Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.117
      1 /*	$NetBSD: ip6_output.c,v 1.117 2007/03/04 06:03:26 christos Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.117 2007/03/04 06:03:26 christos Exp $");
     66 
     67 #include "opt_inet.h"
     68 #include "opt_inet6.h"
     69 #include "opt_ipsec.h"
     70 #include "opt_pfil_hooks.h"
     71 
     72 #include <sys/param.h>
     73 #include <sys/malloc.h>
     74 #include <sys/mbuf.h>
     75 #include <sys/errno.h>
     76 #include <sys/protosw.h>
     77 #include <sys/socket.h>
     78 #include <sys/socketvar.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/kauth.h>
     82 
     83 #include <net/if.h>
     84 #include <net/route.h>
     85 #ifdef PFIL_HOOKS
     86 #include <net/pfil.h>
     87 #endif
     88 
     89 #include <netinet/in.h>
     90 #include <netinet/in_var.h>
     91 #include <netinet/ip6.h>
     92 #include <netinet/icmp6.h>
     93 #include <netinet/in_offload.h>
     94 #include <netinet6/in6_offload.h>
     95 #include <netinet6/ip6_var.h>
     96 #include <netinet6/in6_pcb.h>
     97 #include <netinet6/nd6.h>
     98 #include <netinet6/ip6protosw.h>
     99 #include <netinet6/scope6_var.h>
    100 
    101 #ifdef IPSEC
    102 #include <netinet6/ipsec.h>
    103 #include <netkey/key.h>
    104 #endif /* IPSEC */
    105 
    106 #ifdef FAST_IPSEC
    107 #include <netipsec/ipsec.h>
    108 #include <netipsec/ipsec6.h>
    109 #include <netipsec/key.h>
    110 #include <netipsec/xform.h>
    111 #endif
    112 
    113 
    114 #include <net/net_osdep.h>
    115 
    116 #ifdef PFIL_HOOKS
    117 extern struct pfil_head inet6_pfil_hook;	/* XXX */
    118 #endif
    119 
    120 struct ip6_exthdrs {
    121 	struct mbuf *ip6e_ip6;
    122 	struct mbuf *ip6e_hbh;
    123 	struct mbuf *ip6e_dest1;
    124 	struct mbuf *ip6e_rthdr;
    125 	struct mbuf *ip6e_dest2;
    126 };
    127 
    128 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **,
    129 	int, int));
    130 static int ip6_getpcbopt __P((struct ip6_pktopts *, int, struct mbuf **));
    131 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, int,
    132 	int, int, int));
    133 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
    134 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
    135 static int ip6_copyexthdr __P((struct mbuf **, void *, int));
    136 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
    137 	struct ip6_frag **));
    138 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
    139 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
    140 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *, struct ifnet *,
    141     const struct in6_addr *, u_long *, int *);
    142 static int copypktopts __P((struct ip6_pktopts *, struct ip6_pktopts *, int));
    143 
    144 #ifdef RFC2292
    145 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
    146 	struct socket *));
    147 #endif
    148 
    149 #define	IN6_NEED_CHECKSUM(ifp, csum_flags) \
    150 	(__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
    151 	(((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \
    152 	(((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum)))
    153 
    154 /*
    155  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    156  * header (with pri, len, nxt, hlim, src, dst).
    157  * This function may modify ver and hlim only.
    158  * The mbuf chain containing the packet will be freed.
    159  * The mbuf opt, if present, will not be freed.
    160  *
    161  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    162  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
    163  * which is rt_rmx.rmx_mtu.
    164  */
    165 int
    166 ip6_output(
    167     struct mbuf *m0,
    168     struct ip6_pktopts *opt,
    169     struct route_in6 *ro,
    170     int flags,
    171     struct ip6_moptions *im6o,
    172     struct socket *so,
    173     struct ifnet **ifpp		/* XXX: just for statistics */
    174 )
    175 {
    176 	struct ip6_hdr *ip6, *mhip6;
    177 	struct ifnet *ifp, *origifp;
    178 	struct mbuf *m = m0;
    179 	int hlen, tlen, len, off;
    180 	bool tso;
    181 	struct route_in6 ip6route;
    182 	struct rtentry *rt = NULL;
    183 	struct sockaddr_in6 *dst, src_sa, dst_sa;
    184 	int error = 0;
    185 	struct in6_ifaddr *ia = NULL;
    186 	u_long mtu;
    187 	int alwaysfrag, dontfrag;
    188 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    189 	struct ip6_exthdrs exthdrs;
    190 	struct in6_addr finaldst, src0, dst0;
    191 	u_int32_t zone;
    192 	struct route_in6 *ro_pmtu = NULL;
    193 	int hdrsplit = 0;
    194 	int needipsec = 0;
    195 #ifdef IPSEC
    196 	int needipsectun = 0;
    197 	struct secpolicy *sp = NULL;
    198 
    199 	ip6 = mtod(m, struct ip6_hdr *);
    200 #endif /* IPSEC */
    201 #ifdef FAST_IPSEC
    202 	struct secpolicy *sp = NULL;
    203 	int s;
    204 #endif
    205 
    206 
    207 #ifdef  DIAGNOSTIC
    208 	if ((m->m_flags & M_PKTHDR) == 0)
    209 		panic("ip6_output: no HDR");
    210 
    211 	if ((m->m_pkthdr.csum_flags &
    212 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
    213 		panic("ip6_output: IPv4 checksum offload flags: %d",
    214 		    m->m_pkthdr.csum_flags);
    215 	}
    216 
    217 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
    218 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
    219 		panic("ip6_output: conflicting checksum offload flags: %d",
    220 		    m->m_pkthdr.csum_flags);
    221 	}
    222 #endif
    223 
    224 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    225 
    226 #define MAKE_EXTHDR(hp, mp)						\
    227     do {								\
    228 	if (hp) {							\
    229 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    230 		error = ip6_copyexthdr((mp), (void *)(hp), 		\
    231 		    ((eh)->ip6e_len + 1) << 3);				\
    232 		if (error)						\
    233 			goto freehdrs;					\
    234 	}								\
    235     } while (/*CONSTCOND*/ 0)
    236 
    237 	bzero(&exthdrs, sizeof(exthdrs));
    238 	if (opt) {
    239 		/* Hop-by-Hop options header */
    240 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    241 		/* Destination options header(1st part) */
    242 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    243 		/* Routing header */
    244 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    245 		/* Destination options header(2nd part) */
    246 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    247 	}
    248 
    249 #ifdef IPSEC
    250 	if ((flags & IPV6_FORWARDING) != 0) {
    251 		needipsec = 0;
    252 		goto skippolicycheck;
    253 	}
    254 
    255 	/* get a security policy for this packet */
    256 	if (so == NULL)
    257 		sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
    258 	else {
    259 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
    260 					 IPSEC_DIR_OUTBOUND)) {
    261 			needipsec = 0;
    262 			goto skippolicycheck;
    263 		}
    264 		sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    265 	}
    266 
    267 	if (sp == NULL) {
    268 		ipsec6stat.out_inval++;
    269 		goto freehdrs;
    270 	}
    271 
    272 	error = 0;
    273 
    274 	/* check policy */
    275 	switch (sp->policy) {
    276 	case IPSEC_POLICY_DISCARD:
    277 		/*
    278 		 * This packet is just discarded.
    279 		 */
    280 		ipsec6stat.out_polvio++;
    281 		goto freehdrs;
    282 
    283 	case IPSEC_POLICY_BYPASS:
    284 	case IPSEC_POLICY_NONE:
    285 		/* no need to do IPsec. */
    286 		needipsec = 0;
    287 		break;
    288 
    289 	case IPSEC_POLICY_IPSEC:
    290 		if (sp->req == NULL) {
    291 			/* XXX should be panic ? */
    292 			printf("ip6_output: No IPsec request specified.\n");
    293 			error = EINVAL;
    294 			goto freehdrs;
    295 		}
    296 		needipsec = 1;
    297 		break;
    298 
    299 	case IPSEC_POLICY_ENTRUST:
    300 	default:
    301 		printf("ip6_output: Invalid policy found. %d\n", sp->policy);
    302 	}
    303 
    304   skippolicycheck:;
    305 #endif /* IPSEC */
    306 
    307 	/*
    308 	 * Calculate the total length of the extension header chain.
    309 	 * Keep the length of the unfragmentable part for fragmentation.
    310 	 */
    311 	optlen = 0;
    312 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    313 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    314 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    315 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    316 	/* NOTE: we don't add AH/ESP length here. do that later. */
    317 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    318 
    319 #ifdef FAST_IPSEC
    320 	/* Check the security policy (SP) for the packet */
    321 
    322 	/* XXX For moment, we doesn't support packet with extented action */
    323 	if (optlen !=0)
    324 		goto freehdrs;
    325 
    326 	sp = ipsec6_check_policy(m,so,flags,&needipsec,&error);
    327 	if (error != 0) {
    328 		/*
    329 		 * Hack: -EINVAL is used to signal that a packet
    330 		 * should be silently discarded.  This is typically
    331 		 * because we asked key management for an SA and
    332 		 * it was delayed (e.g. kicked up to IKE).
    333 		 */
    334 	if (error == -EINVAL)
    335 		error = 0;
    336 	goto freehdrs;
    337     }
    338 #endif /* FAST_IPSEC */
    339 
    340 
    341 	if (needipsec &&
    342 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    343 		in6_delayed_cksum(m);
    344 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    345 	}
    346 
    347 
    348 	/*
    349 	 * If we need IPsec, or there is at least one extension header,
    350 	 * separate IP6 header from the payload.
    351 	 */
    352 	if ((needipsec || optlen) && !hdrsplit) {
    353 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    354 			m = NULL;
    355 			goto freehdrs;
    356 		}
    357 		m = exthdrs.ip6e_ip6;
    358 		hdrsplit++;
    359 	}
    360 
    361 	/* adjust pointer */
    362 	ip6 = mtod(m, struct ip6_hdr *);
    363 
    364 	/* adjust mbuf packet header length */
    365 	m->m_pkthdr.len += optlen;
    366 	plen = m->m_pkthdr.len - sizeof(*ip6);
    367 
    368 	/* If this is a jumbo payload, insert a jumbo payload option. */
    369 	if (plen > IPV6_MAXPACKET) {
    370 		if (!hdrsplit) {
    371 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    372 				m = NULL;
    373 				goto freehdrs;
    374 			}
    375 			m = exthdrs.ip6e_ip6;
    376 			hdrsplit++;
    377 		}
    378 		/* adjust pointer */
    379 		ip6 = mtod(m, struct ip6_hdr *);
    380 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    381 			goto freehdrs;
    382 		optlen += 8; /* XXX JUMBOOPTLEN */
    383 		ip6->ip6_plen = 0;
    384 	} else
    385 		ip6->ip6_plen = htons(plen);
    386 
    387 	/*
    388 	 * Concatenate headers and fill in next header fields.
    389 	 * Here we have, on "m"
    390 	 *	IPv6 payload
    391 	 * and we insert headers accordingly.  Finally, we should be getting:
    392 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    393 	 *
    394 	 * during the header composing process, "m" points to IPv6 header.
    395 	 * "mprev" points to an extension header prior to esp.
    396 	 */
    397 	{
    398 		u_char *nexthdrp = &ip6->ip6_nxt;
    399 		struct mbuf *mprev = m;
    400 
    401 		/*
    402 		 * we treat dest2 specially.  this makes IPsec processing
    403 		 * much easier.  the goal here is to make mprev point the
    404 		 * mbuf prior to dest2.
    405 		 *
    406 		 * result: IPv6 dest2 payload
    407 		 * m and mprev will point to IPv6 header.
    408 		 */
    409 		if (exthdrs.ip6e_dest2) {
    410 			if (!hdrsplit)
    411 				panic("assumption failed: hdr not split");
    412 			exthdrs.ip6e_dest2->m_next = m->m_next;
    413 			m->m_next = exthdrs.ip6e_dest2;
    414 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    415 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    416 		}
    417 
    418 #define MAKE_CHAIN(m, mp, p, i)\
    419     do {\
    420 	if (m) {\
    421 		if (!hdrsplit) \
    422 			panic("assumption failed: hdr not split"); \
    423 		*mtod((m), u_char *) = *(p);\
    424 		*(p) = (i);\
    425 		p = mtod((m), u_char *);\
    426 		(m)->m_next = (mp)->m_next;\
    427 		(mp)->m_next = (m);\
    428 		(mp) = (m);\
    429 	}\
    430     } while (/*CONSTCOND*/ 0)
    431 		/*
    432 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    433 		 * m will point to IPv6 header.  mprev will point to the
    434 		 * extension header prior to dest2 (rthdr in the above case).
    435 		 */
    436 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    437 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    438 		    IPPROTO_DSTOPTS);
    439 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    440 		    IPPROTO_ROUTING);
    441 
    442 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
    443 		    sizeof(struct ip6_hdr) + optlen);
    444 
    445 #ifdef IPSEC
    446 		if (!needipsec)
    447 			goto skip_ipsec2;
    448 
    449 		/*
    450 		 * pointers after IPsec headers are not valid any more.
    451 		 * other pointers need a great care too.
    452 		 * (IPsec routines should not mangle mbufs prior to AH/ESP)
    453 		 */
    454 		exthdrs.ip6e_dest2 = NULL;
    455 
    456 	    {
    457 		struct ip6_rthdr *rh = NULL;
    458 		int segleft_org = 0;
    459 		struct ipsec_output_state state;
    460 
    461 		if (exthdrs.ip6e_rthdr) {
    462 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
    463 			segleft_org = rh->ip6r_segleft;
    464 			rh->ip6r_segleft = 0;
    465 		}
    466 
    467 		bzero(&state, sizeof(state));
    468 		state.m = m;
    469 		error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
    470 		    &needipsectun);
    471 		m = state.m;
    472 		if (error) {
    473 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
    474 			/* mbuf is already reclaimed in ipsec6_output_trans. */
    475 			m = NULL;
    476 			switch (error) {
    477 			case EHOSTUNREACH:
    478 			case ENETUNREACH:
    479 			case EMSGSIZE:
    480 			case ENOBUFS:
    481 			case ENOMEM:
    482 				break;
    483 			default:
    484 				printf("ip6_output (ipsec): error code %d\n", error);
    485 				/* FALLTHROUGH */
    486 			case ENOENT:
    487 				/* don't show these error codes to the user */
    488 				error = 0;
    489 				break;
    490 			}
    491 			goto bad;
    492 		}
    493 		if (exthdrs.ip6e_rthdr) {
    494 			/* ah6_output doesn't modify mbuf chain */
    495 			rh->ip6r_segleft = segleft_org;
    496 		}
    497 	    }
    498 skip_ipsec2:;
    499 #endif
    500 	}
    501 
    502 	/*
    503 	 * If there is a routing header, replace destination address field
    504 	 * with the first hop of the routing header.
