Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.101
      1 /*	$NetBSD: ip6_output.c,v 1.101 2006/07/23 22:06:13 ad Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.101 2006/07/23 22:06:13 ad Exp $");
     66 
     67 #include "opt_inet.h"
     68 #include "opt_inet6.h"
     69 #include "opt_ipsec.h"
     70 #include "opt_pfil_hooks.h"
     71 
     72 #include <sys/param.h>
     73 #include <sys/malloc.h>
     74 #include <sys/mbuf.h>
     75 #include <sys/errno.h>
     76 #include <sys/protosw.h>
     77 #include <sys/socket.h>
     78 #include <sys/socketvar.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/kauth.h>
     82 
     83 #include <net/if.h>
     84 #include <net/route.h>
     85 #ifdef PFIL_HOOKS
     86 #include <net/pfil.h>
     87 #endif
     88 
     89 #include <netinet/in.h>
     90 #include <netinet/in_var.h>
     91 #include <netinet/ip6.h>
     92 #include <netinet/icmp6.h>
     93 #include <netinet/in_offload.h>
     94 #include <netinet6/ip6_var.h>
     95 #include <netinet6/in6_pcb.h>
     96 #include <netinet6/nd6.h>
     97 #include <netinet6/ip6protosw.h>
     98 #include <netinet6/scope6_var.h>
     99 
    100 #ifdef IPSEC
    101 #include <netinet6/ipsec.h>
    102 #include <netkey/key.h>
    103 #endif /* IPSEC */
    104 
    105 #include <net/net_osdep.h>
    106 
    107 #ifdef PFIL_HOOKS
    108 extern struct pfil_head inet6_pfil_hook;	/* XXX */
    109 #endif
    110 
    111 struct ip6_exthdrs {
    112 	struct mbuf *ip6e_ip6;
    113 	struct mbuf *ip6e_hbh;
    114 	struct mbuf *ip6e_dest1;
    115 	struct mbuf *ip6e_rthdr;
    116 	struct mbuf *ip6e_dest2;
    117 };
    118 
    119 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **,
    120 	int, int));
    121 static int ip6_getpcbopt __P((struct ip6_pktopts *, int, struct mbuf **));
    122 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, int,
    123 	int, int, int));
    124 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
    125 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
    126 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
    127 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
    128 	struct ip6_frag **));
    129 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
    130 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
    131 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
    132 	struct ifnet *, struct in6_addr *, u_long *, int *));
    133 static int copypktopts __P((struct ip6_pktopts *, struct ip6_pktopts *, int));
    134 
    135 #ifdef RFC2292
    136 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
    137 	struct socket *));
    138 #endif
    139 
    140 #define	IN6_NEED_CHECKSUM(ifp, csum_flags) \
    141 	(__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
    142 	(((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \
    143 	(((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum)))
    144 
    145 /*
    146  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    147  * header (with pri, len, nxt, hlim, src, dst).
    148  * This function may modify ver and hlim only.
    149  * The mbuf chain containing the packet will be freed.
    150  * The mbuf opt, if present, will not be freed.
    151  *
    152  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    153  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
    154  * which is rt_rmx.rmx_mtu.
    155  */
    156 int
    157 ip6_output(m0, opt, ro, flags, im6o, so, ifpp)
    158 	struct mbuf *m0;
    159 	struct ip6_pktopts *opt;
    160 	struct route_in6 *ro;
    161 	int flags;
    162 	struct ip6_moptions *im6o;
    163 	struct socket *so;
    164 	struct ifnet **ifpp;		/* XXX: just for statistics */
    165 {
    166 	struct ip6_hdr *ip6, *mhip6;
    167 	struct ifnet *ifp, *origifp;
    168 	struct mbuf *m = m0;
    169 	int hlen, tlen, len, off;
    170 	struct route_in6 ip6route;
    171 	struct rtentry *rt = NULL;
    172 	struct sockaddr_in6 *dst, src_sa, dst_sa;
    173 	int error = 0;
    174 	struct in6_ifaddr *ia = NULL;
    175 	u_long mtu;
    176 	int alwaysfrag, dontfrag;
    177 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    178 	struct ip6_exthdrs exthdrs;
    179 	struct in6_addr finaldst, src0, dst0;
    180 	u_int32_t zone;
    181 	struct route_in6 *ro_pmtu = NULL;
    182 	int hdrsplit = 0;
    183 	int needipsec = 0;
    184 #ifdef IPSEC
    185 	int needipsectun = 0;
    186 	struct secpolicy *sp = NULL;
    187 
    188 	ip6 = mtod(m, struct ip6_hdr *);
    189 #endif /* IPSEC */
    190 
    191 #ifdef  DIAGNOSTIC
    192 	if ((m->m_flags & M_PKTHDR) == 0)
    193 		panic("ip6_output: no HDR");
    194 
    195 	if ((m->m_pkthdr.csum_flags &
    196 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
    197 		panic("ip6_output: IPv4 checksum offload flags: %d",
    198 		    m->m_pkthdr.csum_flags);
    199 	}
    200 
    201 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
    202 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
    203 		panic("ip6_output: conflicting checksum offload flags: %d",
    204 		    m->m_pkthdr.csum_flags);
    205 	}
    206 #endif
    207 
    208 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    209 
    210 #define MAKE_EXTHDR(hp, mp)						\
    211     do {								\
    212 	if (hp) {							\
    213 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    214 		error = ip6_copyexthdr((mp), (caddr_t)(hp), 		\
    215 		    ((eh)->ip6e_len + 1) << 3);				\
    216 		if (error)						\
    217 			goto freehdrs;					\
    218 	}								\
    219     } while (/*CONSTCOND*/ 0)
    220 
    221 	bzero(&exthdrs, sizeof(exthdrs));
    222 	if (opt) {
    223 		/* Hop-by-Hop options header */
    224 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    225 		/* Destination options header(1st part) */
    226 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    227 		/* Routing header */
    228 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    229 		/* Destination options header(2nd part) */
    230 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    231 	}
    232 
    233 #ifdef IPSEC
    234 	if ((flags & IPV6_FORWARDING) != 0) {
    235 		needipsec = 0;
    236 		goto skippolicycheck;
    237 	}
    238 
    239 	/* get a security policy for this packet */
    240 	if (so == NULL)
    241 		sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
    242 	else {
    243 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
    244 					 IPSEC_DIR_OUTBOUND)) {
    245 			needipsec = 0;
    246 			goto skippolicycheck;
    247 		}
    248 		sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    249 	}
    250 
    251 	if (sp == NULL) {
    252 		ipsec6stat.out_inval++;
    253 		goto freehdrs;
    254 	}
    255 
    256 	error = 0;
    257 
    258 	/* check policy */
    259 	switch (sp->policy) {
    260 	case IPSEC_POLICY_DISCARD:
    261 		/*
    262 		 * This packet is just discarded.
    263 		 */
    264 		ipsec6stat.out_polvio++;
    265 		goto freehdrs;
    266 
    267 	case IPSEC_POLICY_BYPASS:
    268 	case IPSEC_POLICY_NONE:
    269 		/* no need to do IPsec. */
    270 		needipsec = 0;
    271 		break;
    272 
    273 	case IPSEC_POLICY_IPSEC:
    274 		if (sp->req == NULL) {
    275 			/* XXX should be panic ? */
    276 			printf("ip6_output: No IPsec request specified.\n");
    277 			error = EINVAL;
    278 			goto freehdrs;
    279 		}
    280 		needipsec = 1;
    281 		break;
    282 
    283 	case IPSEC_POLICY_ENTRUST:
    284 	default:
    285 		printf("ip6_output: Invalid policy found. %d\n", sp->policy);
    286 	}
    287 
    288   skippolicycheck:;
    289 #endif /* IPSEC */
    290 
    291 	if (needipsec &&
    292 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    293 		in6_delayed_cksum(m);
    294 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    295 	}
    296 
    297 	/*
    298 	 * Calculate the total length of the extension header chain.
    299 	 * Keep the length of the unfragmentable part for fragmentation.
    300 	 */
    301 	optlen = 0;
    302 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    303 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    304 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    305 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    306 	/* NOTE: we don't add AH/ESP length here. do that later. */
    307 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    308 
    309 	/*
    310 	 * If we need IPsec, or there is at least one extension header,
    311 	 * separate IP6 header from the payload.
    312 	 */
    313 	if ((needipsec || optlen) && !hdrsplit) {
    314 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    315 			m = NULL;
    316 			goto freehdrs;
    317 		}
    318 		m = exthdrs.ip6e_ip6;
    319 		hdrsplit++;
    320 	}
    321 
    322 	/* adjust pointer */
    323 	ip6 = mtod(m, struct ip6_hdr *);
    324 
    325 	/* adjust mbuf packet header length */
    326 	m->m_pkthdr.len += optlen;
    327 	plen = m->m_pkthdr.len - sizeof(*ip6);
    328 
    329 	/* If this is a jumbo payload, insert a jumbo payload option. */
    330 	if (plen > IPV6_MAXPACKET) {
    331 		if (!hdrsplit) {
    332 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    333 				m = NULL;
    334 				goto freehdrs;
    335 			}
    336 			m = exthdrs.ip6e_ip6;
    337 			hdrsplit++;
    338 		}
    339 		/* adjust pointer */
    340 		ip6 = mtod(m, struct ip6_hdr *);
    341 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    342 			goto freehdrs;
    343 		optlen += 8; /* XXX JUMBOOPTLEN */
    344 		ip6->ip6_plen = 0;
    345 	} else
    346 		ip6->ip6_plen = htons(plen);
    347 
    348 	/*
    349 	 * Concatenate headers and fill in next header fields.
    350 	 * Here we have, on "m"
    351 	 *	IPv6 payload
    352 	 * and we insert headers accordingly.  Finally, we should be getting:
    353 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    354 	 *
    355 	 * during the header composing process, "m" points to IPv6 header.
    356 	 * "mprev" points to an extension header prior to esp.
    357 	 */
    358 	{
    359 		u_char *nexthdrp = &ip6->ip6_nxt;
    360 		struct mbuf *mprev = m;
    361 
    362 		/*
    363 		 * we treat dest2 specially.  this makes IPsec processing
    364 		 * much easier.  the goal here is to make mprev point the
    365 		 * mbuf prior to dest2.
    366 		 *
    367 		 * result: IPv6 dest2 payload
    368 		 * m and mprev will point to IPv6 header.
    369 		 */
    370 		if (exthdrs.ip6e_dest2) {
    371 			if (!hdrsplit)
    372 				panic("assumption failed: hdr not split");
    373 			exthdrs.ip6e_dest2->m_next = m->m_next;
    374 			m->m_next = exthdrs.ip6e_dest2;
    375 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    376 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    377 		}
    378 
    379 #define MAKE_CHAIN(m, mp, p, i)\
    380     do {\
    381 	if (m) {\
    382 		if (!hdrsplit) \
    383 			panic("assumption failed: hdr not split"); \
    384 		*mtod((m), u_char *) = *(p);\
    385 		*(p) = (i);\
    386 		p = mtod((m), u_char *);\
    387 		(m)->m_next = (mp)->m_next;\
    388 		(mp)->m_next = (m);\
    389 		(mp) = (m);\
    390 	}\
    391     } while (/*CONSTCOND*/ 0)
    392 		/*
    393 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    394 		 * m will point to IPv6 header.  mprev will point to the
    395 		 * extension header prior to dest2 (rthdr in the above case).
    396 		 */
    397 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    398 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    399 		    IPPROTO_DSTOPTS);
    400 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    401 		    IPPROTO_ROUTING);
    402 
    403 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
    404 		    sizeof(struct ip6_hdr) + optlen);
    405 
    406 #ifdef IPSEC
    407 		if (!needipsec)
    408 			goto skip_ipsec2;
    409 
    410 		/*
    411 		 * pointers after IPsec headers are not valid any more.
    412 		 * other pointers need a great care too.
    413 		 * (IPsec routines should not mangle mbufs prior to AH/ESP)
    414 		 */
    415 		exthdrs.ip6e_dest2 = NULL;
    416 
    417 	    {
    418 		struct ip6_rthdr *rh = NULL;
    419 		int segleft_org = 0;
    420 		struct ipsec_output_state state;
    421 
    422 		if (exthdrs.ip6e_rthdr) {
    423 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
    424 			segleft_org = rh->ip6r_segleft;
    425 			rh->ip6r_segleft = 0;
    426 		}
    427 
    428 		bzero(&state, sizeof(state));
    429 		state.m = m;
    430 		error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
    431 		    &needipsectun);
    432 		m = state.m;
    433 		if (error) {
    434 			/* mbuf is already reclaimed in ipsec6_output_trans. */
    435 			m = NULL;
    436 			switch (error) {
    437 			case EHOSTUNREACH:
    438 			case ENETUNREACH:
    439 			case EMSGSIZE:
    440 			case ENOBUFS:
    441 			case ENOMEM:
    442 				break;
    443 			default:
    444 				printf("ip6_output (ipsec): error code %d\n", error);
    445 				/* FALLTHROUGH */
    446 			case ENOENT:
    447 				/* don't show these error codes to the user */
    448 				error = 0;
    449 				break;
    450 			}
    451 			goto bad;
    452 		}
    453 		if (exthdrs.ip6e_rthdr) {
    454 			/* ah6_output doesn't modify mbuf chain */
    455 			rh->ip6r_segleft = segleft_org;
    456 		}
    457 	    }
    458 skip_ipsec2:;
    459 #endif
    460 	}
    461 
    462 	/*
    463 	 * If there is a routing header, replace destination address field
    464 	 * with the first hop of the routing header.
    465 	 */
    466 	if (exthdrs.ip6e_rthdr) {
    467 		struct ip6_rthdr *rh;
    468 		struct ip6_rthdr0 *rh0;
    469 		struct in6_addr *addr;
    470 		struct sockaddr_in6 sa;
    471 
    472 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    473 		    struct ip6_rthdr *));
    474 		finaldst = ip6->ip6_dst;
    475 		switch (rh->ip6r_type) {
    476 		case IPV6_RTHDR_TYPE_0:
    477 			 rh0 = (struct ip6_rthdr0 *)rh;
    478 			 addr = (struct in6_addr *)(rh0 + 1);
    479 
    480 			 /*
    481 			  * construct a sockaddr_in6 form of
    482 			  * the first hop.
    483 			  *
    484 			  * XXX: we may not have enough
    485 			  * information about its scope zone;
    486 			  * there is no standard API to pass
    487 			  * the information from the
    488 			  * application.
