ip6_output.c revision 1.126.6.1 1 /* $NetBSD: ip6_output.c,v 1.126.6.1 2008/06/02 13:24:27 mjf Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.126.6.1 2008/06/02 13:24:27 mjf Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_pfil_hooks.h"
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/kauth.h>
82
83 #include <net/if.h>
84 #include <net/route.h>
85 #ifdef PFIL_HOOKS
86 #include <net/pfil.h>
87 #endif
88
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip6.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet6/in6_offload.h>
95 #include <netinet6/ip6_var.h>
96 #include <netinet6/ip6_private.h>
97 #include <netinet6/in6_pcb.h>
98 #include <netinet6/nd6.h>
99 #include <netinet6/ip6protosw.h>
100 #include <netinet6/scope6_var.h>
101
102 #ifdef IPSEC
103 #include <netinet6/ipsec.h>
104 #include <netinet6/ipsec_private.h>
105 #include <netkey/key.h>
106 #endif /* IPSEC */
107
108 #ifdef FAST_IPSEC
109 #include <netipsec/ipsec.h>
110 #include <netipsec/ipsec6.h>
111 #include <netipsec/key.h>
112 #include <netipsec/xform.h>
113 #endif
114
115
116 #include <net/net_osdep.h>
117
118 #ifdef PFIL_HOOKS
119 extern struct pfil_head inet6_pfil_hook; /* XXX */
120 #endif
121
122 struct ip6_exthdrs {
123 struct mbuf *ip6e_ip6;
124 struct mbuf *ip6e_hbh;
125 struct mbuf *ip6e_dest1;
126 struct mbuf *ip6e_rthdr;
127 struct mbuf *ip6e_dest2;
128 };
129
130 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
131 int, int);
132 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct mbuf **);
133 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, int,
134 int, int, int);
135 static int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *);
136 static int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf **);
137 static int ip6_copyexthdr(struct mbuf **, void *, int);
138 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
139 struct ip6_frag **);
140 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
141 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
142 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *,
143 const struct in6_addr *, u_long *, int *);
144 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
145
146 #ifdef RFC2292
147 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *,
148 struct socket *);
149 #endif
150
151 #define IN6_NEED_CHECKSUM(ifp, csum_flags) \
152 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
153 (((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \
154 (((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum)))
155
156 /*
157 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
158 * header (with pri, len, nxt, hlim, src, dst).
159 * This function may modify ver and hlim only.
160 * The mbuf chain containing the packet will be freed.
161 * The mbuf opt, if present, will not be freed.
162 *
163 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
164 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
165 * which is rt_rmx.rmx_mtu.
166 */
167 int
168 ip6_output(
169 struct mbuf *m0,
170 struct ip6_pktopts *opt,
171 struct route *ro,
172 int flags,
173 struct ip6_moptions *im6o,
174 struct socket *so,
175 struct ifnet **ifpp /* XXX: just for statistics */
176 )
177 {
178 struct ip6_hdr *ip6, *mhip6;
179 struct ifnet *ifp, *origifp;
180 struct mbuf *m = m0;
181 int hlen, tlen, len, off;
182 bool tso;
183 struct route ip6route;
184 struct rtentry *rt = NULL;
185 const struct sockaddr_in6 *dst = NULL;
186 struct sockaddr_in6 src_sa, dst_sa;
187 int error = 0;
188 struct in6_ifaddr *ia = NULL;
189 u_long mtu;
190 int alwaysfrag, dontfrag;
191 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
192 struct ip6_exthdrs exthdrs;
193 struct in6_addr finaldst, src0, dst0;
194 u_int32_t zone;
195 struct route *ro_pmtu = NULL;
196 int hdrsplit = 0;
197 int needipsec = 0;
198 #ifdef IPSEC
199 int needipsectun = 0;
200 struct secpolicy *sp = NULL;
201
202 ip6 = mtod(m, struct ip6_hdr *);
203 #endif /* IPSEC */
204 #ifdef FAST_IPSEC
205 struct secpolicy *sp = NULL;
206 int s;
207 #endif
208
209 memset(&ip6route, 0, sizeof(ip6route));
210
211 #ifdef DIAGNOSTIC
212 if ((m->m_flags & M_PKTHDR) == 0)
213 panic("ip6_output: no HDR");
214
215 if ((m->m_pkthdr.csum_flags &
216 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
217 panic("ip6_output: IPv4 checksum offload flags: %d",
218 m->m_pkthdr.csum_flags);
219 }
220
221 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
222 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
223 panic("ip6_output: conflicting checksum offload flags: %d",
224 m->m_pkthdr.csum_flags);
225 }
226 #endif
227
228 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
229
230 #define MAKE_EXTHDR(hp, mp) \
231 do { \
232 if (hp) { \
233 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
234 error = ip6_copyexthdr((mp), (void *)(hp), \
235 ((eh)->ip6e_len + 1) << 3); \
236 if (error) \
237 goto freehdrs; \
238 } \
239 } while (/*CONSTCOND*/ 0)
240
241 bzero(&exthdrs, sizeof(exthdrs));
242 if (opt) {
243 /* Hop-by-Hop options header */
244 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
245 /* Destination options header(1st part) */
246 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
247 /* Routing header */
248 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
249 /* Destination options header(2nd part) */
250 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
251 }
252
253 #ifdef IPSEC
254 if ((flags & IPV6_FORWARDING) != 0) {
255 needipsec = 0;
256 goto skippolicycheck;
257 }
258
259 /* get a security policy for this packet */
260 if (so == NULL)
261 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
262 else {
263 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
264 IPSEC_DIR_OUTBOUND)) {
265 needipsec = 0;
266 goto skippolicycheck;
267 }
268 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
269 }
270
271 if (sp == NULL) {
272 IPSEC6_STATINC(IPSEC_STAT_OUT_INVAL);
273 goto freehdrs;
274 }
275
276 error = 0;
277
278 /* check policy */
279 switch (sp->policy) {
280 case IPSEC_POLICY_DISCARD:
281 /*
282 * This packet is just discarded.
283 */
284 IPSEC6_STATINC(IPSEC_STAT_OUT_POLVIO);
285 goto freehdrs;
286
287 case IPSEC_POLICY_BYPASS:
288 case IPSEC_POLICY_NONE:
289 /* no need to do IPsec. */
290 needipsec = 0;
291 break;
292
293 case IPSEC_POLICY_IPSEC:
294 if (sp->req == NULL) {
295 /* XXX should be panic ? */
296 printf("ip6_output: No IPsec request specified.\n");
297 error = EINVAL;
298 goto freehdrs;
299 }
300 needipsec = 1;
301 break;
302
303 case IPSEC_POLICY_ENTRUST:
304 default:
305 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
306 }
307
308 skippolicycheck:;
309 #endif /* IPSEC */
310
311 /*
312 * Calculate the total length of the extension header chain.
313 * Keep the length of the unfragmentable part for fragmentation.
314 */
315 optlen = 0;
316 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
317 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
318 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
319 unfragpartlen = optlen + sizeof(struct ip6_hdr);
320 /* NOTE: we don't add AH/ESP length here. do that later. */
321 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
322
323 #ifdef FAST_IPSEC
324 /* Check the security policy (SP) for the packet */
325
326 /* XXX For moment, we doesn't support packet with extented action */
327 if (optlen !=0)
328 goto freehdrs;
329
330 sp = ipsec6_check_policy(m,so,flags,&needipsec,&error);
331 if (error != 0) {
332 /*
333 * Hack: -EINVAL is used to signal that a packet
334 * should be silently discarded. This is typically
335 * because we asked key management for an SA and
336 * it was delayed (e.g. kicked up to IKE).
337 */
338 if (error == -EINVAL)
339 error = 0;
340 goto freehdrs;
341 }
342 #endif /* FAST_IPSEC */
343
344
345 if (needipsec &&
346 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
347 in6_delayed_cksum(m);
348 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
349 }
350
351
352 /*
353 * If we need IPsec, or there is at least one extension header,
354 * separate IP6 header from the payload.
355 */
356 if ((needipsec || optlen) && !hdrsplit) {
357 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
358 m = NULL;
359 goto freehdrs;
360 }
361 m = exthdrs.ip6e_ip6;
362 hdrsplit++;
363 }
364
365 /* adjust pointer */
366 ip6 = mtod(m, struct ip6_hdr *);
367
368 /* adjust mbuf packet header length */
369 m->m_pkthdr.len += optlen;
370 plen = m->m_pkthdr.len - sizeof(*ip6);
371
372 /* If this is a jumbo payload, insert a jumbo payload option. */
373 if (plen > IPV6_MAXPACKET) {
374 if (!hdrsplit) {
375 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
376 m = NULL;
377 goto freehdrs;
378 }
379 m = exthdrs.ip6e_ip6;
380 hdrsplit++;
381 }
382 /* adjust pointer */
383 ip6 = mtod(m, struct ip6_hdr *);
384 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
385 goto freehdrs;
386 optlen += 8; /* XXX JUMBOOPTLEN */
387 ip6->ip6_plen = 0;
388 } else
389 ip6->ip6_plen = htons(plen);
390
391 /*
392 * Concatenate headers and fill in next header fields.
393 * Here we have, on "m"
394 * IPv6 payload
395 * and we insert headers accordingly. Finally, we should be getting:
396 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
397 *
398 * during the header composing process, "m" points to IPv6 header.
399 * "mprev" points to an extension header prior to esp.
400 */
401 {
402 u_char *nexthdrp = &ip6->ip6_nxt;
403 struct mbuf *mprev = m;
404
405 /*
406 * we treat dest2 specially. this makes IPsec processing
407 * much easier. the goal here is to make mprev point the
408 * mbuf prior to dest2.
409 *
410 * result: IPv6 dest2 payload
411 * m and mprev will point to IPv6 header.
412 */
413 if (exthdrs.ip6e_dest2) {
414 if (!hdrsplit)
415 panic("assumption failed: hdr not split");
416 exthdrs.ip6e_dest2->m_next = m->m_next;
417 m->m_next = exthdrs.ip6e_dest2;
418 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
419 ip6->ip6_nxt = IPPROTO_DSTOPTS;
420 }
421
422 #define MAKE_CHAIN(m, mp, p, i)\
423 do {\
424 if (m) {\
425 if (!hdrsplit) \
426 panic("assumption failed: hdr not split"); \
427 *mtod((m), u_char *) = *(p);\
428 *(p) = (i);\
429 p = mtod((m), u_char *);\
430 (m)->m_next = (mp)->m_next;\
431 (mp)->m_next = (m);\
432 (mp) = (m);\
433 }\
434 } while (/*CONSTCOND*/ 0)
435 /*
436 * result: IPv6 hbh dest1 rthdr dest2 payload
437 * m will point to IPv6 header. mprev will point to the
438 * extension header prior to dest2 (rthdr in the above case).
439 */
440 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
441 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
442 IPPROTO_DSTOPTS);
443 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
444 IPPROTO_ROUTING);
445
446 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
447 sizeof(struct ip6_hdr) + optlen);
448
449 #ifdef IPSEC
450 if (!needipsec)
451 goto skip_ipsec2;
452
453 /*
454 * pointers after IPsec headers are not valid any more.
455 * other pointers need a great care too.
456 * (IPsec routines should not mangle mbufs prior to AH/ESP)
457 */
458 exthdrs.ip6e_dest2 = NULL;
459
460 {
461 struct ip6_rthdr *rh = NULL;
462 int segleft_org = 0;
463 struct ipsec_output_state state;
464
465 if (exthdrs.ip6e_rthdr) {
466 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
467 segleft_org = rh->ip6r_segleft;
468 rh->ip6r_segleft = 0;
469 }
470
471 bzero(&state, sizeof(state));
472 state.m = m;
473 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
474 &needipsectun);
475 m = state.m;
476 if (error) {
477 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
478 /* mbuf is already reclaimed in ipsec6_output_trans. */
479 m = NULL;
480 switch (error) {
481 case EHOSTUNREACH:
482 case ENETUNREACH:
483 case EMSGSIZE:
484 case ENOBUFS:
485 case ENOMEM:
486 break;
487 default:
488 printf("ip6_output (ipsec): error code %d\n", error);
489 /* FALLTHROUGH */
490 case ENOENT:
491 /* don't show these error codes to the user */
492 error = 0;
493 break;
494 }
495 goto bad;
496 }
497 if (exthdrs.ip6e_rthdr) {
498 /* ah6_output doesn't modify mbuf chain */
499 rh->ip6r_segleft = segleft_org;
500 }
501 }
502 skip_ipsec2:;
503 #endif
504 }
505
506 /*
507 * If there is a routing header, replace destination address field
508 * with the first hop of the routing header.