    505 	 */
    506 	if (exthdrs.ip6e_rthdr) {
    507 		struct ip6_rthdr *rh;
    508 		struct ip6_rthdr0 *rh0;
    509 		struct in6_addr *addr;
    510 		struct sockaddr_in6 sa;
    511 
    512 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    513 		    struct ip6_rthdr *));
    514 		finaldst = ip6->ip6_dst;
    515 		switch (rh->ip6r_type) {
    516 		case IPV6_RTHDR_TYPE_0:
    517 			 rh0 = (struct ip6_rthdr0 *)rh;
    518 			 addr = (struct in6_addr *)(rh0 + 1);
    519 
    520 			 /*
    521 			  * construct a sockaddr_in6 form of
    522 			  * the first hop.
    523 			  *
    524 			  * XXX: we may not have enough
    525 			  * information about its scope zone;
    526 			  * there is no standard API to pass
    527 			  * the information from the
    528 			  * application.
    529 			  */
    530 			 bzero(&sa, sizeof(sa));
    531 			 sa.sin6_family = AF_INET6;
    532 			 sa.sin6_len = sizeof(sa);
    533 			 sa.sin6_addr = addr[0];
    534 			 if ((error = sa6_embedscope(&sa,
    535 			     ip6_use_defzone)) != 0) {
    536 				 goto bad;
    537 			 }
    538 			 ip6->ip6_dst = sa.sin6_addr;
    539 			 (void)memmove(&addr[0], &addr[1],
    540 			     sizeof(struct in6_addr) *
    541 			     (rh0->ip6r0_segleft - 1));
    542 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
    543 			 /* XXX */
    544 			 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
    545 			 break;
    546 		default:	/* is it possible? */
    547 			 error = EINVAL;
    548 			 goto bad;
    549 		}
    550 	}
    551 
    552 	/* Source address validation */
    553 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    554 	    (flags & IPV6_UNSPECSRC) == 0) {
    555 		error = EOPNOTSUPP;
    556 		ip6stat.ip6s_badscope++;
    557 		goto bad;
    558 	}
    559 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    560 		error = EOPNOTSUPP;
    561 		ip6stat.ip6s_badscope++;
    562 		goto bad;
    563 	}
    564 
    565 	ip6stat.ip6s_localout++;
    566 
    567 	/*
    568 	 * Route packet.
    569 	 */
    570 	/* initialize cached route */
    571 	if (ro == NULL) {
    572 		memset(&ip6route, 0, sizeof(ip6route));
    573 		ro = &ip6route;
    574 	}
    575 	ro_pmtu = ro;
    576 	if (opt && opt->ip6po_rthdr)
    577 		ro = &opt->ip6po_route;
    578 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
    579 
    580  	/*
    581 	 * if specified, try to fill in the traffic class field.
    582 	 * do not override if a non-zero value is already set.
    583 	 * we check the diffserv field and the ecn field separately.
    584 	 */
    585 	if (opt && opt->ip6po_tclass >= 0) {
    586 		int mask = 0;
    587 
    588 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    589 			mask |= 0xfc;
    590 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    591 			mask |= 0x03;
    592 		if (mask != 0)
    593 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    594 	}
    595 
    596 	/* fill in or override the hop limit field, if necessary. */
    597 	if (opt && opt->ip6po_hlim != -1)
    598 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    599 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    600 		if (im6o != NULL)
    601 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    602 		else
    603 			ip6->ip6_hlim = ip6_defmcasthlim;
    604 	}
    605 
    606 #ifdef IPSEC
    607 	if (needipsec && needipsectun) {
    608 		struct ipsec_output_state state;
    609 
    610 		/*
    611 		 * All the extension headers will become inaccessible
    612 		 * (since they can be encrypted).
    613 		 * Don't panic, we need no more updates to extension headers
    614 		 * on inner IPv6 packet (since they are now encapsulated).
    615 		 *
    616 		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
    617 		 */
    618 		bzero(&exthdrs, sizeof(exthdrs));
    619 		exthdrs.ip6e_ip6 = m;
    620 
    621 		bzero(&state, sizeof(state));
    622 		state.m = m;
    623 		state.ro = (struct route *)ro;
    624 		state.dst = (struct sockaddr *)dst;
    625 
    626 		error = ipsec6_output_tunnel(&state, sp, flags);
    627 
    628 		m = state.m;
    629 		ro_pmtu = ro = (struct route_in6 *)state.ro;
    630 		dst = (struct sockaddr_in6 *)state.dst;
    631 		if (error) {
    632 			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
    633 			m0 = m = NULL;
    634 			m = NULL;
    635 			switch (error) {
    636 			case EHOSTUNREACH:
    637 			case ENETUNREACH:
    638 			case EMSGSIZE:
    639 			case ENOBUFS:
    640 			case ENOMEM:
    641 				break;
    642 			default:
    643 				printf("ip6_output (ipsec): error code %d\n", error);
    644 				/* FALLTHROUGH */
    645 			case ENOENT:
    646 				/* don't show these error codes to the user */
    647 				error = 0;
    648 				break;
    649 			}
    650 			goto bad;
    651 		}
    652 
    653 		exthdrs.ip6e_ip6 = m;
    654 	}
    655 #endif /* IPSEC */
    656 #ifdef FAST_IPSEC
    657 	if (needipsec) {
    658 		s = splsoftnet();
    659 		error = ipsec6_process_packet(m,sp->req);
    660 
    661 		/*
    662 		 * Preserve KAME behaviour: ENOENT can be returned
    663 		 * when an SA acquire is in progress.  Don't propagate
    664 		 * this to user-level; it confuses applications.
    665 		 * XXX this will go away when the SADB is redone.
    666 		 */
    667 		if (error == ENOENT)
    668 			error = 0;
    669 		splx(s);
    670 		goto done;
    671     }
    672 #endif /* FAST_IPSEC */
    673 
    674 
    675 
    676 	/* adjust pointer */
    677 	ip6 = mtod(m, struct ip6_hdr *);
    678 
    679 	bzero(&dst_sa, sizeof(dst_sa));
    680 	dst_sa.sin6_family = AF_INET6;
    681 	dst_sa.sin6_len = sizeof(dst_sa);
    682 	dst_sa.sin6_addr = ip6->ip6_dst;
    683 	if ((error = in6_selectroute(&dst_sa, opt, im6o, (struct route *)ro,
    684 	    &ifp, &rt, 0)) != 0) {
    685 		switch (error) {
    686 		case EHOSTUNREACH:
    687 			ip6stat.ip6s_noroute++;
    688 			break;
    689 		case EADDRNOTAVAIL:
    690 		default:
    691 			break; /* XXX statistics? */
    692 		}
    693 		if (ifp != NULL)
    694 			in6_ifstat_inc(ifp, ifs6_out_discard);
    695 		goto bad;
    696 	}
    697 	if (rt == NULL) {
    698 		/*
    699 		 * If in6_selectroute() does not return a route entry,
    700 		 * dst may not have been updated.
    701 		 */
    702 		*dst = dst_sa;	/* XXX */
    703 	}
    704 
    705 	/*
    706 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    707 	 */
    708 	if ((flags & IPV6_FORWARDING) == 0) {
    709 		/* XXX: the FORWARDING flag can be set for mrouting. */
    710 		in6_ifstat_inc(ifp, ifs6_out_request);
    711 	}
    712 	if (rt != NULL) {
    713 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    714 		rt->rt_use++;
    715 	}
    716 
    717 	/*
    718 	 * The outgoing interface must be in the zone of source and
    719 	 * destination addresses.  We should use ia_ifp to support the
    720 	 * case of sending packets to an address of our own.
    721 	 */
    722 	if (ia != NULL && ia->ia_ifp)
    723 		origifp = ia->ia_ifp;
    724 	else
    725 		origifp = ifp;
    726 
    727 	src0 = ip6->ip6_src;
    728 	if (in6_setscope(&src0, origifp, &zone))
    729 		goto badscope;
    730 	bzero(&src_sa, sizeof(src_sa));
    731 	src_sa.sin6_family = AF_INET6;
    732 	src_sa.sin6_len = sizeof(src_sa);
    733 	src_sa.sin6_addr = ip6->ip6_src;
    734 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    735 		goto badscope;
    736 
    737 	dst0 = ip6->ip6_dst;
    738 	if (in6_setscope(&dst0, origifp, &zone))
    739 		goto badscope;
    740 	/* re-initialize to be sure */
    741 	bzero(&dst_sa, sizeof(dst_sa));
    742 	dst_sa.sin6_family = AF_INET6;
    743 	dst_sa.sin6_len = sizeof(dst_sa);
    744 	dst_sa.sin6_addr = ip6->ip6_dst;
    745 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    746 		goto badscope;
    747 
    748 	/* scope check is done. */
    749 	goto routefound;
    750 
    751   badscope:
    752 	ip6stat.ip6s_badscope++;
    753 	in6_ifstat_inc(origifp, ifs6_out_discard);
    754 	if (error == 0)
    755 		error = EHOSTUNREACH; /* XXX */
    756 	goto bad;
    757 
    758   routefound:
    759 	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    760 		if (opt && opt->ip6po_nextroute.ro_rt != NULL) {
    761 			/*
    762 			 * The nexthop is explicitly specified by the
    763 			 * application.  We assume the next hop is an IPv6
    764 			 * address.
    765 			 */
    766 			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
    767 		} else if ((rt->rt_flags & RTF_GATEWAY))
    768 			dst = (struct sockaddr_in6 *)rt->rt_gateway;
    769 	}
    770 
    771 	/*
    772 	 * XXXXXX: original code follows:
    773 	 */
    774 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    775 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    776 	else {
    777 		struct	in6_multi *in6m;
    778 
    779 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    780 
    781 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    782 
    783 		/*
    784 		 * Confirm that the outgoing interface supports multicast.
    785 		 */
    786 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    787 			ip6stat.ip6s_noroute++;
    788 			in6_ifstat_inc(ifp, ifs6_out_discard);
    789 			error = ENETUNREACH;
    790 			goto bad;
    791 		}
    792 
    793 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
    794 		if (in6m != NULL &&
    795 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    796 			/*
    797 			 * If we belong to the destination multicast group
    798 			 * on the outgoing interface, and the caller did not
    799 			 * forbid loopback, loop back a copy.
    800 			 */
    801 			ip6_mloopback(ifp, m, dst);
    802 		} else {
    803 			/*
    804 			 * If we are acting as a multicast router, perform
    805 			 * multicast forwarding as if the packet had just
    806 			 * arrived on the interface to which we are about
    807 			 * to send.  The multicast forwarding function
    808 			 * recursively calls this function, using the
    809 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    810 			 *
    811 			 * Multicasts that are looped back by ip6_mloopback(),
    812 			 * above, will be forwarded by the ip6_input() routine,
    813 			 * if necessary.
    814 			 */
    815 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    816 				if (ip6_mforward(ip6, ifp, m) != 0) {
    817 					m_freem(m);
    818 					goto done;
    819 				}
    820 			}
    821 		}
    822 		/*
    823 		 * Multicasts with a hoplimit of zero may be looped back,
    824 		 * above, but must not be transmitted on a network.
    825 		 * Also, multicasts addressed to the loopback interface
    826 		 * are not sent -- the above call to ip6_mloopback() will
    827 		 * loop back a copy if this host actually belongs to the
    828 		 * destination group on the loopback interface.
    829 		 */
    830 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    831 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    832 			m_freem(m);
    833 			goto done;
    834 		}
    835 	}
    836 
    837 	/*
    838 	 * Fill the outgoing inteface to tell the upper layer
    839 	 * to increment per-interface statistics.
    840 	 */
    841 	if (ifpp)
    842 		*ifpp = ifp;
    843 
    844 	/* Determine path MTU. */
    845 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
    846 	    &alwaysfrag)) != 0)
    847 		goto bad;
    848 #ifdef IPSEC
    849 	if (needipsectun)
    850 		mtu = IPV6_MMTU;
    851 #endif
    852 
    853 	/*
    854 	 * The caller of this function may specify to use the minimum MTU
    855 	 * in some cases.
    856 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
    857 	 * setting.  The logic is a bit complicated; by default, unicast
    858 	 * packets will follow path MTU while multicast packets will be sent at
    859 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
    860 	 * including unicast ones will be sent at the minimum MTU.  Multicast
    861 	 * packets will always be sent at the minimum MTU unless
    862 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
    863 	 * See RFC 3542 for more details.
    864 	 */
    865 	if (mtu > IPV6_MMTU) {
    866 		if ((flags & IPV6_MINMTU))
    867 			mtu = IPV6_MMTU;
    868 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
    869 			mtu = IPV6_MMTU;
    870 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
    871 			 (opt == NULL ||
    872 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
    873 			mtu = IPV6_MMTU;
    874 		}
    875 	}
    876 
    877 	/*
    878 	 * clear embedded scope identifiers if necessary.
    879 	 * in6_clearscope will touch the addresses only when necessary.
    880 	 */
    881 	in6_clearscope(&ip6->ip6_src);
    882 	in6_clearscope(&ip6->ip6_dst);
    883 
    884 	/*
    885 	 * If the outgoing packet contains a hop-by-hop options header,
    886 	 * it must be examined and processed even by the source node.
    887 	 * (RFC 2460, section 4.)
    888 	 */
    889 	if (exthdrs.ip6e_hbh) {
    890 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
    891 		u_int32_t dummy1; /* XXX unused */
    892 		u_int32_t dummy2; /* XXX unused */
    893 
    894 		/*
    895 		 *  XXX: if we have to send an ICMPv6 error to the sender,
    896 		 *       we need the M_LOOP flag since icmp6_error() expects
    897 		 *       the IPv6 and the hop-by-hop options header are
    898 		 *       continuous unless the flag is set.
    899 		 */
    900 		m->m_flags |= M_LOOP;
    901 		m->m_pkthdr.rcvif = ifp;
    902 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
    903 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
    904 		    &dummy1, &dummy2) < 0) {
    905 			/* m was already freed at this point */
    906 			error = EINVAL;/* better error? */
    907 			goto done;
    908 		}
    909 		m->m_flags &= ~M_LOOP; /* XXX */
    910 		m->m_pkthdr.rcvif = NULL;
    911 	}
    912 
    913 #ifdef PFIL_HOOKS
    914 	/*
    915 	 * Run through list of hooks for output packets.
    916 	 */
    917 	if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    918 		goto done;
    919 	if (m == NULL)
    920 		goto done;
    921 	ip6 = mtod(m, struct ip6_hdr *);
    922 #endif /* PFIL_HOOKS */
    923 	/*
    924 	 * Send the packet to the outgoing interface.
    925 	 * If necessary, do IPv6 fragmentation before sending.