    489 			  */
    490 			 bzero(&sa, sizeof(sa));
    491 			 sa.sin6_family = AF_INET6;
    492 			 sa.sin6_len = sizeof(sa);
    493 			 sa.sin6_addr = addr[0];
    494 			 if ((error = sa6_embedscope(&sa,
    495 			     ip6_use_defzone)) != 0) {
    496 				 goto bad;
    497 			 }
    498 			 ip6->ip6_dst = sa.sin6_addr;
    499 			 (void)memmove(&addr[0], &addr[1],
    500 			     sizeof(struct in6_addr) *
    501 			     (rh0->ip6r0_segleft - 1));
    502 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
    503 			 /* XXX */
    504 			 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
    505 			 break;
    506 		default:	/* is it possible? */
    507 			 error = EINVAL;
    508 			 goto bad;
    509 		}
    510 	}
    511 
    512 	/* Source address validation */
    513 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    514 	    (flags & IPV6_UNSPECSRC) == 0) {
    515 		error = EOPNOTSUPP;
    516 		ip6stat.ip6s_badscope++;
    517 		goto bad;
    518 	}
    519 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    520 		error = EOPNOTSUPP;
    521 		ip6stat.ip6s_badscope++;
    522 		goto bad;
    523 	}
    524 
    525 	ip6stat.ip6s_localout++;
    526 
    527 	/*
    528 	 * Route packet.
    529 	 */
    530 	/* initialize cached route */
    531 	if (ro == 0) {
    532 		ro = &ip6route;
    533 		bzero((caddr_t)ro, sizeof(*ro));
    534 	}
    535 	ro_pmtu = ro;
    536 	if (opt && opt->ip6po_rthdr)
    537 		ro = &opt->ip6po_route;
    538 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
    539 
    540  	/*
    541 	 * if specified, try to fill in the traffic class field.
    542 	 * do not override if a non-zero value is already set.
    543 	 * we check the diffserv field and the ecn field separately.
    544 	 */
    545 	if (opt && opt->ip6po_tclass >= 0) {
    546 		int mask = 0;
    547 
    548 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    549 			mask |= 0xfc;
    550 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    551 			mask |= 0x03;
    552 		if (mask != 0)
    553 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    554 	}
    555 
    556 	/* fill in or override the hop limit field, if necessary. */
    557 	if (opt && opt->ip6po_hlim != -1)
    558 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    559 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    560 		if (im6o != NULL)
    561 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    562 		else
    563 			ip6->ip6_hlim = ip6_defmcasthlim;
    564 	}
    565 
    566 #ifdef IPSEC
    567 	if (needipsec && needipsectun) {
    568 		struct ipsec_output_state state;
    569 
    570 		/*
    571 		 * All the extension headers will become inaccessible
    572 		 * (since they can be encrypted).
    573 		 * Don't panic, we need no more updates to extension headers
    574 		 * on inner IPv6 packet (since they are now encapsulated).
    575 		 *
    576 		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
    577 		 */
    578 		bzero(&exthdrs, sizeof(exthdrs));
    579 		exthdrs.ip6e_ip6 = m;
    580 
    581 		bzero(&state, sizeof(state));
    582 		state.m = m;
    583 		state.ro = (struct route *)ro;
    584 		state.dst = (struct sockaddr *)dst;
    585 
    586 		error = ipsec6_output_tunnel(&state, sp, flags);
    587 
    588 		m = state.m;
    589 		ro_pmtu = ro = (struct route_in6 *)state.ro;
    590 		dst = (struct sockaddr_in6 *)state.dst;
    591 		if (error) {
    592 			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
    593 			m0 = m = NULL;
    594 			m = NULL;
    595 			switch (error) {
    596 			case EHOSTUNREACH:
    597 			case ENETUNREACH:
    598 			case EMSGSIZE:
    599 			case ENOBUFS:
    600 			case ENOMEM:
    601 				break;
    602 			default:
    603 				printf("ip6_output (ipsec): error code %d\n", error);
    604 				/* FALLTHROUGH */
    605 			case ENOENT:
    606 				/* don't show these error codes to the user */
    607 				error = 0;
    608 				break;
    609 			}
    610 			goto bad;
    611 		}
    612 
    613 		exthdrs.ip6e_ip6 = m;
    614 	}
    615 #endif /* IPSEC */
    616 
    617 	/* adjust pointer */
    618 	ip6 = mtod(m, struct ip6_hdr *);
    619 
    620 	bzero(&dst_sa, sizeof(dst_sa));
    621 	dst_sa.sin6_family = AF_INET6;
    622 	dst_sa.sin6_len = sizeof(dst_sa);
    623 	dst_sa.sin6_addr = ip6->ip6_dst;
    624 	if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, &rt, 0))
    625 	    != 0) {
    626 		switch (error) {
    627 		case EHOSTUNREACH:
    628 			ip6stat.ip6s_noroute++;
    629 			break;
    630 		case EADDRNOTAVAIL:
    631 		default:
    632 			break; /* XXX statistics? */
    633 		}
    634 		if (ifp != NULL)
    635 			in6_ifstat_inc(ifp, ifs6_out_discard);
    636 		goto bad;
    637 	}
    638 	if (rt == NULL) {
    639 		/*
    640 		 * If in6_selectroute() does not return a route entry,
    641 		 * dst may not have been updated.
    642 		 */
    643 		*dst = dst_sa;	/* XXX */
    644 	}
    645 
    646 	/*
    647 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    648 	 */
    649 	if ((flags & IPV6_FORWARDING) == 0) {
    650 		/* XXX: the FORWARDING flag can be set for mrouting. */
    651 		in6_ifstat_inc(ifp, ifs6_out_request);
    652 	}
    653 	if (rt != NULL) {
    654 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    655 		rt->rt_use++;
    656 	}
    657 
    658 	/*
    659 	 * The outgoing interface must be in the zone of source and
    660 	 * destination addresses.  We should use ia_ifp to support the
    661 	 * case of sending packets to an address of our own.
    662 	 */
    663 	if (ia != NULL && ia->ia_ifp)
    664 		origifp = ia->ia_ifp;
    665 	else
    666 		origifp = ifp;
    667 
    668 	src0 = ip6->ip6_src;
    669 	if (in6_setscope(&src0, origifp, &zone))
    670 		goto badscope;
    671 	bzero(&src_sa, sizeof(src_sa));
    672 	src_sa.sin6_family = AF_INET6;
    673 	src_sa.sin6_len = sizeof(src_sa);
    674 	src_sa.sin6_addr = ip6->ip6_src;
    675 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    676 		goto badscope;
    677 
    678 	dst0 = ip6->ip6_dst;
    679 	if (in6_setscope(&dst0, origifp, &zone))
    680 		goto badscope;
    681 	/* re-initialize to be sure */
    682 	bzero(&dst_sa, sizeof(dst_sa));
    683 	dst_sa.sin6_family = AF_INET6;
    684 	dst_sa.sin6_len = sizeof(dst_sa);
    685 	dst_sa.sin6_addr = ip6->ip6_dst;
    686 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    687 		goto badscope;
    688 
    689 	/* scope check is done. */
    690 	goto routefound;
    691 
    692   badscope:
    693 	ip6stat.ip6s_badscope++;
    694 	in6_ifstat_inc(origifp, ifs6_out_discard);
    695 	if (error == 0)
    696 		error = EHOSTUNREACH; /* XXX */
    697 	goto bad;
    698 
    699   routefound:
    700 	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    701 		if (opt && opt->ip6po_nextroute.ro_rt) {
    702 			/*
    703 			 * The nexthop is explicitly specified by the
    704 			 * application.  We assume the next hop is an IPv6
    705 			 * address.
    706 			 */
    707 			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
    708 		} else if ((rt->rt_flags & RTF_GATEWAY))
    709 			dst = (struct sockaddr_in6 *)rt->rt_gateway;
    710 	}
    711 
    712 	/*
    713 	 * XXXXXX: original code follows:
    714 	 */
    715 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    716 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    717 	else {
    718 		struct	in6_multi *in6m;
    719 
    720 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    721 
    722 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    723 
    724 		/*
    725 		 * Confirm that the outgoing interface supports multicast.
    726 		 */
    727 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    728 			ip6stat.ip6s_noroute++;
    729 			in6_ifstat_inc(ifp, ifs6_out_discard);
    730 			error = ENETUNREACH;
    731 			goto bad;
    732 		}
    733 
    734 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
    735 		if (in6m != NULL &&
    736 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    737 			/*
    738 			 * If we belong to the destination multicast group
    739 			 * on the outgoing interface, and the caller did not
    740 			 * forbid loopback, loop back a copy.
    741 			 */
    742 			ip6_mloopback(ifp, m, dst);
    743 		} else {
    744 			/*
    745 			 * If we are acting as a multicast router, perform
    746 			 * multicast forwarding as if the packet had just
    747 			 * arrived on the interface to which we are about
    748 			 * to send.  The multicast forwarding function
    749 			 * recursively calls this function, using the
    750 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    751 			 *
    752 			 * Multicasts that are looped back by ip6_mloopback(),
    753 			 * above, will be forwarded by the ip6_input() routine,
    754 			 * if necessary.
    755 			 */
    756 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    757 				if (ip6_mforward(ip6, ifp, m) != 0) {
    758 					m_freem(m);
    759 					goto done;
    760 				}
    761 			}
    762 		}
    763 		/*
    764 		 * Multicasts with a hoplimit of zero may be looped back,
    765 		 * above, but must not be transmitted on a network.
    766 		 * Also, multicasts addressed to the loopback interface
    767 		 * are not sent -- the above call to ip6_mloopback() will
    768 		 * loop back a copy if this host actually belongs to the
    769 		 * destination group on the loopback interface.
    770 		 */
    771 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    772 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    773 			m_freem(m);
    774 			goto done;
    775 		}
    776 	}
    777 
    778 	/*
    779 	 * Fill the outgoing inteface to tell the upper layer
    780 	 * to increment per-interface statistics.
    781 	 */
    782 	if (ifpp)
    783 		*ifpp = ifp;
    784 
    785 	/* Determine path MTU. */
    786 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
    787 	    &alwaysfrag)) != 0)
    788 		goto bad;
    789 #ifdef IPSEC
    790 	if (needipsectun)
    791 		mtu = IPV6_MMTU;
    792 #endif
    793 
    794 	/*
    795 	 * The caller of this function may specify to use the minimum MTU
    796 	 * in some cases.
    797 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
    798 	 * setting.  The logic is a bit complicated; by default, unicast
    799 	 * packets will follow path MTU while multicast packets will be sent at
    800 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
    801 	 * including unicast ones will be sent at the minimum MTU.  Multicast
    802 	 * packets will always be sent at the minimum MTU unless
    803 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
    804 	 * See RFC 3542 for more details.
    805 	 */
    806 	if (mtu > IPV6_MMTU) {
    807 		if ((flags & IPV6_MINMTU))
    808 			mtu = IPV6_MMTU;
    809 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
    810 			mtu = IPV6_MMTU;
    811 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
    812 			 (opt == NULL ||
    813 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
    814 			mtu = IPV6_MMTU;
    815 		}
    816 	}
    817 
    818 	/*
    819 	 * clear embedded scope identifiers if necessary.
    820 	 * in6_clearscope will touch the addresses only when necessary.
    821 	 */
    822 	in6_clearscope(&ip6->ip6_src);
    823 	in6_clearscope(&ip6->ip6_dst);
    824 
    825 	/*
    826 	 * If the outgoing packet contains a hop-by-hop options header,
    827 	 * it must be examined and processed even by the source node.
    828 	 * (RFC 2460, section 4.)
    829 	 */
    830 	if (exthdrs.ip6e_hbh) {
    831 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
    832 		u_int32_t dummy1; /* XXX unused */
    833 		u_int32_t dummy2; /* XXX unused */
    834 
    835 		/*
    836 		 *  XXX: if we have to send an ICMPv6 error to the sender,
    837 		 *       we need the M_LOOP flag since icmp6_error() expects
    838 		 *       the IPv6 and the hop-by-hop options header are
    839 		 *       continuous unless the flag is set.
    840 		 */
    841 		m->m_flags |= M_LOOP;
    842 		m->m_pkthdr.rcvif = ifp;
    843 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
    844 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
    845 		    &dummy1, &dummy2) < 0) {
    846 			/* m was already freed at this point */
    847 			error = EINVAL;/* better error? */
    848 			goto done;
    849 		}
    850 		m->m_flags &= ~M_LOOP; /* XXX */
    851 		m->m_pkthdr.rcvif = NULL;
    852 	}
    853 
    854 #ifdef PFIL_HOOKS
    855 	/*
    856 	 * Run through list of hooks for output packets.
    857 	 */
    858 	if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    859 		goto done;
    860 	if (m == NULL)
    861 		goto done;
    862 	ip6 = mtod(m, struct ip6_hdr *);
    863 #endif /* PFIL_HOOKS */
    864 	/*
    865 	 * Send the packet to the outgoing interface.
    866 	 * If necessary, do IPv6 fragmentation before sending.
    867 	 *
    868 	 * the logic here is rather complex:
    869 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    870 	 * 1-a:	send as is if tlen <= path mtu
    871 	 * 1-b:	fragment if tlen > path mtu
    872 	 *
    873 	 * 2: if user asks us not to fragment (dontfrag == 1)
    874 	 * 2-a:	send as is if tlen <= interface mtu
    875 	 * 2-b:	error if tlen > interface mtu
    876 	 *
    877 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    878 	 *	always fragment
    879 	 *
    880 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    881 	 *	error, as we cannot handle this conflicting request
    882 	 */
    883 	tlen = m->m_pkthdr.len;
    884 
    885 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
    886 		dontfrag = 1;
    887 	else
    888 		dontfrag = 0;
    889 
    890 	if (dontfrag && alwaysfrag) {	/* case 4 */
    891 		/* conflicting request - can't transmit */
    892 		error = EMSGSIZE;
    893 		goto bad;
    894 	}
    895 	if (dontfrag && tlen > IN6_LINKMTU(ifp)) {	/* case 2-b */
    896 		/*
    897 		 * Even if the DONTFRAG option is specified, we cannot send the
    898 		 * packet when the data length is larger than the MTU of the
    899 		 * outgoing interface.
    900 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    901 		 * well as returning an error code (the latter is not described
    902 		 * in the API spec.)