509 */
510 if (exthdrs.ip6e_rthdr) {
511 struct ip6_rthdr *rh;
512 struct ip6_rthdr0 *rh0;
513 struct in6_addr *addr;
514 struct sockaddr_in6 sa;
515
516 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
517 struct ip6_rthdr *));
518 finaldst = ip6->ip6_dst;
519 switch (rh->ip6r_type) {
520 case IPV6_RTHDR_TYPE_0:
521 rh0 = (struct ip6_rthdr0 *)rh;
522 addr = (struct in6_addr *)(rh0 + 1);
523
524 /*
525 * construct a sockaddr_in6 form of
526 * the first hop.
527 *
528 * XXX: we may not have enough
529 * information about its scope zone;
530 * there is no standard API to pass
531 * the information from the
532 * application.
533 */
534 sockaddr_in6_init(&sa, addr, 0, 0, 0);
535 if ((error = sa6_embedscope(&sa,
536 ip6_use_defzone)) != 0) {
537 goto bad;
538 }
539 ip6->ip6_dst = sa.sin6_addr;
540 (void)memmove(&addr[0], &addr[1],
541 sizeof(struct in6_addr) *
542 (rh0->ip6r0_segleft - 1));
543 addr[rh0->ip6r0_segleft - 1] = finaldst;
544 /* XXX */
545 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
546 break;
547 default: /* is it possible? */
548 error = EINVAL;
549 goto bad;
550 }
551 }
552
553 /* Source address validation */
554 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
555 (flags & IPV6_UNSPECSRC) == 0) {
556 error = EOPNOTSUPP;
557 IP6_STATINC(IP6_STAT_BADSCOPE);
558 goto bad;
559 }
560 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
561 error = EOPNOTSUPP;
562 IP6_STATINC(IP6_STAT_BADSCOPE);
563 goto bad;
564 }
565
566 IP6_STATINC(IP6_STAT_LOCALOUT);
567
568 /*
569 * Route packet.
570 */
571 /* initialize cached route */
572 if (ro == NULL) {
573 ro = &ip6route;
574 }
575 ro_pmtu = ro;
576 if (opt && opt->ip6po_rthdr)
577 ro = &opt->ip6po_route;
578
579 /*
580 * if specified, try to fill in the traffic class field.
581 * do not override if a non-zero value is already set.
582 * we check the diffserv field and the ecn field separately.
583 */
584 if (opt && opt->ip6po_tclass >= 0) {
585 int mask = 0;
586
587 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
588 mask |= 0xfc;
589 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
590 mask |= 0x03;
591 if (mask != 0)
592 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
593 }
594
595 /* fill in or override the hop limit field, if necessary. */
596 if (opt && opt->ip6po_hlim != -1)
597 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
598 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
599 if (im6o != NULL)
600 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
601 else
602 ip6->ip6_hlim = ip6_defmcasthlim;
603 }
604
605 #ifdef IPSEC
606 if (needipsec && needipsectun) {
607 struct ipsec_output_state state;
608
609 /*
610 * All the extension headers will become inaccessible
611 * (since they can be encrypted).
612 * Don't panic, we need no more updates to extension headers
613 * on inner IPv6 packet (since they are now encapsulated).
614 *
615 * IPv6 [ESP|AH] IPv6 [extension headers] payload
616 */
617 bzero(&exthdrs, sizeof(exthdrs));
618 exthdrs.ip6e_ip6 = m;
619
620 bzero(&state, sizeof(state));
621 state.m = m;
622 state.ro = ro;
623 state.dst = rtcache_getdst(ro);
624
625 error = ipsec6_output_tunnel(&state, sp, flags);
626
627 m = state.m;
628 ro_pmtu = ro = state.ro;
629 dst = satocsin6(state.dst);
630 if (error) {
631 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
632 m0 = m = NULL;
633 m = NULL;
634 switch (error) {
635 case EHOSTUNREACH:
636 case ENETUNREACH:
637 case EMSGSIZE:
638 case ENOBUFS:
639 case ENOMEM:
640 break;
641 default:
642 printf("ip6_output (ipsec): error code %d\n", error);
643 /* FALLTHROUGH */
644 case ENOENT:
645 /* don't show these error codes to the user */
646 error = 0;
647 break;
648 }
649 goto bad;
650 }
651
652 exthdrs.ip6e_ip6 = m;
653 }
654 #endif /* IPSEC */
655 #ifdef FAST_IPSEC
656 if (needipsec) {
657 s = splsoftnet();
658 error = ipsec6_process_packet(m,sp->req);
659
660 /*
661 * Preserve KAME behaviour: ENOENT can be returned
662 * when an SA acquire is in progress. Don't propagate
663 * this to user-level; it confuses applications.
664 * XXX this will go away when the SADB is redone.
665 */
666 if (error == ENOENT)
667 error = 0;
668 splx(s);
669 goto done;
670 }
671 #endif /* FAST_IPSEC */
672
673
674
675 /* adjust pointer */
676 ip6 = mtod(m, struct ip6_hdr *);
677
678 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
679 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
680 &ifp, &rt, 0)) != 0) {
681 if (ifp != NULL)
682 in6_ifstat_inc(ifp, ifs6_out_discard);
683 goto bad;
684 }
685 if (rt == NULL) {
686 /*
687 * If in6_selectroute() does not return a route entry,
688 * dst may not have been updated.
689 */
690 rtcache_setdst(ro, sin6tosa(&dst_sa));
691 }
692
693 /*
694 * then rt (for unicast) and ifp must be non-NULL valid values.
695 */
696 if ((flags & IPV6_FORWARDING) == 0) {
697 /* XXX: the FORWARDING flag can be set for mrouting. */
698 in6_ifstat_inc(ifp, ifs6_out_request);
699 }
700 if (rt != NULL) {
701 ia = (struct in6_ifaddr *)(rt->rt_ifa);
702 rt->rt_use++;
703 }
704
705 /*
706 * The outgoing interface must be in the zone of source and
707 * destination addresses. We should use ia_ifp to support the
708 * case of sending packets to an address of our own.
709 */
710 if (ia != NULL && ia->ia_ifp)
711 origifp = ia->ia_ifp;
712 else
713 origifp = ifp;
714
715 src0 = ip6->ip6_src;
716 if (in6_setscope(&src0, origifp, &zone))
717 goto badscope;
718 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
719 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
720 goto badscope;
721
722 dst0 = ip6->ip6_dst;
723 if (in6_setscope(&dst0, origifp, &zone))
724 goto badscope;
725 /* re-initialize to be sure */
726 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
727 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
728 goto badscope;
729
730 /* scope check is done. */
731
732 if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
733 if (dst == NULL)
734 dst = satocsin6(rtcache_getdst(ro));
735 KASSERT(dst != NULL);
736 } else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) {
737 /*
738 * The nexthop is explicitly specified by the
739 * application. We assume the next hop is an IPv6
740 * address.
741 */
742 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
743 } else if ((rt->rt_flags & RTF_GATEWAY))
744 dst = (struct sockaddr_in6 *)rt->rt_gateway;
745 else if (dst == NULL)
746 dst = satocsin6(rtcache_getdst(ro));
747
748 /*
749 * XXXXXX: original code follows:
750 */
751 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
752 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
753 else {
754 struct in6_multi *in6m;
755
756 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
757
758 in6_ifstat_inc(ifp, ifs6_out_mcast);
759
760 /*
761 * Confirm that the outgoing interface supports multicast.
762 */
763 if (!(ifp->if_flags & IFF_MULTICAST)) {
764 IP6_STATINC(IP6_STAT_NOROUTE);
765 in6_ifstat_inc(ifp, ifs6_out_discard);
766 error = ENETUNREACH;
767 goto bad;
768 }
769
770 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
771 if (in6m != NULL &&
772 (im6o == NULL || im6o->im6o_multicast_loop)) {
773 /*
774 * If we belong to the destination multicast group
775 * on the outgoing interface, and the caller did not
776 * forbid loopback, loop back a copy.
777 */
778 KASSERT(dst != NULL);
779 ip6_mloopback(ifp, m, dst);
780 } else {
781 /*
782 * If we are acting as a multicast router, perform
783 * multicast forwarding as if the packet had just
784 * arrived on the interface to which we are about
785 * to send. The multicast forwarding function
786 * recursively calls this function, using the
787 * IPV6_FORWARDING flag to prevent infinite recursion.
788 *
789 * Multicasts that are looped back by ip6_mloopback(),
790 * above, will be forwarded by the ip6_input() routine,
791 * if necessary.
792 */
793 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
794 if (ip6_mforward(ip6, ifp, m) != 0) {
795 m_freem(m);
796 goto done;
797 }
798 }
799 }
800 /*
801 * Multicasts with a hoplimit of zero may be looped back,
802 * above, but must not be transmitted on a network.
803 * Also, multicasts addressed to the loopback interface
804 * are not sent -- the above call to ip6_mloopback() will
805 * loop back a copy if this host actually belongs to the
806 * destination group on the loopback interface.
807 */
808 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
809 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
810 m_freem(m);
811 goto done;
812 }
813 }
814
815 /*
816 * Fill the outgoing inteface to tell the upper layer
817 * to increment per-interface statistics.
818 */
819 if (ifpp)
820 *ifpp = ifp;
821
822 /* Determine path MTU. */
823 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
824 &alwaysfrag)) != 0)
825 goto bad;
826 #ifdef IPSEC
827 if (needipsectun)
828 mtu = IPV6_MMTU;
829 #endif
830
831 /*
832 * The caller of this function may specify to use the minimum MTU
833 * in some cases.
834 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
835 * setting. The logic is a bit complicated; by default, unicast
836 * packets will follow path MTU while multicast packets will be sent at
837 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
838 * including unicast ones will be sent at the minimum MTU. Multicast
839 * packets will always be sent at the minimum MTU unless
840 * IP6PO_MINMTU_DISABLE is explicitly specified.
841 * See RFC 3542 for more details.
842 */
843 if (mtu > IPV6_MMTU) {
844 if ((flags & IPV6_MINMTU))
845 mtu = IPV6_MMTU;
846 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
847 mtu = IPV6_MMTU;
848 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
849 (opt == NULL ||
850 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
851 mtu = IPV6_MMTU;
852 }
853 }
854
855 /*
856 * clear embedded scope identifiers if necessary.
857 * in6_clearscope will touch the addresses only when necessary.
858 */
859 in6_clearscope(&ip6->ip6_src);
860 in6_clearscope(&ip6->ip6_dst);
861
862 /*
863 * If the outgoing packet contains a hop-by-hop options header,
864 * it must be examined and processed even by the source node.
865 * (RFC 2460, section 4.)
866 */
867 if (exthdrs.ip6e_hbh) {
868 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
869 u_int32_t dummy1; /* XXX unused */
870 u_int32_t dummy2; /* XXX unused */
871
872 /*
873 * XXX: if we have to send an ICMPv6 error to the sender,
874 * we need the M_LOOP flag since icmp6_error() expects
875 * the IPv6 and the hop-by-hop options header are
876 * continuous unless the flag is set.
877 */
878 m->m_flags |= M_LOOP;
879 m->m_pkthdr.rcvif = ifp;
880 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
881 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
882 &dummy1, &dummy2) < 0) {
883 /* m was already freed at this point */
884 error = EINVAL;/* better error? */
885 goto done;
886 }
887 m->m_flags &= ~M_LOOP; /* XXX */
888 m->m_pkthdr.rcvif = NULL;
889 }
890
891 #ifdef PFIL_HOOKS
892 /*
893 * Run through list of hooks for output packets.
894 */
895 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
896 goto done;
897 if (m == NULL)
898 goto done;
899 ip6 = mtod(m, struct ip6_hdr *);
900 #endif /* PFIL_HOOKS */
901 /*
902 * Send the packet to the outgoing interface.
903 * If necessary, do IPv6 fragmentation before sending.
904 *
905 * the logic here is rather complex:
906 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
907 * 1-a: send as is if tlen <= path mtu
908 * 1-b: fragment if tlen > path mtu
909 *
910 * 2: if user asks us not to fragment (dontfrag == 1)
911 * 2-a: send as is if tlen <= interface mtu
912 * 2-b: error if tlen > interface mtu
913 *
914 * 3: if we always need to attach fragment header (alwaysfrag == 1)
915 * always fragment
916 *
917 * 4: if dontfrag == 1 && alwaysfrag == 1
918 * error, as we cannot handle this conflicting request
919 */
920 tlen = m->m_pkthdr.len;
921 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
922 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
923 dontfrag = 1;
924 else
925 dontfrag = 0;
926
927 if (dontfrag && alwaysfrag) { /* case 4 */
928 /* conflicting request - can't transmit */
929 error = EMSGSIZE;
930 goto bad;
931 }
932 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */
933 /*
934 * Even if the DONTFRAG option is specified, we cannot send the
935 * packet when the data length is larger than the MTU of the
936 * outgoing interface.
