ip6_output.c revision 1.124 1 /* $NetBSD: ip6_output.c,v 1.124 2007/12/20 19:53:34 dyoung Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.124 2007/12/20 19:53:34 dyoung Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_pfil_hooks.h"
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/kauth.h>
82
83 #include <net/if.h>
84 #include <net/route.h>
85 #ifdef PFIL_HOOKS
86 #include <net/pfil.h>
87 #endif
88
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip6.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet6/in6_offload.h>
95 #include <netinet6/ip6_var.h>
96 #include <netinet6/in6_pcb.h>
97 #include <netinet6/nd6.h>
98 #include <netinet6/ip6protosw.h>
99 #include <netinet6/scope6_var.h>
100
101 #ifdef IPSEC
102 #include <netinet6/ipsec.h>
103 #include <netkey/key.h>
104 #endif /* IPSEC */
105
106 #ifdef FAST_IPSEC
107 #include <netipsec/ipsec.h>
108 #include <netipsec/ipsec6.h>
109 #include <netipsec/key.h>
110 #include <netipsec/xform.h>
111 #endif
112
113
114 #include <net/net_osdep.h>
115
116 #ifdef PFIL_HOOKS
117 extern struct pfil_head inet6_pfil_hook; /* XXX */
118 #endif
119
120 struct ip6_exthdrs {
121 struct mbuf *ip6e_ip6;
122 struct mbuf *ip6e_hbh;
123 struct mbuf *ip6e_dest1;
124 struct mbuf *ip6e_rthdr;
125 struct mbuf *ip6e_dest2;
126 };
127
128 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
129 int, int);
130 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct mbuf **);
131 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, int,
132 int, int, int);
133 static int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *);
134 static int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf **);
135 static int ip6_copyexthdr(struct mbuf **, void *, int);
136 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
137 struct ip6_frag **);
138 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
139 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
140 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *,
141 const struct in6_addr *, u_long *, int *);
142 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
143
144 #ifdef RFC2292
145 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *,
146 struct socket *);
147 #endif
148
149 #define IN6_NEED_CHECKSUM(ifp, csum_flags) \
150 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
151 (((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \
152 (((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum)))
153
154 /*
155 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
156 * header (with pri, len, nxt, hlim, src, dst).
157 * This function may modify ver and hlim only.
158 * The mbuf chain containing the packet will be freed.
159 * The mbuf opt, if present, will not be freed.
160 *
161 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
162 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
163 * which is rt_rmx.rmx_mtu.
164 */
165 int
166 ip6_output(
167 struct mbuf *m0,
168 struct ip6_pktopts *opt,
169 struct route *ro,
170 int flags,
171 struct ip6_moptions *im6o,
172 struct socket *so,
173 struct ifnet **ifpp /* XXX: just for statistics */
174 )
175 {
176 struct ip6_hdr *ip6, *mhip6;
177 struct ifnet *ifp, *origifp;
178 struct mbuf *m = m0;
179 int hlen, tlen, len, off;
180 bool tso;
181 struct route ip6route;
182 struct rtentry *rt = NULL;
183 const struct sockaddr_in6 *dst = NULL;
184 struct sockaddr_in6 src_sa, dst_sa;
185 int error = 0;
186 struct in6_ifaddr *ia = NULL;
187 u_long mtu;
188 int alwaysfrag, dontfrag;
189 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
190 struct ip6_exthdrs exthdrs;
191 struct in6_addr finaldst, src0, dst0;
192 u_int32_t zone;
193 struct route *ro_pmtu = NULL;
194 int hdrsplit = 0;
195 int needipsec = 0;
196 #ifdef IPSEC
197 int needipsectun = 0;
198 struct secpolicy *sp = NULL;
199
200 ip6 = mtod(m, struct ip6_hdr *);
201 #endif /* IPSEC */
202 #ifdef FAST_IPSEC
203 struct secpolicy *sp = NULL;
204 int s;
205 #endif
206
207 memset(&ip6route, 0, sizeof(ip6route));
208
209 #ifdef DIAGNOSTIC
210 if ((m->m_flags & M_PKTHDR) == 0)
211 panic("ip6_output: no HDR");
212
213 if ((m->m_pkthdr.csum_flags &
214 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
215 panic("ip6_output: IPv4 checksum offload flags: %d",
216 m->m_pkthdr.csum_flags);
217 }
218
219 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
220 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
221 panic("ip6_output: conflicting checksum offload flags: %d",
222 m->m_pkthdr.csum_flags);
223 }
224 #endif
225
226 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
227
228 #define MAKE_EXTHDR(hp, mp) \
229 do { \
230 if (hp) { \
231 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
232 error = ip6_copyexthdr((mp), (void *)(hp), \
233 ((eh)->ip6e_len + 1) << 3); \
234 if (error) \
235 goto freehdrs; \
236 } \
237 } while (/*CONSTCOND*/ 0)
238
239 bzero(&exthdrs, sizeof(exthdrs));
240 if (opt) {
241 /* Hop-by-Hop options header */
242 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
243 /* Destination options header(1st part) */
244 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
245 /* Routing header */
246 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
247 /* Destination options header(2nd part) */
248 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
249 }
250
251 #ifdef IPSEC
252 if ((flags & IPV6_FORWARDING) != 0) {
253 needipsec = 0;
254 goto skippolicycheck;
255 }
256
257 /* get a security policy for this packet */
258 if (so == NULL)
259 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
260 else {
261 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
262 IPSEC_DIR_OUTBOUND)) {
263 needipsec = 0;
264 goto skippolicycheck;
265 }
266 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
267 }
268
269 if (sp == NULL) {
270 ipsec6stat.out_inval++;
271 goto freehdrs;
272 }
273
274 error = 0;
275
276 /* check policy */
277 switch (sp->policy) {
278 case IPSEC_POLICY_DISCARD:
279 /*
280 * This packet is just discarded.
281 */
282 ipsec6stat.out_polvio++;
283 goto freehdrs;
284
285 case IPSEC_POLICY_BYPASS:
286 case IPSEC_POLICY_NONE:
287 /* no need to do IPsec. */
288 needipsec = 0;
289 break;
290
291 case IPSEC_POLICY_IPSEC:
292 if (sp->req == NULL) {
293 /* XXX should be panic ? */
294 printf("ip6_output: No IPsec request specified.\n");
295 error = EINVAL;
296 goto freehdrs;
297 }
298 needipsec = 1;
299 break;
300
301 case IPSEC_POLICY_ENTRUST:
302 default:
303 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
304 }
305
306 skippolicycheck:;
307 #endif /* IPSEC */
308
309 /*
310 * Calculate the total length of the extension header chain.
311 * Keep the length of the unfragmentable part for fragmentation.
312 */
313 optlen = 0;
314 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
315 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
316 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
317 unfragpartlen = optlen + sizeof(struct ip6_hdr);
318 /* NOTE: we don't add AH/ESP length here. do that later. */
319 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
320
321 #ifdef FAST_IPSEC
322 /* Check the security policy (SP) for the packet */
323
324 /* XXX For moment, we doesn't support packet with extented action */
325 if (optlen !=0)
326 goto freehdrs;
327
328 sp = ipsec6_check_policy(m,so,flags,&needipsec,&error);
329 if (error != 0) {
330 /*
331 * Hack: -EINVAL is used to signal that a packet
332 * should be silently discarded. This is typically
333 * because we asked key management for an SA and
334 * it was delayed (e.g. kicked up to IKE).
335 */
336 if (error == -EINVAL)
337 error = 0;
338 goto freehdrs;
339 }
340 #endif /* FAST_IPSEC */
341
342
343 if (needipsec &&
344 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
345 in6_delayed_cksum(m);
346 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
347 }
348
349
350 /*
351 * If we need IPsec, or there is at least one extension header,
352 * separate IP6 header from the payload.
353 */
354 if ((needipsec || optlen) && !hdrsplit) {
355 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
356 m = NULL;
357 goto freehdrs;
358 }
359 m = exthdrs.ip6e_ip6;
360 hdrsplit++;
361 }
362
363 /* adjust pointer */
364 ip6 = mtod(m, struct ip6_hdr *);
365
366 /* adjust mbuf packet header length */
367 m->m_pkthdr.len += optlen;
368 plen = m->m_pkthdr.len - sizeof(*ip6);
369
370 /* If this is a jumbo payload, insert a jumbo payload option. */
371 if (plen > IPV6_MAXPACKET) {
372 if (!hdrsplit) {
373 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
374 m = NULL;
375 goto freehdrs;
376 }
377 m = exthdrs.ip6e_ip6;
378 hdrsplit++;
379 }
380 /* adjust pointer */
381 ip6 = mtod(m, struct ip6_hdr *);
382 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
383 goto freehdrs;
384 optlen += 8; /* XXX JUMBOOPTLEN */
385 ip6->ip6_plen = 0;
386 } else
387 ip6->ip6_plen = htons(plen);
388
389 /*
390 * Concatenate headers and fill in next header fields.
391 * Here we have, on "m"
392 * IPv6 payload
393 * and we insert headers accordingly. Finally, we should be getting:
394 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
395 *
396 * during the header composing process, "m" points to IPv6 header.
397 * "mprev" points to an extension header prior to esp.
398 */
399 {
400 u_char *nexthdrp = &ip6->ip6_nxt;
401 struct mbuf *mprev = m;
402
403 /*
404 * we treat dest2 specially. this makes IPsec processing
405 * much easier. the goal here is to make mprev point the
406 * mbuf prior to dest2.
407 *
408 * result: IPv6 dest2 payload
409 * m and mprev will point to IPv6 header.
410 */
411 if (exthdrs.ip6e_dest2) {
412 if (!hdrsplit)
413 panic("assumption failed: hdr not split");
414 exthdrs.ip6e_dest2->m_next = m->m_next;
415 m->m_next = exthdrs.ip6e_dest2;
416 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
417 ip6->ip6_nxt = IPPROTO_DSTOPTS;
418 }
419
420 #define MAKE_CHAIN(m, mp, p, i)\
421 do {\
422 if (m) {\
423 if (!hdrsplit) \
424 panic("assumption failed: hdr not split"); \
425 *mtod((m), u_char *) = *(p);\
426 *(p) = (i);\
427 p = mtod((m), u_char *);\
428 (m)->m_next = (mp)->m_next;\
429 (mp)->m_next = (m);\
430 (mp) = (m);\
431 }\
432 } while (/*CONSTCOND*/ 0)
433 /*
434 * result: IPv6 hbh dest1 rthdr dest2 payload
435 * m will point to IPv6 header. mprev will point to the
436 * extension header prior to dest2 (rthdr in the above case).
437 */
438 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
439 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
440 IPPROTO_DSTOPTS);
441 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
442 IPPROTO_ROUTING);
443
444 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
445 sizeof(struct ip6_hdr) + optlen);
446
447 #ifdef IPSEC
448 if (!needipsec)
449 goto skip_ipsec2;
450
451 /*
452 * pointers after IPsec headers are not valid any more.
453 * other pointers need a great care too.
454 * (IPsec routines should not mangle mbufs prior to AH/ESP)
455 */
456 exthdrs.ip6e_dest2 = NULL;
457
458 {
459 struct ip6_rthdr *rh = NULL;
460 int segleft_org = 0;
461 struct ipsec_output_state state;
462
463 if (exthdrs.ip6e_rthdr) {
464 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
465 segleft_org = rh->ip6r_segleft;
466 rh->ip6r_segleft = 0;
467 }
468
469 bzero(&state, sizeof(state));
470 state.m = m;
471 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
472 &needipsectun);
473 m = state.m;
474 if (error) {
475 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
476 /* mbuf is already reclaimed in ipsec6_output_trans. */
477 m = NULL;
478 switch (error) {
479 case EHOSTUNREACH:
480 case ENETUNREACH:
481 case EMSGSIZE:
482 case ENOBUFS:
483 case ENOMEM:
484 break;
485 default:
486 printf("ip6_output (ipsec): error code %d\n", error);
487 /* FALLTHROUGH */
488 case ENOENT:
489 /* don't show these error codes to the user */
490 error = 0;
491 break;
492 }
493 goto bad;
494 }
495 if (exthdrs.ip6e_rthdr) {
496 /* ah6_output doesn't modify mbuf chain */
497 rh->ip6r_segleft = segleft_org;
498 }
499 }
500 skip_ipsec2:;
501 #endif
502 }
503
504 /*
505 * If there is a routing header, replace destination address field
506 * with the first hop of the routing header.