    903 		 */
    904 		u_int32_t mtu32;
    905 		struct ip6ctlparam ip6cp;
    906 
    907 		mtu32 = (u_int32_t)mtu;
    908 		bzero(&ip6cp, sizeof(ip6cp));
    909 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    910 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
    911 		    (void *)&ip6cp);
    912 
    913 		error = EMSGSIZE;
    914 		goto bad;
    915 	}
    916 
    917 	/*
    918 	 * transmit packet without fragmentation
    919 	 */
    920 	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
    921 		struct in6_ifaddr *ia6;
    922 		int sw_csum;
    923 
    924 		ip6 = mtod(m, struct ip6_hdr *);
    925 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    926 		if (ia6) {
    927 			/* Record statistics for this interface address. */
    928 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    929 		}
    930 #ifdef IPSEC
    931 		/* clean ipsec history once it goes out of the node */
    932 		ipsec_delaux(m);
    933 #endif
    934 
    935 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    936 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    937 			if (IN6_NEED_CHECKSUM(ifp,
    938 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    939 				in6_delayed_cksum(m);
    940 			}
    941 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    942 		}
    943 
    944 		error = nd6_output(ifp, origifp, m, dst, rt);
    945 		goto done;
    946 	}
    947 
    948 	/*
    949 	 * try to fragment the packet.  case 1-b and 3
    950 	 */
    951 	if (mtu < IPV6_MMTU) {
    952 		/* path MTU cannot be less than IPV6_MMTU */
    953 		error = EMSGSIZE;
    954 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    955 		goto bad;
    956 	} else if (ip6->ip6_plen == 0) {
    957 		/* jumbo payload cannot be fragmented */
    958 		error = EMSGSIZE;
    959 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    960 		goto bad;
    961 	} else {
    962 		struct mbuf **mnext, *m_frgpart;
    963 		struct ip6_frag *ip6f;
    964 		u_int32_t id = htonl(ip6_randomid());
    965 		u_char nextproto;
    966 #if 0				/* see below */
    967 		struct ip6ctlparam ip6cp;
    968 		u_int32_t mtu32;
    969 #endif
    970 
    971 		/*
    972 		 * Too large for the destination or interface;
    973 		 * fragment if possible.
    974 		 * Must be able to put at least 8 bytes per fragment.
    975 		 */
    976 		hlen = unfragpartlen;
    977 		if (mtu > IPV6_MAXPACKET)
    978 			mtu = IPV6_MAXPACKET;
    979 
    980 #if 0
    981 		/*
    982 		 * It is believed this code is a leftover from the
    983 		 * development of the IPV6_RECVPATHMTU sockopt and
    984 		 * associated work to implement RFC3542.
    985 		 * It's not entirely clear what the intent of the API
    986 		 * is at this point, so disable this code for now.
    987 		 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
    988 		 * will send notifications if the application requests.
    989 		 */
    990 
    991 		/* Notify a proper path MTU to applications. */
    992 		mtu32 = (u_int32_t)mtu;
    993 		bzero(&ip6cp, sizeof(ip6cp));
    994 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    995 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
    996 		    (void *)&ip6cp);
    997 #endif
    998 
    999 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
   1000 		if (len < 8) {
   1001 			error = EMSGSIZE;
   1002 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
   1003 			goto bad;
   1004 		}
   1005 
   1006 		mnext = &m->m_nextpkt;
   1007 
   1008 		/*
   1009 		 * Change the next header field of the last header in the
   1010 		 * unfragmentable part.
   1011 		 */
   1012 		if (exthdrs.ip6e_rthdr) {
   1013 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
   1014 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
   1015 		} else if (exthdrs.ip6e_dest1) {
   1016 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
   1017 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
   1018 		} else if (exthdrs.ip6e_hbh) {
   1019 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
   1020 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
   1021 		} else {
   1022 			nextproto = ip6->ip6_nxt;
   1023 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
   1024 		}
   1025 
   1026 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
   1027 		    != 0) {
   1028 			if (IN6_NEED_CHECKSUM(ifp,
   1029 			    m->m_pkthdr.csum_flags &
   1030 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
   1031 				in6_delayed_cksum(m);
   1032 			}
   1033 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
   1034 		}
   1035 
   1036 		/*
   1037 		 * Loop through length of segment after first fragment,
   1038 		 * make new header and copy data of each part and link onto
   1039 		 * chain.
   1040 		 */
   1041 		m0 = m;
   1042 		for (off = hlen; off < tlen; off += len) {
   1043 			struct mbuf *mlast;
   1044 
   1045 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
   1046 			if (!m) {
   1047 				error = ENOBUFS;
   1048 				ip6stat.ip6s_odropped++;
   1049 				goto sendorfree;
   1050 			}
   1051 			m->m_pkthdr.rcvif = NULL;
   1052 			m->m_flags = m0->m_flags & M_COPYFLAGS;
   1053 			*mnext = m;
   1054 			mnext = &m->m_nextpkt;
   1055 			m->m_data += max_linkhdr;
   1056 			mhip6 = mtod(m, struct ip6_hdr *);
   1057 			*mhip6 = *ip6;
   1058 			m->m_len = sizeof(*mhip6);
   1059 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
   1060 			if (error) {
   1061 				ip6stat.ip6s_odropped++;
   1062 				goto sendorfree;
   1063 			}
   1064 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
   1065 			if (off + len >= tlen)
   1066 				len = tlen - off;
   1067 			else
   1068 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
   1069 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
   1070 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
   1071 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
   1072 				error = ENOBUFS;
   1073 				ip6stat.ip6s_odropped++;
   1074 				goto sendorfree;
   1075 			}
   1076 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
   1077 				;
   1078 			mlast->m_next = m_frgpart;
   1079 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
   1080 			m->m_pkthdr.rcvif = (struct ifnet *)0;
   1081 			ip6f->ip6f_reserved = 0;
   1082 			ip6f->ip6f_ident = id;
   1083 			ip6f->ip6f_nxt = nextproto;
   1084 			ip6stat.ip6s_ofragments++;
   1085 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
   1086 		}
   1087 
   1088 		in6_ifstat_inc(ifp, ifs6_out_fragok);
   1089 	}
   1090 
   1091 	/*
   1092 	 * Remove leading garbages.
   1093 	 */
   1094 sendorfree:
   1095 	m = m0->m_nextpkt;
   1096 	m0->m_nextpkt = 0;
   1097 	m_freem(m0);
   1098 	for (m0 = m; m; m = m0) {
   1099 		m0 = m->m_nextpkt;
   1100 		m->m_nextpkt = 0;
   1101 		if (error == 0) {
   1102 			struct in6_ifaddr *ia6;
   1103 			ip6 = mtod(m, struct ip6_hdr *);
   1104 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
   1105 			if (ia6) {
   1106 				/*
   1107 				 * Record statistics for this interface
   1108 				 * address.
   1109 				 */
   1110 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
   1111 				    m->m_pkthdr.len;
   1112 			}
   1113 #ifdef IPSEC
   1114 			/* clean ipsec history once it goes out of the node */
   1115 			ipsec_delaux(m);
   1116 #endif
   1117 			error = nd6_output(ifp, origifp, m, dst, rt);
   1118 		} else
   1119 			m_freem(m);
   1120 	}
   1121 
   1122 	if (error == 0)
   1123 		ip6stat.ip6s_fragmented++;
   1124 
   1125 done:
   1126 	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
   1127 		RTFREE(ro->ro_rt);
   1128 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
   1129 		RTFREE(ro_pmtu->ro_rt);
   1130 	}
   1131 
   1132 #ifdef IPSEC
   1133 	if (sp != NULL)
   1134 		key_freesp(sp);
   1135 #endif /* IPSEC */
   1136 
   1137 	return (error);
   1138 
   1139 freehdrs:
   1140 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
   1141 	m_freem(exthdrs.ip6e_dest1);
   1142 	m_freem(exthdrs.ip6e_rthdr);
   1143 	m_freem(exthdrs.ip6e_dest2);
   1144 	/* FALLTHROUGH */
   1145 bad:
   1146 	m_freem(m);
   1147 	goto done;
   1148 }
   1149 
   1150 static int
   1151 ip6_copyexthdr(mp, hdr, hlen)
   1152 	struct mbuf **mp;
   1153 	caddr_t hdr;
   1154 	int hlen;
   1155 {
   1156 	struct mbuf *m;
   1157 
   1158 	if (hlen > MCLBYTES)
   1159 		return (ENOBUFS); /* XXX */
   1160 
   1161 	MGET(m, M_DONTWAIT, MT_DATA);
   1162 	if (!m)
   1163 		return (ENOBUFS);
   1164 
   1165 	if (hlen > MLEN) {
   1166 		MCLGET(m, M_DONTWAIT);
   1167 		if ((m->m_flags & M_EXT) == 0) {
   1168 			m_free(m);
   1169 			return (ENOBUFS);
   1170 		}
   1171 	}
   1172 	m->m_len = hlen;
   1173 	if (hdr)
   1174 		bcopy(hdr, mtod(m, caddr_t), hlen);
   1175 
   1176 	*mp = m;
   1177 	return (0);
   1178 }
   1179 
   1180 /*
   1181  * Process a delayed payload checksum calculation.
   1182  */
   1183 void
   1184 in6_delayed_cksum(struct mbuf *m)
   1185 {
   1186 	uint16_t csum, offset;
   1187 
   1188 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1189 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1190 	KASSERT((m->m_pkthdr.csum_flags
   1191 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
   1192 
   1193 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
   1194 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
   1195 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
   1196 		csum = 0xffff;
   1197 	}
   1198 
   1199 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
   1200 	if ((offset + sizeof(csum)) > m->m_len) {
   1201 		m_copyback(m, offset, sizeof(csum), &csum);
   1202 	} else {
   1203 		*(uint16_t *)(mtod(m, caddr_t) + offset) = csum;
   1204 	}
   1205 }
   1206 
   1207 /*
   1208  * Insert jumbo payload option.
   1209  */
   1210 static int
   1211 ip6_insert_jumboopt(exthdrs, plen)
   1212 	struct ip6_exthdrs *exthdrs;
   1213 	u_int32_t plen;
   1214 {
   1215 	struct mbuf *mopt;
   1216 	u_int8_t *optbuf;
   1217 	u_int32_t v;
   1218 
   1219 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1220 
   1221 	/*
   1222 	 * If there is no hop-by-hop options header, allocate new one.
   1223 	 * If there is one but it doesn't have enough space to store the
   1224 	 * jumbo payload option, allocate a cluster to store the whole options.
   1225 	 * Otherwise, use it to store the options.
   1226 	 */
   1227 	if (exthdrs->ip6e_hbh == 0) {
   1228 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1229 		if (mopt == 0)
   1230 			return (ENOBUFS);
   1231 		mopt->m_len = JUMBOOPTLEN;
   1232 		optbuf = mtod(mopt, u_int8_t *);
   1233 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1234 		exthdrs->ip6e_hbh = mopt;
   1235 	} else {
   1236 		struct ip6_hbh *hbh;
   1237 
   1238 		mopt = exthdrs->ip6e_hbh;
   1239 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1240 			/*
   1241 			 * XXX assumption:
   1242 			 * - exthdrs->ip6e_hbh is not referenced from places
   1243 			 *   other than exthdrs.
   1244 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1245 			 */
   1246 			int oldoptlen = mopt->m_len;
   1247 			struct mbuf *n;
   1248 
   1249 			/*
   1250 			 * XXX: give up if the whole (new) hbh header does
   1251 			 * not fit even in an mbuf cluster.
   1252 			 */
   1253 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1254 				return (ENOBUFS);
   1255 
   1256 			/*
   1257 			 * As a consequence, we must always prepare a cluster
   1258 			 * at this point.
   1259 			 */
   1260 			MGET(n, M_DONTWAIT, MT_DATA);
   1261 			if (n) {
   1262 				MCLGET(n, M_DONTWAIT);
   1263 				if ((n->m_flags & M_EXT) == 0) {
   1264 					m_freem(n);
   1265 					n = NULL;
   1266 				}
   1267 			}
   1268 			if (!n)
   1269 				return (ENOBUFS);
   1270 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1271 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
   1272 			    oldoptlen);
   1273 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1274 			m_freem(mopt);
   1275 			mopt = exthdrs->ip6e_hbh = n;
   1276 		} else {
   1277 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1278 			mopt->m_len += JUMBOOPTLEN;
   1279 		}
   1280 		optbuf[0] = IP6OPT_PADN;
   1281 		optbuf[1] = 0;
   1282 
   1283 		/*
   1284 		 * Adjust the header length according to the pad and
   1285 		 * the jumbo payload option.
   1286 		 */
   1287 		hbh = mtod(mopt, struct ip6_hbh *);
   1288 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1289 	}
   1290 
   1291 	/* fill in the option. */
   1292 	optbuf[2] = IP6OPT_JUMBO;
   1293 	optbuf[3] = 4;
   1294 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1295 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
   1296 
   1297 	/* finally, adjust the packet header length */
   1298 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1299 
   1300 	return (0);
   1301 #undef JUMBOOPTLEN
   1302 }
   1303 
   1304 /*
   1305  * Insert fragment header and copy unfragmentable header portions.