937 * Notify the error by sending IPV6_PATHMTU ancillary data as
938 * well as returning an error code (the latter is not described
939 * in the API spec.)
940 */
941 u_int32_t mtu32;
942 struct ip6ctlparam ip6cp;
943
944 mtu32 = (u_int32_t)mtu;
945 bzero(&ip6cp, sizeof(ip6cp));
946 ip6cp.ip6c_cmdarg = (void *)&mtu32;
947 pfctlinput2(PRC_MSGSIZE,
948 rtcache_getdst(ro_pmtu), &ip6cp);
949
950 error = EMSGSIZE;
951 goto bad;
952 }
953
954 /*
955 * transmit packet without fragmentation
956 */
957 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
958 /* case 1-a and 2-a */
959 struct in6_ifaddr *ia6;
960 int sw_csum;
961
962 ip6 = mtod(m, struct ip6_hdr *);
963 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
964 if (ia6) {
965 /* Record statistics for this interface address. */
966 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
967 }
968 #ifdef IPSEC
969 /* clean ipsec history once it goes out of the node */
970 ipsec_delaux(m);
971 #endif
972
973 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
974 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
975 if (IN6_NEED_CHECKSUM(ifp,
976 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
977 in6_delayed_cksum(m);
978 }
979 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
980 }
981
982 KASSERT(dst != NULL);
983 if (__predict_true(!tso ||
984 (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
985 error = nd6_output(ifp, origifp, m, dst, rt);
986 } else {
987 error = ip6_tso_output(ifp, origifp, m, dst, rt);
988 }
989 goto done;
990 }
991
992 if (tso) {
993 error = EINVAL; /* XXX */
994 goto bad;
995 }
996
997 /*
998 * try to fragment the packet. case 1-b and 3
999 */
1000 if (mtu < IPV6_MMTU) {
1001 /* path MTU cannot be less than IPV6_MMTU */
1002 error = EMSGSIZE;
1003 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1004 goto bad;
1005 } else if (ip6->ip6_plen == 0) {
1006 /* jumbo payload cannot be fragmented */
1007 error = EMSGSIZE;
1008 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1009 goto bad;
1010 } else {
1011 struct mbuf **mnext, *m_frgpart;
1012 struct ip6_frag *ip6f;
1013 u_int32_t id = htonl(ip6_randomid());
1014 u_char nextproto;
1015 #if 0 /* see below */
1016 struct ip6ctlparam ip6cp;
1017 u_int32_t mtu32;
1018 #endif
1019
1020 /*
1021 * Too large for the destination or interface;
1022 * fragment if possible.
1023 * Must be able to put at least 8 bytes per fragment.
1024 */
1025 hlen = unfragpartlen;
1026 if (mtu > IPV6_MAXPACKET)
1027 mtu = IPV6_MAXPACKET;
1028
1029 #if 0
1030 /*
1031 * It is believed this code is a leftover from the
1032 * development of the IPV6_RECVPATHMTU sockopt and
1033 * associated work to implement RFC3542.
1034 * It's not entirely clear what the intent of the API
1035 * is at this point, so disable this code for now.
1036 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
1037 * will send notifications if the application requests.
1038 */
1039
1040 /* Notify a proper path MTU to applications. */
1041 mtu32 = (u_int32_t)mtu;
1042 bzero(&ip6cp, sizeof(ip6cp));
1043 ip6cp.ip6c_cmdarg = (void *)&mtu32;
1044 pfctlinput2(PRC_MSGSIZE,
1045 rtcache_getdst(ro_pmtu), &ip6cp);
1046 #endif
1047
1048 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
1049 if (len < 8) {
1050 error = EMSGSIZE;
1051 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1052 goto bad;
1053 }
1054
1055 mnext = &m->m_nextpkt;
1056
1057 /*
1058 * Change the next header field of the last header in the
1059 * unfragmentable part.
1060 */
1061 if (exthdrs.ip6e_rthdr) {
1062 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1063 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1064 } else if (exthdrs.ip6e_dest1) {
1065 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1066 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1067 } else if (exthdrs.ip6e_hbh) {
1068 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1069 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1070 } else {
1071 nextproto = ip6->ip6_nxt;
1072 ip6->ip6_nxt = IPPROTO_FRAGMENT;
1073 }
1074
1075 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
1076 != 0) {
1077 if (IN6_NEED_CHECKSUM(ifp,
1078 m->m_pkthdr.csum_flags &
1079 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
1080 in6_delayed_cksum(m);
1081 }
1082 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
1083 }
1084
1085 /*
1086 * Loop through length of segment after first fragment,
1087 * make new header and copy data of each part and link onto
1088 * chain.
1089 */
1090 m0 = m;
1091 for (off = hlen; off < tlen; off += len) {
1092 struct mbuf *mlast;
1093
1094 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1095 if (!m) {
1096 error = ENOBUFS;
1097 IP6_STATINC(IP6_STAT_ODROPPED);
1098 goto sendorfree;
1099 }
1100 m->m_pkthdr.rcvif = NULL;
1101 m->m_flags = m0->m_flags & M_COPYFLAGS;
1102 *mnext = m;
1103 mnext = &m->m_nextpkt;
1104 m->m_data += max_linkhdr;
1105 mhip6 = mtod(m, struct ip6_hdr *);
1106 *mhip6 = *ip6;
1107 m->m_len = sizeof(*mhip6);
1108 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1109 if (error) {
1110 IP6_STATINC(IP6_STAT_ODROPPED);
1111 goto sendorfree;
1112 }
1113 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
1114 if (off + len >= tlen)
1115 len = tlen - off;
1116 else
1117 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1118 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
1119 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1120 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1121 error = ENOBUFS;
1122 IP6_STATINC(IP6_STAT_ODROPPED);
1123 goto sendorfree;
1124 }
1125 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
1126 ;
1127 mlast->m_next = m_frgpart;
1128 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1129 m->m_pkthdr.rcvif = (struct ifnet *)0;
1130 ip6f->ip6f_reserved = 0;
1131 ip6f->ip6f_ident = id;
1132 ip6f->ip6f_nxt = nextproto;
1133 IP6_STATINC(IP6_STAT_OFRAGMENTS);
1134 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1135 }
1136
1137 in6_ifstat_inc(ifp, ifs6_out_fragok);
1138 }
1139
1140 /*
1141 * Remove leading garbages.
1142 */
1143 sendorfree:
1144 m = m0->m_nextpkt;
1145 m0->m_nextpkt = 0;
1146 m_freem(m0);
1147 for (m0 = m; m; m = m0) {
1148 m0 = m->m_nextpkt;
1149 m->m_nextpkt = 0;
1150 if (error == 0) {
1151 struct in6_ifaddr *ia6;
1152 ip6 = mtod(m, struct ip6_hdr *);
1153 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1154 if (ia6) {
1155 /*
1156 * Record statistics for this interface
1157 * address.
1158 */
1159 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1160 m->m_pkthdr.len;
1161 }
1162 #ifdef IPSEC
1163 /* clean ipsec history once it goes out of the node */
1164 ipsec_delaux(m);
1165 #endif
1166 KASSERT(dst != NULL);
1167 error = nd6_output(ifp, origifp, m, dst, rt);
1168 } else
1169 m_freem(m);
1170 }
1171
1172 if (error == 0)
1173 IP6_STATINC(IP6_STAT_FRAGMENTED);
1174
1175 done:
1176 rtcache_free(&ip6route);
1177
1178 #ifdef IPSEC
1179 if (sp != NULL)
1180 key_freesp(sp);
1181 #endif /* IPSEC */
1182 #ifdef FAST_IPSEC
1183 if (sp != NULL)
1184 KEY_FREESP(&sp);
1185 #endif /* FAST_IPSEC */
1186
1187
1188 return (error);
1189
1190 freehdrs:
1191 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1192 m_freem(exthdrs.ip6e_dest1);
1193 m_freem(exthdrs.ip6e_rthdr);
1194 m_freem(exthdrs.ip6e_dest2);
1195 /* FALLTHROUGH */
1196 bad:
1197 m_freem(m);
1198 goto done;
1199 badscope:
1200 IP6_STATINC(IP6_STAT_BADSCOPE);
1201 in6_ifstat_inc(origifp, ifs6_out_discard);
1202 if (error == 0)
1203 error = EHOSTUNREACH; /* XXX */
1204 goto bad;
1205 }
1206
1207 static int
1208 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1209 {
1210 struct mbuf *m;
1211
1212 if (hlen > MCLBYTES)
1213 return (ENOBUFS); /* XXX */
1214
1215 MGET(m, M_DONTWAIT, MT_DATA);
1216 if (!m)
1217 return (ENOBUFS);
1218
1219 if (hlen > MLEN) {
1220 MCLGET(m, M_DONTWAIT);
1221 if ((m->m_flags & M_EXT) == 0) {
1222 m_free(m);
1223 return (ENOBUFS);
1224 }
1225 }
1226 m->m_len = hlen;
1227 if (hdr)
1228 bcopy(hdr, mtod(m, void *), hlen);
1229
1230 *mp = m;
1231 return (0);
1232 }
1233
1234 /*
1235 * Process a delayed payload checksum calculation.
1236 */
1237 void
1238 in6_delayed_cksum(struct mbuf *m)
1239 {
1240 uint16_t csum, offset;
1241
1242 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1243 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1244 KASSERT((m->m_pkthdr.csum_flags
1245 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1246
1247 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1248 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1249 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1250 csum = 0xffff;
1251 }
1252
1253 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1254 if ((offset + sizeof(csum)) > m->m_len) {
1255 m_copyback(m, offset, sizeof(csum), &csum);
1256 } else {
1257 *(uint16_t *)(mtod(m, char *) + offset) = csum;
1258 }
1259 }
1260
1261 /*
1262 * Insert jumbo payload option.
1263 */
1264 static int
1265 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1266 {
1267 struct mbuf *mopt;
1268 u_int8_t *optbuf;
1269 u_int32_t v;
1270
1271 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1272
1273 /*
1274 * If there is no hop-by-hop options header, allocate new one.
1275 * If there is one but it doesn't have enough space to store the
1276 * jumbo payload option, allocate a cluster to store the whole options.
1277 * Otherwise, use it to store the options.
1278 */
1279 if (exthdrs->ip6e_hbh == 0) {
1280 MGET(mopt, M_DONTWAIT, MT_DATA);
1281 if (mopt == 0)
1282 return (ENOBUFS);
1283 mopt->m_len = JUMBOOPTLEN;
1284 optbuf = mtod(mopt, u_int8_t *);
1285 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1286 exthdrs->ip6e_hbh = mopt;
1287 } else {
1288 struct ip6_hbh *hbh;
1289
1290 mopt = exthdrs->ip6e_hbh;
1291 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1292 /*
1293 * XXX assumption:
1294 * - exthdrs->ip6e_hbh is not referenced from places
1295 * other than exthdrs.
1296 * - exthdrs->ip6e_hbh is not an mbuf chain.
1297 */
1298 int oldoptlen = mopt->m_len;
1299 struct mbuf *n;
1300
1301 /*
1302 * XXX: give up if the whole (new) hbh header does
1303 * not fit even in an mbuf cluster.
1304 */
1305 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1306 return (ENOBUFS);
1307
1308 /*
1309 * As a consequence, we must always prepare a cluster
1310 * at this point.
1311 */
1312 MGET(n, M_DONTWAIT, MT_DATA);
1313 if (n) {
1314 MCLGET(n, M_DONTWAIT);
1315 if ((n->m_flags & M_EXT) == 0) {
1316 m_freem(n);
1317 n = NULL;
1318 }
1319 }
1320 if (!n)
1321 return (ENOBUFS);
1322 n->m_len = oldoptlen + JUMBOOPTLEN;
1323 bcopy(mtod(mopt, void *), mtod(n, void *),
1324 oldoptlen);
1325 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1326 m_freem(mopt);
1327 mopt = exthdrs->ip6e_hbh = n;
1328 } else {
1329 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1330 mopt->m_len += JUMBOOPTLEN;
1331 }
1332 optbuf[0] = IP6OPT_PADN;
1333 optbuf[1] = 0;
1334
1335 /*
1336 * Adjust the header length according to the pad and
1337 * the jumbo payload option.
