ip6_output.c revision 1.114 1 /* $NetBSD: ip6_output.c,v 1.114 2007/02/10 09:43:05 degroote Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.114 2007/02/10 09:43:05 degroote Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_pfil_hooks.h"
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/kauth.h>
82
83 #include <net/if.h>
84 #include <net/route.h>
85 #ifdef PFIL_HOOKS
86 #include <net/pfil.h>
87 #endif
88
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip6.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet6/in6_offload.h>
95 #include <netinet6/ip6_var.h>
96 #include <netinet6/in6_pcb.h>
97 #include <netinet6/nd6.h>
98 #include <netinet6/ip6protosw.h>
99 #include <netinet6/scope6_var.h>
100
101 #ifdef IPSEC
102 #include <netinet6/ipsec.h>
103 #include <netkey/key.h>
104 #endif /* IPSEC */
105
106 #ifdef FAST_IPSEC
107 #include <netipsec/ipsec.h>
108 #include <netipsec/ipsec6.h>
109 #include <netipsec/key.h>
110 #include <netipsec/xform.h>
111 #endif
112
113
114 #include <net/net_osdep.h>
115
116 #ifdef PFIL_HOOKS
117 extern struct pfil_head inet6_pfil_hook; /* XXX */
118 #endif
119
120 struct ip6_exthdrs {
121 struct mbuf *ip6e_ip6;
122 struct mbuf *ip6e_hbh;
123 struct mbuf *ip6e_dest1;
124 struct mbuf *ip6e_rthdr;
125 struct mbuf *ip6e_dest2;
126 };
127
128 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **,
129 int, int));
130 static int ip6_getpcbopt __P((struct ip6_pktopts *, int, struct mbuf **));
131 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, int,
132 int, int, int));
133 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
134 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
135 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
136 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
137 struct ip6_frag **));
138 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
139 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
140 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
141 struct ifnet *, struct in6_addr *, u_long *, int *));
142 static int copypktopts __P((struct ip6_pktopts *, struct ip6_pktopts *, int));
143
144 #ifdef RFC2292
145 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
146 struct socket *));
147 #endif
148
149 #define IN6_NEED_CHECKSUM(ifp, csum_flags) \
150 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
151 (((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \
152 (((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum)))
153
154 /*
155 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
156 * header (with pri, len, nxt, hlim, src, dst).
157 * This function may modify ver and hlim only.
158 * The mbuf chain containing the packet will be freed.
159 * The mbuf opt, if present, will not be freed.
160 *
161 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
162 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
163 * which is rt_rmx.rmx_mtu.
164 */
165 int
166 ip6_output(
167 struct mbuf *m0,
168 struct ip6_pktopts *opt,
169 struct route_in6 *ro,
170 int flags,
171 struct ip6_moptions *im6o,
172 struct socket *so,
173 struct ifnet **ifpp /* XXX: just for statistics */
174 )
175 {
176 struct ip6_hdr *ip6, *mhip6;
177 struct ifnet *ifp, *origifp;
178 struct mbuf *m = m0;
179 int hlen, tlen, len, off;
180 boolean_t tso;
181 struct route_in6 ip6route;
182 struct rtentry *rt = NULL;
183 struct sockaddr_in6 *dst, src_sa, dst_sa;
184 int error = 0;
185 struct in6_ifaddr *ia = NULL;
186 u_long mtu;
187 int alwaysfrag, dontfrag;
188 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
189 struct ip6_exthdrs exthdrs;
190 struct in6_addr finaldst, src0, dst0;
191 u_int32_t zone;
192 struct route_in6 *ro_pmtu = NULL;
193 int hdrsplit = 0;
194 int needipsec = 0;
195 #ifdef IPSEC
196 int needipsectun = 0;
197 struct secpolicy *sp = NULL;
198
199 ip6 = mtod(m, struct ip6_hdr *);
200 #endif /* IPSEC */
201 #ifdef FAST_IPSEC
202 struct secpolicy *sp = NULL;
203 int s;
204 #endif
205
206
207 #ifdef DIAGNOSTIC
208 if ((m->m_flags & M_PKTHDR) == 0)
209 panic("ip6_output: no HDR");
210
211 if ((m->m_pkthdr.csum_flags &
212 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
213 panic("ip6_output: IPv4 checksum offload flags: %d",
214 m->m_pkthdr.csum_flags);
215 }
216
217 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
218 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
219 panic("ip6_output: conflicting checksum offload flags: %d",
220 m->m_pkthdr.csum_flags);
221 }
222 #endif
223
224 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
225
226 #define MAKE_EXTHDR(hp, mp) \
227 do { \
228 if (hp) { \
229 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
230 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
231 ((eh)->ip6e_len + 1) << 3); \
232 if (error) \
233 goto freehdrs; \
234 } \
235 } while (/*CONSTCOND*/ 0)
236
237 bzero(&exthdrs, sizeof(exthdrs));
238 if (opt) {
239 /* Hop-by-Hop options header */
240 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
241 /* Destination options header(1st part) */
242 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
243 /* Routing header */
244 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
245 /* Destination options header(2nd part) */
246 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
247 }
248
249 #ifdef IPSEC
250 if ((flags & IPV6_FORWARDING) != 0) {
251 needipsec = 0;
252 goto skippolicycheck;
253 }
254
255 /* get a security policy for this packet */
256 if (so == NULL)
257 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
258 else {
259 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
260 IPSEC_DIR_OUTBOUND)) {
261 needipsec = 0;
262 goto skippolicycheck;
263 }
264 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
265 }
266
267 if (sp == NULL) {
268 ipsec6stat.out_inval++;
269 goto freehdrs;
270 }
271
272 error = 0;
273
274 /* check policy */
275 switch (sp->policy) {
276 case IPSEC_POLICY_DISCARD:
277 /*
278 * This packet is just discarded.
279 */
280 ipsec6stat.out_polvio++;
281 goto freehdrs;
282
283 case IPSEC_POLICY_BYPASS:
284 case IPSEC_POLICY_NONE:
285 /* no need to do IPsec. */
286 needipsec = 0;
287 break;
288
289 case IPSEC_POLICY_IPSEC:
290 if (sp->req == NULL) {
291 /* XXX should be panic ? */
292 printf("ip6_output: No IPsec request specified.\n");
293 error = EINVAL;
294 goto freehdrs;
295 }
296 needipsec = 1;
297 break;
298
299 case IPSEC_POLICY_ENTRUST:
300 default:
301 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
302 }
303
304 skippolicycheck:;
305 #endif /* IPSEC */
306
307 /*
308 * Calculate the total length of the extension header chain.
309 * Keep the length of the unfragmentable part for fragmentation.
310 */
311 optlen = 0;
312 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
313 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
314 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
315 unfragpartlen = optlen + sizeof(struct ip6_hdr);
316 /* NOTE: we don't add AH/ESP length here. do that later. */
317 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
318
319 #ifdef FAST_IPSEC
320 /* Check the security policy (SP) for the packet */
321
322 /* XXX For moment, we doesn't support packet with extented action */
323 if (optlen !=0)
324 goto freehdrs;
325
326 sp = ipsec6_check_policy(m,so,flags,&needipsec,&error);
327 if (error != 0) {
328 /*
329 * Hack: -EINVAL is used to signal that a packet
330 * should be silently discarded. This is typically
331 * because we asked key management for an SA and
332 * it was delayed (e.g. kicked up to IKE).
333 */
334 if (error == -EINVAL)
335 error = 0;
336 goto freehdrs;
337 }
338 #endif /* FAST_IPSEC */
339
340
341 if (needipsec &&
342 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
343 in6_delayed_cksum(m);
344 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
345 }
346
347
348 /*
349 * If we need IPsec, or there is at least one extension header,
350 * separate IP6 header from the payload.
351 */
352 if ((needipsec || optlen) && !hdrsplit) {
353 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
354 m = NULL;
355 goto freehdrs;
356 }
357 m = exthdrs.ip6e_ip6;
358 hdrsplit++;
359 }
360
361 /* adjust pointer */
362 ip6 = mtod(m, struct ip6_hdr *);
363
364 /* adjust mbuf packet header length */
365 m->m_pkthdr.len += optlen;
366 plen = m->m_pkthdr.len - sizeof(*ip6);
367
368 /* If this is a jumbo payload, insert a jumbo payload option. */
369 if (plen > IPV6_MAXPACKET) {
370 if (!hdrsplit) {
371 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
372 m = NULL;
373 goto freehdrs;
374 }
375 m = exthdrs.ip6e_ip6;
376 hdrsplit++;
377 }
378 /* adjust pointer */
379 ip6 = mtod(m, struct ip6_hdr *);
380 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
381 goto freehdrs;
382 optlen += 8; /* XXX JUMBOOPTLEN */
383 ip6->ip6_plen = 0;
384 } else
385 ip6->ip6_plen = htons(plen);
386
387 /*
388 * Concatenate headers and fill in next header fields.
389 * Here we have, on "m"
390 * IPv6 payload
391 * and we insert headers accordingly. Finally, we should be getting:
392 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
393 *
394 * during the header composing process, "m" points to IPv6 header.
395 * "mprev" points to an extension header prior to esp.
396 */
397 {
398 u_char *nexthdrp = &ip6->ip6_nxt;
399 struct mbuf *mprev = m;
400
401 /*
402 * we treat dest2 specially. this makes IPsec processing
403 * much easier. the goal here is to make mprev point the
404 * mbuf prior to dest2.
405 *
406 * result: IPv6 dest2 payload
407 * m and mprev will point to IPv6 header.
408 */
409 if (exthdrs.ip6e_dest2) {
410 if (!hdrsplit)
411 panic("assumption failed: hdr not split");
412 exthdrs.ip6e_dest2->m_next = m->m_next;
413 m->m_next = exthdrs.ip6e_dest2;
414 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
415 ip6->ip6_nxt = IPPROTO_DSTOPTS;
416 }
417
418 #define MAKE_CHAIN(m, mp, p, i)\
419 do {\
420 if (m) {\
421 if (!hdrsplit) \
422 panic("assumption failed: hdr not split"); \
423 *mtod((m), u_char *) = *(p);\
424 *(p) = (i);\
425 p = mtod((m), u_char *);\
426 (m)->m_next = (mp)->m_next;\
427 (mp)->m_next = (m);\
428 (mp) = (m);\
429 }\
430 } while (/*CONSTCOND*/ 0)
431 /*
432 * result: IPv6 hbh dest1 rthdr dest2 payload
433 * m will point to IPv6 header. mprev will point to the
434 * extension header prior to dest2 (rthdr in the above case).
435 */
436 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
437 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
438 IPPROTO_DSTOPTS);
439 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
440 IPPROTO_ROUTING);
441
442 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
443 sizeof(struct ip6_hdr) + optlen);
444
445 #ifdef IPSEC
446 if (!needipsec)
447 goto skip_ipsec2;
448
449 /*
450 * pointers after IPsec headers are not valid any more.
451 * other pointers need a great care too.
452 * (IPsec routines should not mangle mbufs prior to AH/ESP)
453 */
454 exthdrs.ip6e_dest2 = NULL;
455
456 {
457 struct ip6_rthdr *rh = NULL;
458 int segleft_org = 0;
459 struct ipsec_output_state state;
460
461 if (exthdrs.ip6e_rthdr) {
462 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
463 segleft_org = rh->ip6r_segleft;
464 rh->ip6r_segleft = 0;
465 }
466
467 bzero(&state, sizeof(state));
468 state.m = m;
469 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
470 &needipsectun);
471 m = state.m;
472 if (error) {
473 /* mbuf is already reclaimed in ipsec6_output_trans. */
474 m = NULL;
475 switch (error) {
476 case EHOSTUNREACH:
477 case ENETUNREACH:
478 case EMSGSIZE:
479 case ENOBUFS:
480 case ENOMEM:
481 break;
482 default:
483 printf("ip6_output (ipsec): error code %d\n", error);
484 /* FALLTHROUGH */
485 case ENOENT:
486 /* don't show these error codes to the user */
487 error = 0;
488 break;
489 }
490 goto bad;
491 }
492 if (exthdrs.ip6e_rthdr) {
493 /* ah6_output doesn't modify mbuf chain */
494 rh->ip6r_segleft = segleft_org;
495 }
496 }
497 skip_ipsec2:;
498 #endif
499 }
500
501 /*
502 * If there is a routing header, replace destination address field
503 * with the first hop of the routing header.
504 */
505 if (exthdrs.ip6e_rthdr) {
506 struct ip6_rthdr *rh;
507 struct ip6_rthdr0 *rh0;
508 struct in6_addr *addr;
509 struct sockaddr_in6 sa;
510
511 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
512 struct ip6_rthdr *));
513 finaldst = ip6->ip6_dst;
514 switch (rh->ip6r_type) {
515 case IPV6_RTHDR_TYPE_0:
516 rh0 = (struct ip6_rthdr0 *)rh;
517 addr = (struct in6_addr *)(rh0 + 1);
518
519 /*
520 * construct a sockaddr_in6 form of
521 * the first hop.
