clones routes, if parent is
    571 			 * PRF_CLONING.
    572 			 */
    573 			rtalloc((struct route *)ro);
    574 #else
    575 			if (ro == &ip6route)	/* xxx kazu */
    576 				rtalloc((struct route *)ro);
    577 			else
    578 				rtcalloc((struct route *)ro);
    579 #endif
    580 		}
    581 		if (ro->ro_rt == 0) {
    582 			ip6stat.ip6s_noroute++;
    583 			error = EHOSTUNREACH;
    584 			/* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
    585 			goto bad;
    586 		}
    587 		ia = ifatoia6(ro->ro_rt->rt_ifa);
    588 		ifp = ro->ro_rt->rt_ifp;
    589 		ro->ro_rt->rt_use++;
    590 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
    591 			dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
    592 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    593 
    594 		in6_ifstat_inc(ifp, ifs6_out_request);
    595 
    596 		/*
    597 		 * Check if there is the outgoing interface conflicts with
    598 		 * the interface specified by ifi6_ifindex(if specified).
    599 		 * Note that loopback interface is always okay.
    600 		 * (this happens when we are sending packet toward my
    601 		 * interface)
    602 		 */
    603 		if (opt && opt->ip6po_pktinfo
    604 		 && opt->ip6po_pktinfo->ipi6_ifindex) {
    605 			if (!(ifp->if_flags & IFF_LOOPBACK)
    606 			 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
    607 				ip6stat.ip6s_noroute++;
    608 				in6_ifstat_inc(ifp, ifs6_out_discard);
    609 				error = EHOSTUNREACH;
    610 				goto bad;
    611 			}
    612 		}
    613 
    614 		if (opt && opt->ip6po_hlim != -1)
    615 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    616 	} else {
    617 		/* Multicast */
    618 		struct	in6_multi *in6m;
    619 
    620 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    621 
    622 		/*
    623 		 * See if the caller provided any multicast options
    624 		 */
    625 		ifp = NULL;
    626 		if (im6o != NULL) {
    627 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    628 			if (im6o->im6o_multicast_ifp != NULL)
    629 				ifp = im6o->im6o_multicast_ifp;
    630 		} else
    631 			ip6->ip6_hlim = ip6_defmcasthlim;
    632 
    633 		/*
    634 		 * See if the caller provided the outgoing interface
    635 		 * as an ancillary data.
    636 		 * Boundary check for ifindex is assumed to be already done.
    637 		 */
    638 		if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
    639 			ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
    640 
    641 		/*
    642 		 * If the destination is a node-local scope multicast,
    643 		 * the packet should be loop-backed only.
    644 		 */
    645 		if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
    646 			/*
    647 			 * If the outgoing interface is already specified,
    648 			 * it should be a loopback interface.
    649 			 */
    650 			if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
    651 				ip6stat.ip6s_badscope++;
    652 				error = ENETUNREACH; /* XXX: better error? */
    653 				/* XXX correct ifp? */
    654 				in6_ifstat_inc(ifp, ifs6_out_discard);
    655 				goto bad;
    656 			}
    657 			else {
    658 #ifdef __bsdi__
    659 				ifp = &loif;
    660 #else
    661 				ifp = &loif[0];
    662 #endif
    663 			}
    664 		}
    665 
    666 		if (opt && opt->ip6po_hlim != -1)
    667 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    668 
    669 		/*
    670 		 * If caller did not provide an interface lookup a
    671 		 * default in the routing table.  This is either a
    672 		 * default for the speicfied group (i.e. a host
    673 		 * route), or a multicast default (a route for the
    674 		 * ``net'' ff00::/8).
    675 		 */
    676 		if (ifp == NULL) {
    677 			if (ro->ro_rt == 0) {
    678 				ro->ro_rt = rtalloc1((struct sockaddr *)
    679 						&ro->ro_dst, 0
    680 #ifdef __FreeBSD__
    681 						, 0UL
    682 #endif
    683 						);
    684 			}
    685 			if (ro->ro_rt == 0) {
    686 				ip6stat.ip6s_noroute++;
    687 				error = EHOSTUNREACH;
    688 				/* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
    689 				goto bad;
    690 			}
    691 			ia = ifatoia6(ro->ro_rt->rt_ifa);
    692 			ifp = ro->ro_rt->rt_ifp;
    693 			ro->ro_rt->rt_use++;
    694 		}
    695 
    696 		if ((flags & IPV6_FORWARDING) == 0)
    697 			in6_ifstat_inc(ifp, ifs6_out_request);
    698 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    699 
    700 		/*
    701 		 * Confirm that the outgoing interface supports multicast.
    702 		 */
    703 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
    704 			ip6stat.ip6s_noroute++;
    705 			in6_ifstat_inc(ifp, ifs6_out_discard);
    706 			error = ENETUNREACH;
    707 			goto bad;
    708 		}
    709 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
    710 		if (in6m != NULL &&
    711 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    712 			/*
    713 			 * If we belong to the destination multicast group
    714 			 * on the outgoing interface, and the caller did not
    715 			 * forbid loopback, loop back a copy.
    716 			 */
    717 			ip6_mloopback(ifp, m, dst);
    718 		} else {
    719 			/*
    720 			 * If we are acting as a multicast router, perform
    721 			 * multicast forwarding as if the packet had just
    722 			 * arrived on the interface to which we are about
    723 			 * to send.  The multicast forwarding function
    724 			 * recursively calls this function, using the
    725 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    726 			 *
    727 			 * Multicasts that are looped back by ip6_mloopback(),
    728 			 * above, will be forwarded by the ip6_input() routine,
    729 			 * if necessary.
    730 			 */
    731 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    732 				if (ip6_mforward(ip6, ifp, m) != NULL) {
    733 					m_freem(m);
    734 					goto done;
    735 				}
    736 			}
    737 		}
    738 		/*
    739 		 * Multicasts with a hoplimit of zero may be looped back,
    740 		 * above, but must not be transmitted on a network.
    741 		 * Also, multicasts addressed to the loopback interface
    742 		 * are not sent -- the above call to ip6_mloopback() will
    743 		 * loop back a copy if this host actually belongs to the
    744 		 * destination group on the loopback interface.
    745 		 */
    746 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
    747 			m_freem(m);
    748 			goto done;
    749 		}
    750 	}
    751 
    752 	/*
    753 	 * Fill the outgoing inteface to tell the upper layer
    754 	 * to increment per-interface statistics.
    755 	 */
    756 	if (ifpp)
    757 		*ifpp = ifp;
    758 
    759 	/*
    760 	 * Determine path MTU.
