Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.103
      1 /*	$NetBSD: ip6_output.c,v 1.103 2006/10/12 01:32:39 christos Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.103 2006/10/12 01:32:39 christos Exp $");
     66 
     67 #include "opt_inet.h"
     68 #include "opt_inet6.h"
     69 #include "opt_ipsec.h"
     70 #include "opt_pfil_hooks.h"
     71 
     72 #include <sys/param.h>
     73 #include <sys/malloc.h>
     74 #include <sys/mbuf.h>
     75 #include <sys/errno.h>
     76 #include <sys/protosw.h>
     77 #include <sys/socket.h>
     78 #include <sys/socketvar.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/kauth.h>
     82 
     83 #include <net/if.h>
     84 #include <net/route.h>
     85 #ifdef PFIL_HOOKS
     86 #include <net/pfil.h>
     87 #endif
     88 
     89 #include <netinet/in.h>
     90 #include <netinet/in_var.h>
     91 #include <netinet/ip6.h>
     92 #include <netinet/icmp6.h>
     93 #include <netinet/in_offload.h>
     94 #include <netinet6/ip6_var.h>
     95 #include <netinet6/in6_pcb.h>
     96 #include <netinet6/nd6.h>
     97 #include <netinet6/ip6protosw.h>
     98 #include <netinet6/scope6_var.h>
     99 
    100 #ifdef IPSEC
    101 #include <netinet6/ipsec.h>
    102 #include <netkey/key.h>
    103 #endif /* IPSEC */
    104 
    105 #include <net/net_osdep.h>
    106 
    107 #ifdef PFIL_HOOKS
    108 extern struct pfil_head inet6_pfil_hook;	/* XXX */
    109 #endif
    110 
    111 struct ip6_exthdrs {
    112 	struct mbuf *ip6e_ip6;
    113 	struct mbuf *ip6e_hbh;
    114 	struct mbuf *ip6e_dest1;
    115 	struct mbuf *ip6e_rthdr;
    116 	struct mbuf *ip6e_dest2;
    117 };
    118 
    119 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **,
    120 	int, int));
    121 static int ip6_getpcbopt __P((struct ip6_pktopts *, int, struct mbuf **));
    122 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, int,
    123 	int, int, int));
    124 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
    125 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
    126 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
    127 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
    128 	struct ip6_frag **));
    129 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
    130 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
    131 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
    132 	struct ifnet *, struct in6_addr *, u_long *, int *));
    133 static int copypktopts __P((struct ip6_pktopts *, struct ip6_pktopts *, int));
    134 
    135 #ifdef RFC2292
    136 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
    137 	struct socket *));
    138 #endif
    139 
    140 #define	IN6_NEED_CHECKSUM(ifp, csum_flags) \
    141 	(__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
    142 	(((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \
    143 	(((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum)))
    144 
    145 /*
    146  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    147  * header (with pri, len, nxt, hlim, src, dst).
    148  * This function may modify ver and hlim only.
    149  * The mbuf chain containing the packet will be freed.
    150  * The mbuf opt, if present, will not be freed.
    151  *
    152  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    153  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
    154  * which is rt_rmx.rmx_mtu.
    155  */
    156 int
    157 ip6_output(
    158     struct mbuf *m0,
    159     struct ip6_pktopts *opt,
    160     struct route_in6 *ro,
    161     int flags,
    162     struct ip6_moptions *im6o,
    163     struct socket *so __unused,
    164     struct ifnet **ifpp		/* XXX: just for statistics */
    165 )
    166 {
    167 	struct ip6_hdr *ip6, *mhip6;
    168 	struct ifnet *ifp, *origifp;
    169 	struct mbuf *m = m0;
    170 	int hlen, tlen, len, off;
    171 	struct route_in6 ip6route;
    172 	struct rtentry *rt = NULL;
    173 	struct sockaddr_in6 *dst, src_sa, dst_sa;
    174 	int error = 0;
    175 	struct in6_ifaddr *ia = NULL;
    176 	u_long mtu;
    177 	int alwaysfrag, dontfrag;
    178 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    179 	struct ip6_exthdrs exthdrs;
    180 	struct in6_addr finaldst, src0, dst0;
    181 	u_int32_t zone;
    182 	struct route_in6 *ro_pmtu = NULL;
    183 	int hdrsplit = 0;
    184 	int needipsec = 0;
    185 #ifdef IPSEC
    186 	int needipsectun = 0;
    187 	struct secpolicy *sp = NULL;
    188 
    189 	ip6 = mtod(m, struct ip6_hdr *);
    190 #endif /* IPSEC */
    191 
    192 #ifdef  DIAGNOSTIC
    193 	if ((m->m_flags & M_PKTHDR) == 0)
    194 		panic("ip6_output: no HDR");
    195 
    196 	if ((m->m_pkthdr.csum_flags &
    197 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
    198 		panic("ip6_output: IPv4 checksum offload flags: %d",
    199 		    m->m_pkthdr.csum_flags);
    200 	}
    201 
    202 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
    203 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
    204 		panic("ip6_output: conflicting checksum offload flags: %d",
    205 		    m->m_pkthdr.csum_flags);
    206 	}
    207 #endif
    208 
    209 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    210 
    211 #define MAKE_EXTHDR(hp, mp)						\
    212     do {								\
    213 	if (hp) {							\
    214 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    215 		error = ip6_copyexthdr((mp), (caddr_t)(hp), 		\
    216 		    ((eh)->ip6e_len + 1) << 3);				\
    217 		if (error)						\
    218 			goto freehdrs;					\
    219 	}								\
    220     } while (/*CONSTCOND*/ 0)
    221 
    222 	bzero(&exthdrs, sizeof(exthdrs));
    223 	if (opt) {
    224 		/* Hop-by-Hop options header */
    225 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    226 		/* Destination options header(1st part) */
    227 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    228 		/* Routing header */
    229 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    230 		/* Destination options header(2nd part) */
    231 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    232 	}
    233 
    234 #ifdef IPSEC
    235 	if ((flags & IPV6_FORWARDING) != 0) {
    236 		needipsec = 0;
    237 		goto skippolicycheck;
    238 	}
    239 
    240 	/* get a security policy for this packet */
    241 	if (so == NULL)
    242 		sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
    243 	else {
    244 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
    245 					 IPSEC_DIR_OUTBOUND)) {
    246 			needipsec = 0;
    247 			goto skippolicycheck;
    248 		}
    249 		sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    250 	}
    251 
    252 	if (sp == NULL) {
    253 		ipsec6stat.out_inval++;
    254 		goto freehdrs;
    255 	}
    256 
    257 	error = 0;
    258 
    259 	/* check policy */
    260 	switch (sp->policy) {
    261 	case IPSEC_POLICY_DISCARD:
    262 		/*
    263 		 * This packet is just discarded.
    264 		 */
    265 		ipsec6stat.out_polvio++;
    266 		goto freehdrs;
    267 
    268 	case IPSEC_POLICY_BYPASS:
    269 	case IPSEC_POLICY_NONE:
    270 		/* no need to do IPsec. */
    271 		needipsec = 0;
    272 		break;
    273 
    274 	case IPSEC_POLICY_IPSEC:
    275 		if (sp->req == NULL) {
    276 			/* XXX should be panic ? */
    277 			printf("ip6_output: No IPsec request specified.\n");
    278 			error = EINVAL;
    279 			goto freehdrs;
    280 		}
    281 		needipsec = 1;
    282 		break;
    283 
    284 	case IPSEC_POLICY_ENTRUST:
    285 	default:
    286 		printf("ip6_output: Invalid policy found. %d\n", sp->policy);
    287 	}
    288 
    289   skippolicycheck:;
    290 #endif /* IPSEC */
    291 
    292 	if (needipsec &&
    293 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    294 		in6_delayed_cksum(m);
    295 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    296 	}
    297 
    298 	/*
    299 	 * Calculate the total length of the extension header chain.
    300 	 * Keep the length of the unfragmentable part for fragmentation.
    301 	 */
    302 	optlen = 0;
    303 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    304 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    305 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    306 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    307 	/* NOTE: we don't add AH/ESP length here. do that later. */
    308 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    309 
    310 	/*
    311 	 * If we need IPsec, or there is at least one extension header,
    312 	 * separate IP6 header from the payload.
    313 	 */
    314 	if ((needipsec || optlen) && !hdrsplit) {
    315 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    316 			m = NULL;
    317 			goto freehdrs;
    318 		}
    319 		m = exthdrs.ip6e_ip6;
    320 		hdrsplit++;
    321 	}
    322 
    323 	/* adjust pointer */
    324 	ip6 = mtod(m, struct ip6_hdr *);
    325 
    326 	/* adjust mbuf packet header length */
    327 	m->m_pkthdr.len += optlen;
    328 	plen = m->m_pkthdr.len - sizeof(*ip6);
    329 
    330 	/* If this is a jumbo payload, insert a jumbo payload option. */
    331 	if (plen > IPV6_MAXPACKET) {
    332 		if (!hdrsplit) {
    333 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    334 				m = NULL;
    335 				goto freehdrs;
    336 			}
    337 			m = exthdrs.ip6e_ip6;
    338 			hdrsplit++;
    339 		}
    340 		/* adjust pointer */
    341 		ip6 = mtod(m, struct ip6_hdr *);
    342 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    343 			goto freehdrs;
    344 		optlen += 8; /* XXX JUMBOOPTLEN */
    345 		ip6->ip6_plen = 0;
    346 	} else
    347 		ip6->ip6_plen = htons(plen);
    348 
    349 	/*
    350 	 * Concatenate headers and fill in next header fields.
    351 	 * Here we have, on "m"
    352 	 *	IPv6 payload
    353 	 * and we insert headers accordingly.  Finally, we should be getting:
    354 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    355 	 *
    356 	 * during the header composing process, "m" points to IPv6 header.
    357 	 * "mprev" points to an extension header prior to esp.
    358 	 */
    359 	{
    360 		u_char *nexthdrp = &ip6->ip6_nxt;
    361 		struct mbuf *mprev = m;
    362 
    363 		/*
    364 		 * we treat dest2 specially.  this makes IPsec processing
    365 		 * much easier.  the goal here is to make mprev point the
    366 		 * mbuf prior to dest2.
    367 		 *
    368 		 * result: IPv6 dest2 payload
    369 		 * m and mprev will point to IPv6 header.
    370 		 */
    371 		if (exthdrs.ip6e_dest2) {
    372 			if (!hdrsplit)
    373 				panic("assumption failed: hdr not split");
    374 			exthdrs.ip6e_dest2->m_next = m->m_next;
    375 			m->m_next = exthdrs.ip6e_dest2;
    376 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    377 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    378 		}
    379 
    380 #define MAKE_CHAIN(m, mp, p, i)\
    381     do {\
    382 	if (m) {\
    383 		if (!hdrsplit) \
    384 			panic("assumption failed: hdr not split"); \
    385 		*mtod((m), u_char *) = *(p);\
    386 		*(p) = (i);\
    387 		p = mtod((m), u_char *);\
    388 		(m)->m_next = (mp)->m_next;\
    389 		(mp)->m_next = (m);\
    390 		(mp) = (m);\
    391 	}\
    392     } while (/*CONSTCOND*/ 0)
    393 		/*
    394 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    395 		 * m will point to IPv6 header.  mprev will point to the
    396 		 * extension header prior to dest2 (rthdr in the above case).
    397 		 */
    398 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    399 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    400 		    IPPROTO_DSTOPTS);
    401 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    402 		    IPPROTO_ROUTING);
    403 
    404 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
    405 		    sizeof(struct ip6_hdr) + optlen);
    406 
    407 #ifdef IPSEC
    408 		if (!needipsec)
    409 			goto skip_ipsec2;
    410 
    411 		/*
    412 		 * pointers after IPsec headers are not valid any more.
    413 		 * other pointers need a great care too.
    414 		 * (IPsec routines should not mangle mbufs prior to AH/ESP)
    415 		 */
    416 		exthdrs.ip6e_dest2 = NULL;
    417 
    418 	    {
    419 		struct ip6_rthdr *rh = NULL;
    420 		int segleft_org = 0;
    421 		struct ipsec_output_state state;
    422 
    423 		if (exthdrs.ip6e_rthdr) {
    424 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
    425 			segleft_org = rh->ip6r_segleft;
    426 			rh->ip6r_segleft = 0;
    427 		}
    428 
    429 		bzero(&state, sizeof(state));
    430 		state.m = m;
    431 		error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
    432 		    &needipsectun);
    433 		m = state.m;
    434 		if (error) {
    435 			/* mbuf is already reclaimed in ipsec6_output_trans. */
    436 			m = NULL;
    437 			switch (error) {
    438 			case EHOSTUNREACH:
    439 			case ENETUNREACH:
    440 			case EMSGSIZE:
    441 			case ENOBUFS:
    442 			case ENOMEM:
    443 				break;
    444 			default:
    445 				printf("ip6_output (ipsec): error code %d\n", error);
    446 				/* FALLTHROUGH */
    447 			case ENOENT:
    448 				/* don't show these error codes to the user */
    449 				error = 0;
    450 				break;
    451 			}
    452 			goto bad;
    453 		}
    454 		if (exthdrs.ip6e_rthdr) {
    455 			/* ah6_output doesn't modify mbuf chain */
    456 			rh->ip6r_segleft = segleft_org;
    457 		}
    458 	    }
    459 skip_ipsec2:;
    460 #endif
    461 	}
    462 
    463 	/*
    464 	 * If there is a routing header, replace destination address field
    465 	 * with the first hop of the routing header.
    466 	 */
    467 	if (exthdrs.ip6e_rthdr) {
    468 		struct ip6_rthdr *rh;
    469 		struct ip6_rthdr0 *rh0;
    470 		struct in6_addr *addr;
    471 		struct sockaddr_in6 sa;
    472 
    473 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    474 		    struct ip6_rthdr *));
    475 		finaldst = ip6->ip6_dst;
    476 		switch (rh->ip6r_type) {
    477 		case IPV6_RTHDR_TYPE_0:
    478 			 rh0 = (struct ip6_rthdr0 *)rh;
    479 			 addr = (struct in6_addr *)(rh0 + 1);
    480 
    481 			 /*
    482 			  * construct a sockaddr_in6 form of
    483 			  * the first hop.
    484 			  *
    485 			  * XXX: we may not have enough
    486 			  * information about its scope zone;
    487 			  * there is no standard API to pass
    488 			  * the information from the
    489 			  * application.