1338 */
1339 hbh = mtod(mopt, struct ip6_hbh *);
1340 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1341 }
1342
1343 /* fill in the option. */
1344 optbuf[2] = IP6OPT_JUMBO;
1345 optbuf[3] = 4;
1346 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1347 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1348
1349 /* finally, adjust the packet header length */
1350 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1351
1352 return (0);
1353 #undef JUMBOOPTLEN
1354 }
1355
1356 /*
1357 * Insert fragment header and copy unfragmentable header portions.
1358 */
1359 static int
1360 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1361 struct ip6_frag **frghdrp)
1362 {
1363 struct mbuf *n, *mlast;
1364
1365 if (hlen > sizeof(struct ip6_hdr)) {
1366 n = m_copym(m0, sizeof(struct ip6_hdr),
1367 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1368 if (n == 0)
1369 return (ENOBUFS);
1370 m->m_next = n;
1371 } else
1372 n = m;
1373
1374 /* Search for the last mbuf of unfragmentable part. */
1375 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1376 ;
1377
1378 if ((mlast->m_flags & M_EXT) == 0 &&
1379 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1380 /* use the trailing space of the last mbuf for the fragment hdr */
1381 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1382 mlast->m_len);
1383 mlast->m_len += sizeof(struct ip6_frag);
1384 m->m_pkthdr.len += sizeof(struct ip6_frag);
1385 } else {
1386 /* allocate a new mbuf for the fragment header */
1387 struct mbuf *mfrg;
1388
1389 MGET(mfrg, M_DONTWAIT, MT_DATA);
1390 if (mfrg == 0)
1391 return (ENOBUFS);
1392 mfrg->m_len = sizeof(struct ip6_frag);
1393 *frghdrp = mtod(mfrg, struct ip6_frag *);
1394 mlast->m_next = mfrg;
1395 }
1396
1397 return (0);
1398 }
1399
1400 static int
1401 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp,
1402 const struct in6_addr *dst, u_long *mtup, int *alwaysfragp)
1403 {
1404 struct rtentry *rt;
1405 u_int32_t mtu = 0;
1406 int alwaysfrag = 0;
1407 int error = 0;
1408
1409 if (ro_pmtu != ro) {
1410 union {
1411 struct sockaddr dst;
1412 struct sockaddr_in6 dst6;
1413 } u;
1414
1415 /* The first hop and the final destination may differ. */
1416 sockaddr_in6_init(&u.dst6, dst, 0, 0, 0);
1417 rt = rtcache_lookup(ro_pmtu, &u.dst);
1418 } else
1419 rt = rtcache_validate(ro_pmtu);
1420 if (rt != NULL) {
1421 u_int32_t ifmtu;
1422
1423 if (ifp == NULL)
1424 ifp = rt->rt_ifp;
1425 ifmtu = IN6_LINKMTU(ifp);
1426 mtu = rt->rt_rmx.rmx_mtu;
1427 if (mtu == 0)
1428 mtu = ifmtu;
1429 else if (mtu < IPV6_MMTU) {
1430 /*
1431 * RFC2460 section 5, last paragraph:
1432 * if we record ICMPv6 too big message with
1433 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1434 * or smaller, with fragment header attached.
1435 * (fragment header is needed regardless from the
1436 * packet size, for translators to identify packets)
1437 */
1438 alwaysfrag = 1;
1439 mtu = IPV6_MMTU;
1440 } else if (mtu > ifmtu) {
1441 /*
1442 * The MTU on the route is larger than the MTU on
1443 * the interface! This shouldn't happen, unless the
1444 * MTU of the interface has been changed after the
1445 * interface was brought up. Change the MTU in the
1446 * route to match the interface MTU (as long as the
1447 * field isn't locked).
1448 */
1449 mtu = ifmtu;
1450 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1451 rt->rt_rmx.rmx_mtu = mtu;
1452 }
1453 } else if (ifp) {
1454 mtu = IN6_LINKMTU(ifp);
1455 } else
1456 error = EHOSTUNREACH; /* XXX */
1457
1458 *mtup = mtu;
1459 if (alwaysfragp)
1460 *alwaysfragp = alwaysfrag;
1461 return (error);
1462 }
1463
1464 /*
1465 * IP6 socket option processing.
1466 */
1467 int
1468 ip6_ctloutput(int op, struct socket *so, int level, int optname,
1469 struct mbuf **mp)
1470 {
1471 int privileged, optdatalen, uproto;
1472 void *optdata;
1473 struct in6pcb *in6p = sotoin6pcb(so);
1474 struct mbuf *m = *mp;
1475 int error, optval;
1476 int optlen;
1477 struct lwp *l = curlwp; /* XXX */
1478
1479 optlen = m ? m->m_len : 0;
1480 error = optval = 0;
1481 privileged = (l == 0 || kauth_authorize_generic(l->l_cred,
1482 KAUTH_GENERIC_ISSUSER, NULL)) ? 0 : 1;
1483 uproto = (int)so->so_proto->pr_protocol;
1484
1485 if (level != IPPROTO_IPV6) {
1486 if (op == PRCO_SETOPT && *mp)
1487 (void)m_free(*mp);
1488 return ENOPROTOOPT;
1489 }
1490 switch (op) {
1491 case PRCO_SETOPT:
1492 switch (optname) {
1493 #ifdef RFC2292
1494 case IPV6_2292PKTOPTIONS:
1495 /* m is freed in ip6_pcbopts */
1496 error = ip6_pcbopts(&in6p->in6p_outputopts,
1497 m, so);
1498 break;
1499 #endif
1500
1501 /*
1502 * Use of some Hop-by-Hop options or some
1503 * Destination options, might require special
1504 * privilege. That is, normal applications
1505 * (without special privilege) might be forbidden
1506 * from setting certain options in outgoing packets,
1507 * and might never see certain options in received
1508 * packets. [RFC 2292 Section 6]
1509 * KAME specific note:
1510 * KAME prevents non-privileged users from sending or
1511 * receiving ANY hbh/dst options in order to avoid
1512 * overhead of parsing options in the kernel.
1513 */
1514 case IPV6_RECVHOPOPTS:
1515 case IPV6_RECVDSTOPTS:
1516 case IPV6_RECVRTHDRDSTOPTS:
1517 if (!privileged) {
1518 error = EPERM;
1519 break;
1520 }
1521 /* FALLTHROUGH */
1522 case IPV6_UNICAST_HOPS:
1523 case IPV6_HOPLIMIT:
1524 case IPV6_FAITH:
1525
1526 case IPV6_RECVPKTINFO:
1527 case IPV6_RECVHOPLIMIT:
1528 case IPV6_RECVRTHDR:
1529 case IPV6_RECVPATHMTU:
1530 case IPV6_RECVTCLASS:
1531 case IPV6_V6ONLY:
1532 if (optlen != sizeof(int)) {
1533 error = EINVAL;
1534 break;
1535 }
1536 optval = *mtod(m, int *);
1537 switch (optname) {
1538
1539 case IPV6_UNICAST_HOPS:
1540 if (optval < -1 || optval >= 256)
1541 error = EINVAL;
1542 else {
1543 /* -1 = kernel default */
1544 in6p->in6p_hops = optval;
1545 }
1546 break;
1547 #define OPTSET(bit) \
1548 do { \
1549 if (optval) \
1550 in6p->in6p_flags |= (bit); \
1551 else \
1552 in6p->in6p_flags &= ~(bit); \
1553 } while (/*CONSTCOND*/ 0)
1554
1555 #ifdef RFC2292
1556 #define OPTSET2292(bit) \
1557 do { \
1558 in6p->in6p_flags |= IN6P_RFC2292; \
1559 if (optval) \
1560 in6p->in6p_flags |= (bit); \
1561 else \
1562 in6p->in6p_flags &= ~(bit); \
1563 } while (/*CONSTCOND*/ 0)
1564 #endif
1565
1566 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1567
1568 case IPV6_RECVPKTINFO:
1569 #ifdef RFC2292
1570 /* cannot mix with RFC2292 */
1571 if (OPTBIT(IN6P_RFC2292)) {
1572 error = EINVAL;
1573 break;
1574 }
1575 #endif
1576 OPTSET(IN6P_PKTINFO);
1577 break;
1578
1579 case IPV6_HOPLIMIT:
1580 {
1581 struct ip6_pktopts **optp;
1582
1583 #ifdef RFC2292
1584 /* cannot mix with RFC2292 */
1585 if (OPTBIT(IN6P_RFC2292)) {
1586 error = EINVAL;
1587 break;
1588 }
1589 #endif
1590 optp = &in6p->in6p_outputopts;
1591 error = ip6_pcbopt(IPV6_HOPLIMIT,
1592 (u_char *)&optval,
1593 sizeof(optval),
1594 optp,
1595 privileged, uproto);
1596 break;
1597 }
1598
1599 case IPV6_RECVHOPLIMIT:
1600 #ifdef RFC2292
1601 /* cannot mix with RFC2292 */
1602 if (OPTBIT(IN6P_RFC2292)) {
1603 error = EINVAL;
1604 break;
1605 }
1606 #endif
1607 OPTSET(IN6P_HOPLIMIT);
1608 break;
1609
1610 case IPV6_RECVHOPOPTS:
1611 #ifdef RFC2292
1612 /* cannot mix with RFC2292 */
1613 if (OPTBIT(IN6P_RFC2292)) {
1614 error = EINVAL;
1615 break;
1616 }
1617 #endif
1618 OPTSET(IN6P_HOPOPTS);
1619 break;
1620
1621 case IPV6_RECVDSTOPTS:
1622 #ifdef RFC2292
1623 /* cannot mix with RFC2292 */
1624 if (OPTBIT(IN6P_RFC2292)) {
1625 error = EINVAL;
1626 break;
1627 }
1628 #endif
1629 OPTSET(IN6P_DSTOPTS);
1630 break;
1631
1632 case IPV6_RECVRTHDRDSTOPTS:
1633 #ifdef RFC2292
1634 /* cannot mix with RFC2292 */
1635 if (OPTBIT(IN6P_RFC2292)) {
1636 error = EINVAL;
1637 break;
1638 }
1639 #endif
1640 OPTSET(IN6P_RTHDRDSTOPTS);
1641 break;
1642
1643 case IPV6_RECVRTHDR:
1644 #ifdef RFC2292
1645 /* cannot mix with RFC2292 */
1646 if (OPTBIT(IN6P_RFC2292)) {
1647 error = EINVAL;
1648 break;
1649 }
1650 #endif
1651 OPTSET(IN6P_RTHDR);
1652 break;
1653
1654 case IPV6_FAITH:
1655 OPTSET(IN6P_FAITH);
1656 break;
1657
1658 case IPV6_RECVPATHMTU:
1659 /*
1660 * We ignore this option for TCP
1661 * sockets.
1662 * (RFC3542 leaves this case
1663 * unspecified.)
1664 */
1665 if (uproto != IPPROTO_TCP)
1666 OPTSET(IN6P_MTU);
1667 break;
1668
1669 case IPV6_V6ONLY:
1670 /*
1671 * make setsockopt(IPV6_V6ONLY)
1672 * available only prior to bind(2).
1673 * see ipng mailing list, Jun 22 2001.
1674 */
1675 if (in6p->in6p_lport ||
1676 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1677 error = EINVAL;
1678 break;
1679 }
1680 #ifdef INET6_BINDV6ONLY
1681 if (!optval)
1682 error = EINVAL;
1683 #else
1684 OPTSET(IN6P_IPV6_V6ONLY);
1685 #endif
1686 break;
1687 case IPV6_RECVTCLASS:
1688 #ifdef RFC2292
1689 /* cannot mix with RFC2292 XXX */
1690 if (OPTBIT(IN6P_RFC2292)) {
1691 error = EINVAL;
1692 break;
1693 }
1694 #endif
1695 OPTSET(IN6P_TCLASS);
1696 break;
1697
1698 }
1699 break;
1700
1701 case IPV6_OTCLASS:
1702 {
1703 struct ip6_pktopts **optp;
1704 u_int8_t tclass;
1705
1706 if (optlen != sizeof(tclass)) {
1707 error = EINVAL;
1708 break;
1709 }
1710 tclass = *mtod(m, u_int8_t *);
1711 optp = &in6p->in6p_outputopts;
1712 error = ip6_pcbopt(optname,
1713 (u_char *)&tclass,
1714 sizeof(tclass),
1715 optp,
1716 privileged, uproto);
1717 break;
1718 }
1719
1720 case IPV6_TCLASS:
1721 case IPV6_DONTFRAG:
1722 case IPV6_USE_MIN_MTU:
1723 if (optlen != sizeof(optval)) {
1724 error = EINVAL;
1725 break;
1726 }
1727 optval = *mtod(m, int *);
1728 {
1729 struct ip6_pktopts **optp;
1730 optp = &in6p->in6p_outputopts;
1731 error = ip6_pcbopt(optname,
1732 (u_char *)&optval,
1733 sizeof(optval),
1734 optp,
1735 privileged, uproto);
1736 break;
1737 }
1738
1739 #ifdef RFC2292
1740 case IPV6_2292PKTINFO:
1741 case IPV6_2292HOPLIMIT:
1742 case IPV6_2292HOPOPTS:
1743 case IPV6_2292DSTOPTS:
1744 case IPV6_2292RTHDR:
1745 /* RFC 2292 */
1746 if (optlen != sizeof(int)) {
1747 error = EINVAL;
1748 break;
1749 }
1750 optval = *mtod(m, int *);
1751 switch (optname) {
1752 case IPV6_2292PKTINFO:
1753 OPTSET2292(IN6P_PKTINFO);
1754 break;
1755 case IPV6_2292HOPLIMIT:
1756 OPTSET2292(IN6P_HOPLIMIT);
1757 break;
1758 case IPV6_2292HOPOPTS:
1759 /*
1760 * Check super-user privilege.