    761 	 */
    762 	if (ro_pmtu != ro) {
    763 		/* The first hop and the final destination may differ. */
    764 		struct sockaddr_in6 *sin6_fin =
    765 			(struct sockaddr_in6 *)&ro_pmtu->ro_dst;
    766 		if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
    767 				       !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
    768 							   &finaldst))) {
    769 			RTFREE(ro_pmtu->ro_rt);
    770 			ro_pmtu->ro_rt = (struct rtentry *)0;
    771 		}
    772 		if (ro_pmtu->ro_rt == 0) {
    773 			bzero(sin6_fin, sizeof(*sin6_fin));
    774 			sin6_fin->sin6_family = AF_INET6;
    775 			sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
    776 			sin6_fin->sin6_addr = finaldst;
    777 
    778 #ifdef __FreeBSD__
    779 			rtcalloc((struct route *)ro_pmtu);
    780 #else
    781 			rtalloc((struct route *)ro_pmtu);
    782 #endif
    783 		}
    784 	}
    785 	if (ro_pmtu->ro_rt != NULL) {
    786 		u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
    787 
    788 		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
    789 		if (mtu > ifmtu) {
    790 			/*
    791 			 * The MTU on the route is larger than the MTU on
    792 			 * the interface!  This shouldn't happen, unless the
    793 			 * MTU of the interface has been changed after the
    794 			 * interface was brought up.  Change the MTU in the
    795 			 * route to match the interface MTU (as long as the
    796 			 * field isn't locked).
    797 			 */
    798 			 mtu = ifmtu;
    799 			 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    800 				 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
    801 		}
    802 	} else {
    803 		mtu = nd_ifinfo[ifp->if_index].linkmtu;
    804 	}
    805 
    806 	/*
    807 	 * Fake link-local scope-class addresses
    808 	 */
    809 	if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
    810 		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
    811 			ip6->ip6_src.s6_addr16[1] = 0;
    812 		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
    813 			ip6->ip6_dst.s6_addr16[1] = 0;
    814 	}
    815 
    816 	/*
    817 	 * If the outgoing packet contains a hop-by-hop options header,
    818 	 * it must be examined and processed even by the source node.
    819 	 * (RFC 2460, section 4.)
    820 	 */
    821 	if (exthdrs.ip6e_hbh) {
    822 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh,
    823 					   struct ip6_hbh *);
    824 		u_int32_t dummy1; /* XXX unused */
    825 		u_int32_t dummy2; /* XXX unused */
    826 
    827 		/*
    828 		 *  XXX: if we have to send an ICMPv6 error to the sender,
    829 		 *       we need the M_LOOP flag since icmp6_error() expects
    830 		 *       the IPv6 and the hop-by-hop options header are
    831 		 *       continuous unless the flag is set.
    832 		 */
    833 		m->m_flags |= M_LOOP;
    834 		m->m_pkthdr.rcvif = ifp;
    835 		if (ip6_process_hopopts(m,
    836 					(u_int8_t *)(hbh + 1),
    837 					((hbh->ip6h_len + 1) << 3) -
    838 					sizeof(struct ip6_hbh),
    839 					&dummy1, &dummy2) < 0) {
    840 			/* m was already freed at this point */
    841 			error = EINVAL;/* better error? */
    842 			goto done;
    843 		}
    844 		m->m_flags &= ~M_LOOP; /* XXX */
    845 		m->m_pkthdr.rcvif = NULL;
    846 	}
    847 
    848 	/*
    849 	 * Send the packet to the outgoing interface.
    850 	 * If necessary, do IPv6 fragmentation before sending.
    851 	 */
    852 	tlen = m->m_pkthdr.len;
    853 	if (tlen <= mtu
    854 #ifdef notyet
    855 	    /*
    856 	     * On any link that cannot convey a 1280-octet packet in one piece,
    857 	     * link-specific fragmentation and reassembly must be provided at
    858 	     * a layer below IPv6. [RFC 2460, sec.5]
    859 	     * Thus if the interface has ability of link-level fragmentation,
    860 	     * we can just send the packet even if the packet size is
    861 	     * larger than the link's MTU.
    862 	     * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
    863 	     */
    864 
    865 	    || ifp->if_flags & IFF_FRAGMENTABLE
    866 #endif
    867 	    )
    868 	{
    869 #if defined(__NetBSD__) && defined(IFA_STATS)
    870 		if (IFA_STATS) {
    871 			struct in6_ifaddr *ia6;
    872 			ip6 = mtod(m, struct ip6_hdr *);
    873 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    874 			if (ia6) {
    875 				ia->ia_ifa.ifa_data.ifad_outbytes +=
    876 					m->m_pkthdr.len;
    877 			}
    878 		}
    879 #endif
    880 #ifdef OLDIP6OUTPUT
    881 		error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst,
    882 					  ro->ro_rt);
    883 #else
    884 		error = nd6_output(ifp, m, dst, ro->ro_rt);
    885 #endif
    886 		goto done;
    887 	} else if (mtu < IPV6_MMTU) {
    888 		/*
    889 		 * note that path MTU is never less than IPV6_MMTU
    890 		 * (see icmp6_input).
    891 		 */
    892 		error = EMSGSIZE;
    893 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    894 		goto bad;
    895 	} else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
    896 		error = EMSGSIZE;
    897 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    898 		goto bad;
    899 	} else {
    900 		struct mbuf **mnext, *m_frgpart;
    901 		struct ip6_frag *ip6f;
    902 		u_int32_t id = htonl(ip6_id++);
    903 		u_char nextproto;
    904 
    905 		/*
    906 		 * Too large for the destination or interface;
    907 		 * fragment if possible.
    908 		 * Must be able to put at least 8 bytes per fragment.
    909 		 */
    910 		hlen = unfragpartlen;
    911 		if (mtu > IPV6_MAXPACKET)
    912 			mtu = IPV6_MAXPACKET;
    913 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    914 		if (len < 8) {
    915 			error = EMSGSIZE;
    916 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
    917 			goto bad;
    918 		}
    919 
    920 		mnext = &m->m_nextpkt;
    921 
    922 		/*
    923 		 * Change the next header field of the last header in the
    924 		 * unfragmentable part.
    925 		 */
    926 		if (exthdrs.ip6e_rthdr) {
    927 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    928 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    929 		}
    930 		else if (exthdrs.ip6e_dest1) {
    931 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    932 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    933 		}
    934 		else if (exthdrs.ip6e_hbh) {
    935 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    936 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    937 		}
    938 		else {
    939 			nextproto = ip6->ip6_nxt;
    940 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    941 		}
    942 
    943 		/*
    944 		 * Loop through length of segment after first fragment,
    945 		 * make new header and copy data of each part and link onto chain.