    490 			  */
    491 			 bzero(&sa, sizeof(sa));
    492 			 sa.sin6_family = AF_INET6;
    493 			 sa.sin6_len = sizeof(sa);
    494 			 sa.sin6_addr = addr[0];
    495 			 if ((error = sa6_embedscope(&sa,
    496 			     ip6_use_defzone)) != 0) {
    497 				 goto bad;
    498 			 }
    499 			 ip6->ip6_dst = sa.sin6_addr;
    500 			 (void)memmove(&addr[0], &addr[1],
    501 			     sizeof(struct in6_addr) *
    502 			     (rh0->ip6r0_segleft - 1));
    503 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
    504 			 /* XXX */
    505 			 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
    506 			 break;
    507 		default:	/* is it possible? */
    508 			 error = EINVAL;
    509 			 goto bad;
    510 		}
    511 	}
    512 
    513 	/* Source address validation */
    514 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    515 	    (flags & IPV6_UNSPECSRC) == 0) {
    516 		error = EOPNOTSUPP;
    517 		ip6stat.ip6s_badscope++;
    518 		goto bad;
    519 	}
    520 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    521 		error = EOPNOTSUPP;
    522 		ip6stat.ip6s_badscope++;
    523 		goto bad;
    524 	}
    525 
    526 	ip6stat.ip6s_localout++;
    527 
    528 	/*
    529 	 * Route packet.
    530 	 */
    531 	/* initialize cached route */
    532 	if (ro == 0) {
    533 		ro = &ip6route;
    534 		bzero((caddr_t)ro, sizeof(*ro));
    535 	}
    536 	ro_pmtu = ro;
    537 	if (opt && opt->ip6po_rthdr)
    538 		ro = &opt->ip6po_route;
    539 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
    540 
    541  	/*
    542 	 * if specified, try to fill in the traffic class field.
    543 	 * do not override if a non-zero value is already set.
    544 	 * we check the diffserv field and the ecn field separately.
    545 	 */
    546 	if (opt && opt->ip6po_tclass >= 0) {
    547 		int mask = 0;
    548 
    549 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    550 			mask |= 0xfc;
    551 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    552 			mask |= 0x03;
    553 		if (mask != 0)
    554 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    555 	}
    556 
    557 	/* fill in or override the hop limit field, if necessary. */
    558 	if (opt && opt->ip6po_hlim != -1)
    559 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    560 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    561 		if (im6o != NULL)
    562 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    563 		else
    564 			ip6->ip6_hlim = ip6_defmcasthlim;
    565 	}
    566 
    567 #ifdef IPSEC
    568 	if (needipsec && needipsectun) {
    569 		struct ipsec_output_state state;
    570 
    571 		/*
    572 		 * All the extension headers will become inaccessible
    573 		 * (since they can be encrypted).
    574 		 * Don't panic, we need no more updates to extension headers
    575 		 * on inner IPv6 packet (since they are now encapsulated).
    576 		 *
    577 		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
    578 		 */
    579 		bzero(&exthdrs, sizeof(exthdrs));
    580 		exthdrs.ip6e_ip6 = m;
    581 
    582 		bzero(&state, sizeof(state));
    583 		state.m = m;
    584 		state.ro = (struct route *)ro;
    585 		state.dst = (struct sockaddr *)dst;
    586 
    587 		error = ipsec6_output_tunnel(&state, sp, flags);
    588 
    589 		m = state.m;
    590 		ro_pmtu = ro = (struct route_in6 *)state.ro;
    591 		dst = (struct sockaddr_in6 *)state.dst;
    592 		if (error) {
    593 			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
    594 			m0 = m = NULL;
    595 			m = NULL;
    596 			switch (error) {
    597 			case EHOSTUNREACH:
    598 			case ENETUNREACH:
    599 			case EMSGSIZE:
    600 			case ENOBUFS:
    601 			case ENOMEM:
    602 				break;
    603 			default:
    604 				printf("ip6_output (ipsec): error code %d\n", error);
    605 				/* FALLTHROUGH */
    606 			case ENOENT:
    607 				/* don't show these error codes to the user */
    608 				error = 0;
    609 				break;
    610 			}
    611 			goto bad;
    612 		}
    613 
    614 		exthdrs.ip6e_ip6 = m;
    615 	}
    616 #endif /* IPSEC */
    617 
    618 	/* adjust pointer */
    619 	ip6 = mtod(m, struct ip6_hdr *);
    620 
    621 	bzero(&dst_sa, sizeof(dst_sa));
    622 	dst_sa.sin6_family = AF_INET6;
    623 	dst_sa.sin6_len = sizeof(dst_sa);
    624 	dst_sa.sin6_addr = ip6->ip6_dst;
    625 	if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, &rt, 0))
    626 	    != 0) {
    627 		switch (error) {
    628 		case EHOSTUNREACH:
    629 			ip6stat.ip6s_noroute++;
    630 			break;
    631 		case EADDRNOTAVAIL:
    632 		default:
    633 			break; /* XXX statistics? */
    634 		}
    635 		if (ifp != NULL)
    636 			in6_ifstat_inc(ifp, ifs6_out_discard);
    637 		goto bad;
    638 	}
    639 	if (rt == NULL) {
    640 		/*
    641 		 * If in6_selectroute() does not return a route entry,
    642 		 * dst may not have been updated.
    643 		 */
    644 		*dst = dst_sa;	/* XXX */
    645 	}
    646 
    647 	/*
    648 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    649 	 */
    650 	if ((flags & IPV6_FORWARDING) == 0) {
    651 		/* XXX: the FORWARDING flag can be set for mrouting. */
    652 		in6_ifstat_inc(ifp, ifs6_out_request);
    653 	}
    654 	if (rt != NULL) {
    655 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    656 		rt->rt_use++;
    657 	}
    658 
    659 	/*
    660 	 * The outgoing interface must be in the zone of source and
    661 	 * destination addresses.  We should use ia_ifp to support the
    662 	 * case of sending packets to an address of our own.
    663 	 */
    664 	if (ia != NULL && ia->ia_ifp)
    665 		origifp = ia->ia_ifp;
    666 	else
    667 		origifp = ifp;
    668 
    669 	src0 = ip6->ip6_src;
    670 	if (in6_setscope(&src0, origifp, &zone))
    671 		goto badscope;
    672 	bzero(&src_sa, sizeof(src_sa));
    673 	src_sa.sin6_family = AF_INET6;
    674 	src_sa.sin6_len = sizeof(src_sa);
    675 	src_sa.sin6_addr = ip6->ip6_src;
    676 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    677 		goto badscope;
    678 
    679 	dst0 = ip6->ip6_dst;
    680 	if (in6_setscope(&dst0, origifp, &zone))
    681 		goto badscope;
    682 	/* re-initialize to be sure */
    683 	bzero(&dst_sa, sizeof(dst_sa));
    684 	dst_sa.sin6_family = AF_INET6;
    685 	dst_sa.sin6_len = sizeof(dst_sa);
    686 	dst_sa.sin6_addr = ip6->ip6_dst;
    687 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    688 		goto badscope;
    689 
    690 	/* scope check is done. */
    691 	goto routefound;
    692 
    693   badscope:
    694 	ip6stat.ip6s_badscope++;
    695 	in6_ifstat_inc(origifp, ifs6_out_discard);
    696 	if (error == 0)
    697 		error = EHOSTUNREACH; /* XXX */
    698 	goto bad;
    699 
    700   routefound:
    701 	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    702 		if (opt && opt->ip6po_nextroute.ro_rt) {
    703 			/*
    704 			 * The nexthop is explicitly specified by the
    705 			 * application.  We assume the next hop is an IPv6
    706 			 * address.
    707 			 */
    708 			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
    709 		} else if ((rt->rt_flags & RTF_GATEWAY))
    710 			dst = (struct sockaddr_in6 *)rt->rt_gateway;
    711 	}
    712 
    713 	/*
    714 	 * XXXXXX: original code follows:
    715 	 */
    716 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    717 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    718 	else {
    719 		struct	in6_multi *in6m;
    720 
    721 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    722 
    723 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    724 
    725 		/*
    726 		 * Confirm that the outgoing interface supports multicast.
    727 		 */
    728 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    729 			ip6stat.ip6s_noroute++;
    730 			in6_ifstat_inc(ifp, ifs6_out_discard);
    731 			error = ENETUNREACH;
    732 			goto bad;
    733 		}
    734 
    735 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
    736 		if (in6m != NULL &&
    737 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    738 			/*
    739 			 * If we belong to the destination multicast group
    740 			 * on the outgoing interface, and the caller did not
    741 			 * forbid loopback, loop back a copy.
    742 			 */
    743 			ip6_mloopback(ifp, m, dst);
    744 		} else {
    745 			/*
    746 			 * If we are acting as a multicast router, perform
    747 			 * multicast forwarding as if the packet had just
    748 			 * arrived on the interface to which we are about
    749 			 * to send.  The multicast forwarding function
    750 			 * recursively calls this function, using the
    751 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    752 			 *
    753 			 * Multicasts that are looped back by ip6_mloopback(),
    754 			 * above, will be forwarded by the ip6_input() routine,
    755 			 * if necessary.
    756 			 */
    757 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    758 				if (ip6_mforward(ip6, ifp, m) != 0) {
    759 					m_freem(m);
    760 					goto done;
    761 				}
    762 			}
    763 		}
    764 		/*
    765 		 * Multicasts with a hoplimit of zero may be looped back,
    766 		 * above, but must not be transmitted on a network.
    767 		 * Also, multicasts addressed to the loopback interface
    768 		 * are not sent -- the above call to ip6_mloopback() will
    769 		 * loop back a copy if this host actually belongs to the
    770 		 * destination group on the loopback interface.
    771 		 */
    772 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    773 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    774 			m_freem(m);
    775 			goto done;
    776 		}
    777 	}
    778 
    779 	/*
    780 	 * Fill the outgoing inteface to tell the upper layer
    781 	 * to increment per-interface statistics.
    782 	 */
    783 	if (ifpp)
    784 		*ifpp = ifp;
    785 
    786 	/* Determine path MTU. */
    787 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
    788 	    &alwaysfrag)) != 0)
    789 		goto bad;
    790 #ifdef IPSEC
    791 	if (needipsectun)
    792 		mtu = IPV6_MMTU;
    793 #endif
    794 
    795 	/*
    796 	 * The caller of this function may specify to use the minimum MTU
    797 	 * in some cases.
    798 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
    799 	 * setting.  The logic is a bit complicated; by default, unicast
    800 	 * packets will follow path MTU while multicast packets will be sent at
    801 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
    802 	 * including unicast ones will be sent at the minimum MTU.  Multicast
    803 	 * packets will always be sent at the minimum MTU unless
    804 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
    805 	 * See RFC 3542 for more details.
    806 	 */
    807 	if (mtu > IPV6_MMTU) {
    808 		if ((flags & IPV6_MINMTU))
    809 			mtu = IPV6_MMTU;
    810 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
    811 			mtu = IPV6_MMTU;
    812 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
    813 			 (opt == NULL ||
    814 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
    815 			mtu = IPV6_MMTU;
    816 		}
    817 	}
    818 
    819 	/*
    820 	 * clear embedded scope identifiers if necessary.
    821 	 * in6_clearscope will touch the addresses only when necessary.
    822 	 */
    823 	in6_clearscope(&ip6->ip6_src);
    824 	in6_clearscope(&ip6->ip6_dst);
    825 
    826 	/*
    827 	 * If the outgoing packet contains a hop-by-hop options header,
    828 	 * it must be examined and processed even by the source node.
    829 	 * (RFC 2460, section 4.)
    830 	 */
    831 	if (exthdrs.ip6e_hbh) {
    832 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
    833 		u_int32_t dummy1; /* XXX unused */
    834 		u_int32_t dummy2; /* XXX unused */
    835 
    836 		/*
    837 		 *  XXX: if we have to send an ICMPv6 error to the sender,
    838 		 *       we need the M_LOOP flag since icmp6_error() expects
    839 		 *       the IPv6 and the hop-by-hop options header are
    840 		 *       continuous unless the flag is set.
    841 		 */
    842 		m->m_flags |= M_LOOP;
    843 		m->m_pkthdr.rcvif = ifp;
    844 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
    845 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
    846 		    &dummy1, &dummy2) < 0) {
    847 			/* m was already freed at this point */
    848 			error = EINVAL;/* better error? */
    849 			goto done;
    850 		}
    851 		m->m_flags &= ~M_LOOP; /* XXX */
    852 		m->m_pkthdr.rcvif = NULL;
    853 	}
    854 
    855 #ifdef PFIL_HOOKS
    856 	/*
    857 	 * Run through list of hooks for output packets.
    858 	 */
    859 	if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    860 		goto done;
    861 	if (m == NULL)
    862 		goto done;
    863 	ip6 = mtod(m, struct ip6_hdr *);
    864 #endif /* PFIL_HOOKS */
    865 	/*
    866 	 * Send the packet to the outgoing interface.
    867 	 * If necessary, do IPv6 fragmentation before sending.
    868 	 *
    869 	 * the logic here is rather complex:
    870 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    871 	 * 1-a:	send as is if tlen <= path mtu
    872 	 * 1-b:	fragment if tlen > path mtu
    873 	 *
    874 	 * 2: if user asks us not to fragment (dontfrag == 1)
    875 	 * 2-a:	send as is if tlen <= interface mtu
    876 	 * 2-b:	error if tlen > interface mtu
    877 	 *
    878 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    879 	 *	always fragment
    880 	 *
    881 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    882 	 *	error, as we cannot handle this conflicting request
    883 	 */
    884 	tlen = m->m_pkthdr.len;
    885 
    886 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
    887 		dontfrag = 1;
    888 	else
    889 		dontfrag = 0;
    890 
    891 	if (dontfrag && alwaysfrag) {	/* case 4 */
    892 		/* conflicting request - can't transmit */
    893 		error = EMSGSIZE;
    894 		goto bad;
    895 	}
    896 	if (dontfrag && tlen > IN6_LINKMTU(ifp)) {	/* case 2-b */
    897 		/*
    898 		 * Even if the DONTFRAG option is specified, we cannot send the
    899 		 * packet when the data length is larger than the MTU of the
    900 		 * outgoing interface.
    901 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    902 		 * well as returning an error code (the latter is not described
    903 		 * in the API spec.)