    926 	 *
    927 	 * the logic here is rather complex:
    928 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    929 	 * 1-a:	send as is if tlen <= path mtu
    930 	 * 1-b:	fragment if tlen > path mtu
    931 	 *
    932 	 * 2: if user asks us not to fragment (dontfrag == 1)
    933 	 * 2-a:	send as is if tlen <= interface mtu
    934 	 * 2-b:	error if tlen > interface mtu
    935 	 *
    936 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    937 	 *	always fragment
    938 	 *
    939 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    940 	 *	error, as we cannot handle this conflicting request
    941 	 */
    942 	tlen = m->m_pkthdr.len;
    943 	tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
    944 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
    945 		dontfrag = 1;
    946 	else
    947 		dontfrag = 0;
    948 
    949 	if (dontfrag && alwaysfrag) {	/* case 4 */
    950 		/* conflicting request - can't transmit */
    951 		error = EMSGSIZE;
    952 		goto bad;
    953 	}
    954 	if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) {	/* case 2-b */
    955 		/*
    956 		 * Even if the DONTFRAG option is specified, we cannot send the
    957 		 * packet when the data length is larger than the MTU of the
    958 		 * outgoing interface.
    959 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    960 		 * well as returning an error code (the latter is not described
    961 		 * in the API spec.)
    962 		 */
    963 		u_int32_t mtu32;
    964 		struct ip6ctlparam ip6cp;
    965 
    966 		mtu32 = (u_int32_t)mtu;
    967 		bzero(&ip6cp, sizeof(ip6cp));
    968 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    969 		pfctlinput2(PRC_MSGSIZE,
    970 		    rtcache_getdst((struct route *)ro_pmtu), &ip6cp);
    971 
    972 		error = EMSGSIZE;
    973 		goto bad;
    974 	}
    975 
    976 	/*
    977 	 * transmit packet without fragmentation
    978 	 */
    979 	if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
    980 		/* case 1-a and 2-a */
    981 		struct in6_ifaddr *ia6;
    982 		int sw_csum;
    983 
    984 		ip6 = mtod(m, struct ip6_hdr *);
    985 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    986 		if (ia6) {
    987 			/* Record statistics for this interface address. */
    988 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    989 		}
    990 #ifdef IPSEC
    991 		/* clean ipsec history once it goes out of the node */
    992 		ipsec_delaux(m);
    993 #endif
    994 
    995 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    996 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    997 			if (IN6_NEED_CHECKSUM(ifp,
    998 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    999 				in6_delayed_cksum(m);
   1000 			}
   1001 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
   1002 		}
   1003 
   1004 		if (__predict_true(!tso ||
   1005 		    (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
   1006 			error = nd6_output(ifp, origifp, m, dst, rt);
   1007 		} else {
   1008 			error = ip6_tso_output(ifp, origifp, m, dst, rt);
   1009 		}
   1010 		goto done;
   1011 	}
   1012 
   1013 	if (tso) {
   1014 		error = EINVAL; /* XXX */
   1015 		goto bad;
   1016 	}
   1017 
   1018 	/*
   1019 	 * try to fragment the packet.  case 1-b and 3
   1020 	 */
   1021 	if (mtu < IPV6_MMTU) {
   1022 		/* path MTU cannot be less than IPV6_MMTU */
   1023 		error = EMSGSIZE;
   1024 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
   1025 		goto bad;
   1026 	} else if (ip6->ip6_plen == 0) {
   1027 		/* jumbo payload cannot be fragmented */
   1028 		error = EMSGSIZE;
   1029 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
   1030 		goto bad;
   1031 	} else {
   1032 		struct mbuf **mnext, *m_frgpart;
   1033 		struct ip6_frag *ip6f;
   1034 		u_int32_t id = htonl(ip6_randomid());
   1035 		u_char nextproto;
   1036 #if 0				/* see below */
   1037 		struct ip6ctlparam ip6cp;
   1038 		u_int32_t mtu32;
   1039 #endif
   1040 
   1041 		/*
   1042 		 * Too large for the destination or interface;
   1043 		 * fragment if possible.
   1044 		 * Must be able to put at least 8 bytes per fragment.
   1045 		 */
   1046 		hlen = unfragpartlen;
   1047 		if (mtu > IPV6_MAXPACKET)
   1048 			mtu = IPV6_MAXPACKET;
   1049 
   1050 #if 0
   1051 		/*
   1052 		 * It is believed this code is a leftover from the
   1053 		 * development of the IPV6_RECVPATHMTU sockopt and
   1054 		 * associated work to implement RFC3542.
   1055 		 * It's not entirely clear what the intent of the API
   1056 		 * is at this point, so disable this code for now.
   1057 		 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
   1058 		 * will send notifications if the application requests.
   1059 		 */
   1060 
   1061 		/* Notify a proper path MTU to applications. */
   1062 		mtu32 = (u_int32_t)mtu;
   1063 		bzero(&ip6cp, sizeof(ip6cp));
   1064 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
   1065 		pfctlinput2(PRC_MSGSIZE,
   1066 		    rtcache_getdst((struct route *)ro_pmtu), &ip6cp);
   1067 #endif
   1068 
   1069 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
   1070 		if (len < 8) {
   1071 			error = EMSGSIZE;
   1072 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
   1073 			goto bad;
   1074 		}
   1075 
   1076 		mnext = &m->m_nextpkt;
   1077 
   1078 		/*
   1079 		 * Change the next header field of the last header in the
   1080 		 * unfragmentable part.
   1081 		 */
   1082 		if (exthdrs.ip6e_rthdr) {
   1083 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
   1084 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
   1085 		} else if (exthdrs.ip6e_dest1) {
   1086 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
   1087 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
   1088 		} else if (exthdrs.ip6e_hbh) {
   1089 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
   1090 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
   1091 		} else {
   1092 			nextproto = ip6->ip6_nxt;
   1093 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
   1094 		}
   1095 
   1096 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
   1097 		    != 0) {
   1098 			if (IN6_NEED_CHECKSUM(ifp,
   1099 			    m->m_pkthdr.csum_flags &
   1100 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
   1101 				in6_delayed_cksum(m);
   1102 			}
   1103 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
   1104 		}
   1105 
   1106 		/*
   1107 		 * Loop through length of segment after first fragment,
   1108 		 * make new header and copy data of each part and link onto
   1109 		 * chain.
   1110 		 */
   1111 		m0 = m;
   1112 		for (off = hlen; off < tlen; off += len) {
   1113 			struct mbuf *mlast;
   1114 
   1115 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
   1116 			if (!m) {
   1117 				error = ENOBUFS;
   1118 				ip6stat.ip6s_odropped++;
   1119 				goto sendorfree;
   1120 			}
   1121 			m->m_pkthdr.rcvif = NULL;
   1122 			m->m_flags = m0->m_flags & M_COPYFLAGS;
   1123 			*mnext = m;
   1124 			mnext = &m->m_nextpkt;
   1125 			m->m_data += max_linkhdr;
   1126 			mhip6 = mtod(m, struct ip6_hdr *);
   1127 			*mhip6 = *ip6;
   1128 			m->m_len = sizeof(*mhip6);
   1129 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
   1130 			if (error) {
   1131 				ip6stat.ip6s_odropped++;
   1132 				goto sendorfree;
   1133 			}
   1134 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
   1135 			if (off + len >= tlen)
   1136 				len = tlen - off;
   1137 			else
   1138 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
   1139 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
   1140 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
   1141 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
   1142 				error = ENOBUFS;
   1143 				ip6stat.ip6s_odropped++;
   1144 				goto sendorfree;
   1145 			}
   1146 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
   1147 				;
   1148 			mlast->m_next = m_frgpart;
   1149 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
   1150 			m->m_pkthdr.rcvif = (struct ifnet *)0;
   1151 			ip6f->ip6f_reserved = 0;
   1152 			ip6f->ip6f_ident = id;
   1153 			ip6f->ip6f_nxt = nextproto;
   1154 			ip6stat.ip6s_ofragments++;
   1155 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
   1156 		}
   1157 
   1158 		in6_ifstat_inc(ifp, ifs6_out_fragok);
   1159 	}
   1160 
   1161 	/*
   1162 	 * Remove leading garbages.
   1163 	 */
   1164 sendorfree:
   1165 	m = m0->m_nextpkt;
   1166 	m0->m_nextpkt = 0;
   1167 	m_freem(m0);
   1168 	for (m0 = m; m; m = m0) {
   1169 		m0 = m->m_nextpkt;
   1170 		m->m_nextpkt = 0;
   1171 		if (error == 0) {
   1172 			struct in6_ifaddr *ia6;
   1173 			ip6 = mtod(m, struct ip6_hdr *);
   1174 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
   1175 			if (ia6) {
   1176 				/*
   1177 				 * Record statistics for this interface
   1178 				 * address.
   1179 				 */
   1180 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
   1181 				    m->m_pkthdr.len;
   1182 			}
   1183 #ifdef IPSEC
   1184 			/* clean ipsec history once it goes out of the node */
   1185 			ipsec_delaux(m);
   1186 #endif
   1187 			error = nd6_output(ifp, origifp, m, dst, rt);
   1188 		} else
   1189 			m_freem(m);
   1190 	}
   1191 
   1192 	if (error == 0)
   1193 		ip6stat.ip6s_fragmented++;
   1194 
   1195 done:
   1196 	/* XXX Second if is invariant? */
   1197 	if (ro == &ip6route)
   1198 		rtcache_free((struct route *)ro);
   1199 	else if (ro_pmtu == &ip6route)
   1200 		rtcache_free((struct route *)ro_pmtu);
   1201 
   1202 #ifdef IPSEC
   1203 	if (sp != NULL)
   1204 		key_freesp(sp);
   1205 #endif /* IPSEC */
   1206 #ifdef FAST_IPSEC
   1207 	if (sp != NULL)
   1208 		KEY_FREESP(&sp);
   1209 #endif /* FAST_IPSEC */
   1210 
   1211 
   1212 	return (error);
   1213 
   1214 freehdrs:
   1215 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
   1216 	m_freem(exthdrs.ip6e_dest1);
   1217 	m_freem(exthdrs.ip6e_rthdr);
   1218 	m_freem(exthdrs.ip6e_dest2);
   1219 	/* FALLTHROUGH */
   1220 bad:
   1221 	m_freem(m);
   1222 	goto done;
   1223 }
   1224 
   1225 static int
   1226 ip6_copyexthdr(mp, hdr, hlen)
   1227 	struct mbuf **mp;
   1228 	void *hdr;
   1229 	int hlen;
   1230 {
   1231 	struct mbuf *m;
   1232 
   1233 	if (hlen > MCLBYTES)
   1234 		return (ENOBUFS); /* XXX */
   1235 
   1236 	MGET(m, M_DONTWAIT, MT_DATA);
   1237 	if (!m)
   1238 		return (ENOBUFS);
   1239 
   1240 	if (hlen > MLEN) {
   1241 		MCLGET(m, M_DONTWAIT);
   1242 		if ((m->m_flags & M_EXT) == 0) {
   1243 			m_free(m);
   1244 			return (ENOBUFS);
   1245 		}
   1246 	}
   1247 	m->m_len = hlen;
   1248 	if (hdr)
   1249 		bcopy(hdr, mtod(m, void *), hlen);
   1250 
   1251 	*mp = m;
   1252 	return (0);
   1253 }
   1254 
   1255 /*
   1256  * Process a delayed payload checksum calculation.
   1257  */
   1258 void
   1259 in6_delayed_cksum(struct mbuf *m)
   1260 {
   1261 	uint16_t csum, offset;
   1262 
   1263 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1264 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1265 	KASSERT((m->m_pkthdr.csum_flags
   1266 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
   1267 
   1268 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
   1269 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
   1270 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
   1271 		csum = 0xffff;
   1272 	}
   1273 
   1274 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
   1275 	if ((offset + sizeof(csum)) > m->m_len) {
   1276 		m_copyback(m, offset, sizeof(csum), &csum);
   1277 	} else {
   1278 		*(uint16_t *)(mtod(m, char *) + offset) = csum;
   1279 	}
   1280 }
   1281 
   1282 /*
   1283  * Insert jumbo payload option.
   1284  */
   1285 static int
   1286 ip6_insert_jumboopt(exthdrs, plen)
   1287 	struct ip6_exthdrs *exthdrs;
   1288 	u_int32_t plen;
   1289 {
   1290 	struct mbuf *mopt;
   1291 	u_int8_t *optbuf;
   1292 	u_int32_t v;
   1293 
   1294 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1295 
   1296 	/*
   1297 	 * If there is no hop-by-hop options header, allocate new one.
   1298 	 * If there is one but it doesn't have enough space to store the
   1299 	 * jumbo payload option, allocate a cluster to store the whole options.
   1300 	 * Otherwise, use it to store the options.
   1301 	 */
   1302 	if (exthdrs->ip6e_hbh == 0) {
   1303 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1304 		if (mopt == 0)
   1305 			return (ENOBUFS);
   1306 		mopt->m_len = JUMBOOPTLEN;
   1307 		optbuf = mtod(mopt, u_int8_t *);
   1308 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1309 		exthdrs->ip6e_hbh = mopt;
   1310 	} else {
   1311 		struct ip6_hbh *hbh;
   1312 
   1313 		mopt = exthdrs->ip6e_hbh;
   1314 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1315 			/*
   1316 			 * XXX assumption:
   1317 			 * - exthdrs->ip6e_hbh is not referenced from places
   1318 			 *   other than exthdrs.
   1319 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1320 			 */
   1321 			int oldoptlen = mopt->m_len;
   1322 			struct mbuf *n;
   1323 
   1324 			/*
   1325 			 * XXX: give up if the whole (new) hbh header does
   1326 			 * not fit even in an mbuf cluster.
   1327 			 */
   1328 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1329 				return (ENOBUFS);
   1330 
   1331 			/*
   1332 			 * As a consequence, we must always prepare a cluster
   1333 			 * at this point.
   1334 			 */
   1335 			MGET(n, M_DONTWAIT, MT_DATA);
   1336 			if (n) {
   1337 				MCLGET(n, M_DONTWAIT);
   1338 				if ((n->m_flags & M_EXT) == 0) {
   1339 					m_freem(n);
   1340 					n = NULL;
   1341 				}
   1342 			}
   1343 			if (!n)
   1344 				return (ENOBUFS);
   1345 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1346 			bcopy(mtod(mopt, void *), mtod(n, void *),
   1347 			    oldoptlen);
   1348 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1349 			m_freem(mopt);
   1350 			mopt = exthdrs->ip6e_hbh = n;
   1351 		} else {
   1352 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1353 			mopt->m_len += JUMBOOPTLEN;
   1354 		}
   1355 		optbuf[0] = IP6OPT_PADN;
   1356 		optbuf[1] = 0;
   1357 
   1358 		/*
   1359 		 * Adjust the header length according to the pad and
   1360 		 * the jumbo payload option.