    946 		 */
    947 		m0 = m;
    948 		for (off = hlen; off < tlen; off += len) {
    949 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
    950 			if (!m) {
    951 				error = ENOBUFS;
    952 				ip6stat.ip6s_odropped++;
    953 				goto sendorfree;
    954 			}
    955 			m->m_flags = m0->m_flags & M_COPYFLAGS;
    956 			*mnext = m;
    957 			mnext = &m->m_nextpkt;
    958 			m->m_data += max_linkhdr;
    959 			mhip6 = mtod(m, struct ip6_hdr *);
    960 			*mhip6 = *ip6;
    961 			m->m_len = sizeof(*mhip6);
    962  			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
    963  			if (error) {
    964 				ip6stat.ip6s_odropped++;
    965 				goto sendorfree;
    966 			}
    967 			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
    968 			if (off + len >= tlen)
    969 				len = tlen - off;
    970 			else
    971 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
    972 			mhip6->ip6_plen = htons((u_short)(len + hlen +
    973 							  sizeof(*ip6f) -
    974 							  sizeof(struct ip6_hdr)));
    975 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
    976 				error = ENOBUFS;
    977 				ip6stat.ip6s_odropped++;
    978 				goto sendorfree;
    979 			}
    980 			m_cat(m, m_frgpart);
    981 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
    982 			m->m_pkthdr.rcvif = (struct ifnet *)0;
    983 			ip6f->ip6f_reserved = 0;
    984 			ip6f->ip6f_ident = id;
    985 			ip6f->ip6f_nxt = nextproto;
    986 			ip6stat.ip6s_ofragments++;
    987 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
    988 		}
    989 
    990 		in6_ifstat_inc(ifp, ifs6_out_fragok);
    991 	}
    992 
    993 	/*
    994 	 * Remove leading garbages.
    995 	 */
    996 sendorfree:
    997 	m = m0->m_nextpkt;
    998 	m0->m_nextpkt = 0;
    999 	m_freem(m0);
   1000 	for (m0 = m; m; m = m0) {
   1001 		m0 = m->m_nextpkt;
   1002 		m->m_nextpkt = 0;
   1003 		if (error == 0) {
   1004 #if defined(__NetBSD__) && defined(IFA_STATS)
   1005 			if (IFA_STATS) {
   1006 				struct in6_ifaddr *ia6;
   1007 				ip6 = mtod(m, struct ip6_hdr *);
   1008 				ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
   1009 				if (ia6) {
   1010 					ia->ia_ifa.ifa_data.ifad_outbytes +=
   1011 						m->m_pkthdr.len;
   1012 				}
   1013 			}
   1014 #endif
   1015 #ifdef OLDIP6OUTPUT
   1016 			error = (*ifp->if_output)(ifp, m,
   1017 						  (struct sockaddr *)dst,
   1018 						  ro->ro_rt);
   1019 #else
   1020 			error = nd6_output(ifp, m, dst, ro->ro_rt);
   1021 #endif
   1022 		}
   1023 		else
   1024 			m_freem(m);
   1025 	}
   1026 
   1027 	if (error == 0)
   1028 		ip6stat.ip6s_fragmented++;
   1029 
   1030 done:
   1031 	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
   1032 		RTFREE(ro->ro_rt);
   1033 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
   1034 		RTFREE(ro_pmtu->ro_rt);
   1035 	}
   1036 
   1037 #ifdef IPSEC
   1038 	if (sp != NULL)
   1039 		key_freesp(sp);
   1040 #endif /* IPSEC */
   1041 
   1042 	return(error);
   1043 
   1044 freehdrs:
   1045 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
   1046 	m_freem(exthdrs.ip6e_dest1);
   1047 	m_freem(exthdrs.ip6e_rthdr);
   1048 	m_freem(exthdrs.ip6e_dest2);
   1049 	/* fall through */
   1050 bad:
   1051 	m_freem(m);
   1052 	goto done;
   1053 }
   1054 
   1055 static int
   1056 ip6_copyexthdr(mp, hdr, hlen)
   1057 	struct mbuf **mp;
   1058 	caddr_t hdr;
   1059 	int hlen;
   1060 {
   1061 	struct mbuf *m;
   1062 
   1063 	if (hlen > MCLBYTES)
   1064 		return(ENOBUFS); /* XXX */
   1065 
   1066 	MGET(m, M_DONTWAIT, MT_DATA);
   1067 	if (!m)
   1068 		return(ENOBUFS);
   1069 
   1070 	if (hlen > MLEN) {
   1071 		MCLGET(m, M_DONTWAIT);
   1072 		if ((m->m_flags & M_EXT) == 0) {
   1073 			m_free(m);
   1074 			return(ENOBUFS);
   1075 		}
   1076 	}
   1077 	m->m_len = hlen;
   1078 	if (hdr)
   1079 		bcopy(hdr, mtod(m, caddr_t), hlen);
   1080 
   1081 	*mp = m;
   1082 	return(0);
   1083 }
   1084 
   1085 /*
   1086  * Insert jumbo payload option.
   1087  */
   1088 static int
   1089 ip6_insert_jumboopt(exthdrs, plen)
   1090 	struct ip6_exthdrs *exthdrs;
   1091 	u_int32_t plen;
   1092 {
   1093 	struct mbuf *mopt;
   1094 	u_char *optbuf;
   1095 
   1096 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1097 
   1098 	/*
   1099 	 * If there is no hop-by-hop options header, allocate new one.
   1100 	 * If there is one but it doesn't have enough space to store the
   1101 	 * jumbo payload option, allocate a cluster to store the whole options.
   1102 	 * Otherwise, use it to store the options.
   1103 	 */
   1104 	if (exthdrs->ip6e_hbh == 0) {
   1105 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1106 		if (mopt == 0)
   1107 			return(ENOBUFS);
   1108 		mopt->m_len = JUMBOOPTLEN;
   1109 		optbuf = mtod(mopt, u_char *);
   1110 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1111 		exthdrs->ip6e_hbh = mopt;
   1112 	}
   1113 	else {
   1114 		struct ip6_hbh *hbh;
   1115 
   1116 		mopt = exthdrs->ip6e_hbh;
   1117 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1118 			caddr_t oldoptp = mtod(mopt, caddr_t);
   1119 			int oldoptlen = mopt->m_len;
   1120 
   1121 			if (mopt->m_flags & M_EXT)
   1122 				return(ENOBUFS); /* XXX */
   1123 			MCLGET(mopt, M_DONTWAIT);
   1124 			if ((mopt->m_flags & M_EXT) == 0)
   1125 				return(ENOBUFS);
   1126 
   1127 			bcopy(oldoptp, mtod(mopt, caddr_t), oldoptlen);
   1128 			optbuf = mtod(mopt, caddr_t) + oldoptlen;
   1129 			mopt->m_len = oldoptlen + JUMBOOPTLEN;
   1130 		}
   1131 		else {
   1132 			optbuf = mtod(mopt, u_char *) + mopt->m_len;
   1133 			mopt->m_len += JUMBOOPTLEN;
   1134 		}
   1135 		optbuf[0] = IP6OPT_PADN;
   1136 		optbuf[1] = 1;
   1137 
   1138 		/*
   1139 		 * Adjust the header length according to the pad and
   1140 		 * the jumbo payload option.