    904 		 */
    905 		u_int32_t mtu32;
    906 		struct ip6ctlparam ip6cp;
    907 
    908 		mtu32 = (u_int32_t)mtu;
    909 		bzero(&ip6cp, sizeof(ip6cp));
    910 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    911 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
    912 		    (void *)&ip6cp);
    913 
    914 		error = EMSGSIZE;
    915 		goto bad;
    916 	}
    917 
    918 	/*
    919 	 * transmit packet without fragmentation
    920 	 */
    921 	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
    922 		struct in6_ifaddr *ia6;
    923 		int sw_csum;
    924 
    925 		ip6 = mtod(m, struct ip6_hdr *);
    926 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    927 		if (ia6) {
    928 			/* Record statistics for this interface address. */
    929 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    930 		}
    931 #ifdef IPSEC
    932 		/* clean ipsec history once it goes out of the node */
    933 		ipsec_delaux(m);
    934 #endif
    935 
    936 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    937 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    938 			if (IN6_NEED_CHECKSUM(ifp,
    939 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    940 				in6_delayed_cksum(m);
    941 			}
    942 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    943 		}
    944 
    945 		error = nd6_output(ifp, origifp, m, dst, rt);
    946 		goto done;
    947 	}
    948 
    949 	/*
    950 	 * try to fragment the packet.  case 1-b and 3
    951 	 */
    952 	if (mtu < IPV6_MMTU) {
    953 		/* path MTU cannot be less than IPV6_MMTU */
    954 		error = EMSGSIZE;
    955 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    956 		goto bad;
    957 	} else if (ip6->ip6_plen == 0) {
    958 		/* jumbo payload cannot be fragmented */
    959 		error = EMSGSIZE;
    960 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    961 		goto bad;
    962 	} else {
    963 		struct mbuf **mnext, *m_frgpart;
    964 		struct ip6_frag *ip6f;
    965 		u_int32_t id = htonl(ip6_randomid());
    966 		u_char nextproto;
    967 #if 0				/* see below */
    968 		struct ip6ctlparam ip6cp;
    969 		u_int32_t mtu32;
    970 #endif
    971 
    972 		/*
    973 		 * Too large for the destination or interface;
    974 		 * fragment if possible.
    975 		 * Must be able to put at least 8 bytes per fragment.
    976 		 */
    977 		hlen = unfragpartlen;
    978 		if (mtu > IPV6_MAXPACKET)
    979 			mtu = IPV6_MAXPACKET;
    980 
    981 #if 0
    982 		/*
    983 		 * It is believed this code is a leftover from the
    984 		 * development of the IPV6_RECVPATHMTU sockopt and
    985 		 * associated work to implement RFC3542.
    986 		 * It's not entirely clear what the intent of the API
    987 		 * is at this point, so disable this code for now.
    988 		 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
    989 		 * will send notifications if the application requests.
    990 		 */
    991 
    992 		/* Notify a proper path MTU to applications. */
    993 		mtu32 = (u_int32_t)mtu;
    994 		bzero(&ip6cp, sizeof(ip6cp));
    995 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    996 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
    997 		    (void *)&ip6cp);
    998 #endif
    999 
   1000 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
   1001 		if (len < 8) {
   1002 			error = EMSGSIZE;
   1003 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
   1004 			goto bad;
   1005 		}
   1006 
   1007 		mnext = &m->m_nextpkt;
   1008 
   1009 		/*
   1010 		 * Change the next header field of the last header in the
   1011 		 * unfragmentable part.
   1012 		 */
   1013 		if (exthdrs.ip6e_rthdr) {
   1014 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
   1015 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
   1016 		} else if (exthdrs.ip6e_dest1) {
   1017 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
   1018 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
   1019 		} else if (exthdrs.ip6e_hbh) {
   1020 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
   1021 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
   1022 		} else {
   1023 			nextproto = ip6->ip6_nxt;
   1024 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
   1025 		}
   1026 
   1027 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
   1028 		    != 0) {
   1029 			if (IN6_NEED_CHECKSUM(ifp,
   1030 			    m->m_pkthdr.csum_flags &
   1031 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
   1032 				in6_delayed_cksum(m);
   1033 			}
   1034 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
   1035 		}
   1036 
   1037 		/*
   1038 		 * Loop through length of segment after first fragment,
   1039 		 * make new header and copy data of each part and link onto
   1040 		 * chain.
   1041 		 */
   1042 		m0 = m;
   1043 		for (off = hlen; off < tlen; off += len) {
   1044 			struct mbuf *mlast;
   1045 
   1046 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
   1047 			if (!m) {
   1048 				error = ENOBUFS;
   1049 				ip6stat.ip6s_odropped++;
   1050 				goto sendorfree;
   1051 			}
   1052 			m->m_pkthdr.rcvif = NULL;
   1053 			m->m_flags = m0->m_flags & M_COPYFLAGS;
   1054 			*mnext = m;
   1055 			mnext = &m->m_nextpkt;
   1056 			m->m_data += max_linkhdr;
   1057 			mhip6 = mtod(m, struct ip6_hdr *);
   1058 			*mhip6 = *ip6;
   1059 			m->m_len = sizeof(*mhip6);
   1060 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
   1061 			if (error) {
   1062 				ip6stat.ip6s_odropped++;
   1063 				goto sendorfree;
   1064 			}
   1065 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
   1066 			if (off + len >= tlen)
   1067 				len = tlen - off;
   1068 			else
   1069 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
   1070 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
   1071 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
   1072 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
   1073 				error = ENOBUFS;
   1074 				ip6stat.ip6s_odropped++;
   1075 				goto sendorfree;
   1076 			}
   1077 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
   1078 				;
   1079 			mlast->m_next = m_frgpart;
   1080 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
   1081 			m->m_pkthdr.rcvif = (struct ifnet *)0;
   1082 			ip6f->ip6f_reserved = 0;
   1083 			ip6f->ip6f_ident = id;
   1084 			ip6f->ip6f_nxt = nextproto;
   1085 			ip6stat.ip6s_ofragments++;
   1086 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
   1087 		}
   1088 
   1089 		in6_ifstat_inc(ifp, ifs6_out_fragok);
   1090 	}
   1091 
   1092 	/*
   1093 	 * Remove leading garbages.
   1094 	 */
   1095 sendorfree:
   1096 	m = m0->m_nextpkt;
   1097 	m0->m_nextpkt = 0;
   1098 	m_freem(m0);
   1099 	for (m0 = m; m; m = m0) {
   1100 		m0 = m->m_nextpkt;
   1101 		m->m_nextpkt = 0;
   1102 		if (error == 0) {
   1103 			struct in6_ifaddr *ia6;
   1104 			ip6 = mtod(m, struct ip6_hdr *);
   1105 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
   1106 			if (ia6) {
   1107 				/*
   1108 				 * Record statistics for this interface
   1109 				 * address.
   1110 				 */
   1111 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
   1112 				    m->m_pkthdr.len;
   1113 			}
   1114 #ifdef IPSEC
   1115 			/* clean ipsec history once it goes out of the node */
   1116 			ipsec_delaux(m);
   1117 #endif
   1118 			error = nd6_output(ifp, origifp, m, dst, rt);
   1119 		} else
   1120 			m_freem(m);
   1121 	}
   1122 
   1123 	if (error == 0)
   1124 		ip6stat.ip6s_fragmented++;
   1125 
   1126 done:
   1127 	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
   1128 		RTFREE(ro->ro_rt);
   1129 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
   1130 		RTFREE(ro_pmtu->ro_rt);
   1131 	}
   1132 
   1133 #ifdef IPSEC
   1134 	if (sp != NULL)
   1135 		key_freesp(sp);
   1136 #endif /* IPSEC */
   1137 
   1138 	return (error);
   1139 
   1140 freehdrs:
   1141 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
   1142 	m_freem(exthdrs.ip6e_dest1);
   1143 	m_freem(exthdrs.ip6e_rthdr);
   1144 	m_freem(exthdrs.ip6e_dest2);
   1145 	/* FALLTHROUGH */
   1146 bad:
   1147 	m_freem(m);
   1148 	goto done;
   1149 }
   1150 
   1151 static int
   1152 ip6_copyexthdr(mp, hdr, hlen)
   1153 	struct mbuf **mp;
   1154 	caddr_t hdr;
   1155 	int hlen;
   1156 {
   1157 	struct mbuf *m;
   1158 
   1159 	if (hlen > MCLBYTES)
   1160 		return (ENOBUFS); /* XXX */
   1161 
   1162 	MGET(m, M_DONTWAIT, MT_DATA);
   1163 	if (!m)
   1164 		return (ENOBUFS);
   1165 
   1166 	if (hlen > MLEN) {
   1167 		MCLGET(m, M_DONTWAIT);
   1168 		if ((m->m_flags & M_EXT) == 0) {
   1169 			m_free(m);
   1170 			return (ENOBUFS);
   1171 		}
   1172 	}
   1173 	m->m_len = hlen;
   1174 	if (hdr)
   1175 		bcopy(hdr, mtod(m, caddr_t), hlen);
   1176 
   1177 	*mp = m;
   1178 	return (0);
   1179 }
   1180 
   1181 /*
   1182  * Process a delayed payload checksum calculation.
   1183  */
   1184 void
   1185 in6_delayed_cksum(struct mbuf *m)
   1186 {
   1187 	uint16_t csum, offset;
   1188 
   1189 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1190 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1191 	KASSERT((m->m_pkthdr.csum_flags
   1192 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
   1193 
   1194 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
   1195 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
   1196 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
   1197 		csum = 0xffff;
   1198 	}
   1199 
   1200 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
   1201 	if ((offset + sizeof(csum)) > m->m_len) {
   1202 		m_copyback(m, offset, sizeof(csum), &csum);
   1203 	} else {
   1204 		*(uint16_t *)(mtod(m, caddr_t) + offset) = csum;
   1205 	}
   1206 }
   1207 
   1208 /*
   1209  * Insert jumbo payload option.
   1210  */
   1211 static int
   1212 ip6_insert_jumboopt(exthdrs, plen)
   1213 	struct ip6_exthdrs *exthdrs;
   1214 	u_int32_t plen;
   1215 {
   1216 	struct mbuf *mopt;
   1217 	u_int8_t *optbuf;
   1218 	u_int32_t v;
   1219 
   1220 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1221 
   1222 	/*
   1223 	 * If there is no hop-by-hop options header, allocate new one.
   1224 	 * If there is one but it doesn't have enough space to store the
   1225 	 * jumbo payload option, allocate a cluster to store the whole options.
   1226 	 * Otherwise, use it to store the options.
   1227 	 */
   1228 	if (exthdrs->ip6e_hbh == 0) {
   1229 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1230 		if (mopt == 0)
   1231 			return (ENOBUFS);
   1232 		mopt->m_len = JUMBOOPTLEN;
   1233 		optbuf = mtod(mopt, u_int8_t *);
   1234 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1235 		exthdrs->ip6e_hbh = mopt;
   1236 	} else {
   1237 		struct ip6_hbh *hbh;
   1238 
   1239 		mopt = exthdrs->ip6e_hbh;
   1240 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1241 			/*
   1242 			 * XXX assumption:
   1243 			 * - exthdrs->ip6e_hbh is not referenced from places
   1244 			 *   other than exthdrs.
   1245 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1246 			 */
   1247 			int oldoptlen = mopt->m_len;
   1248 			struct mbuf *n;
   1249 
   1250 			/*
   1251 			 * XXX: give up if the whole (new) hbh header does
   1252 			 * not fit even in an mbuf cluster.
   1253 			 */
   1254 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1255 				return (ENOBUFS);
   1256 
   1257 			/*
   1258 			 * As a consequence, we must always prepare a cluster
   1259 			 * at this point.
   1260 			 */
   1261 			MGET(n, M_DONTWAIT, MT_DATA);
   1262 			if (n) {
   1263 				MCLGET(n, M_DONTWAIT);
   1264 				if ((n->m_flags & M_EXT) == 0) {
   1265 					m_freem(n);
   1266 					n = NULL;
   1267 				}
   1268 			}
   1269 			if (!n)
   1270 				return (ENOBUFS);
   1271 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1272 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
   1273 			    oldoptlen);
   1274 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1275 			m_freem(mopt);
   1276 			mopt = exthdrs->ip6e_hbh = n;
   1277 		} else {
   1278 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1279 			mopt->m_len += JUMBOOPTLEN;
   1280 		}
   1281 		optbuf[0] = IP6OPT_PADN;
   1282 		optbuf[1] = 0;
   1283 
   1284 		/*
   1285 		 * Adjust the header length according to the pad and
   1286 		 * the jumbo payload option.
   1287 		 */
   1288 		hbh = mtod(mopt, struct ip6_hbh *);
   1289 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1290 	}
   1291 
   1292 	/* fill in the option. */
   1293 	optbuf[2] = IP6OPT_JUMBO;
   1294 	optbuf[3] = 4;
   1295 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1296 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
   1297 
   1298 	/* finally, adjust the packet header length */
   1299 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1300 
   1301 	return (0);
   1302 #undef JUMBOOPTLEN
   1303 }
   1304 
   1305 /*
   1306  * Insert fragment header and copy unfragmentable header portions.