507 */
508 if (exthdrs.ip6e_rthdr) {
509 struct ip6_rthdr *rh;
510 struct ip6_rthdr0 *rh0;
511 struct in6_addr *addr;
512 struct sockaddr_in6 sa;
513
514 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
515 struct ip6_rthdr *));
516 finaldst = ip6->ip6_dst;
517 switch (rh->ip6r_type) {
518 case IPV6_RTHDR_TYPE_0:
519 rh0 = (struct ip6_rthdr0 *)rh;
520 addr = (struct in6_addr *)(rh0 + 1);
521
522 /*
523 * construct a sockaddr_in6 form of
524 * the first hop.
525 *
526 * XXX: we may not have enough
527 * information about its scope zone;
528 * there is no standard API to pass
529 * the information from the
530 * application.
531 */
532 sockaddr_in6_init(&sa, addr, 0, 0, 0);
533 if ((error = sa6_embedscope(&sa,
534 ip6_use_defzone)) != 0) {
535 goto bad;
536 }
537 ip6->ip6_dst = sa.sin6_addr;
538 (void)memmove(&addr[0], &addr[1],
539 sizeof(struct in6_addr) *
540 (rh0->ip6r0_segleft - 1));
541 addr[rh0->ip6r0_segleft - 1] = finaldst;
542 /* XXX */
543 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
544 break;
545 default: /* is it possible? */
546 error = EINVAL;
547 goto bad;
548 }
549 }
550
551 /* Source address validation */
552 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
553 (flags & IPV6_UNSPECSRC) == 0) {
554 error = EOPNOTSUPP;
555 ip6stat.ip6s_badscope++;
556 goto bad;
557 }
558 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
559 error = EOPNOTSUPP;
560 ip6stat.ip6s_badscope++;
561 goto bad;
562 }
563
564 ip6stat.ip6s_localout++;
565
566 /*
567 * Route packet.
568 */
569 /* initialize cached route */
570 if (ro == NULL) {
571 ro = &ip6route;
572 }
573 ro_pmtu = ro;
574 if (opt && opt->ip6po_rthdr)
575 ro = &opt->ip6po_route;
576
577 /*
578 * if specified, try to fill in the traffic class field.
579 * do not override if a non-zero value is already set.
580 * we check the diffserv field and the ecn field separately.
581 */
582 if (opt && opt->ip6po_tclass >= 0) {
583 int mask = 0;
584
585 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
586 mask |= 0xfc;
587 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
588 mask |= 0x03;
589 if (mask != 0)
590 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
591 }
592
593 /* fill in or override the hop limit field, if necessary. */
594 if (opt && opt->ip6po_hlim != -1)
595 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
596 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
597 if (im6o != NULL)
598 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
599 else
600 ip6->ip6_hlim = ip6_defmcasthlim;
601 }
602
603 #ifdef IPSEC
604 if (needipsec && needipsectun) {
605 struct ipsec_output_state state;
606
607 /*
608 * All the extension headers will become inaccessible
609 * (since they can be encrypted).
610 * Don't panic, we need no more updates to extension headers
611 * on inner IPv6 packet (since they are now encapsulated).
612 *
613 * IPv6 [ESP|AH] IPv6 [extension headers] payload
614 */
615 bzero(&exthdrs, sizeof(exthdrs));
616 exthdrs.ip6e_ip6 = m;
617
618 bzero(&state, sizeof(state));
619 state.m = m;
620 state.ro = ro;
621 state.dst = rtcache_getdst(ro);
622
623 error = ipsec6_output_tunnel(&state, sp, flags);
624
625 m = state.m;
626 ro_pmtu = ro = state.ro;
627 dst = satocsin6(state.dst);
628 if (error) {
629 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
630 m0 = m = NULL;
631 m = NULL;
632 switch (error) {
633 case EHOSTUNREACH:
634 case ENETUNREACH:
635 case EMSGSIZE:
636 case ENOBUFS:
637 case ENOMEM:
638 break;
639 default:
640 printf("ip6_output (ipsec): error code %d\n", error);
641 /* FALLTHROUGH */
642 case ENOENT:
643 /* don't show these error codes to the user */
644 error = 0;
645 break;
646 }
647 goto bad;
648 }
649
650 exthdrs.ip6e_ip6 = m;
651 }
652 #endif /* IPSEC */
653 #ifdef FAST_IPSEC
654 if (needipsec) {
655 s = splsoftnet();
656 error = ipsec6_process_packet(m,sp->req);
657
658 /*
659 * Preserve KAME behaviour: ENOENT can be returned
660 * when an SA acquire is in progress. Don't propagate
661 * this to user-level; it confuses applications.
662 * XXX this will go away when the SADB is redone.
663 */
664 if (error == ENOENT)
665 error = 0;
666 splx(s);
667 goto done;
668 }
669 #endif /* FAST_IPSEC */
670
671
672
673 /* adjust pointer */
674 ip6 = mtod(m, struct ip6_hdr *);
675
676 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
677 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
678 &ifp, &rt, 0)) != 0) {
679 if (ifp != NULL)
680 in6_ifstat_inc(ifp, ifs6_out_discard);
681 goto bad;
682 }
683 if (rt == NULL) {
684 /*
685 * If in6_selectroute() does not return a route entry,
686 * dst may not have been updated.
687 */
688 rtcache_setdst(ro, sin6tosa(&dst_sa));
689 }
690
691 /*
692 * then rt (for unicast) and ifp must be non-NULL valid values.
693 */
694 if ((flags & IPV6_FORWARDING) == 0) {
695 /* XXX: the FORWARDING flag can be set for mrouting. */
696 in6_ifstat_inc(ifp, ifs6_out_request);
697 }
698 if (rt != NULL) {
699 ia = (struct in6_ifaddr *)(rt->rt_ifa);
700 rt->rt_use++;
701 }
702
703 /*
704 * The outgoing interface must be in the zone of source and
705 * destination addresses. We should use ia_ifp to support the
706 * case of sending packets to an address of our own.
707 */
708 if (ia != NULL && ia->ia_ifp)
709 origifp = ia->ia_ifp;
710 else
711 origifp = ifp;
712
713 src0 = ip6->ip6_src;
714 if (in6_setscope(&src0, origifp, &zone))
715 goto badscope;
716 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
717 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
718 goto badscope;
719
720 dst0 = ip6->ip6_dst;
721 if (in6_setscope(&dst0, origifp, &zone))
722 goto badscope;
723 /* re-initialize to be sure */
724 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
725 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
726 goto badscope;
727
728 /* scope check is done. */
729
730 if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
731 if (dst == NULL)
732 dst = satocsin6(rtcache_getdst(ro));
733 KASSERT(dst != NULL);
734 } else if (opt && rtcache_getrt(&opt->ip6po_nextroute) != NULL) {
735 /*
736 * The nexthop is explicitly specified by the
737 * application. We assume the next hop is an IPv6
738 * address.
739 */
740 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
741 } else if ((rt->rt_flags & RTF_GATEWAY))
742 dst = (struct sockaddr_in6 *)rt->rt_gateway;
743 else if (dst == NULL)
744 dst = satocsin6(rtcache_getdst(ro));
745
746 /*
747 * XXXXXX: original code follows:
748 */
749 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
750 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
751 else {
752 struct in6_multi *in6m;
753
754 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
755
756 in6_ifstat_inc(ifp, ifs6_out_mcast);
757
758 /*
759 * Confirm that the outgoing interface supports multicast.
760 */
761 if (!(ifp->if_flags & IFF_MULTICAST)) {
762 ip6stat.ip6s_noroute++;
763 in6_ifstat_inc(ifp, ifs6_out_discard);
764 error = ENETUNREACH;
765 goto bad;
766 }
767
768 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
769 if (in6m != NULL &&
770 (im6o == NULL || im6o->im6o_multicast_loop)) {
771 /*
772 * If we belong to the destination multicast group
773 * on the outgoing interface, and the caller did not
774 * forbid loopback, loop back a copy.
775 */
776 KASSERT(dst != NULL);
777 ip6_mloopback(ifp, m, dst);
778 } else {
779 /*
780 * If we are acting as a multicast router, perform
781 * multicast forwarding as if the packet had just
782 * arrived on the interface to which we are about
783 * to send. The multicast forwarding function
784 * recursively calls this function, using the
785 * IPV6_FORWARDING flag to prevent infinite recursion.
786 *
787 * Multicasts that are looped back by ip6_mloopback(),
788 * above, will be forwarded by the ip6_input() routine,
789 * if necessary.
790 */
791 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
792 if (ip6_mforward(ip6, ifp, m) != 0) {
793 m_freem(m);
794 goto done;
795 }
796 }
797 }
798 /*
799 * Multicasts with a hoplimit of zero may be looped back,
800 * above, but must not be transmitted on a network.
801 * Also, multicasts addressed to the loopback interface
802 * are not sent -- the above call to ip6_mloopback() will
803 * loop back a copy if this host actually belongs to the
804 * destination group on the loopback interface.
805 */
806 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
807 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
808 m_freem(m);
809 goto done;
810 }
811 }
812
813 /*
814 * Fill the outgoing inteface to tell the upper layer
815 * to increment per-interface statistics.
816 */
817 if (ifpp)
818 *ifpp = ifp;
819
820 /* Determine path MTU. */
821 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
822 &alwaysfrag)) != 0)
823 goto bad;
824 #ifdef IPSEC
825 if (needipsectun)
826 mtu = IPV6_MMTU;
827 #endif
828
829 /*
830 * The caller of this function may specify to use the minimum MTU
831 * in some cases.
832 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
833 * setting. The logic is a bit complicated; by default, unicast
834 * packets will follow path MTU while multicast packets will be sent at
835 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
836 * including unicast ones will be sent at the minimum MTU. Multicast
837 * packets will always be sent at the minimum MTU unless
838 * IP6PO_MINMTU_DISABLE is explicitly specified.
839 * See RFC 3542 for more details.
840 */
841 if (mtu > IPV6_MMTU) {
842 if ((flags & IPV6_MINMTU))
843 mtu = IPV6_MMTU;
844 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
845 mtu = IPV6_MMTU;
846 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
847 (opt == NULL ||
848 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
849 mtu = IPV6_MMTU;
850 }
851 }
852
853 /*
854 * clear embedded scope identifiers if necessary.
855 * in6_clearscope will touch the addresses only when necessary.
856 */
857 in6_clearscope(&ip6->ip6_src);
858 in6_clearscope(&ip6->ip6_dst);
859
860 /*
861 * If the outgoing packet contains a hop-by-hop options header,
862 * it must be examined and processed even by the source node.
863 * (RFC 2460, section 4.)
864 */
865 if (exthdrs.ip6e_hbh) {
866 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
867 u_int32_t dummy1; /* XXX unused */
868 u_int32_t dummy2; /* XXX unused */
869
870 /*
871 * XXX: if we have to send an ICMPv6 error to the sender,
872 * we need the M_LOOP flag since icmp6_error() expects
873 * the IPv6 and the hop-by-hop options header are
874 * continuous unless the flag is set.
875 */
876 m->m_flags |= M_LOOP;
877 m->m_pkthdr.rcvif = ifp;
878 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
879 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
880 &dummy1, &dummy2) < 0) {
881 /* m was already freed at this point */
882 error = EINVAL;/* better error? */
883 goto done;
884 }
885 m->m_flags &= ~M_LOOP; /* XXX */
886 m->m_pkthdr.rcvif = NULL;
887 }
888
889 #ifdef PFIL_HOOKS
890 /*
891 * Run through list of hooks for output packets.
892 */
893 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
894 goto done;
895 if (m == NULL)
896 goto done;
897 ip6 = mtod(m, struct ip6_hdr *);
898 #endif /* PFIL_HOOKS */
899 /*
900 * Send the packet to the outgoing interface.
901 * If necessary, do IPv6 fragmentation before sending.
902 *
903 * the logic here is rather complex:
904 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
905 * 1-a: send as is if tlen <= path mtu
906 * 1-b: fragment if tlen > path mtu
907 *
908 * 2: if user asks us not to fragment (dontfrag == 1)
909 * 2-a: send as is if tlen <= interface mtu
910 * 2-b: error if tlen > interface mtu
911 *
912 * 3: if we always need to attach fragment header (alwaysfrag == 1)
913 * always fragment
914 *
915 * 4: if dontfrag == 1 && alwaysfrag == 1
916 * error, as we cannot handle this conflicting request
917 */
918 tlen = m->m_pkthdr.len;
919 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
920 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
921 dontfrag = 1;
922 else
923 dontfrag = 0;
924
925 if (dontfrag && alwaysfrag) { /* case 4 */
926 /* conflicting request - can't transmit */
927 error = EMSGSIZE;
928 goto bad;
929 }
930 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */
931 /*
932 * Even if the DONTFRAG option is specified, we cannot send the
933 * packet when the data length is larger than the MTU of the
934 * outgoing interface.