1761 * See comments for IPV6_RECVHOPOPTS.
1762 */
1763 if (!privileged)
1764 return (EPERM);
1765 OPTSET2292(IN6P_HOPOPTS);
1766 break;
1767 case IPV6_2292DSTOPTS:
1768 if (!privileged)
1769 return (EPERM);
1770 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1771 break;
1772 case IPV6_2292RTHDR:
1773 OPTSET2292(IN6P_RTHDR);
1774 break;
1775 }
1776 break;
1777 #endif
1778 case IPV6_PKTINFO:
1779 case IPV6_HOPOPTS:
1780 case IPV6_RTHDR:
1781 case IPV6_DSTOPTS:
1782 case IPV6_RTHDRDSTOPTS:
1783 case IPV6_NEXTHOP:
1784 {
1785 /* new advanced API (RFC3542) */
1786 u_char *optbuf;
1787 int optbuflen;
1788 struct ip6_pktopts **optp;
1789 if (!m) {
1790 error = EINVAL;
1791 break;
1792 }
1793
1794 #ifdef RFC2292
1795 /* cannot mix with RFC2292 */
1796 if (OPTBIT(IN6P_RFC2292)) {
1797 error = EINVAL;
1798 break;
1799 }
1800 #endif
1801
1802 if (m && m->m_next) {
1803 error = EINVAL; /* XXX */
1804 break;
1805 }
1806
1807 optbuf = mtod(m, u_char *);
1808 optbuflen = m->m_len;
1809 optp = &in6p->in6p_outputopts;
1810 error = ip6_pcbopt(optname, optbuf, optbuflen,
1811 optp, privileged, uproto);
1812 break;
1813 }
1814 #undef OPTSET
1815
1816 case IPV6_MULTICAST_IF:
1817 case IPV6_MULTICAST_HOPS:
1818 case IPV6_MULTICAST_LOOP:
1819 case IPV6_JOIN_GROUP:
1820 case IPV6_LEAVE_GROUP:
1821 error = ip6_setmoptions(optname,
1822 &in6p->in6p_moptions, m);
1823 break;
1824
1825 case IPV6_PORTRANGE:
1826 if (!m) {
1827 error = EINVAL;
1828 break;
1829 }
1830 optval = *mtod(m, int *);
1831
1832 switch (optval) {
1833 case IPV6_PORTRANGE_DEFAULT:
1834 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1835 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1836 break;
1837
1838 case IPV6_PORTRANGE_HIGH:
1839 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1840 in6p->in6p_flags |= IN6P_HIGHPORT;
1841 break;
1842
1843 case IPV6_PORTRANGE_LOW:
1844 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1845 in6p->in6p_flags |= IN6P_LOWPORT;
1846 break;
1847
1848 default:
1849 error = EINVAL;
1850 break;
1851 }
1852 break;
1853
1854
1855 #if defined(IPSEC) || defined(FAST_IPSEC)
1856 case IPV6_IPSEC_POLICY:
1857 {
1858 void *req = NULL;
1859 size_t len = 0;
1860 if (m) {
1861 req = mtod(m, void *);
1862 len = m->m_len;
1863 }
1864 error = ipsec6_set_policy(in6p, optname, req,
1865 len, privileged);
1866 }
1867 break;
1868 #endif /* IPSEC */
1869
1870 default:
1871 error = ENOPROTOOPT;
1872 break;
1873 }
1874 if (m)
1875 (void)m_free(m);
1876 break;
1877
1878 case PRCO_GETOPT:
1879 switch (optname) {
1880 #ifdef RFC2292
1881 case IPV6_2292PKTOPTIONS:
1882 /*
1883 * RFC3542 (effectively) deprecated the
1884 * semantics of the 2292-style pktoptions.
1885 * Since it was not reliable in nature (i.e.,
1886 * applications had to expect the lack of some
1887 * information after all), it would make sense
1888 * to simplify this part by always returning
1889 * empty data.
1890 */
1891 *mp = m_get(M_WAIT, MT_SOOPTS);
1892 (*mp)->m_len = 0;
1893 break;
1894 #endif
1895
1896 case IPV6_RECVHOPOPTS:
1897 case IPV6_RECVDSTOPTS:
1898 case IPV6_RECVRTHDRDSTOPTS:
1899 case IPV6_UNICAST_HOPS:
1900 case IPV6_RECVPKTINFO:
1901 case IPV6_RECVHOPLIMIT:
1902 case IPV6_RECVRTHDR:
1903 case IPV6_RECVPATHMTU:
1904
1905 case IPV6_FAITH:
1906 case IPV6_V6ONLY:
1907 case IPV6_PORTRANGE:
1908 case IPV6_RECVTCLASS:
1909 switch (optname) {
1910
1911 case IPV6_RECVHOPOPTS:
1912 optval = OPTBIT(IN6P_HOPOPTS);
1913 break;
1914
1915 case IPV6_RECVDSTOPTS:
1916 optval = OPTBIT(IN6P_DSTOPTS);
1917 break;
1918
1919 case IPV6_RECVRTHDRDSTOPTS:
1920 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1921 break;
1922
1923 case IPV6_UNICAST_HOPS:
1924 optval = in6p->in6p_hops;
1925 break;
1926
1927 case IPV6_RECVPKTINFO:
1928 optval = OPTBIT(IN6P_PKTINFO);
1929 break;
1930
1931 case IPV6_RECVHOPLIMIT:
1932 optval = OPTBIT(IN6P_HOPLIMIT);
1933 break;
1934
1935 case IPV6_RECVRTHDR:
1936 optval = OPTBIT(IN6P_RTHDR);
1937 break;
1938
1939 case IPV6_RECVPATHMTU:
1940 optval = OPTBIT(IN6P_MTU);
1941 break;
1942
1943 case IPV6_FAITH:
1944 optval = OPTBIT(IN6P_FAITH);
1945 break;
1946
1947 case IPV6_V6ONLY:
1948 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1949 break;
1950
1951 case IPV6_PORTRANGE:
1952 {
1953 int flags;
1954 flags = in6p->in6p_flags;
1955 if (flags & IN6P_HIGHPORT)
1956 optval = IPV6_PORTRANGE_HIGH;
1957 else if (flags & IN6P_LOWPORT)
1958 optval = IPV6_PORTRANGE_LOW;
1959 else
1960 optval = 0;
1961 break;
1962 }
1963 case IPV6_RECVTCLASS:
1964 optval = OPTBIT(IN6P_TCLASS);
1965 break;
1966
1967 }
1968 if (error)
1969 break;
1970 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1971 m->m_len = sizeof(int);
1972 *mtod(m, int *) = optval;
1973 break;
1974
1975 case IPV6_PATHMTU:
1976 {
1977 u_long pmtu = 0;
1978 struct ip6_mtuinfo mtuinfo;
1979 struct route *ro = &in6p->in6p_route;
1980
1981 if (!(so->so_state & SS_ISCONNECTED))
1982 return (ENOTCONN);
1983 /*
1984 * XXX: we dot not consider the case of source
1985 * routing, or optional information to specify
1986 * the outgoing interface.
1987 */
1988 error = ip6_getpmtu(ro, NULL, NULL,
1989 &in6p->in6p_faddr, &pmtu, NULL);
1990 if (error)
1991 break;
1992 if (pmtu > IPV6_MAXPACKET)
1993 pmtu = IPV6_MAXPACKET;
1994
1995 memset(&mtuinfo, 0, sizeof(mtuinfo));
1996 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1997 optdata = (void *)&mtuinfo;
1998 optdatalen = sizeof(mtuinfo);
1999 if (optdatalen > MCLBYTES)
2000 return (EMSGSIZE); /* XXX */
2001 *mp = m = m_get(M_WAIT, MT_SOOPTS);
2002 if (optdatalen > MLEN)
2003 MCLGET(m, M_WAIT);
2004 m->m_len = optdatalen;
2005 memcpy(mtod(m, void *), optdata, optdatalen);
2006 break;
2007 }
2008
2009 #ifdef RFC2292
2010 case IPV6_2292PKTINFO:
2011 case IPV6_2292HOPLIMIT:
2012 case IPV6_2292HOPOPTS:
2013 case IPV6_2292RTHDR:
2014 case IPV6_2292DSTOPTS:
2015 switch (optname) {
2016 case IPV6_2292PKTINFO:
2017 optval = OPTBIT(IN6P_PKTINFO);
2018 break;
2019 case IPV6_2292HOPLIMIT:
2020 optval = OPTBIT(IN6P_HOPLIMIT);
2021 break;
2022 case IPV6_2292HOPOPTS:
2023 optval = OPTBIT(IN6P_HOPOPTS);
2024 break;
2025 case IPV6_2292RTHDR:
2026 optval = OPTBIT(IN6P_RTHDR);
2027 break;
2028 case IPV6_2292DSTOPTS:
2029 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
2030 break;
2031 }
2032 *mp = m = m_get(M_WAIT, MT_SOOPTS);
2033 m->m_len = sizeof(int);
2034 *mtod(m, int *) = optval;
2035 break;
2036 #endif
2037 case IPV6_PKTINFO:
2038 case IPV6_HOPOPTS:
2039 case IPV6_RTHDR:
2040 case IPV6_DSTOPTS:
2041 case IPV6_RTHDRDSTOPTS:
2042 case IPV6_NEXTHOP:
2043 case IPV6_OTCLASS:
2044 case IPV6_TCLASS:
2045 case IPV6_DONTFRAG:
2046 case IPV6_USE_MIN_MTU:
2047 error = ip6_getpcbopt(in6p->in6p_outputopts,
2048 optname, mp);
2049 break;
2050
2051 case IPV6_MULTICAST_IF:
2052 case IPV6_MULTICAST_HOPS:
2053 case IPV6_MULTICAST_LOOP:
2054 case IPV6_JOIN_GROUP:
2055 case IPV6_LEAVE_GROUP:
2056 error = ip6_getmoptions(optname,
2057 in6p->in6p_moptions, mp);
2058 break;
2059
2060 #if defined(IPSEC) || defined(FAST_IPSEC)
2061 case IPV6_IPSEC_POLICY:
2062 {
2063 void *req = NULL;
2064 size_t len = 0;
2065 if (m) {
2066 req = mtod(m, void *);
2067 len = m->m_len;
2068 }
2069 error = ipsec6_get_policy(in6p, req, len, mp);
2070 break;
2071 }
2072 #endif /* IPSEC */
2073
2074
2075
2076
2077 default:
2078 error = ENOPROTOOPT;
2079 break;
2080 }
2081 break;
2082 }
2083 return (error);
2084 }
2085
2086 int
2087 ip6_raw_ctloutput(int op, struct socket *so, int level, int optname,
2088 struct mbuf **mp)
2089 {
2090 int error = 0, optval, optlen;
2091 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2092 struct in6pcb *in6p = sotoin6pcb(so);
2093 struct mbuf *m = *mp;
2094
2095 optlen = m ? m->m_len : 0;
2096
2097 if (level != IPPROTO_IPV6) {
2098 if (op == PRCO_SETOPT && *mp)
2099 (void)m_free(*mp);
2100 return ENOPROTOOPT;
2101 }
2102
2103 switch (optname) {
2104 case IPV6_CHECKSUM:
2105 /*
2106 * For ICMPv6 sockets, no modification allowed for checksum
2107 * offset, permit "no change" values to help existing apps.
2108 *
2109 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
2110 * for an ICMPv6 socket will fail." The current
2111 * behavior does not meet RFC3542.