   1307  */
   1308 static int
   1309 ip6_insertfraghdr(m0, m, hlen, frghdrp)
   1310 	struct mbuf *m0, *m;
   1311 	int hlen;
   1312 	struct ip6_frag **frghdrp;
   1313 {
   1314 	struct mbuf *n, *mlast;
   1315 
   1316 	if (hlen > sizeof(struct ip6_hdr)) {
   1317 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1318 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1319 		if (n == 0)
   1320 			return (ENOBUFS);
   1321 		m->m_next = n;
   1322 	} else
   1323 		n = m;
   1324 
   1325 	/* Search for the last mbuf of unfragmentable part. */
   1326 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1327 		;
   1328 
   1329 	if ((mlast->m_flags & M_EXT) == 0 &&
   1330 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1331 		/* use the trailing space of the last mbuf for the fragment hdr */
   1332 		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
   1333 		    mlast->m_len);
   1334 		mlast->m_len += sizeof(struct ip6_frag);
   1335 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1336 	} else {
   1337 		/* allocate a new mbuf for the fragment header */
   1338 		struct mbuf *mfrg;
   1339 
   1340 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1341 		if (mfrg == 0)
   1342 			return (ENOBUFS);
   1343 		mfrg->m_len = sizeof(struct ip6_frag);
   1344 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1345 		mlast->m_next = mfrg;
   1346 	}
   1347 
   1348 	return (0);
   1349 }
   1350 
   1351 static int
   1352 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp)
   1353 	struct route_in6 *ro_pmtu, *ro;
   1354 	struct ifnet *ifp;
   1355 	struct in6_addr *dst;
   1356 	u_long *mtup;
   1357 	int *alwaysfragp;
   1358 {
   1359 	u_int32_t mtu = 0;
   1360 	int alwaysfrag = 0;
   1361 	int error = 0;
   1362 
   1363 	if (ro_pmtu != ro) {
   1364 		/* The first hop and the final destination may differ. */
   1365 		struct sockaddr_in6 *sa6_dst =
   1366 		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
   1367 		if (ro_pmtu->ro_rt &&
   1368 		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
   1369 		      !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
   1370 			RTFREE(ro_pmtu->ro_rt);
   1371 			ro_pmtu->ro_rt = (struct rtentry *)NULL;
   1372 		}
   1373 		if (ro_pmtu->ro_rt == NULL) {
   1374 			bzero(sa6_dst, sizeof(*sa6_dst)); /* for safety */
   1375 			sa6_dst->sin6_family = AF_INET6;
   1376 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
   1377 			sa6_dst->sin6_addr = *dst;
   1378 
   1379 			rtalloc((struct route *)ro_pmtu);
   1380 		}
   1381 	}
   1382 	if (ro_pmtu->ro_rt) {
   1383 		u_int32_t ifmtu;
   1384 
   1385 		if (ifp == NULL)
   1386 			ifp = ro_pmtu->ro_rt->rt_ifp;
   1387 		ifmtu = IN6_LINKMTU(ifp);
   1388 		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
   1389 		if (mtu == 0)
   1390 			mtu = ifmtu;
   1391 		else if (mtu < IPV6_MMTU) {
   1392 			/*
   1393 			 * RFC2460 section 5, last paragraph:
   1394 			 * if we record ICMPv6 too big message with
   1395 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1396 			 * or smaller, with fragment header attached.
   1397 			 * (fragment header is needed regardless from the
   1398 			 * packet size, for translators to identify packets)
   1399 			 */
   1400 			alwaysfrag = 1;
   1401 			mtu = IPV6_MMTU;
   1402 		} else if (mtu > ifmtu) {
   1403 			/*
   1404 			 * The MTU on the route is larger than the MTU on
   1405 			 * the interface!  This shouldn't happen, unless the
   1406 			 * MTU of the interface has been changed after the
   1407 			 * interface was brought up.  Change the MTU in the
   1408 			 * route to match the interface MTU (as long as the
   1409 			 * field isn't locked).
   1410 			 */
   1411 			mtu = ifmtu;
   1412 			if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
   1413 				ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
   1414 		}
   1415 	} else if (ifp) {
   1416 		mtu = IN6_LINKMTU(ifp);
   1417 	} else
   1418 		error = EHOSTUNREACH; /* XXX */
   1419 
   1420 	*mtup = mtu;
   1421 	if (alwaysfragp)
   1422 		*alwaysfragp = alwaysfrag;
   1423 	return (error);
   1424 }
   1425 
   1426 /*
   1427  * IP6 socket option processing.
   1428  */
   1429 int
   1430 ip6_ctloutput(op, so, level, optname, mp)
   1431 	int op;
   1432 	struct socket *so;
   1433 	int level, optname;
   1434 	struct mbuf **mp;
   1435 {
   1436 	int privileged, optdatalen, uproto;
   1437 	void *optdata;
   1438 	struct in6pcb *in6p = sotoin6pcb(so);
   1439 	struct mbuf *m = *mp;
   1440 	int error, optval;
   1441 	int optlen;
   1442 	struct lwp *l = curlwp;	/* XXX */
   1443 
   1444 	optlen = m ? m->m_len : 0;
   1445 	error = optval = 0;
   1446 	privileged = (l == 0 || kauth_authorize_generic(l->l_cred,
   1447 	    KAUTH_GENERIC_ISSUSER, &l->l_acflag)) ? 0 : 1;
   1448 	uproto = (int)so->so_proto->pr_protocol;
   1449 
   1450 	if (level == IPPROTO_IPV6) {
   1451 		switch (op) {
   1452 		case PRCO_SETOPT:
   1453 			switch (optname) {
   1454 #ifdef RFC2292
   1455 			case IPV6_2292PKTOPTIONS:
   1456 				/* m is freed in ip6_pcbopts */
   1457 				error = ip6_pcbopts(&in6p->in6p_outputopts,
   1458 				    m, so);
   1459 				break;
   1460 #endif
   1461 
   1462 			/*
   1463 			 * Use of some Hop-by-Hop options or some
   1464 			 * Destination options, might require special
   1465 			 * privilege.  That is, normal applications
   1466 			 * (without special privilege) might be forbidden
   1467 			 * from setting certain options in outgoing packets,
   1468 			 * and might never see certain options in received
   1469 			 * packets. [RFC 2292 Section 6]
   1470 			 * KAME specific note:
   1471 			 *  KAME prevents non-privileged users from sending or
   1472 			 *  receiving ANY hbh/dst options in order to avoid
   1473 			 *  overhead of parsing options in the kernel.
   1474 			 */
   1475 			case IPV6_RECVHOPOPTS:
   1476 			case IPV6_RECVDSTOPTS:
   1477 			case IPV6_RECVRTHDRDSTOPTS:
   1478 				if (!privileged) {
   1479 					error = EPERM;
   1480 					break;
   1481 				}
   1482 				/* FALLTHROUGH */
   1483 			case IPV6_UNICAST_HOPS:
   1484 			case IPV6_HOPLIMIT:
   1485 			case IPV6_FAITH:
   1486 
   1487 			case IPV6_RECVPKTINFO:
   1488 			case IPV6_RECVHOPLIMIT:
   1489 			case IPV6_RECVRTHDR:
   1490 			case IPV6_RECVPATHMTU:
   1491 			case IPV6_RECVTCLASS:
   1492 			case IPV6_V6ONLY:
   1493 				if (optlen != sizeof(int)) {
   1494 					error = EINVAL;
   1495 					break;
   1496 				}
   1497 				optval = *mtod(m, int *);
   1498 				switch (optname) {
   1499 
   1500 				case IPV6_UNICAST_HOPS:
   1501 					if (optval < -1 || optval >= 256)
   1502 						error = EINVAL;
   1503 					else {
   1504 						/* -1 = kernel default */
   1505 						in6p->in6p_hops = optval;
   1506 					}
   1507 					break;
   1508 #define OPTSET(bit) \
   1509 do { \
   1510 	if (optval) \
   1511 		in6p->in6p_flags |= (bit); \
   1512 	else \
   1513 		in6p->in6p_flags &= ~(bit); \
   1514 } while (/*CONSTCOND*/ 0)
   1515 
   1516 #ifdef RFC2292
   1517 #define OPTSET2292(bit) 			\
   1518 do { 						\
   1519 	in6p->in6p_flags |= IN6P_RFC2292; 	\
   1520 	if (optval) 				\
   1521 		in6p->in6p_flags |= (bit); 	\
   1522 	else 					\
   1523 		in6p->in6p_flags &= ~(bit); 	\
   1524 } while (/*CONSTCOND*/ 0)
   1525 #endif
   1526 
   1527 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
   1528 
   1529 				case IPV6_RECVPKTINFO:
   1530 #ifdef RFC2292
   1531 					/* cannot mix with RFC2292 */
   1532 					if (OPTBIT(IN6P_RFC2292)) {
   1533 						error = EINVAL;
   1534 						break;
   1535 					}
   1536 #endif
   1537 					OPTSET(IN6P_PKTINFO);
   1538 					break;
   1539 
   1540 				case IPV6_HOPLIMIT:
   1541 				{
   1542 					struct ip6_pktopts **optp;
   1543 
   1544 #ifdef RFC2292
   1545 					/* cannot mix with RFC2292 */
   1546 					if (OPTBIT(IN6P_RFC2292)) {
   1547 						error = EINVAL;
   1548 						break;
   1549 					}
   1550 #endif
   1551 					optp = &in6p->in6p_outputopts;
   1552 					error = ip6_pcbopt(IPV6_HOPLIMIT,
   1553 							   (u_char *)&optval,
   1554 							   sizeof(optval),
   1555 							   optp,
   1556 							   privileged, uproto);
   1557 					break;
   1558 				}
   1559 
   1560 				case IPV6_RECVHOPLIMIT:
   1561 #ifdef RFC2292
   1562 					/* cannot mix with RFC2292 */
   1563 					if (OPTBIT(IN6P_RFC2292)) {
   1564 						error = EINVAL;
   1565 						break;
   1566 					}
   1567 #endif
   1568 					OPTSET(IN6P_HOPLIMIT);
   1569 					break;
   1570 
   1571 				case IPV6_RECVHOPOPTS:
   1572 #ifdef RFC2292
   1573 					/* cannot mix with RFC2292 */
   1574 					if (OPTBIT(IN6P_RFC2292)) {
   1575 						error = EINVAL;
   1576 						break;
   1577 					}
   1578 #endif
   1579 					OPTSET(IN6P_HOPOPTS);
   1580 					break;
   1581 
   1582 				case IPV6_RECVDSTOPTS:
   1583 #ifdef RFC2292
   1584 					/* cannot mix with RFC2292 */
   1585 					if (OPTBIT(IN6P_RFC2292)) {
   1586 						error = EINVAL;
   1587 						break;
   1588 					}
   1589 #endif
   1590 					OPTSET(IN6P_DSTOPTS);
   1591 					break;
   1592 
   1593 				case IPV6_RECVRTHDRDSTOPTS:
   1594 #ifdef RFC2292
   1595 					/* cannot mix with RFC2292 */
   1596 					if (OPTBIT(IN6P_RFC2292)) {
   1597 						error = EINVAL;
   1598 						break;
   1599 					}
   1600 #endif
   1601 					OPTSET(IN6P_RTHDRDSTOPTS);
   1602 					break;
   1603 
   1604 				case IPV6_RECVRTHDR:
   1605 #ifdef RFC2292
   1606 					/* cannot mix with RFC2292 */
   1607 					if (OPTBIT(IN6P_RFC2292)) {
   1608 						error = EINVAL;
   1609 						break;
   1610 					}
   1611 #endif
   1612 					OPTSET(IN6P_RTHDR);
   1613 					break;
   1614 
   1615 				case IPV6_FAITH:
   1616 					OPTSET(IN6P_FAITH);
   1617 					break;
   1618 
   1619 				case IPV6_RECVPATHMTU:
   1620 					/*
   1621 					 * We ignore this option for TCP
   1622 					 * sockets.
   1623 					 * (RFC3542 leaves this case
   1624 					 * unspecified.)
   1625 					 */
   1626 					if (uproto != IPPROTO_TCP)
   1627 						OPTSET(IN6P_MTU);
   1628 					break;
   1629 
   1630 				case IPV6_V6ONLY:
   1631 					/*
   1632 					 * make setsockopt(IPV6_V6ONLY)
   1633 					 * available only prior to bind(2).
   1634 					 * see ipng mailing list, Jun 22 2001.
   1635 					 */
   1636 					if (in6p->in6p_lport ||
   1637 					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
   1638 						error = EINVAL;
   1639 						break;
   1640 					}
   1641 #ifdef INET6_BINDV6ONLY
   1642 					if (!optval)
   1643 						error = EINVAL;
   1644 #else
   1645 					OPTSET(IN6P_IPV6_V6ONLY);
   1646 #endif
   1647 					break;
   1648 				case IPV6_RECVTCLASS:
   1649 #ifdef RFC2292
   1650 					/* cannot mix with RFC2292 XXX */
   1651 					if (OPTBIT(IN6P_RFC2292)) {
   1652 						error = EINVAL;
   1653 						break;
   1654 					}
   1655 #endif
   1656 					OPTSET(IN6P_TCLASS);
   1657 					break;
   1658 
   1659 				}
   1660 				break;
   1661 
   1662 			case IPV6_OTCLASS:
   1663 			{
   1664 				struct ip6_pktopts **optp;
   1665 				u_int8_t tclass;
   1666 
   1667 				if (optlen != sizeof(tclass)) {
   1668 					error = EINVAL;
   1669 					break;
   1670 				}
   1671 				tclass = *mtod(m, u_int8_t *);
   1672 				optp = &in6p->in6p_outputopts;
   1673 				error = ip6_pcbopt(optname,
   1674 						   (u_char *)&tclass,
   1675 						   sizeof(tclass),
   1676 						   optp,
   1677 						   privileged, uproto);
   1678 				break;
   1679 			}
   1680 
   1681 			case IPV6_TCLASS:
   1682 			case IPV6_DONTFRAG:
   1683 			case IPV6_USE_MIN_MTU:
   1684 				if (optlen != sizeof(optval)) {
   1685 					error = EINVAL;
   1686 					break;
   1687 				}
   1688 				optval = *mtod(m, int *);
   1689 				{
   1690 					struct ip6_pktopts **optp;
   1691 					optp = &in6p->in6p_outputopts;
   1692 					error = ip6_pcbopt(optname,
   1693 							   (u_char *)&optval,
   1694 							   sizeof(optval),
   1695 							   optp,
   1696 							   privileged, uproto);
   1697 					break;
   1698 				}
   1699 
   1700 #ifdef RFC2292
   1701 			case IPV6_2292PKTINFO:
   1702 			case IPV6_2292HOPLIMIT:
   1703 			case IPV6_2292HOPOPTS:
   1704 			case IPV6_2292DSTOPTS:
   1705 			case IPV6_2292RTHDR:
   1706 				/* RFC 2292 */
   1707 				if (optlen != sizeof(int)) {
   1708 					error = EINVAL;
   1709 					break;
   1710 				}
   1711 				optval = *mtod(m, int *);
   1712 				switch (optname) {
   1713 				case IPV6_2292PKTINFO:
   1714 					OPTSET2292(IN6P_PKTINFO);
   1715 					break;
   1716 				case IPV6_2292HOPLIMIT:
   1717 					OPTSET2292(IN6P_HOPLIMIT);
   1718 					break;
   1719 				case IPV6_2292HOPOPTS:
   1720 					/*
   1721 					 * Check super-user privilege.
   1722 					 * See comments for IPV6_RECVHOPOPTS.