522 *
523 * XXX: we may not have enough
524 * information about its scope zone;
525 * there is no standard API to pass
526 * the information from the
527 * application.
528 */
529 bzero(&sa, sizeof(sa));
530 sa.sin6_family = AF_INET6;
531 sa.sin6_len = sizeof(sa);
532 sa.sin6_addr = addr[0];
533 if ((error = sa6_embedscope(&sa,
534 ip6_use_defzone)) != 0) {
535 goto bad;
536 }
537 ip6->ip6_dst = sa.sin6_addr;
538 (void)memmove(&addr[0], &addr[1],
539 sizeof(struct in6_addr) *
540 (rh0->ip6r0_segleft - 1));
541 addr[rh0->ip6r0_segleft - 1] = finaldst;
542 /* XXX */
543 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
544 break;
545 default: /* is it possible? */
546 error = EINVAL;
547 goto bad;
548 }
549 }
550
551 /* Source address validation */
552 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
553 (flags & IPV6_UNSPECSRC) == 0) {
554 error = EOPNOTSUPP;
555 ip6stat.ip6s_badscope++;
556 goto bad;
557 }
558 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
559 error = EOPNOTSUPP;
560 ip6stat.ip6s_badscope++;
561 goto bad;
562 }
563
564 ip6stat.ip6s_localout++;
565
566 /*
567 * Route packet.
568 */
569 /* initialize cached route */
570 if (ro == NULL) {
571 memset(&ip6route, 0, sizeof(ip6route));
572 ro = &ip6route;
573 }
574 ro_pmtu = ro;
575 if (opt && opt->ip6po_rthdr)
576 ro = &opt->ip6po_route;
577 dst = (struct sockaddr_in6 *)&ro->ro_dst;
578
579 /*
580 * if specified, try to fill in the traffic class field.
581 * do not override if a non-zero value is already set.
582 * we check the diffserv field and the ecn field separately.
583 */
584 if (opt && opt->ip6po_tclass >= 0) {
585 int mask = 0;
586
587 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
588 mask |= 0xfc;
589 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
590 mask |= 0x03;
591 if (mask != 0)
592 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
593 }
594
595 /* fill in or override the hop limit field, if necessary. */
596 if (opt && opt->ip6po_hlim != -1)
597 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
598 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
599 if (im6o != NULL)
600 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
601 else
602 ip6->ip6_hlim = ip6_defmcasthlim;
603 }
604
605 #ifdef IPSEC
606 if (needipsec && needipsectun) {
607 struct ipsec_output_state state;
608
609 /*
610 * All the extension headers will become inaccessible
611 * (since they can be encrypted).
612 * Don't panic, we need no more updates to extension headers
613 * on inner IPv6 packet (since they are now encapsulated).
614 *
615 * IPv6 [ESP|AH] IPv6 [extension headers] payload
616 */
617 bzero(&exthdrs, sizeof(exthdrs));
618 exthdrs.ip6e_ip6 = m;
619
620 bzero(&state, sizeof(state));
621 state.m = m;
622 state.ro = (struct route *)ro;
623 state.dst = (struct sockaddr *)dst;
624
625 error = ipsec6_output_tunnel(&state, sp, flags);
626
627 m = state.m;
628 ro_pmtu = ro = (struct route_in6 *)state.ro;
629 dst = (struct sockaddr_in6 *)state.dst;
630 if (error) {
631 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
632 m0 = m = NULL;
633 m = NULL;
634 switch (error) {
635 case EHOSTUNREACH:
636 case ENETUNREACH:
637 case EMSGSIZE:
638 case ENOBUFS:
639 case ENOMEM:
640 break;
641 default:
642 printf("ip6_output (ipsec): error code %d\n", error);
643 /* FALLTHROUGH */
644 case ENOENT:
645 /* don't show these error codes to the user */
646 error = 0;
647 break;
648 }
649 goto bad;
650 }
651
652 exthdrs.ip6e_ip6 = m;
653 }
654 #endif /* IPSEC */
655 #ifdef FAST_IPSEC
656 if (needipsec) {
657 s = splsoftnet();
658 error = ipsec6_process_packet(m,sp->req);
659
660 /*
661 * Preserve KAME behaviour: ENOENT can be returned
662 * when an SA acquire is in progress. Don't propagate
663 * this to user-level; it confuses applications.
664 * XXX this will go away when the SADB is redone.
665 */
666 if (error == ENOENT)
667 error = 0;
668 splx(s);
669 goto done;
670 }
671 #endif /* FAST_IPSEC */
672
673
674
675 /* adjust pointer */
676 ip6 = mtod(m, struct ip6_hdr *);
677
678 bzero(&dst_sa, sizeof(dst_sa));
679 dst_sa.sin6_family = AF_INET6;
680 dst_sa.sin6_len = sizeof(dst_sa);
681 dst_sa.sin6_addr = ip6->ip6_dst;
682 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, &rt, 0))
683 != 0) {
684 switch (error) {
685 case EHOSTUNREACH:
686 ip6stat.ip6s_noroute++;
687 break;
688 case EADDRNOTAVAIL:
689 default:
690 break; /* XXX statistics? */
691 }
692 if (ifp != NULL)
693 in6_ifstat_inc(ifp, ifs6_out_discard);
694 goto bad;
695 }
696 if (rt == NULL) {
697 /*
698 * If in6_selectroute() does not return a route entry,
699 * dst may not have been updated.
700 */
701 *dst = dst_sa; /* XXX */
702 }
703
704 /*
705 * then rt (for unicast) and ifp must be non-NULL valid values.
706 */
707 if ((flags & IPV6_FORWARDING) == 0) {
708 /* XXX: the FORWARDING flag can be set for mrouting. */
709 in6_ifstat_inc(ifp, ifs6_out_request);
710 }
711 if (rt != NULL) {
712 ia = (struct in6_ifaddr *)(rt->rt_ifa);
713 rt->rt_use++;
714 }
715
716 /*
717 * The outgoing interface must be in the zone of source and
718 * destination addresses. We should use ia_ifp to support the
719 * case of sending packets to an address of our own.
720 */
721 if (ia != NULL && ia->ia_ifp)
722 origifp = ia->ia_ifp;
723 else
724 origifp = ifp;
725
726 src0 = ip6->ip6_src;
727 if (in6_setscope(&src0, origifp, &zone))
728 goto badscope;
729 bzero(&src_sa, sizeof(src_sa));
730 src_sa.sin6_family = AF_INET6;
731 src_sa.sin6_len = sizeof(src_sa);
732 src_sa.sin6_addr = ip6->ip6_src;
733 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
734 goto badscope;
735
736 dst0 = ip6->ip6_dst;
737 if (in6_setscope(&dst0, origifp, &zone))
738 goto badscope;
739 /* re-initialize to be sure */
740 bzero(&dst_sa, sizeof(dst_sa));
741 dst_sa.sin6_family = AF_INET6;
742 dst_sa.sin6_len = sizeof(dst_sa);
743 dst_sa.sin6_addr = ip6->ip6_dst;
744 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
745 goto badscope;
746
747 /* scope check is done. */
748 goto routefound;
749
750 badscope:
751 ip6stat.ip6s_badscope++;
752 in6_ifstat_inc(origifp, ifs6_out_discard);
753 if (error == 0)
754 error = EHOSTUNREACH; /* XXX */
755 goto bad;
756
757 routefound:
758 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
759 if (opt && opt->ip6po_nextroute.ro_rt != NULL) {
760 /*
761 * The nexthop is explicitly specified by the
762 * application. We assume the next hop is an IPv6
763 * address.
764 */
765 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
766 } else if ((rt->rt_flags & RTF_GATEWAY))
767 dst = (struct sockaddr_in6 *)rt->rt_gateway;
768 }
769
770 /*
771 * XXXXXX: original code follows:
772 */
773 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
774 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
775 else {
776 struct in6_multi *in6m;
777
778 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
779
780 in6_ifstat_inc(ifp, ifs6_out_mcast);
781
782 /*
783 * Confirm that the outgoing interface supports multicast.
784 */
785 if (!(ifp->if_flags & IFF_MULTICAST)) {
786 ip6stat.ip6s_noroute++;
787 in6_ifstat_inc(ifp, ifs6_out_discard);
788 error = ENETUNREACH;
789 goto bad;
790 }
791
792 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
793 if (in6m != NULL &&
794 (im6o == NULL || im6o->im6o_multicast_loop)) {
795 /*
796 * If we belong to the destination multicast group
797 * on the outgoing interface, and the caller did not
798 * forbid loopback, loop back a copy.
799 */
800 ip6_mloopback(ifp, m, dst);
801 } else {
802 /*
803 * If we are acting as a multicast router, perform
804 * multicast forwarding as if the packet had just
805 * arrived on the interface to which we are about
806 * to send. The multicast forwarding function
807 * recursively calls this function, using the
808 * IPV6_FORWARDING flag to prevent infinite recursion.
809 *
810 * Multicasts that are looped back by ip6_mloopback(),
811 * above, will be forwarded by the ip6_input() routine,
812 * if necessary.
813 */
814 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
815 if (ip6_mforward(ip6, ifp, m) != 0) {
816 m_freem(m);
817 goto done;
818 }
819 }
820 }
821 /*
822 * Multicasts with a hoplimit of zero may be looped back,
823 * above, but must not be transmitted on a network.
824 * Also, multicasts addressed to the loopback interface
825 * are not sent -- the above call to ip6_mloopback() will
826 * loop back a copy if this host actually belongs to the
827 * destination group on the loopback interface.
828 */
829 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
830 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
831 m_freem(m);
832 goto done;
833 }
834 }
835
836 /*
837 * Fill the outgoing inteface to tell the upper layer
838 * to increment per-interface statistics.
839 */
840 if (ifpp)
841 *ifpp = ifp;
842
843 /* Determine path MTU. */
844 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
845 &alwaysfrag)) != 0)
846 goto bad;
847 #ifdef IPSEC
848 if (needipsectun)
849 mtu = IPV6_MMTU;
850 #endif
851
852 /*
853 * The caller of this function may specify to use the minimum MTU
854 * in some cases.
855 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
856 * setting. The logic is a bit complicated; by default, unicast
857 * packets will follow path MTU while multicast packets will be sent at
858 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
859 * including unicast ones will be sent at the minimum MTU. Multicast
860 * packets will always be sent at the minimum MTU unless
861 * IP6PO_MINMTU_DISABLE is explicitly specified.
862 * See RFC 3542 for more details.
863 */
864 if (mtu > IPV6_MMTU) {
865 if ((flags & IPV6_MINMTU))
866 mtu = IPV6_MMTU;
867 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
868 mtu = IPV6_MMTU;
869 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
870 (opt == NULL ||
871 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
872 mtu = IPV6_MMTU;
873 }
874 }
875
876 /*
877 * clear embedded scope identifiers if necessary.
878 * in6_clearscope will touch the addresses only when necessary.
879 */
880 in6_clearscope(&ip6->ip6_src);
881 in6_clearscope(&ip6->ip6_dst);
882
883 /*
884 * If the outgoing packet contains a hop-by-hop options header,
885 * it must be examined and processed even by the source node.
886 * (RFC 2460, section 4.)
887 */
888 if (exthdrs.ip6e_hbh) {
889 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
890 u_int32_t dummy1; /* XXX unused */
891 u_int32_t dummy2; /* XXX unused */
892
893 /*
894 * XXX: if we have to send an ICMPv6 error to the sender,
895 * we need the M_LOOP flag since icmp6_error() expects
896 * the IPv6 and the hop-by-hop options header are
897 * continuous unless the flag is set.
898 */
899 m->m_flags |= M_LOOP;
900 m->m_pkthdr.rcvif = ifp;
901 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
902 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
903 &dummy1, &dummy2) < 0) {
904 /* m was already freed at this point */
905 error = EINVAL;/* better error? */
906 goto done;
907 }
908 m->m_flags &= ~M_LOOP; /* XXX */
909 m->m_pkthdr.rcvif = NULL;
910 }
911
912 #ifdef PFIL_HOOKS
913 /*
914 * Run through list of hooks for output packets.
915 */
916 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
917 goto done;
918 if (m == NULL)
919 goto done;
920 ip6 = mtod(m, struct ip6_hdr *);
921 #endif /* PFIL_HOOKS */
922 /*
923 * Send the packet to the outgoing interface.
924 * If necessary, do IPv6 fragmentation before sending.