   1141 		 */
   1142 		hbh = mtod(mopt, struct ip6_hbh *);
   1143 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1144 	}
   1145 
   1146 	/* fill in the option. */
   1147 	optbuf[2] = IP6OPT_JUMBO;
   1148 	optbuf[3] = 4;
   1149 	*(u_int32_t *)&optbuf[4] = htonl(plen + JUMBOOPTLEN);
   1150 
   1151 	/* finally, adjust the packet header length */
   1152 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1153 
   1154 	return(0);
   1155 #undef JUMBOOPTLEN
   1156 }
   1157 
   1158 /*
   1159  * Insert fragment header and copy unfragmentable header portions.
   1160  */
   1161 static int
   1162 ip6_insertfraghdr(m0, m, hlen, frghdrp)
   1163 	struct mbuf *m0, *m;
   1164 	int hlen;
   1165 	struct ip6_frag **frghdrp;
   1166 {
   1167 	struct mbuf *n, *mlast;
   1168 
   1169 	if (hlen > sizeof(struct ip6_hdr)) {
   1170 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1171 			    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1172 		if (n == 0)
   1173 			return(ENOBUFS);
   1174 		m->m_next = n;
   1175 	}
   1176 	else
   1177 		n = m;
   1178 
   1179 	/* Search for the last mbuf of unfragmentable part. */
   1180 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1181 		;
   1182 
   1183 	if ((mlast->m_flags & M_EXT) == 0 &&
   1184 	    M_TRAILINGSPACE(mlast) < sizeof(struct ip6_frag)) {
   1185 		/* use the trailing space of the last mbuf for the fragment hdr */
   1186 		*frghdrp =
   1187 			(struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
   1188 		mlast->m_len += sizeof(struct ip6_frag);
   1189 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1190 	}
   1191 	else {
   1192 		/* allocate a new mbuf for the fragment header */
   1193 		struct mbuf *mfrg;
   1194 
   1195 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1196 		if (mfrg == 0)
   1197 			return(ENOBUFS);
   1198 		mfrg->m_len = sizeof(struct ip6_frag);
   1199 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1200 		mlast->m_next = mfrg;
   1201 	}
   1202 
   1203 	return(0);
   1204 }
   1205 
   1206 /*
   1207  * IP6 socket option processing.
   1208  */
   1209 int
   1210 ip6_ctloutput(op, so, level, optname, mp)
   1211 	int op;
   1212 	struct socket *so;
   1213 	int level, optname;
   1214 	struct mbuf **mp;
   1215 {
   1216 	register struct in6pcb *in6p = sotoin6pcb(so);
   1217 	register struct mbuf *m = *mp;
   1218 	register int optval = 0;
   1219 	int error = 0;
   1220 	struct proc *p = curproc;	/* XXX */
   1221 
   1222 	if (level == IPPROTO_IPV6)
   1223 		switch (op) {
   1224 
   1225 		case PRCO_SETOPT:
   1226 			switch (optname) {
   1227 			case IPV6_PKTOPTIONS:
   1228 				return(ip6_pcbopts(&in6p->in6p_outputopts,
   1229 						   m, so));
   1230 			case IPV6_HOPOPTS:
   1231 			case IPV6_DSTOPTS:
   1232 				if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
   1233 					error = EPERM;
   1234 					break;
   1235 				}
   1236 				/* fall through */
   1237 			case IPV6_UNICAST_HOPS:
   1238 			case IPV6_RECVOPTS:
   1239 			case IPV6_RECVRETOPTS:
   1240 			case IPV6_RECVDSTADDR:
   1241 			case IPV6_PKTINFO:
   1242 			case IPV6_HOPLIMIT:
   1243 			case IPV6_RTHDR:
   1244 			case IPV6_CHECKSUM:
   1245 			case IPV6_FAITH:
   1246 #ifndef INET6_BINDV6ONLY
   1247 			case IPV6_BINDV6ONLY:
   1248 #endif
   1249 				if (!m || m->m_len != sizeof(int))
   1250 					error = EINVAL;
   1251 				else {
   1252 					optval = *mtod(m, int *);
   1253 					switch (optname) {
   1254 
   1255 					case IPV6_UNICAST_HOPS:
   1256 						if (optval < -1 || optval >= 256)
   1257 							error = EINVAL;
   1258 						else {
   1259 							/* -1 = kernel default */
   1260 							in6p->in6p_hops = optval;
   1261 						}
   1262 						break;
   1263 #define OPTSET(bit) \
   1264 	if (optval) \
   1265 		in6p->in6p_flags |= bit; \
   1266 	else \
   1267 		in6p->in6p_flags &= ~bit;
   1268 
   1269 					case IPV6_RECVOPTS:
   1270 						OPTSET(IN6P_RECVOPTS);
   1271 						break;
   1272 
   1273 					case IPV6_RECVRETOPTS:
   1274 						OPTSET(IN6P_RECVRETOPTS);
   1275 						break;
   1276 
   1277 					case IPV6_RECVDSTADDR:
   1278 						OPTSET(IN6P_RECVDSTADDR);
   1279 						break;
   1280 
   1281 					case IPV6_PKTINFO:
   1282 						OPTSET(IN6P_PKTINFO);
   1283 						break;
   1284 
   1285 					case IPV6_HOPLIMIT:
   1286 						OPTSET(IN6P_HOPLIMIT);
   1287 						break;
   1288 
   1289 					case IPV6_HOPOPTS:
   1290 						OPTSET(IN6P_HOPOPTS);
   1291 						break;
   1292 
   1293 					case IPV6_DSTOPTS:
   1294 						OPTSET(IN6P_DSTOPTS);
   1295 						break;
   1296 
   1297 					case IPV6_RTHDR:
   1298 						OPTSET(IN6P_RTHDR);
   1299 						break;
   1300 
   1301 					case IPV6_CHECKSUM:
   1302 						in6p->in6p_cksum = optval;
   1303 						break;
   1304 
   1305 					case IPV6_FAITH:
   1306 						OPTSET(IN6P_FAITH);
   1307 						break;
   1308 
   1309 #ifndef INET6_BINDV6ONLY
   1310 					case IPV6_BINDV6ONLY:
   1311 						OPTSET(IN6P_BINDV6ONLY);
   1312 						break;
   1313 #endif
   1314 					}
   1315 				}
   1316 				break;
   1317 #undef OPTSET
   1318 
   1319 			case IPV6_MULTICAST_IF:
   1320 			case IPV6_MULTICAST_HOPS:
   1321 			case IPV6_MULTICAST_LOOP:
   1322 			case IPV6_JOIN_GROUP:
   1323 			case IPV6_LEAVE_GROUP:
   1324 				error =	ip6_setmoptions(optname, &in6p->in6p_moptions, m);
   1325 				break;
   1326 
   1327 #ifdef IPSEC
   1328 			case IPV6_IPSEC_POLICY:
   1329 			    {
   1330 				caddr_t req = NULL;
   1331 				int len = 0;
   1332 				int priv = 0;
   1333 #ifdef __NetBSD__
   1334 				if (p == 0 || suser(p->p_ucred, &p->p_acflag))
   1335 					priv = 0;
   1336 				else
   1337 					priv = 1;
   1338 #else
   1339 				priv = (in6p->in6p_socket->so_state & SS_PRIV);
   1340 #endif
   1341 				if (m != 0) {
   1342 					req = mtod(m, caddr_t);
   1343 					len = m->m_len;
   1344 				}
   1345 				error = ipsec_set_policy(&in6p->in6p_sp,
   1346 				                   optname, req, len,
   1347 				                   priv);
   1348 			    }
   1349 				break;
   1350 #endif /* IPSEC */
   1351 
   1352 			default:
   1353 				error = ENOPROTOOPT;
   1354 				break;
   1355 			}
   1356 			if (m)
   1357 				(void)m_free(m);
   1358 			break;
   1359 
   1360 		case PRCO_GETOPT:
   1361 			switch (optname) {
   1362 
   1363 			case IPV6_OPTIONS:
   1364 			case IPV6_RETOPTS:
   1365 #if 0
   1366 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1367 				if (in6p->in6p_options) {
   1368 					m->m_len = in6p->in6p_options->m_len;
   1369 					bcopy(mtod(in6p->in6p_options, caddr_t),
   1370 					      mtod(m, caddr_t),
   1371 					      (unsigned)m->m_len);
   1372 				} else
   1373 					m->m_len = 0;
   1374 				break;
   1375 #else
   1376 				error = ENOPROTOOPT;
   1377 				break;
   1378 #endif
   1379 
   1380 			case IPV6_PKTOPTIONS:
   1381 				if (in6p->in6p_options) {
   1382 					*mp = m_copym(in6p->in6p_options, 0,
   1383 						      M_COPYALL, M_WAIT);
   1384 				} else {
   1385 					*mp = m_get(M_WAIT, MT_SOOPTS);
   1386 					(*mp)->m_len = 0;
   1387 				}
   1388 				break;
   1389 
   1390 			case IPV6_HOPOPTS:
   1391 			case IPV6_DSTOPTS:
   1392 				if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
   1393 					error = EPERM;
   1394 					break;
   1395 				}
   1396 				/* fall through */
   1397 			case IPV6_UNICAST_HOPS:
   1398 			case IPV6_RECVOPTS:
   1399 			case IPV6_RECVRETOPTS:
   1400 			case IPV6_RECVDSTADDR:
   1401 			case IPV6_PKTINFO:
   1402 			case IPV6_HOPLIMIT:
   1403 			case IPV6_RTHDR:
   1404 			case IPV6_CHECKSUM:
   1405 			case IPV6_FAITH:
   1406 #ifndef INET6_BINDV6ONLY
   1407 			case IPV6_BINDV6ONLY:
   1408 #endif
   1409 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1410 				m->m_len = sizeof(int);
   1411 				switch (optname) {
   1412 
   1413 				case IPV6_UNICAST_HOPS:
   1414 					optval = in6p->in6p_hops;
   1415 					break;
   1416 
   1417 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
   1418 
   1419 				case IPV6_RECVOPTS:
   1420 					optval = OPTBIT(IN6P_RECVOPTS);
   1421 					break;
   1422 
   1423 				case IPV6_RECVRETOPTS:
   1424 					optval = OPTBIT(IN6P_RECVRETOPTS);
   1425 					break;
   1426 
   1427 				case IPV6_RECVDSTADDR:
   1428 					optval = OPTBIT(IN6P_RECVDSTADDR);
   1429 					break;
   1430 
   1431 				case IPV6_PKTINFO:
   1432 					optval = OPTBIT(IN6P_PKTINFO);
   1433 					break;
   1434 
   1435 				case IPV6_HOPLIMIT:
   1436 					optval = OPTBIT(IN6P_HOPLIMIT);
   1437 					break;
   1438 
   1439 				case IPV6_HOPOPTS:
   1440 					optval = OPTBIT(IN6P_HOPOPTS);
   1441 					break;
   1442 
   1443 				case IPV6_DSTOPTS:
   1444 					optval = OPTBIT(IN6P_DSTOPTS);
   1445 					break;
   1446 
   1447 				case IPV6_RTHDR:
   1448 					optval = OPTBIT(IN6P_RTHDR);
   1449 					break;
   1450 
   1451 				case IPV6_CHECKSUM:
   1452 					optval = in6p->in6p_cksum;
   1453 					break;
   1454 
   1455 				case IPV6_FAITH:
   1456 					optval = OPTBIT(IN6P_FAITH);
   1457 					break;
   1458 
   1459 #ifndef INET6_BINDV6ONLY
   1460 				case IPV6_BINDV6ONLY:
   1461 					optval = OPTBIT(IN6P_BINDV6ONLY);
   1462 					break;
   1463 #endif
   1464 				}
   1465 				*mtod(m, int *) = optval;
   1466 				break;
   1467 
   1468 			case IPV6_MULTICAST_IF:
   1469 			case IPV6_MULTICAST_HOPS:
   1470 			case IPV6_MULTICAST_LOOP:
   1471 			case IPV6_JOIN_GROUP:
   1472 			case IPV6_LEAVE_GROUP:
   1473 				error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
   1474 				break;
   1475 
   1476 #ifdef IPSEC
   1477 			case IPV6_IPSEC_POLICY:
   1478 				error = ipsec_get_policy(in6p->in6p_sp, mp);
   1479 				break;
   1480 #endif /* IPSEC */
   1481 
   1482 			default:
   1483 				error = ENOPROTOOPT;
   1484 				break;
   1485 			}
   1486 			break;
   1487 		}
   1488 	else {
   1489 		error = EINVAL;
   1490 		if (op == PRCO_SETOPT && *mp)
   1491 			(void)m_free(*mp);
   1492 	}
   1493 	return(error);
   1494 }
   1495 
   1496 /*
   1497  * Set up IP6 options in pcb for insertion in output packets.
   1498  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1499  * with destination address if source routed.
   1500  */
   1501 static int
   1502 ip6_pcbopts(pktopt, m, so)
   1503 	struct ip6_pktopts **pktopt;
   1504 	register struct mbuf *m;
   1505 	struct socket *so;
   1506 {
   1507 	register struct ip6_pktopts *opt = *pktopt;
   1508 	int error = 0;
   1509 	struct proc *p = curproc;	/* XXX */
   1510 	int priv = 0;
   1511 
   1512 	/* turn off any old options. */
   1513 	if (opt) {
   1514 		if (opt->ip6po_m)
   1515 			(void)m_free(opt->ip6po_m);
   1516 	}
   1517 	else
   1518 		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
   1519 	*pktopt = 0;
   1520 
   1521 	if (!m || m->m_len == 0) {
   1522 		/*
   1523 		 * Only turning off any previous options.