   1306  */
   1307 static int
   1308 ip6_insertfraghdr(m0, m, hlen, frghdrp)
   1309 	struct mbuf *m0, *m;
   1310 	int hlen;
   1311 	struct ip6_frag **frghdrp;
   1312 {
   1313 	struct mbuf *n, *mlast;
   1314 
   1315 	if (hlen > sizeof(struct ip6_hdr)) {
   1316 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1317 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1318 		if (n == 0)
   1319 			return (ENOBUFS);
   1320 		m->m_next = n;
   1321 	} else
   1322 		n = m;
   1323 
   1324 	/* Search for the last mbuf of unfragmentable part. */
   1325 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1326 		;
   1327 
   1328 	if ((mlast->m_flags & M_EXT) == 0 &&
   1329 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1330 		/* use the trailing space of the last mbuf for the fragment hdr */
   1331 		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
   1332 		    mlast->m_len);
   1333 		mlast->m_len += sizeof(struct ip6_frag);
   1334 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1335 	} else {
   1336 		/* allocate a new mbuf for the fragment header */
   1337 		struct mbuf *mfrg;
   1338 
   1339 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1340 		if (mfrg == 0)
   1341 			return (ENOBUFS);
   1342 		mfrg->m_len = sizeof(struct ip6_frag);
   1343 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1344 		mlast->m_next = mfrg;
   1345 	}
   1346 
   1347 	return (0);
   1348 }
   1349 
   1350 static int
   1351 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp)
   1352 	struct route_in6 *ro_pmtu, *ro;
   1353 	struct ifnet *ifp;
   1354 	struct in6_addr *dst;
   1355 	u_long *mtup;
   1356 	int *alwaysfragp;
   1357 {
   1358 	u_int32_t mtu = 0;
   1359 	int alwaysfrag = 0;
   1360 	int error = 0;
   1361 
   1362 	if (ro_pmtu != ro) {
   1363 		/* The first hop and the final destination may differ. */
   1364 		struct sockaddr_in6 *sa6_dst =
   1365 		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
   1366 		if (ro_pmtu->ro_rt &&
   1367 		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
   1368 		      !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
   1369 			RTFREE(ro_pmtu->ro_rt);
   1370 			ro_pmtu->ro_rt = (struct rtentry *)NULL;
   1371 		}
   1372 		if (ro_pmtu->ro_rt == NULL) {
   1373 			bzero(sa6_dst, sizeof(*sa6_dst)); /* for safety */
   1374 			sa6_dst->sin6_family = AF_INET6;
   1375 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
   1376 			sa6_dst->sin6_addr = *dst;
   1377 
   1378 			rtalloc((struct route *)ro_pmtu);
   1379 		}
   1380 	}
   1381 	if (ro_pmtu->ro_rt) {
   1382 		u_int32_t ifmtu;
   1383 
   1384 		if (ifp == NULL)
   1385 			ifp = ro_pmtu->ro_rt->rt_ifp;
   1386 		ifmtu = IN6_LINKMTU(ifp);
   1387 		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
   1388 		if (mtu == 0)
   1389 			mtu = ifmtu;
   1390 		else if (mtu < IPV6_MMTU) {
   1391 			/*
   1392 			 * RFC2460 section 5, last paragraph:
   1393 			 * if we record ICMPv6 too big message with
   1394 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1395 			 * or smaller, with fragment header attached.
   1396 			 * (fragment header is needed regardless from the
   1397 			 * packet size, for translators to identify packets)
   1398 			 */
   1399 			alwaysfrag = 1;
   1400 			mtu = IPV6_MMTU;
   1401 		} else if (mtu > ifmtu) {
   1402 			/*
   1403 			 * The MTU on the route is larger than the MTU on
   1404 			 * the interface!  This shouldn't happen, unless the
   1405 			 * MTU of the interface has been changed after the
   1406 			 * interface was brought up.  Change the MTU in the
   1407 			 * route to match the interface MTU (as long as the
   1408 			 * field isn't locked).
   1409 			 */
   1410 			mtu = ifmtu;
   1411 			if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
   1412 				ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
   1413 		}
   1414 	} else if (ifp) {
   1415 		mtu = IN6_LINKMTU(ifp);
   1416 	} else
   1417 		error = EHOSTUNREACH; /* XXX */
   1418 
   1419 	*mtup = mtu;
   1420 	if (alwaysfragp)
   1421 		*alwaysfragp = alwaysfrag;
   1422 	return (error);
   1423 }
   1424 
   1425 /*
   1426  * IP6 socket option processing.
   1427  */
   1428 int
   1429 ip6_ctloutput(op, so, level, optname, mp)
   1430 	int op;
   1431 	struct socket *so;
   1432 	int level, optname;
   1433 	struct mbuf **mp;
   1434 {
   1435 	int privileged, optdatalen, uproto;
   1436 	void *optdata;
   1437 	struct in6pcb *in6p = sotoin6pcb(so);
   1438 	struct mbuf *m = *mp;
   1439 	int error, optval;
   1440 	int optlen;
   1441 	struct lwp *l = curlwp;	/* XXX */
   1442 
   1443 	optlen = m ? m->m_len : 0;
   1444 	error = optval = 0;
   1445 	privileged = (l == 0 || kauth_authorize_generic(l->l_cred,
   1446 	    KAUTH_GENERIC_ISSUSER, &l->l_acflag)) ? 0 : 1;
   1447 	uproto = (int)so->so_proto->pr_protocol;
   1448 
   1449 	if (level == IPPROTO_IPV6) {
   1450 		switch (op) {
   1451 		case PRCO_SETOPT:
   1452 			switch (optname) {
   1453 #ifdef RFC2292
   1454 			case IPV6_2292PKTOPTIONS:
   1455 				/* m is freed in ip6_pcbopts */
   1456 				error = ip6_pcbopts(&in6p->in6p_outputopts,
   1457 				    m, so);
   1458 				break;
   1459 #endif
   1460 
   1461 			/*
   1462 			 * Use of some Hop-by-Hop options or some
   1463 			 * Destination options, might require special
   1464 			 * privilege.  That is, normal applications
   1465 			 * (without special privilege) might be forbidden
   1466 			 * from setting certain options in outgoing packets,
   1467 			 * and might never see certain options in received
   1468 			 * packets. [RFC 2292 Section 6]
   1469 			 * KAME specific note:
   1470 			 *  KAME prevents non-privileged users from sending or
   1471 			 *  receiving ANY hbh/dst options in order to avoid
   1472 			 *  overhead of parsing options in the kernel.
   1473 			 */
   1474 			case IPV6_RECVHOPOPTS:
   1475 			case IPV6_RECVDSTOPTS:
   1476 			case IPV6_RECVRTHDRDSTOPTS:
   1477 				if (!privileged) {
   1478 					error = EPERM;
   1479 					break;
   1480 				}
   1481 				/* FALLTHROUGH */
   1482 			case IPV6_UNICAST_HOPS:
   1483 			case IPV6_HOPLIMIT:
   1484 			case IPV6_FAITH:
   1485 
   1486 			case IPV6_RECVPKTINFO:
   1487 			case IPV6_RECVHOPLIMIT:
   1488 			case IPV6_RECVRTHDR:
   1489 			case IPV6_RECVPATHMTU:
   1490 			case IPV6_RECVTCLASS:
   1491 			case IPV6_V6ONLY:
   1492 				if (optlen != sizeof(int)) {
   1493 					error = EINVAL;
   1494 					break;
   1495 				}
   1496 				optval = *mtod(m, int *);
   1497 				switch (optname) {
   1498 
   1499 				case IPV6_UNICAST_HOPS:
   1500 					if (optval < -1 || optval >= 256)
   1501 						error = EINVAL;
   1502 					else {
   1503 						/* -1 = kernel default */
   1504 						in6p->in6p_hops = optval;
   1505 					}
   1506 					break;
   1507 #define OPTSET(bit) \
   1508 do { \
   1509 	if (optval) \
   1510 		in6p->in6p_flags |= (bit); \
   1511 	else \
   1512 		in6p->in6p_flags &= ~(bit); \
   1513 } while (/*CONSTCOND*/ 0)
   1514 
   1515 #ifdef RFC2292
   1516 #define OPTSET2292(bit) 			\
   1517 do { 						\
   1518 	in6p->in6p_flags |= IN6P_RFC2292; 	\
   1519 	if (optval) 				\
   1520 		in6p->in6p_flags |= (bit); 	\
   1521 	else 					\
   1522 		in6p->in6p_flags &= ~(bit); 	\
   1523 } while (/*CONSTCOND*/ 0)
   1524 #endif
   1525 
   1526 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
   1527 
   1528 				case IPV6_RECVPKTINFO:
   1529 #ifdef RFC2292
   1530 					/* cannot mix with RFC2292 */
   1531 					if (OPTBIT(IN6P_RFC2292)) {
   1532 						error = EINVAL;
   1533 						break;
   1534 					}
   1535 #endif
   1536 					OPTSET(IN6P_PKTINFO);
   1537 					break;
   1538 
   1539 				case IPV6_HOPLIMIT:
   1540 				{
   1541 					struct ip6_pktopts **optp;
   1542 
   1543 #ifdef RFC2292
   1544 					/* cannot mix with RFC2292 */
   1545 					if (OPTBIT(IN6P_RFC2292)) {
   1546 						error = EINVAL;
   1547 						break;
   1548 					}
   1549 #endif
   1550 					optp = &in6p->in6p_outputopts;
   1551 					error = ip6_pcbopt(IPV6_HOPLIMIT,
   1552 							   (u_char *)&optval,
   1553 							   sizeof(optval),
   1554 							   optp,
   1555 							   privileged, uproto);
   1556 					break;
   1557 				}
   1558 
   1559 				case IPV6_RECVHOPLIMIT:
   1560 #ifdef RFC2292
   1561 					/* cannot mix with RFC2292 */
   1562 					if (OPTBIT(IN6P_RFC2292)) {
   1563 						error = EINVAL;
   1564 						break;
   1565 					}
   1566 #endif
   1567 					OPTSET(IN6P_HOPLIMIT);
   1568 					break;
   1569 
   1570 				case IPV6_RECVHOPOPTS:
   1571 #ifdef RFC2292
   1572 					/* cannot mix with RFC2292 */
   1573 					if (OPTBIT(IN6P_RFC2292)) {
   1574 						error = EINVAL;
   1575 						break;
   1576 					}
   1577 #endif
   1578 					OPTSET(IN6P_HOPOPTS);
   1579 					break;
   1580 
   1581 				case IPV6_RECVDSTOPTS:
   1582 #ifdef RFC2292
   1583 					/* cannot mix with RFC2292 */
   1584 					if (OPTBIT(IN6P_RFC2292)) {
   1585 						error = EINVAL;
   1586 						break;
   1587 					}
   1588 #endif
   1589 					OPTSET(IN6P_DSTOPTS);
   1590 					break;
   1591 
   1592 				case IPV6_RECVRTHDRDSTOPTS:
   1593 #ifdef RFC2292
   1594 					/* cannot mix with RFC2292 */
   1595 					if (OPTBIT(IN6P_RFC2292)) {
   1596 						error = EINVAL;
   1597 						break;
   1598 					}
   1599 #endif
   1600 					OPTSET(IN6P_RTHDRDSTOPTS);
   1601 					break;
   1602 
   1603 				case IPV6_RECVRTHDR:
   1604 #ifdef RFC2292
   1605 					/* cannot mix with RFC2292 */
   1606 					if (OPTBIT(IN6P_RFC2292)) {
   1607 						error = EINVAL;
   1608 						break;
   1609 					}
   1610 #endif
   1611 					OPTSET(IN6P_RTHDR);
   1612 					break;
   1613 
   1614 				case IPV6_FAITH:
   1615 					OPTSET(IN6P_FAITH);
   1616 					break;
   1617 
   1618 				case IPV6_RECVPATHMTU:
   1619 					/*
   1620 					 * We ignore this option for TCP
   1621 					 * sockets.
   1622 					 * (RFC3542 leaves this case
   1623 					 * unspecified.)
   1624 					 */
   1625 					if (uproto != IPPROTO_TCP)
   1626 						OPTSET(IN6P_MTU);
   1627 					break;
   1628 
   1629 				case IPV6_V6ONLY:
   1630 					/*
   1631 					 * make setsockopt(IPV6_V6ONLY)
   1632 					 * available only prior to bind(2).
   1633 					 * see ipng mailing list, Jun 22 2001.
   1634 					 */
   1635 					if (in6p->in6p_lport ||
   1636 					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
   1637 						error = EINVAL;
   1638 						break;
   1639 					}
   1640 #ifdef INET6_BINDV6ONLY
   1641 					if (!optval)
   1642 						error = EINVAL;
   1643 #else
   1644 					OPTSET(IN6P_IPV6_V6ONLY);
   1645 #endif
   1646 					break;
   1647 				case IPV6_RECVTCLASS:
   1648 #ifdef RFC2292
   1649 					/* cannot mix with RFC2292 XXX */
   1650 					if (OPTBIT(IN6P_RFC2292)) {
   1651 						error = EINVAL;
   1652 						break;
   1653 					}
   1654 #endif
   1655 					OPTSET(IN6P_TCLASS);
   1656 					break;
   1657 
   1658 				}
   1659 				break;
   1660 
   1661 			case IPV6_OTCLASS:
   1662 			{
   1663 				struct ip6_pktopts **optp;
   1664 				u_int8_t tclass;
   1665 
   1666 				if (optlen != sizeof(tclass)) {
   1667 					error = EINVAL;
   1668 					break;
   1669 				}
   1670 				tclass = *mtod(m, u_int8_t *);
   1671 				optp = &in6p->in6p_outputopts;
   1672 				error = ip6_pcbopt(optname,
   1673 						   (u_char *)&tclass,
   1674 						   sizeof(tclass),
   1675 						   optp,
   1676 						   privileged, uproto);
   1677 				break;
   1678 			}
   1679 
   1680 			case IPV6_TCLASS:
   1681 			case IPV6_DONTFRAG:
   1682 			case IPV6_USE_MIN_MTU:
   1683 				if (optlen != sizeof(optval)) {
   1684 					error = EINVAL;
   1685 					break;
   1686 				}
   1687 				optval = *mtod(m, int *);
   1688 				{
   1689 					struct ip6_pktopts **optp;
   1690 					optp = &in6p->in6p_outputopts;
   1691 					error = ip6_pcbopt(optname,
   1692 							   (u_char *)&optval,
   1693 							   sizeof(optval),
   1694 							   optp,
   1695 							   privileged, uproto);
   1696 					break;
   1697 				}
   1698 
   1699 #ifdef RFC2292
   1700 			case IPV6_2292PKTINFO:
   1701 			case IPV6_2292HOPLIMIT:
   1702 			case IPV6_2292HOPOPTS:
   1703 			case IPV6_2292DSTOPTS:
   1704 			case IPV6_2292RTHDR:
   1705 				/* RFC 2292 */
   1706 				if (optlen != sizeof(int)) {
   1707 					error = EINVAL;
   1708 					break;
   1709 				}
   1710 				optval = *mtod(m, int *);
   1711 				switch (optname) {
   1712 				case IPV6_2292PKTINFO:
   1713 					OPTSET2292(IN6P_PKTINFO);
   1714 					break;
   1715 				case IPV6_2292HOPLIMIT:
   1716 					OPTSET2292(IN6P_HOPLIMIT);
   1717 					break;
   1718 				case IPV6_2292HOPOPTS:
   1719 					/*
   1720 					 * Check super-user privilege.
   1721 					 * See comments for IPV6_RECVHOPOPTS.