2112 */
2113 switch (op) {
2114 case PRCO_SETOPT:
2115 if (optlen != sizeof(int)) {
2116 error = EINVAL;
2117 break;
2118 }
2119 optval = *mtod(m, int *);
2120 if ((optval % 2) != 0) {
2121 /* the API assumes even offset values */
2122 error = EINVAL;
2123 } else if (so->so_proto->pr_protocol ==
2124 IPPROTO_ICMPV6) {
2125 if (optval != icmp6off)
2126 error = EINVAL;
2127 } else
2128 in6p->in6p_cksum = optval;
2129 break;
2130
2131 case PRCO_GETOPT:
2132 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2133 optval = icmp6off;
2134 else
2135 optval = in6p->in6p_cksum;
2136
2137 *mp = m = m_get(M_WAIT, MT_SOOPTS);
2138 m->m_len = sizeof(int);
2139 *mtod(m, int *) = optval;
2140 break;
2141
2142 default:
2143 error = EINVAL;
2144 break;
2145 }
2146 break;
2147
2148 default:
2149 error = ENOPROTOOPT;
2150 break;
2151 }
2152
2153 if (op == PRCO_SETOPT && m)
2154 (void)m_free(m);
2155
2156 return (error);
2157 }
2158
2159 #ifdef RFC2292
2160 /*
2161 * Set up IP6 options in pcb for insertion in output packets or
2162 * specifying behavior of outgoing packets.
2163 */
2164 static int
2165 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, struct socket *so)
2166 {
2167 struct ip6_pktopts *opt = *pktopt;
2168 int error = 0;
2169 struct lwp *l = curlwp; /* XXX */
2170 int priv = 0;
2171
2172 /* turn off any old options. */
2173 if (opt) {
2174 #ifdef DIAGNOSTIC
2175 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2176 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2177 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2178 printf("ip6_pcbopts: all specified options are cleared.\n");
2179 #endif
2180 ip6_clearpktopts(opt, -1);
2181 } else
2182 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2183 *pktopt = NULL;
2184
2185 if (!m || m->m_len == 0) {
2186 /*
2187 * Only turning off any previous options, regardless of
2188 * whether the opt is just created or given.
2189 */
2190 free(opt, M_IP6OPT);
2191 return (0);
2192 }
2193
2194 /* set options specified by user. */
2195 if (l && !kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
2196 NULL))
2197 priv = 1;
2198 if ((error = ip6_setpktopts(m, opt, NULL, priv,
2199 so->so_proto->pr_protocol)) != 0) {
2200 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2201 free(opt, M_IP6OPT);
2202 return (error);
2203 }
2204 *pktopt = opt;
2205 return (0);
2206 }
2207 #endif
2208
2209 /*
2210 * initialize ip6_pktopts. beware that there are non-zero default values in
2211 * the struct.
2212 */
2213 void
2214 ip6_initpktopts(struct ip6_pktopts *opt)
2215 {
2216
2217 memset(opt, 0, sizeof(*opt));
2218 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2219 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2220 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2221 }
2222
2223 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2224 static int
2225 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2226 int priv, int uproto)
2227 {
2228 struct ip6_pktopts *opt;
2229
2230 if (*pktopt == NULL) {
2231 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2232 M_WAITOK);
2233 ip6_initpktopts(*pktopt);
2234 }
2235 opt = *pktopt;
2236
2237 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, 0, uproto));
2238 }
2239
2240 static int
2241 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf **mp)
2242 {
2243 void *optdata = NULL;
2244 int optdatalen = 0;
2245 struct ip6_ext *ip6e;
2246 int error = 0;
2247 struct in6_pktinfo null_pktinfo;
2248 int deftclass = 0, on;
2249 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2250 struct mbuf *m;
2251
2252 switch (optname) {
2253 case IPV6_PKTINFO:
2254 if (pktopt && pktopt->ip6po_pktinfo)
2255 optdata = (void *)pktopt->ip6po_pktinfo;
2256 else {
2257 /* XXX: we don't have to do this every time... */
2258 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2259 optdata = (void *)&null_pktinfo;
2260 }
2261 optdatalen = sizeof(struct in6_pktinfo);
2262 break;
2263 case IPV6_OTCLASS:
2264 /* XXX */
2265 return (EINVAL);
2266 case IPV6_TCLASS:
2267 if (pktopt && pktopt->ip6po_tclass >= 0)
2268 optdata = (void *)&pktopt->ip6po_tclass;
2269 else
2270 optdata = (void *)&deftclass;
2271 optdatalen = sizeof(int);
2272 break;
2273 case IPV6_HOPOPTS:
2274 if (pktopt && pktopt->ip6po_hbh) {
2275 optdata = (void *)pktopt->ip6po_hbh;
2276 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2277 optdatalen = (ip6e->ip6e_len + 1) << 3;
2278 }
2279 break;
2280 case IPV6_RTHDR:
2281 if (pktopt && pktopt->ip6po_rthdr) {
2282 optdata = (void *)pktopt->ip6po_rthdr;
2283 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2284 optdatalen = (ip6e->ip6e_len + 1) << 3;
2285 }
2286 break;
2287 case IPV6_RTHDRDSTOPTS:
2288 if (pktopt && pktopt->ip6po_dest1) {
2289 optdata = (void *)pktopt->ip6po_dest1;
2290 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2291 optdatalen = (ip6e->ip6e_len + 1) << 3;
2292 }
2293 break;
2294 case IPV6_DSTOPTS:
2295 if (pktopt && pktopt->ip6po_dest2) {
2296 optdata = (void *)pktopt->ip6po_dest2;
2297 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2298 optdatalen = (ip6e->ip6e_len + 1) << 3;
2299 }
2300 break;
2301 case IPV6_NEXTHOP:
2302 if (pktopt && pktopt->ip6po_nexthop) {
2303 optdata = (void *)pktopt->ip6po_nexthop;
2304 optdatalen = pktopt->ip6po_nexthop->sa_len;
2305 }
2306 break;
2307 case IPV6_USE_MIN_MTU:
2308 if (pktopt)
2309 optdata = (void *)&pktopt->ip6po_minmtu;
2310 else
2311 optdata = (void *)&defminmtu;
2312 optdatalen = sizeof(int);
2313 break;
2314 case IPV6_DONTFRAG:
2315 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2316 on = 1;
2317 else
2318 on = 0;
2319 optdata = (void *)&on;
2320 optdatalen = sizeof(on);
2321 break;
2322 default: /* should not happen */
2323 #ifdef DIAGNOSTIC
2324 panic("ip6_getpcbopt: unexpected option\n");
2325 #endif
2326 return (ENOPROTOOPT);
2327 }
2328
2329 if (optdatalen > MCLBYTES)
2330 return (EMSGSIZE); /* XXX */
2331 *mp = m = m_get(M_WAIT, MT_SOOPTS);
2332 if (optdatalen > MLEN)
2333 MCLGET(m, M_WAIT);
2334 m->m_len = optdatalen;
2335 if (optdatalen)
2336 memcpy(mtod(m, void *), optdata, optdatalen);
2337
2338 return (error);
2339 }
2340
2341 void
2342 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2343 {
2344 if (optname == -1 || optname == IPV6_PKTINFO) {
2345 if (pktopt->ip6po_pktinfo)
2346 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2347 pktopt->ip6po_pktinfo = NULL;
2348 }
2349 if (optname == -1 || optname == IPV6_HOPLIMIT)
2350 pktopt->ip6po_hlim = -1;
2351 if (optname == -1 || optname == IPV6_TCLASS)
2352 pktopt->ip6po_tclass = -1;
2353 if (optname == -1 || optname == IPV6_NEXTHOP) {
2354 rtcache_free(&pktopt->ip6po_nextroute);
2355 if (pktopt->ip6po_nexthop)
2356 free(pktopt->ip6po_nexthop, M_IP6OPT);
2357 pktopt->ip6po_nexthop = NULL;
2358 }
2359 if (optname == -1 || optname == IPV6_HOPOPTS) {
2360 if (pktopt->ip6po_hbh)
2361 free(pktopt->ip6po_hbh, M_IP6OPT);
2362 pktopt->ip6po_hbh = NULL;
2363 }
2364 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2365 if (pktopt->ip6po_dest1)
2366 free(pktopt->ip6po_dest1, M_IP6OPT);
2367 pktopt->ip6po_dest1 = NULL;
2368 }
2369 if (optname == -1 || optname == IPV6_RTHDR) {
2370 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2371 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2372 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2373 rtcache_free(&pktopt->ip6po_route);
2374 }
2375 if (optname == -1 || optname == IPV6_DSTOPTS) {
2376 if (pktopt->ip6po_dest2)
2377 free(pktopt->ip6po_dest2, M_IP6OPT);
2378 pktopt->ip6po_dest2 = NULL;
2379 }
2380 }
2381
2382 #define PKTOPT_EXTHDRCPY(type) \
2383 do { \
2384 if (src->type) { \
2385 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2386 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2387 if (dst->type == NULL && canwait == M_NOWAIT) \
2388 goto bad; \
2389 memcpy(dst->type, src->type, hlen); \
2390 } \
2391 } while (/*CONSTCOND*/ 0)
2392
2393 static int
2394 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2395 {
2396 dst->ip6po_hlim = src->ip6po_hlim;
2397 dst->ip6po_tclass = src->ip6po_tclass;
2398 dst->ip6po_flags = src->ip6po_flags;
2399 if (src->ip6po_pktinfo) {
2400 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2401 M_IP6OPT, canwait);
2402 if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT)
2403 goto bad;
2404 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2405 }
2406 if (src->ip6po_nexthop) {
2407 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2408 M_IP6OPT, canwait);
2409 if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT)
2410 goto bad;
2411 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2412 src->ip6po_nexthop->sa_len);
2413 }
2414 PKTOPT_EXTHDRCPY(ip6po_hbh);
2415 PKTOPT_EXTHDRCPY(ip6po_dest1);
2416 PKTOPT_EXTHDRCPY(ip6po_dest2);
2417 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2418 return (0);
2419
2420 bad:
2421 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2422 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2423 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2424 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2425 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2426 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2427
2428 return (ENOBUFS);
2429 }
2430 #undef PKTOPT_EXTHDRCPY
2431
2432 struct ip6_pktopts *
2433 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2434 {
2435 int error;
2436 struct ip6_pktopts *dst;
2437
2438 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2439 if (dst == NULL && canwait == M_NOWAIT)
2440 return (NULL);
2441 ip6_initpktopts(dst);
2442
2443 if ((error = copypktopts(dst, src, canwait)) != 0) {
2444 free(dst, M_IP6OPT);
2445 return (NULL);
2446 }
2447
2448 return (dst);
2449 }
2450
2451 void
2452 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2453 {
2454 if (pktopt == NULL)
2455 return;
2456
2457 ip6_clearpktopts(pktopt, -1);
2458
2459 free(pktopt, M_IP6OPT);
2460 }
2461
2462 /*
2463 * Set the IP6 multicast options in response to user setsockopt().
2464 */
2465 static int
2466 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m)
2467 {
2468 int error = 0;
2469 u_int loop, ifindex;
2470 struct ipv6_mreq *mreq;
2471 struct ifnet *ifp;
2472 struct ip6_moptions *im6o = *im6op;
2473 struct route ro;
2474 struct in6_multi_mship *imm;
2475 struct lwp *l = curlwp; /* XXX */
2476
2477 if (im6o == NULL) {
2478 /*
2479 * No multicast option buffer attached to the pcb;
2480 * allocate one and initialize to default values.
2481 */
2482 im6o = (struct ip6_moptions *)
2483 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
2484
2485 if (im6o == NULL)
2486 return (ENOBUFS);
2487 *im6op = im6o;
2488 im6o->im6o_multicast_ifp = NULL;
2489 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2490 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2491 LIST_INIT(&im6o->im6o_memberships);
2492 }
2493
2494 switch (optname) {
2495
2496 case IPV6_MULTICAST_IF:
2497 /*
2498 * Select the interface for outgoing multicast packets.
2499 */
2500 if (m == NULL || m->m_len != sizeof(u_int)) {
2501 error = EINVAL;
2502 break;
2503 }
2504 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
2505 if (ifindex != 0) {
2506 if (if_indexlim <= ifindex || !ifindex2ifnet[ifindex]) {
2507 error = ENXIO; /* XXX EINVAL? */
2508 break;
2509 }
2510 ifp = ifindex2ifnet[ifindex];
2511 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2512 error = EADDRNOTAVAIL;
2513 break;
2514 }
2515 } else
2516 ifp = NULL;
2517 im6o->im6o_multicast_ifp = ifp;
2518 break;
2519
2520 case IPV6_MULTICAST_HOPS:
2521 {
2522 /*
2523 * Set the IP6 hoplimit for outgoing multicast packets.