935 * Notify the error by sending IPV6_PATHMTU ancillary data as
936 * well as returning an error code (the latter is not described
937 * in the API spec.)
938 */
939 u_int32_t mtu32;
940 struct ip6ctlparam ip6cp;
941
942 mtu32 = (u_int32_t)mtu;
943 bzero(&ip6cp, sizeof(ip6cp));
944 ip6cp.ip6c_cmdarg = (void *)&mtu32;
945 pfctlinput2(PRC_MSGSIZE,
946 rtcache_getdst(ro_pmtu), &ip6cp);
947
948 error = EMSGSIZE;
949 goto bad;
950 }
951
952 /*
953 * transmit packet without fragmentation
954 */
955 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
956 /* case 1-a and 2-a */
957 struct in6_ifaddr *ia6;
958 int sw_csum;
959
960 ip6 = mtod(m, struct ip6_hdr *);
961 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
962 if (ia6) {
963 /* Record statistics for this interface address. */
964 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
965 }
966 #ifdef IPSEC
967 /* clean ipsec history once it goes out of the node */
968 ipsec_delaux(m);
969 #endif
970
971 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
972 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
973 if (IN6_NEED_CHECKSUM(ifp,
974 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
975 in6_delayed_cksum(m);
976 }
977 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
978 }
979
980 KASSERT(dst != NULL);
981 if (__predict_true(!tso ||
982 (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
983 error = nd6_output(ifp, origifp, m, dst, rt);
984 } else {
985 error = ip6_tso_output(ifp, origifp, m, dst, rt);
986 }
987 goto done;
988 }
989
990 if (tso) {
991 error = EINVAL; /* XXX */
992 goto bad;
993 }
994
995 /*
996 * try to fragment the packet. case 1-b and 3
997 */
998 if (mtu < IPV6_MMTU) {
999 /* path MTU cannot be less than IPV6_MMTU */
1000 error = EMSGSIZE;
1001 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1002 goto bad;
1003 } else if (ip6->ip6_plen == 0) {
1004 /* jumbo payload cannot be fragmented */
1005 error = EMSGSIZE;
1006 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1007 goto bad;
1008 } else {
1009 struct mbuf **mnext, *m_frgpart;
1010 struct ip6_frag *ip6f;
1011 u_int32_t id = htonl(ip6_randomid());
1012 u_char nextproto;
1013 #if 0 /* see below */
1014 struct ip6ctlparam ip6cp;
1015 u_int32_t mtu32;
1016 #endif
1017
1018 /*
1019 * Too large for the destination or interface;
1020 * fragment if possible.
1021 * Must be able to put at least 8 bytes per fragment.
1022 */
1023 hlen = unfragpartlen;
1024 if (mtu > IPV6_MAXPACKET)
1025 mtu = IPV6_MAXPACKET;
1026
1027 #if 0
1028 /*
1029 * It is believed this code is a leftover from the
1030 * development of the IPV6_RECVPATHMTU sockopt and
1031 * associated work to implement RFC3542.
1032 * It's not entirely clear what the intent of the API
1033 * is at this point, so disable this code for now.
1034 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
1035 * will send notifications if the application requests.
1036 */
1037
1038 /* Notify a proper path MTU to applications. */
1039 mtu32 = (u_int32_t)mtu;
1040 bzero(&ip6cp, sizeof(ip6cp));
1041 ip6cp.ip6c_cmdarg = (void *)&mtu32;
1042 pfctlinput2(PRC_MSGSIZE,
1043 rtcache_getdst(ro_pmtu), &ip6cp);
1044 #endif
1045
1046 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
1047 if (len < 8) {
1048 error = EMSGSIZE;
1049 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1050 goto bad;
1051 }
1052
1053 mnext = &m->m_nextpkt;
1054
1055 /*
1056 * Change the next header field of the last header in the
1057 * unfragmentable part.
1058 */
1059 if (exthdrs.ip6e_rthdr) {
1060 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1061 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1062 } else if (exthdrs.ip6e_dest1) {
1063 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1064 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1065 } else if (exthdrs.ip6e_hbh) {
1066 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1067 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1068 } else {
1069 nextproto = ip6->ip6_nxt;
1070 ip6->ip6_nxt = IPPROTO_FRAGMENT;
1071 }
1072
1073 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
1074 != 0) {
1075 if (IN6_NEED_CHECKSUM(ifp,
1076 m->m_pkthdr.csum_flags &
1077 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
1078 in6_delayed_cksum(m);
1079 }
1080 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
1081 }
1082
1083 /*
1084 * Loop through length of segment after first fragment,
1085 * make new header and copy data of each part and link onto
1086 * chain.
1087 */
1088 m0 = m;
1089 for (off = hlen; off < tlen; off += len) {
1090 struct mbuf *mlast;
1091
1092 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1093 if (!m) {
1094 error = ENOBUFS;
1095 ip6stat.ip6s_odropped++;
1096 goto sendorfree;
1097 }
1098 m->m_pkthdr.rcvif = NULL;
1099 m->m_flags = m0->m_flags & M_COPYFLAGS;
1100 *mnext = m;
1101 mnext = &m->m_nextpkt;
1102 m->m_data += max_linkhdr;
1103 mhip6 = mtod(m, struct ip6_hdr *);
1104 *mhip6 = *ip6;
1105 m->m_len = sizeof(*mhip6);
1106 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1107 if (error) {
1108 ip6stat.ip6s_odropped++;
1109 goto sendorfree;
1110 }
1111 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
1112 if (off + len >= tlen)
1113 len = tlen - off;
1114 else
1115 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1116 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
1117 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1118 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1119 error = ENOBUFS;
1120 ip6stat.ip6s_odropped++;
1121 goto sendorfree;
1122 }
1123 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
1124 ;
1125 mlast->m_next = m_frgpart;
1126 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1127 m->m_pkthdr.rcvif = (struct ifnet *)0;
1128 ip6f->ip6f_reserved = 0;
1129 ip6f->ip6f_ident = id;
1130 ip6f->ip6f_nxt = nextproto;
1131 ip6stat.ip6s_ofragments++;
1132 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1133 }
1134
1135 in6_ifstat_inc(ifp, ifs6_out_fragok);
1136 }
1137
1138 /*
1139 * Remove leading garbages.
1140 */
1141 sendorfree:
1142 m = m0->m_nextpkt;
1143 m0->m_nextpkt = 0;
1144 m_freem(m0);
1145 for (m0 = m; m; m = m0) {
1146 m0 = m->m_nextpkt;
1147 m->m_nextpkt = 0;
1148 if (error == 0) {
1149 struct in6_ifaddr *ia6;
1150 ip6 = mtod(m, struct ip6_hdr *);
1151 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1152 if (ia6) {
1153 /*
1154 * Record statistics for this interface
1155 * address.
1156 */
1157 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1158 m->m_pkthdr.len;
1159 }
1160 #ifdef IPSEC
1161 /* clean ipsec history once it goes out of the node */
1162 ipsec_delaux(m);
1163 #endif
1164 KASSERT(dst != NULL);
1165 error = nd6_output(ifp, origifp, m, dst, rt);
1166 } else
1167 m_freem(m);
1168 }
1169
1170 if (error == 0)
1171 ip6stat.ip6s_fragmented++;
1172
1173 done:
1174 rtcache_free(&ip6route);
1175
1176 #ifdef IPSEC
1177 if (sp != NULL)
1178 key_freesp(sp);
1179 #endif /* IPSEC */
1180 #ifdef FAST_IPSEC
1181 if (sp != NULL)
1182 KEY_FREESP(&sp);
1183 #endif /* FAST_IPSEC */
1184
1185
1186 return (error);
1187
1188 freehdrs:
1189 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1190 m_freem(exthdrs.ip6e_dest1);
1191 m_freem(exthdrs.ip6e_rthdr);
1192 m_freem(exthdrs.ip6e_dest2);
1193 /* FALLTHROUGH */
1194 bad:
1195 m_freem(m);
1196 goto done;
1197 badscope:
1198 ip6stat.ip6s_badscope++;
1199 in6_ifstat_inc(origifp, ifs6_out_discard);
1200 if (error == 0)
1201 error = EHOSTUNREACH; /* XXX */
1202 goto bad;
1203 }
1204
1205 static int
1206 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1207 {
1208 struct mbuf *m;
1209
1210 if (hlen > MCLBYTES)
1211 return (ENOBUFS); /* XXX */
1212
1213 MGET(m, M_DONTWAIT, MT_DATA);
1214 if (!m)
1215 return (ENOBUFS);
1216
1217 if (hlen > MLEN) {
1218 MCLGET(m, M_DONTWAIT);
1219 if ((m->m_flags & M_EXT) == 0) {
1220 m_free(m);
1221 return (ENOBUFS);
1222 }
1223 }
1224 m->m_len = hlen;
1225 if (hdr)
1226 bcopy(hdr, mtod(m, void *), hlen);
1227
1228 *mp = m;
1229 return (0);
1230 }
1231
1232 /*
1233 * Process a delayed payload checksum calculation.
1234 */
1235 void
1236 in6_delayed_cksum(struct mbuf *m)
1237 {
1238 uint16_t csum, offset;
1239
1240 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1241 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1242 KASSERT((m->m_pkthdr.csum_flags
1243 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1244
1245 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1246 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1247 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1248 csum = 0xffff;
1249 }
1250
1251 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1252 if ((offset + sizeof(csum)) > m->m_len) {
1253 m_copyback(m, offset, sizeof(csum), &csum);
1254 } else {
1255 *(uint16_t *)(mtod(m, char *) + offset) = csum;
1256 }
1257 }
1258
1259 /*
1260 * Insert jumbo payload option.
1261 */
1262 static int
1263 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1264 {
1265 struct mbuf *mopt;
1266 u_int8_t *optbuf;
1267 u_int32_t v;
1268
1269 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1270
1271 /*
1272 * If there is no hop-by-hop options header, allocate new one.
1273 * If there is one but it doesn't have enough space to store the
1274 * jumbo payload option, allocate a cluster to store the whole options.
1275 * Otherwise, use it to store the options.
1276 */
1277 if (exthdrs->ip6e_hbh == 0) {
1278 MGET(mopt, M_DONTWAIT, MT_DATA);
1279 if (mopt == 0)
1280 return (ENOBUFS);
1281 mopt->m_len = JUMBOOPTLEN;
1282 optbuf = mtod(mopt, u_int8_t *);
1283 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1284 exthdrs->ip6e_hbh = mopt;
1285 } else {
1286 struct ip6_hbh *hbh;
1287
1288 mopt = exthdrs->ip6e_hbh;
1289 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1290 /*
1291 * XXX assumption:
1292 * - exthdrs->ip6e_hbh is not referenced from places
1293 * other than exthdrs.
1294 * - exthdrs->ip6e_hbh is not an mbuf chain.
1295 */
1296 int oldoptlen = mopt->m_len;
1297 struct mbuf *n;
1298
1299 /*
1300 * XXX: give up if the whole (new) hbh header does
1301 * not fit even in an mbuf cluster.
1302 */
1303 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1304 return (ENOBUFS);
1305
1306 /*
1307 * As a consequence, we must always prepare a cluster
1308 * at this point.
1309 */
1310 MGET(n, M_DONTWAIT, MT_DATA);
1311 if (n) {
1312 MCLGET(n, M_DONTWAIT);
1313 if ((n->m_flags & M_EXT) == 0) {
1314 m_freem(n);
1315 n = NULL;
1316 }
1317 }
1318 if (!n)
1319 return (ENOBUFS);
1320 n->m_len = oldoptlen + JUMBOOPTLEN;
1321 bcopy(mtod(mopt, void *), mtod(n, void *),
1322 oldoptlen);
1323 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1324 m_freem(mopt);
1325 mopt = exthdrs->ip6e_hbh = n;
1326 } else {
1327 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1328 mopt->m_len += JUMBOOPTLEN;
1329 }
1330 optbuf[0] = IP6OPT_PADN;
1331 optbuf[1] = 0;
1332
1333 /*
1334 * Adjust the header length according to the pad and
1335 * the jumbo payload option.
1336 */
1337 hbh = mtod(mopt, struct ip6_hbh *);
1338 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1339 }
1340
1341 /* fill in the option. */
1342 optbuf[2] = IP6OPT_JUMBO;
1343 optbuf[3] = 4;
1344 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1345 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1346
1347 /* finally, adjust the packet header length */
1348 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1349
1350 return (0);
1351 #undef JUMBOOPTLEN
1352 }
1353
1354 /*
1355 * Insert fragment header and copy unfragmentable header portions.