   1722 					 */
   1723 					if (!privileged)
   1724 						return (EPERM);
   1725 					OPTSET2292(IN6P_HOPOPTS);
   1726 					break;
   1727 				case IPV6_2292DSTOPTS:
   1728 					if (!privileged)
   1729 						return (EPERM);
   1730 					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
   1731 					break;
   1732 				case IPV6_2292RTHDR:
   1733 					OPTSET2292(IN6P_RTHDR);
   1734 					break;
   1735 				}
   1736 				break;
   1737 #endif
   1738 			case IPV6_PKTINFO:
   1739 			case IPV6_HOPOPTS:
   1740 			case IPV6_RTHDR:
   1741 			case IPV6_DSTOPTS:
   1742 			case IPV6_RTHDRDSTOPTS:
   1743 			case IPV6_NEXTHOP:
   1744 			{
   1745 				/* new advanced API (RFC3542) */
   1746 				u_char *optbuf;
   1747 				int optbuflen;
   1748 				struct ip6_pktopts **optp;
   1749 
   1750 #ifdef RFC2292
   1751 				/* cannot mix with RFC2292 */
   1752 				if (OPTBIT(IN6P_RFC2292)) {
   1753 					error = EINVAL;
   1754 					break;
   1755 				}
   1756 #endif
   1757 
   1758 				if (m && m->m_next) {
   1759 					error = EINVAL;	/* XXX */
   1760 					break;
   1761 				}
   1762 				if (m) {
   1763 					optbuf = mtod(m, u_char *);
   1764 					optbuflen = m->m_len;
   1765 				} else {
   1766 					optbuf = NULL;
   1767 					optbuflen = 0;
   1768 				}
   1769 				optp = &in6p->in6p_outputopts;
   1770 				error = ip6_pcbopt(optname,
   1771 						   optbuf, optbuflen,
   1772 						   optp, privileged, uproto);
   1773 				break;
   1774 			}
   1775 #undef OPTSET
   1776 
   1777 			case IPV6_MULTICAST_IF:
   1778 			case IPV6_MULTICAST_HOPS:
   1779 			case IPV6_MULTICAST_LOOP:
   1780 			case IPV6_JOIN_GROUP:
   1781 			case IPV6_LEAVE_GROUP:
   1782                                 error = ip6_setmoptions(optname,
   1783 				    &in6p->in6p_moptions, m);
   1784 				break;
   1785 
   1786 			case IPV6_PORTRANGE:
   1787 				optval = *mtod(m, int *);
   1788 
   1789 				switch (optval) {
   1790 				case IPV6_PORTRANGE_DEFAULT:
   1791 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1792 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1793 					break;
   1794 
   1795 				case IPV6_PORTRANGE_HIGH:
   1796 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1797 					in6p->in6p_flags |= IN6P_HIGHPORT;
   1798 					break;
   1799 
   1800 				case IPV6_PORTRANGE_LOW:
   1801 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1802 					in6p->in6p_flags |= IN6P_LOWPORT;
   1803 					break;
   1804 
   1805 				default:
   1806 					error = EINVAL;
   1807 					break;
   1808 				}
   1809 				break;
   1810 
   1811 #ifdef IPSEC
   1812 			case IPV6_IPSEC_POLICY:
   1813 			{
   1814 				caddr_t req = NULL;
   1815 				size_t len = 0;
   1816 				if (m) {
   1817 					req = mtod(m, caddr_t);
   1818 					len = m->m_len;
   1819 				}
   1820 				error = ipsec6_set_policy(in6p, optname, req,
   1821 							  len, privileged);
   1822 			}
   1823 				break;
   1824 #endif /* IPSEC */
   1825 
   1826 			default:
   1827 				error = ENOPROTOOPT;
   1828 				break;
   1829 			}
   1830 			if (m)
   1831 				(void)m_free(m);
   1832 			break;
   1833 
   1834 		case PRCO_GETOPT:
   1835 			switch (optname) {
   1836 #ifdef RFC2292
   1837 			case IPV6_2292PKTOPTIONS:
   1838 				/*
   1839 				 * RFC3542 (effectively) deprecated the
   1840 				 * semantics of the 2292-style pktoptions.
   1841 				 * Since it was not reliable in nature (i.e.,
   1842 				 * applications had to expect the lack of some
   1843 				 * information after all), it would make sense
   1844 				 * to simplify this part by always returning
   1845 				 * empty data.
   1846 				 */
   1847 				*mp = m_get(M_WAIT, MT_SOOPTS);
   1848 				(*mp)->m_len = 0;
   1849 				break;
   1850 #endif
   1851 
   1852 			case IPV6_RECVHOPOPTS:
   1853 			case IPV6_RECVDSTOPTS:
   1854 			case IPV6_RECVRTHDRDSTOPTS:
   1855 			case IPV6_UNICAST_HOPS:
   1856 			case IPV6_RECVPKTINFO:
   1857 			case IPV6_RECVHOPLIMIT:
   1858 			case IPV6_RECVRTHDR:
   1859 			case IPV6_RECVPATHMTU:
   1860 
   1861 			case IPV6_FAITH:
   1862 			case IPV6_V6ONLY:
   1863 			case IPV6_PORTRANGE:
   1864 			case IPV6_RECVTCLASS:
   1865 				switch (optname) {
   1866 
   1867 				case IPV6_RECVHOPOPTS:
   1868 					optval = OPTBIT(IN6P_HOPOPTS);
   1869 					break;
   1870 
   1871 				case IPV6_RECVDSTOPTS:
   1872 					optval = OPTBIT(IN6P_DSTOPTS);
   1873 					break;
   1874 
   1875 				case IPV6_RECVRTHDRDSTOPTS:
   1876 					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
   1877 					break;
   1878 
   1879 				case IPV6_UNICAST_HOPS:
   1880 					optval = in6p->in6p_hops;
   1881 					break;
   1882 
   1883 				case IPV6_RECVPKTINFO:
   1884 					optval = OPTBIT(IN6P_PKTINFO);
   1885 					break;
   1886 
   1887 				case IPV6_RECVHOPLIMIT:
   1888 					optval = OPTBIT(IN6P_HOPLIMIT);
   1889 					break;
   1890 
   1891 				case IPV6_RECVRTHDR:
   1892 					optval = OPTBIT(IN6P_RTHDR);
   1893 					break;
   1894 
   1895 				case IPV6_RECVPATHMTU:
   1896 					optval = OPTBIT(IN6P_MTU);
   1897 					break;
   1898 
   1899 				case IPV6_FAITH:
   1900 					optval = OPTBIT(IN6P_FAITH);
   1901 					break;
   1902 
   1903 				case IPV6_V6ONLY:
   1904 					optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1905 					break;
   1906 
   1907 				case IPV6_PORTRANGE:
   1908 				    {
   1909 					int flags;
   1910 					flags = in6p->in6p_flags;
   1911 					if (flags & IN6P_HIGHPORT)
   1912 						optval = IPV6_PORTRANGE_HIGH;
   1913 					else if (flags & IN6P_LOWPORT)
   1914 						optval = IPV6_PORTRANGE_LOW;
   1915 					else
   1916 						optval = 0;
   1917 					break;
   1918 				    }
   1919 				case IPV6_RECVTCLASS:
   1920 					optval = OPTBIT(IN6P_TCLASS);
   1921 					break;
   1922 
   1923 				}
   1924 				if (error)
   1925 					break;
   1926 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1927 				m->m_len = sizeof(int);
   1928 				*mtod(m, int *) = optval;
   1929 				break;
   1930 
   1931 			case IPV6_PATHMTU:
   1932 			    {
   1933 				u_long pmtu = 0;
   1934 				struct ip6_mtuinfo mtuinfo;
   1935 				struct route_in6 *ro = (struct route_in6 *)&in6p
   1936 ->in6p_route;
   1937 
   1938 				if (!(so->so_state & SS_ISCONNECTED))
   1939 					return (ENOTCONN);
   1940 				/*
   1941 				 * XXX: we dot not consider the case of source
   1942 				 * routing, or optional information to specify
   1943 				 * the outgoing interface.
   1944 				 */
   1945 				error = ip6_getpmtu(ro, NULL, NULL,
   1946 				    &in6p->in6p_faddr, &pmtu, NULL);
   1947 				if (error)
   1948 					break;
   1949 				if (pmtu > IPV6_MAXPACKET)
   1950 					pmtu = IPV6_MAXPACKET;
   1951 
   1952 				memset(&mtuinfo, 0, sizeof(mtuinfo));
   1953 				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
   1954 				optdata = (void *)&mtuinfo;
   1955 				optdatalen = sizeof(mtuinfo);
   1956 				if (optdatalen > MCLBYTES)
   1957 					return (EMSGSIZE); /* XXX */
   1958 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1959 				if (optdatalen > MLEN)
   1960 					MCLGET(m, M_WAIT);
   1961 				m->m_len = optdatalen;
   1962 				memcpy(mtod(m, void *), optdata, optdatalen);
   1963 				break;
   1964 			    }
   1965 
   1966 #ifdef RFC2292
   1967 			case IPV6_2292PKTINFO:
   1968 			case IPV6_2292HOPLIMIT:
   1969 			case IPV6_2292HOPOPTS:
   1970 			case IPV6_2292RTHDR:
   1971 			case IPV6_2292DSTOPTS:
   1972 				switch (optname) {
   1973 				case IPV6_2292PKTINFO:
   1974 					optval = OPTBIT(IN6P_PKTINFO);
   1975 					break;
   1976 				case IPV6_2292HOPLIMIT:
   1977 					optval = OPTBIT(IN6P_HOPLIMIT);
   1978 					break;
   1979 				case IPV6_2292HOPOPTS:
   1980 					optval = OPTBIT(IN6P_HOPOPTS);
   1981 					break;
   1982 				case IPV6_2292RTHDR:
   1983 					optval = OPTBIT(IN6P_RTHDR);
   1984 					break;
   1985 				case IPV6_2292DSTOPTS:
   1986 					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
   1987 					break;
   1988 				}
   1989 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1990 				m->m_len = sizeof(int);
   1991 				*mtod(m, int *) = optval;
   1992 				break;
   1993 #endif
   1994 			case IPV6_PKTINFO:
   1995 			case IPV6_HOPOPTS:
   1996 			case IPV6_RTHDR:
   1997 			case IPV6_DSTOPTS:
   1998 			case IPV6_RTHDRDSTOPTS:
   1999 			case IPV6_NEXTHOP:
   2000 			case IPV6_OTCLASS:
   2001 			case IPV6_TCLASS:
   2002 			case IPV6_DONTFRAG:
   2003 			case IPV6_USE_MIN_MTU:
   2004 				error = ip6_getpcbopt(in6p->in6p_outputopts,
   2005 				    optname, mp);
   2006 				break;
   2007 
   2008 			case IPV6_MULTICAST_IF:
   2009 			case IPV6_MULTICAST_HOPS:
   2010 			case IPV6_MULTICAST_LOOP:
   2011 			case IPV6_JOIN_GROUP:
   2012 			case IPV6_LEAVE_GROUP:
   2013 				error = ip6_getmoptions(optname,
   2014 				    in6p->in6p_moptions, mp);
   2015 				break;
   2016 
   2017 #ifdef IPSEC
   2018 			case IPV6_IPSEC_POLICY:
   2019 			    {
   2020 				caddr_t req = NULL;
   2021 				size_t len = 0;
   2022 				if (m) {
   2023 					req = mtod(m, caddr_t);
   2024 					len = m->m_len;
   2025 				}
   2026 				error = ipsec6_get_policy(in6p, req, len, mp);
   2027 				break;
   2028 			    }
   2029 #endif /* IPSEC */
   2030 
   2031 
   2032 
   2033 
   2034 			default:
   2035 				error = ENOPROTOOPT;
   2036 				break;
   2037 			}
   2038 			break;
   2039 		}
   2040 	} else {
   2041 		error = EINVAL;
   2042 		if (op == PRCO_SETOPT && *mp)
   2043 			(void)m_free(*mp);
   2044 	}
   2045 	return (error);
   2046 }
   2047 
   2048 int
   2049 ip6_raw_ctloutput(op, so, level, optname, mp)
   2050 	int op;
   2051 	struct socket *so;
   2052 	int level, optname;
   2053 	struct mbuf **mp;
   2054 {
   2055 	int error = 0, optval, optlen;
   2056 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   2057 	struct in6pcb *in6p = sotoin6pcb(so);
   2058 	struct mbuf *m = *mp;
   2059 
   2060 	optlen = m ? m->m_len : 0;
   2061 
   2062 	if (level != IPPROTO_IPV6) {
   2063 		if (op == PRCO_SETOPT && *mp)
   2064 			(void)m_free(*mp);
   2065 		return (EINVAL);
   2066 	}
   2067 
   2068 	switch (optname) {
   2069 	case IPV6_CHECKSUM:
   2070 		/*
   2071 		 * For ICMPv6 sockets, no modification allowed for checksum
   2072 		 * offset, permit "no change" values to help existing apps.
   2073 		 *
   2074 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
   2075 		 * for an ICMPv6 socket will fail."  The current
   2076 		 * behavior does not meet RFC3542.
   2077 		 */
   2078 		switch (op) {
   2079 		case PRCO_SETOPT:
   2080 			if (optlen != sizeof(int)) {
   2081 				error = EINVAL;
   2082 				break;
   2083 			}
   2084 			optval = *mtod(m, int *);
   2085 			if ((optval % 2) != 0) {
   2086 				/* the API assumes even offset values */
   2087 				error = EINVAL;
   2088 			} else if (so->so_proto->pr_protocol ==
   2089 			    IPPROTO_ICMPV6) {
   2090 				if (optval != icmp6off)
   2091 					error = EINVAL;
   2092 			} else
   2093 				in6p->in6p_cksum = optval;
   2094 			break;
   2095 
   2096 		case PRCO_GETOPT:
   2097 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   2098 				optval = icmp6off;
   2099 			else
   2100 				optval = in6p->in6p_cksum;
   2101 
   2102 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   2103 			m->m_len = sizeof(int);
   2104 			*mtod(m, int *) = optval;
   2105 			break;
   2106 
   2107 		default:
   2108 			error = EINVAL;
   2109 			break;
   2110 		}
   2111 		break;
   2112 
   2113 	default:
   2114 		error = ENOPROTOOPT;
   2115 		break;
   2116 	}
   2117 
   2118 	if (op == PRCO_SETOPT && m)
   2119 		(void)m_free(m);
   2120 
   2121 	return (error);
   2122 }
   2123 
   2124 #ifdef RFC2292
   2125 /*
   2126  * Set up IP6 options in pcb for insertion in output packets or
   2127  * specifying behavior of outgoing packets.