925 *
926 * the logic here is rather complex:
927 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
928 * 1-a: send as is if tlen <= path mtu
929 * 1-b: fragment if tlen > path mtu
930 *
931 * 2: if user asks us not to fragment (dontfrag == 1)
932 * 2-a: send as is if tlen <= interface mtu
933 * 2-b: error if tlen > interface mtu
934 *
935 * 3: if we always need to attach fragment header (alwaysfrag == 1)
936 * always fragment
937 *
938 * 4: if dontfrag == 1 && alwaysfrag == 1
939 * error, as we cannot handle this conflicting request
940 */
941 tlen = m->m_pkthdr.len;
942 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
943 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
944 dontfrag = 1;
945 else
946 dontfrag = 0;
947
948 if (dontfrag && alwaysfrag) { /* case 4 */
949 /* conflicting request - can't transmit */
950 error = EMSGSIZE;
951 goto bad;
952 }
953 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */
954 /*
955 * Even if the DONTFRAG option is specified, we cannot send the
956 * packet when the data length is larger than the MTU of the
957 * outgoing interface.
958 * Notify the error by sending IPV6_PATHMTU ancillary data as
959 * well as returning an error code (the latter is not described
960 * in the API spec.)
961 */
962 u_int32_t mtu32;
963 struct ip6ctlparam ip6cp;
964
965 mtu32 = (u_int32_t)mtu;
966 bzero(&ip6cp, sizeof(ip6cp));
967 ip6cp.ip6c_cmdarg = (void *)&mtu32;
968 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
969 (void *)&ip6cp);
970
971 error = EMSGSIZE;
972 goto bad;
973 }
974
975 /*
976 * transmit packet without fragmentation
977 */
978 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
979 /* case 1-a and 2-a */
980 struct in6_ifaddr *ia6;
981 int sw_csum;
982
983 ip6 = mtod(m, struct ip6_hdr *);
984 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
985 if (ia6) {
986 /* Record statistics for this interface address. */
987 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
988 }
989 #ifdef IPSEC
990 /* clean ipsec history once it goes out of the node */
991 ipsec_delaux(m);
992 #endif
993
994 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
995 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
996 if (IN6_NEED_CHECKSUM(ifp,
997 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
998 in6_delayed_cksum(m);
999 }
1000 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
1001 }
1002
1003 if (__predict_true(!tso ||
1004 (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
1005 error = nd6_output(ifp, origifp, m, dst, rt);
1006 } else {
1007 error = ip6_tso_output(ifp, origifp, m, dst, rt);
1008 }
1009 goto done;
1010 }
1011
1012 if (tso) {
1013 error = EINVAL; /* XXX */
1014 goto bad;
1015 }
1016
1017 /*
1018 * try to fragment the packet. case 1-b and 3
1019 */
1020 if (mtu < IPV6_MMTU) {
1021 /* path MTU cannot be less than IPV6_MMTU */
1022 error = EMSGSIZE;
1023 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1024 goto bad;
1025 } else if (ip6->ip6_plen == 0) {
1026 /* jumbo payload cannot be fragmented */
1027 error = EMSGSIZE;
1028 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1029 goto bad;
1030 } else {
1031 struct mbuf **mnext, *m_frgpart;
1032 struct ip6_frag *ip6f;
1033 u_int32_t id = htonl(ip6_randomid());
1034 u_char nextproto;
1035 #if 0 /* see below */
1036 struct ip6ctlparam ip6cp;
1037 u_int32_t mtu32;
1038 #endif
1039
1040 /*
1041 * Too large for the destination or interface;
1042 * fragment if possible.
1043 * Must be able to put at least 8 bytes per fragment.
1044 */
1045 hlen = unfragpartlen;
1046 if (mtu > IPV6_MAXPACKET)
1047 mtu = IPV6_MAXPACKET;
1048
1049 #if 0
1050 /*
1051 * It is believed this code is a leftover from the
1052 * development of the IPV6_RECVPATHMTU sockopt and
1053 * associated work to implement RFC3542.
1054 * It's not entirely clear what the intent of the API
1055 * is at this point, so disable this code for now.
1056 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
1057 * will send notifications if the application requests.
1058 */
1059
1060 /* Notify a proper path MTU to applications. */
1061 mtu32 = (u_int32_t)mtu;
1062 bzero(&ip6cp, sizeof(ip6cp));
1063 ip6cp.ip6c_cmdarg = (void *)&mtu32;
1064 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
1065 (void *)&ip6cp);
1066 #endif
1067
1068 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
1069 if (len < 8) {
1070 error = EMSGSIZE;
1071 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1072 goto bad;
1073 }
1074
1075 mnext = &m->m_nextpkt;
1076
1077 /*
1078 * Change the next header field of the last header in the
1079 * unfragmentable part.
1080 */
1081 if (exthdrs.ip6e_rthdr) {
1082 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1083 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1084 } else if (exthdrs.ip6e_dest1) {
1085 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1086 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1087 } else if (exthdrs.ip6e_hbh) {
1088 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1089 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1090 } else {
1091 nextproto = ip6->ip6_nxt;
1092 ip6->ip6_nxt = IPPROTO_FRAGMENT;
1093 }
1094
1095 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
1096 != 0) {
1097 if (IN6_NEED_CHECKSUM(ifp,
1098 m->m_pkthdr.csum_flags &
1099 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
1100 in6_delayed_cksum(m);
1101 }
1102 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
1103 }
1104
1105 /*
1106 * Loop through length of segment after first fragment,
1107 * make new header and copy data of each part and link onto
1108 * chain.
1109 */
1110 m0 = m;
1111 for (off = hlen; off < tlen; off += len) {
1112 struct mbuf *mlast;
1113
1114 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1115 if (!m) {
1116 error = ENOBUFS;
1117 ip6stat.ip6s_odropped++;
1118 goto sendorfree;
1119 }
1120 m->m_pkthdr.rcvif = NULL;
1121 m->m_flags = m0->m_flags & M_COPYFLAGS;
1122 *mnext = m;
1123 mnext = &m->m_nextpkt;
1124 m->m_data += max_linkhdr;
1125 mhip6 = mtod(m, struct ip6_hdr *);
1126 *mhip6 = *ip6;
1127 m->m_len = sizeof(*mhip6);
1128 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1129 if (error) {
1130 ip6stat.ip6s_odropped++;
1131 goto sendorfree;
1132 }
1133 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
1134 if (off + len >= tlen)
1135 len = tlen - off;
1136 else
1137 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1138 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
1139 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1140 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1141 error = ENOBUFS;
1142 ip6stat.ip6s_odropped++;
1143 goto sendorfree;
1144 }
1145 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
1146 ;
1147 mlast->m_next = m_frgpart;
1148 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1149 m->m_pkthdr.rcvif = (struct ifnet *)0;
1150 ip6f->ip6f_reserved = 0;
1151 ip6f->ip6f_ident = id;
1152 ip6f->ip6f_nxt = nextproto;
1153 ip6stat.ip6s_ofragments++;
1154 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1155 }
1156
1157 in6_ifstat_inc(ifp, ifs6_out_fragok);
1158 }
1159
1160 /*
1161 * Remove leading garbages.
1162 */
1163 sendorfree:
1164 m = m0->m_nextpkt;
1165 m0->m_nextpkt = 0;
1166 m_freem(m0);
1167 for (m0 = m; m; m = m0) {
1168 m0 = m->m_nextpkt;
1169 m->m_nextpkt = 0;
1170 if (error == 0) {
1171 struct in6_ifaddr *ia6;
1172 ip6 = mtod(m, struct ip6_hdr *);
1173 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1174 if (ia6) {
1175 /*
1176 * Record statistics for this interface
1177 * address.
1178 */
1179 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1180 m->m_pkthdr.len;
1181 }
1182 #ifdef IPSEC
1183 /* clean ipsec history once it goes out of the node */
1184 ipsec_delaux(m);
1185 #endif
1186 error = nd6_output(ifp, origifp, m, dst, rt);
1187 } else
1188 m_freem(m);
1189 }
1190
1191 if (error == 0)
1192 ip6stat.ip6s_fragmented++;
1193
1194 done:
1195 /* XXX Second if is invariant? */
1196 if (ro == &ip6route)
1197 rtcache_free((struct route *)ro);
1198 else if (ro_pmtu == &ip6route)
1199 rtcache_free((struct route *)ro_pmtu);
1200
1201 #ifdef IPSEC
1202 if (sp != NULL)
1203 key_freesp(sp);
1204 #endif /* IPSEC */
1205 #ifdef FAST_IPSEC
1206 if (sp != NULL)
1207 KEY_FREESP(&sp);
1208 #endif /* FAST_IPSEC */
1209
1210
1211 return (error);
1212
1213 freehdrs:
1214 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1215 m_freem(exthdrs.ip6e_dest1);
1216 m_freem(exthdrs.ip6e_rthdr);
1217 m_freem(exthdrs.ip6e_dest2);
1218 /* FALLTHROUGH */
1219 bad:
1220 m_freem(m);
1221 goto done;
1222 }
1223
1224 static int
1225 ip6_copyexthdr(mp, hdr, hlen)
1226 struct mbuf **mp;
1227 caddr_t hdr;
1228 int hlen;
1229 {
1230 struct mbuf *m;
1231
1232 if (hlen > MCLBYTES)
1233 return (ENOBUFS); /* XXX */
1234
1235 MGET(m, M_DONTWAIT, MT_DATA);
1236 if (!m)
1237 return (ENOBUFS);
1238
1239 if (hlen > MLEN) {
1240 MCLGET(m, M_DONTWAIT);
1241 if ((m->m_flags & M_EXT) == 0) {
1242 m_free(m);
1243 return (ENOBUFS);
1244 }
1245 }
1246 m->m_len = hlen;
1247 if (hdr)
1248 bcopy(hdr, mtod(m, caddr_t), hlen);
1249
1250 *mp = m;
1251 return (0);
1252 }
1253
1254 /*
1255 * Process a delayed payload checksum calculation.
1256 */
1257 void
1258 in6_delayed_cksum(struct mbuf *m)
1259 {
1260 uint16_t csum, offset;
1261
1262 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1263 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1264 KASSERT((m->m_pkthdr.csum_flags
1265 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1266
1267 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1268 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1269 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1270 csum = 0xffff;
1271 }
1272
1273 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1274 if ((offset + sizeof(csum)) > m->m_len) {
1275 m_copyback(m, offset, sizeof(csum), &csum);
1276 } else {
1277 *(uint16_t *)(mtod(m, caddr_t) + offset) = csum;
1278 }
1279 }
1280
1281 /*
1282 * Insert jumbo payload option.
1283 */
1284 static int
1285 ip6_insert_jumboopt(exthdrs, plen)
1286 struct ip6_exthdrs *exthdrs;
1287 u_int32_t plen;
1288 {
1289 struct mbuf *mopt;
1290 u_int8_t *optbuf;
1291 u_int32_t v;
1292
1293 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1294
1295 /*
1296 * If there is no hop-by-hop options header, allocate new one.
1297 * If there is one but it doesn't have enough space to store the
1298 * jumbo payload option, allocate a cluster to store the whole options.
1299 * Otherwise, use it to store the options.
1300 */
1301 if (exthdrs->ip6e_hbh == 0) {
1302 MGET(mopt, M_DONTWAIT, MT_DATA);
1303 if (mopt == 0)
1304 return (ENOBUFS);
1305 mopt->m_len = JUMBOOPTLEN;
1306 optbuf = mtod(mopt, u_int8_t *);
1307 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1308 exthdrs->ip6e_hbh = mopt;
1309 } else {
1310 struct ip6_hbh *hbh;
1311
1312 mopt = exthdrs->ip6e_hbh;
1313 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1314 /*
1315 * XXX assumption:
1316 * - exthdrs->ip6e_hbh is not referenced from places
1317 * other than exthdrs.
1318 * - exthdrs->ip6e_hbh is not an mbuf chain.
1319 */
1320 int oldoptlen = mopt->m_len;
1321 struct mbuf *n;
1322
1323 /*
1324 * XXX: give up if the whole (new) hbh header does
1325 * not fit even in an mbuf cluster.
1326 */
1327 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1328 return (ENOBUFS);
1329
1330 /*
1331 * As a consequence, we must always prepare a cluster
1332 * at this point.
1333 */
1334 MGET(n, M_DONTWAIT, MT_DATA);
1335 if (n) {
1336 MCLGET(n, M_DONTWAIT);
1337 if ((n->m_flags & M_EXT) == 0) {
1338 m_freem(n);
1339 n = NULL;
1340 }
1341 }
1342 if (!n)
1343 return (ENOBUFS);
1344 n->m_len = oldoptlen + JUMBOOPTLEN;
1345 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1346 oldoptlen);
1347 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1348 m_freem(mopt);
1349 mopt = exthdrs->ip6e_hbh = n;
1350 } else {
1351 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1352 mopt->m_len += JUMBOOPTLEN;
1353 }
1354 optbuf[0] = IP6OPT_PADN;
1355 optbuf[1] = 0;
1356
1357 /*
1358 * Adjust the header length according to the pad and
1359 * the jumbo payload option.