1356 */
1357 static int
1358 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1359 struct ip6_frag **frghdrp)
1360 {
1361 struct mbuf *n, *mlast;
1362
1363 if (hlen > sizeof(struct ip6_hdr)) {
1364 n = m_copym(m0, sizeof(struct ip6_hdr),
1365 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1366 if (n == 0)
1367 return (ENOBUFS);
1368 m->m_next = n;
1369 } else
1370 n = m;
1371
1372 /* Search for the last mbuf of unfragmentable part. */
1373 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1374 ;
1375
1376 if ((mlast->m_flags & M_EXT) == 0 &&
1377 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1378 /* use the trailing space of the last mbuf for the fragment hdr */
1379 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1380 mlast->m_len);
1381 mlast->m_len += sizeof(struct ip6_frag);
1382 m->m_pkthdr.len += sizeof(struct ip6_frag);
1383 } else {
1384 /* allocate a new mbuf for the fragment header */
1385 struct mbuf *mfrg;
1386
1387 MGET(mfrg, M_DONTWAIT, MT_DATA);
1388 if (mfrg == 0)
1389 return (ENOBUFS);
1390 mfrg->m_len = sizeof(struct ip6_frag);
1391 *frghdrp = mtod(mfrg, struct ip6_frag *);
1392 mlast->m_next = mfrg;
1393 }
1394
1395 return (0);
1396 }
1397
1398 static int
1399 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp,
1400 const struct in6_addr *dst, u_long *mtup, int *alwaysfragp)
1401 {
1402 struct rtentry *rt;
1403 u_int32_t mtu = 0;
1404 int alwaysfrag = 0;
1405 int error = 0;
1406
1407 if (ro_pmtu != ro) {
1408 union {
1409 struct sockaddr dst;
1410 struct sockaddr_in6 dst6;
1411 } u;
1412
1413 /* The first hop and the final destination may differ. */
1414 sockaddr_in6_init(&u.dst6, dst, 0, 0, 0);
1415 rtcache_lookup(ro_pmtu, &u.dst);
1416 }
1417 if ((rt = rtcache_getrt(ro_pmtu)) != NULL) {
1418 u_int32_t ifmtu;
1419
1420 if (ifp == NULL)
1421 ifp = rt->rt_ifp;
1422 ifmtu = IN6_LINKMTU(ifp);
1423 mtu = rt->rt_rmx.rmx_mtu;
1424 if (mtu == 0)
1425 mtu = ifmtu;
1426 else if (mtu < IPV6_MMTU) {
1427 /*
1428 * RFC2460 section 5, last paragraph:
1429 * if we record ICMPv6 too big message with
1430 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1431 * or smaller, with fragment header attached.
1432 * (fragment header is needed regardless from the
1433 * packet size, for translators to identify packets)
1434 */
1435 alwaysfrag = 1;
1436 mtu = IPV6_MMTU;
1437 } else if (mtu > ifmtu) {
1438 /*
1439 * The MTU on the route is larger than the MTU on
1440 * the interface! This shouldn't happen, unless the
1441 * MTU of the interface has been changed after the
1442 * interface was brought up. Change the MTU in the
1443 * route to match the interface MTU (as long as the
1444 * field isn't locked).
1445 */
1446 mtu = ifmtu;
1447 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1448 rt->rt_rmx.rmx_mtu = mtu;
1449 }
1450 } else if (ifp) {
1451 mtu = IN6_LINKMTU(ifp);
1452 } else
1453 error = EHOSTUNREACH; /* XXX */
1454
1455 *mtup = mtu;
1456 if (alwaysfragp)
1457 *alwaysfragp = alwaysfrag;
1458 return (error);
1459 }
1460
1461 /*
1462 * IP6 socket option processing.
1463 */
1464 int
1465 ip6_ctloutput(int op, struct socket *so, int level, int optname,
1466 struct mbuf **mp)
1467 {
1468 int privileged, optdatalen, uproto;
1469 void *optdata;
1470 struct in6pcb *in6p = sotoin6pcb(so);
1471 struct mbuf *m = *mp;
1472 int error, optval;
1473 int optlen;
1474 struct lwp *l = curlwp; /* XXX */
1475
1476 optlen = m ? m->m_len : 0;
1477 error = optval = 0;
1478 privileged = (l == 0 || kauth_authorize_generic(l->l_cred,
1479 KAUTH_GENERIC_ISSUSER, NULL)) ? 0 : 1;
1480 uproto = (int)so->so_proto->pr_protocol;
1481
1482 if (level != IPPROTO_IPV6) {
1483 if (op == PRCO_SETOPT && *mp)
1484 (void)m_free(*mp);
1485 return ENOPROTOOPT;
1486 }
1487 switch (op) {
1488 case PRCO_SETOPT:
1489 switch (optname) {
1490 #ifdef RFC2292
1491 case IPV6_2292PKTOPTIONS:
1492 /* m is freed in ip6_pcbopts */
1493 error = ip6_pcbopts(&in6p->in6p_outputopts,
1494 m, so);
1495 break;
1496 #endif
1497
1498 /*
1499 * Use of some Hop-by-Hop options or some
1500 * Destination options, might require special
1501 * privilege. That is, normal applications
1502 * (without special privilege) might be forbidden
1503 * from setting certain options in outgoing packets,
1504 * and might never see certain options in received
1505 * packets. [RFC 2292 Section 6]
1506 * KAME specific note:
1507 * KAME prevents non-privileged users from sending or
1508 * receiving ANY hbh/dst options in order to avoid
1509 * overhead of parsing options in the kernel.
1510 */
1511 case IPV6_RECVHOPOPTS:
1512 case IPV6_RECVDSTOPTS:
1513 case IPV6_RECVRTHDRDSTOPTS:
1514 if (!privileged) {
1515 error = EPERM;
1516 break;
1517 }
1518 /* FALLTHROUGH */
1519 case IPV6_UNICAST_HOPS:
1520 case IPV6_HOPLIMIT:
1521 case IPV6_FAITH:
1522
1523 case IPV6_RECVPKTINFO:
1524 case IPV6_RECVHOPLIMIT:
1525 case IPV6_RECVRTHDR:
1526 case IPV6_RECVPATHMTU:
1527 case IPV6_RECVTCLASS:
1528 case IPV6_V6ONLY:
1529 if (optlen != sizeof(int)) {
1530 error = EINVAL;
1531 break;
1532 }
1533 optval = *mtod(m, int *);
1534 switch (optname) {
1535
1536 case IPV6_UNICAST_HOPS:
1537 if (optval < -1 || optval >= 256)
1538 error = EINVAL;
1539 else {
1540 /* -1 = kernel default */
1541 in6p->in6p_hops = optval;
1542 }
1543 break;
1544 #define OPTSET(bit) \
1545 do { \
1546 if (optval) \
1547 in6p->in6p_flags |= (bit); \
1548 else \
1549 in6p->in6p_flags &= ~(bit); \
1550 } while (/*CONSTCOND*/ 0)
1551
1552 #ifdef RFC2292
1553 #define OPTSET2292(bit) \
1554 do { \
1555 in6p->in6p_flags |= IN6P_RFC2292; \
1556 if (optval) \
1557 in6p->in6p_flags |= (bit); \
1558 else \
1559 in6p->in6p_flags &= ~(bit); \
1560 } while (/*CONSTCOND*/ 0)
1561 #endif
1562
1563 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1564
1565 case IPV6_RECVPKTINFO:
1566 #ifdef RFC2292
1567 /* cannot mix with RFC2292 */
1568 if (OPTBIT(IN6P_RFC2292)) {
1569 error = EINVAL;
1570 break;
1571 }
1572 #endif
1573 OPTSET(IN6P_PKTINFO);
1574 break;
1575
1576 case IPV6_HOPLIMIT:
1577 {
1578 struct ip6_pktopts **optp;
1579
1580 #ifdef RFC2292
1581 /* cannot mix with RFC2292 */
1582 if (OPTBIT(IN6P_RFC2292)) {
1583 error = EINVAL;
1584 break;
1585 }
1586 #endif
1587 optp = &in6p->in6p_outputopts;
1588 error = ip6_pcbopt(IPV6_HOPLIMIT,
1589 (u_char *)&optval,
1590 sizeof(optval),
1591 optp,
1592 privileged, uproto);
1593 break;
1594 }
1595
1596 case IPV6_RECVHOPLIMIT:
1597 #ifdef RFC2292
1598 /* cannot mix with RFC2292 */
1599 if (OPTBIT(IN6P_RFC2292)) {
1600 error = EINVAL;
1601 break;
1602 }
1603 #endif
1604 OPTSET(IN6P_HOPLIMIT);
1605 break;
1606
1607 case IPV6_RECVHOPOPTS:
1608 #ifdef RFC2292
1609 /* cannot mix with RFC2292 */
1610 if (OPTBIT(IN6P_RFC2292)) {
1611 error = EINVAL;
1612 break;
1613 }
1614 #endif
1615 OPTSET(IN6P_HOPOPTS);
1616 break;
1617
1618 case IPV6_RECVDSTOPTS:
1619 #ifdef RFC2292
1620 /* cannot mix with RFC2292 */
1621 if (OPTBIT(IN6P_RFC2292)) {
1622 error = EINVAL;
1623 break;
1624 }
1625 #endif
1626 OPTSET(IN6P_DSTOPTS);
1627 break;
1628
1629 case IPV6_RECVRTHDRDSTOPTS:
1630 #ifdef RFC2292
1631 /* cannot mix with RFC2292 */
1632 if (OPTBIT(IN6P_RFC2292)) {
1633 error = EINVAL;
1634 break;
1635 }
1636 #endif
1637 OPTSET(IN6P_RTHDRDSTOPTS);
1638 break;
1639
1640 case IPV6_RECVRTHDR:
1641 #ifdef RFC2292
1642 /* cannot mix with RFC2292 */
1643 if (OPTBIT(IN6P_RFC2292)) {
1644 error = EINVAL;
1645 break;
1646 }
1647 #endif
1648 OPTSET(IN6P_RTHDR);
1649 break;
1650
1651 case IPV6_FAITH:
1652 OPTSET(IN6P_FAITH);
1653 break;
1654
1655 case IPV6_RECVPATHMTU:
1656 /*
1657 * We ignore this option for TCP
1658 * sockets.
1659 * (RFC3542 leaves this case
1660 * unspecified.)
1661 */
1662 if (uproto != IPPROTO_TCP)
1663 OPTSET(IN6P_MTU);
1664 break;
1665
1666 case IPV6_V6ONLY:
1667 /*
1668 * make setsockopt(IPV6_V6ONLY)
1669 * available only prior to bind(2).
1670 * see ipng mailing list, Jun 22 2001.
1671 */
1672 if (in6p->in6p_lport ||
1673 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1674 error = EINVAL;
1675 break;
1676 }
1677 #ifdef INET6_BINDV6ONLY
1678 if (!optval)
1679 error = EINVAL;
1680 #else
1681 OPTSET(IN6P_IPV6_V6ONLY);
1682 #endif
1683 break;
1684 case IPV6_RECVTCLASS:
1685 #ifdef RFC2292
1686 /* cannot mix with RFC2292 XXX */
1687 if (OPTBIT(IN6P_RFC2292)) {
1688 error = EINVAL;
1689 break;
1690 }
1691 #endif
1692 OPTSET(IN6P_TCLASS);
1693 break;
1694
1695 }
1696 break;
1697
1698 case IPV6_OTCLASS:
1699 {
1700 struct ip6_pktopts **optp;
1701 u_int8_t tclass;
1702
1703 if (optlen != sizeof(tclass)) {
1704 error = EINVAL;
1705 break;
1706 }
1707 tclass = *mtod(m, u_int8_t *);
1708 optp = &in6p->in6p_outputopts;
1709 error = ip6_pcbopt(optname,
1710 (u_char *)&tclass,
1711 sizeof(tclass),
1712 optp,
1713 privileged, uproto);
1714 break;
1715 }
1716
1717 case IPV6_TCLASS:
1718 case IPV6_DONTFRAG:
1719 case IPV6_USE_MIN_MTU:
1720 if (optlen != sizeof(optval)) {
1721 error = EINVAL;
1722 break;
1723 }
1724 optval = *mtod(m, int *);
1725 {
1726 struct ip6_pktopts **optp;
1727 optp = &in6p->in6p_outputopts;
1728 error = ip6_pcbopt(optname,
1729 (u_char *)&optval,
1730 sizeof(optval),
1731 optp,
1732 privileged, uproto);
1733 break;
1734 }
1735
1736 #ifdef RFC2292
1737 case IPV6_2292PKTINFO:
1738 case IPV6_2292HOPLIMIT:
1739 case IPV6_2292HOPOPTS:
1740 case IPV6_2292DSTOPTS:
1741 case IPV6_2292RTHDR:
1742 /* RFC 2292 */
1743 if (optlen != sizeof(int)) {
1744 error = EINVAL;
1745 break;
1746 }
1747 optval = *mtod(m, int *);
1748 switch (optname) {
1749 case IPV6_2292PKTINFO:
1750 OPTSET2292(IN6P_PKTINFO);
1751 break;
1752 case IPV6_2292HOPLIMIT:
1753 OPTSET2292(IN6P_HOPLIMIT);
1754 break;
1755 case IPV6_2292HOPOPTS:
1756 /*
1757 * Check super-user privilege.