2524 */
2525 int optval;
2526 if (m == NULL || m->m_len != sizeof(int)) {
2527 error = EINVAL;
2528 break;
2529 }
2530 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
2531 if (optval < -1 || optval >= 256)
2532 error = EINVAL;
2533 else if (optval == -1)
2534 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2535 else
2536 im6o->im6o_multicast_hlim = optval;
2537 break;
2538 }
2539
2540 case IPV6_MULTICAST_LOOP:
2541 /*
2542 * Set the loopback flag for outgoing multicast packets.
2543 * Must be zero or one.
2544 */
2545 if (m == NULL || m->m_len != sizeof(u_int)) {
2546 error = EINVAL;
2547 break;
2548 }
2549 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
2550 if (loop > 1) {
2551 error = EINVAL;
2552 break;
2553 }
2554 im6o->im6o_multicast_loop = loop;
2555 break;
2556
2557 case IPV6_JOIN_GROUP:
2558 /*
2559 * Add a multicast group membership.
2560 * Group must be a valid IP6 multicast address.
2561 */
2562 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2563 error = EINVAL;
2564 break;
2565 }
2566 mreq = mtod(m, struct ipv6_mreq *);
2567 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2568 /*
2569 * We use the unspecified address to specify to accept
2570 * all multicast addresses. Only super user is allowed
2571 * to do this.
2572 */
2573 if (kauth_authorize_generic(l->l_cred,
2574 KAUTH_GENERIC_ISSUSER, NULL))
2575 {
2576 error = EACCES;
2577 break;
2578 }
2579 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2580 error = EINVAL;
2581 break;
2582 }
2583
2584 /*
2585 * If no interface was explicitly specified, choose an
2586 * appropriate one according to the given multicast address.
2587 */
2588 if (mreq->ipv6mr_interface == 0) {
2589 struct rtentry *rt;
2590 union {
2591 struct sockaddr dst;
2592 struct sockaddr_in6 dst6;
2593 } u;
2594
2595 /*
2596 * Look up the routing table for the
2597 * address, and choose the outgoing interface.
2598 * XXX: is it a good approach?
2599 */
2600 memset(&ro, 0, sizeof(ro));
2601 sockaddr_in6_init(&u.dst6, &mreq->ipv6mr_multiaddr, 0,
2602 0, 0);
2603 rtcache_setdst(&ro, &u.dst);
2604 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
2605 : NULL;
2606 rtcache_free(&ro);
2607 } else {
2608 /*
2609 * If the interface is specified, validate it.
2610 */
2611 if (if_indexlim <= mreq->ipv6mr_interface ||
2612 !ifindex2ifnet[mreq->ipv6mr_interface]) {
2613 error = ENXIO; /* XXX EINVAL? */
2614 break;
2615 }
2616 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2617 }
2618
2619 /*
2620 * See if we found an interface, and confirm that it
2621 * supports multicast
2622 */
2623 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2624 error = EADDRNOTAVAIL;
2625 break;
2626 }
2627
2628 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
2629 error = EADDRNOTAVAIL; /* XXX: should not happen */
2630 break;
2631 }
2632
2633 /*
2634 * See if the membership already exists.
2635 */
2636 for (imm = im6o->im6o_memberships.lh_first;
2637 imm != NULL; imm = imm->i6mm_chain.le_next)
2638 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2639 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2640 &mreq->ipv6mr_multiaddr))
2641 break;
2642 if (imm != NULL) {
2643 error = EADDRINUSE;
2644 break;
2645 }
2646 /*
2647 * Everything looks good; add a new record to the multicast
2648 * address list for the given interface.
2649 */
2650 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0);
2651 if (imm == NULL)
2652 break;
2653 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2654 break;
2655
2656 case IPV6_LEAVE_GROUP:
2657 /*
2658 * Drop a multicast group membership.
2659 * Group must be a valid IP6 multicast address.
2660 */
2661 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2662 error = EINVAL;
2663 break;
2664 }
2665 mreq = mtod(m, struct ipv6_mreq *);
2666
2667 /*
2668 * If an interface address was specified, get a pointer
2669 * to its ifnet structure.
2670 */
2671 if (mreq->ipv6mr_interface != 0) {
2672 if (if_indexlim <= mreq->ipv6mr_interface ||
2673 !ifindex2ifnet[mreq->ipv6mr_interface]) {
2674 error = ENXIO; /* XXX EINVAL? */
2675 break;
2676 }
2677 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2678 } else
2679 ifp = NULL;
2680
2681 /* Fill in the scope zone ID */
2682 if (ifp) {
2683 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
2684 /* XXX: should not happen */
2685 error = EADDRNOTAVAIL;
2686 break;
2687 }
2688 } else if (mreq->ipv6mr_interface != 0) {
2689 /*
2690 * XXX: This case would happens when the (positive)
2691 * index is in the valid range, but the corresponding
2692 * interface has been detached dynamically. The above
2693 * check probably avoids such case to happen here, but
2694 * we check it explicitly for safety.
2695 */
2696 error = EADDRNOTAVAIL;
2697 break;
2698 } else { /* ipv6mr_interface == 0 */
2699 struct sockaddr_in6 sa6_mc;
2700
2701 /*
2702 * The API spec says as follows:
2703 * If the interface index is specified as 0, the
2704 * system may choose a multicast group membership to
2705 * drop by matching the multicast address only.
2706 * On the other hand, we cannot disambiguate the scope
2707 * zone unless an interface is provided. Thus, we
2708 * check if there's ambiguity with the default scope
2709 * zone as the last resort.
2710 */
2711 sockaddr_in6_init(&sa6_mc, &mreq->ipv6mr_multiaddr,
2712 0, 0, 0);
2713 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2714 if (error != 0)
2715 break;
2716 mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr;
2717 }
2718
2719 /*
2720 * Find the membership in the membership list.
2721 */
2722 for (imm = im6o->im6o_memberships.lh_first;
2723 imm != NULL; imm = imm->i6mm_chain.le_next) {
2724 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2725 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2726 &mreq->ipv6mr_multiaddr))
2727 break;
2728 }
2729 if (imm == NULL) {
2730 /* Unable to resolve interface */
2731 error = EADDRNOTAVAIL;
2732 break;
2733 }
2734 /*
2735 * Give up the multicast address record to which the
2736 * membership points.
2737 */
2738 LIST_REMOVE(imm, i6mm_chain);
2739 in6_leavegroup(imm);
2740 break;
2741
2742 default:
2743 error = EOPNOTSUPP;
2744 break;
2745 }
2746
2747 /*
2748 * If all options have default values, no need to keep the mbuf.
2749 */
2750 if (im6o->im6o_multicast_ifp == NULL &&
2751 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2752 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2753 im6o->im6o_memberships.lh_first == NULL) {
2754 free(*im6op, M_IPMOPTS);
2755 *im6op = NULL;
2756 }
2757
2758 return (error);
2759 }
2760
2761 /*
2762 * Return the IP6 multicast options in response to user getsockopt().
2763 */
2764 static int
2765 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp)
2766 {
2767 u_int *hlim, *loop, *ifindex;
2768
2769 *mp = m_get(M_WAIT, MT_SOOPTS);
2770
2771 switch (optname) {
2772
2773 case IPV6_MULTICAST_IF:
2774 ifindex = mtod(*mp, u_int *);
2775 (*mp)->m_len = sizeof(u_int);
2776 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2777 *ifindex = 0;
2778 else
2779 *ifindex = im6o->im6o_multicast_ifp->if_index;
2780 return (0);
2781
2782 case IPV6_MULTICAST_HOPS:
2783 hlim = mtod(*mp, u_int *);
2784 (*mp)->m_len = sizeof(u_int);
2785 if (im6o == NULL)
2786 *hlim = ip6_defmcasthlim;
2787 else
2788 *hlim = im6o->im6o_multicast_hlim;
2789 return (0);
2790
2791 case IPV6_MULTICAST_LOOP:
2792 loop = mtod(*mp, u_int *);
2793 (*mp)->m_len = sizeof(u_int);
2794 if (im6o == NULL)
2795 *loop = ip6_defmcasthlim;
2796 else
2797 *loop = im6o->im6o_multicast_loop;
2798 return (0);
2799
2800 default:
2801 return (EOPNOTSUPP);
2802 }
2803 }
2804
2805 /*
2806 * Discard the IP6 multicast options.
2807 */
2808 void
2809 ip6_freemoptions(struct ip6_moptions *im6o)
2810 {
2811 struct in6_multi_mship *imm;
2812
2813 if (im6o == NULL)
2814 return;
2815
2816 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2817 LIST_REMOVE(imm, i6mm_chain);
2818 in6_leavegroup(imm);
2819 }
2820 free(im6o, M_IPMOPTS);
2821 }
2822
2823 /*
2824 * Set IPv6 outgoing packet options based on advanced API.
2825 */
2826 int
2827 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2828 struct ip6_pktopts *stickyopt, int priv, int uproto)
2829 {
2830 struct cmsghdr *cm = 0;
2831
2832 if (control == NULL || opt == NULL)
2833 return (EINVAL);
2834
2835 ip6_initpktopts(opt);
2836 if (stickyopt) {
2837 int error;
2838
2839 /*
2840 * If stickyopt is provided, make a local copy of the options
2841 * for this particular packet, then override them by ancillary
2842 * objects.
2843 * XXX: copypktopts() does not copy the cached route to a next
2844 * hop (if any). This is not very good in terms of efficiency,
2845 * but we can allow this since this option should be rarely
2846 * used.
2847 */
2848 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2849 return (error);
2850 }
2851
2852 /*
2853 * XXX: Currently, we assume all the optional information is stored
2854 * in a single mbuf.
2855 */
2856 if (control->m_next)
2857 return (EINVAL);
2858
2859 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2860 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2861 int error;
2862
2863 if (control->m_len < CMSG_LEN(0))
2864 return (EINVAL);
2865
2866 cm = mtod(control, struct cmsghdr *);
2867 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2868 return (EINVAL);
2869 if (cm->cmsg_level != IPPROTO_IPV6)
2870 continue;
2871
2872 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2873 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, 1, uproto);
2874 if (error)
2875 return (error);
2876 }
2877
2878 return (0);
2879 }
2880
2881 /*
2882 * Set a particular packet option, as a sticky option or an ancillary data
2883 * item. "len" can be 0 only when it's a sticky option.
2884 * We have 4 cases of combination of "sticky" and "cmsg":
2885 * "sticky=0, cmsg=0": impossible
2886 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2887 * "sticky=1, cmsg=0": RFC3542 socket option
2888 * "sticky=1, cmsg=1": RFC2292 socket option
2889 */
2890 static int
2891 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2892 int priv, int sticky, int cmsg, int uproto)
2893 {
2894 int minmtupolicy;
2895
2896 if (!sticky && !cmsg) {
2897 #ifdef DIAGNOSTIC
2898 printf("ip6_setpktopt: impossible case\n");
2899 #endif
2900 return (EINVAL);
2901 }
2902
2903 /*
2904 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2905 * not be specified in the context of RFC3542. Conversely,
2906 * RFC3542 types should not be specified in the context of RFC2292.
2907 */
2908 if (!cmsg) {
2909 switch (optname) {
2910 case IPV6_2292PKTINFO:
2911 case IPV6_2292HOPLIMIT:
2912 case IPV6_2292NEXTHOP:
2913 case IPV6_2292HOPOPTS:
2914 case IPV6_2292DSTOPTS:
2915 case IPV6_2292RTHDR:
2916 case IPV6_2292PKTOPTIONS:
2917 return (ENOPROTOOPT);
2918 }
2919 }
2920 if (sticky && cmsg) {
2921 switch (optname) {
2922 case IPV6_PKTINFO:
2923 case IPV6_HOPLIMIT:
2924 case IPV6_NEXTHOP:
2925 case IPV6_HOPOPTS:
2926 case IPV6_DSTOPTS:
2927 case IPV6_RTHDRDSTOPTS:
2928 case IPV6_RTHDR:
2929 case IPV6_USE_MIN_MTU:
2930 case IPV6_DONTFRAG:
2931 case IPV6_OTCLASS:
2932 case IPV6_TCLASS:
2933 return (ENOPROTOOPT);
2934 }
2935 }
2936
2937 switch (optname) {
2938 #ifdef RFC2292
2939 case IPV6_2292PKTINFO:
2940 #endif
2941 case IPV6_PKTINFO:
2942 {
2943 struct ifnet *ifp = NULL;
2944 struct in6_pktinfo *pktinfo;
2945
2946 if (len != sizeof(struct in6_pktinfo))
2947 return (EINVAL);
2948
2949 pktinfo = (struct in6_pktinfo *)buf;
2950
2951 /*
2952 * An application can clear any sticky IPV6_PKTINFO option by
2953 * doing a "regular" setsockopt with ipi6_addr being
2954 * in6addr_any and ipi6_ifindex being zero.