   1361 		 */
   1362 		hbh = mtod(mopt, struct ip6_hbh *);
   1363 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1364 	}
   1365 
   1366 	/* fill in the option. */
   1367 	optbuf[2] = IP6OPT_JUMBO;
   1368 	optbuf[3] = 4;
   1369 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1370 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
   1371 
   1372 	/* finally, adjust the packet header length */
   1373 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1374 
   1375 	return (0);
   1376 #undef JUMBOOPTLEN
   1377 }
   1378 
   1379 /*
   1380  * Insert fragment header and copy unfragmentable header portions.
   1381  */
   1382 static int
   1383 ip6_insertfraghdr(m0, m, hlen, frghdrp)
   1384 	struct mbuf *m0, *m;
   1385 	int hlen;
   1386 	struct ip6_frag **frghdrp;
   1387 {
   1388 	struct mbuf *n, *mlast;
   1389 
   1390 	if (hlen > sizeof(struct ip6_hdr)) {
   1391 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1392 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1393 		if (n == 0)
   1394 			return (ENOBUFS);
   1395 		m->m_next = n;
   1396 	} else
   1397 		n = m;
   1398 
   1399 	/* Search for the last mbuf of unfragmentable part. */
   1400 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1401 		;
   1402 
   1403 	if ((mlast->m_flags & M_EXT) == 0 &&
   1404 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1405 		/* use the trailing space of the last mbuf for the fragment hdr */
   1406 		*frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
   1407 		    mlast->m_len);
   1408 		mlast->m_len += sizeof(struct ip6_frag);
   1409 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1410 	} else {
   1411 		/* allocate a new mbuf for the fragment header */
   1412 		struct mbuf *mfrg;
   1413 
   1414 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1415 		if (mfrg == 0)
   1416 			return (ENOBUFS);
   1417 		mfrg->m_len = sizeof(struct ip6_frag);
   1418 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1419 		mlast->m_next = mfrg;
   1420 	}
   1421 
   1422 	return (0);
   1423 }
   1424 
   1425 static int
   1426 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, struct ifnet *ifp,
   1427     const struct in6_addr *dst, u_long *mtup, int *alwaysfragp)
   1428 {
   1429 	u_int32_t mtu = 0;
   1430 	int alwaysfrag = 0;
   1431 	int error = 0;
   1432 	const struct sockaddr_in6 *cdst;
   1433 
   1434 	if (ro_pmtu != ro) {
   1435 		/* The first hop and the final destination may differ. */
   1436 		cdst = (const struct sockaddr_in6 *)rtcache_getdst((struct route *)ro_pmtu);
   1437 		if (!IN6_ARE_ADDR_EQUAL(&cdst->sin6_addr, dst))
   1438 			rtcache_free((struct route *)ro_pmtu);
   1439 		else
   1440 			rtcache_check((struct route *)ro_pmtu);
   1441 		if (ro_pmtu->ro_rt == NULL) {
   1442 			struct sockaddr_in6 *sa6_dst = &ro_pmtu->ro_dst;
   1443 			memset(sa6_dst, 0, sizeof(*sa6_dst)); /* for safety */
   1444 			sa6_dst->sin6_family = AF_INET6;
   1445 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
   1446 			sa6_dst->sin6_addr = *dst;
   1447 			rtcache_init((struct route *)ro_pmtu);
   1448 		}
   1449 	}
   1450 	if (ro_pmtu->ro_rt != NULL) {
   1451 		u_int32_t ifmtu;
   1452 
   1453 		if (ifp == NULL)
   1454 			ifp = ro_pmtu->ro_rt->rt_ifp;
   1455 		ifmtu = IN6_LINKMTU(ifp);
   1456 		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
   1457 		if (mtu == 0)
   1458 			mtu = ifmtu;
   1459 		else if (mtu < IPV6_MMTU) {
   1460 			/*
   1461 			 * RFC2460 section 5, last paragraph:
   1462 			 * if we record ICMPv6 too big message with
   1463 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1464 			 * or smaller, with fragment header attached.
   1465 			 * (fragment header is needed regardless from the
   1466 			 * packet size, for translators to identify packets)
   1467 			 */
   1468 			alwaysfrag = 1;
   1469 			mtu = IPV6_MMTU;
   1470 		} else if (mtu > ifmtu) {
   1471 			/*
   1472 			 * The MTU on the route is larger than the MTU on
   1473 			 * the interface!  This shouldn't happen, unless the
   1474 			 * MTU of the interface has been changed after the
   1475 			 * interface was brought up.  Change the MTU in the
   1476 			 * route to match the interface MTU (as long as the
   1477 			 * field isn't locked).
   1478 			 */
   1479 			mtu = ifmtu;
   1480 			if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
   1481 				ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
   1482 		}
   1483 	} else if (ifp) {
   1484 		mtu = IN6_LINKMTU(ifp);
   1485 	} else
   1486 		error = EHOSTUNREACH; /* XXX */
   1487 
   1488 	*mtup = mtu;
   1489 	if (alwaysfragp)
   1490 		*alwaysfragp = alwaysfrag;
   1491 	return (error);
   1492 }
   1493 
   1494 /*
   1495  * IP6 socket option processing.
   1496  */
   1497 int
   1498 ip6_ctloutput(int op, struct socket *so, int level, int optname,
   1499     struct mbuf **mp)
   1500 {
   1501 	int privileged, optdatalen, uproto;
   1502 	void *optdata;
   1503 	struct in6pcb *in6p = sotoin6pcb(so);
   1504 	struct mbuf *m = *mp;
   1505 	int error, optval;
   1506 	int optlen;
   1507 	struct lwp *l = curlwp;	/* XXX */
   1508 
   1509 	optlen = m ? m->m_len : 0;
   1510 	error = optval = 0;
   1511 	privileged = (l == 0 || kauth_authorize_generic(l->l_cred,
   1512 	    KAUTH_GENERIC_ISSUSER, NULL)) ? 0 : 1;
   1513 	uproto = (int)so->so_proto->pr_protocol;
   1514 
   1515 	if (level == IPPROTO_IPV6) {
   1516 		switch (op) {
   1517 		case PRCO_SETOPT:
   1518 			switch (optname) {
   1519 #ifdef RFC2292
   1520 			case IPV6_2292PKTOPTIONS:
   1521 				/* m is freed in ip6_pcbopts */
   1522 				error = ip6_pcbopts(&in6p->in6p_outputopts,
   1523 				    m, so);
   1524 				break;
   1525 #endif
   1526 
   1527 			/*
   1528 			 * Use of some Hop-by-Hop options or some
   1529 			 * Destination options, might require special
   1530 			 * privilege.  That is, normal applications
   1531 			 * (without special privilege) might be forbidden
   1532 			 * from setting certain options in outgoing packets,
   1533 			 * and might never see certain options in received
   1534 			 * packets. [RFC 2292 Section 6]
   1535 			 * KAME specific note:
   1536 			 *  KAME prevents non-privileged users from sending or
   1537 			 *  receiving ANY hbh/dst options in order to avoid
   1538 			 *  overhead of parsing options in the kernel.
   1539 			 */
   1540 			case IPV6_RECVHOPOPTS:
   1541 			case IPV6_RECVDSTOPTS:
   1542 			case IPV6_RECVRTHDRDSTOPTS:
   1543 				if (!privileged) {
   1544 					error = EPERM;
   1545 					break;
   1546 				}
   1547 				/* FALLTHROUGH */
   1548 			case IPV6_UNICAST_HOPS:
   1549 			case IPV6_HOPLIMIT:
   1550 			case IPV6_FAITH:
   1551 
   1552 			case IPV6_RECVPKTINFO:
   1553 			case IPV6_RECVHOPLIMIT:
   1554 			case IPV6_RECVRTHDR:
   1555 			case IPV6_RECVPATHMTU:
   1556 			case IPV6_RECVTCLASS:
   1557 			case IPV6_V6ONLY:
   1558 				if (optlen != sizeof(int)) {
   1559 					error = EINVAL;
   1560 					break;
   1561 				}
   1562 				optval = *mtod(m, int *);
   1563 				switch (optname) {
   1564 
   1565 				case IPV6_UNICAST_HOPS:
   1566 					if (optval < -1 || optval >= 256)
   1567 						error = EINVAL;
   1568 					else {
   1569 						/* -1 = kernel default */
   1570 						in6p->in6p_hops = optval;
   1571 					}
   1572 					break;
   1573 #define OPTSET(bit) \
   1574 do { \
   1575 	if (optval) \
   1576 		in6p->in6p_flags |= (bit); \
   1577 	else \
   1578 		in6p->in6p_flags &= ~(bit); \
   1579 } while (/*CONSTCOND*/ 0)
   1580 
   1581 #ifdef RFC2292
   1582 #define OPTSET2292(bit) 			\
   1583 do { 						\
   1584 	in6p->in6p_flags |= IN6P_RFC2292; 	\
   1585 	if (optval) 				\
   1586 		in6p->in6p_flags |= (bit); 	\
   1587 	else 					\
   1588 		in6p->in6p_flags &= ~(bit); 	\
   1589 } while (/*CONSTCOND*/ 0)
   1590 #endif
   1591 
   1592 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
   1593 
   1594 				case IPV6_RECVPKTINFO:
   1595 #ifdef RFC2292
   1596 					/* cannot mix with RFC2292 */
   1597 					if (OPTBIT(IN6P_RFC2292)) {
   1598 						error = EINVAL;
   1599 						break;
   1600 					}
   1601 #endif
   1602 					OPTSET(IN6P_PKTINFO);
   1603 					break;
   1604 
   1605 				case IPV6_HOPLIMIT:
   1606 				{
   1607 					struct ip6_pktopts **optp;
   1608 
   1609 #ifdef RFC2292
   1610 					/* cannot mix with RFC2292 */
   1611 					if (OPTBIT(IN6P_RFC2292)) {
   1612 						error = EINVAL;
   1613 						break;
   1614 					}
   1615 #endif
   1616 					optp = &in6p->in6p_outputopts;
   1617 					error = ip6_pcbopt(IPV6_HOPLIMIT,
   1618 							   (u_char *)&optval,
   1619 							   sizeof(optval),
   1620 							   optp,
   1621 							   privileged, uproto);
   1622 					break;
   1623 				}
   1624 
   1625 				case IPV6_RECVHOPLIMIT:
   1626 #ifdef RFC2292
   1627 					/* cannot mix with RFC2292 */
   1628 					if (OPTBIT(IN6P_RFC2292)) {
   1629 						error = EINVAL;
   1630 						break;
   1631 					}
   1632 #endif
   1633 					OPTSET(IN6P_HOPLIMIT);
   1634 					break;
   1635 
   1636 				case IPV6_RECVHOPOPTS:
   1637 #ifdef RFC2292
   1638 					/* cannot mix with RFC2292 */
   1639 					if (OPTBIT(IN6P_RFC2292)) {
   1640 						error = EINVAL;
   1641 						break;
   1642 					}
   1643 #endif
   1644 					OPTSET(IN6P_HOPOPTS);
   1645 					break;
   1646 
   1647 				case IPV6_RECVDSTOPTS:
   1648 #ifdef RFC2292
   1649 					/* cannot mix with RFC2292 */
   1650 					if (OPTBIT(IN6P_RFC2292)) {
   1651 						error = EINVAL;
   1652 						break;
   1653 					}
   1654 #endif
   1655 					OPTSET(IN6P_DSTOPTS);
   1656 					break;
   1657 
   1658 				case IPV6_RECVRTHDRDSTOPTS:
   1659 #ifdef RFC2292
   1660 					/* cannot mix with RFC2292 */
   1661 					if (OPTBIT(IN6P_RFC2292)) {
   1662 						error = EINVAL;
   1663 						break;
   1664 					}
   1665 #endif
   1666 					OPTSET(IN6P_RTHDRDSTOPTS);
   1667 					break;
   1668 
   1669 				case IPV6_RECVRTHDR:
   1670 #ifdef RFC2292
   1671 					/* cannot mix with RFC2292 */
   1672 					if (OPTBIT(IN6P_RFC2292)) {
   1673 						error = EINVAL;
   1674 						break;
   1675 					}
   1676 #endif
   1677 					OPTSET(IN6P_RTHDR);
   1678 					break;
   1679 
   1680 				case IPV6_FAITH:
   1681 					OPTSET(IN6P_FAITH);
   1682 					break;
   1683 
   1684 				case IPV6_RECVPATHMTU:
   1685 					/*
   1686 					 * We ignore this option for TCP
   1687 					 * sockets.
   1688 					 * (RFC3542 leaves this case
   1689 					 * unspecified.)
   1690 					 */
   1691 					if (uproto != IPPROTO_TCP)
   1692 						OPTSET(IN6P_MTU);
   1693 					break;
   1694 
   1695 				case IPV6_V6ONLY:
   1696 					/*
   1697 					 * make setsockopt(IPV6_V6ONLY)
   1698 					 * available only prior to bind(2).
   1699 					 * see ipng mailing list, Jun 22 2001.
   1700 					 */
   1701 					if (in6p->in6p_lport ||
   1702 					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
   1703 						error = EINVAL;
   1704 						break;
   1705 					}
   1706 #ifdef INET6_BINDV6ONLY
   1707 					if (!optval)
   1708 						error = EINVAL;
   1709 #else
   1710 					OPTSET(IN6P_IPV6_V6ONLY);
   1711 #endif
   1712 					break;
   1713 				case IPV6_RECVTCLASS:
   1714 #ifdef RFC2292
   1715 					/* cannot mix with RFC2292 XXX */
   1716 					if (OPTBIT(IN6P_RFC2292)) {
   1717 						error = EINVAL;
   1718 						break;
   1719 					}
   1720 #endif
   1721 					OPTSET(IN6P_TCLASS);
   1722 					break;
   1723 
   1724 				}
   1725 				break;
   1726 
   1727 			case IPV6_OTCLASS:
   1728 			{
   1729 				struct ip6_pktopts **optp;
   1730 				u_int8_t tclass;
   1731 
   1732 				if (optlen != sizeof(tclass)) {
   1733 					error = EINVAL;
   1734 					break;
   1735 				}
   1736 				tclass = *mtod(m, u_int8_t *);
   1737 				optp = &in6p->in6p_outputopts;
   1738 				error = ip6_pcbopt(optname,
   1739 						   (u_char *)&tclass,
   1740 						   sizeof(tclass),
   1741 						   optp,
   1742 						   privileged, uproto);
   1743 				break;
   1744 			}
   1745 
   1746 			case IPV6_TCLASS:
   1747 			case IPV6_DONTFRAG:
   1748 			case IPV6_USE_MIN_MTU:
   1749 				if (optlen != sizeof(optval)) {
   1750 					error = EINVAL;
   1751 					break;
   1752 				}
   1753 				optval = *mtod(m, int *);
   1754 				{
   1755 					struct ip6_pktopts **optp;
   1756 					optp = &in6p->in6p_outputopts;
   1757 					error = ip6_pcbopt(optname,
   1758 							   (u_char *)&optval,
   1759 							   sizeof(optval),
   1760 							   optp,
   1761 							   privileged, uproto);
   1762 					break;
   1763 				}
   1764 
   1765 #ifdef RFC2292
   1766 			case IPV6_2292PKTINFO:
   1767 			case IPV6_2292HOPLIMIT:
   1768 			case IPV6_2292HOPOPTS:
   1769 			case IPV6_2292DSTOPTS:
   1770 			case IPV6_2292RTHDR:
   1771 				/* RFC 2292 */
   1772 				if (optlen != sizeof(int)) {
   1773 					error = EINVAL;
   1774 					break;
   1775 				}
   1776 				optval = *mtod(m, int *);
   1777 				switch (optname) {
   1778 				case IPV6_2292PKTINFO:
   1779 					OPTSET2292(IN6P_PKTINFO);
   1780 					break;
   1781 				case IPV6_2292HOPLIMIT:
   1782 					OPTSET2292(IN6P_HOPLIMIT);
   1783 					break;
   1784 				case IPV6_2292HOPOPTS:
   1785 					/*
   1786 					 * Check super-user privilege.