   1723 					 */
   1724 					if (!privileged)
   1725 						return (EPERM);
   1726 					OPTSET2292(IN6P_HOPOPTS);
   1727 					break;
   1728 				case IPV6_2292DSTOPTS:
   1729 					if (!privileged)
   1730 						return (EPERM);
   1731 					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
   1732 					break;
   1733 				case IPV6_2292RTHDR:
   1734 					OPTSET2292(IN6P_RTHDR);
   1735 					break;
   1736 				}
   1737 				break;
   1738 #endif
   1739 			case IPV6_PKTINFO:
   1740 			case IPV6_HOPOPTS:
   1741 			case IPV6_RTHDR:
   1742 			case IPV6_DSTOPTS:
   1743 			case IPV6_RTHDRDSTOPTS:
   1744 			case IPV6_NEXTHOP:
   1745 			{
   1746 				/* new advanced API (RFC3542) */
   1747 				u_char *optbuf;
   1748 				int optbuflen;
   1749 				struct ip6_pktopts **optp;
   1750 
   1751 #ifdef RFC2292
   1752 				/* cannot mix with RFC2292 */
   1753 				if (OPTBIT(IN6P_RFC2292)) {
   1754 					error = EINVAL;
   1755 					break;
   1756 				}
   1757 #endif
   1758 
   1759 				if (m && m->m_next) {
   1760 					error = EINVAL;	/* XXX */
   1761 					break;
   1762 				}
   1763 				if (m) {
   1764 					optbuf = mtod(m, u_char *);
   1765 					optbuflen = m->m_len;
   1766 				} else {
   1767 					optbuf = NULL;
   1768 					optbuflen = 0;
   1769 				}
   1770 				optp = &in6p->in6p_outputopts;
   1771 				error = ip6_pcbopt(optname,
   1772 						   optbuf, optbuflen,
   1773 						   optp, privileged, uproto);
   1774 				break;
   1775 			}
   1776 #undef OPTSET
   1777 
   1778 			case IPV6_MULTICAST_IF:
   1779 			case IPV6_MULTICAST_HOPS:
   1780 			case IPV6_MULTICAST_LOOP:
   1781 			case IPV6_JOIN_GROUP:
   1782 			case IPV6_LEAVE_GROUP:
   1783                                 error = ip6_setmoptions(optname,
   1784 				    &in6p->in6p_moptions, m);
   1785 				break;
   1786 
   1787 			case IPV6_PORTRANGE:
   1788 				optval = *mtod(m, int *);
   1789 
   1790 				switch (optval) {
   1791 				case IPV6_PORTRANGE_DEFAULT:
   1792 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1793 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1794 					break;
   1795 
   1796 				case IPV6_PORTRANGE_HIGH:
   1797 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1798 					in6p->in6p_flags |= IN6P_HIGHPORT;
   1799 					break;
   1800 
   1801 				case IPV6_PORTRANGE_LOW:
   1802 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1803 					in6p->in6p_flags |= IN6P_LOWPORT;
   1804 					break;
   1805 
   1806 				default:
   1807 					error = EINVAL;
   1808 					break;
   1809 				}
   1810 				break;
   1811 
   1812 #ifdef IPSEC
   1813 			case IPV6_IPSEC_POLICY:
   1814 			{
   1815 				caddr_t req = NULL;
   1816 				size_t len = 0;
   1817 				if (m) {
   1818 					req = mtod(m, caddr_t);
   1819 					len = m->m_len;
   1820 				}
   1821 				error = ipsec6_set_policy(in6p, optname, req,
   1822 							  len, privileged);
   1823 			}
   1824 				break;
   1825 #endif /* IPSEC */
   1826 
   1827 			default:
   1828 				error = ENOPROTOOPT;
   1829 				break;
   1830 			}
   1831 			if (m)
   1832 				(void)m_free(m);
   1833 			break;
   1834 
   1835 		case PRCO_GETOPT:
   1836 			switch (optname) {
   1837 #ifdef RFC2292
   1838 			case IPV6_2292PKTOPTIONS:
   1839 				/*
   1840 				 * RFC3542 (effectively) deprecated the
   1841 				 * semantics of the 2292-style pktoptions.
   1842 				 * Since it was not reliable in nature (i.e.,
   1843 				 * applications had to expect the lack of some
   1844 				 * information after all), it would make sense
   1845 				 * to simplify this part by always returning
   1846 				 * empty data.
   1847 				 */
   1848 				*mp = m_get(M_WAIT, MT_SOOPTS);
   1849 				(*mp)->m_len = 0;
   1850 				break;
   1851 #endif
   1852 
   1853 			case IPV6_RECVHOPOPTS:
   1854 			case IPV6_RECVDSTOPTS:
   1855 			case IPV6_RECVRTHDRDSTOPTS:
   1856 			case IPV6_UNICAST_HOPS:
   1857 			case IPV6_RECVPKTINFO:
   1858 			case IPV6_RECVHOPLIMIT:
   1859 			case IPV6_RECVRTHDR:
   1860 			case IPV6_RECVPATHMTU:
   1861 
   1862 			case IPV6_FAITH:
   1863 			case IPV6_V6ONLY:
   1864 			case IPV6_PORTRANGE:
   1865 			case IPV6_RECVTCLASS:
   1866 				switch (optname) {
   1867 
   1868 				case IPV6_RECVHOPOPTS:
   1869 					optval = OPTBIT(IN6P_HOPOPTS);
   1870 					break;
   1871 
   1872 				case IPV6_RECVDSTOPTS:
   1873 					optval = OPTBIT(IN6P_DSTOPTS);
   1874 					break;
   1875 
   1876 				case IPV6_RECVRTHDRDSTOPTS:
   1877 					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
   1878 					break;
   1879 
   1880 				case IPV6_UNICAST_HOPS:
   1881 					optval = in6p->in6p_hops;
   1882 					break;
   1883 
   1884 				case IPV6_RECVPKTINFO:
   1885 					optval = OPTBIT(IN6P_PKTINFO);
   1886 					break;
   1887 
   1888 				case IPV6_RECVHOPLIMIT:
   1889 					optval = OPTBIT(IN6P_HOPLIMIT);
   1890 					break;
   1891 
   1892 				case IPV6_RECVRTHDR:
   1893 					optval = OPTBIT(IN6P_RTHDR);
   1894 					break;
   1895 
   1896 				case IPV6_RECVPATHMTU:
   1897 					optval = OPTBIT(IN6P_MTU);
   1898 					break;
   1899 
   1900 				case IPV6_FAITH:
   1901 					optval = OPTBIT(IN6P_FAITH);
   1902 					break;
   1903 
   1904 				case IPV6_V6ONLY:
   1905 					optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1906 					break;
   1907 
   1908 				case IPV6_PORTRANGE:
   1909 				    {
   1910 					int flags;
   1911 					flags = in6p->in6p_flags;
   1912 					if (flags & IN6P_HIGHPORT)
   1913 						optval = IPV6_PORTRANGE_HIGH;
   1914 					else if (flags & IN6P_LOWPORT)
   1915 						optval = IPV6_PORTRANGE_LOW;
   1916 					else
   1917 						optval = 0;
   1918 					break;
   1919 				    }
   1920 				case IPV6_RECVTCLASS:
   1921 					optval = OPTBIT(IN6P_TCLASS);
   1922 					break;
   1923 
   1924 				}
   1925 				if (error)
   1926 					break;
   1927 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1928 				m->m_len = sizeof(int);
   1929 				*mtod(m, int *) = optval;
   1930 				break;
   1931 
   1932 			case IPV6_PATHMTU:
   1933 			    {
   1934 				u_long pmtu = 0;
   1935 				struct ip6_mtuinfo mtuinfo;
   1936 				struct route_in6 *ro = (struct route_in6 *)&in6p
   1937 ->in6p_route;
   1938 
   1939 				if (!(so->so_state & SS_ISCONNECTED))
   1940 					return (ENOTCONN);
   1941 				/*
   1942 				 * XXX: we dot not consider the case of source
   1943 				 * routing, or optional information to specify
   1944 				 * the outgoing interface.
   1945 				 */
   1946 				error = ip6_getpmtu(ro, NULL, NULL,
   1947 				    &in6p->in6p_faddr, &pmtu, NULL);
   1948 				if (error)
   1949 					break;
   1950 				if (pmtu > IPV6_MAXPACKET)
   1951 					pmtu = IPV6_MAXPACKET;
   1952 
   1953 				memset(&mtuinfo, 0, sizeof(mtuinfo));
   1954 				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
   1955 				optdata = (void *)&mtuinfo;
   1956 				optdatalen = sizeof(mtuinfo);
   1957 				if (optdatalen > MCLBYTES)
   1958 					return (EMSGSIZE); /* XXX */
   1959 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1960 				if (optdatalen > MLEN)
   1961 					MCLGET(m, M_WAIT);
   1962 				m->m_len = optdatalen;
   1963 				memcpy(mtod(m, void *), optdata, optdatalen);
   1964 				break;
   1965 			    }
   1966 
   1967 #ifdef RFC2292
   1968 			case IPV6_2292PKTINFO:
   1969 			case IPV6_2292HOPLIMIT:
   1970 			case IPV6_2292HOPOPTS:
   1971 			case IPV6_2292RTHDR:
   1972 			case IPV6_2292DSTOPTS:
   1973 				switch (optname) {
   1974 				case IPV6_2292PKTINFO:
   1975 					optval = OPTBIT(IN6P_PKTINFO);
   1976 					break;
   1977 				case IPV6_2292HOPLIMIT:
   1978 					optval = OPTBIT(IN6P_HOPLIMIT);
   1979 					break;
   1980 				case IPV6_2292HOPOPTS:
   1981 					optval = OPTBIT(IN6P_HOPOPTS);
   1982 					break;
   1983 				case IPV6_2292RTHDR:
   1984 					optval = OPTBIT(IN6P_RTHDR);
   1985 					break;
   1986 				case IPV6_2292DSTOPTS:
   1987 					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
   1988 					break;
   1989 				}
   1990 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1991 				m->m_len = sizeof(int);
   1992 				*mtod(m, int *) = optval;
   1993 				break;
   1994 #endif
   1995 			case IPV6_PKTINFO:
   1996 			case IPV6_HOPOPTS:
   1997 			case IPV6_RTHDR:
   1998 			case IPV6_DSTOPTS:
   1999 			case IPV6_RTHDRDSTOPTS:
   2000 			case IPV6_NEXTHOP:
   2001 			case IPV6_OTCLASS:
   2002 			case IPV6_TCLASS:
   2003 			case IPV6_DONTFRAG:
   2004 			case IPV6_USE_MIN_MTU:
   2005 				error = ip6_getpcbopt(in6p->in6p_outputopts,
   2006 				    optname, mp);
   2007 				break;
   2008 
   2009 			case IPV6_MULTICAST_IF:
   2010 			case IPV6_MULTICAST_HOPS:
   2011 			case IPV6_MULTICAST_LOOP:
   2012 			case IPV6_JOIN_GROUP:
   2013 			case IPV6_LEAVE_GROUP:
   2014 				error = ip6_getmoptions(optname,
   2015 				    in6p->in6p_moptions, mp);
   2016 				break;
   2017 
   2018 #ifdef IPSEC
   2019 			case IPV6_IPSEC_POLICY:
   2020 			    {
   2021 				caddr_t req = NULL;
   2022 				size_t len = 0;
   2023 				if (m) {
   2024 					req = mtod(m, caddr_t);
   2025 					len = m->m_len;
   2026 				}
   2027 				error = ipsec6_get_policy(in6p, req, len, mp);
   2028 				break;
   2029 			    }
   2030 #endif /* IPSEC */
   2031 
   2032 
   2033 
   2034 
   2035 			default:
   2036 				error = ENOPROTOOPT;
   2037 				break;
   2038 			}
   2039 			break;
   2040 		}
   2041 	} else {
   2042 		error = EINVAL;
   2043 		if (op == PRCO_SETOPT && *mp)
   2044 			(void)m_free(*mp);
   2045 	}
   2046 	return (error);
   2047 }
   2048 
   2049 int
   2050 ip6_raw_ctloutput(op, so, level, optname, mp)
   2051 	int op;
   2052 	struct socket *so;
   2053 	int level, optname;
   2054 	struct mbuf **mp;
   2055 {
   2056 	int error = 0, optval, optlen;
   2057 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   2058 	struct in6pcb *in6p = sotoin6pcb(so);
   2059 	struct mbuf *m = *mp;
   2060 
   2061 	optlen = m ? m->m_len : 0;
   2062 
   2063 	if (level != IPPROTO_IPV6) {
   2064 		if (op == PRCO_SETOPT && *mp)
   2065 			(void)m_free(*mp);
   2066 		return (EINVAL);
   2067 	}
   2068 
   2069 	switch (optname) {
   2070 	case IPV6_CHECKSUM:
   2071 		/*
   2072 		 * For ICMPv6 sockets, no modification allowed for checksum
   2073 		 * offset, permit "no change" values to help existing apps.
   2074 		 *
   2075 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
   2076 		 * for an ICMPv6 socket will fail."  The current
   2077 		 * behavior does not meet RFC3542.
   2078 		 */
   2079 		switch (op) {
   2080 		case PRCO_SETOPT:
   2081 			if (optlen != sizeof(int)) {
   2082 				error = EINVAL;
   2083 				break;
   2084 			}
   2085 			optval = *mtod(m, int *);
   2086 			if ((optval % 2) != 0) {
   2087 				/* the API assumes even offset values */
   2088 				error = EINVAL;
   2089 			} else if (so->so_proto->pr_protocol ==
   2090 			    IPPROTO_ICMPV6) {
   2091 				if (optval != icmp6off)
   2092 					error = EINVAL;
   2093 			} else
   2094 				in6p->in6p_cksum = optval;
   2095 			break;
   2096 
   2097 		case PRCO_GETOPT:
   2098 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   2099 				optval = icmp6off;
   2100 			else
   2101 				optval = in6p->in6p_cksum;
   2102 
   2103 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   2104 			m->m_len = sizeof(int);
   2105 			*mtod(m, int *) = optval;
   2106 			break;
   2107 
   2108 		default:
   2109 			error = EINVAL;
   2110 			break;
   2111 		}
   2112 		break;
   2113 
   2114 	default:
   2115 		error = ENOPROTOOPT;
   2116 		break;
   2117 	}
   2118 
   2119 	if (op == PRCO_SETOPT && m)
   2120 		(void)m_free(m);
   2121 
   2122 	return (error);
   2123 }
   2124 
   2125 #ifdef RFC2292
   2126 /*
   2127  * Set up IP6 options in pcb for insertion in output packets or
   2128  * specifying behavior of outgoing packets.