1758 * See comments for IPV6_RECVHOPOPTS.
1759 */
1760 if (!privileged)
1761 return (EPERM);
1762 OPTSET2292(IN6P_HOPOPTS);
1763 break;
1764 case IPV6_2292DSTOPTS:
1765 if (!privileged)
1766 return (EPERM);
1767 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1768 break;
1769 case IPV6_2292RTHDR:
1770 OPTSET2292(IN6P_RTHDR);
1771 break;
1772 }
1773 break;
1774 #endif
1775 case IPV6_PKTINFO:
1776 case IPV6_HOPOPTS:
1777 case IPV6_RTHDR:
1778 case IPV6_DSTOPTS:
1779 case IPV6_RTHDRDSTOPTS:
1780 case IPV6_NEXTHOP:
1781 {
1782 /* new advanced API (RFC3542) */
1783 u_char *optbuf;
1784 int optbuflen;
1785 struct ip6_pktopts **optp;
1786 if (!m) {
1787 error = EINVAL;
1788 break;
1789 }
1790
1791 #ifdef RFC2292
1792 /* cannot mix with RFC2292 */
1793 if (OPTBIT(IN6P_RFC2292)) {
1794 error = EINVAL;
1795 break;
1796 }
1797 #endif
1798
1799 if (m && m->m_next) {
1800 error = EINVAL; /* XXX */
1801 break;
1802 }
1803
1804 optbuf = mtod(m, u_char *);
1805 optbuflen = m->m_len;
1806 optp = &in6p->in6p_outputopts;
1807 error = ip6_pcbopt(optname, optbuf, optbuflen,
1808 optp, privileged, uproto);
1809 break;
1810 }
1811 #undef OPTSET
1812
1813 case IPV6_MULTICAST_IF:
1814 case IPV6_MULTICAST_HOPS:
1815 case IPV6_MULTICAST_LOOP:
1816 case IPV6_JOIN_GROUP:
1817 case IPV6_LEAVE_GROUP:
1818 error = ip6_setmoptions(optname,
1819 &in6p->in6p_moptions, m);
1820 break;
1821
1822 case IPV6_PORTRANGE:
1823 if (!m) {
1824 error = EINVAL;
1825 break;
1826 }
1827 optval = *mtod(m, int *);
1828
1829 switch (optval) {
1830 case IPV6_PORTRANGE_DEFAULT:
1831 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1832 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1833 break;
1834
1835 case IPV6_PORTRANGE_HIGH:
1836 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1837 in6p->in6p_flags |= IN6P_HIGHPORT;
1838 break;
1839
1840 case IPV6_PORTRANGE_LOW:
1841 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1842 in6p->in6p_flags |= IN6P_LOWPORT;
1843 break;
1844
1845 default:
1846 error = EINVAL;
1847 break;
1848 }
1849 break;
1850
1851
1852 #if defined(IPSEC) || defined(FAST_IPSEC)
1853 case IPV6_IPSEC_POLICY:
1854 {
1855 void *req = NULL;
1856 size_t len = 0;
1857 if (m) {
1858 req = mtod(m, void *);
1859 len = m->m_len;
1860 }
1861 error = ipsec6_set_policy(in6p, optname, req,
1862 len, privileged);
1863 }
1864 break;
1865 #endif /* IPSEC */
1866
1867 default:
1868 error = ENOPROTOOPT;
1869 break;
1870 }
1871 if (m)
1872 (void)m_free(m);
1873 break;
1874
1875 case PRCO_GETOPT:
1876 switch (optname) {
1877 #ifdef RFC2292
1878 case IPV6_2292PKTOPTIONS:
1879 /*
1880 * RFC3542 (effectively) deprecated the
1881 * semantics of the 2292-style pktoptions.
1882 * Since it was not reliable in nature (i.e.,
1883 * applications had to expect the lack of some
1884 * information after all), it would make sense
1885 * to simplify this part by always returning
1886 * empty data.
1887 */
1888 *mp = m_get(M_WAIT, MT_SOOPTS);
1889 (*mp)->m_len = 0;
1890 break;
1891 #endif
1892
1893 case IPV6_RECVHOPOPTS:
1894 case IPV6_RECVDSTOPTS:
1895 case IPV6_RECVRTHDRDSTOPTS:
1896 case IPV6_UNICAST_HOPS:
1897 case IPV6_RECVPKTINFO:
1898 case IPV6_RECVHOPLIMIT:
1899 case IPV6_RECVRTHDR:
1900 case IPV6_RECVPATHMTU:
1901
1902 case IPV6_FAITH:
1903 case IPV6_V6ONLY:
1904 case IPV6_PORTRANGE:
1905 case IPV6_RECVTCLASS:
1906 switch (optname) {
1907
1908 case IPV6_RECVHOPOPTS:
1909 optval = OPTBIT(IN6P_HOPOPTS);
1910 break;
1911
1912 case IPV6_RECVDSTOPTS:
1913 optval = OPTBIT(IN6P_DSTOPTS);
1914 break;
1915
1916 case IPV6_RECVRTHDRDSTOPTS:
1917 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1918 break;
1919
1920 case IPV6_UNICAST_HOPS:
1921 optval = in6p->in6p_hops;
1922 break;
1923
1924 case IPV6_RECVPKTINFO:
1925 optval = OPTBIT(IN6P_PKTINFO);
1926 break;
1927
1928 case IPV6_RECVHOPLIMIT:
1929 optval = OPTBIT(IN6P_HOPLIMIT);
1930 break;
1931
1932 case IPV6_RECVRTHDR:
1933 optval = OPTBIT(IN6P_RTHDR);
1934 break;
1935
1936 case IPV6_RECVPATHMTU:
1937 optval = OPTBIT(IN6P_MTU);
1938 break;
1939
1940 case IPV6_FAITH:
1941 optval = OPTBIT(IN6P_FAITH);
1942 break;
1943
1944 case IPV6_V6ONLY:
1945 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1946 break;
1947
1948 case IPV6_PORTRANGE:
1949 {
1950 int flags;
1951 flags = in6p->in6p_flags;
1952 if (flags & IN6P_HIGHPORT)
1953 optval = IPV6_PORTRANGE_HIGH;
1954 else if (flags & IN6P_LOWPORT)
1955 optval = IPV6_PORTRANGE_LOW;
1956 else
1957 optval = 0;
1958 break;
1959 }
1960 case IPV6_RECVTCLASS:
1961 optval = OPTBIT(IN6P_TCLASS);
1962 break;
1963
1964 }
1965 if (error)
1966 break;
1967 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1968 m->m_len = sizeof(int);
1969 *mtod(m, int *) = optval;
1970 break;
1971
1972 case IPV6_PATHMTU:
1973 {
1974 u_long pmtu = 0;
1975 struct ip6_mtuinfo mtuinfo;
1976 struct route *ro = &in6p->in6p_route;
1977
1978 if (!(so->so_state & SS_ISCONNECTED))
1979 return (ENOTCONN);
1980 /*
1981 * XXX: we dot not consider the case of source
1982 * routing, or optional information to specify
1983 * the outgoing interface.
1984 */
1985 error = ip6_getpmtu(ro, NULL, NULL,
1986 &in6p->in6p_faddr, &pmtu, NULL);
1987 if (error)
1988 break;
1989 if (pmtu > IPV6_MAXPACKET)
1990 pmtu = IPV6_MAXPACKET;
1991
1992 memset(&mtuinfo, 0, sizeof(mtuinfo));
1993 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1994 optdata = (void *)&mtuinfo;
1995 optdatalen = sizeof(mtuinfo);
1996 if (optdatalen > MCLBYTES)
1997 return (EMSGSIZE); /* XXX */
1998 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1999 if (optdatalen > MLEN)
2000 MCLGET(m, M_WAIT);
2001 m->m_len = optdatalen;
2002 memcpy(mtod(m, void *), optdata, optdatalen);
2003 break;
2004 }
2005
2006 #ifdef RFC2292
2007 case IPV6_2292PKTINFO:
2008 case IPV6_2292HOPLIMIT:
2009 case IPV6_2292HOPOPTS:
2010 case IPV6_2292RTHDR:
2011 case IPV6_2292DSTOPTS:
2012 switch (optname) {
2013 case IPV6_2292PKTINFO:
2014 optval = OPTBIT(IN6P_PKTINFO);
2015 break;
2016 case IPV6_2292HOPLIMIT:
2017 optval = OPTBIT(IN6P_HOPLIMIT);
2018 break;
2019 case IPV6_2292HOPOPTS:
2020 optval = OPTBIT(IN6P_HOPOPTS);
2021 break;
2022 case IPV6_2292RTHDR:
2023 optval = OPTBIT(IN6P_RTHDR);
2024 break;
2025 case IPV6_2292DSTOPTS:
2026 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
2027 break;
2028 }
2029 *mp = m = m_get(M_WAIT, MT_SOOPTS);
2030 m->m_len = sizeof(int);
2031 *mtod(m, int *) = optval;
2032 break;
2033 #endif
2034 case IPV6_PKTINFO:
2035 case IPV6_HOPOPTS:
2036 case IPV6_RTHDR:
2037 case IPV6_DSTOPTS:
2038 case IPV6_RTHDRDSTOPTS:
2039 case IPV6_NEXTHOP:
2040 case IPV6_OTCLASS:
2041 case IPV6_TCLASS:
2042 case IPV6_DONTFRAG:
2043 case IPV6_USE_MIN_MTU:
2044 error = ip6_getpcbopt(in6p->in6p_outputopts,
2045 optname, mp);
2046 break;
2047
2048 case IPV6_MULTICAST_IF:
2049 case IPV6_MULTICAST_HOPS:
2050 case IPV6_MULTICAST_LOOP:
2051 case IPV6_JOIN_GROUP:
2052 case IPV6_LEAVE_GROUP:
2053 error = ip6_getmoptions(optname,
2054 in6p->in6p_moptions, mp);
2055 break;
2056
2057 #if defined(IPSEC) || defined(FAST_IPSEC)
2058 case IPV6_IPSEC_POLICY:
2059 {
2060 void *req = NULL;
2061 size_t len = 0;
2062 if (m) {
2063 req = mtod(m, void *);
2064 len = m->m_len;
2065 }
2066 error = ipsec6_get_policy(in6p, req, len, mp);
2067 break;
2068 }
2069 #endif /* IPSEC */
2070
2071
2072
2073
2074 default:
2075 error = ENOPROTOOPT;
2076 break;
2077 }
2078 break;
2079 }
2080 return (error);
2081 }
2082
2083 int
2084 ip6_raw_ctloutput(int op, struct socket *so, int level, int optname,
2085 struct mbuf **mp)
2086 {
2087 int error = 0, optval, optlen;
2088 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2089 struct in6pcb *in6p = sotoin6pcb(so);
2090 struct mbuf *m = *mp;
2091
2092 optlen = m ? m->m_len : 0;
2093
2094 if (level != IPPROTO_IPV6) {
2095 if (op == PRCO_SETOPT && *mp)
2096 (void)m_free(*mp);
2097 return ENOPROTOOPT;
2098 }
2099
2100 switch (optname) {
2101 case IPV6_CHECKSUM:
2102 /*
2103 * For ICMPv6 sockets, no modification allowed for checksum
2104 * offset, permit "no change" values to help existing apps.
2105 *
2106 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
2107 * for an ICMPv6 socket will fail." The current
2108 * behavior does not meet RFC3542.