   1787 					 * See comments for IPV6_RECVHOPOPTS.
   1788 					 */
   1789 					if (!privileged)
   1790 						return (EPERM);
   1791 					OPTSET2292(IN6P_HOPOPTS);
   1792 					break;
   1793 				case IPV6_2292DSTOPTS:
   1794 					if (!privileged)
   1795 						return (EPERM);
   1796 					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
   1797 					break;
   1798 				case IPV6_2292RTHDR:
   1799 					OPTSET2292(IN6P_RTHDR);
   1800 					break;
   1801 				}
   1802 				break;
   1803 #endif
   1804 			case IPV6_PKTINFO:
   1805 			case IPV6_HOPOPTS:
   1806 			case IPV6_RTHDR:
   1807 			case IPV6_DSTOPTS:
   1808 			case IPV6_RTHDRDSTOPTS:
   1809 			case IPV6_NEXTHOP:
   1810 			{
   1811 				/* new advanced API (RFC3542) */
   1812 				u_char *optbuf;
   1813 				int optbuflen;
   1814 				struct ip6_pktopts **optp;
   1815 				if (!m) {
   1816 					error = EINVAL;
   1817 					break;
   1818 				}
   1819 
   1820 #ifdef RFC2292
   1821 				/* cannot mix with RFC2292 */
   1822 				if (OPTBIT(IN6P_RFC2292)) {
   1823 					error = EINVAL;
   1824 					break;
   1825 				}
   1826 #endif
   1827 
   1828 				if (m && m->m_next) {
   1829 					error = EINVAL;	/* XXX */
   1830 					break;
   1831 				}
   1832 
   1833 				optbuf = mtod(m, u_char *);
   1834 				optbuflen = m->m_len;
   1835 				optp = &in6p->in6p_outputopts;
   1836 				error = ip6_pcbopt(optname, optbuf, optbuflen,
   1837 				    optp, privileged, uproto);
   1838 				break;
   1839 			}
   1840 #undef OPTSET
   1841 
   1842 			case IPV6_MULTICAST_IF:
   1843 			case IPV6_MULTICAST_HOPS:
   1844 			case IPV6_MULTICAST_LOOP:
   1845 			case IPV6_JOIN_GROUP:
   1846 			case IPV6_LEAVE_GROUP:
   1847                                 error = ip6_setmoptions(optname,
   1848 				    &in6p->in6p_moptions, m);
   1849 				break;
   1850 
   1851 			case IPV6_PORTRANGE:
   1852 				if (!m) {
   1853 					error = EINVAL;
   1854 					break;
   1855 				}
   1856 				optval = *mtod(m, int *);
   1857 
   1858 				switch (optval) {
   1859 				case IPV6_PORTRANGE_DEFAULT:
   1860 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1861 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1862 					break;
   1863 
   1864 				case IPV6_PORTRANGE_HIGH:
   1865 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1866 					in6p->in6p_flags |= IN6P_HIGHPORT;
   1867 					break;
   1868 
   1869 				case IPV6_PORTRANGE_LOW:
   1870 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1871 					in6p->in6p_flags |= IN6P_LOWPORT;
   1872 					break;
   1873 
   1874 				default:
   1875 					error = EINVAL;
   1876 					break;
   1877 				}
   1878 				break;
   1879 
   1880 
   1881 #if defined(IPSEC) || defined(FAST_IPSEC)
   1882 			case IPV6_IPSEC_POLICY:
   1883 			{
   1884 				void *req = NULL;
   1885 				size_t len = 0;
   1886 				if (m) {
   1887 					req = mtod(m, void *);
   1888 					len = m->m_len;
   1889 				}
   1890 				error = ipsec6_set_policy(in6p, optname, req,
   1891 							  len, privileged);
   1892 			}
   1893 				break;
   1894 #endif /* IPSEC */
   1895 
   1896 			default:
   1897 				error = ENOPROTOOPT;
   1898 				break;
   1899 			}
   1900 			if (m)
   1901 				(void)m_free(m);
   1902 			break;
   1903 
   1904 		case PRCO_GETOPT:
   1905 			switch (optname) {
   1906 #ifdef RFC2292
   1907 			case IPV6_2292PKTOPTIONS:
   1908 				/*
   1909 				 * RFC3542 (effectively) deprecated the
   1910 				 * semantics of the 2292-style pktoptions.
   1911 				 * Since it was not reliable in nature (i.e.,
   1912 				 * applications had to expect the lack of some
   1913 				 * information after all), it would make sense
   1914 				 * to simplify this part by always returning
   1915 				 * empty data.
   1916 				 */
   1917 				*mp = m_get(M_WAIT, MT_SOOPTS);
   1918 				(*mp)->m_len = 0;
   1919 				break;
   1920 #endif
   1921 
   1922 			case IPV6_RECVHOPOPTS:
   1923 			case IPV6_RECVDSTOPTS:
   1924 			case IPV6_RECVRTHDRDSTOPTS:
   1925 			case IPV6_UNICAST_HOPS:
   1926 			case IPV6_RECVPKTINFO:
   1927 			case IPV6_RECVHOPLIMIT:
   1928 			case IPV6_RECVRTHDR:
   1929 			case IPV6_RECVPATHMTU:
   1930 
   1931 			case IPV6_FAITH:
   1932 			case IPV6_V6ONLY:
   1933 			case IPV6_PORTRANGE:
   1934 			case IPV6_RECVTCLASS:
   1935 				switch (optname) {
   1936 
   1937 				case IPV6_RECVHOPOPTS:
   1938 					optval = OPTBIT(IN6P_HOPOPTS);
   1939 					break;
   1940 
   1941 				case IPV6_RECVDSTOPTS:
   1942 					optval = OPTBIT(IN6P_DSTOPTS);
   1943 					break;
   1944 
   1945 				case IPV6_RECVRTHDRDSTOPTS:
   1946 					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
   1947 					break;
   1948 
   1949 				case IPV6_UNICAST_HOPS:
   1950 					optval = in6p->in6p_hops;
   1951 					break;
   1952 
   1953 				case IPV6_RECVPKTINFO:
   1954 					optval = OPTBIT(IN6P_PKTINFO);
   1955 					break;
   1956 
   1957 				case IPV6_RECVHOPLIMIT:
   1958 					optval = OPTBIT(IN6P_HOPLIMIT);
   1959 					break;
   1960 
   1961 				case IPV6_RECVRTHDR:
   1962 					optval = OPTBIT(IN6P_RTHDR);
   1963 					break;
   1964 
   1965 				case IPV6_RECVPATHMTU:
   1966 					optval = OPTBIT(IN6P_MTU);
   1967 					break;
   1968 
   1969 				case IPV6_FAITH:
   1970 					optval = OPTBIT(IN6P_FAITH);
   1971 					break;
   1972 
   1973 				case IPV6_V6ONLY:
   1974 					optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1975 					break;
   1976 
   1977 				case IPV6_PORTRANGE:
   1978 				    {
   1979 					int flags;
   1980 					flags = in6p->in6p_flags;
   1981 					if (flags & IN6P_HIGHPORT)
   1982 						optval = IPV6_PORTRANGE_HIGH;
   1983 					else if (flags & IN6P_LOWPORT)
   1984 						optval = IPV6_PORTRANGE_LOW;
   1985 					else
   1986 						optval = 0;
   1987 					break;
   1988 				    }
   1989 				case IPV6_RECVTCLASS:
   1990 					optval = OPTBIT(IN6P_TCLASS);
   1991 					break;
   1992 
   1993 				}
   1994 				if (error)
   1995 					break;
   1996 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1997 				m->m_len = sizeof(int);
   1998 				*mtod(m, int *) = optval;
   1999 				break;
   2000 
   2001 			case IPV6_PATHMTU:
   2002 			    {
   2003 				u_long pmtu = 0;
   2004 				struct ip6_mtuinfo mtuinfo;
   2005 				struct route_in6 *ro = (struct route_in6 *)&in6p
   2006 ->in6p_route;
   2007 
   2008 				if (!(so->so_state & SS_ISCONNECTED))
   2009 					return (ENOTCONN);
   2010 				/*
   2011 				 * XXX: we dot not consider the case of source
   2012 				 * routing, or optional information to specify
   2013 				 * the outgoing interface.
   2014 				 */
   2015 				error = ip6_getpmtu(ro, NULL, NULL,
   2016 				    &in6p->in6p_faddr, &pmtu, NULL);
   2017 				if (error)
   2018 					break;
   2019 				if (pmtu > IPV6_MAXPACKET)
   2020 					pmtu = IPV6_MAXPACKET;
   2021 
   2022 				memset(&mtuinfo, 0, sizeof(mtuinfo));
   2023 				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
   2024 				optdata = (void *)&mtuinfo;
   2025 				optdatalen = sizeof(mtuinfo);
   2026 				if (optdatalen > MCLBYTES)
   2027 					return (EMSGSIZE); /* XXX */
   2028 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   2029 				if (optdatalen > MLEN)
   2030 					MCLGET(m, M_WAIT);
   2031 				m->m_len = optdatalen;
   2032 				memcpy(mtod(m, void *), optdata, optdatalen);
   2033 				break;
   2034 			    }
   2035 
   2036 #ifdef RFC2292
   2037 			case IPV6_2292PKTINFO:
   2038 			case IPV6_2292HOPLIMIT:
   2039 			case IPV6_2292HOPOPTS:
   2040 			case IPV6_2292RTHDR:
   2041 			case IPV6_2292DSTOPTS:
   2042 				switch (optname) {
   2043 				case IPV6_2292PKTINFO:
   2044 					optval = OPTBIT(IN6P_PKTINFO);
   2045 					break;
   2046 				case IPV6_2292HOPLIMIT:
   2047 					optval = OPTBIT(IN6P_HOPLIMIT);
   2048 					break;
   2049 				case IPV6_2292HOPOPTS:
   2050 					optval = OPTBIT(IN6P_HOPOPTS);
   2051 					break;
   2052 				case IPV6_2292RTHDR:
   2053 					optval = OPTBIT(IN6P_RTHDR);
   2054 					break;
   2055 				case IPV6_2292DSTOPTS:
   2056 					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
   2057 					break;
   2058 				}
   2059 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   2060 				m->m_len = sizeof(int);
   2061 				*mtod(m, int *) = optval;
   2062 				break;
   2063 #endif
   2064 			case IPV6_PKTINFO:
   2065 			case IPV6_HOPOPTS:
   2066 			case IPV6_RTHDR:
   2067 			case IPV6_DSTOPTS:
   2068 			case IPV6_RTHDRDSTOPTS:
   2069 			case IPV6_NEXTHOP:
   2070 			case IPV6_OTCLASS:
   2071 			case IPV6_TCLASS:
   2072 			case IPV6_DONTFRAG:
   2073 			case IPV6_USE_MIN_MTU:
   2074 				error = ip6_getpcbopt(in6p->in6p_outputopts,
   2075 				    optname, mp);
   2076 				break;
   2077 
   2078 			case IPV6_MULTICAST_IF:
   2079 			case IPV6_MULTICAST_HOPS:
   2080 			case IPV6_MULTICAST_LOOP:
   2081 			case IPV6_JOIN_GROUP:
   2082 			case IPV6_LEAVE_GROUP:
   2083 				error = ip6_getmoptions(optname,
   2084 				    in6p->in6p_moptions, mp);
   2085 				break;
   2086 
   2087 #if defined(IPSEC) || defined(FAST_IPSEC)
   2088 			case IPV6_IPSEC_POLICY:
   2089 			    {
   2090 				void *req = NULL;
   2091 				size_t len = 0;
   2092 				if (m) {
   2093 					req = mtod(m, void *);
   2094 					len = m->m_len;
   2095 				}
   2096 				error = ipsec6_get_policy(in6p, req, len, mp);
   2097 				break;
   2098 			    }
   2099 #endif /* IPSEC */
   2100 
   2101 
   2102 
   2103 
   2104 			default:
   2105 				error = ENOPROTOOPT;
   2106 				break;
   2107 			}
   2108 			break;
   2109 		}
   2110 	} else {
   2111 		error = EINVAL;
   2112 		if (op == PRCO_SETOPT && *mp)
   2113 			(void)m_free(*mp);
   2114 	}
   2115 	return (error);
   2116 }
   2117 
   2118 int
   2119 ip6_raw_ctloutput(op, so, level, optname, mp)
   2120 	int op;
   2121 	struct socket *so;
   2122 	int level, optname;
   2123 	struct mbuf **mp;
   2124 {
   2125 	int error = 0, optval, optlen;
   2126 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   2127 	struct in6pcb *in6p = sotoin6pcb(so);
   2128 	struct mbuf *m = *mp;
   2129 
   2130 	optlen = m ? m->m_len : 0;
   2131 
   2132 	if (level != IPPROTO_IPV6) {
   2133 		if (op == PRCO_SETOPT && *mp)
   2134 			(void)m_free(*mp);
   2135 		return (EINVAL);
   2136 	}
   2137 
   2138 	switch (optname) {
   2139 	case IPV6_CHECKSUM:
   2140 		/*
   2141 		 * For ICMPv6 sockets, no modification allowed for checksum
   2142 		 * offset, permit "no change" values to help existing apps.
   2143 		 *
   2144 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
   2145 		 * for an ICMPv6 socket will fail."  The current
   2146 		 * behavior does not meet RFC3542.