   2129  */
   2130 static int
   2131 ip6_pcbopts(pktopt, m, so)
   2132 	struct ip6_pktopts **pktopt;
   2133 	struct mbuf *m;
   2134 	struct socket *so;
   2135 {
   2136 	struct ip6_pktopts *opt = *pktopt;
   2137 	int error = 0;
   2138 	struct lwp *l = curlwp;	/* XXX */
   2139 	int priv = 0;
   2140 
   2141 	/* turn off any old options. */
   2142 	if (opt) {
   2143 #ifdef DIAGNOSTIC
   2144 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
   2145 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
   2146 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2147 		    printf("ip6_pcbopts: all specified options are cleared.\n");
   2148 #endif
   2149 		ip6_clearpktopts(opt, -1);
   2150 	} else
   2151 		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
   2152 	*pktopt = NULL;
   2153 
   2154 	if (!m || m->m_len == 0) {
   2155 		/*
   2156 		 * Only turning off any previous options, regardless of
   2157 		 * whether the opt is just created or given.
   2158 		 */
   2159 		free(opt, M_IP6OPT);
   2160 		return (0);
   2161 	}
   2162 
   2163 	/*  set options specified by user. */
   2164 	if (l && !kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
   2165 	    &l->l_acflag))
   2166 		priv = 1;
   2167 	if ((error = ip6_setpktopts(m, opt, NULL, priv,
   2168 	    so->so_proto->pr_protocol)) != 0) {
   2169 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
   2170 		free(opt, M_IP6OPT);
   2171 		return (error);
   2172 	}
   2173 	*pktopt = opt;
   2174 	return (0);
   2175 }
   2176 #endif
   2177 
   2178 /*
   2179  * initialize ip6_pktopts.  beware that there are non-zero default values in
   2180  * the struct.
   2181  */
   2182 void
   2183 ip6_initpktopts(struct ip6_pktopts *opt)
   2184 {
   2185 
   2186 	memset(opt, 0, sizeof(*opt));
   2187 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
   2188 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
   2189 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
   2190 }
   2191 
   2192 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
   2193 static int
   2194 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
   2195     int priv, int uproto)
   2196 {
   2197 	struct ip6_pktopts *opt;
   2198 
   2199 	if (*pktopt == NULL) {
   2200 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
   2201 		    M_WAITOK);
   2202 		ip6_initpktopts(*pktopt);
   2203 	}
   2204 	opt = *pktopt;
   2205 
   2206 	return (ip6_setpktopt(optname, buf, len, opt, priv, 1, 0, uproto));
   2207 }
   2208 
   2209 static int
   2210 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf **mp)
   2211 {
   2212 	void *optdata = NULL;
   2213 	int optdatalen = 0;
   2214 	struct ip6_ext *ip6e;
   2215 	int error = 0;
   2216 	struct in6_pktinfo null_pktinfo;
   2217 	int deftclass = 0, on;
   2218 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
   2219 	struct mbuf *m;
   2220 
   2221 	switch (optname) {
   2222 	case IPV6_PKTINFO:
   2223 		if (pktopt && pktopt->ip6po_pktinfo)
   2224 			optdata = (void *)pktopt->ip6po_pktinfo;
   2225 		else {
   2226 			/* XXX: we don't have to do this every time... */
   2227 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
   2228 			optdata = (void *)&null_pktinfo;
   2229 		}
   2230 		optdatalen = sizeof(struct in6_pktinfo);
   2231 		break;
   2232 	case IPV6_OTCLASS:
   2233 		/* XXX */
   2234 		return (EINVAL);
   2235 	case IPV6_TCLASS:
   2236 		if (pktopt && pktopt->ip6po_tclass >= 0)
   2237 			optdata = (void *)&pktopt->ip6po_tclass;
   2238 		else
   2239 			optdata = (void *)&deftclass;
   2240 		optdatalen = sizeof(int);
   2241 		break;
   2242 	case IPV6_HOPOPTS:
   2243 		if (pktopt && pktopt->ip6po_hbh) {
   2244 			optdata = (void *)pktopt->ip6po_hbh;
   2245 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
   2246 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2247 		}
   2248 		break;
   2249 	case IPV6_RTHDR:
   2250 		if (pktopt && pktopt->ip6po_rthdr) {
   2251 			optdata = (void *)pktopt->ip6po_rthdr;
   2252 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
   2253 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2254 		}
   2255 		break;
   2256 	case IPV6_RTHDRDSTOPTS:
   2257 		if (pktopt && pktopt->ip6po_dest1) {
   2258 			optdata = (void *)pktopt->ip6po_dest1;
   2259 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
   2260 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2261 		}
   2262 		break;
   2263 	case IPV6_DSTOPTS:
   2264 		if (pktopt && pktopt->ip6po_dest2) {
   2265 			optdata = (void *)pktopt->ip6po_dest2;
   2266 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
   2267 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2268 		}
   2269 		break;
   2270 	case IPV6_NEXTHOP:
   2271 		if (pktopt && pktopt->ip6po_nexthop) {
   2272 			optdata = (void *)pktopt->ip6po_nexthop;
   2273 			optdatalen = pktopt->ip6po_nexthop->sa_len;
   2274 		}
   2275 		break;
   2276 	case IPV6_USE_MIN_MTU:
   2277 		if (pktopt)
   2278 			optdata = (void *)&pktopt->ip6po_minmtu;
   2279 		else
   2280 			optdata = (void *)&defminmtu;
   2281 		optdatalen = sizeof(int);
   2282 		break;
   2283 	case IPV6_DONTFRAG:
   2284 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
   2285 			on = 1;
   2286 		else
   2287 			on = 0;
   2288 		optdata = (void *)&on;
   2289 		optdatalen = sizeof(on);
   2290 		break;
   2291 	default:		/* should not happen */
   2292 #ifdef DIAGNOSTIC
   2293 		panic("ip6_getpcbopt: unexpected option\n");
   2294 #endif
   2295 		return (ENOPROTOOPT);
   2296 	}
   2297 
   2298 	if (optdatalen > MCLBYTES)
   2299 		return (EMSGSIZE); /* XXX */
   2300 	*mp = m = m_get(M_WAIT, MT_SOOPTS);
   2301 	if (optdatalen > MLEN)
   2302 		MCLGET(m, M_WAIT);
   2303 	m->m_len = optdatalen;
   2304 	if (optdatalen)
   2305 		memcpy(mtod(m, void *), optdata, optdatalen);
   2306 
   2307 	return (error);
   2308 }
   2309 
   2310 void
   2311 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
   2312 {
   2313 	if (optname == -1 || optname == IPV6_PKTINFO) {
   2314 		if (pktopt->ip6po_pktinfo)
   2315 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
   2316 		pktopt->ip6po_pktinfo = NULL;
   2317 	}
   2318 	if (optname == -1 || optname == IPV6_HOPLIMIT)
   2319 		pktopt->ip6po_hlim = -1;
   2320 	if (optname == -1 || optname == IPV6_TCLASS)
   2321 		pktopt->ip6po_tclass = -1;
   2322 	if (optname == -1 || optname == IPV6_NEXTHOP) {
   2323 		if (pktopt->ip6po_nextroute.ro_rt) {
   2324 			RTFREE(pktopt->ip6po_nextroute.ro_rt);
   2325 			pktopt->ip6po_nextroute.ro_rt = NULL;
   2326 		}
   2327 		if (pktopt->ip6po_nexthop)
   2328 			free(pktopt->ip6po_nexthop, M_IP6OPT);
   2329 		pktopt->ip6po_nexthop = NULL;
   2330 	}
   2331 	if (optname == -1 || optname == IPV6_HOPOPTS) {
   2332 		if (pktopt->ip6po_hbh)
   2333 			free(pktopt->ip6po_hbh, M_IP6OPT);
   2334 		pktopt->ip6po_hbh = NULL;
   2335 	}
   2336 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
   2337 		if (pktopt->ip6po_dest1)
   2338 			free(pktopt->ip6po_dest1, M_IP6OPT);
   2339 		pktopt->ip6po_dest1 = NULL;
   2340 	}
   2341 	if (optname == -1 || optname == IPV6_RTHDR) {
   2342 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2343 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
   2344 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
   2345 		if (pktopt->ip6po_route.ro_rt) {
   2346 			RTFREE(pktopt->ip6po_route.ro_rt);
   2347 			pktopt->ip6po_route.ro_rt = NULL;
   2348 		}
   2349 	}
   2350 	if (optname == -1 || optname == IPV6_DSTOPTS) {
   2351 		if (pktopt->ip6po_dest2)
   2352 			free(pktopt->ip6po_dest2, M_IP6OPT);
   2353 		pktopt->ip6po_dest2 = NULL;
   2354 	}
   2355 }
   2356 
   2357 #define PKTOPT_EXTHDRCPY(type) 					\
   2358 do {								\
   2359 	if (src->type) {					\
   2360 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
   2361 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
   2362 		if (dst->type == NULL && canwait == M_NOWAIT)	\
   2363 			goto bad;				\
   2364 		memcpy(dst->type, src->type, hlen);		\
   2365 	}							\
   2366 } while (/*CONSTCOND*/ 0)
   2367 
   2368 static int
   2369 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
   2370 {
   2371 	dst->ip6po_hlim = src->ip6po_hlim;
   2372 	dst->ip6po_tclass = src->ip6po_tclass;
   2373 	dst->ip6po_flags = src->ip6po_flags;
   2374 	if (src->ip6po_pktinfo) {
   2375 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
   2376 		    M_IP6OPT, canwait);
   2377 		if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT)
   2378 			goto bad;
   2379 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
   2380 	}
   2381 	if (src->ip6po_nexthop) {
   2382 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
   2383 		    M_IP6OPT, canwait);
   2384 		if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT)
   2385 			goto bad;
   2386 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
   2387 		    src->ip6po_nexthop->sa_len);
   2388 	}
   2389 	PKTOPT_EXTHDRCPY(ip6po_hbh);
   2390 	PKTOPT_EXTHDRCPY(ip6po_dest1);
   2391 	PKTOPT_EXTHDRCPY(ip6po_dest2);
   2392 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
   2393 	return (0);
   2394 
   2395   bad:
   2396 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
   2397 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
   2398 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
   2399 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
   2400 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
   2401 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
   2402 
   2403 	return (ENOBUFS);
   2404 }
   2405 #undef PKTOPT_EXTHDRCPY
   2406 
   2407 struct ip6_pktopts *
   2408 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
   2409 {
   2410 	int error;
   2411 	struct ip6_pktopts *dst;
   2412 
   2413 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
   2414 	if (dst == NULL && canwait == M_NOWAIT)
   2415 		return (NULL);
   2416 	ip6_initpktopts(dst);
   2417 
   2418 	if ((error = copypktopts(dst, src, canwait)) != 0) {
   2419 		free(dst, M_IP6OPT);
   2420 		return (NULL);
   2421 	}
   2422 
   2423 	return (dst);
   2424 }
   2425 
   2426 void
   2427 ip6_freepcbopts(struct ip6_pktopts *pktopt)
   2428 {
   2429 	if (pktopt == NULL)
   2430 		return;
   2431 
   2432 	ip6_clearpktopts(pktopt, -1);
   2433 
   2434 	free(pktopt, M_IP6OPT);
   2435 }
   2436 
   2437 /*
   2438  * Set the IP6 multicast options in response to user setsockopt().
   2439  */
   2440 static int
   2441 ip6_setmoptions(optname, im6op, m)
   2442 	int optname;
   2443 	struct ip6_moptions **im6op;
   2444 	struct mbuf *m;
   2445 {
   2446 	int error = 0;
   2447 	u_int loop, ifindex;
   2448 	struct ipv6_mreq *mreq;
   2449 	struct ifnet *ifp;
   2450 	struct ip6_moptions *im6o = *im6op;
   2451 	struct route_in6 ro;
   2452 	struct in6_multi_mship *imm;
   2453 	struct lwp *l = curlwp;	/* XXX */
   2454 
   2455 	if (im6o == NULL) {
   2456 		/*
   2457 		 * No multicast option buffer attached to the pcb;
   2458 		 * allocate one and initialize to default values.
   2459 		 */
   2460 		im6o = (struct ip6_moptions *)
   2461 			malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
   2462 
   2463 		if (im6o == NULL)
   2464 			return (ENOBUFS);
   2465 		*im6op = im6o;
   2466 		im6o->im6o_multicast_ifp = NULL;
   2467 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2468 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   2469 		LIST_INIT(&im6o->im6o_memberships);
   2470 	}
   2471 
   2472 	switch (optname) {
   2473 
   2474 	case IPV6_MULTICAST_IF:
   2475 		/*
   2476 		 * Select the interface for outgoing multicast packets.
   2477 		 */
   2478 		if (m == NULL || m->m_len != sizeof(u_int)) {
   2479 			error = EINVAL;
   2480 			break;
   2481 		}
   2482 		bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
   2483 		if (ifindex != 0) {
   2484 			if (if_indexlim <= ifindex || !ifindex2ifnet[ifindex]) {
   2485 				error = ENXIO;	/* XXX EINVAL? */
   2486 				break;
   2487 			}
   2488 			ifp = ifindex2ifnet[ifindex];
   2489 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   2490 				error = EADDRNOTAVAIL;
   2491 				break;
   2492 			}
   2493 		} else
   2494 			ifp = NULL;
   2495 		im6o->im6o_multicast_ifp = ifp;
   2496 		break;
   2497 
   2498 	case IPV6_MULTICAST_HOPS:
   2499 	    {
   2500 		/*
   2501 		 * Set the IP6 hoplimit for outgoing multicast packets.
   2502 		 */
   2503 		int optval;
   2504 		if (m == NULL || m->m_len != sizeof(int)) {
   2505 			error = EINVAL;
   2506 			break;
   2507 		}
   2508 		bcopy(mtod(m, u_int *), &optval, sizeof(optval));
   2509 		if (optval < -1 || optval >= 256)
   2510 			error = EINVAL;
   2511 		else if (optval == -1)
   2512 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2513 		else
   2514 			im6o->im6o_multicast_hlim = optval;
   2515 		break;
   2516 	    }
   2517 
   2518 	case IPV6_MULTICAST_LOOP:
   2519 		/*
   2520 		 * Set the loopback flag for outgoing multicast packets.
   2521 		 * Must be zero or one.