   2128  */
   2129 static int
   2130 ip6_pcbopts(pktopt, m, so)
   2131 	struct ip6_pktopts **pktopt;
   2132 	struct mbuf *m;
   2133 	struct socket *so;
   2134 {
   2135 	struct ip6_pktopts *opt = *pktopt;
   2136 	int error = 0;
   2137 	struct lwp *l = curlwp;	/* XXX */
   2138 	int priv = 0;
   2139 
   2140 	/* turn off any old options. */
   2141 	if (opt) {
   2142 #ifdef DIAGNOSTIC
   2143 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
   2144 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
   2145 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2146 		    printf("ip6_pcbopts: all specified options are cleared.\n");
   2147 #endif
   2148 		ip6_clearpktopts(opt, -1);
   2149 	} else
   2150 		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
   2151 	*pktopt = NULL;
   2152 
   2153 	if (!m || m->m_len == 0) {
   2154 		/*
   2155 		 * Only turning off any previous options, regardless of
   2156 		 * whether the opt is just created or given.
   2157 		 */
   2158 		free(opt, M_IP6OPT);
   2159 		return (0);
   2160 	}
   2161 
   2162 	/*  set options specified by user. */
   2163 	if (l && !kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
   2164 	    &l->l_acflag))
   2165 		priv = 1;
   2166 	if ((error = ip6_setpktopts(m, opt, NULL, priv,
   2167 	    so->so_proto->pr_protocol)) != 0) {
   2168 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
   2169 		free(opt, M_IP6OPT);
   2170 		return (error);
   2171 	}
   2172 	*pktopt = opt;
   2173 	return (0);
   2174 }
   2175 #endif
   2176 
   2177 /*
   2178  * initialize ip6_pktopts.  beware that there are non-zero default values in
   2179  * the struct.
   2180  */
   2181 void
   2182 ip6_initpktopts(struct ip6_pktopts *opt)
   2183 {
   2184 
   2185 	memset(opt, 0, sizeof(*opt));
   2186 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
   2187 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
   2188 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
   2189 }
   2190 
   2191 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
   2192 static int
   2193 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
   2194     int priv, int uproto)
   2195 {
   2196 	struct ip6_pktopts *opt;
   2197 
   2198 	if (*pktopt == NULL) {
   2199 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
   2200 		    M_WAITOK);
   2201 		ip6_initpktopts(*pktopt);
   2202 	}
   2203 	opt = *pktopt;
   2204 
   2205 	return (ip6_setpktopt(optname, buf, len, opt, priv, 1, 0, uproto));
   2206 }
   2207 
   2208 static int
   2209 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf **mp)
   2210 {
   2211 	void *optdata = NULL;
   2212 	int optdatalen = 0;
   2213 	struct ip6_ext *ip6e;
   2214 	int error = 0;
   2215 	struct in6_pktinfo null_pktinfo;
   2216 	int deftclass = 0, on;
   2217 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
   2218 	struct mbuf *m;
   2219 
   2220 	switch (optname) {
   2221 	case IPV6_PKTINFO:
   2222 		if (pktopt && pktopt->ip6po_pktinfo)
   2223 			optdata = (void *)pktopt->ip6po_pktinfo;
   2224 		else {
   2225 			/* XXX: we don't have to do this every time... */
   2226 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
   2227 			optdata = (void *)&null_pktinfo;
   2228 		}
   2229 		optdatalen = sizeof(struct in6_pktinfo);
   2230 		break;
   2231 	case IPV6_OTCLASS:
   2232 		/* XXX */
   2233 		return (EINVAL);
   2234 	case IPV6_TCLASS:
   2235 		if (pktopt && pktopt->ip6po_tclass >= 0)
   2236 			optdata = (void *)&pktopt->ip6po_tclass;
   2237 		else
   2238 			optdata = (void *)&deftclass;
   2239 		optdatalen = sizeof(int);
   2240 		break;
   2241 	case IPV6_HOPOPTS:
   2242 		if (pktopt && pktopt->ip6po_hbh) {
   2243 			optdata = (void *)pktopt->ip6po_hbh;
   2244 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
   2245 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2246 		}
   2247 		break;
   2248 	case IPV6_RTHDR:
   2249 		if (pktopt && pktopt->ip6po_rthdr) {
   2250 			optdata = (void *)pktopt->ip6po_rthdr;
   2251 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
   2252 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2253 		}
   2254 		break;
   2255 	case IPV6_RTHDRDSTOPTS:
   2256 		if (pktopt && pktopt->ip6po_dest1) {
   2257 			optdata = (void *)pktopt->ip6po_dest1;
   2258 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
   2259 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2260 		}
   2261 		break;
   2262 	case IPV6_DSTOPTS:
   2263 		if (pktopt && pktopt->ip6po_dest2) {
   2264 			optdata = (void *)pktopt->ip6po_dest2;
   2265 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
   2266 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2267 		}
   2268 		break;
   2269 	case IPV6_NEXTHOP:
   2270 		if (pktopt && pktopt->ip6po_nexthop) {
   2271 			optdata = (void *)pktopt->ip6po_nexthop;
   2272 			optdatalen = pktopt->ip6po_nexthop->sa_len;
   2273 		}
   2274 		break;
   2275 	case IPV6_USE_MIN_MTU:
   2276 		if (pktopt)
   2277 			optdata = (void *)&pktopt->ip6po_minmtu;
   2278 		else
   2279 			optdata = (void *)&defminmtu;
   2280 		optdatalen = sizeof(int);
   2281 		break;
   2282 	case IPV6_DONTFRAG:
   2283 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
   2284 			on = 1;
   2285 		else
   2286 			on = 0;
   2287 		optdata = (void *)&on;
   2288 		optdatalen = sizeof(on);
   2289 		break;
   2290 	default:		/* should not happen */
   2291 #ifdef DIAGNOSTIC
   2292 		panic("ip6_getpcbopt: unexpected option\n");
   2293 #endif
   2294 		return (ENOPROTOOPT);
   2295 	}
   2296 
   2297 	if (optdatalen > MCLBYTES)
   2298 		return (EMSGSIZE); /* XXX */
   2299 	*mp = m = m_get(M_WAIT, MT_SOOPTS);
   2300 	if (optdatalen > MLEN)
   2301 		MCLGET(m, M_WAIT);
   2302 	m->m_len = optdatalen;
   2303 	if (optdatalen)
   2304 		memcpy(mtod(m, void *), optdata, optdatalen);
   2305 
   2306 	return (error);
   2307 }
   2308 
   2309 void
   2310 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
   2311 {
   2312 	if (optname == -1 || optname == IPV6_PKTINFO) {
   2313 		if (pktopt->ip6po_pktinfo)
   2314 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
   2315 		pktopt->ip6po_pktinfo = NULL;
   2316 	}
   2317 	if (optname == -1 || optname == IPV6_HOPLIMIT)
   2318 		pktopt->ip6po_hlim = -1;
   2319 	if (optname == -1 || optname == IPV6_TCLASS)
   2320 		pktopt->ip6po_tclass = -1;
   2321 	if (optname == -1 || optname == IPV6_NEXTHOP) {
   2322 		if (pktopt->ip6po_nextroute.ro_rt) {
   2323 			RTFREE(pktopt->ip6po_nextroute.ro_rt);
   2324 			pktopt->ip6po_nextroute.ro_rt = NULL;
   2325 		}
   2326 		if (pktopt->ip6po_nexthop)
   2327 			free(pktopt->ip6po_nexthop, M_IP6OPT);
   2328 		pktopt->ip6po_nexthop = NULL;
   2329 	}
   2330 	if (optname == -1 || optname == IPV6_HOPOPTS) {
   2331 		if (pktopt->ip6po_hbh)
   2332 			free(pktopt->ip6po_hbh, M_IP6OPT);
   2333 		pktopt->ip6po_hbh = NULL;
   2334 	}
   2335 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
   2336 		if (pktopt->ip6po_dest1)
   2337 			free(pktopt->ip6po_dest1, M_IP6OPT);
   2338 		pktopt->ip6po_dest1 = NULL;
   2339 	}
   2340 	if (optname == -1 || optname == IPV6_RTHDR) {
   2341 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2342 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
   2343 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
   2344 		if (pktopt->ip6po_route.ro_rt) {
   2345 			RTFREE(pktopt->ip6po_route.ro_rt);
   2346 			pktopt->ip6po_route.ro_rt = NULL;
   2347 		}
   2348 	}
   2349 	if (optname == -1 || optname == IPV6_DSTOPTS) {
   2350 		if (pktopt->ip6po_dest2)
   2351 			free(pktopt->ip6po_dest2, M_IP6OPT);
   2352 		pktopt->ip6po_dest2 = NULL;
   2353 	}
   2354 }
   2355 
   2356 #define PKTOPT_EXTHDRCPY(type) 					\
   2357 do {								\
   2358 	if (src->type) {					\
   2359 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
   2360 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
   2361 		if (dst->type == NULL && canwait == M_NOWAIT)	\
   2362 			goto bad;				\
   2363 		memcpy(dst->type, src->type, hlen);		\
   2364 	}							\
   2365 } while (/*CONSTCOND*/ 0)
   2366 
   2367 static int
   2368 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
   2369 {
   2370 	dst->ip6po_hlim = src->ip6po_hlim;
   2371 	dst->ip6po_tclass = src->ip6po_tclass;
   2372 	dst->ip6po_flags = src->ip6po_flags;
   2373 	if (src->ip6po_pktinfo) {
   2374 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
   2375 		    M_IP6OPT, canwait);
   2376 		if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT)
   2377 			goto bad;
   2378 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
   2379 	}
   2380 	if (src->ip6po_nexthop) {
   2381 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
   2382 		    M_IP6OPT, canwait);
   2383 		if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT)
   2384 			goto bad;
   2385 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
   2386 		    src->ip6po_nexthop->sa_len);
   2387 	}
   2388 	PKTOPT_EXTHDRCPY(ip6po_hbh);
   2389 	PKTOPT_EXTHDRCPY(ip6po_dest1);
   2390 	PKTOPT_EXTHDRCPY(ip6po_dest2);
   2391 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
   2392 	return (0);
   2393 
   2394   bad:
   2395 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
   2396 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
   2397 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
   2398 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
   2399 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
   2400 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
   2401 
   2402 	return (ENOBUFS);
   2403 }
   2404 #undef PKTOPT_EXTHDRCPY
   2405 
   2406 struct ip6_pktopts *
   2407 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
   2408 {
   2409 	int error;
   2410 	struct ip6_pktopts *dst;
   2411 
   2412 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
   2413 	if (dst == NULL && canwait == M_NOWAIT)
   2414 		return (NULL);
   2415 	ip6_initpktopts(dst);
   2416 
   2417 	if ((error = copypktopts(dst, src, canwait)) != 0) {
   2418 		free(dst, M_IP6OPT);
   2419 		return (NULL);
   2420 	}
   2421 
   2422 	return (dst);
   2423 }
   2424 
   2425 void
   2426 ip6_freepcbopts(struct ip6_pktopts *pktopt)
   2427 {
   2428 	if (pktopt == NULL)
   2429 		return;
   2430 
   2431 	ip6_clearpktopts(pktopt, -1);
   2432 
   2433 	free(pktopt, M_IP6OPT);
   2434 }
   2435 
   2436 /*
   2437  * Set the IP6 multicast options in response to user setsockopt().
   2438  */
   2439 static int
   2440 ip6_setmoptions(optname, im6op, m)
   2441 	int optname;
   2442 	struct ip6_moptions **im6op;
   2443 	struct mbuf *m;
   2444 {
   2445 	int error = 0;
   2446 	u_int loop, ifindex;
   2447 	struct ipv6_mreq *mreq;
   2448 	struct ifnet *ifp;
   2449 	struct ip6_moptions *im6o = *im6op;
   2450 	struct route_in6 ro;
   2451 	struct in6_multi_mship *imm;
   2452 	struct lwp *l = curlwp;	/* XXX */
   2453 
   2454 	if (im6o == NULL) {
   2455 		/*
   2456 		 * No multicast option buffer attached to the pcb;
   2457 		 * allocate one and initialize to default values.
   2458 		 */
   2459 		im6o = (struct ip6_moptions *)
   2460 			malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
   2461 
   2462 		if (im6o == NULL)
   2463 			return (ENOBUFS);
   2464 		*im6op = im6o;
   2465 		im6o->im6o_multicast_ifp = NULL;
   2466 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2467 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   2468 		LIST_INIT(&im6o->im6o_memberships);
   2469 	}
   2470 
   2471 	switch (optname) {
   2472 
   2473 	case IPV6_MULTICAST_IF:
   2474 		/*
   2475 		 * Select the interface for outgoing multicast packets.
   2476 		 */
   2477 		if (m == NULL || m->m_len != sizeof(u_int)) {
   2478 			error = EINVAL;
   2479 			break;
   2480 		}
   2481 		bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
   2482 		if (ifindex != 0) {
   2483 			if (ifindex < 0 || if_indexlim <= ifindex ||
   2484 			    !ifindex2ifnet[ifindex]) {
   2485 				error = ENXIO;	/* XXX EINVAL? */
   2486 				break;
   2487 			}
   2488 			ifp = ifindex2ifnet[ifindex];
   2489 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   2490 				error = EADDRNOTAVAIL;
   2491 				break;
   2492 			}
   2493 		} else
   2494 			ifp = NULL;
   2495 		im6o->im6o_multicast_ifp = ifp;
   2496 		break;
   2497 
   2498 	case IPV6_MULTICAST_HOPS:
   2499 	    {
   2500 		/*
   2501 		 * Set the IP6 hoplimit for outgoing multicast packets.
   2502 		 */
   2503 		int optval;
   2504 		if (m == NULL || m->m_len != sizeof(int)) {
   2505 			error = EINVAL;
   2506 			break;
   2507 		}
   2508 		bcopy(mtod(m, u_int *), &optval, sizeof(optval));
   2509 		if (optval < -1 || optval >= 256)
   2510 			error = EINVAL;
   2511 		else if (optval == -1)
   2512 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2513 		else
   2514 			im6o->im6o_multicast_hlim = optval;
   2515 		break;
   2516 	    }
   2517 
   2518 	case IPV6_MULTICAST_LOOP:
   2519 		/*
   2520 		 * Set the loopback flag for outgoing multicast packets.
   2521 		 * Must be zero or one.
   2522 		 */
   2523 		if (m == NULL || m->m_len != sizeof(u_int)) {
   2524 			error = EINVAL;
   2525 			break;
   2526 		}
   2527 		bcopy(mtod(m, u_int *), &loop, sizeof(loop));
   2528 		if (loop > 1) {
   2529 			error = EINVAL;
   2530 			break;
   2531 		}
   2532 		im6o->im6o_multicast_loop = loop;
   2533 		break;
   2534 
   2535 	case IPV6_JOIN_GROUP:
   2536 		/*
   2537 		 * Add a multicast group membership.