   2147 		 */
   2148 		switch (op) {
   2149 		case PRCO_SETOPT:
   2150 			if (optlen != sizeof(int)) {
   2151 				error = EINVAL;
   2152 				break;
   2153 			}
   2154 			optval = *mtod(m, int *);
   2155 			if ((optval % 2) != 0) {
   2156 				/* the API assumes even offset values */
   2157 				error = EINVAL;
   2158 			} else if (so->so_proto->pr_protocol ==
   2159 			    IPPROTO_ICMPV6) {
   2160 				if (optval != icmp6off)
   2161 					error = EINVAL;
   2162 			} else
   2163 				in6p->in6p_cksum = optval;
   2164 			break;
   2165 
   2166 		case PRCO_GETOPT:
   2167 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   2168 				optval = icmp6off;
   2169 			else
   2170 				optval = in6p->in6p_cksum;
   2171 
   2172 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   2173 			m->m_len = sizeof(int);
   2174 			*mtod(m, int *) = optval;
   2175 			break;
   2176 
   2177 		default:
   2178 			error = EINVAL;
   2179 			break;
   2180 		}
   2181 		break;
   2182 
   2183 	default:
   2184 		error = ENOPROTOOPT;
   2185 		break;
   2186 	}
   2187 
   2188 	if (op == PRCO_SETOPT && m)
   2189 		(void)m_free(m);
   2190 
   2191 	return (error);
   2192 }
   2193 
   2194 #ifdef RFC2292
   2195 /*
   2196  * Set up IP6 options in pcb for insertion in output packets or
   2197  * specifying behavior of outgoing packets.
   2198  */
   2199 static int
   2200 ip6_pcbopts(pktopt, m, so)
   2201 	struct ip6_pktopts **pktopt;
   2202 	struct mbuf *m;
   2203 	struct socket *so;
   2204 {
   2205 	struct ip6_pktopts *opt = *pktopt;
   2206 	int error = 0;
   2207 	struct lwp *l = curlwp;	/* XXX */
   2208 	int priv = 0;
   2209 
   2210 	/* turn off any old options. */
   2211 	if (opt) {
   2212 #ifdef DIAGNOSTIC
   2213 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
   2214 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
   2215 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2216 		    printf("ip6_pcbopts: all specified options are cleared.\n");
   2217 #endif
   2218 		ip6_clearpktopts(opt, -1);
   2219 	} else
   2220 		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
   2221 	*pktopt = NULL;
   2222 
   2223 	if (!m || m->m_len == 0) {
   2224 		/*
   2225 		 * Only turning off any previous options, regardless of
   2226 		 * whether the opt is just created or given.
   2227 		 */
   2228 		free(opt, M_IP6OPT);
   2229 		return (0);
   2230 	}
   2231 
   2232 	/*  set options specified by user. */
   2233 	if (l && !kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
   2234 	    NULL))
   2235 		priv = 1;
   2236 	if ((error = ip6_setpktopts(m, opt, NULL, priv,
   2237 	    so->so_proto->pr_protocol)) != 0) {
   2238 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
   2239 		free(opt, M_IP6OPT);
   2240 		return (error);
   2241 	}
   2242 	*pktopt = opt;
   2243 	return (0);
   2244 }
   2245 #endif
   2246 
   2247 /*
   2248  * initialize ip6_pktopts.  beware that there are non-zero default values in
   2249  * the struct.
   2250  */
   2251 void
   2252 ip6_initpktopts(struct ip6_pktopts *opt)
   2253 {
   2254 
   2255 	memset(opt, 0, sizeof(*opt));
   2256 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
   2257 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
   2258 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
   2259 }
   2260 
   2261 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
   2262 static int
   2263 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
   2264     int priv, int uproto)
   2265 {
   2266 	struct ip6_pktopts *opt;
   2267 
   2268 	if (*pktopt == NULL) {
   2269 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
   2270 		    M_WAITOK);
   2271 		ip6_initpktopts(*pktopt);
   2272 	}
   2273 	opt = *pktopt;
   2274 
   2275 	return (ip6_setpktopt(optname, buf, len, opt, priv, 1, 0, uproto));
   2276 }
   2277 
   2278 static int
   2279 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf **mp)
   2280 {
   2281 	void *optdata = NULL;
   2282 	int optdatalen = 0;
   2283 	struct ip6_ext *ip6e;
   2284 	int error = 0;
   2285 	struct in6_pktinfo null_pktinfo;
   2286 	int deftclass = 0, on;
   2287 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
   2288 	struct mbuf *m;
   2289 
   2290 	switch (optname) {
   2291 	case IPV6_PKTINFO:
   2292 		if (pktopt && pktopt->ip6po_pktinfo)
   2293 			optdata = (void *)pktopt->ip6po_pktinfo;
   2294 		else {
   2295 			/* XXX: we don't have to do this every time... */
   2296 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
   2297 			optdata = (void *)&null_pktinfo;
   2298 		}
   2299 		optdatalen = sizeof(struct in6_pktinfo);
   2300 		break;
   2301 	case IPV6_OTCLASS:
   2302 		/* XXX */
   2303 		return (EINVAL);
   2304 	case IPV6_TCLASS:
   2305 		if (pktopt && pktopt->ip6po_tclass >= 0)
   2306 			optdata = (void *)&pktopt->ip6po_tclass;
   2307 		else
   2308 			optdata = (void *)&deftclass;
   2309 		optdatalen = sizeof(int);
   2310 		break;
   2311 	case IPV6_HOPOPTS:
   2312 		if (pktopt && pktopt->ip6po_hbh) {
   2313 			optdata = (void *)pktopt->ip6po_hbh;
   2314 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
   2315 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2316 		}
   2317 		break;
   2318 	case IPV6_RTHDR:
   2319 		if (pktopt && pktopt->ip6po_rthdr) {
   2320 			optdata = (void *)pktopt->ip6po_rthdr;
   2321 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
   2322 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2323 		}
   2324 		break;
   2325 	case IPV6_RTHDRDSTOPTS:
   2326 		if (pktopt && pktopt->ip6po_dest1) {
   2327 			optdata = (void *)pktopt->ip6po_dest1;
   2328 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
   2329 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2330 		}
   2331 		break;
   2332 	case IPV6_DSTOPTS:
   2333 		if (pktopt && pktopt->ip6po_dest2) {
   2334 			optdata = (void *)pktopt->ip6po_dest2;
   2335 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
   2336 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2337 		}
   2338 		break;
   2339 	case IPV6_NEXTHOP:
   2340 		if (pktopt && pktopt->ip6po_nexthop) {
   2341 			optdata = (void *)pktopt->ip6po_nexthop;
   2342 			optdatalen = pktopt->ip6po_nexthop->sa_len;
   2343 		}
   2344 		break;
   2345 	case IPV6_USE_MIN_MTU:
   2346 		if (pktopt)
   2347 			optdata = (void *)&pktopt->ip6po_minmtu;
   2348 		else
   2349 			optdata = (void *)&defminmtu;
   2350 		optdatalen = sizeof(int);
   2351 		break;
   2352 	case IPV6_DONTFRAG:
   2353 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
   2354 			on = 1;
   2355 		else
   2356 			on = 0;
   2357 		optdata = (void *)&on;
   2358 		optdatalen = sizeof(on);
   2359 		break;
   2360 	default:		/* should not happen */
   2361 #ifdef DIAGNOSTIC
   2362 		panic("ip6_getpcbopt: unexpected option\n");
   2363 #endif
   2364 		return (ENOPROTOOPT);
   2365 	}
   2366 
   2367 	if (optdatalen > MCLBYTES)
   2368 		return (EMSGSIZE); /* XXX */
   2369 	*mp = m = m_get(M_WAIT, MT_SOOPTS);
   2370 	if (optdatalen > MLEN)
   2371 		MCLGET(m, M_WAIT);
   2372 	m->m_len = optdatalen;
   2373 	if (optdatalen)
   2374 		memcpy(mtod(m, void *), optdata, optdatalen);
   2375 
   2376 	return (error);
   2377 }
   2378 
   2379 void
   2380 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
   2381 {
   2382 	if (optname == -1 || optname == IPV6_PKTINFO) {
   2383 		if (pktopt->ip6po_pktinfo)
   2384 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
   2385 		pktopt->ip6po_pktinfo = NULL;
   2386 	}
   2387 	if (optname == -1 || optname == IPV6_HOPLIMIT)
   2388 		pktopt->ip6po_hlim = -1;
   2389 	if (optname == -1 || optname == IPV6_TCLASS)
   2390 		pktopt->ip6po_tclass = -1;
   2391 	if (optname == -1 || optname == IPV6_NEXTHOP) {
   2392 		rtcache_free((struct route *)&pktopt->ip6po_nextroute);
   2393 		if (pktopt->ip6po_nexthop)
   2394 			free(pktopt->ip6po_nexthop, M_IP6OPT);
   2395 		pktopt->ip6po_nexthop = NULL;
   2396 	}
   2397 	if (optname == -1 || optname == IPV6_HOPOPTS) {
   2398 		if (pktopt->ip6po_hbh)
   2399 			free(pktopt->ip6po_hbh, M_IP6OPT);
   2400 		pktopt->ip6po_hbh = NULL;
   2401 	}
   2402 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
   2403 		if (pktopt->ip6po_dest1)
   2404 			free(pktopt->ip6po_dest1, M_IP6OPT);
   2405 		pktopt->ip6po_dest1 = NULL;
   2406 	}
   2407 	if (optname == -1 || optname == IPV6_RTHDR) {
   2408 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2409 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
   2410 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
   2411 		rtcache_free((struct route *)&pktopt->ip6po_route);
   2412 	}
   2413 	if (optname == -1 || optname == IPV6_DSTOPTS) {
   2414 		if (pktopt->ip6po_dest2)
   2415 			free(pktopt->ip6po_dest2, M_IP6OPT);
   2416 		pktopt->ip6po_dest2 = NULL;
   2417 	}
   2418 }
   2419 
   2420 #define PKTOPT_EXTHDRCPY(type) 					\
   2421 do {								\
   2422 	if (src->type) {					\
   2423 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
   2424 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
   2425 		if (dst->type == NULL && canwait == M_NOWAIT)	\
   2426 			goto bad;				\
   2427 		memcpy(dst->type, src->type, hlen);		\
   2428 	}							\
   2429 } while (/*CONSTCOND*/ 0)
   2430 
   2431 static int
   2432 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
   2433 {
   2434 	dst->ip6po_hlim = src->ip6po_hlim;
   2435 	dst->ip6po_tclass = src->ip6po_tclass;
   2436 	dst->ip6po_flags = src->ip6po_flags;
   2437 	if (src->ip6po_pktinfo) {
   2438 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
   2439 		    M_IP6OPT, canwait);
   2440 		if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT)
   2441 			goto bad;
   2442 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
   2443 	}
   2444 	if (src->ip6po_nexthop) {
   2445 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
   2446 		    M_IP6OPT, canwait);
   2447 		if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT)
   2448 			goto bad;
   2449 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
   2450 		    src->ip6po_nexthop->sa_len);
   2451 	}
   2452 	PKTOPT_EXTHDRCPY(ip6po_hbh);
   2453 	PKTOPT_EXTHDRCPY(ip6po_dest1);
   2454 	PKTOPT_EXTHDRCPY(ip6po_dest2);
   2455 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
   2456 	return (0);
   2457 
   2458   bad:
   2459 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
   2460 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
   2461 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
   2462 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
   2463 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
   2464 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
   2465 
   2466 	return (ENOBUFS);
   2467 }
   2468 #undef PKTOPT_EXTHDRCPY
   2469 
   2470 struct ip6_pktopts *
   2471 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
   2472 {
   2473 	int error;
   2474 	struct ip6_pktopts *dst;
   2475 
   2476 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
   2477 	if (dst == NULL && canwait == M_NOWAIT)
   2478 		return (NULL);
   2479 	ip6_initpktopts(dst);
   2480 
   2481 	if ((error = copypktopts(dst, src, canwait)) != 0) {
   2482 		free(dst, M_IP6OPT);
   2483 		return (NULL);
   2484 	}
   2485 
   2486 	return (dst);
   2487 }
   2488 
   2489 void
   2490 ip6_freepcbopts(struct ip6_pktopts *pktopt)
   2491 {
   2492 	if (pktopt == NULL)
   2493 		return;
   2494 
   2495 	ip6_clearpktopts(pktopt, -1);
   2496 
   2497 	free(pktopt, M_IP6OPT);
   2498 }
   2499 
   2500 /*
   2501  * Set the IP6 multicast options in response to user setsockopt().
   2502  */
   2503 static int
   2504 ip6_setmoptions(optname, im6op, m)
   2505 	int optname;
   2506 	struct ip6_moptions **im6op;
   2507 	struct mbuf *m;
   2508 {
   2509 	int error = 0;
   2510 	u_int loop, ifindex;
   2511 	struct ipv6_mreq *mreq;
   2512 	struct ifnet *ifp;
   2513 	struct ip6_moptions *im6o = *im6op;
   2514 	struct route_in6 ro;
   2515 	struct in6_multi_mship *imm;
   2516 	struct lwp *l = curlwp;	/* XXX */
   2517 
   2518 	if (im6o == NULL) {
   2519 		/*
   2520 		 * No multicast option buffer attached to the pcb;
   2521 		 * allocate one and initialize to default values.
   2522 		 */
   2523 		im6o = (struct ip6_moptions *)
   2524 			malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
   2525 
   2526 		if (im6o == NULL)
   2527 			return (ENOBUFS);
   2528 		*im6op = im6o;
   2529 		im6o->im6o_multicast_ifp = NULL;
   2530 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2531 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   2532 		LIST_INIT(&im6o->im6o_memberships);
   2533 	}
   2534 
   2535 	switch (optname) {
   2536 
   2537 	case IPV6_MULTICAST_IF:
   2538 		/*
   2539 		 * Select the interface for outgoing multicast packets.
   2540 		 */
   2541 		if (m == NULL || m->m_len != sizeof(u_int)) {
   2542 			error = EINVAL;
   2543 			break;
   2544 		}
   2545 		bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
   2546 		if (ifindex != 0) {
   2547 			if (if_indexlim <= ifindex || !ifindex2ifnet[ifindex]) {
   2548 				error = ENXIO;	/* XXX EINVAL? */
   2549 				break;
   2550 			}
   2551 			ifp = ifindex2ifnet[ifindex];
   2552 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   2553 				error = EADDRNOTAVAIL;
   2554 				break;
   2555 			}
   2556 		} else
   2557 			ifp = NULL;
   2558 		im6o->im6o_multicast_ifp = ifp;
   2559 		break;
   2560 
   2561 	case IPV6_MULTICAST_HOPS:
   2562 	    {
   2563 		/*
   2564 		 * Set the IP6 hoplimit for outgoing multicast packets.