2955 * [RFC 3542, Section 6]
2956 */
2957 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2958 pktinfo->ipi6_ifindex == 0 &&
2959 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2960 ip6_clearpktopts(opt, optname);
2961 break;
2962 }
2963
2964 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2965 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2966 return (EINVAL);
2967 }
2968
2969 /* validate the interface index if specified. */
2970 if (pktinfo->ipi6_ifindex >= if_indexlim) {
2971 return (ENXIO);
2972 }
2973 if (pktinfo->ipi6_ifindex) {
2974 ifp = ifindex2ifnet[pktinfo->ipi6_ifindex];
2975 if (ifp == NULL)
2976 return (ENXIO);
2977 }
2978
2979 /*
2980 * We store the address anyway, and let in6_selectsrc()
2981 * validate the specified address. This is because ipi6_addr
2982 * may not have enough information about its scope zone, and
2983 * we may need additional information (such as outgoing
2984 * interface or the scope zone of a destination address) to
2985 * disambiguate the scope.
2986 * XXX: the delay of the validation may confuse the
2987 * application when it is used as a sticky option.
2988 */
2989 if (opt->ip6po_pktinfo == NULL) {
2990 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2991 M_IP6OPT, M_NOWAIT);
2992 if (opt->ip6po_pktinfo == NULL)
2993 return (ENOBUFS);
2994 }
2995 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2996 break;
2997 }
2998
2999 #ifdef RFC2292
3000 case IPV6_2292HOPLIMIT:
3001 #endif
3002 case IPV6_HOPLIMIT:
3003 {
3004 int *hlimp;
3005
3006 /*
3007 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
3008 * to simplify the ordering among hoplimit options.
3009 */
3010 if (optname == IPV6_HOPLIMIT && sticky)
3011 return (ENOPROTOOPT);
3012
3013 if (len != sizeof(int))
3014 return (EINVAL);
3015 hlimp = (int *)buf;
3016 if (*hlimp < -1 || *hlimp > 255)
3017 return (EINVAL);
3018
3019 opt->ip6po_hlim = *hlimp;
3020 break;
3021 }
3022
3023 case IPV6_OTCLASS:
3024 if (len != sizeof(u_int8_t))
3025 return (EINVAL);
3026
3027 opt->ip6po_tclass = *(u_int8_t *)buf;
3028 break;
3029
3030 case IPV6_TCLASS:
3031 {
3032 int tclass;
3033
3034 if (len != sizeof(int))
3035 return (EINVAL);
3036 tclass = *(int *)buf;
3037 if (tclass < -1 || tclass > 255)
3038 return (EINVAL);
3039
3040 opt->ip6po_tclass = tclass;
3041 break;
3042 }
3043
3044 #ifdef RFC2292
3045 case IPV6_2292NEXTHOP:
3046 #endif
3047 case IPV6_NEXTHOP:
3048 if (!priv)
3049 return (EPERM);
3050
3051 if (len == 0) { /* just remove the option */
3052 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3053 break;
3054 }
3055
3056 /* check if cmsg_len is large enough for sa_len */
3057 if (len < sizeof(struct sockaddr) || len < *buf)
3058 return (EINVAL);
3059
3060 switch (((struct sockaddr *)buf)->sa_family) {
3061 case AF_INET6:
3062 {
3063 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3064 int error;
3065
3066 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3067 return (EINVAL);
3068
3069 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3070 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3071 return (EINVAL);
3072 }
3073 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
3074 != 0) {
3075 return (error);
3076 }
3077 break;
3078 }
3079 case AF_LINK: /* eventually be supported? */
3080 default:
3081 return (EAFNOSUPPORT);
3082 }
3083
3084 /* turn off the previous option, then set the new option. */
3085 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3086 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3087 if (opt->ip6po_nexthop == NULL)
3088 return (ENOBUFS);
3089 memcpy(opt->ip6po_nexthop, buf, *buf);
3090 break;
3091
3092 #ifdef RFC2292
3093 case IPV6_2292HOPOPTS:
3094 #endif
3095 case IPV6_HOPOPTS:
3096 {
3097 struct ip6_hbh *hbh;
3098 int hbhlen;
3099
3100 /*
3101 * XXX: We don't allow a non-privileged user to set ANY HbH
3102 * options, since per-option restriction has too much
3103 * overhead.
3104 */
3105 if (!priv)
3106 return (EPERM);
3107
3108 if (len == 0) {
3109 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3110 break; /* just remove the option */
3111 }
3112
3113 /* message length validation */
3114 if (len < sizeof(struct ip6_hbh))
3115 return (EINVAL);
3116 hbh = (struct ip6_hbh *)buf;
3117 hbhlen = (hbh->ip6h_len + 1) << 3;
3118 if (len != hbhlen)
3119 return (EINVAL);
3120
3121 /* turn off the previous option, then set the new option. */
3122 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3123 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3124 if (opt->ip6po_hbh == NULL)
3125 return (ENOBUFS);
3126 memcpy(opt->ip6po_hbh, hbh, hbhlen);
3127
3128 break;
3129 }
3130
3131 #ifdef RFC2292
3132 case IPV6_2292DSTOPTS:
3133 #endif
3134 case IPV6_DSTOPTS:
3135 case IPV6_RTHDRDSTOPTS:
3136 {
3137 struct ip6_dest *dest, **newdest = NULL;
3138 int destlen;
3139
3140 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */
3141 return (EPERM);
3142
3143 if (len == 0) {
3144 ip6_clearpktopts(opt, optname);
3145 break; /* just remove the option */
3146 }
3147
3148 /* message length validation */
3149 if (len < sizeof(struct ip6_dest))
3150 return (EINVAL);
3151 dest = (struct ip6_dest *)buf;
3152 destlen = (dest->ip6d_len + 1) << 3;
3153 if (len != destlen)
3154 return (EINVAL);
3155 /*
3156 * Determine the position that the destination options header
3157 * should be inserted; before or after the routing header.
3158 */
3159 switch (optname) {
3160 case IPV6_2292DSTOPTS:
3161 /*
3162 * The old advanced API is ambiguous on this point.
3163 * Our approach is to determine the position based
3164 * according to the existence of a routing header.
3165 * Note, however, that this depends on the order of the
3166 * extension headers in the ancillary data; the 1st
3167 * part of the destination options header must appear
3168 * before the routing header in the ancillary data,
3169 * too.
3170 * RFC3542 solved the ambiguity by introducing
3171 * separate ancillary data or option types.
3172 */
3173 if (opt->ip6po_rthdr == NULL)
3174 newdest = &opt->ip6po_dest1;
3175 else
3176 newdest = &opt->ip6po_dest2;
3177 break;
3178 case IPV6_RTHDRDSTOPTS:
3179 newdest = &opt->ip6po_dest1;
3180 break;
3181 case IPV6_DSTOPTS:
3182 newdest = &opt->ip6po_dest2;
3183 break;
3184 }
3185
3186 /* turn off the previous option, then set the new option. */
3187 ip6_clearpktopts(opt, optname);
3188 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3189 if (*newdest == NULL)
3190 return (ENOBUFS);
3191 memcpy(*newdest, dest, destlen);
3192
3193 break;
3194 }
3195
3196 #ifdef RFC2292
3197 case IPV6_2292RTHDR:
3198 #endif
3199 case IPV6_RTHDR:
3200 {
3201 struct ip6_rthdr *rth;
3202 int rthlen;
3203
3204 if (len == 0) {
3205 ip6_clearpktopts(opt, IPV6_RTHDR);
3206 break; /* just remove the option */
3207 }
3208
3209 /* message length validation */
3210 if (len < sizeof(struct ip6_rthdr))
3211 return (EINVAL);
3212 rth = (struct ip6_rthdr *)buf;
3213 rthlen = (rth->ip6r_len + 1) << 3;
3214 if (len != rthlen)
3215 return (EINVAL);
3216 switch (rth->ip6r_type) {
3217 case IPV6_RTHDR_TYPE_0:
3218 if (rth->ip6r_len == 0) /* must contain one addr */
3219 return (EINVAL);
3220 if (rth->ip6r_len % 2) /* length must be even */
3221 return (EINVAL);
3222 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3223 return (EINVAL);
3224 break;
3225 default:
3226 return (EINVAL); /* not supported */
3227 }
3228 /* turn off the previous option */
3229 ip6_clearpktopts(opt, IPV6_RTHDR);
3230 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3231 if (opt->ip6po_rthdr == NULL)
3232 return (ENOBUFS);
3233 memcpy(opt->ip6po_rthdr, rth, rthlen);
3234 break;
3235 }
3236
3237 case IPV6_USE_MIN_MTU:
3238 if (len != sizeof(int))
3239 return (EINVAL);
3240 minmtupolicy = *(int *)buf;
3241 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3242 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3243 minmtupolicy != IP6PO_MINMTU_ALL) {
3244 return (EINVAL);
3245 }
3246 opt->ip6po_minmtu = minmtupolicy;
3247 break;
3248
3249 case IPV6_DONTFRAG:
3250 if (len != sizeof(int))
3251 return (EINVAL);
3252
3253 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3254 /*
3255 * we ignore this option for TCP sockets.
3256 * (RFC3542 leaves this case unspecified.)
3257 */
3258 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3259 } else
3260 opt->ip6po_flags |= IP6PO_DONTFRAG;
3261 break;
3262
3263 default:
3264 return (ENOPROTOOPT);
3265 } /* end of switch */
3266
3267 return (0);
3268 }
3269
3270 /*
3271 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3272 * packet to the input queue of a specified interface. Note that this
3273 * calls the output routine of the loopback "driver", but with an interface
3274 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3275 */
3276 void
3277 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3278 const struct sockaddr_in6 *dst)
3279 {
3280 struct mbuf *copym;
3281 struct ip6_hdr *ip6;
3282
3283 copym = m_copy(m, 0, M_COPYALL);
3284 if (copym == NULL)
3285 return;
3286
3287 /*
3288 * Make sure to deep-copy IPv6 header portion in case the data
3289 * is in an mbuf cluster, so that we can safely override the IPv6
3290 * header portion later.
3291 */
3292 if ((copym->m_flags & M_EXT) != 0 ||
3293 copym->m_len < sizeof(struct ip6_hdr)) {
3294 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3295 if (copym == NULL)
3296 return;
3297 }
3298
3299 #ifdef DIAGNOSTIC
3300 if (copym->m_len < sizeof(*ip6)) {
3301 m_freem(copym);
3302 return;
3303 }
3304 #endif
3305
3306 ip6 = mtod(copym, struct ip6_hdr *);
3307 /*
3308 * clear embedded scope identifiers if necessary.
3309 * in6_clearscope will touch the addresses only when necessary.
3310 */
3311 in6_clearscope(&ip6->ip6_src);
3312 in6_clearscope(&ip6->ip6_dst);
3313
3314 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3315 }
3316
3317 /*
3318 * Chop IPv6 header off from the payload.
3319 */
3320 static int
3321 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3322 {
3323 struct mbuf *mh;
3324 struct ip6_hdr *ip6;
3325
3326 ip6 = mtod(m, struct ip6_hdr *);
3327 if (m->m_len > sizeof(*ip6)) {
3328 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3329 if (mh == 0) {
3330 m_freem(m);
3331 return ENOBUFS;
3332 }
3333 M_MOVE_PKTHDR(mh, m);
3334 MH_ALIGN(mh, sizeof(*ip6));
3335 m->m_len -= sizeof(*ip6);
3336 m->m_data += sizeof(*ip6);
3337 mh->m_next = m;
3338 m = mh;
3339 m->m_len = sizeof(*ip6);
3340 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
3341 }
3342 exthdrs->ip6e_ip6 = m;
3343 return 0;
3344 }
3345
3346 /*
3347 * Compute IPv6 extension header length.
3348 */
3349 int
3350 ip6_optlen(struct in6pcb *in6p)
3351 {
3352 int len;
3353
3354 if (!in6p->in6p_outputopts)
3355 return 0;
3356
3357 len = 0;
3358 #define elen(x) \
3359 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3360
3361 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3362 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3363 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3364 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3365 return len;
3366 #undef elen
3367 }
3368