   1524 		 */
   1525 		if (opt)
   1526 			free(opt, M_IP6OPT);
   1527 		if (m)
   1528 			(void)m_free(m);
   1529 		return(0);
   1530 	}
   1531 
   1532 	/*  set options specified by user. */
   1533 	if (p && !suser(p->p_ucred, &p->p_acflag))
   1534 		priv = 1;
   1535 	if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
   1536 		(void)m_free(m);
   1537 		return(error);
   1538 	}
   1539 	*pktopt = opt;
   1540 	return(0);
   1541 }
   1542 
   1543 /*
   1544  * Set the IP6 multicast options in response to user setsockopt().
   1545  */
   1546 static int
   1547 ip6_setmoptions(optname, im6op, m)
   1548 	int optname;
   1549 	struct ip6_moptions **im6op;
   1550 	struct mbuf *m;
   1551 {
   1552 	int error = 0;
   1553 	u_int loop, ifindex;
   1554 	struct ipv6_mreq *mreq;
   1555 	struct ifnet *ifp;
   1556 	struct ip6_moptions *im6o = *im6op;
   1557 	struct route_in6 ro;
   1558 	struct sockaddr_in6 *dst;
   1559 	struct in6_multi_mship *imm;
   1560 	struct proc *p = curproc;	/* XXX */
   1561 
   1562 	if (im6o == NULL) {
   1563 		/*
   1564 		 * No multicast option buffer attached to the pcb;
   1565 		 * allocate one and initialize to default values.
   1566 		 */
   1567 		im6o = (struct ip6_moptions *)
   1568 			malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
   1569 
   1570 		if (im6o == NULL)
   1571 			return(ENOBUFS);
   1572 		*im6op = im6o;
   1573 		im6o->im6o_multicast_ifp = NULL;
   1574 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   1575 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   1576 		LIST_INIT(&im6o->im6o_memberships);
   1577 	}
   1578 
   1579 	switch (optname) {
   1580 
   1581 	case IPV6_MULTICAST_IF:
   1582 		/*
   1583 		 * Select the interface for outgoing multicast packets.
   1584 		 */
   1585 		if (m == NULL || m->m_len != sizeof(u_int)) {
   1586 			error = EINVAL;
   1587 			break;
   1588 		}
   1589 		ifindex = *(mtod(m, u_int *));
   1590 		if (ifindex < 0 || if_index < ifindex) {
   1591 			error = ENXIO;	/* XXX EINVAL? */
   1592 			break;
   1593 		}
   1594 		ifp = ifindex2ifnet[ifindex];
   1595 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1596 			error = EADDRNOTAVAIL;
   1597 			break;
   1598 		}
   1599 		im6o->im6o_multicast_ifp = ifp;
   1600 		break;
   1601 
   1602 	case IPV6_MULTICAST_HOPS:
   1603 	    {
   1604 		/*
   1605 		 * Set the IP6 hoplimit for outgoing multicast packets.
   1606 		 */
   1607 		int optval;
   1608 		if (m == NULL || m->m_len != sizeof(int)) {
   1609 			error = EINVAL;
   1610 			break;
   1611 		}
   1612 		optval = *(mtod(m, u_int *));
   1613 		if (optval < -1 || optval >= 256)
   1614 			error = EINVAL;
   1615 		else if (optval == -1)
   1616 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   1617 		else
   1618 			im6o->im6o_multicast_hlim = optval;
   1619 		break;
   1620 	    }
   1621 
   1622 	case IPV6_MULTICAST_LOOP:
   1623 		/*
   1624 		 * Set the loopback flag for outgoing multicast packets.
   1625 		 * Must be zero or one.
   1626 		 */
   1627 		if (m == NULL || m->m_len != sizeof(u_int) ||
   1628 		   (loop = *(mtod(m, u_int *))) > 1) {
   1629 			error = EINVAL;
   1630 			break;
   1631 		}
   1632 		im6o->im6o_multicast_loop = loop;
   1633 		break;
   1634 
   1635 	case IPV6_JOIN_GROUP:
   1636 		/*
   1637 		 * Add a multicast group membership.
   1638 		 * Group must be a valid IP6 multicast address.
   1639 		 */
   1640 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   1641 			error = EINVAL;
   1642 			break;
   1643 		}
   1644 		mreq = mtod(m, struct ipv6_mreq *);
   1645 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
   1646 			/*
   1647 			 * We use the unspecified address to specify to accept
   1648 			 * all multicast addresses. Only super user is allowed
   1649 			 * to do this.
   1650 			 */
   1651 			if (suser(p->p_ucred, &p->p_acflag)) {
   1652 				error = EACCES;
   1653 				break;
   1654 			}
   1655 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
   1656 			error = EINVAL;
   1657 			break;
   1658 		}
   1659 
   1660 		/*
   1661 		 * If the interface is specified, validate it.
   1662 		 */
   1663 		if (mreq->ipv6mr_interface < 0
   1664 		 || if_index < mreq->ipv6mr_interface) {
   1665 			error = ENXIO;	/* XXX EINVAL? */
   1666 			break;
   1667 		}
   1668 		/*
   1669 		 * If no interface was explicitly specified, choose an
   1670 		 * appropriate one according to the given multicast address.
   1671 		 */
   1672 		if (mreq->ipv6mr_interface == 0) {
   1673 			/*
   1674 			 * If the multicast address is in node-local scope,
   1675 			 * the interface should be a loopback interface.
   1676 			 * Otherwise, look up the routing table for the
   1677 			 * address, and choose the outgoing interface.
   1678 			 *   XXX: is it a good approach?
   1679 			 */
   1680 			if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
   1681 #ifdef __bsdi__
   1682 				ifp = &loif;
   1683 #else
   1684 				ifp = &loif[0];
   1685 #endif
   1686 			}
   1687 			else {
   1688 				ro.ro_rt = NULL;
   1689 				dst = (struct sockaddr_in6 *)&ro.ro_dst;
   1690 				bzero(dst, sizeof(*dst));
   1691 				dst->sin6_len = sizeof(struct sockaddr_in6);
   1692 				dst->sin6_family = AF_INET6;
   1693 				dst->sin6_addr = mreq->ipv6mr_multiaddr;
   1694 				rtalloc((struct route *)&ro);
   1695 				if (ro.ro_rt == NULL) {
   1696 					error = EADDRNOTAVAIL;
   1697 					break;
   1698 				}
   1699 				ifp = ro.ro_rt->rt_ifp;
   1700 				rtfree(ro.ro_rt);
   1701 			}
   1702 		} else
   1703 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   1704 
   1705 		/*
   1706 		 * See if we found an interface, and confirm that it
   1707 		 * supports multicast
   1708 		 */
   1709 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1710 			error = EADDRNOTAVAIL;
   1711 			break;
   1712 		}
   1713 		/*
   1714 		 * Put interface index into the multicast address,
   1715 		 * if the address has link-local scope.
   1716 		 */
   1717 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
   1718 			mreq->ipv6mr_multiaddr.s6_addr16[1]
   1719 				= htons(mreq->ipv6mr_interface);
   1720 		}
   1721 		/*
   1722 		 * See if the membership already exists.