2109 */
2110 switch (op) {
2111 case PRCO_SETOPT:
2112 if (optlen != sizeof(int)) {
2113 error = EINVAL;
2114 break;
2115 }
2116 optval = *mtod(m, int *);
2117 if ((optval % 2) != 0) {
2118 /* the API assumes even offset values */
2119 error = EINVAL;
2120 } else if (so->so_proto->pr_protocol ==
2121 IPPROTO_ICMPV6) {
2122 if (optval != icmp6off)
2123 error = EINVAL;
2124 } else
2125 in6p->in6p_cksum = optval;
2126 break;
2127
2128 case PRCO_GETOPT:
2129 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2130 optval = icmp6off;
2131 else
2132 optval = in6p->in6p_cksum;
2133
2134 *mp = m = m_get(M_WAIT, MT_SOOPTS);
2135 m->m_len = sizeof(int);
2136 *mtod(m, int *) = optval;
2137 break;
2138
2139 default:
2140 error = EINVAL;
2141 break;
2142 }
2143 break;
2144
2145 default:
2146 error = ENOPROTOOPT;
2147 break;
2148 }
2149
2150 if (op == PRCO_SETOPT && m)
2151 (void)m_free(m);
2152
2153 return (error);
2154 }
2155
2156 #ifdef RFC2292
2157 /*
2158 * Set up IP6 options in pcb for insertion in output packets or
2159 * specifying behavior of outgoing packets.
2160 */
2161 static int
2162 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, struct socket *so)
2163 {
2164 struct ip6_pktopts *opt = *pktopt;
2165 int error = 0;
2166 struct lwp *l = curlwp; /* XXX */
2167 int priv = 0;
2168
2169 /* turn off any old options. */
2170 if (opt) {
2171 #ifdef DIAGNOSTIC
2172 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2173 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2174 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2175 printf("ip6_pcbopts: all specified options are cleared.\n");
2176 #endif
2177 ip6_clearpktopts(opt, -1);
2178 } else
2179 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2180 *pktopt = NULL;
2181
2182 if (!m || m->m_len == 0) {
2183 /*
2184 * Only turning off any previous options, regardless of
2185 * whether the opt is just created or given.
2186 */
2187 free(opt, M_IP6OPT);
2188 return (0);
2189 }
2190
2191 /* set options specified by user. */
2192 if (l && !kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
2193 NULL))
2194 priv = 1;
2195 if ((error = ip6_setpktopts(m, opt, NULL, priv,
2196 so->so_proto->pr_protocol)) != 0) {
2197 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2198 free(opt, M_IP6OPT);
2199 return (error);
2200 }
2201 *pktopt = opt;
2202 return (0);
2203 }
2204 #endif
2205
2206 /*
2207 * initialize ip6_pktopts. beware that there are non-zero default values in
2208 * the struct.
2209 */
2210 void
2211 ip6_initpktopts(struct ip6_pktopts *opt)
2212 {
2213
2214 memset(opt, 0, sizeof(*opt));
2215 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2216 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2217 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2218 }
2219
2220 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2221 static int
2222 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2223 int priv, int uproto)
2224 {
2225 struct ip6_pktopts *opt;
2226
2227 if (*pktopt == NULL) {
2228 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2229 M_WAITOK);
2230 ip6_initpktopts(*pktopt);
2231 }
2232 opt = *pktopt;
2233
2234 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, 0, uproto));
2235 }
2236
2237 static int
2238 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf **mp)
2239 {
2240 void *optdata = NULL;
2241 int optdatalen = 0;
2242 struct ip6_ext *ip6e;
2243 int error = 0;
2244 struct in6_pktinfo null_pktinfo;
2245 int deftclass = 0, on;
2246 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2247 struct mbuf *m;
2248
2249 switch (optname) {
2250 case IPV6_PKTINFO:
2251 if (pktopt && pktopt->ip6po_pktinfo)
2252 optdata = (void *)pktopt->ip6po_pktinfo;
2253 else {
2254 /* XXX: we don't have to do this every time... */
2255 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2256 optdata = (void *)&null_pktinfo;
2257 }
2258 optdatalen = sizeof(struct in6_pktinfo);
2259 break;
2260 case IPV6_OTCLASS:
2261 /* XXX */
2262 return (EINVAL);
2263 case IPV6_TCLASS:
2264 if (pktopt && pktopt->ip6po_tclass >= 0)
2265 optdata = (void *)&pktopt->ip6po_tclass;
2266 else
2267 optdata = (void *)&deftclass;
2268 optdatalen = sizeof(int);
2269 break;
2270 case IPV6_HOPOPTS:
2271 if (pktopt && pktopt->ip6po_hbh) {
2272 optdata = (void *)pktopt->ip6po_hbh;
2273 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2274 optdatalen = (ip6e->ip6e_len + 1) << 3;
2275 }
2276 break;
2277 case IPV6_RTHDR:
2278 if (pktopt && pktopt->ip6po_rthdr) {
2279 optdata = (void *)pktopt->ip6po_rthdr;
2280 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2281 optdatalen = (ip6e->ip6e_len + 1) << 3;
2282 }
2283 break;
2284 case IPV6_RTHDRDSTOPTS:
2285 if (pktopt && pktopt->ip6po_dest1) {
2286 optdata = (void *)pktopt->ip6po_dest1;
2287 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2288 optdatalen = (ip6e->ip6e_len + 1) << 3;
2289 }
2290 break;
2291 case IPV6_DSTOPTS:
2292 if (pktopt && pktopt->ip6po_dest2) {
2293 optdata = (void *)pktopt->ip6po_dest2;
2294 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2295 optdatalen = (ip6e->ip6e_len + 1) << 3;
2296 }
2297 break;
2298 case IPV6_NEXTHOP:
2299 if (pktopt && pktopt->ip6po_nexthop) {
2300 optdata = (void *)pktopt->ip6po_nexthop;
2301 optdatalen = pktopt->ip6po_nexthop->sa_len;
2302 }
2303 break;
2304 case IPV6_USE_MIN_MTU:
2305 if (pktopt)
2306 optdata = (void *)&pktopt->ip6po_minmtu;
2307 else
2308 optdata = (void *)&defminmtu;
2309 optdatalen = sizeof(int);
2310 break;
2311 case IPV6_DONTFRAG:
2312 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2313 on = 1;
2314 else
2315 on = 0;
2316 optdata = (void *)&on;
2317 optdatalen = sizeof(on);
2318 break;
2319 default: /* should not happen */
2320 #ifdef DIAGNOSTIC
2321 panic("ip6_getpcbopt: unexpected option\n");
2322 #endif
2323 return (ENOPROTOOPT);
2324 }
2325
2326 if (optdatalen > MCLBYTES)
2327 return (EMSGSIZE); /* XXX */
2328 *mp = m = m_get(M_WAIT, MT_SOOPTS);
2329 if (optdatalen > MLEN)
2330 MCLGET(m, M_WAIT);
2331 m->m_len = optdatalen;
2332 if (optdatalen)
2333 memcpy(mtod(m, void *), optdata, optdatalen);
2334
2335 return (error);
2336 }
2337
2338 void
2339 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2340 {
2341 if (optname == -1 || optname == IPV6_PKTINFO) {
2342 if (pktopt->ip6po_pktinfo)
2343 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2344 pktopt->ip6po_pktinfo = NULL;
2345 }
2346 if (optname == -1 || optname == IPV6_HOPLIMIT)
2347 pktopt->ip6po_hlim = -1;
2348 if (optname == -1 || optname == IPV6_TCLASS)
2349 pktopt->ip6po_tclass = -1;
2350 if (optname == -1 || optname == IPV6_NEXTHOP) {
2351 rtcache_free(&pktopt->ip6po_nextroute);
2352 if (pktopt->ip6po_nexthop)
2353 free(pktopt->ip6po_nexthop, M_IP6OPT);
2354 pktopt->ip6po_nexthop = NULL;
2355 }
2356 if (optname == -1 || optname == IPV6_HOPOPTS) {
2357 if (pktopt->ip6po_hbh)
2358 free(pktopt->ip6po_hbh, M_IP6OPT);
2359 pktopt->ip6po_hbh = NULL;
2360 }
2361 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2362 if (pktopt->ip6po_dest1)
2363 free(pktopt->ip6po_dest1, M_IP6OPT);
2364 pktopt->ip6po_dest1 = NULL;
2365 }
2366 if (optname == -1 || optname == IPV6_RTHDR) {
2367 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2368 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2369 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2370 rtcache_free(&pktopt->ip6po_route);
2371 }
2372 if (optname == -1 || optname == IPV6_DSTOPTS) {
2373 if (pktopt->ip6po_dest2)
2374 free(pktopt->ip6po_dest2, M_IP6OPT);
2375 pktopt->ip6po_dest2 = NULL;
2376 }
2377 }
2378
2379 #define PKTOPT_EXTHDRCPY(type) \
2380 do { \
2381 if (src->type) { \
2382 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2383 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2384 if (dst->type == NULL && canwait == M_NOWAIT) \
2385 goto bad; \
2386 memcpy(dst->type, src->type, hlen); \
2387 } \
2388 } while (/*CONSTCOND*/ 0)
2389
2390 static int
2391 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2392 {
2393 dst->ip6po_hlim = src->ip6po_hlim;
2394 dst->ip6po_tclass = src->ip6po_tclass;
2395 dst->ip6po_flags = src->ip6po_flags;
2396 if (src->ip6po_pktinfo) {
2397 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2398 M_IP6OPT, canwait);
2399 if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT)
2400 goto bad;
2401 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2402 }
2403 if (src->ip6po_nexthop) {
2404 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2405 M_IP6OPT, canwait);
2406 if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT)
2407 goto bad;
2408 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2409 src->ip6po_nexthop->sa_len);
2410 }
2411 PKTOPT_EXTHDRCPY(ip6po_hbh);
2412 PKTOPT_EXTHDRCPY(ip6po_dest1);
2413 PKTOPT_EXTHDRCPY(ip6po_dest2);
2414 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2415 return (0);
2416
2417 bad:
2418 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2419 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2420 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2421 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2422 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2423 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2424
2425 return (ENOBUFS);
2426 }
2427 #undef PKTOPT_EXTHDRCPY
2428
2429 struct ip6_pktopts *
2430 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2431 {
2432 int error;
2433 struct ip6_pktopts *dst;
2434
2435 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2436 if (dst == NULL && canwait == M_NOWAIT)
2437 return (NULL);
2438 ip6_initpktopts(dst);
2439
2440 if ((error = copypktopts(dst, src, canwait)) != 0) {
2441 free(dst, M_IP6OPT);
2442 return (NULL);
2443 }
2444
2445 return (dst);
2446 }
2447
2448 void
2449 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2450 {
2451 if (pktopt == NULL)
2452 return;
2453
2454 ip6_clearpktopts(pktopt, -1);
2455
2456 free(pktopt, M_IP6OPT);
2457 }
2458
2459 /*
2460 * Set the IP6 multicast options in response to user setsockopt().
2461 */
2462 static int
2463 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m)
2464 {
2465 int error = 0;
2466 u_int loop, ifindex;
2467 struct ipv6_mreq *mreq;
2468 struct ifnet *ifp;
2469 struct ip6_moptions *im6o = *im6op;
2470 struct route ro;
2471 struct in6_multi_mship *imm;
2472 struct lwp *l = curlwp; /* XXX */
2473
2474 if (im6o == NULL) {
2475 /*
2476 * No multicast option buffer attached to the pcb;
2477 * allocate one and initialize to default values.
2478 */
2479 im6o = (struct ip6_moptions *)
2480 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
2481
2482 if (im6o == NULL)
2483 return (ENOBUFS);
2484 *im6op = im6o;
2485 im6o->im6o_multicast_ifp = NULL;
2486 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2487 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2488 LIST_INIT(&im6o->im6o_memberships);
2489 }
2490
2491 switch (optname) {
2492
2493 case IPV6_MULTICAST_IF:
2494 /*
2495 * Select the interface for outgoing multicast packets.
2496 */
2497 if (m == NULL || m->m_len != sizeof(u_int)) {
2498 error = EINVAL;
2499 break;
2500 }
2501 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
2502 if (ifindex != 0) {
2503 if (if_indexlim <= ifindex || !ifindex2ifnet[ifindex]) {
2504 error = ENXIO; /* XXX EINVAL? */
2505 break;
2506 }
2507 ifp = ifindex2ifnet[ifindex];
2508 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2509 error = EADDRNOTAVAIL;
2510 break;
2511 }
2512 } else
2513 ifp = NULL;
2514 im6o->im6o_multicast_ifp = ifp;
2515 break;
2516
2517 case IPV6_MULTICAST_HOPS:
2518 {
2519 /*
2520 * Set the IP6 hoplimit for outgoing multicast packets.