1360 */
1361 hbh = mtod(mopt, struct ip6_hbh *);
1362 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1363 }
1364
1365 /* fill in the option. */
1366 optbuf[2] = IP6OPT_JUMBO;
1367 optbuf[3] = 4;
1368 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1369 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1370
1371 /* finally, adjust the packet header length */
1372 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1373
1374 return (0);
1375 #undef JUMBOOPTLEN
1376 }
1377
1378 /*
1379 * Insert fragment header and copy unfragmentable header portions.
1380 */
1381 static int
1382 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1383 struct mbuf *m0, *m;
1384 int hlen;
1385 struct ip6_frag **frghdrp;
1386 {
1387 struct mbuf *n, *mlast;
1388
1389 if (hlen > sizeof(struct ip6_hdr)) {
1390 n = m_copym(m0, sizeof(struct ip6_hdr),
1391 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1392 if (n == 0)
1393 return (ENOBUFS);
1394 m->m_next = n;
1395 } else
1396 n = m;
1397
1398 /* Search for the last mbuf of unfragmentable part. */
1399 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1400 ;
1401
1402 if ((mlast->m_flags & M_EXT) == 0 &&
1403 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1404 /* use the trailing space of the last mbuf for the fragment hdr */
1405 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1406 mlast->m_len);
1407 mlast->m_len += sizeof(struct ip6_frag);
1408 m->m_pkthdr.len += sizeof(struct ip6_frag);
1409 } else {
1410 /* allocate a new mbuf for the fragment header */
1411 struct mbuf *mfrg;
1412
1413 MGET(mfrg, M_DONTWAIT, MT_DATA);
1414 if (mfrg == 0)
1415 return (ENOBUFS);
1416 mfrg->m_len = sizeof(struct ip6_frag);
1417 *frghdrp = mtod(mfrg, struct ip6_frag *);
1418 mlast->m_next = mfrg;
1419 }
1420
1421 return (0);
1422 }
1423
1424 static int
1425 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp)
1426 struct route_in6 *ro_pmtu, *ro;
1427 struct ifnet *ifp;
1428 struct in6_addr *dst;
1429 u_long *mtup;
1430 int *alwaysfragp;
1431 {
1432 u_int32_t mtu = 0;
1433 int alwaysfrag = 0;
1434 int error = 0;
1435
1436 if (ro_pmtu != ro) {
1437 /* The first hop and the final destination may differ. */
1438 struct sockaddr_in6 *sa6_dst =
1439 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1440 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))
1441 rtcache_free((struct route *)ro_pmtu);
1442 else
1443 rtcache_check((struct route *)ro_pmtu);
1444 if (ro_pmtu->ro_rt == NULL) {
1445 memset(sa6_dst, 0, sizeof(*sa6_dst)); /* for safety */
1446 sa6_dst->sin6_family = AF_INET6;
1447 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1448 sa6_dst->sin6_addr = *dst;
1449 rtcache_init((struct route *)ro_pmtu);
1450 }
1451 }
1452 if (ro_pmtu->ro_rt != NULL) {
1453 u_int32_t ifmtu;
1454
1455 if (ifp == NULL)
1456 ifp = ro_pmtu->ro_rt->rt_ifp;
1457 ifmtu = IN6_LINKMTU(ifp);
1458 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1459 if (mtu == 0)
1460 mtu = ifmtu;
1461 else if (mtu < IPV6_MMTU) {
1462 /*
1463 * RFC2460 section 5, last paragraph:
1464 * if we record ICMPv6 too big message with
1465 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1466 * or smaller, with fragment header attached.
1467 * (fragment header is needed regardless from the
1468 * packet size, for translators to identify packets)
1469 */
1470 alwaysfrag = 1;
1471 mtu = IPV6_MMTU;
1472 } else if (mtu > ifmtu) {
1473 /*
1474 * The MTU on the route is larger than the MTU on
1475 * the interface! This shouldn't happen, unless the
1476 * MTU of the interface has been changed after the
1477 * interface was brought up. Change the MTU in the
1478 * route to match the interface MTU (as long as the
1479 * field isn't locked).
1480 */
1481 mtu = ifmtu;
1482 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
1483 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1484 }
1485 } else if (ifp) {
1486 mtu = IN6_LINKMTU(ifp);
1487 } else
1488 error = EHOSTUNREACH; /* XXX */
1489
1490 *mtup = mtu;
1491 if (alwaysfragp)
1492 *alwaysfragp = alwaysfrag;
1493 return (error);
1494 }
1495
1496 /*
1497 * IP6 socket option processing.
1498 */
1499 int
1500 ip6_ctloutput(op, so, level, optname, mp)
1501 int op;
1502 struct socket *so;
1503 int level, optname;
1504 struct mbuf **mp;
1505 {
1506 int privileged, optdatalen, uproto;
1507 void *optdata;
1508 struct in6pcb *in6p = sotoin6pcb(so);
1509 struct mbuf *m = *mp;
1510 int error, optval;
1511 int optlen;
1512 struct lwp *l = curlwp; /* XXX */
1513
1514 optlen = m ? m->m_len : 0;
1515 error = optval = 0;
1516 privileged = (l == 0 || kauth_authorize_generic(l->l_cred,
1517 KAUTH_GENERIC_ISSUSER, NULL)) ? 0 : 1;
1518 uproto = (int)so->so_proto->pr_protocol;
1519
1520 if (level == IPPROTO_IPV6) {
1521 switch (op) {
1522 case PRCO_SETOPT:
1523 switch (optname) {
1524 #ifdef RFC2292
1525 case IPV6_2292PKTOPTIONS:
1526 /* m is freed in ip6_pcbopts */
1527 error = ip6_pcbopts(&in6p->in6p_outputopts,
1528 m, so);
1529 break;
1530 #endif
1531
1532 /*
1533 * Use of some Hop-by-Hop options or some
1534 * Destination options, might require special
1535 * privilege. That is, normal applications
1536 * (without special privilege) might be forbidden
1537 * from setting certain options in outgoing packets,
1538 * and might never see certain options in received
1539 * packets. [RFC 2292 Section 6]
1540 * KAME specific note:
1541 * KAME prevents non-privileged users from sending or
1542 * receiving ANY hbh/dst options in order to avoid
1543 * overhead of parsing options in the kernel.
1544 */
1545 case IPV6_RECVHOPOPTS:
1546 case IPV6_RECVDSTOPTS:
1547 case IPV6_RECVRTHDRDSTOPTS:
1548 if (!privileged) {
1549 error = EPERM;
1550 break;
1551 }
1552 /* FALLTHROUGH */
1553 case IPV6_UNICAST_HOPS:
1554 case IPV6_HOPLIMIT:
1555 case IPV6_FAITH:
1556
1557 case IPV6_RECVPKTINFO:
1558 case IPV6_RECVHOPLIMIT:
1559 case IPV6_RECVRTHDR:
1560 case IPV6_RECVPATHMTU:
1561 case IPV6_RECVTCLASS:
1562 case IPV6_V6ONLY:
1563 if (optlen != sizeof(int)) {
1564 error = EINVAL;
1565 break;
1566 }
1567 optval = *mtod(m, int *);
1568 switch (optname) {
1569
1570 case IPV6_UNICAST_HOPS:
1571 if (optval < -1 || optval >= 256)
1572 error = EINVAL;
1573 else {
1574 /* -1 = kernel default */
1575 in6p->in6p_hops = optval;
1576 }
1577 break;
1578 #define OPTSET(bit) \
1579 do { \
1580 if (optval) \
1581 in6p->in6p_flags |= (bit); \
1582 else \
1583 in6p->in6p_flags &= ~(bit); \
1584 } while (/*CONSTCOND*/ 0)
1585
1586 #ifdef RFC2292
1587 #define OPTSET2292(bit) \
1588 do { \
1589 in6p->in6p_flags |= IN6P_RFC2292; \
1590 if (optval) \
1591 in6p->in6p_flags |= (bit); \
1592 else \
1593 in6p->in6p_flags &= ~(bit); \
1594 } while (/*CONSTCOND*/ 0)
1595 #endif
1596
1597 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1598
1599 case IPV6_RECVPKTINFO:
1600 #ifdef RFC2292
1601 /* cannot mix with RFC2292 */
1602 if (OPTBIT(IN6P_RFC2292)) {
1603 error = EINVAL;
1604 break;
1605 }
1606 #endif
1607 OPTSET(IN6P_PKTINFO);
1608 break;
1609
1610 case IPV6_HOPLIMIT:
1611 {
1612 struct ip6_pktopts **optp;
1613
1614 #ifdef RFC2292
1615 /* cannot mix with RFC2292 */
1616 if (OPTBIT(IN6P_RFC2292)) {
1617 error = EINVAL;
1618 break;
1619 }
1620 #endif
1621 optp = &in6p->in6p_outputopts;
1622 error = ip6_pcbopt(IPV6_HOPLIMIT,
1623 (u_char *)&optval,
1624 sizeof(optval),
1625 optp,
1626 privileged, uproto);
1627 break;
1628 }
1629
1630 case IPV6_RECVHOPLIMIT:
1631 #ifdef RFC2292
1632 /* cannot mix with RFC2292 */
1633 if (OPTBIT(IN6P_RFC2292)) {
1634 error = EINVAL;
1635 break;
1636 }
1637 #endif
1638 OPTSET(IN6P_HOPLIMIT);
1639 break;
1640
1641 case IPV6_RECVHOPOPTS:
1642 #ifdef RFC2292
1643 /* cannot mix with RFC2292 */
1644 if (OPTBIT(IN6P_RFC2292)) {
1645 error = EINVAL;
1646 break;
1647 }
1648 #endif
1649 OPTSET(IN6P_HOPOPTS);
1650 break;
1651
1652 case IPV6_RECVDSTOPTS:
1653 #ifdef RFC2292
1654 /* cannot mix with RFC2292 */
1655 if (OPTBIT(IN6P_RFC2292)) {
1656 error = EINVAL;
1657 break;
1658 }
1659 #endif
1660 OPTSET(IN6P_DSTOPTS);
1661 break;
1662
1663 case IPV6_RECVRTHDRDSTOPTS:
1664 #ifdef RFC2292
1665 /* cannot mix with RFC2292 */
1666 if (OPTBIT(IN6P_RFC2292)) {
1667 error = EINVAL;
1668 break;
1669 }
1670 #endif
1671 OPTSET(IN6P_RTHDRDSTOPTS);
1672 break;
1673
1674 case IPV6_RECVRTHDR:
1675 #ifdef RFC2292
1676 /* cannot mix with RFC2292 */
1677 if (OPTBIT(IN6P_RFC2292)) {
1678 error = EINVAL;
1679 break;
1680 }
1681 #endif
1682 OPTSET(IN6P_RTHDR);
1683 break;
1684
1685 case IPV6_FAITH:
1686 OPTSET(IN6P_FAITH);
1687 break;
1688
1689 case IPV6_RECVPATHMTU:
1690 /*
1691 * We ignore this option for TCP
1692 * sockets.
1693 * (RFC3542 leaves this case
1694 * unspecified.)
1695 */
1696 if (uproto != IPPROTO_TCP)
1697 OPTSET(IN6P_MTU);
1698 break;
1699
1700 case IPV6_V6ONLY:
1701 /*
1702 * make setsockopt(IPV6_V6ONLY)
1703 * available only prior to bind(2).
1704 * see ipng mailing list, Jun 22 2001.
1705 */
1706 if (in6p->in6p_lport ||
1707 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1708 error = EINVAL;
1709 break;
1710 }
1711 #ifdef INET6_BINDV6ONLY
1712 if (!optval)
1713 error = EINVAL;
1714 #else
1715 OPTSET(IN6P_IPV6_V6ONLY);
1716 #endif
1717 break;
1718 case IPV6_RECVTCLASS:
1719 #ifdef RFC2292
1720 /* cannot mix with RFC2292 XXX */
1721 if (OPTBIT(IN6P_RFC2292)) {
1722 error = EINVAL;
1723 break;
1724 }
1725 #endif
1726 OPTSET(IN6P_TCLASS);
1727 break;
1728
1729 }
1730 break;
1731
1732 case IPV6_OTCLASS:
1733 {
1734 struct ip6_pktopts **optp;
1735 u_int8_t tclass;
1736
1737 if (optlen != sizeof(tclass)) {
1738 error = EINVAL;
1739 break;
1740 }
1741 tclass = *mtod(m, u_int8_t *);
1742 optp = &in6p->in6p_outputopts;
1743 error = ip6_pcbopt(optname,
1744 (u_char *)&tclass,
1745 sizeof(tclass),
1746 optp,
1747 privileged, uproto);
1748 break;
1749 }
1750
1751 case IPV6_TCLASS:
1752 case IPV6_DONTFRAG:
1753 case IPV6_USE_MIN_MTU:
1754 if (optlen != sizeof(optval)) {
1755 error = EINVAL;
1756 break;
1757 }
1758 optval = *mtod(m, int *);
1759 {
1760 struct ip6_pktopts **optp;
1761 optp = &in6p->in6p_outputopts;
1762 error = ip6_pcbopt(optname,
1763 (u_char *)&optval,
1764 sizeof(optval),
1765 optp,
1766 privileged, uproto);
1767 break;
1768 }
1769
1770 #ifdef RFC2292
1771 case IPV6_2292PKTINFO:
1772 case IPV6_2292HOPLIMIT:
1773 case IPV6_2292HOPOPTS:
1774 case IPV6_2292DSTOPTS:
1775 case IPV6_2292RTHDR:
1776 /* RFC 2292 */
1777 if (optlen != sizeof(int)) {
1778 error = EINVAL;
1779 break;
1780 }
1781 optval = *mtod(m, int *);
1782 switch (optname) {
1783 case IPV6_2292PKTINFO:
1784 OPTSET2292(IN6P_PKTINFO);
1785 break;
1786 case IPV6_2292HOPLIMIT:
1787 OPTSET2292(IN6P_HOPLIMIT);
1788 break;
1789 case IPV6_2292HOPOPTS:
1790 /*
1791 * Check super-user privilege.