   2522 		 */
   2523 		if (m == NULL || m->m_len != sizeof(u_int)) {
   2524 			error = EINVAL;
   2525 			break;
   2526 		}
   2527 		bcopy(mtod(m, u_int *), &loop, sizeof(loop));
   2528 		if (loop > 1) {
   2529 			error = EINVAL;
   2530 			break;
   2531 		}
   2532 		im6o->im6o_multicast_loop = loop;
   2533 		break;
   2534 
   2535 	case IPV6_JOIN_GROUP:
   2536 		/*
   2537 		 * Add a multicast group membership.
   2538 		 * Group must be a valid IP6 multicast address.
   2539 		 */
   2540 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   2541 			error = EINVAL;
   2542 			break;
   2543 		}
   2544 		mreq = mtod(m, struct ipv6_mreq *);
   2545 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
   2546 			/*
   2547 			 * We use the unspecified address to specify to accept
   2548 			 * all multicast addresses. Only super user is allowed
   2549 			 * to do this.
   2550 			 */
   2551 			if (kauth_authorize_generic(l->l_cred,
   2552 			    KAUTH_GENERIC_ISSUSER, &l->l_acflag))
   2553 			{
   2554 				error = EACCES;
   2555 				break;
   2556 			}
   2557 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
   2558 			error = EINVAL;
   2559 			break;
   2560 		}
   2561 
   2562 		/*
   2563 		 * If no interface was explicitly specified, choose an
   2564 		 * appropriate one according to the given multicast address.
   2565 		 */
   2566 		if (mreq->ipv6mr_interface == 0) {
   2567 			struct sockaddr_in6 *dst;
   2568 
   2569 			/*
   2570 			 * Look up the routing table for the
   2571 			 * address, and choose the outgoing interface.
   2572 			 *   XXX: is it a good approach?
   2573 			 */
   2574 			ro.ro_rt = NULL;
   2575 			dst = (struct sockaddr_in6 *)&ro.ro_dst;
   2576 			bzero(dst, sizeof(*dst));
   2577 			dst->sin6_family = AF_INET6;
   2578 			dst->sin6_len = sizeof(*dst);
   2579 			dst->sin6_addr = mreq->ipv6mr_multiaddr;
   2580 			rtalloc((struct route *)&ro);
   2581 			if (ro.ro_rt == NULL) {
   2582 				error = EADDRNOTAVAIL;
   2583 				break;
   2584 			}
   2585 			ifp = ro.ro_rt->rt_ifp;
   2586 			rtfree(ro.ro_rt);
   2587 		} else {
   2588 			/*
   2589 			 * If the interface is specified, validate it.
   2590 			 */
   2591 			if (if_indexlim <= mreq->ipv6mr_interface ||
   2592 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
   2593 				error = ENXIO;	/* XXX EINVAL? */
   2594 				break;
   2595 			}
   2596 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   2597 		}
   2598 
   2599 		/*
   2600 		 * See if we found an interface, and confirm that it
   2601 		 * supports multicast
   2602 		 */
   2603 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   2604 			error = EADDRNOTAVAIL;
   2605 			break;
   2606 		}
   2607 
   2608 		if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
   2609 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   2610 			break;
   2611 		}
   2612 
   2613 		/*
   2614 		 * See if the membership already exists.
   2615 		 */
   2616 		for (imm = im6o->im6o_memberships.lh_first;
   2617 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   2618 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2619 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2620 			    &mreq->ipv6mr_multiaddr))
   2621 				break;
   2622 		if (imm != NULL) {
   2623 			error = EADDRINUSE;
   2624 			break;
   2625 		}
   2626 		/*
   2627 		 * Everything looks good; add a new record to the multicast
   2628 		 * address list for the given interface.
   2629 		 */
   2630 		imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0);
   2631 		if (imm == NULL)
   2632 			break;
   2633 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2634 		break;
   2635 
   2636 	case IPV6_LEAVE_GROUP:
   2637 		/*
   2638 		 * Drop a multicast group membership.
   2639 		 * Group must be a valid IP6 multicast address.
   2640 		 */
   2641 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   2642 			error = EINVAL;
   2643 			break;
   2644 		}
   2645 		mreq = mtod(m, struct ipv6_mreq *);
   2646 
   2647 		/*
   2648 		 * If an interface address was specified, get a pointer
   2649 		 * to its ifnet structure.
   2650 		 */
   2651 		if (mreq->ipv6mr_interface != 0) {
   2652 			if (if_indexlim <= mreq->ipv6mr_interface ||
   2653 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
   2654 				error = ENXIO;	/* XXX EINVAL? */
   2655 				break;
   2656 			}
   2657 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   2658 		} else
   2659 			ifp = NULL;
   2660 
   2661 		/* Fill in the scope zone ID */
   2662 		if (ifp) {
   2663 			if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
   2664 				/* XXX: should not happen */
   2665 				error = EADDRNOTAVAIL;
   2666 				break;
   2667 			}
   2668 		} else if (mreq->ipv6mr_interface != 0) {
   2669 			/*
   2670 			 * XXX: This case would happens when the (positive)
   2671 			 * index is in the valid range, but the corresponding
   2672 			 * interface has been detached dynamically.  The above
   2673 			 * check probably avoids such case to happen here, but
   2674 			 * we check it explicitly for safety.
   2675 			 */
   2676 			error = EADDRNOTAVAIL;
   2677 			break;
   2678 		} else {	/* ipv6mr_interface == 0 */
   2679 			struct sockaddr_in6 sa6_mc;
   2680 
   2681 			/*
   2682 			 * The API spec says as follows:
   2683 			 *  If the interface index is specified as 0, the
   2684 			 *  system may choose a multicast group membership to
   2685 			 *  drop by matching the multicast address only.
   2686 			 * On the other hand, we cannot disambiguate the scope
   2687 			 * zone unless an interface is provided.  Thus, we
   2688 			 * check if there's ambiguity with the default scope
   2689 			 * zone as the last resort.
   2690 			 */
   2691 			bzero(&sa6_mc, sizeof(sa6_mc));
   2692 			sa6_mc.sin6_family = AF_INET6;
   2693 			sa6_mc.sin6_len = sizeof(sa6_mc);
   2694 			sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr;
   2695 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2696 			if (error != 0)
   2697 				break;
   2698 			mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2699 		}
   2700 
   2701 		/*
   2702 		 * Find the membership in the membership list.
   2703 		 */
   2704 		for (imm = im6o->im6o_memberships.lh_first;
   2705 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   2706 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2707 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2708 			    &mreq->ipv6mr_multiaddr))
   2709 				break;
   2710 		}
   2711 		if (imm == NULL) {
   2712 			/* Unable to resolve interface */
   2713 			error = EADDRNOTAVAIL;
   2714 			break;
   2715 		}
   2716 		/*
   2717 		 * Give up the multicast address record to which the
   2718 		 * membership points.
   2719 		 */
   2720 		LIST_REMOVE(imm, i6mm_chain);
   2721 		in6_leavegroup(imm);
   2722 		break;
   2723 
   2724 	default:
   2725 		error = EOPNOTSUPP;
   2726 		break;
   2727 	}
   2728 
   2729 	/*
   2730 	 * If all options have default values, no need to keep the mbuf.
   2731 	 */
   2732 	if (im6o->im6o_multicast_ifp == NULL &&
   2733 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2734 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2735 	    im6o->im6o_memberships.lh_first == NULL) {
   2736 		free(*im6op, M_IPMOPTS);
   2737 		*im6op = NULL;
   2738 	}
   2739 
   2740 	return (error);
   2741 }
   2742 
   2743 /*
   2744  * Return the IP6 multicast options in response to user getsockopt().
   2745  */
   2746 static int
   2747 ip6_getmoptions(optname, im6o, mp)
   2748 	int optname;
   2749 	struct ip6_moptions *im6o;
   2750 	struct mbuf **mp;
   2751 {
   2752 	u_int *hlim, *loop, *ifindex;
   2753 
   2754 	*mp = m_get(M_WAIT, MT_SOOPTS);
   2755 
   2756 	switch (optname) {
   2757 
   2758 	case IPV6_MULTICAST_IF:
   2759 		ifindex = mtod(*mp, u_int *);
   2760 		(*mp)->m_len = sizeof(u_int);
   2761 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
   2762 			*ifindex = 0;
   2763 		else
   2764 			*ifindex = im6o->im6o_multicast_ifp->if_index;
   2765 		return (0);
   2766 
   2767 	case IPV6_MULTICAST_HOPS:
   2768 		hlim = mtod(*mp, u_int *);
   2769 		(*mp)->m_len = sizeof(u_int);
   2770 		if (im6o == NULL)
   2771 			*hlim = ip6_defmcasthlim;
   2772 		else
   2773 			*hlim = im6o->im6o_multicast_hlim;
   2774 		return (0);
   2775 
   2776 	case IPV6_MULTICAST_LOOP:
   2777 		loop = mtod(*mp, u_int *);
   2778 		(*mp)->m_len = sizeof(u_int);
   2779 		if (im6o == NULL)
   2780 			*loop = ip6_defmcasthlim;
   2781 		else
   2782 			*loop = im6o->im6o_multicast_loop;
   2783 		return (0);
   2784 
   2785 	default:
   2786 		return (EOPNOTSUPP);
   2787 	}
   2788 }
   2789 
   2790 /*
   2791  * Discard the IP6 multicast options.
   2792  */
   2793 void
   2794 ip6_freemoptions(im6o)
   2795 	struct ip6_moptions *im6o;
   2796 {
   2797 	struct in6_multi_mship *imm;
   2798 
   2799 	if (im6o == NULL)
   2800 		return;
   2801 
   2802 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   2803 		LIST_REMOVE(imm, i6mm_chain);
   2804 		in6_leavegroup(imm);
   2805 	}
   2806 	free(im6o, M_IPMOPTS);
   2807 }
   2808 
   2809 /*
   2810  * Set IPv6 outgoing packet options based on advanced API.
   2811  */
   2812 int
   2813 ip6_setpktopts(control, opt, stickyopt, priv, uproto)
   2814 	struct mbuf *control;
   2815 	struct ip6_pktopts *opt, *stickyopt;
   2816 	int priv, uproto;
   2817 {
   2818 	struct cmsghdr *cm = 0;
   2819 
   2820 	if (control == NULL || opt == NULL)
   2821 		return (EINVAL);
   2822 
   2823 	ip6_initpktopts(opt);
   2824 	if (stickyopt) {
   2825 		int error;
   2826 
   2827 		/*
   2828 		 * If stickyopt is provided, make a local copy of the options
   2829 		 * for this particular packet, then override them by ancillary
   2830 		 * objects.
   2831 		 * XXX: copypktopts() does not copy the cached route to a next
   2832 		 * hop (if any).  This is not very good in terms of efficiency,
   2833 		 * but we can allow this since this option should be rarely
   2834 		 * used.
   2835 		 */
   2836 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
   2837 			return (error);
   2838 	}
   2839 
   2840 	/*
   2841 	 * XXX: Currently, we assume all the optional information is stored
   2842 	 * in a single mbuf.
   2843 	 */
   2844 	if (control->m_next)
   2845 		return (EINVAL);
   2846 
   2847 	for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2848 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2849 		int error;
   2850 
   2851 		if (control->m_len < CMSG_LEN(0))
   2852 			return (EINVAL);
   2853 
   2854 		cm = mtod(control, struct cmsghdr *);
   2855 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   2856 			return (EINVAL);
   2857 		if (cm->cmsg_level != IPPROTO_IPV6)
   2858 			continue;
   2859 
   2860 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
   2861 		    cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, 1, uproto);
   2862 		if (error)
   2863 			return (error);
   2864 	}
   2865 
   2866 	return (0);
   2867 }
   2868 
   2869 /*
   2870  * Set a particular packet option, as a sticky option or an ancillary data
   2871  * item.  "len" can be 0 only when it's a sticky option.
   2872  * We have 4 cases of combination of "sticky" and "cmsg":
   2873  * "sticky=0, cmsg=0": impossible
   2874  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
   2875  * "sticky=1, cmsg=0": RFC3542 socket option
   2876  * "sticky=1, cmsg=1": RFC2292 socket option
   2877  */
   2878 static int
   2879 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
   2880     int priv, int sticky, int cmsg, int uproto)
   2881 {
   2882 	int minmtupolicy;
   2883 
   2884 	if (!sticky && !cmsg) {
   2885 #ifdef DIAGNOSTIC
   2886 		printf("ip6_setpktopt: impossible case\n");
   2887 #endif
   2888 		return (EINVAL);
   2889 	}
   2890 
   2891 	/*
   2892 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
   2893 	 * not be specified in the context of RFC3542.  Conversely,
   2894 	 * RFC3542 types should not be specified in the context of RFC2292.
   2895 	 */
   2896 	if (!cmsg) {
   2897 		switch (optname) {
   2898 		case IPV6_2292PKTINFO:
   2899 		case IPV6_2292HOPLIMIT:
   2900 		case IPV6_2292NEXTHOP:
   2901 		case IPV6_2292HOPOPTS:
   2902 		case IPV6_2292DSTOPTS:
   2903 		case IPV6_2292RTHDR:
   2904 		case IPV6_2292PKTOPTIONS:
   2905 			return (ENOPROTOOPT);
   2906 		}
   2907 	}
   2908 	if (sticky && cmsg) {
   2909 		switch (optname) {
   2910 		case IPV6_PKTINFO:
   2911 		case IPV6_HOPLIMIT:
   2912 		case IPV6_NEXTHOP:
   2913 		case IPV6_HOPOPTS:
   2914 		case IPV6_DSTOPTS:
   2915 		case IPV6_RTHDRDSTOPTS:
   2916 		case IPV6_RTHDR:
   2917 		case IPV6_USE_MIN_MTU:
   2918 		case IPV6_DONTFRAG:
   2919 		case IPV6_OTCLASS:
   2920 		case IPV6_TCLASS:
   2921 			return (ENOPROTOOPT);
   2922 		}
   2923 	}
   2924 
   2925 	switch (optname) {
   2926 #ifdef RFC2292
   2927 	case IPV6_2292PKTINFO:
   2928 #endif
   2929 	case IPV6_PKTINFO:
   2930 	{
   2931 		struct ifnet *ifp = NULL;
   2932 		struct in6_pktinfo *pktinfo;
   2933 
   2934 		if (len != sizeof(struct in6_pktinfo))
   2935 			return (EINVAL);
   2936 
   2937 		pktinfo = (struct in6_pktinfo *)buf;
   2938 
   2939 		/*
   2940 		 * An application can clear any sticky IPV6_PKTINFO option by
   2941 		 * doing a "regular" setsockopt with ipi6_addr being
   2942 		 * in6addr_any and ipi6_ifindex being zero.