   2565 		 */
   2566 		int optval;
   2567 		if (m == NULL || m->m_len != sizeof(int)) {
   2568 			error = EINVAL;
   2569 			break;
   2570 		}
   2571 		bcopy(mtod(m, u_int *), &optval, sizeof(optval));
   2572 		if (optval < -1 || optval >= 256)
   2573 			error = EINVAL;
   2574 		else if (optval == -1)
   2575 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2576 		else
   2577 			im6o->im6o_multicast_hlim = optval;
   2578 		break;
   2579 	    }
   2580 
   2581 	case IPV6_MULTICAST_LOOP:
   2582 		/*
   2583 		 * Set the loopback flag for outgoing multicast packets.
   2584 		 * Must be zero or one.
   2585 		 */
   2586 		if (m == NULL || m->m_len != sizeof(u_int)) {
   2587 			error = EINVAL;
   2588 			break;
   2589 		}
   2590 		bcopy(mtod(m, u_int *), &loop, sizeof(loop));
   2591 		if (loop > 1) {
   2592 			error = EINVAL;
   2593 			break;
   2594 		}
   2595 		im6o->im6o_multicast_loop = loop;
   2596 		break;
   2597 
   2598 	case IPV6_JOIN_GROUP:
   2599 		/*
   2600 		 * Add a multicast group membership.
   2601 		 * Group must be a valid IP6 multicast address.
   2602 		 */
   2603 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   2604 			error = EINVAL;
   2605 			break;
   2606 		}
   2607 		mreq = mtod(m, struct ipv6_mreq *);
   2608 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
   2609 			/*
   2610 			 * We use the unspecified address to specify to accept
   2611 			 * all multicast addresses. Only super user is allowed
   2612 			 * to do this.
   2613 			 */
   2614 			if (kauth_authorize_generic(l->l_cred,
   2615 			    KAUTH_GENERIC_ISSUSER, NULL))
   2616 			{
   2617 				error = EACCES;
   2618 				break;
   2619 			}
   2620 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
   2621 			error = EINVAL;
   2622 			break;
   2623 		}
   2624 
   2625 		/*
   2626 		 * If no interface was explicitly specified, choose an
   2627 		 * appropriate one according to the given multicast address.
   2628 		 */
   2629 		if (mreq->ipv6mr_interface == 0) {
   2630 			struct sockaddr_in6 *dst;
   2631 
   2632 			/*
   2633 			 * Look up the routing table for the
   2634 			 * address, and choose the outgoing interface.
   2635 			 *   XXX: is it a good approach?
   2636 			 */
   2637 			memset(&ro, 0, sizeof(ro));
   2638 			dst = &ro.ro_dst;
   2639 			dst->sin6_family = AF_INET6;
   2640 			dst->sin6_len = sizeof(*dst);
   2641 			dst->sin6_addr = mreq->ipv6mr_multiaddr;
   2642 			rtcache_init((struct route *)&ro);
   2643 			ifp = (ro.ro_rt != NULL) ? ro.ro_rt->rt_ifp : NULL;
   2644 			rtcache_free((struct route *)&ro);
   2645 		} else {
   2646 			/*
   2647 			 * If the interface is specified, validate it.
   2648 			 */
   2649 			if (if_indexlim <= mreq->ipv6mr_interface ||
   2650 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
   2651 				error = ENXIO;	/* XXX EINVAL? */
   2652 				break;
   2653 			}
   2654 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   2655 		}
   2656 
   2657 		/*
   2658 		 * See if we found an interface, and confirm that it
   2659 		 * supports multicast
   2660 		 */
   2661 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   2662 			error = EADDRNOTAVAIL;
   2663 			break;
   2664 		}
   2665 
   2666 		if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
   2667 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   2668 			break;
   2669 		}
   2670 
   2671 		/*
   2672 		 * See if the membership already exists.
   2673 		 */
   2674 		for (imm = im6o->im6o_memberships.lh_first;
   2675 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   2676 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2677 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2678 			    &mreq->ipv6mr_multiaddr))
   2679 				break;
   2680 		if (imm != NULL) {
   2681 			error = EADDRINUSE;
   2682 			break;
   2683 		}
   2684 		/*
   2685 		 * Everything looks good; add a new record to the multicast
   2686 		 * address list for the given interface.
   2687 		 */
   2688 		imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0);
   2689 		if (imm == NULL)
   2690 			break;
   2691 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2692 		break;
   2693 
   2694 	case IPV6_LEAVE_GROUP:
   2695 		/*
   2696 		 * Drop a multicast group membership.
   2697 		 * Group must be a valid IP6 multicast address.
   2698 		 */
   2699 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   2700 			error = EINVAL;
   2701 			break;
   2702 		}
   2703 		mreq = mtod(m, struct ipv6_mreq *);
   2704 
   2705 		/*
   2706 		 * If an interface address was specified, get a pointer
   2707 		 * to its ifnet structure.
   2708 		 */
   2709 		if (mreq->ipv6mr_interface != 0) {
   2710 			if (if_indexlim <= mreq->ipv6mr_interface ||
   2711 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
   2712 				error = ENXIO;	/* XXX EINVAL? */
   2713 				break;
   2714 			}
   2715 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   2716 		} else
   2717 			ifp = NULL;
   2718 
   2719 		/* Fill in the scope zone ID */
   2720 		if (ifp) {
   2721 			if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
   2722 				/* XXX: should not happen */
   2723 				error = EADDRNOTAVAIL;
   2724 				break;
   2725 			}
   2726 		} else if (mreq->ipv6mr_interface != 0) {
   2727 			/*
   2728 			 * XXX: This case would happens when the (positive)
   2729 			 * index is in the valid range, but the corresponding
   2730 			 * interface has been detached dynamically.  The above
   2731 			 * check probably avoids such case to happen here, but
   2732 			 * we check it explicitly for safety.
   2733 			 */
   2734 			error = EADDRNOTAVAIL;
   2735 			break;
   2736 		} else {	/* ipv6mr_interface == 0 */
   2737 			struct sockaddr_in6 sa6_mc;
   2738 
   2739 			/*
   2740 			 * The API spec says as follows:
   2741 			 *  If the interface index is specified as 0, the
   2742 			 *  system may choose a multicast group membership to
   2743 			 *  drop by matching the multicast address only.
   2744 			 * On the other hand, we cannot disambiguate the scope
   2745 			 * zone unless an interface is provided.  Thus, we
   2746 			 * check if there's ambiguity with the default scope
   2747 			 * zone as the last resort.
   2748 			 */
   2749 			bzero(&sa6_mc, sizeof(sa6_mc));
   2750 			sa6_mc.sin6_family = AF_INET6;
   2751 			sa6_mc.sin6_len = sizeof(sa6_mc);
   2752 			sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr;
   2753 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2754 			if (error != 0)
   2755 				break;
   2756 			mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2757 		}
   2758 
   2759 		/*
   2760 		 * Find the membership in the membership list.
   2761 		 */
   2762 		for (imm = im6o->im6o_memberships.lh_first;
   2763 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   2764 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2765 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2766 			    &mreq->ipv6mr_multiaddr))
   2767 				break;
   2768 		}
   2769 		if (imm == NULL) {
   2770 			/* Unable to resolve interface */
   2771 			error = EADDRNOTAVAIL;
   2772 			break;
   2773 		}
   2774 		/*
   2775 		 * Give up the multicast address record to which the
   2776 		 * membership points.
   2777 		 */
   2778 		LIST_REMOVE(imm, i6mm_chain);
   2779 		in6_leavegroup(imm);
   2780 		break;
   2781 
   2782 	default:
   2783 		error = EOPNOTSUPP;
   2784 		break;
   2785 	}
   2786 
   2787 	/*
   2788 	 * If all options have default values, no need to keep the mbuf.
   2789 	 */
   2790 	if (im6o->im6o_multicast_ifp == NULL &&
   2791 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2792 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2793 	    im6o->im6o_memberships.lh_first == NULL) {
   2794 		free(*im6op, M_IPMOPTS);
   2795 		*im6op = NULL;
   2796 	}
   2797 
   2798 	return (error);
   2799 }
   2800 
   2801 /*
   2802  * Return the IP6 multicast options in response to user getsockopt().
   2803  */
   2804 static int
   2805 ip6_getmoptions(optname, im6o, mp)
   2806 	int optname;
   2807 	struct ip6_moptions *im6o;
   2808 	struct mbuf **mp;
   2809 {
   2810 	u_int *hlim, *loop, *ifindex;
   2811 
   2812 	*mp = m_get(M_WAIT, MT_SOOPTS);
   2813 
   2814 	switch (optname) {
   2815 
   2816 	case IPV6_MULTICAST_IF:
   2817 		ifindex = mtod(*mp, u_int *);
   2818 		(*mp)->m_len = sizeof(u_int);
   2819 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
   2820 			*ifindex = 0;
   2821 		else
   2822 			*ifindex = im6o->im6o_multicast_ifp->if_index;
   2823 		return (0);
   2824 
   2825 	case IPV6_MULTICAST_HOPS:
   2826 		hlim = mtod(*mp, u_int *);
   2827 		(*mp)->m_len = sizeof(u_int);
   2828 		if (im6o == NULL)
   2829 			*hlim = ip6_defmcasthlim;
   2830 		else
   2831 			*hlim = im6o->im6o_multicast_hlim;
   2832 		return (0);
   2833 
   2834 	case IPV6_MULTICAST_LOOP:
   2835 		loop = mtod(*mp, u_int *);
   2836 		(*mp)->m_len = sizeof(u_int);
   2837 		if (im6o == NULL)
   2838 			*loop = ip6_defmcasthlim;
   2839 		else
   2840 			*loop = im6o->im6o_multicast_loop;
   2841 		return (0);
   2842 
   2843 	default:
   2844 		return (EOPNOTSUPP);
   2845 	}
   2846 }
   2847 
   2848 /*
   2849  * Discard the IP6 multicast options.
   2850  */
   2851 void
   2852 ip6_freemoptions(im6o)
   2853 	struct ip6_moptions *im6o;
   2854 {
   2855 	struct in6_multi_mship *imm;
   2856 
   2857 	if (im6o == NULL)
   2858 		return;
   2859 
   2860 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   2861 		LIST_REMOVE(imm, i6mm_chain);
   2862 		in6_leavegroup(imm);
   2863 	}
   2864 	free(im6o, M_IPMOPTS);
   2865 }
   2866 
   2867 /*
   2868  * Set IPv6 outgoing packet options based on advanced API.
   2869  */
   2870 int
   2871 ip6_setpktopts(control, opt, stickyopt, priv, uproto)
   2872 	struct mbuf *control;
   2873 	struct ip6_pktopts *opt, *stickyopt;
   2874 	int priv, uproto;
   2875 {
   2876 	struct cmsghdr *cm = 0;
   2877 
   2878 	if (control == NULL || opt == NULL)
   2879 		return (EINVAL);
   2880 
   2881 	ip6_initpktopts(opt);
   2882 	if (stickyopt) {
   2883 		int error;
   2884 
   2885 		/*
   2886 		 * If stickyopt is provided, make a local copy of the options
   2887 		 * for this particular packet, then override them by ancillary
   2888 		 * objects.
   2889 		 * XXX: copypktopts() does not copy the cached route to a next
   2890 		 * hop (if any).  This is not very good in terms of efficiency,
   2891 		 * but we can allow this since this option should be rarely
   2892 		 * used.
   2893 		 */
   2894 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
   2895 			return (error);
   2896 	}
   2897 
   2898 	/*
   2899 	 * XXX: Currently, we assume all the optional information is stored
   2900 	 * in a single mbuf.
   2901 	 */
   2902 	if (control->m_next)
   2903 		return (EINVAL);
   2904 
   2905 	for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2906 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2907 		int error;
   2908 
   2909 		if (control->m_len < CMSG_LEN(0))
   2910 			return (EINVAL);
   2911 
   2912 		cm = mtod(control, struct cmsghdr *);
   2913 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   2914 			return (EINVAL);
   2915 		if (cm->cmsg_level != IPPROTO_IPV6)
   2916 			continue;
   2917 
   2918 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
   2919 		    cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, 1, uproto);
   2920 		if (error)
   2921 			return (error);
   2922 	}
   2923 
   2924 	return (0);
   2925 }
   2926 
   2927 /*
   2928  * Set a particular packet option, as a sticky option or an ancillary data
   2929  * item.  "len" can be 0 only when it's a sticky option.
   2930  * We have 4 cases of combination of "sticky" and "cmsg":
   2931  * "sticky=0, cmsg=0": impossible
   2932  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
   2933  * "sticky=1, cmsg=0": RFC3542 socket option
   2934  * "sticky=1, cmsg=1": RFC2292 socket option
   2935  */
   2936 static int
   2937 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
   2938     int priv, int sticky, int cmsg, int uproto)
   2939 {
   2940 	int minmtupolicy;
   2941 
   2942 	if (!sticky && !cmsg) {
   2943 #ifdef DIAGNOSTIC
   2944 		printf("ip6_setpktopt: impossible case\n");
   2945 #endif
   2946 		return (EINVAL);
   2947 	}
   2948 
   2949 	/*
   2950 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
   2951 	 * not be specified in the context of RFC3542.  Conversely,
   2952 	 * RFC3542 types should not be specified in the context of RFC2292.
   2953 	 */
   2954 	if (!cmsg) {
   2955 		switch (optname) {
   2956 		case IPV6_2292PKTINFO:
   2957 		case IPV6_2292HOPLIMIT:
   2958 		case IPV6_2292NEXTHOP:
   2959 		case IPV6_2292HOPOPTS:
   2960 		case IPV6_2292DSTOPTS:
   2961 		case IPV6_2292RTHDR:
   2962 		case IPV6_2292PKTOPTIONS:
   2963 			return (ENOPROTOOPT);
   2964 		}
   2965 	}
   2966 	if (sticky && cmsg) {
   2967 		switch (optname) {
   2968 		case IPV6_PKTINFO:
   2969 		case IPV6_HOPLIMIT:
   2970 		case IPV6_NEXTHOP:
   2971 		case IPV6_HOPOPTS:
   2972 		case IPV6_DSTOPTS:
   2973 		case IPV6_RTHDRDSTOPTS:
   2974 		case IPV6_RTHDR:
   2975 		case IPV6_USE_MIN_MTU:
   2976 		case IPV6_DONTFRAG:
   2977 		case IPV6_OTCLASS:
   2978 		case IPV6_TCLASS:
   2979 			return (ENOPROTOOPT);
   2980 		}
   2981 	}
   2982 
   2983 	switch (optname) {
   2984 #ifdef RFC2292
   2985 	case IPV6_2292PKTINFO:
   2986 #endif
   2987 	case IPV6_PKTINFO:
   2988 	{
   2989 		struct ifnet *ifp = NULL;
   2990 		struct in6_pktinfo *pktinfo;
   2991 
   2992 		if (len != sizeof(struct in6_pktinfo))
   2993 			return (EINVAL);
   2994 
   2995 		pktinfo = (struct in6_pktinfo *)buf;
   2996 
   2997 		/*
   2998 		 * An application can clear any sticky IPV6_PKTINFO option by
   2999 		 * doing a "regular" setsockopt with ipi6_addr being
   3000 		 * in6addr_any and ipi6_ifindex being zero.