1792 * See comments for IPV6_RECVHOPOPTS.
1793 */
1794 if (!privileged)
1795 return (EPERM);
1796 OPTSET2292(IN6P_HOPOPTS);
1797 break;
1798 case IPV6_2292DSTOPTS:
1799 if (!privileged)
1800 return (EPERM);
1801 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1802 break;
1803 case IPV6_2292RTHDR:
1804 OPTSET2292(IN6P_RTHDR);
1805 break;
1806 }
1807 break;
1808 #endif
1809 case IPV6_PKTINFO:
1810 case IPV6_HOPOPTS:
1811 case IPV6_RTHDR:
1812 case IPV6_DSTOPTS:
1813 case IPV6_RTHDRDSTOPTS:
1814 case IPV6_NEXTHOP:
1815 {
1816 /* new advanced API (RFC3542) */
1817 u_char *optbuf;
1818 int optbuflen;
1819 struct ip6_pktopts **optp;
1820 if (!m) {
1821 error = EINVAL;
1822 break;
1823 }
1824
1825 #ifdef RFC2292
1826 /* cannot mix with RFC2292 */
1827 if (OPTBIT(IN6P_RFC2292)) {
1828 error = EINVAL;
1829 break;
1830 }
1831 #endif
1832
1833 if (m && m->m_next) {
1834 error = EINVAL; /* XXX */
1835 break;
1836 }
1837
1838 optbuf = mtod(m, u_char *);
1839 optbuflen = m->m_len;
1840 optp = &in6p->in6p_outputopts;
1841 error = ip6_pcbopt(optname, optbuf, optbuflen,
1842 optp, privileged, uproto);
1843 break;
1844 }
1845 #undef OPTSET
1846
1847 case IPV6_MULTICAST_IF:
1848 case IPV6_MULTICAST_HOPS:
1849 case IPV6_MULTICAST_LOOP:
1850 case IPV6_JOIN_GROUP:
1851 case IPV6_LEAVE_GROUP:
1852 error = ip6_setmoptions(optname,
1853 &in6p->in6p_moptions, m);
1854 break;
1855
1856 case IPV6_PORTRANGE:
1857 if (!m) {
1858 error = EINVAL;
1859 break;
1860 }
1861 optval = *mtod(m, int *);
1862
1863 switch (optval) {
1864 case IPV6_PORTRANGE_DEFAULT:
1865 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1866 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1867 break;
1868
1869 case IPV6_PORTRANGE_HIGH:
1870 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1871 in6p->in6p_flags |= IN6P_HIGHPORT;
1872 break;
1873
1874 case IPV6_PORTRANGE_LOW:
1875 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1876 in6p->in6p_flags |= IN6P_LOWPORT;
1877 break;
1878
1879 default:
1880 error = EINVAL;
1881 break;
1882 }
1883 break;
1884
1885
1886 #if defined(IPSEC) || defined(FAST_IPSEC)
1887 case IPV6_IPSEC_POLICY:
1888 {
1889 caddr_t req = NULL;
1890 size_t len = 0;
1891 if (m) {
1892 req = mtod(m, caddr_t);
1893 len = m->m_len;
1894 }
1895 error = ipsec6_set_policy(in6p, optname, req,
1896 len, privileged);
1897 }
1898 break;
1899 #endif /* IPSEC */
1900
1901 default:
1902 error = ENOPROTOOPT;
1903 break;
1904 }
1905 if (m)
1906 (void)m_free(m);
1907 break;
1908
1909 case PRCO_GETOPT:
1910 switch (optname) {
1911 #ifdef RFC2292
1912 case IPV6_2292PKTOPTIONS:
1913 /*
1914 * RFC3542 (effectively) deprecated the
1915 * semantics of the 2292-style pktoptions.
1916 * Since it was not reliable in nature (i.e.,
1917 * applications had to expect the lack of some
1918 * information after all), it would make sense
1919 * to simplify this part by always returning
1920 * empty data.
1921 */
1922 *mp = m_get(M_WAIT, MT_SOOPTS);
1923 (*mp)->m_len = 0;
1924 break;
1925 #endif
1926
1927 case IPV6_RECVHOPOPTS:
1928 case IPV6_RECVDSTOPTS:
1929 case IPV6_RECVRTHDRDSTOPTS:
1930 case IPV6_UNICAST_HOPS:
1931 case IPV6_RECVPKTINFO:
1932 case IPV6_RECVHOPLIMIT:
1933 case IPV6_RECVRTHDR:
1934 case IPV6_RECVPATHMTU:
1935
1936 case IPV6_FAITH:
1937 case IPV6_V6ONLY:
1938 case IPV6_PORTRANGE:
1939 case IPV6_RECVTCLASS:
1940 switch (optname) {
1941
1942 case IPV6_RECVHOPOPTS:
1943 optval = OPTBIT(IN6P_HOPOPTS);
1944 break;
1945
1946 case IPV6_RECVDSTOPTS:
1947 optval = OPTBIT(IN6P_DSTOPTS);
1948 break;
1949
1950 case IPV6_RECVRTHDRDSTOPTS:
1951 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1952 break;
1953
1954 case IPV6_UNICAST_HOPS:
1955 optval = in6p->in6p_hops;
1956 break;
1957
1958 case IPV6_RECVPKTINFO:
1959 optval = OPTBIT(IN6P_PKTINFO);
1960 break;
1961
1962 case IPV6_RECVHOPLIMIT:
1963 optval = OPTBIT(IN6P_HOPLIMIT);
1964 break;
1965
1966 case IPV6_RECVRTHDR:
1967 optval = OPTBIT(IN6P_RTHDR);
1968 break;
1969
1970 case IPV6_RECVPATHMTU:
1971 optval = OPTBIT(IN6P_MTU);
1972 break;
1973
1974 case IPV6_FAITH:
1975 optval = OPTBIT(IN6P_FAITH);
1976 break;
1977
1978 case IPV6_V6ONLY:
1979 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1980 break;
1981
1982 case IPV6_PORTRANGE:
1983 {
1984 int flags;
1985 flags = in6p->in6p_flags;
1986 if (flags & IN6P_HIGHPORT)
1987 optval = IPV6_PORTRANGE_HIGH;
1988 else if (flags & IN6P_LOWPORT)
1989 optval = IPV6_PORTRANGE_LOW;
1990 else
1991 optval = 0;
1992 break;
1993 }
1994 case IPV6_RECVTCLASS:
1995 optval = OPTBIT(IN6P_TCLASS);
1996 break;
1997
1998 }
1999 if (error)
2000 break;
2001 *mp = m = m_get(M_WAIT, MT_SOOPTS);
2002 m->m_len = sizeof(int);
2003 *mtod(m, int *) = optval;
2004 break;
2005
2006 case IPV6_PATHMTU:
2007 {
2008 u_long pmtu = 0;
2009 struct ip6_mtuinfo mtuinfo;
2010 struct route_in6 *ro = (struct route_in6 *)&in6p
2011 ->in6p_route;
2012
2013 if (!(so->so_state & SS_ISCONNECTED))
2014 return (ENOTCONN);
2015 /*
2016 * XXX: we dot not consider the case of source
2017 * routing, or optional information to specify
2018 * the outgoing interface.
2019 */
2020 error = ip6_getpmtu(ro, NULL, NULL,
2021 &in6p->in6p_faddr, &pmtu, NULL);
2022 if (error)
2023 break;
2024 if (pmtu > IPV6_MAXPACKET)
2025 pmtu = IPV6_MAXPACKET;
2026
2027 memset(&mtuinfo, 0, sizeof(mtuinfo));
2028 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
2029 optdata = (void *)&mtuinfo;
2030 optdatalen = sizeof(mtuinfo);
2031 if (optdatalen > MCLBYTES)
2032 return (EMSGSIZE); /* XXX */
2033 *mp = m = m_get(M_WAIT, MT_SOOPTS);
2034 if (optdatalen > MLEN)
2035 MCLGET(m, M_WAIT);
2036 m->m_len = optdatalen;
2037 memcpy(mtod(m, void *), optdata, optdatalen);
2038 break;
2039 }
2040
2041 #ifdef RFC2292
2042 case IPV6_2292PKTINFO:
2043 case IPV6_2292HOPLIMIT:
2044 case IPV6_2292HOPOPTS:
2045 case IPV6_2292RTHDR:
2046 case IPV6_2292DSTOPTS:
2047 switch (optname) {
2048 case IPV6_2292PKTINFO:
2049 optval = OPTBIT(IN6P_PKTINFO);
2050 break;
2051 case IPV6_2292HOPLIMIT:
2052 optval = OPTBIT(IN6P_HOPLIMIT);
2053 break;
2054 case IPV6_2292HOPOPTS:
2055 optval = OPTBIT(IN6P_HOPOPTS);
2056 break;
2057 case IPV6_2292RTHDR:
2058 optval = OPTBIT(IN6P_RTHDR);
2059 break;
2060 case IPV6_2292DSTOPTS:
2061 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
2062 break;
2063 }
2064 *mp = m = m_get(M_WAIT, MT_SOOPTS);
2065 m->m_len = sizeof(int);
2066 *mtod(m, int *) = optval;
2067 break;
2068 #endif
2069 case IPV6_PKTINFO:
2070 case IPV6_HOPOPTS:
2071 case IPV6_RTHDR:
2072 case IPV6_DSTOPTS:
2073 case IPV6_RTHDRDSTOPTS:
2074 case IPV6_NEXTHOP:
2075 case IPV6_OTCLASS:
2076 case IPV6_TCLASS:
2077 case IPV6_DONTFRAG:
2078 case IPV6_USE_MIN_MTU:
2079 error = ip6_getpcbopt(in6p->in6p_outputopts,
2080 optname, mp);
2081 break;
2082
2083 case IPV6_MULTICAST_IF:
2084 case IPV6_MULTICAST_HOPS:
2085 case IPV6_MULTICAST_LOOP:
2086 case IPV6_JOIN_GROUP:
2087 case IPV6_LEAVE_GROUP:
2088 error = ip6_getmoptions(optname,
2089 in6p->in6p_moptions, mp);
2090 break;
2091
2092 #if defined(IPSEC) || defined(FAST_IPSEC)
2093 case IPV6_IPSEC_POLICY:
2094 {
2095 caddr_t req = NULL;
2096 size_t len = 0;
2097 if (m) {
2098 req = mtod(m, caddr_t);
2099 len = m->m_len;
2100 }
2101 error = ipsec6_get_policy(in6p, req, len, mp);
2102 break;
2103 }
2104 #endif /* IPSEC */
2105
2106
2107
2108
2109 default:
2110 error = ENOPROTOOPT;
2111 break;
2112 }
2113 break;
2114 }
2115 } else {
2116 error = EINVAL;
2117 if (op == PRCO_SETOPT && *mp)
2118 (void)m_free(*mp);
2119 }
2120 return (error);
2121 }
2122
2123 int
2124 ip6_raw_ctloutput(op, so, level, optname, mp)
2125 int op;
2126 struct socket *so;
2127 int level, optname;
2128 struct mbuf **mp;
2129 {
2130 int error = 0, optval, optlen;
2131 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2132 struct in6pcb *in6p = sotoin6pcb(so);
2133 struct mbuf *m = *mp;
2134
2135 optlen = m ? m->m_len : 0;
2136
2137 if (level != IPPROTO_IPV6) {
2138 if (op == PRCO_SETOPT && *mp)
2139 (void)m_free(*mp);
2140 return (EINVAL);
2141 }
2142
2143 switch (optname) {
2144 case IPV6_CHECKSUM:
2145 /*
2146 * For ICMPv6 sockets, no modification allowed for checksum
2147 * offset, permit "no change" values to help existing apps.
2148 *
2149 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
2150 * for an ICMPv6 socket will fail." The current
2151 * behavior does not meet RFC3542.