2521 */
2522 int optval;
2523 if (m == NULL || m->m_len != sizeof(int)) {
2524 error = EINVAL;
2525 break;
2526 }
2527 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
2528 if (optval < -1 || optval >= 256)
2529 error = EINVAL;
2530 else if (optval == -1)
2531 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2532 else
2533 im6o->im6o_multicast_hlim = optval;
2534 break;
2535 }
2536
2537 case IPV6_MULTICAST_LOOP:
2538 /*
2539 * Set the loopback flag for outgoing multicast packets.
2540 * Must be zero or one.
2541 */
2542 if (m == NULL || m->m_len != sizeof(u_int)) {
2543 error = EINVAL;
2544 break;
2545 }
2546 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
2547 if (loop > 1) {
2548 error = EINVAL;
2549 break;
2550 }
2551 im6o->im6o_multicast_loop = loop;
2552 break;
2553
2554 case IPV6_JOIN_GROUP:
2555 /*
2556 * Add a multicast group membership.
2557 * Group must be a valid IP6 multicast address.
2558 */
2559 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2560 error = EINVAL;
2561 break;
2562 }
2563 mreq = mtod(m, struct ipv6_mreq *);
2564 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2565 /*
2566 * We use the unspecified address to specify to accept
2567 * all multicast addresses. Only super user is allowed
2568 * to do this.
2569 */
2570 if (kauth_authorize_generic(l->l_cred,
2571 KAUTH_GENERIC_ISSUSER, NULL))
2572 {
2573 error = EACCES;
2574 break;
2575 }
2576 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2577 error = EINVAL;
2578 break;
2579 }
2580
2581 /*
2582 * If no interface was explicitly specified, choose an
2583 * appropriate one according to the given multicast address.
2584 */
2585 if (mreq->ipv6mr_interface == 0) {
2586 struct rtentry *rt;
2587 union {
2588 struct sockaddr dst;
2589 struct sockaddr_in6 dst6;
2590 } u;
2591
2592 /*
2593 * Look up the routing table for the
2594 * address, and choose the outgoing interface.
2595 * XXX: is it a good approach?
2596 */
2597 memset(&ro, 0, sizeof(ro));
2598 sockaddr_in6_init(&u.dst6, &mreq->ipv6mr_multiaddr, 0,
2599 0, 0);
2600 rtcache_setdst(&ro, &u.dst);
2601 rtcache_init(&ro);
2602 ifp = (rt = rtcache_getrt(&ro)) != NULL ? rt->rt_ifp
2603 : NULL;
2604 rtcache_free(&ro);
2605 } else {
2606 /*
2607 * If the interface is specified, validate it.
2608 */
2609 if (if_indexlim <= mreq->ipv6mr_interface ||
2610 !ifindex2ifnet[mreq->ipv6mr_interface]) {
2611 error = ENXIO; /* XXX EINVAL? */
2612 break;
2613 }
2614 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2615 }
2616
2617 /*
2618 * See if we found an interface, and confirm that it
2619 * supports multicast
2620 */
2621 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2622 error = EADDRNOTAVAIL;
2623 break;
2624 }
2625
2626 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
2627 error = EADDRNOTAVAIL; /* XXX: should not happen */
2628 break;
2629 }
2630
2631 /*
2632 * See if the membership already exists.
2633 */
2634 for (imm = im6o->im6o_memberships.lh_first;
2635 imm != NULL; imm = imm->i6mm_chain.le_next)
2636 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2637 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2638 &mreq->ipv6mr_multiaddr))
2639 break;
2640 if (imm != NULL) {
2641 error = EADDRINUSE;
2642 break;
2643 }
2644 /*
2645 * Everything looks good; add a new record to the multicast
2646 * address list for the given interface.
2647 */
2648 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0);
2649 if (imm == NULL)
2650 break;
2651 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2652 break;
2653
2654 case IPV6_LEAVE_GROUP:
2655 /*
2656 * Drop a multicast group membership.
2657 * Group must be a valid IP6 multicast address.
2658 */
2659 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2660 error = EINVAL;
2661 break;
2662 }
2663 mreq = mtod(m, struct ipv6_mreq *);
2664
2665 /*
2666 * If an interface address was specified, get a pointer
2667 * to its ifnet structure.
2668 */
2669 if (mreq->ipv6mr_interface != 0) {
2670 if (if_indexlim <= mreq->ipv6mr_interface ||
2671 !ifindex2ifnet[mreq->ipv6mr_interface]) {
2672 error = ENXIO; /* XXX EINVAL? */
2673 break;
2674 }
2675 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2676 } else
2677 ifp = NULL;
2678
2679 /* Fill in the scope zone ID */
2680 if (ifp) {
2681 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
2682 /* XXX: should not happen */
2683 error = EADDRNOTAVAIL;
2684 break;
2685 }
2686 } else if (mreq->ipv6mr_interface != 0) {
2687 /*
2688 * XXX: This case would happens when the (positive)
2689 * index is in the valid range, but the corresponding
2690 * interface has been detached dynamically. The above
2691 * check probably avoids such case to happen here, but
2692 * we check it explicitly for safety.
2693 */
2694 error = EADDRNOTAVAIL;
2695 break;
2696 } else { /* ipv6mr_interface == 0 */
2697 struct sockaddr_in6 sa6_mc;
2698
2699 /*
2700 * The API spec says as follows:
2701 * If the interface index is specified as 0, the
2702 * system may choose a multicast group membership to
2703 * drop by matching the multicast address only.
2704 * On the other hand, we cannot disambiguate the scope
2705 * zone unless an interface is provided. Thus, we
2706 * check if there's ambiguity with the default scope
2707 * zone as the last resort.
2708 */
2709 sockaddr_in6_init(&sa6_mc, &mreq->ipv6mr_multiaddr,
2710 0, 0, 0);
2711 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2712 if (error != 0)
2713 break;
2714 mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr;
2715 }
2716
2717 /*
2718 * Find the membership in the membership list.
2719 */
2720 for (imm = im6o->im6o_memberships.lh_first;
2721 imm != NULL; imm = imm->i6mm_chain.le_next) {
2722 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2723 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2724 &mreq->ipv6mr_multiaddr))
2725 break;
2726 }
2727 if (imm == NULL) {
2728 /* Unable to resolve interface */
2729 error = EADDRNOTAVAIL;
2730 break;
2731 }
2732 /*
2733 * Give up the multicast address record to which the
2734 * membership points.
2735 */
2736 LIST_REMOVE(imm, i6mm_chain);
2737 in6_leavegroup(imm);
2738 break;
2739
2740 default:
2741 error = EOPNOTSUPP;
2742 break;
2743 }
2744
2745 /*
2746 * If all options have default values, no need to keep the mbuf.
2747 */
2748 if (im6o->im6o_multicast_ifp == NULL &&
2749 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2750 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2751 im6o->im6o_memberships.lh_first == NULL) {
2752 free(*im6op, M_IPMOPTS);
2753 *im6op = NULL;
2754 }
2755
2756 return (error);
2757 }
2758
2759 /*
2760 * Return the IP6 multicast options in response to user getsockopt().
2761 */
2762 static int
2763 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp)
2764 {
2765 u_int *hlim, *loop, *ifindex;
2766
2767 *mp = m_get(M_WAIT, MT_SOOPTS);
2768
2769 switch (optname) {
2770
2771 case IPV6_MULTICAST_IF:
2772 ifindex = mtod(*mp, u_int *);
2773 (*mp)->m_len = sizeof(u_int);
2774 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2775 *ifindex = 0;
2776 else
2777 *ifindex = im6o->im6o_multicast_ifp->if_index;
2778 return (0);
2779
2780 case IPV6_MULTICAST_HOPS:
2781 hlim = mtod(*mp, u_int *);
2782 (*mp)->m_len = sizeof(u_int);
2783 if (im6o == NULL)
2784 *hlim = ip6_defmcasthlim;
2785 else
2786 *hlim = im6o->im6o_multicast_hlim;
2787 return (0);
2788
2789 case IPV6_MULTICAST_LOOP:
2790 loop = mtod(*mp, u_int *);
2791 (*mp)->m_len = sizeof(u_int);
2792 if (im6o == NULL)
2793 *loop = ip6_defmcasthlim;
2794 else
2795 *loop = im6o->im6o_multicast_loop;
2796 return (0);
2797
2798 default:
2799 return (EOPNOTSUPP);
2800 }
2801 }
2802
2803 /*
2804 * Discard the IP6 multicast options.
2805 */
2806 void
2807 ip6_freemoptions(struct ip6_moptions *im6o)
2808 {
2809 struct in6_multi_mship *imm;
2810
2811 if (im6o == NULL)
2812 return;
2813
2814 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2815 LIST_REMOVE(imm, i6mm_chain);
2816 in6_leavegroup(imm);
2817 }
2818 free(im6o, M_IPMOPTS);
2819 }
2820
2821 /*
2822 * Set IPv6 outgoing packet options based on advanced API.
2823 */
2824 int
2825 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2826 struct ip6_pktopts *stickyopt, int priv, int uproto)
2827 {
2828 struct cmsghdr *cm = 0;
2829
2830 if (control == NULL || opt == NULL)
2831 return (EINVAL);
2832
2833 ip6_initpktopts(opt);
2834 if (stickyopt) {
2835 int error;
2836
2837 /*
2838 * If stickyopt is provided, make a local copy of the options
2839 * for this particular packet, then override them by ancillary
2840 * objects.
2841 * XXX: copypktopts() does not copy the cached route to a next
2842 * hop (if any). This is not very good in terms of efficiency,
2843 * but we can allow this since this option should be rarely
2844 * used.
2845 */
2846 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2847 return (error);
2848 }
2849
2850 /*
2851 * XXX: Currently, we assume all the optional information is stored
2852 * in a single mbuf.
2853 */
2854 if (control->m_next)
2855 return (EINVAL);
2856
2857 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2858 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2859 int error;
2860
2861 if (control->m_len < CMSG_LEN(0))
2862 return (EINVAL);
2863
2864 cm = mtod(control, struct cmsghdr *);
2865 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2866 return (EINVAL);
2867 if (cm->cmsg_level != IPPROTO_IPV6)
2868 continue;
2869
2870 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2871 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, 1, uproto);
2872 if (error)
2873 return (error);
2874 }
2875
2876 return (0);
2877 }
2878
2879 /*
2880 * Set a particular packet option, as a sticky option or an ancillary data
2881 * item. "len" can be 0 only when it's a sticky option.
2882 * We have 4 cases of combination of "sticky" and "cmsg":
2883 * "sticky=0, cmsg=0": impossible
2884 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2885 * "sticky=1, cmsg=0": RFC3542 socket option
2886 * "sticky=1, cmsg=1": RFC2292 socket option
2887 */
2888 static int
2889 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2890 int priv, int sticky, int cmsg, int uproto)
2891 {
2892 int minmtupolicy;
2893
2894 if (!sticky && !cmsg) {
2895 #ifdef DIAGNOSTIC
2896 printf("ip6_setpktopt: impossible case\n");
2897 #endif
2898 return (EINVAL);
2899 }
2900
2901 /*
2902 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2903 * not be specified in the context of RFC3542. Conversely,
2904 * RFC3542 types should not be specified in the context of RFC2292.
2905 */
2906 if (!cmsg) {
2907 switch (optname) {
2908 case IPV6_2292PKTINFO:
2909 case IPV6_2292HOPLIMIT:
2910 case IPV6_2292NEXTHOP:
2911 case IPV6_2292HOPOPTS:
2912 case IPV6_2292DSTOPTS:
2913 case IPV6_2292RTHDR:
2914 case IPV6_2292PKTOPTIONS:
2915 return (ENOPROTOOPT);
2916 }
2917 }
2918 if (sticky && cmsg) {
2919 switch (optname) {
2920 case IPV6_PKTINFO:
2921 case IPV6_HOPLIMIT:
2922 case IPV6_NEXTHOP:
2923 case IPV6_HOPOPTS:
2924 case IPV6_DSTOPTS:
2925 case IPV6_RTHDRDSTOPTS:
2926 case IPV6_RTHDR:
2927 case IPV6_USE_MIN_MTU:
2928 case IPV6_DONTFRAG:
2929 case IPV6_OTCLASS:
2930 case IPV6_TCLASS:
2931 return (ENOPROTOOPT);
2932 }
2933 }
2934
2935 switch (optname) {
2936 #ifdef RFC2292
2937 case IPV6_2292PKTINFO:
2938 #endif
2939 case IPV6_PKTINFO:
2940 {
2941 struct ifnet *ifp = NULL;
2942 struct in6_pktinfo *pktinfo;
2943
2944 if (len != sizeof(struct in6_pktinfo))
2945 return (EINVAL);
2946
2947 pktinfo = (struct in6_pktinfo *)buf;
2948
2949 /*
2950 * An application can clear any sticky IPV6_PKTINFO option by
2951 * doing a "regular" setsockopt with ipi6_addr being
2952 * in6addr_any and ipi6_ifindex being zero.