   1723 		 */
   1724 		for (imm = im6o->im6o_memberships.lh_first;
   1725 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   1726 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   1727 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   1728 					       &mreq->ipv6mr_multiaddr))
   1729 				break;
   1730 		if (imm != NULL) {
   1731 			error = EADDRINUSE;
   1732 			break;
   1733 		}
   1734 		/*
   1735 		 * Everything looks good; add a new record to the multicast
   1736 		 * address list for the given interface.
   1737 		 */
   1738 		imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
   1739 		if (imm == NULL) {
   1740 			error = ENOBUFS;
   1741 			break;
   1742 		}
   1743 		if ((imm->i6mm_maddr =
   1744 		     in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
   1745 			free(imm, M_IPMADDR);
   1746 			break;
   1747 		}
   1748 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   1749 		break;
   1750 
   1751 	case IPV6_LEAVE_GROUP:
   1752 		/*
   1753 		 * Drop a multicast group membership.
   1754 		 * Group must be a valid IP6 multicast address.
   1755 		 */
   1756 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   1757 			error = EINVAL;
   1758 			break;
   1759 		}
   1760 		mreq = mtod(m, struct ipv6_mreq *);
   1761 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
   1762 			if (suser(p->p_ucred, &p->p_acflag)) {
   1763 				error = EACCES;
   1764 				break;
   1765 			}
   1766 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
   1767 			error = EINVAL;
   1768 			break;
   1769 		}
   1770 		/*
   1771 		 * If an interface address was specified, get a pointer
   1772 		 * to its ifnet structure.
   1773 		 */
   1774 		if (mreq->ipv6mr_interface < 0
   1775 		 || if_index < mreq->ipv6mr_interface) {
   1776 			error = ENXIO;	/* XXX EINVAL? */
   1777 			break;
   1778 		}
   1779 		ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   1780 		/*
   1781 		 * Put interface index into the multicast address,
   1782 		 * if the address has link-local scope.
   1783 		 */
   1784 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
   1785 			mreq->ipv6mr_multiaddr.s6_addr16[1]
   1786 				= htons(mreq->ipv6mr_interface);
   1787 		}
   1788 		/*
   1789 		 * Find the membership in the membership list.
   1790 		 */
   1791 		for (imm = im6o->im6o_memberships.lh_first;
   1792 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   1793 			if ((ifp == NULL ||
   1794 			     imm->i6mm_maddr->in6m_ifp == ifp) &&
   1795 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   1796 					       &mreq->ipv6mr_multiaddr))
   1797 				break;
   1798 		}
   1799 		if (imm == NULL) {
   1800 			/* Unable to resolve interface */
   1801 			error = EADDRNOTAVAIL;
   1802 			break;
   1803 		}
   1804 		/*
   1805 		 * Give up the multicast address record to which the
   1806 		 * membership points.
   1807 		 */
   1808 		LIST_REMOVE(imm, i6mm_chain);
   1809 		in6_delmulti(imm->i6mm_maddr);
   1810 		free(imm, M_IPMADDR);
   1811 		break;
   1812 
   1813 	default:
   1814 		error = EOPNOTSUPP;
   1815 		break;
   1816 	}
   1817 
   1818 	/*
   1819 	 * If all options have default values, no need to keep the mbuf.
   1820 	 */
   1821 	if (im6o->im6o_multicast_ifp == NULL &&
   1822 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   1823 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   1824 	    im6o->im6o_memberships.lh_first == NULL) {
   1825 		free(*im6op, M_IPMOPTS);
   1826 		*im6op = NULL;
   1827 	}
   1828 
   1829 	return(error);
   1830 }
   1831 
   1832 /*
   1833  * Return the IP6 multicast options in response to user getsockopt().
   1834  */
   1835 static int
   1836 ip6_getmoptions(optname, im6o, mp)
   1837 	int optname;
   1838 	register struct ip6_moptions *im6o;
   1839 	register struct mbuf **mp;
   1840 {
   1841 	u_int *hlim, *loop, *ifindex;
   1842 
   1843 	*mp = m_get(M_WAIT, MT_SOOPTS);
   1844 
   1845 	switch (optname) {
   1846 
   1847 	case IPV6_MULTICAST_IF:
   1848 		ifindex = mtod(*mp, u_int *);
   1849 		(*mp)->m_len = sizeof(u_int);
   1850 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
   1851 			*ifindex = 0;
   1852 		else
   1853 			*ifindex = im6o->im6o_multicast_ifp->if_index;
   1854 		return(0);
   1855 
   1856 	case IPV6_MULTICAST_HOPS:
   1857 		hlim = mtod(*mp, u_int *);
   1858 		(*mp)->m_len = sizeof(u_int);
   1859 		if (im6o == NULL)
   1860 			*hlim = ip6_defmcasthlim;
   1861 		else
   1862 			*hlim = im6o->im6o_multicast_hlim;
   1863 		return(0);
   1864 
   1865 	case IPV6_MULTICAST_LOOP:
   1866 		loop = mtod(*mp, u_int *);
   1867 		(*mp)->m_len = sizeof(u_int);
   1868 		if (im6o == NULL)
   1869 			*loop = ip6_defmcasthlim;
   1870 		else
   1871 			*loop = im6o->im6o_multicast_loop;
   1872 		return(0);
   1873 
   1874 	default:
   1875 		return(EOPNOTSUPP);
   1876 	}
   1877 }
   1878 
   1879 /*
   1880  * Discard the IP6 multicast options.
   1881  */
   1882 void
   1883 ip6_freemoptions(im6o)
   1884 	register struct ip6_moptions *im6o;
   1885 {
   1886 	struct in6_multi_mship *imm;
   1887 
   1888 	if (im6o == NULL)
   1889 		return;
   1890 
   1891 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   1892 		LIST_REMOVE(imm, i6mm_chain);
   1893 		if (imm->i6mm_maddr)
   1894 			in6_delmulti(imm->i6mm_maddr);
   1895 		free(imm, M_IPMADDR);
   1896 	}
   1897 	free(im6o, M_IPMOPTS);
   1898 }
   1899 
   1900 /*
   1901  * Set IPv6 outgoing packet options based on advanced API.
   1902  */
   1903 int
   1904 ip6_setpktoptions(control, opt, priv)
   1905 	struct mbuf *control;
   1906 	struct ip6_pktopts *opt;
   1907 	int priv;
   1908 {
   1909 	register struct cmsghdr *cm = 0;
   1910 
   1911 	if (control == 0 || opt == 0)
   1912 		return(EINVAL);
   1913 
   1914 	bzero(opt, sizeof(*opt));
   1915 	opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
   1916 
   1917 	/*
   1918 	 * XXX: Currently, we assume all the optional information is stored
   1919 	 * in a single mbuf.