2152 */
2153 switch (op) {
2154 case PRCO_SETOPT:
2155 if (optlen != sizeof(int)) {
2156 error = EINVAL;
2157 break;
2158 }
2159 optval = *mtod(m, int *);
2160 if ((optval % 2) != 0) {
2161 /* the API assumes even offset values */
2162 error = EINVAL;
2163 } else if (so->so_proto->pr_protocol ==
2164 IPPROTO_ICMPV6) {
2165 if (optval != icmp6off)
2166 error = EINVAL;
2167 } else
2168 in6p->in6p_cksum = optval;
2169 break;
2170
2171 case PRCO_GETOPT:
2172 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2173 optval = icmp6off;
2174 else
2175 optval = in6p->in6p_cksum;
2176
2177 *mp = m = m_get(M_WAIT, MT_SOOPTS);
2178 m->m_len = sizeof(int);
2179 *mtod(m, int *) = optval;
2180 break;
2181
2182 default:
2183 error = EINVAL;
2184 break;
2185 }
2186 break;
2187
2188 default:
2189 error = ENOPROTOOPT;
2190 break;
2191 }
2192
2193 if (op == PRCO_SETOPT && m)
2194 (void)m_free(m);
2195
2196 return (error);
2197 }
2198
2199 #ifdef RFC2292
2200 /*
2201 * Set up IP6 options in pcb for insertion in output packets or
2202 * specifying behavior of outgoing packets.
2203 */
2204 static int
2205 ip6_pcbopts(pktopt, m, so)
2206 struct ip6_pktopts **pktopt;
2207 struct mbuf *m;
2208 struct socket *so;
2209 {
2210 struct ip6_pktopts *opt = *pktopt;
2211 int error = 0;
2212 struct lwp *l = curlwp; /* XXX */
2213 int priv = 0;
2214
2215 /* turn off any old options. */
2216 if (opt) {
2217 #ifdef DIAGNOSTIC
2218 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2219 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2220 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2221 printf("ip6_pcbopts: all specified options are cleared.\n");
2222 #endif
2223 ip6_clearpktopts(opt, -1);
2224 } else
2225 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2226 *pktopt = NULL;
2227
2228 if (!m || m->m_len == 0) {
2229 /*
2230 * Only turning off any previous options, regardless of
2231 * whether the opt is just created or given.
2232 */
2233 free(opt, M_IP6OPT);
2234 return (0);
2235 }
2236
2237 /* set options specified by user. */
2238 if (l && !kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
2239 NULL))
2240 priv = 1;
2241 if ((error = ip6_setpktopts(m, opt, NULL, priv,
2242 so->so_proto->pr_protocol)) != 0) {
2243 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2244 free(opt, M_IP6OPT);
2245 return (error);
2246 }
2247 *pktopt = opt;
2248 return (0);
2249 }
2250 #endif
2251
2252 /*
2253 * initialize ip6_pktopts. beware that there are non-zero default values in
2254 * the struct.
2255 */
2256 void
2257 ip6_initpktopts(struct ip6_pktopts *opt)
2258 {
2259
2260 memset(opt, 0, sizeof(*opt));
2261 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2262 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2263 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2264 }
2265
2266 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2267 static int
2268 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2269 int priv, int uproto)
2270 {
2271 struct ip6_pktopts *opt;
2272
2273 if (*pktopt == NULL) {
2274 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2275 M_WAITOK);
2276 ip6_initpktopts(*pktopt);
2277 }
2278 opt = *pktopt;
2279
2280 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, 0, uproto));
2281 }
2282
2283 static int
2284 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf **mp)
2285 {
2286 void *optdata = NULL;
2287 int optdatalen = 0;
2288 struct ip6_ext *ip6e;
2289 int error = 0;
2290 struct in6_pktinfo null_pktinfo;
2291 int deftclass = 0, on;
2292 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2293 struct mbuf *m;
2294
2295 switch (optname) {
2296 case IPV6_PKTINFO:
2297 if (pktopt && pktopt->ip6po_pktinfo)
2298 optdata = (void *)pktopt->ip6po_pktinfo;
2299 else {
2300 /* XXX: we don't have to do this every time... */
2301 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2302 optdata = (void *)&null_pktinfo;
2303 }
2304 optdatalen = sizeof(struct in6_pktinfo);
2305 break;
2306 case IPV6_OTCLASS:
2307 /* XXX */
2308 return (EINVAL);
2309 case IPV6_TCLASS:
2310 if (pktopt && pktopt->ip6po_tclass >= 0)
2311 optdata = (void *)&pktopt->ip6po_tclass;
2312 else
2313 optdata = (void *)&deftclass;
2314 optdatalen = sizeof(int);
2315 break;
2316 case IPV6_HOPOPTS:
2317 if (pktopt && pktopt->ip6po_hbh) {
2318 optdata = (void *)pktopt->ip6po_hbh;
2319 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2320 optdatalen = (ip6e->ip6e_len + 1) << 3;
2321 }
2322 break;
2323 case IPV6_RTHDR:
2324 if (pktopt && pktopt->ip6po_rthdr) {
2325 optdata = (void *)pktopt->ip6po_rthdr;
2326 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2327 optdatalen = (ip6e->ip6e_len + 1) << 3;
2328 }
2329 break;
2330 case IPV6_RTHDRDSTOPTS:
2331 if (pktopt && pktopt->ip6po_dest1) {
2332 optdata = (void *)pktopt->ip6po_dest1;
2333 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2334 optdatalen = (ip6e->ip6e_len + 1) << 3;
2335 }
2336 break;
2337 case IPV6_DSTOPTS:
2338 if (pktopt && pktopt->ip6po_dest2) {
2339 optdata = (void *)pktopt->ip6po_dest2;
2340 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2341 optdatalen = (ip6e->ip6e_len + 1) << 3;
2342 }
2343 break;
2344 case IPV6_NEXTHOP:
2345 if (pktopt && pktopt->ip6po_nexthop) {
2346 optdata = (void *)pktopt->ip6po_nexthop;
2347 optdatalen = pktopt->ip6po_nexthop->sa_len;
2348 }
2349 break;
2350 case IPV6_USE_MIN_MTU:
2351 if (pktopt)
2352 optdata = (void *)&pktopt->ip6po_minmtu;
2353 else
2354 optdata = (void *)&defminmtu;
2355 optdatalen = sizeof(int);
2356 break;
2357 case IPV6_DONTFRAG:
2358 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2359 on = 1;
2360 else
2361 on = 0;
2362 optdata = (void *)&on;
2363 optdatalen = sizeof(on);
2364 break;
2365 default: /* should not happen */
2366 #ifdef DIAGNOSTIC
2367 panic("ip6_getpcbopt: unexpected option\n");
2368 #endif
2369 return (ENOPROTOOPT);
2370 }
2371
2372 if (optdatalen > MCLBYTES)
2373 return (EMSGSIZE); /* XXX */
2374 *mp = m = m_get(M_WAIT, MT_SOOPTS);
2375 if (optdatalen > MLEN)
2376 MCLGET(m, M_WAIT);
2377 m->m_len = optdatalen;
2378 if (optdatalen)
2379 memcpy(mtod(m, void *), optdata, optdatalen);
2380
2381 return (error);
2382 }
2383
2384 void
2385 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2386 {
2387 if (optname == -1 || optname == IPV6_PKTINFO) {
2388 if (pktopt->ip6po_pktinfo)
2389 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2390 pktopt->ip6po_pktinfo = NULL;
2391 }
2392 if (optname == -1 || optname == IPV6_HOPLIMIT)
2393 pktopt->ip6po_hlim = -1;
2394 if (optname == -1 || optname == IPV6_TCLASS)
2395 pktopt->ip6po_tclass = -1;
2396 if (optname == -1 || optname == IPV6_NEXTHOP) {
2397 rtcache_free((struct route *)&pktopt->ip6po_nextroute);
2398 if (pktopt->ip6po_nexthop)
2399 free(pktopt->ip6po_nexthop, M_IP6OPT);
2400 pktopt->ip6po_nexthop = NULL;
2401 }
2402 if (optname == -1 || optname == IPV6_HOPOPTS) {
2403 if (pktopt->ip6po_hbh)
2404 free(pktopt->ip6po_hbh, M_IP6OPT);
2405 pktopt->ip6po_hbh = NULL;
2406 }
2407 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2408 if (pktopt->ip6po_dest1)
2409 free(pktopt->ip6po_dest1, M_IP6OPT);
2410 pktopt->ip6po_dest1 = NULL;
2411 }
2412 if (optname == -1 || optname == IPV6_RTHDR) {
2413 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2414 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2415 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2416 rtcache_free((struct route *)&pktopt->ip6po_route);
2417 }
2418 if (optname == -1 || optname == IPV6_DSTOPTS) {
2419 if (pktopt->ip6po_dest2)
2420 free(pktopt->ip6po_dest2, M_IP6OPT);
2421 pktopt->ip6po_dest2 = NULL;
2422 }
2423 }
2424
2425 #define PKTOPT_EXTHDRCPY(type) \
2426 do { \
2427 if (src->type) { \
2428 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2429 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2430 if (dst->type == NULL && canwait == M_NOWAIT) \
2431 goto bad; \
2432 memcpy(dst->type, src->type, hlen); \
2433 } \
2434 } while (/*CONSTCOND*/ 0)
2435
2436 static int
2437 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2438 {
2439 dst->ip6po_hlim = src->ip6po_hlim;
2440 dst->ip6po_tclass = src->ip6po_tclass;
2441 dst->ip6po_flags = src->ip6po_flags;
2442 if (src->ip6po_pktinfo) {
2443 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2444 M_IP6OPT, canwait);
2445 if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT)
2446 goto bad;
2447 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2448 }
2449 if (src->ip6po_nexthop) {
2450 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2451 M_IP6OPT, canwait);
2452 if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT)
2453 goto bad;
2454 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2455 src->ip6po_nexthop->sa_len);
2456 }
2457 PKTOPT_EXTHDRCPY(ip6po_hbh);
2458 PKTOPT_EXTHDRCPY(ip6po_dest1);
2459 PKTOPT_EXTHDRCPY(ip6po_dest2);
2460 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2461 return (0);
2462
2463 bad:
2464 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2465 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2466 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2467 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2468 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2469 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2470
2471 return (ENOBUFS);
2472 }
2473 #undef PKTOPT_EXTHDRCPY
2474
2475 struct ip6_pktopts *
2476 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2477 {
2478 int error;
2479 struct ip6_pktopts *dst;
2480
2481 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2482 if (dst == NULL && canwait == M_NOWAIT)
2483 return (NULL);
2484 ip6_initpktopts(dst);
2485
2486 if ((error = copypktopts(dst, src, canwait)) != 0) {
2487 free(dst, M_IP6OPT);
2488 return (NULL);
2489 }
2490
2491 return (dst);
2492 }
2493
2494 void
2495 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2496 {
2497 if (pktopt == NULL)
2498 return;
2499
2500 ip6_clearpktopts(pktopt, -1);
2501
2502 free(pktopt, M_IP6OPT);
2503 }
2504
2505 /*
2506 * Set the IP6 multicast options in response to user setsockopt().
2507 */
2508 static int
2509 ip6_setmoptions(optname, im6op, m)
2510 int optname;
2511 struct ip6_moptions **im6op;
2512 struct mbuf *m;
2513 {
2514 int error = 0;
2515 u_int loop, ifindex;
2516 struct ipv6_mreq *mreq;
2517 struct ifnet *ifp;
2518 struct ip6_moptions *im6o = *im6op;
2519 struct route_in6 ro;
2520 struct in6_multi_mship *imm;
2521 struct lwp *l = curlwp; /* XXX */
2522
2523 if (im6o == NULL) {
2524 /*
2525 * No multicast option buffer attached to the pcb;
2526 * allocate one and initialize to default values.
2527 */
2528 im6o = (struct ip6_moptions *)
2529 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
2530
2531 if (im6o == NULL)
2532 return (ENOBUFS);
2533 *im6op = im6o;
2534 im6o->im6o_multicast_ifp = NULL;
2535 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2536 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2537 LIST_INIT(&im6o->im6o_memberships);
2538 }
2539
2540 switch (optname) {
2541
2542 case IPV6_MULTICAST_IF:
2543 /*
2544 * Select the interface for outgoing multicast packets.
2545 */
2546 if (m == NULL || m->m_len != sizeof(u_int)) {
2547 error = EINVAL;
2548 break;
2549 }
2550 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
2551 if (ifindex != 0) {
2552 if (if_indexlim <= ifindex || !ifindex2ifnet[ifindex]) {
2553 error = ENXIO; /* XXX EINVAL? */
2554 break;
2555 }
2556 ifp = ifindex2ifnet[ifindex];
2557 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2558 error = EADDRNOTAVAIL;
2559 break;
2560 }
2561 } else
2562 ifp = NULL;
2563 im6o->im6o_multicast_ifp = ifp;
2564 break;
2565
2566 case IPV6_MULTICAST_HOPS:
2567 {
2568 /*
2569 * Set the IP6 hoplimit for outgoing multicast packets.