   3001 		 * [RFC 3542, Section 6]
   3002 		 */
   3003 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
   3004 		    pktinfo->ipi6_ifindex == 0 &&
   3005 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   3006 			ip6_clearpktopts(opt, optname);
   3007 			break;
   3008 		}
   3009 
   3010 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
   3011 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   3012 			return (EINVAL);
   3013 		}
   3014 
   3015 		/* validate the interface index if specified. */
   3016 		if (pktinfo->ipi6_ifindex >= if_indexlim) {
   3017 			 return (ENXIO);
   3018 		}
   3019 		if (pktinfo->ipi6_ifindex) {
   3020 			ifp = ifindex2ifnet[pktinfo->ipi6_ifindex];
   3021 			if (ifp == NULL)
   3022 				return (ENXIO);
   3023 		}
   3024 
   3025 		/*
   3026 		 * We store the address anyway, and let in6_selectsrc()
   3027 		 * validate the specified address.  This is because ipi6_addr
   3028 		 * may not have enough information about its scope zone, and
   3029 		 * we may need additional information (such as outgoing
   3030 		 * interface or the scope zone of a destination address) to
   3031 		 * disambiguate the scope.
   3032 		 * XXX: the delay of the validation may confuse the
   3033 		 * application when it is used as a sticky option.
   3034 		 */
   3035 		if (opt->ip6po_pktinfo == NULL) {
   3036 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
   3037 			    M_IP6OPT, M_NOWAIT);
   3038 			if (opt->ip6po_pktinfo == NULL)
   3039 				return (ENOBUFS);
   3040 		}
   3041 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
   3042 		break;
   3043 	}
   3044 
   3045 #ifdef RFC2292
   3046 	case IPV6_2292HOPLIMIT:
   3047 #endif
   3048 	case IPV6_HOPLIMIT:
   3049 	{
   3050 		int *hlimp;
   3051 
   3052 		/*
   3053 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
   3054 		 * to simplify the ordering among hoplimit options.
   3055 		 */
   3056 		if (optname == IPV6_HOPLIMIT && sticky)
   3057 			return (ENOPROTOOPT);
   3058 
   3059 		if (len != sizeof(int))
   3060 			return (EINVAL);
   3061 		hlimp = (int *)buf;
   3062 		if (*hlimp < -1 || *hlimp > 255)
   3063 			return (EINVAL);
   3064 
   3065 		opt->ip6po_hlim = *hlimp;
   3066 		break;
   3067 	}
   3068 
   3069 	case IPV6_OTCLASS:
   3070 		if (len != sizeof(u_int8_t))
   3071 			return (EINVAL);
   3072 
   3073 		opt->ip6po_tclass = *(u_int8_t *)buf;
   3074 		break;
   3075 
   3076 	case IPV6_TCLASS:
   3077 	{
   3078 		int tclass;
   3079 
   3080 		if (len != sizeof(int))
   3081 			return (EINVAL);
   3082 		tclass = *(int *)buf;
   3083 		if (tclass < -1 || tclass > 255)
   3084 			return (EINVAL);
   3085 
   3086 		opt->ip6po_tclass = tclass;
   3087 		break;
   3088 	}
   3089 
   3090 #ifdef RFC2292
   3091 	case IPV6_2292NEXTHOP:
   3092 #endif
   3093 	case IPV6_NEXTHOP:
   3094 		if (!priv)
   3095 			return (EPERM);
   3096 
   3097 		if (len == 0) {	/* just remove the option */
   3098 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
   3099 			break;
   3100 		}
   3101 
   3102 		/* check if cmsg_len is large enough for sa_len */
   3103 		if (len < sizeof(struct sockaddr) || len < *buf)
   3104 			return (EINVAL);
   3105 
   3106 		switch (((struct sockaddr *)buf)->sa_family) {
   3107 		case AF_INET6:
   3108 		{
   3109 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
   3110 			int error;
   3111 
   3112 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
   3113 				return (EINVAL);
   3114 
   3115 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
   3116 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
   3117 				return (EINVAL);
   3118 			}
   3119 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
   3120 			    != 0) {
   3121 				return (error);
   3122 			}
   3123 			break;
   3124 		}
   3125 		case AF_LINK:	/* eventually be supported? */
   3126 		default:
   3127 			return (EAFNOSUPPORT);
   3128 		}
   3129 
   3130 		/* turn off the previous option, then set the new option. */
   3131 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
   3132 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
   3133 		if (opt->ip6po_nexthop == NULL)
   3134 			return (ENOBUFS);
   3135 		memcpy(opt->ip6po_nexthop, buf, *buf);
   3136 		break;
   3137 
   3138 #ifdef RFC2292
   3139 	case IPV6_2292HOPOPTS:
   3140 #endif
   3141 	case IPV6_HOPOPTS:
   3142 	{
   3143 		struct ip6_hbh *hbh;
   3144 		int hbhlen;
   3145 
   3146 		/*
   3147 		 * XXX: We don't allow a non-privileged user to set ANY HbH
   3148 		 * options, since per-option restriction has too much
   3149 		 * overhead.
   3150 		 */
   3151 		if (!priv)
   3152 			return (EPERM);
   3153 
   3154 		if (len == 0) {
   3155 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3156 			break;	/* just remove the option */
   3157 		}
   3158 
   3159 		/* message length validation */
   3160 		if (len < sizeof(struct ip6_hbh))
   3161 			return (EINVAL);
   3162 		hbh = (struct ip6_hbh *)buf;
   3163 		hbhlen = (hbh->ip6h_len + 1) << 3;
   3164 		if (len != hbhlen)
   3165 			return (EINVAL);
   3166 
   3167 		/* turn off the previous option, then set the new option. */
   3168 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3169 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
   3170 		if (opt->ip6po_hbh == NULL)
   3171 			return (ENOBUFS);
   3172 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
   3173 
   3174 		break;
   3175 	}
   3176 
   3177 #ifdef RFC2292
   3178 	case IPV6_2292DSTOPTS:
   3179 #endif
   3180 	case IPV6_DSTOPTS:
   3181 	case IPV6_RTHDRDSTOPTS:
   3182 	{
   3183 		struct ip6_dest *dest, **newdest = NULL;
   3184 		int destlen;
   3185 
   3186 		if (!priv)	/* XXX: see the comment for IPV6_HOPOPTS */
   3187 			return (EPERM);
   3188 
   3189 		if (len == 0) {
   3190 			ip6_clearpktopts(opt, optname);
   3191 			break;	/* just remove the option */
   3192 		}
   3193 
   3194 		/* message length validation */
   3195 		if (len < sizeof(struct ip6_dest))
   3196 			return (EINVAL);
   3197 		dest = (struct ip6_dest *)buf;
   3198 		destlen = (dest->ip6d_len + 1) << 3;
   3199 		if (len != destlen)
   3200 			return (EINVAL);
   3201 		/*
   3202 		 * Determine the position that the destination options header
   3203 		 * should be inserted; before or after the routing header.
   3204 		 */
   3205 		switch (optname) {
   3206 		case IPV6_2292DSTOPTS:
   3207 			/*
   3208 			 * The old advanced API is ambiguous on this point.
   3209 			 * Our approach is to determine the position based
   3210 			 * according to the existence of a routing header.
   3211 			 * Note, however, that this depends on the order of the
   3212 			 * extension headers in the ancillary data; the 1st
   3213 			 * part of the destination options header must appear
   3214 			 * before the routing header in the ancillary data,
   3215 			 * too.
   3216 			 * RFC3542 solved the ambiguity by introducing
   3217 			 * separate ancillary data or option types.
   3218 			 */
   3219 			if (opt->ip6po_rthdr == NULL)
   3220 				newdest = &opt->ip6po_dest1;
   3221 			else
   3222 				newdest = &opt->ip6po_dest2;
   3223 			break;
   3224 		case IPV6_RTHDRDSTOPTS:
   3225 			newdest = &opt->ip6po_dest1;
   3226 			break;
   3227 		case IPV6_DSTOPTS:
   3228 			newdest = &opt->ip6po_dest2;
   3229 			break;
   3230 		}
   3231 
   3232 		/* turn off the previous option, then set the new option. */
   3233 		ip6_clearpktopts(opt, optname);
   3234 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
   3235 		if (*newdest == NULL)
   3236 			return (ENOBUFS);
   3237 		memcpy(*newdest, dest, destlen);
   3238 
   3239 		break;
   3240 	}
   3241 
   3242 #ifdef RFC2292
   3243 	case IPV6_2292RTHDR:
   3244 #endif
   3245 	case IPV6_RTHDR:
   3246 	{
   3247 		struct ip6_rthdr *rth;
   3248 		int rthlen;
   3249 
   3250 		if (len == 0) {
   3251 			ip6_clearpktopts(opt, IPV6_RTHDR);
   3252 			break;	/* just remove the option */
   3253 		}
   3254 
   3255 		/* message length validation */
   3256 		if (len < sizeof(struct ip6_rthdr))
   3257 			return (EINVAL);
   3258 		rth = (struct ip6_rthdr *)buf;
   3259 		rthlen = (rth->ip6r_len + 1) << 3;
   3260 		if (len != rthlen)
   3261 			return (EINVAL);
   3262 		switch (rth->ip6r_type) {
   3263 		case IPV6_RTHDR_TYPE_0:
   3264 			if (rth->ip6r_len == 0)	/* must contain one addr */
   3265 				return (EINVAL);
   3266 			if (rth->ip6r_len % 2) /* length must be even */
   3267 				return (EINVAL);
   3268 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
   3269 				return (EINVAL);
   3270 			break;
   3271 		default:
   3272 			return (EINVAL);	/* not supported */
   3273 		}
   3274 		/* turn off the previous option */
   3275 		ip6_clearpktopts(opt, IPV6_RTHDR);
   3276 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
   3277 		if (opt->ip6po_rthdr == NULL)
   3278 			return (ENOBUFS);
   3279 		memcpy(opt->ip6po_rthdr, rth, rthlen);
   3280 		break;
   3281 	}
   3282 
   3283 	case IPV6_USE_MIN_MTU:
   3284 		if (len != sizeof(int))
   3285 			return (EINVAL);
   3286 		minmtupolicy = *(int *)buf;
   3287 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
   3288 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
   3289 		    minmtupolicy != IP6PO_MINMTU_ALL) {
   3290 			return (EINVAL);
   3291 		}
   3292 		opt->ip6po_minmtu = minmtupolicy;
   3293 		break;
   3294 
   3295 	case IPV6_DONTFRAG:
   3296 		if (len != sizeof(int))
   3297 			return (EINVAL);
   3298 
   3299 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
   3300 			/*
   3301 			 * we ignore this option for TCP sockets.
   3302 			 * (RFC3542 leaves this case unspecified.)
   3303 			 */
   3304 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
   3305 		} else
   3306 			opt->ip6po_flags |= IP6PO_DONTFRAG;
   3307 		break;
   3308 
   3309 	default:
   3310 		return (ENOPROTOOPT);
   3311 	} /* end of switch */
   3312 
   3313 	return (0);
   3314 }
   3315 
   3316 /*
   3317  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   3318  * packet to the input queue of a specified interface.  Note that this
   3319  * calls the output routine of the loopback "driver", but with an interface
   3320  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   3321  */
   3322 void
   3323 ip6_mloopback(ifp, m, dst)
   3324 	struct ifnet *ifp;
   3325 	struct mbuf *m;
   3326 	const struct sockaddr_in6 *dst;
   3327 {
   3328 	struct mbuf *copym;
   3329 	struct ip6_hdr *ip6;
   3330 
   3331 	copym = m_copy(m, 0, M_COPYALL);
   3332 	if (copym == NULL)
   3333 		return;
   3334 
   3335 	/*
   3336 	 * Make sure to deep-copy IPv6 header portion in case the data
   3337 	 * is in an mbuf cluster, so that we can safely override the IPv6
   3338 	 * header portion later.
   3339 	 */
   3340 	if ((copym->m_flags & M_EXT) != 0 ||
   3341 	    copym->m_len < sizeof(struct ip6_hdr)) {
   3342 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   3343 		if (copym == NULL)
   3344 			return;
   3345 	}
   3346 
   3347 #ifdef DIAGNOSTIC
   3348 	if (copym->m_len < sizeof(*ip6)) {
   3349 		m_freem(copym);
   3350 		return;
   3351 	}
   3352 #endif
   3353 
   3354 	ip6 = mtod(copym, struct ip6_hdr *);
   3355 	/*
   3356 	 * clear embedded scope identifiers if necessary.
   3357 	 * in6_clearscope will touch the addresses only when necessary.
   3358 	 */
   3359 	in6_clearscope(&ip6->ip6_src);
   3360 	in6_clearscope(&ip6->ip6_dst);
   3361 
   3362 	(void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
   3363 }
   3364 
   3365 /*
   3366  * Chop IPv6 header off from the payload.
   3367  */
   3368 static int
   3369 ip6_splithdr(m, exthdrs)
   3370 	struct mbuf *m;
   3371 	struct ip6_exthdrs *exthdrs;
   3372 {
   3373 	struct mbuf *mh;
   3374 	struct ip6_hdr *ip6;
   3375 
   3376 	ip6 = mtod(m, struct ip6_hdr *);
   3377 	if (m->m_len > sizeof(*ip6)) {
   3378 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   3379 		if (mh == 0) {
   3380 			m_freem(m);
   3381 			return ENOBUFS;
   3382 		}
   3383 		M_MOVE_PKTHDR(mh, m);
   3384 		MH_ALIGN(mh, sizeof(*ip6));
   3385 		m->m_len -= sizeof(*ip6);
   3386 		m->m_data += sizeof(*ip6);
   3387 		mh->m_next = m;
   3388 		m = mh;
   3389 		m->m_len = sizeof(*ip6);
   3390 		bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
   3391 	}
   3392 	exthdrs->ip6e_ip6 = m;
   3393 	return 0;
   3394 }
   3395 
   3396 /*
   3397  * Compute IPv6 extension header length.
   3398  */
   3399 int
   3400 ip6_optlen(in6p)
   3401 	struct in6pcb *in6p;
   3402 {
   3403 	int len;
   3404 
   3405 	if (!in6p->in6p_outputopts)
   3406 		return 0;
   3407 
   3408 	len = 0;
   3409 #define elen(x) \
   3410     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   3411 
   3412 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   3413 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   3414 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   3415 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   3416 	return len;
   3417 #undef elen
   3418 }
   3419