   1920 	 */
   1921 	if (control->m_next)
   1922 		return(EINVAL);
   1923 
   1924 	opt->ip6po_m = control;
   1925 
   1926 	for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   1927 		     control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   1928 		cm = mtod(control, struct cmsghdr *);
   1929 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   1930 			return(EINVAL);
   1931 		if (cm->cmsg_level != IPPROTO_IPV6)
   1932 			continue;
   1933 
   1934 		switch(cm->cmsg_type) {
   1935 		case IPV6_PKTINFO:
   1936 			if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
   1937 				return(EINVAL);
   1938 			opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
   1939 			if (opt->ip6po_pktinfo->ipi6_ifindex &&
   1940 			    IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
   1941 				opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
   1942 					htons(opt->ip6po_pktinfo->ipi6_ifindex);
   1943 
   1944 			if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
   1945 			 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
   1946 				return(ENXIO);
   1947 			}
   1948 
   1949 			if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
   1950 				struct ifaddr *ia;
   1951 				struct sockaddr_in6 sin6;
   1952 
   1953 				bzero(&sin6, sizeof(sin6));
   1954 				sin6.sin6_len = sizeof(sin6);
   1955 				sin6.sin6_family = AF_INET6;
   1956 				sin6.sin6_addr =
   1957 					opt->ip6po_pktinfo->ipi6_addr;
   1958 				ia = ifa_ifwithaddr(sin6tosa(&sin6));
   1959 				if (ia == NULL ||
   1960 				    (opt->ip6po_pktinfo->ipi6_ifindex &&
   1961 				     (ia->ifa_ifp->if_index !=
   1962 				      opt->ip6po_pktinfo->ipi6_ifindex))) {
   1963 					return(EADDRNOTAVAIL);
   1964 				}
   1965 				/*
   1966 				 * Check if the requested source address is
   1967 				 * indeed a unicast address assigned to the
   1968 				 * node.
   1969 				 */
   1970 				if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
   1971 					return(EADDRNOTAVAIL);
   1972 			}
   1973 			break;
   1974 
   1975 		case IPV6_HOPLIMIT:
   1976 			if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
   1977 				return(EINVAL);
   1978 
   1979 			opt->ip6po_hlim = *(int *)CMSG_DATA(cm);
   1980 			if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
   1981 				return(EINVAL);
   1982 			break;
   1983 
   1984 		case IPV6_NEXTHOP:
   1985 			if (!priv)
   1986 				return(EPERM);
   1987 			if (cm->cmsg_len < sizeof(u_char) ||
   1988 			    cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
   1989 				return(EINVAL);
   1990 
   1991 			opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
   1992 
   1993 			break;
   1994 
   1995 		case IPV6_HOPOPTS:
   1996 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
   1997 				return(EINVAL);
   1998 			opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
   1999 			if (cm->cmsg_len !=
   2000 			    CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
   2001 				return(EINVAL);
   2002 			break;
   2003 
   2004 		case IPV6_DSTOPTS:
   2005 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
   2006 				return(EINVAL);
   2007 
   2008 			/*
   2009 			 * If there is no routing header yet, the destination
   2010 			 * options header should be put on the 1st part.
   2011 			 * Otherwise, the header should be on the 2nd part.
   2012 			 * (See RFC 2460, section 4.1)
   2013 			 */
   2014 			if (opt->ip6po_rthdr == NULL) {
   2015 				opt->ip6po_dest1 =
   2016 					(struct ip6_dest *)CMSG_DATA(cm);
   2017 				if (cm->cmsg_len !=
   2018 				    CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
   2019 					     << 3))
   2020 					return(EINVAL);
   2021 			}
   2022 			else {
   2023 				opt->ip6po_dest2 =
   2024 					(struct ip6_dest *)CMSG_DATA(cm);
   2025 				if (cm->cmsg_len !=
   2026 				    CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
   2027 					     << 3))
   2028 					return(EINVAL);
   2029 			}
   2030 			break;
   2031 
   2032 		case IPV6_RTHDR:
   2033 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
   2034 				return(EINVAL);
   2035 			opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
   2036 			if (cm->cmsg_len !=
   2037 			    CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
   2038 				return(EINVAL);
   2039 			switch(opt->ip6po_rthdr->ip6r_type) {
   2040 			case IPV6_RTHDR_TYPE_0:
   2041 				if (opt->ip6po_rthdr->ip6r_segleft == 0)
   2042 					return(EINVAL);
   2043 				break;
   2044 			default:
   2045 				return(EINVAL);
   2046 			}
   2047 			break;
   2048 
   2049 		default:
   2050 			return(ENOPROTOOPT);
   2051 		}
   2052 	}
   2053 
   2054 	return(0);
   2055 }
   2056 
   2057 /*
   2058  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   2059  * packet to the input queue of a specified interface.  Note that this
   2060  * calls the output routine of the loopback "driver", but with an interface
   2061  * pointer that might NOT be &loif -- easier than replicating that code here.
   2062  */
   2063 void
   2064 ip6_mloopback(ifp, m, dst)
   2065 	struct ifnet *ifp;
   2066 	register struct mbuf *m;
   2067 	register struct sockaddr_in6 *dst;
   2068 {
   2069 	struct	mbuf *copym;
   2070 
   2071 	copym = m_copy(m, 0, M_COPYALL);
   2072 	if (copym != NULL)
   2073 		(void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
   2074 }
   2075 
   2076 /*
   2077  * Chop IPv6 header off from the payload.
   2078  */
   2079 static int
   2080 ip6_splithdr(m, exthdrs)
   2081 	struct mbuf *m;
   2082 	struct ip6_exthdrs *exthdrs;
   2083 {
   2084 	struct mbuf *mh;
   2085 	struct ip6_hdr *ip6;
   2086 
   2087 	ip6 = mtod(m, struct ip6_hdr *);
   2088 	if (m->m_len > sizeof(*ip6)) {
   2089 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   2090 		if (mh == 0) {
   2091 			m_freem(m);
   2092 			return ENOBUFS;
   2093 		}
   2094 		M_COPY_PKTHDR(mh, m);
   2095 		MH_ALIGN(mh, sizeof(*ip6));
   2096 		m->m_flags &= ~M_PKTHDR;
   2097 		m->m_len -= sizeof(*ip6);
   2098 		m->m_data += sizeof(*ip6);
   2099 		mh->m_next = m;
   2100 		m = mh;
   2101 		m->m_len = sizeof(*ip6);
   2102 		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
   2103 	}
   2104 	exthdrs->ip6e_ip6 = m;
   2105 	return 0;
   2106 }
   2107 
   2108 /*
   2109  * Compute IPv6 extension header length.
   2110  */
   2111 int
   2112 ip6_optlen(in6p)
   2113 	struct in6pcb *in6p;
   2114 {
   2115 	int len;
   2116 
   2117 	if (!in6p->in6p_outputopts)
   2118 		return 0;
   2119 
   2120 	len = 0;
   2121 #define elen(x) \
   2122     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   2123 
   2124 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   2125 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   2126 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   2127 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   2128 	return len;
   2129 #undef elen
   2130 }
   2131