2570 */
2571 int optval;
2572 if (m == NULL || m->m_len != sizeof(int)) {
2573 error = EINVAL;
2574 break;
2575 }
2576 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
2577 if (optval < -1 || optval >= 256)
2578 error = EINVAL;
2579 else if (optval == -1)
2580 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2581 else
2582 im6o->im6o_multicast_hlim = optval;
2583 break;
2584 }
2585
2586 case IPV6_MULTICAST_LOOP:
2587 /*
2588 * Set the loopback flag for outgoing multicast packets.
2589 * Must be zero or one.
2590 */
2591 if (m == NULL || m->m_len != sizeof(u_int)) {
2592 error = EINVAL;
2593 break;
2594 }
2595 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
2596 if (loop > 1) {
2597 error = EINVAL;
2598 break;
2599 }
2600 im6o->im6o_multicast_loop = loop;
2601 break;
2602
2603 case IPV6_JOIN_GROUP:
2604 /*
2605 * Add a multicast group membership.
2606 * Group must be a valid IP6 multicast address.
2607 */
2608 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2609 error = EINVAL;
2610 break;
2611 }
2612 mreq = mtod(m, struct ipv6_mreq *);
2613 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2614 /*
2615 * We use the unspecified address to specify to accept
2616 * all multicast addresses. Only super user is allowed
2617 * to do this.
2618 */
2619 if (kauth_authorize_generic(l->l_cred,
2620 KAUTH_GENERIC_ISSUSER, NULL))
2621 {
2622 error = EACCES;
2623 break;
2624 }
2625 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2626 error = EINVAL;
2627 break;
2628 }
2629
2630 /*
2631 * If no interface was explicitly specified, choose an
2632 * appropriate one according to the given multicast address.
2633 */
2634 if (mreq->ipv6mr_interface == 0) {
2635 struct sockaddr_in6 *dst;
2636
2637 /*
2638 * Look up the routing table for the
2639 * address, and choose the outgoing interface.
2640 * XXX: is it a good approach?
2641 */
2642 memset(&ro, 0, sizeof(ro));
2643 dst = &ro.ro_dst;
2644 dst->sin6_family = AF_INET6;
2645 dst->sin6_len = sizeof(*dst);
2646 dst->sin6_addr = mreq->ipv6mr_multiaddr;
2647 rtcache_init((struct route *)&ro);
2648 ifp = (ro.ro_rt != NULL) ? ro.ro_rt->rt_ifp : NULL;
2649 rtcache_free((struct route *)&ro);
2650 } else {
2651 /*
2652 * If the interface is specified, validate it.
2653 */
2654 if (if_indexlim <= mreq->ipv6mr_interface ||
2655 !ifindex2ifnet[mreq->ipv6mr_interface]) {
2656 error = ENXIO; /* XXX EINVAL? */
2657 break;
2658 }
2659 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2660 }
2661
2662 /*
2663 * See if we found an interface, and confirm that it
2664 * supports multicast
2665 */
2666 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2667 error = EADDRNOTAVAIL;
2668 break;
2669 }
2670
2671 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
2672 error = EADDRNOTAVAIL; /* XXX: should not happen */
2673 break;
2674 }
2675
2676 /*
2677 * See if the membership already exists.
2678 */
2679 for (imm = im6o->im6o_memberships.lh_first;
2680 imm != NULL; imm = imm->i6mm_chain.le_next)
2681 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2682 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2683 &mreq->ipv6mr_multiaddr))
2684 break;
2685 if (imm != NULL) {
2686 error = EADDRINUSE;
2687 break;
2688 }
2689 /*
2690 * Everything looks good; add a new record to the multicast
2691 * address list for the given interface.
2692 */
2693 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0);
2694 if (imm == NULL)
2695 break;
2696 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2697 break;
2698
2699 case IPV6_LEAVE_GROUP:
2700 /*
2701 * Drop a multicast group membership.
2702 * Group must be a valid IP6 multicast address.
2703 */
2704 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2705 error = EINVAL;
2706 break;
2707 }
2708 mreq = mtod(m, struct ipv6_mreq *);
2709
2710 /*
2711 * If an interface address was specified, get a pointer
2712 * to its ifnet structure.
2713 */
2714 if (mreq->ipv6mr_interface != 0) {
2715 if (if_indexlim <= mreq->ipv6mr_interface ||
2716 !ifindex2ifnet[mreq->ipv6mr_interface]) {
2717 error = ENXIO; /* XXX EINVAL? */
2718 break;
2719 }
2720 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2721 } else
2722 ifp = NULL;
2723
2724 /* Fill in the scope zone ID */
2725 if (ifp) {
2726 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
2727 /* XXX: should not happen */
2728 error = EADDRNOTAVAIL;
2729 break;
2730 }
2731 } else if (mreq->ipv6mr_interface != 0) {
2732 /*
2733 * XXX: This case would happens when the (positive)
2734 * index is in the valid range, but the corresponding
2735 * interface has been detached dynamically. The above
2736 * check probably avoids such case to happen here, but
2737 * we check it explicitly for safety.
2738 */
2739 error = EADDRNOTAVAIL;
2740 break;
2741 } else { /* ipv6mr_interface == 0 */
2742 struct sockaddr_in6 sa6_mc;
2743
2744 /*
2745 * The API spec says as follows:
2746 * If the interface index is specified as 0, the
2747 * system may choose a multicast group membership to
2748 * drop by matching the multicast address only.
2749 * On the other hand, we cannot disambiguate the scope
2750 * zone unless an interface is provided. Thus, we
2751 * check if there's ambiguity with the default scope
2752 * zone as the last resort.
2753 */
2754 bzero(&sa6_mc, sizeof(sa6_mc));
2755 sa6_mc.sin6_family = AF_INET6;
2756 sa6_mc.sin6_len = sizeof(sa6_mc);
2757 sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr;
2758 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2759 if (error != 0)
2760 break;
2761 mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr;
2762 }
2763
2764 /*
2765 * Find the membership in the membership list.
2766 */
2767 for (imm = im6o->im6o_memberships.lh_first;
2768 imm != NULL; imm = imm->i6mm_chain.le_next) {
2769 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2770 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2771 &mreq->ipv6mr_multiaddr))
2772 break;
2773 }
2774 if (imm == NULL) {
2775 /* Unable to resolve interface */
2776 error = EADDRNOTAVAIL;
2777 break;
2778 }
2779 /*
2780 * Give up the multicast address record to which the
2781 * membership points.
2782 */
2783 LIST_REMOVE(imm, i6mm_chain);
2784 in6_leavegroup(imm);
2785 break;
2786
2787 default:
2788 error = EOPNOTSUPP;
2789 break;
2790 }
2791
2792 /*
2793 * If all options have default values, no need to keep the mbuf.
2794 */
2795 if (im6o->im6o_multicast_ifp == NULL &&
2796 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2797 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2798 im6o->im6o_memberships.lh_first == NULL) {
2799 free(*im6op, M_IPMOPTS);
2800 *im6op = NULL;
2801 }
2802
2803 return (error);
2804 }
2805
2806 /*
2807 * Return the IP6 multicast options in response to user getsockopt().
2808 */
2809 static int
2810 ip6_getmoptions(optname, im6o, mp)
2811 int optname;
2812 struct ip6_moptions *im6o;
2813 struct mbuf **mp;
2814 {
2815 u_int *hlim, *loop, *ifindex;
2816
2817 *mp = m_get(M_WAIT, MT_SOOPTS);
2818
2819 switch (optname) {
2820
2821 case IPV6_MULTICAST_IF:
2822 ifindex = mtod(*mp, u_int *);
2823 (*mp)->m_len = sizeof(u_int);
2824 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2825 *ifindex = 0;
2826 else
2827 *ifindex = im6o->im6o_multicast_ifp->if_index;
2828 return (0);
2829
2830 case IPV6_MULTICAST_HOPS:
2831 hlim = mtod(*mp, u_int *);
2832 (*mp)->m_len = sizeof(u_int);
2833 if (im6o == NULL)
2834 *hlim = ip6_defmcasthlim;
2835 else
2836 *hlim = im6o->im6o_multicast_hlim;
2837 return (0);
2838
2839 case IPV6_MULTICAST_LOOP:
2840 loop = mtod(*mp, u_int *);
2841 (*mp)->m_len = sizeof(u_int);
2842 if (im6o == NULL)
2843 *loop = ip6_defmcasthlim;
2844 else
2845 *loop = im6o->im6o_multicast_loop;
2846 return (0);
2847
2848 default:
2849 return (EOPNOTSUPP);
2850 }
2851 }
2852
2853 /*
2854 * Discard the IP6 multicast options.
2855 */
2856 void
2857 ip6_freemoptions(im6o)
2858 struct ip6_moptions *im6o;
2859 {
2860 struct in6_multi_mship *imm;
2861
2862 if (im6o == NULL)
2863 return;
2864
2865 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2866 LIST_REMOVE(imm, i6mm_chain);
2867 in6_leavegroup(imm);
2868 }
2869 free(im6o, M_IPMOPTS);
2870 }
2871
2872 /*
2873 * Set IPv6 outgoing packet options based on advanced API.
2874 */
2875 int
2876 ip6_setpktopts(control, opt, stickyopt, priv, uproto)
2877 struct mbuf *control;
2878 struct ip6_pktopts *opt, *stickyopt;
2879 int priv, uproto;
2880 {
2881 struct cmsghdr *cm = 0;
2882
2883 if (control == NULL || opt == NULL)
2884 return (EINVAL);
2885
2886 ip6_initpktopts(opt);
2887 if (stickyopt) {
2888 int error;
2889
2890 /*
2891 * If stickyopt is provided, make a local copy of the options
2892 * for this particular packet, then override them by ancillary
2893 * objects.
2894 * XXX: copypktopts() does not copy the cached route to a next
2895 * hop (if any). This is not very good in terms of efficiency,
2896 * but we can allow this since this option should be rarely
2897 * used.
2898 */
2899 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2900 return (error);
2901 }
2902
2903 /*
2904 * XXX: Currently, we assume all the optional information is stored
2905 * in a single mbuf.
2906 */
2907 if (control->m_next)
2908 return (EINVAL);
2909
2910 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2911 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2912 int error;
2913
2914 if (control->m_len < CMSG_LEN(0))
2915 return (EINVAL);
2916
2917 cm = mtod(control, struct cmsghdr *);
2918 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2919 return (EINVAL);
2920 if (cm->cmsg_level != IPPROTO_IPV6)
2921 continue;
2922
2923 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2924 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, 1, uproto);
2925 if (error)
2926 return (error);
2927 }
2928
2929 return (0);
2930 }
2931
2932 /*
2933 * Set a particular packet option, as a sticky option or an ancillary data
2934 * item. "len" can be 0 only when it's a sticky option.
2935 * We have 4 cases of combination of "sticky" and "cmsg":
2936 * "sticky=0, cmsg=0": impossible
2937 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2938 * "sticky=1, cmsg=0": RFC3542 socket option
2939 * "sticky=1, cmsg=1": RFC2292 socket option
2940 */
2941 static int
2942 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2943 int priv, int sticky, int cmsg, int uproto)
2944 {
2945 int minmtupolicy;
2946
2947 if (!sticky && !cmsg) {
2948 #ifdef DIAGNOSTIC
2949 printf("ip6_setpktopt: impossible case\n");
2950 #endif
2951 return (EINVAL);
2952 }
2953
2954 /*
2955 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2956 * not be specified in the context of RFC3542. Conversely,
2957 * RFC3542 types should not be specified in the context of RFC2292.
2958 */
2959 if (!cmsg) {
2960 switch (optname) {
2961 case IPV6_2292PKTINFO:
2962 case IPV6_2292HOPLIMIT:
2963 case IPV6_2292NEXTHOP:
2964 case IPV6_2292HOPOPTS:
2965 case IPV6_2292DSTOPTS:
2966 case IPV6_2292RTHDR:
2967 case IPV6_2292PKTOPTIONS:
2968 return (ENOPROTOOPT);
2969 }
2970 }
2971 if (sticky && cmsg) {
2972 switch (optname) {
2973 case IPV6_PKTINFO:
2974 case IPV6_HOPLIMIT:
2975 case IPV6_NEXTHOP:
2976 case IPV6_HOPOPTS:
2977 case IPV6_DSTOPTS:
2978 case IPV6_RTHDRDSTOPTS:
2979 case IPV6_RTHDR:
2980 case IPV6_USE_MIN_MTU:
2981 case IPV6_DONTFRAG:
2982 case IPV6_OTCLASS:
2983 case IPV6_TCLASS:
2984 return (ENOPROTOOPT);
2985 }
2986 }
2987
2988 switch (optname) {
2989 #ifdef RFC2292
2990 case IPV6_2292PKTINFO:
2991 #endif
2992 case IPV6_PKTINFO:
2993 {
2994 struct ifnet *ifp = NULL;
2995 struct in6_pktinfo *pktinfo;
2996
2997 if (len != sizeof(struct in6_pktinfo))
2998 return (EINVAL);
2999
3000 pktinfo = (struct in6_pktinfo *)buf;
3001
3002 /*
3003 * An application can clear any sticky IPV6_PKTINFO option by
3004 * doing a "regular" setsockopt with ipi6_addr being
3005 * in6addr_any and ipi6_ifindex being zero.