   2538 		 * Group must be a valid IP6 multicast address.
   2539 		 */
   2540 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   2541 			error = EINVAL;
   2542 			break;
   2543 		}
   2544 		mreq = mtod(m, struct ipv6_mreq *);
   2545 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
   2546 			/*
   2547 			 * We use the unspecified address to specify to accept
   2548 			 * all multicast addresses. Only super user is allowed
   2549 			 * to do this.
   2550 			 */
   2551 			if (kauth_authorize_generic(l->l_cred,
   2552 			    KAUTH_GENERIC_ISSUSER, &l->l_acflag))
   2553 			{
   2554 				error = EACCES;
   2555 				break;
   2556 			}
   2557 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
   2558 			error = EINVAL;
   2559 			break;
   2560 		}
   2561 
   2562 		/*
   2563 		 * If no interface was explicitly specified, choose an
   2564 		 * appropriate one according to the given multicast address.
   2565 		 */
   2566 		if (mreq->ipv6mr_interface == 0) {
   2567 			struct sockaddr_in6 *dst;
   2568 
   2569 			/*
   2570 			 * Look up the routing table for the
   2571 			 * address, and choose the outgoing interface.
   2572 			 *   XXX: is it a good approach?
   2573 			 */
   2574 			ro.ro_rt = NULL;
   2575 			dst = (struct sockaddr_in6 *)&ro.ro_dst;
   2576 			bzero(dst, sizeof(*dst));
   2577 			dst->sin6_family = AF_INET6;
   2578 			dst->sin6_len = sizeof(*dst);
   2579 			dst->sin6_addr = mreq->ipv6mr_multiaddr;
   2580 			rtalloc((struct route *)&ro);
   2581 			if (ro.ro_rt == NULL) {
   2582 				error = EADDRNOTAVAIL;
   2583 				break;
   2584 			}
   2585 			ifp = ro.ro_rt->rt_ifp;
   2586 			rtfree(ro.ro_rt);
   2587 		} else {
   2588 			/*
   2589 			 * If the interface is specified, validate it.
   2590 			 */
   2591 			if (mreq->ipv6mr_interface < 0 ||
   2592 			    if_indexlim <= mreq->ipv6mr_interface ||
   2593 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
   2594 				error = ENXIO;	/* XXX EINVAL? */
   2595 				break;
   2596 			}
   2597 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   2598 		}
   2599 
   2600 		/*
   2601 		 * See if we found an interface, and confirm that it
   2602 		 * supports multicast
   2603 		 */
   2604 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   2605 			error = EADDRNOTAVAIL;
   2606 			break;
   2607 		}
   2608 
   2609 		if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
   2610 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   2611 			break;
   2612 		}
   2613 
   2614 		/*
   2615 		 * See if the membership already exists.
   2616 		 */
   2617 		for (imm = im6o->im6o_memberships.lh_first;
   2618 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   2619 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2620 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2621 			    &mreq->ipv6mr_multiaddr))
   2622 				break;
   2623 		if (imm != NULL) {
   2624 			error = EADDRINUSE;
   2625 			break;
   2626 		}
   2627 		/*
   2628 		 * Everything looks good; add a new record to the multicast
   2629 		 * address list for the given interface.
   2630 		 */
   2631 		imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0);
   2632 		if (imm == NULL)
   2633 			break;
   2634 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2635 		break;
   2636 
   2637 	case IPV6_LEAVE_GROUP:
   2638 		/*
   2639 		 * Drop a multicast group membership.
   2640 		 * Group must be a valid IP6 multicast address.
   2641 		 */
   2642 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   2643 			error = EINVAL;
   2644 			break;
   2645 		}
   2646 		mreq = mtod(m, struct ipv6_mreq *);
   2647 
   2648 		/*
   2649 		 * If an interface address was specified, get a pointer
   2650 		 * to its ifnet structure.
   2651 		 */
   2652 		if (mreq->ipv6mr_interface != 0) {
   2653 			if (mreq->ipv6mr_interface < 0 ||
   2654 			    if_indexlim <= mreq->ipv6mr_interface ||
   2655 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
   2656 				error = ENXIO;	/* XXX EINVAL? */
   2657 				break;
   2658 			}
   2659 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   2660 		} else
   2661 			ifp = NULL;
   2662 
   2663 		/* Fill in the scope zone ID */
   2664 		if (ifp) {
   2665 			if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
   2666 				/* XXX: should not happen */
   2667 				error = EADDRNOTAVAIL;
   2668 				break;
   2669 			}
   2670 		} else if (mreq->ipv6mr_interface != 0) {
   2671 			/*
   2672 			 * XXX: This case would happens when the (positive)
   2673 			 * index is in the valid range, but the corresponding
   2674 			 * interface has been detached dynamically.  The above
   2675 			 * check probably avoids such case to happen here, but
   2676 			 * we check it explicitly for safety.
   2677 			 */
   2678 			error = EADDRNOTAVAIL;
   2679 			break;
   2680 		} else {	/* ipv6mr_interface == 0 */
   2681 			struct sockaddr_in6 sa6_mc;
   2682 
   2683 			/*
   2684 			 * The API spec says as follows:
   2685 			 *  If the interface index is specified as 0, the
   2686 			 *  system may choose a multicast group membership to
   2687 			 *  drop by matching the multicast address only.
   2688 			 * On the other hand, we cannot disambiguate the scope
   2689 			 * zone unless an interface is provided.  Thus, we
   2690 			 * check if there's ambiguity with the default scope
   2691 			 * zone as the last resort.
   2692 			 */
   2693 			bzero(&sa6_mc, sizeof(sa6_mc));
   2694 			sa6_mc.sin6_family = AF_INET6;
   2695 			sa6_mc.sin6_len = sizeof(sa6_mc);
   2696 			sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr;
   2697 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2698 			if (error != 0)
   2699 				break;
   2700 			mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2701 		}
   2702 
   2703 		/*
   2704 		 * Find the membership in the membership list.
   2705 		 */
   2706 		for (imm = im6o->im6o_memberships.lh_first;
   2707 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   2708 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2709 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2710 			    &mreq->ipv6mr_multiaddr))
   2711 				break;
   2712 		}
   2713 		if (imm == NULL) {
   2714 			/* Unable to resolve interface */
   2715 			error = EADDRNOTAVAIL;
   2716 			break;
   2717 		}
   2718 		/*
   2719 		 * Give up the multicast address record to which the
   2720 		 * membership points.
   2721 		 */
   2722 		LIST_REMOVE(imm, i6mm_chain);
   2723 		in6_leavegroup(imm);
   2724 		break;
   2725 
   2726 	default:
   2727 		error = EOPNOTSUPP;
   2728 		break;
   2729 	}
   2730 
   2731 	/*
   2732 	 * If all options have default values, no need to keep the mbuf.
   2733 	 */
   2734 	if (im6o->im6o_multicast_ifp == NULL &&
   2735 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2736 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2737 	    im6o->im6o_memberships.lh_first == NULL) {
   2738 		free(*im6op, M_IPMOPTS);
   2739 		*im6op = NULL;
   2740 	}
   2741 
   2742 	return (error);
   2743 }
   2744 
   2745 /*
   2746  * Return the IP6 multicast options in response to user getsockopt().
   2747  */
   2748 static int
   2749 ip6_getmoptions(optname, im6o, mp)
   2750 	int optname;
   2751 	struct ip6_moptions *im6o;
   2752 	struct mbuf **mp;
   2753 {
   2754 	u_int *hlim, *loop, *ifindex;
   2755 
   2756 	*mp = m_get(M_WAIT, MT_SOOPTS);
   2757 
   2758 	switch (optname) {
   2759 
   2760 	case IPV6_MULTICAST_IF:
   2761 		ifindex = mtod(*mp, u_int *);
   2762 		(*mp)->m_len = sizeof(u_int);
   2763 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
   2764 			*ifindex = 0;
   2765 		else
   2766 			*ifindex = im6o->im6o_multicast_ifp->if_index;
   2767 		return (0);
   2768 
   2769 	case IPV6_MULTICAST_HOPS:
   2770 		hlim = mtod(*mp, u_int *);
   2771 		(*mp)->m_len = sizeof(u_int);
   2772 		if (im6o == NULL)
   2773 			*hlim = ip6_defmcasthlim;
   2774 		else
   2775 			*hlim = im6o->im6o_multicast_hlim;
   2776 		return (0);
   2777 
   2778 	case IPV6_MULTICAST_LOOP:
   2779 		loop = mtod(*mp, u_int *);
   2780 		(*mp)->m_len = sizeof(u_int);
   2781 		if (im6o == NULL)
   2782 			*loop = ip6_defmcasthlim;
   2783 		else
   2784 			*loop = im6o->im6o_multicast_loop;
   2785 		return (0);
   2786 
   2787 	default:
   2788 		return (EOPNOTSUPP);
   2789 	}
   2790 }
   2791 
   2792 /*
   2793  * Discard the IP6 multicast options.
   2794  */
   2795 void
   2796 ip6_freemoptions(im6o)
   2797 	struct ip6_moptions *im6o;
   2798 {
   2799 	struct in6_multi_mship *imm;
   2800 
   2801 	if (im6o == NULL)
   2802 		return;
   2803 
   2804 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   2805 		LIST_REMOVE(imm, i6mm_chain);
   2806 		in6_leavegroup(imm);
   2807 	}
   2808 	free(im6o, M_IPMOPTS);
   2809 }
   2810 
   2811 /*
   2812  * Set IPv6 outgoing packet options based on advanced API.
   2813  */
   2814 int
   2815 ip6_setpktopts(control, opt, stickyopt, priv, uproto)
   2816 	struct mbuf *control;
   2817 	struct ip6_pktopts *opt, *stickyopt;
   2818 	int priv, uproto;
   2819 {
   2820 	struct cmsghdr *cm = 0;
   2821 
   2822 	if (control == NULL || opt == NULL)
   2823 		return (EINVAL);
   2824 
   2825 	ip6_initpktopts(opt);
   2826 	if (stickyopt) {
   2827 		int error;
   2828 
   2829 		/*
   2830 		 * If stickyopt is provided, make a local copy of the options
   2831 		 * for this particular packet, then override them by ancillary
   2832 		 * objects.
   2833 		 * XXX: copypktopts() does not copy the cached route to a next
   2834 		 * hop (if any).  This is not very good in terms of efficiency,
   2835 		 * but we can allow this since this option should be rarely
   2836 		 * used.
   2837 		 */
   2838 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
   2839 			return (error);
   2840 	}
   2841 
   2842 	/*
   2843 	 * XXX: Currently, we assume all the optional information is stored
   2844 	 * in a single mbuf.
   2845 	 */
   2846 	if (control->m_next)
   2847 		return (EINVAL);
   2848 
   2849 	for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2850 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2851 		int error;
   2852 
   2853 		if (control->m_len < CMSG_LEN(0))
   2854 			return (EINVAL);
   2855 
   2856 		cm = mtod(control, struct cmsghdr *);
   2857 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   2858 			return (EINVAL);
   2859 		if (cm->cmsg_level != IPPROTO_IPV6)
   2860 			continue;
   2861 
   2862 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
   2863 		    cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, 1, uproto);
   2864 		if (error)
   2865 			return (error);
   2866 	}
   2867 
   2868 	return (0);
   2869 }
   2870 
   2871 /*
   2872  * Set a particular packet option, as a sticky option or an ancillary data
   2873  * item.  "len" can be 0 only when it's a sticky option.
   2874  * We have 4 cases of combination of "sticky" and "cmsg":
   2875  * "sticky=0, cmsg=0": impossible
   2876  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
   2877  * "sticky=1, cmsg=0": RFC3542 socket option
   2878  * "sticky=1, cmsg=1": RFC2292 socket option
   2879  */
   2880 static int
   2881 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
   2882     int priv, int sticky, int cmsg, int uproto)
   2883 {
   2884 	int minmtupolicy;
   2885 
   2886 	if (!sticky && !cmsg) {
   2887 #ifdef DIAGNOSTIC
   2888 		printf("ip6_setpktopt: impossible case\n");
   2889 #endif
   2890 		return (EINVAL);
   2891 	}
   2892 
   2893 	/*
   2894 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
   2895 	 * not be specified in the context of RFC3542.  Conversely,
   2896 	 * RFC3542 types should not be specified in the context of RFC2292.
   2897 	 */
   2898 	if (!cmsg) {
   2899 		switch (optname) {
   2900 		case IPV6_2292PKTINFO:
   2901 		case IPV6_2292HOPLIMIT:
   2902 		case IPV6_2292NEXTHOP:
   2903 		case IPV6_2292HOPOPTS:
   2904 		case IPV6_2292DSTOPTS:
   2905 		case IPV6_2292RTHDR:
   2906 		case IPV6_2292PKTOPTIONS:
   2907 			return (ENOPROTOOPT);
   2908 		}
   2909 	}
   2910 	if (sticky && cmsg) {
   2911 		switch (optname) {
   2912 		case IPV6_PKTINFO:
   2913 		case IPV6_HOPLIMIT:
   2914 		case IPV6_NEXTHOP:
   2915 		case IPV6_HOPOPTS:
   2916 		case IPV6_DSTOPTS:
   2917 		case IPV6_RTHDRDSTOPTS:
   2918 		case IPV6_RTHDR:
   2919 		case IPV6_USE_MIN_MTU:
   2920 		case IPV6_DONTFRAG:
   2921 		case IPV6_OTCLASS:
   2922 		case IPV6_TCLASS:
   2923 			return (ENOPROTOOPT);
   2924 		}
   2925 	}
   2926 
   2927 	switch (optname) {
   2928 #ifdef RFC2292
   2929 	case IPV6_2292PKTINFO:
   2930 #endif
   2931 	case IPV6_PKTINFO:
   2932 	{
   2933 		struct ifnet *ifp = NULL;
   2934 		struct in6_pktinfo *pktinfo;
   2935 
   2936 		if (len != sizeof(struct in6_pktinfo))
   2937 			return (EINVAL);
   2938 
   2939 		pktinfo = (struct in6_pktinfo *)buf;
   2940 
   2941 		/*
   2942 		 * An application can clear any sticky IPV6_PKTINFO option by
   2943 		 * doing a "regular" setsockopt with ipi6_addr being
   2944 		 * in6addr_any and ipi6_ifindex being zero.