2953 * [RFC 3542, Section 6]
2954 */
2955 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2956 pktinfo->ipi6_ifindex == 0 &&
2957 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2958 ip6_clearpktopts(opt, optname);
2959 break;
2960 }
2961
2962 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2963 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2964 return (EINVAL);
2965 }
2966
2967 /* validate the interface index if specified. */
2968 if (pktinfo->ipi6_ifindex >= if_indexlim) {
2969 return (ENXIO);
2970 }
2971 if (pktinfo->ipi6_ifindex) {
2972 ifp = ifindex2ifnet[pktinfo->ipi6_ifindex];
2973 if (ifp == NULL)
2974 return (ENXIO);
2975 }
2976
2977 /*
2978 * We store the address anyway, and let in6_selectsrc()
2979 * validate the specified address. This is because ipi6_addr
2980 * may not have enough information about its scope zone, and
2981 * we may need additional information (such as outgoing
2982 * interface or the scope zone of a destination address) to
2983 * disambiguate the scope.
2984 * XXX: the delay of the validation may confuse the
2985 * application when it is used as a sticky option.
2986 */
2987 if (opt->ip6po_pktinfo == NULL) {
2988 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2989 M_IP6OPT, M_NOWAIT);
2990 if (opt->ip6po_pktinfo == NULL)
2991 return (ENOBUFS);
2992 }
2993 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2994 break;
2995 }
2996
2997 #ifdef RFC2292
2998 case IPV6_2292HOPLIMIT:
2999 #endif
3000 case IPV6_HOPLIMIT:
3001 {
3002 int *hlimp;
3003
3004 /*
3005 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
3006 * to simplify the ordering among hoplimit options.
3007 */
3008 if (optname == IPV6_HOPLIMIT && sticky)
3009 return (ENOPROTOOPT);
3010
3011 if (len != sizeof(int))
3012 return (EINVAL);
3013 hlimp = (int *)buf;
3014 if (*hlimp < -1 || *hlimp > 255)
3015 return (EINVAL);
3016
3017 opt->ip6po_hlim = *hlimp;
3018 break;
3019 }
3020
3021 case IPV6_OTCLASS:
3022 if (len != sizeof(u_int8_t))
3023 return (EINVAL);
3024
3025 opt->ip6po_tclass = *(u_int8_t *)buf;
3026 break;
3027
3028 case IPV6_TCLASS:
3029 {
3030 int tclass;
3031
3032 if (len != sizeof(int))
3033 return (EINVAL);
3034 tclass = *(int *)buf;
3035 if (tclass < -1 || tclass > 255)
3036 return (EINVAL);
3037
3038 opt->ip6po_tclass = tclass;
3039 break;
3040 }
3041
3042 #ifdef RFC2292
3043 case IPV6_2292NEXTHOP:
3044 #endif
3045 case IPV6_NEXTHOP:
3046 if (!priv)
3047 return (EPERM);
3048
3049 if (len == 0) { /* just remove the option */
3050 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3051 break;
3052 }
3053
3054 /* check if cmsg_len is large enough for sa_len */
3055 if (len < sizeof(struct sockaddr) || len < *buf)
3056 return (EINVAL);
3057
3058 switch (((struct sockaddr *)buf)->sa_family) {
3059 case AF_INET6:
3060 {
3061 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3062 int error;
3063
3064 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3065 return (EINVAL);
3066
3067 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3068 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3069 return (EINVAL);
3070 }
3071 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
3072 != 0) {
3073 return (error);
3074 }
3075 break;
3076 }
3077 case AF_LINK: /* eventually be supported? */
3078 default:
3079 return (EAFNOSUPPORT);
3080 }
3081
3082 /* turn off the previous option, then set the new option. */
3083 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3084 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3085 if (opt->ip6po_nexthop == NULL)
3086 return (ENOBUFS);
3087 memcpy(opt->ip6po_nexthop, buf, *buf);
3088 break;
3089
3090 #ifdef RFC2292
3091 case IPV6_2292HOPOPTS:
3092 #endif
3093 case IPV6_HOPOPTS:
3094 {
3095 struct ip6_hbh *hbh;
3096 int hbhlen;
3097
3098 /*
3099 * XXX: We don't allow a non-privileged user to set ANY HbH
3100 * options, since per-option restriction has too much
3101 * overhead.
3102 */
3103 if (!priv)
3104 return (EPERM);
3105
3106 if (len == 0) {
3107 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3108 break; /* just remove the option */
3109 }
3110
3111 /* message length validation */
3112 if (len < sizeof(struct ip6_hbh))
3113 return (EINVAL);
3114 hbh = (struct ip6_hbh *)buf;
3115 hbhlen = (hbh->ip6h_len + 1) << 3;
3116 if (len != hbhlen)
3117 return (EINVAL);
3118
3119 /* turn off the previous option, then set the new option. */
3120 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3121 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3122 if (opt->ip6po_hbh == NULL)
3123 return (ENOBUFS);
3124 memcpy(opt->ip6po_hbh, hbh, hbhlen);
3125
3126 break;
3127 }
3128
3129 #ifdef RFC2292
3130 case IPV6_2292DSTOPTS:
3131 #endif
3132 case IPV6_DSTOPTS:
3133 case IPV6_RTHDRDSTOPTS:
3134 {
3135 struct ip6_dest *dest, **newdest = NULL;
3136 int destlen;
3137
3138 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */
3139 return (EPERM);
3140
3141 if (len == 0) {
3142 ip6_clearpktopts(opt, optname);
3143 break; /* just remove the option */
3144 }
3145
3146 /* message length validation */
3147 if (len < sizeof(struct ip6_dest))
3148 return (EINVAL);
3149 dest = (struct ip6_dest *)buf;
3150 destlen = (dest->ip6d_len + 1) << 3;
3151 if (len != destlen)
3152 return (EINVAL);
3153 /*
3154 * Determine the position that the destination options header
3155 * should be inserted; before or after the routing header.
3156 */
3157 switch (optname) {
3158 case IPV6_2292DSTOPTS:
3159 /*
3160 * The old advanced API is ambiguous on this point.
3161 * Our approach is to determine the position based
3162 * according to the existence of a routing header.
3163 * Note, however, that this depends on the order of the
3164 * extension headers in the ancillary data; the 1st
3165 * part of the destination options header must appear
3166 * before the routing header in the ancillary data,
3167 * too.
3168 * RFC3542 solved the ambiguity by introducing
3169 * separate ancillary data or option types.
3170 */
3171 if (opt->ip6po_rthdr == NULL)
3172 newdest = &opt->ip6po_dest1;
3173 else
3174 newdest = &opt->ip6po_dest2;
3175 break;
3176 case IPV6_RTHDRDSTOPTS:
3177 newdest = &opt->ip6po_dest1;
3178 break;
3179 case IPV6_DSTOPTS:
3180 newdest = &opt->ip6po_dest2;
3181 break;
3182 }
3183
3184 /* turn off the previous option, then set the new option. */
3185 ip6_clearpktopts(opt, optname);
3186 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3187 if (*newdest == NULL)
3188 return (ENOBUFS);
3189 memcpy(*newdest, dest, destlen);
3190
3191 break;
3192 }
3193
3194 #ifdef RFC2292
3195 case IPV6_2292RTHDR:
3196 #endif
3197 case IPV6_RTHDR:
3198 {
3199 struct ip6_rthdr *rth;
3200 int rthlen;
3201
3202 if (len == 0) {
3203 ip6_clearpktopts(opt, IPV6_RTHDR);
3204 break; /* just remove the option */
3205 }
3206
3207 /* message length validation */
3208 if (len < sizeof(struct ip6_rthdr))
3209 return (EINVAL);
3210 rth = (struct ip6_rthdr *)buf;
3211 rthlen = (rth->ip6r_len + 1) << 3;
3212 if (len != rthlen)
3213 return (EINVAL);
3214 switch (rth->ip6r_type) {
3215 case IPV6_RTHDR_TYPE_0:
3216 if (rth->ip6r_len == 0) /* must contain one addr */
3217 return (EINVAL);
3218 if (rth->ip6r_len % 2) /* length must be even */
3219 return (EINVAL);
3220 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3221 return (EINVAL);
3222 break;
3223 default:
3224 return (EINVAL); /* not supported */
3225 }
3226 /* turn off the previous option */
3227 ip6_clearpktopts(opt, IPV6_RTHDR);
3228 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3229 if (opt->ip6po_rthdr == NULL)
3230 return (ENOBUFS);
3231 memcpy(opt->ip6po_rthdr, rth, rthlen);
3232 break;
3233 }
3234
3235 case IPV6_USE_MIN_MTU:
3236 if (len != sizeof(int))
3237 return (EINVAL);
3238 minmtupolicy = *(int *)buf;
3239 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3240 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3241 minmtupolicy != IP6PO_MINMTU_ALL) {
3242 return (EINVAL);
3243 }
3244 opt->ip6po_minmtu = minmtupolicy;
3245 break;
3246
3247 case IPV6_DONTFRAG:
3248 if (len != sizeof(int))
3249 return (EINVAL);
3250
3251 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3252 /*
3253 * we ignore this option for TCP sockets.
3254 * (RFC3542 leaves this case unspecified.)
3255 */
3256 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3257 } else
3258 opt->ip6po_flags |= IP6PO_DONTFRAG;
3259 break;
3260
3261 default:
3262 return (ENOPROTOOPT);
3263 } /* end of switch */
3264
3265 return (0);
3266 }
3267
3268 /*
3269 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3270 * packet to the input queue of a specified interface. Note that this
3271 * calls the output routine of the loopback "driver", but with an interface
3272 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3273 */
3274 void
3275 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3276 const struct sockaddr_in6 *dst)
3277 {
3278 struct mbuf *copym;
3279 struct ip6_hdr *ip6;
3280
3281 copym = m_copy(m, 0, M_COPYALL);
3282 if (copym == NULL)
3283 return;
3284
3285 /*
3286 * Make sure to deep-copy IPv6 header portion in case the data
3287 * is in an mbuf cluster, so that we can safely override the IPv6
3288 * header portion later.
3289 */
3290 if ((copym->m_flags & M_EXT) != 0 ||
3291 copym->m_len < sizeof(struct ip6_hdr)) {
3292 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3293 if (copym == NULL)
3294 return;
3295 }
3296
3297 #ifdef DIAGNOSTIC
3298 if (copym->m_len < sizeof(*ip6)) {
3299 m_freem(copym);
3300 return;
3301 }
3302 #endif
3303
3304 ip6 = mtod(copym, struct ip6_hdr *);
3305 /*
3306 * clear embedded scope identifiers if necessary.
3307 * in6_clearscope will touch the addresses only when necessary.
3308 */
3309 in6_clearscope(&ip6->ip6_src);
3310 in6_clearscope(&ip6->ip6_dst);
3311
3312 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3313 }
3314
3315 /*
3316 * Chop IPv6 header off from the payload.
3317 */
3318 static int
3319 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3320 {
3321 struct mbuf *mh;
3322 struct ip6_hdr *ip6;
3323
3324 ip6 = mtod(m, struct ip6_hdr *);
3325 if (m->m_len > sizeof(*ip6)) {
3326 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3327 if (mh == 0) {
3328 m_freem(m);
3329 return ENOBUFS;
3330 }
3331 M_MOVE_PKTHDR(mh, m);
3332 MH_ALIGN(mh, sizeof(*ip6));
3333 m->m_len -= sizeof(*ip6);
3334 m->m_data += sizeof(*ip6);
3335 mh->m_next = m;
3336 m = mh;
3337 m->m_len = sizeof(*ip6);
3338 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
3339 }
3340 exthdrs->ip6e_ip6 = m;
3341 return 0;
3342 }
3343
3344 /*
3345 * Compute IPv6 extension header length.
3346 */
3347 int
3348 ip6_optlen(struct in6pcb *in6p)
3349 {
3350 int len;
3351
3352 if (!in6p->in6p_outputopts)
3353 return 0;
3354
3355 len = 0;
3356 #define elen(x) \
3357 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3358
3359 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3360 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3361 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3362 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3363 return len;
3364 #undef elen
3365 }
3366