3006 * [RFC 3542, Section 6]
3007 */
3008 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
3009 pktinfo->ipi6_ifindex == 0 &&
3010 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
3011 ip6_clearpktopts(opt, optname);
3012 break;
3013 }
3014
3015 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
3016 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
3017 return (EINVAL);
3018 }
3019
3020 /* validate the interface index if specified. */
3021 if (pktinfo->ipi6_ifindex >= if_indexlim) {
3022 return (ENXIO);
3023 }
3024 if (pktinfo->ipi6_ifindex) {
3025 ifp = ifindex2ifnet[pktinfo->ipi6_ifindex];
3026 if (ifp == NULL)
3027 return (ENXIO);
3028 }
3029
3030 /*
3031 * We store the address anyway, and let in6_selectsrc()
3032 * validate the specified address. This is because ipi6_addr
3033 * may not have enough information about its scope zone, and
3034 * we may need additional information (such as outgoing
3035 * interface or the scope zone of a destination address) to
3036 * disambiguate the scope.
3037 * XXX: the delay of the validation may confuse the
3038 * application when it is used as a sticky option.
3039 */
3040 if (opt->ip6po_pktinfo == NULL) {
3041 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
3042 M_IP6OPT, M_NOWAIT);
3043 if (opt->ip6po_pktinfo == NULL)
3044 return (ENOBUFS);
3045 }
3046 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
3047 break;
3048 }
3049
3050 #ifdef RFC2292
3051 case IPV6_2292HOPLIMIT:
3052 #endif
3053 case IPV6_HOPLIMIT:
3054 {
3055 int *hlimp;
3056
3057 /*
3058 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
3059 * to simplify the ordering among hoplimit options.
3060 */
3061 if (optname == IPV6_HOPLIMIT && sticky)
3062 return (ENOPROTOOPT);
3063
3064 if (len != sizeof(int))
3065 return (EINVAL);
3066 hlimp = (int *)buf;
3067 if (*hlimp < -1 || *hlimp > 255)
3068 return (EINVAL);
3069
3070 opt->ip6po_hlim = *hlimp;
3071 break;
3072 }
3073
3074 case IPV6_OTCLASS:
3075 if (len != sizeof(u_int8_t))
3076 return (EINVAL);
3077
3078 opt->ip6po_tclass = *(u_int8_t *)buf;
3079 break;
3080
3081 case IPV6_TCLASS:
3082 {
3083 int tclass;
3084
3085 if (len != sizeof(int))
3086 return (EINVAL);
3087 tclass = *(int *)buf;
3088 if (tclass < -1 || tclass > 255)
3089 return (EINVAL);
3090
3091 opt->ip6po_tclass = tclass;
3092 break;
3093 }
3094
3095 #ifdef RFC2292
3096 case IPV6_2292NEXTHOP:
3097 #endif
3098 case IPV6_NEXTHOP:
3099 if (!priv)
3100 return (EPERM);
3101
3102 if (len == 0) { /* just remove the option */
3103 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3104 break;
3105 }
3106
3107 /* check if cmsg_len is large enough for sa_len */
3108 if (len < sizeof(struct sockaddr) || len < *buf)
3109 return (EINVAL);
3110
3111 switch (((struct sockaddr *)buf)->sa_family) {
3112 case AF_INET6:
3113 {
3114 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3115 int error;
3116
3117 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3118 return (EINVAL);
3119
3120 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3121 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3122 return (EINVAL);
3123 }
3124 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
3125 != 0) {
3126 return (error);
3127 }
3128 break;
3129 }
3130 case AF_LINK: /* eventually be supported? */
3131 default:
3132 return (EAFNOSUPPORT);
3133 }
3134
3135 /* turn off the previous option, then set the new option. */
3136 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3137 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3138 if (opt->ip6po_nexthop == NULL)
3139 return (ENOBUFS);
3140 memcpy(opt->ip6po_nexthop, buf, *buf);
3141 break;
3142
3143 #ifdef RFC2292
3144 case IPV6_2292HOPOPTS:
3145 #endif
3146 case IPV6_HOPOPTS:
3147 {
3148 struct ip6_hbh *hbh;
3149 int hbhlen;
3150
3151 /*
3152 * XXX: We don't allow a non-privileged user to set ANY HbH
3153 * options, since per-option restriction has too much
3154 * overhead.
3155 */
3156 if (!priv)
3157 return (EPERM);
3158
3159 if (len == 0) {
3160 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3161 break; /* just remove the option */
3162 }
3163
3164 /* message length validation */
3165 if (len < sizeof(struct ip6_hbh))
3166 return (EINVAL);
3167 hbh = (struct ip6_hbh *)buf;
3168 hbhlen = (hbh->ip6h_len + 1) << 3;
3169 if (len != hbhlen)
3170 return (EINVAL);
3171
3172 /* turn off the previous option, then set the new option. */
3173 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3174 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3175 if (opt->ip6po_hbh == NULL)
3176 return (ENOBUFS);
3177 memcpy(opt->ip6po_hbh, hbh, hbhlen);
3178
3179 break;
3180 }
3181
3182 #ifdef RFC2292
3183 case IPV6_2292DSTOPTS:
3184 #endif
3185 case IPV6_DSTOPTS:
3186 case IPV6_RTHDRDSTOPTS:
3187 {
3188 struct ip6_dest *dest, **newdest = NULL;
3189 int destlen;
3190
3191 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */
3192 return (EPERM);
3193
3194 if (len == 0) {
3195 ip6_clearpktopts(opt, optname);
3196 break; /* just remove the option */
3197 }
3198
3199 /* message length validation */
3200 if (len < sizeof(struct ip6_dest))
3201 return (EINVAL);
3202 dest = (struct ip6_dest *)buf;
3203 destlen = (dest->ip6d_len + 1) << 3;
3204 if (len != destlen)
3205 return (EINVAL);
3206 /*
3207 * Determine the position that the destination options header
3208 * should be inserted; before or after the routing header.
3209 */
3210 switch (optname) {
3211 case IPV6_2292DSTOPTS:
3212 /*
3213 * The old advanced API is ambiguous on this point.
3214 * Our approach is to determine the position based
3215 * according to the existence of a routing header.
3216 * Note, however, that this depends on the order of the
3217 * extension headers in the ancillary data; the 1st
3218 * part of the destination options header must appear
3219 * before the routing header in the ancillary data,
3220 * too.
3221 * RFC3542 solved the ambiguity by introducing
3222 * separate ancillary data or option types.
3223 */
3224 if (opt->ip6po_rthdr == NULL)
3225 newdest = &opt->ip6po_dest1;
3226 else
3227 newdest = &opt->ip6po_dest2;
3228 break;
3229 case IPV6_RTHDRDSTOPTS:
3230 newdest = &opt->ip6po_dest1;
3231 break;
3232 case IPV6_DSTOPTS:
3233 newdest = &opt->ip6po_dest2;
3234 break;
3235 }
3236
3237 /* turn off the previous option, then set the new option. */
3238 ip6_clearpktopts(opt, optname);
3239 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3240 if (*newdest == NULL)
3241 return (ENOBUFS);
3242 memcpy(*newdest, dest, destlen);
3243
3244 break;
3245 }
3246
3247 #ifdef RFC2292
3248 case IPV6_2292RTHDR:
3249 #endif
3250 case IPV6_RTHDR:
3251 {
3252 struct ip6_rthdr *rth;
3253 int rthlen;
3254
3255 if (len == 0) {
3256 ip6_clearpktopts(opt, IPV6_RTHDR);
3257 break; /* just remove the option */
3258 }
3259
3260 /* message length validation */
3261 if (len < sizeof(struct ip6_rthdr))
3262 return (EINVAL);
3263 rth = (struct ip6_rthdr *)buf;
3264 rthlen = (rth->ip6r_len + 1) << 3;
3265 if (len != rthlen)
3266 return (EINVAL);
3267 switch (rth->ip6r_type) {
3268 case IPV6_RTHDR_TYPE_0:
3269 if (rth->ip6r_len == 0) /* must contain one addr */
3270 return (EINVAL);
3271 if (rth->ip6r_len % 2) /* length must be even */
3272 return (EINVAL);
3273 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3274 return (EINVAL);
3275 break;
3276 default:
3277 return (EINVAL); /* not supported */
3278 }
3279 /* turn off the previous option */
3280 ip6_clearpktopts(opt, IPV6_RTHDR);
3281 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3282 if (opt->ip6po_rthdr == NULL)
3283 return (ENOBUFS);
3284 memcpy(opt->ip6po_rthdr, rth, rthlen);
3285 break;
3286 }
3287
3288 case IPV6_USE_MIN_MTU:
3289 if (len != sizeof(int))
3290 return (EINVAL);
3291 minmtupolicy = *(int *)buf;
3292 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3293 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3294 minmtupolicy != IP6PO_MINMTU_ALL) {
3295 return (EINVAL);
3296 }
3297 opt->ip6po_minmtu = minmtupolicy;
3298 break;
3299
3300 case IPV6_DONTFRAG:
3301 if (len != sizeof(int))
3302 return (EINVAL);
3303
3304 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3305 /*
3306 * we ignore this option for TCP sockets.
3307 * (RFC3542 leaves this case unspecified.)
3308 */
3309 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3310 } else
3311 opt->ip6po_flags |= IP6PO_DONTFRAG;
3312 break;
3313
3314 default:
3315 return (ENOPROTOOPT);
3316 } /* end of switch */
3317
3318 return (0);
3319 }
3320
3321 /*
3322 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3323 * packet to the input queue of a specified interface. Note that this
3324 * calls the output routine of the loopback "driver", but with an interface
3325 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3326 */
3327 void
3328 ip6_mloopback(ifp, m, dst)
3329 struct ifnet *ifp;
3330 struct mbuf *m;
3331 struct sockaddr_in6 *dst;
3332 {
3333 struct mbuf *copym;
3334 struct ip6_hdr *ip6;
3335
3336 copym = m_copy(m, 0, M_COPYALL);
3337 if (copym == NULL)
3338 return;
3339
3340 /*
3341 * Make sure to deep-copy IPv6 header portion in case the data
3342 * is in an mbuf cluster, so that we can safely override the IPv6
3343 * header portion later.
3344 */
3345 if ((copym->m_flags & M_EXT) != 0 ||
3346 copym->m_len < sizeof(struct ip6_hdr)) {
3347 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3348 if (copym == NULL)
3349 return;
3350 }
3351
3352 #ifdef DIAGNOSTIC
3353 if (copym->m_len < sizeof(*ip6)) {
3354 m_freem(copym);
3355 return;
3356 }
3357 #endif
3358
3359 ip6 = mtod(copym, struct ip6_hdr *);
3360 /*
3361 * clear embedded scope identifiers if necessary.
3362 * in6_clearscope will touch the addresses only when necessary.
3363 */
3364 in6_clearscope(&ip6->ip6_src);
3365 in6_clearscope(&ip6->ip6_dst);
3366
3367 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
3368 }
3369
3370 /*
3371 * Chop IPv6 header off from the payload.
3372 */
3373 static int
3374 ip6_splithdr(m, exthdrs)
3375 struct mbuf *m;
3376 struct ip6_exthdrs *exthdrs;
3377 {
3378 struct mbuf *mh;
3379 struct ip6_hdr *ip6;
3380
3381 ip6 = mtod(m, struct ip6_hdr *);
3382 if (m->m_len > sizeof(*ip6)) {
3383 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3384 if (mh == 0) {
3385 m_freem(m);
3386 return ENOBUFS;
3387 }
3388 M_MOVE_PKTHDR(mh, m);
3389 MH_ALIGN(mh, sizeof(*ip6));
3390 m->m_len -= sizeof(*ip6);
3391 m->m_data += sizeof(*ip6);
3392 mh->m_next = m;
3393 m = mh;
3394 m->m_len = sizeof(*ip6);
3395 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
3396 }
3397 exthdrs->ip6e_ip6 = m;
3398 return 0;
3399 }
3400
3401 /*
3402 * Compute IPv6 extension header length.
3403 */
3404 int
3405 ip6_optlen(in6p)
3406 struct in6pcb *in6p;
3407 {
3408 int len;
3409
3410 if (!in6p->in6p_outputopts)
3411 return 0;
3412
3413 len = 0;
3414 #define elen(x) \
3415 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3416
3417 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3418 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3419 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3420 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3421 return len;
3422 #undef elen
3423 }
3424