   2945 		 * [RFC 3542, Section 6]
   2946 		 */
   2947 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
   2948 		    pktinfo->ipi6_ifindex == 0 &&
   2949 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2950 			ip6_clearpktopts(opt, optname);
   2951 			break;
   2952 		}
   2953 
   2954 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
   2955 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2956 			return (EINVAL);
   2957 		}
   2958 
   2959 		/* validate the interface index if specified. */
   2960 		if (pktinfo->ipi6_ifindex >= if_indexlim ||
   2961 		    pktinfo->ipi6_ifindex < 0) {
   2962 			 return (ENXIO);
   2963 		}
   2964 		if (pktinfo->ipi6_ifindex) {
   2965 			ifp = ifindex2ifnet[pktinfo->ipi6_ifindex];
   2966 			if (ifp == NULL)
   2967 				return (ENXIO);
   2968 		}
   2969 
   2970 		/*
   2971 		 * We store the address anyway, and let in6_selectsrc()
   2972 		 * validate the specified address.  This is because ipi6_addr
   2973 		 * may not have enough information about its scope zone, and
   2974 		 * we may need additional information (such as outgoing
   2975 		 * interface or the scope zone of a destination address) to
   2976 		 * disambiguate the scope.
   2977 		 * XXX: the delay of the validation may confuse the
   2978 		 * application when it is used as a sticky option.
   2979 		 */
   2980 		if (opt->ip6po_pktinfo == NULL) {
   2981 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
   2982 			    M_IP6OPT, M_NOWAIT);
   2983 			if (opt->ip6po_pktinfo == NULL)
   2984 				return (ENOBUFS);
   2985 		}
   2986 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
   2987 		break;
   2988 	}
   2989 
   2990 #ifdef RFC2292
   2991 	case IPV6_2292HOPLIMIT:
   2992 #endif
   2993 	case IPV6_HOPLIMIT:
   2994 	{
   2995 		int *hlimp;
   2996 
   2997 		/*
   2998 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
   2999 		 * to simplify the ordering among hoplimit options.
   3000 		 */
   3001 		if (optname == IPV6_HOPLIMIT && sticky)
   3002 			return (ENOPROTOOPT);
   3003 
   3004 		if (len != sizeof(int))
   3005 			return (EINVAL);
   3006 		hlimp = (int *)buf;
   3007 		if (*hlimp < -1 || *hlimp > 255)
   3008 			return (EINVAL);
   3009 
   3010 		opt->ip6po_hlim = *hlimp;
   3011 		break;
   3012 	}
   3013 
   3014 	case IPV6_OTCLASS:
   3015 		if (len != sizeof(u_int8_t))
   3016 			return (EINVAL);
   3017 
   3018 		opt->ip6po_tclass = *(u_int8_t *)buf;
   3019 		break;
   3020 
   3021 	case IPV6_TCLASS:
   3022 	{
   3023 		int tclass;
   3024 
   3025 		if (len != sizeof(int))
   3026 			return (EINVAL);
   3027 		tclass = *(int *)buf;
   3028 		if (tclass < -1 || tclass > 255)
   3029 			return (EINVAL);
   3030 
   3031 		opt->ip6po_tclass = tclass;
   3032 		break;
   3033 	}
   3034 
   3035 #ifdef RFC2292
   3036 	case IPV6_2292NEXTHOP:
   3037 #endif
   3038 	case IPV6_NEXTHOP:
   3039 		if (!priv)
   3040 			return (EPERM);
   3041 
   3042 		if (len == 0) {	/* just remove the option */
   3043 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
   3044 			break;
   3045 		}
   3046 
   3047 		/* check if cmsg_len is large enough for sa_len */
   3048 		if (len < sizeof(struct sockaddr) || len < *buf)
   3049 			return (EINVAL);
   3050 
   3051 		switch (((struct sockaddr *)buf)->sa_family) {
   3052 		case AF_INET6:
   3053 		{
   3054 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
   3055 			int error;
   3056 
   3057 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
   3058 				return (EINVAL);
   3059 
   3060 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
   3061 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
   3062 				return (EINVAL);
   3063 			}
   3064 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
   3065 			    != 0) {
   3066 				return (error);
   3067 			}
   3068 			break;
   3069 		}
   3070 		case AF_LINK:	/* eventually be supported? */
   3071 		default:
   3072 			return (EAFNOSUPPORT);
   3073 		}
   3074 
   3075 		/* turn off the previous option, then set the new option. */
   3076 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
   3077 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
   3078 		if (opt->ip6po_nexthop == NULL)
   3079 			return (ENOBUFS);
   3080 		memcpy(opt->ip6po_nexthop, buf, *buf);
   3081 		break;
   3082 
   3083 #ifdef RFC2292
   3084 	case IPV6_2292HOPOPTS:
   3085 #endif
   3086 	case IPV6_HOPOPTS:
   3087 	{
   3088 		struct ip6_hbh *hbh;
   3089 		int hbhlen;
   3090 
   3091 		/*
   3092 		 * XXX: We don't allow a non-privileged user to set ANY HbH
   3093 		 * options, since per-option restriction has too much
   3094 		 * overhead.
   3095 		 */
   3096 		if (!priv)
   3097 			return (EPERM);
   3098 
   3099 		if (len == 0) {
   3100 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3101 			break;	/* just remove the option */
   3102 		}
   3103 
   3104 		/* message length validation */
   3105 		if (len < sizeof(struct ip6_hbh))
   3106 			return (EINVAL);
   3107 		hbh = (struct ip6_hbh *)buf;
   3108 		hbhlen = (hbh->ip6h_len + 1) << 3;
   3109 		if (len != hbhlen)
   3110 			return (EINVAL);
   3111 
   3112 		/* turn off the previous option, then set the new option. */
   3113 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3114 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
   3115 		if (opt->ip6po_hbh == NULL)
   3116 			return (ENOBUFS);
   3117 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
   3118 
   3119 		break;
   3120 	}
   3121 
   3122 #ifdef RFC2292
   3123 	case IPV6_2292DSTOPTS:
   3124 #endif
   3125 	case IPV6_DSTOPTS:
   3126 	case IPV6_RTHDRDSTOPTS:
   3127 	{
   3128 		struct ip6_dest *dest, **newdest = NULL;
   3129 		int destlen;
   3130 
   3131 		if (!priv)	/* XXX: see the comment for IPV6_HOPOPTS */
   3132 			return (EPERM);
   3133 
   3134 		if (len == 0) {
   3135 			ip6_clearpktopts(opt, optname);
   3136 			break;	/* just remove the option */
   3137 		}
   3138 
   3139 		/* message length validation */
   3140 		if (len < sizeof(struct ip6_dest))
   3141 			return (EINVAL);
   3142 		dest = (struct ip6_dest *)buf;
   3143 		destlen = (dest->ip6d_len + 1) << 3;
   3144 		if (len != destlen)
   3145 			return (EINVAL);
   3146 		/*
   3147 		 * Determine the position that the destination options header
   3148 		 * should be inserted; before or after the routing header.
   3149 		 */
   3150 		switch (optname) {
   3151 		case IPV6_2292DSTOPTS:
   3152 			/*
   3153 			 * The old advanced API is ambiguous on this point.
   3154 			 * Our approach is to determine the position based
   3155 			 * according to the existence of a routing header.
   3156 			 * Note, however, that this depends on the order of the
   3157 			 * extension headers in the ancillary data; the 1st
   3158 			 * part of the destination options header must appear
   3159 			 * before the routing header in the ancillary data,
   3160 			 * too.
   3161 			 * RFC3542 solved the ambiguity by introducing
   3162 			 * separate ancillary data or option types.
   3163 			 */
   3164 			if (opt->ip6po_rthdr == NULL)
   3165 				newdest = &opt->ip6po_dest1;
   3166 			else
   3167 				newdest = &opt->ip6po_dest2;
   3168 			break;
   3169 		case IPV6_RTHDRDSTOPTS:
   3170 			newdest = &opt->ip6po_dest1;
   3171 			break;
   3172 		case IPV6_DSTOPTS:
   3173 			newdest = &opt->ip6po_dest2;
   3174 			break;
   3175 		}
   3176 
   3177 		/* turn off the previous option, then set the new option. */
   3178 		ip6_clearpktopts(opt, optname);
   3179 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
   3180 		if (*newdest == NULL)
   3181 			return (ENOBUFS);
   3182 		memcpy(*newdest, dest, destlen);
   3183 
   3184 		break;
   3185 	}
   3186 
   3187 #ifdef RFC2292
   3188 	case IPV6_2292RTHDR:
   3189 #endif
   3190 	case IPV6_RTHDR:
   3191 	{
   3192 		struct ip6_rthdr *rth;
   3193 		int rthlen;
   3194 
   3195 		if (len == 0) {
   3196 			ip6_clearpktopts(opt, IPV6_RTHDR);
   3197 			break;	/* just remove the option */
   3198 		}
   3199 
   3200 		/* message length validation */
   3201 		if (len < sizeof(struct ip6_rthdr))
   3202 			return (EINVAL);
   3203 		rth = (struct ip6_rthdr *)buf;
   3204 		rthlen = (rth->ip6r_len + 1) << 3;
   3205 		if (len != rthlen)
   3206 			return (EINVAL);
   3207 		switch (rth->ip6r_type) {
   3208 		case IPV6_RTHDR_TYPE_0:
   3209 			if (rth->ip6r_len == 0)	/* must contain one addr */
   3210 				return (EINVAL);
   3211 			if (rth->ip6r_len % 2) /* length must be even */
   3212 				return (EINVAL);
   3213 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
   3214 				return (EINVAL);
   3215 			break;
   3216 		default:
   3217 			return (EINVAL);	/* not supported */
   3218 		}
   3219 		/* turn off the previous option */
   3220 		ip6_clearpktopts(opt, IPV6_RTHDR);
   3221 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
   3222 		if (opt->ip6po_rthdr == NULL)
   3223 			return (ENOBUFS);
   3224 		memcpy(opt->ip6po_rthdr, rth, rthlen);
   3225 		break;
   3226 	}
   3227 
   3228 	case IPV6_USE_MIN_MTU:
   3229 		if (len != sizeof(int))
   3230 			return (EINVAL);
   3231 		minmtupolicy = *(int *)buf;
   3232 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
   3233 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
   3234 		    minmtupolicy != IP6PO_MINMTU_ALL) {
   3235 			return (EINVAL);
   3236 		}
   3237 		opt->ip6po_minmtu = minmtupolicy;
   3238 		break;
   3239 
   3240 	case IPV6_DONTFRAG:
   3241 		if (len != sizeof(int))
   3242 			return (EINVAL);
   3243 
   3244 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
   3245 			/*
   3246 			 * we ignore this option for TCP sockets.
   3247 			 * (RFC3542 leaves this case unspecified.)
   3248 			 */
   3249 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
   3250 		} else
   3251 			opt->ip6po_flags |= IP6PO_DONTFRAG;
   3252 		break;
   3253 
   3254 	default:
   3255 		return (ENOPROTOOPT);
   3256 	} /* end of switch */
   3257 
   3258 	return (0);
   3259 }
   3260 
   3261 /*
   3262  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   3263  * packet to the input queue of a specified interface.  Note that this
   3264  * calls the output routine of the loopback "driver", but with an interface
   3265  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   3266  */
   3267 void
   3268 ip6_mloopback(ifp, m, dst)
   3269 	struct ifnet *ifp;
   3270 	struct mbuf *m;
   3271 	struct sockaddr_in6 *dst;
   3272 {
   3273 	struct mbuf *copym;
   3274 	struct ip6_hdr *ip6;
   3275 
   3276 	copym = m_copy(m, 0, M_COPYALL);
   3277 	if (copym == NULL)
   3278 		return;
   3279 
   3280 	/*
   3281 	 * Make sure to deep-copy IPv6 header portion in case the data
   3282 	 * is in an mbuf cluster, so that we can safely override the IPv6
   3283 	 * header portion later.
   3284 	 */
   3285 	if ((copym->m_flags & M_EXT) != 0 ||
   3286 	    copym->m_len < sizeof(struct ip6_hdr)) {
   3287 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   3288 		if (copym == NULL)
   3289 			return;
   3290 	}
   3291 
   3292 #ifdef DIAGNOSTIC
   3293 	if (copym->m_len < sizeof(*ip6)) {
   3294 		m_freem(copym);
   3295 		return;
   3296 	}
   3297 #endif
   3298 
   3299 	ip6 = mtod(copym, struct ip6_hdr *);
   3300 	/*
   3301 	 * clear embedded scope identifiers if necessary.
   3302 	 * in6_clearscope will touch the addresses only when necessary.
   3303 	 */
   3304 	in6_clearscope(&ip6->ip6_src);
   3305 	in6_clearscope(&ip6->ip6_dst);
   3306 
   3307 	(void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
   3308 }
   3309 
   3310 /*
   3311  * Chop IPv6 header off from the payload.
   3312  */
   3313 static int
   3314 ip6_splithdr(m, exthdrs)
   3315 	struct mbuf *m;
   3316 	struct ip6_exthdrs *exthdrs;
   3317 {
   3318 	struct mbuf *mh;
   3319 	struct ip6_hdr *ip6;
   3320 
   3321 	ip6 = mtod(m, struct ip6_hdr *);
   3322 	if (m->m_len > sizeof(*ip6)) {
   3323 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   3324 		if (mh == 0) {
   3325 			m_freem(m);
   3326 			return ENOBUFS;
   3327 		}
   3328 		M_MOVE_PKTHDR(mh, m);
   3329 		MH_ALIGN(mh, sizeof(*ip6));
   3330 		m->m_len -= sizeof(*ip6);
   3331 		m->m_data += sizeof(*ip6);
   3332 		mh->m_next = m;
   3333 		m = mh;
   3334 		m->m_len = sizeof(*ip6);
   3335 		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
   3336 	}
   3337 	exthdrs->ip6e_ip6 = m;
   3338 	return 0;
   3339 }
   3340 
   3341 /*
   3342  * Compute IPv6 extension header length.
   3343  */
   3344 int
   3345 ip6_optlen(in6p)
   3346 	struct in6pcb *in6p;
   3347 {
   3348 	int len;
   3349 
   3350 	if (!in6p->in6p_outputopts)
   3351 		return 0;
   3352 
   3353 	len = 0;
   3354 #define elen(x) \
   3355     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   3356 
   3357 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   3358 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   3359 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   3360 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   3361 	return len;
   3362 #undef elen
   3363 }
   3364