   2943 		 * [RFC 3542, Section 6]
   2944 		 */
   2945 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
   2946 		    pktinfo->ipi6_ifindex == 0 &&
   2947 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2948 			ip6_clearpktopts(opt, optname);
   2949 			break;
   2950 		}
   2951 
   2952 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
   2953 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2954 			return (EINVAL);
   2955 		}
   2956 
   2957 		/* validate the interface index if specified. */
   2958 		if (pktinfo->ipi6_ifindex >= if_indexlim) {
   2959 			 return (ENXIO);
   2960 		}
   2961 		if (pktinfo->ipi6_ifindex) {
   2962 			ifp = ifindex2ifnet[pktinfo->ipi6_ifindex];
   2963 			if (ifp == NULL)
   2964 				return (ENXIO);
   2965 		}
   2966 
   2967 		/*
   2968 		 * We store the address anyway, and let in6_selectsrc()
   2969 		 * validate the specified address.  This is because ipi6_addr
   2970 		 * may not have enough information about its scope zone, and
   2971 		 * we may need additional information (such as outgoing
   2972 		 * interface or the scope zone of a destination address) to
   2973 		 * disambiguate the scope.
   2974 		 * XXX: the delay of the validation may confuse the
   2975 		 * application when it is used as a sticky option.
   2976 		 */
   2977 		if (opt->ip6po_pktinfo == NULL) {
   2978 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
   2979 			    M_IP6OPT, M_NOWAIT);
   2980 			if (opt->ip6po_pktinfo == NULL)
   2981 				return (ENOBUFS);
   2982 		}
   2983 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
   2984 		break;
   2985 	}
   2986 
   2987 #ifdef RFC2292
   2988 	case IPV6_2292HOPLIMIT:
   2989 #endif
   2990 	case IPV6_HOPLIMIT:
   2991 	{
   2992 		int *hlimp;
   2993 
   2994 		/*
   2995 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
   2996 		 * to simplify the ordering among hoplimit options.
   2997 		 */
   2998 		if (optname == IPV6_HOPLIMIT && sticky)
   2999 			return (ENOPROTOOPT);
   3000 
   3001 		if (len != sizeof(int))
   3002 			return (EINVAL);
   3003 		hlimp = (int *)buf;
   3004 		if (*hlimp < -1 || *hlimp > 255)
   3005 			return (EINVAL);
   3006 
   3007 		opt->ip6po_hlim = *hlimp;
   3008 		break;
   3009 	}
   3010 
   3011 	case IPV6_OTCLASS:
   3012 		if (len != sizeof(u_int8_t))
   3013 			return (EINVAL);
   3014 
   3015 		opt->ip6po_tclass = *(u_int8_t *)buf;
   3016 		break;
   3017 
   3018 	case IPV6_TCLASS:
   3019 	{
   3020 		int tclass;
   3021 
   3022 		if (len != sizeof(int))
   3023 			return (EINVAL);
   3024 		tclass = *(int *)buf;
   3025 		if (tclass < -1 || tclass > 255)
   3026 			return (EINVAL);
   3027 
   3028 		opt->ip6po_tclass = tclass;
   3029 		break;
   3030 	}
   3031 
   3032 #ifdef RFC2292
   3033 	case IPV6_2292NEXTHOP:
   3034 #endif
   3035 	case IPV6_NEXTHOP:
   3036 		if (!priv)
   3037 			return (EPERM);
   3038 
   3039 		if (len == 0) {	/* just remove the option */
   3040 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
   3041 			break;
   3042 		}
   3043 
   3044 		/* check if cmsg_len is large enough for sa_len */
   3045 		if (len < sizeof(struct sockaddr) || len < *buf)
   3046 			return (EINVAL);
   3047 
   3048 		switch (((struct sockaddr *)buf)->sa_family) {
   3049 		case AF_INET6:
   3050 		{
   3051 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
   3052 			int error;
   3053 
   3054 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
   3055 				return (EINVAL);
   3056 
   3057 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
   3058 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
   3059 				return (EINVAL);
   3060 			}
   3061 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
   3062 			    != 0) {
   3063 				return (error);
   3064 			}
   3065 			break;
   3066 		}
   3067 		case AF_LINK:	/* eventually be supported? */
   3068 		default:
   3069 			return (EAFNOSUPPORT);
   3070 		}
   3071 
   3072 		/* turn off the previous option, then set the new option. */
   3073 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
   3074 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
   3075 		if (opt->ip6po_nexthop == NULL)
   3076 			return (ENOBUFS);
   3077 		memcpy(opt->ip6po_nexthop, buf, *buf);
   3078 		break;
   3079 
   3080 #ifdef RFC2292
   3081 	case IPV6_2292HOPOPTS:
   3082 #endif
   3083 	case IPV6_HOPOPTS:
   3084 	{
   3085 		struct ip6_hbh *hbh;
   3086 		int hbhlen;
   3087 
   3088 		/*
   3089 		 * XXX: We don't allow a non-privileged user to set ANY HbH
   3090 		 * options, since per-option restriction has too much
   3091 		 * overhead.
   3092 		 */
   3093 		if (!priv)
   3094 			return (EPERM);
   3095 
   3096 		if (len == 0) {
   3097 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3098 			break;	/* just remove the option */
   3099 		}
   3100 
   3101 		/* message length validation */
   3102 		if (len < sizeof(struct ip6_hbh))
   3103 			return (EINVAL);
   3104 		hbh = (struct ip6_hbh *)buf;
   3105 		hbhlen = (hbh->ip6h_len + 1) << 3;
   3106 		if (len != hbhlen)
   3107 			return (EINVAL);
   3108 
   3109 		/* turn off the previous option, then set the new option. */
   3110 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3111 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
   3112 		if (opt->ip6po_hbh == NULL)
   3113 			return (ENOBUFS);
   3114 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
   3115 
   3116 		break;
   3117 	}
   3118 
   3119 #ifdef RFC2292
   3120 	case IPV6_2292DSTOPTS:
   3121 #endif
   3122 	case IPV6_DSTOPTS:
   3123 	case IPV6_RTHDRDSTOPTS:
   3124 	{
   3125 		struct ip6_dest *dest, **newdest = NULL;
   3126 		int destlen;
   3127 
   3128 		if (!priv)	/* XXX: see the comment for IPV6_HOPOPTS */
   3129 			return (EPERM);
   3130 
   3131 		if (len == 0) {
   3132 			ip6_clearpktopts(opt, optname);
   3133 			break;	/* just remove the option */
   3134 		}
   3135 
   3136 		/* message length validation */
   3137 		if (len < sizeof(struct ip6_dest))
   3138 			return (EINVAL);
   3139 		dest = (struct ip6_dest *)buf;
   3140 		destlen = (dest->ip6d_len + 1) << 3;
   3141 		if (len != destlen)
   3142 			return (EINVAL);
   3143 		/*
   3144 		 * Determine the position that the destination options header
   3145 		 * should be inserted; before or after the routing header.
   3146 		 */
   3147 		switch (optname) {
   3148 		case IPV6_2292DSTOPTS:
   3149 			/*
   3150 			 * The old advanced API is ambiguous on this point.
   3151 			 * Our approach is to determine the position based
   3152 			 * according to the existence of a routing header.
   3153 			 * Note, however, that this depends on the order of the
   3154 			 * extension headers in the ancillary data; the 1st
   3155 			 * part of the destination options header must appear
   3156 			 * before the routing header in the ancillary data,
   3157 			 * too.
   3158 			 * RFC3542 solved the ambiguity by introducing
   3159 			 * separate ancillary data or option types.
   3160 			 */
   3161 			if (opt->ip6po_rthdr == NULL)
   3162 				newdest = &opt->ip6po_dest1;
   3163 			else
   3164 				newdest = &opt->ip6po_dest2;
   3165 			break;
   3166 		case IPV6_RTHDRDSTOPTS:
   3167 			newdest = &opt->ip6po_dest1;
   3168 			break;
   3169 		case IPV6_DSTOPTS:
   3170 			newdest = &opt->ip6po_dest2;
   3171 			break;
   3172 		}
   3173 
   3174 		/* turn off the previous option, then set the new option. */
   3175 		ip6_clearpktopts(opt, optname);
   3176 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
   3177 		if (*newdest == NULL)
   3178 			return (ENOBUFS);
   3179 		memcpy(*newdest, dest, destlen);
   3180 
   3181 		break;
   3182 	}
   3183 
   3184 #ifdef RFC2292
   3185 	case IPV6_2292RTHDR:
   3186 #endif
   3187 	case IPV6_RTHDR:
   3188 	{
   3189 		struct ip6_rthdr *rth;
   3190 		int rthlen;
   3191 
   3192 		if (len == 0) {
   3193 			ip6_clearpktopts(opt, IPV6_RTHDR);
   3194 			break;	/* just remove the option */
   3195 		}
   3196 
   3197 		/* message length validation */
   3198 		if (len < sizeof(struct ip6_rthdr))
   3199 			return (EINVAL);
   3200 		rth = (struct ip6_rthdr *)buf;
   3201 		rthlen = (rth->ip6r_len + 1) << 3;
   3202 		if (len != rthlen)
   3203 			return (EINVAL);
   3204 		switch (rth->ip6r_type) {
   3205 		case IPV6_RTHDR_TYPE_0:
   3206 			if (rth->ip6r_len == 0)	/* must contain one addr */
   3207 				return (EINVAL);
   3208 			if (rth->ip6r_len % 2) /* length must be even */
   3209 				return (EINVAL);
   3210 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
   3211 				return (EINVAL);
   3212 			break;
   3213 		default:
   3214 			return (EINVAL);	/* not supported */
   3215 		}
   3216 		/* turn off the previous option */
   3217 		ip6_clearpktopts(opt, IPV6_RTHDR);
   3218 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
   3219 		if (opt->ip6po_rthdr == NULL)
   3220 			return (ENOBUFS);
   3221 		memcpy(opt->ip6po_rthdr, rth, rthlen);
   3222 		break;
   3223 	}
   3224 
   3225 	case IPV6_USE_MIN_MTU:
   3226 		if (len != sizeof(int))
   3227 			return (EINVAL);
   3228 		minmtupolicy = *(int *)buf;
   3229 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
   3230 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
   3231 		    minmtupolicy != IP6PO_MINMTU_ALL) {
   3232 			return (EINVAL);
   3233 		}
   3234 		opt->ip6po_minmtu = minmtupolicy;
   3235 		break;
   3236 
   3237 	case IPV6_DONTFRAG:
   3238 		if (len != sizeof(int))
   3239 			return (EINVAL);
   3240 
   3241 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
   3242 			/*
   3243 			 * we ignore this option for TCP sockets.
   3244 			 * (RFC3542 leaves this case unspecified.)
   3245 			 */
   3246 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
   3247 		} else
   3248 			opt->ip6po_flags |= IP6PO_DONTFRAG;
   3249 		break;
   3250 
   3251 	default:
   3252 		return (ENOPROTOOPT);
   3253 	} /* end of switch */
   3254 
   3255 	return (0);
   3256 }
   3257 
   3258 /*
   3259  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   3260  * packet to the input queue of a specified interface.  Note that this
   3261  * calls the output routine of the loopback "driver", but with an interface
   3262  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   3263  */
   3264 void
   3265 ip6_mloopback(ifp, m, dst)
   3266 	struct ifnet *ifp;
   3267 	struct mbuf *m;
   3268 	struct sockaddr_in6 *dst;
   3269 {
   3270 	struct mbuf *copym;
   3271 	struct ip6_hdr *ip6;
   3272 
   3273 	copym = m_copy(m, 0, M_COPYALL);
   3274 	if (copym == NULL)
   3275 		return;
   3276 
   3277 	/*
   3278 	 * Make sure to deep-copy IPv6 header portion in case the data
   3279 	 * is in an mbuf cluster, so that we can safely override the IPv6
   3280 	 * header portion later.
   3281 	 */
   3282 	if ((copym->m_flags & M_EXT) != 0 ||
   3283 	    copym->m_len < sizeof(struct ip6_hdr)) {
   3284 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   3285 		if (copym == NULL)
   3286 			return;
   3287 	}
   3288 
   3289 #ifdef DIAGNOSTIC
   3290 	if (copym->m_len < sizeof(*ip6)) {
   3291 		m_freem(copym);
   3292 		return;
   3293 	}
   3294 #endif
   3295 
   3296 	ip6 = mtod(copym, struct ip6_hdr *);
   3297 	/*
   3298 	 * clear embedded scope identifiers if necessary.
   3299 	 * in6_clearscope will touch the addresses only when necessary.
   3300 	 */
   3301 	in6_clearscope(&ip6->ip6_src);
   3302 	in6_clearscope(&ip6->ip6_dst);
   3303 
   3304 	(void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
   3305 }
   3306 
   3307 /*
   3308  * Chop IPv6 header off from the payload.
   3309  */
   3310 static int
   3311 ip6_splithdr(m, exthdrs)
   3312 	struct mbuf *m;
   3313 	struct ip6_exthdrs *exthdrs;
   3314 {
   3315 	struct mbuf *mh;
   3316 	struct ip6_hdr *ip6;
   3317 
   3318 	ip6 = mtod(m, struct ip6_hdr *);
   3319 	if (m->m_len > sizeof(*ip6)) {
   3320 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   3321 		if (mh == 0) {
   3322 			m_freem(m);
   3323 			return ENOBUFS;
   3324 		}
   3325 		M_MOVE_PKTHDR(mh, m);
   3326 		MH_ALIGN(mh, sizeof(*ip6));
   3327 		m->m_len -= sizeof(*ip6);
   3328 		m->m_data += sizeof(*ip6);
   3329 		mh->m_next = m;
   3330 		m = mh;
   3331 		m->m_len = sizeof(*ip6);
   3332 		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
   3333 	}
   3334 	exthdrs->ip6e_ip6 = m;
   3335 	return 0;
   3336 }
   3337 
   3338 /*
   3339  * Compute IPv6 extension header length.
   3340  */
   3341 int
   3342 ip6_optlen(in6p)
   3343 	struct in6pcb *in6p;
   3344 {
   3345 	int len;
   3346 
   3347 	if (!in6p->in6p_outputopts)
   3348 		return 0;
   3349 
   3350 	len = 0;
   3351 #define elen(x) \
   3352     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   3353 
   3354 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   3355 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   3356 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   3357 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   3358 	return len;
   3359 #undef elen
   3360 }
   3361