Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.128
      1 /*	$NetBSD: ip6_output.c,v 1.128 2008/04/15 03:57:04 thorpej Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.128 2008/04/15 03:57:04 thorpej Exp $");
     66 
     67 #include "opt_inet.h"
     68 #include "opt_inet6.h"
     69 #include "opt_ipsec.h"
     70 #include "opt_pfil_hooks.h"
     71 
     72 #include <sys/param.h>
     73 #include <sys/malloc.h>
     74 #include <sys/mbuf.h>
     75 #include <sys/errno.h>
     76 #include <sys/protosw.h>
     77 #include <sys/socket.h>
     78 #include <sys/socketvar.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/kauth.h>
     82 
     83 #include <net/if.h>
     84 #include <net/route.h>
     85 #ifdef PFIL_HOOKS
     86 #include <net/pfil.h>
     87 #endif
     88 
     89 #include <netinet/in.h>
     90 #include <netinet/in_var.h>
     91 #include <netinet/ip6.h>
     92 #include <netinet/icmp6.h>
     93 #include <netinet/in_offload.h>
     94 #include <netinet6/in6_offload.h>
     95 #include <netinet6/ip6_var.h>
     96 #include <netinet6/ip6_private.h>
     97 #include <netinet6/in6_pcb.h>
     98 #include <netinet6/nd6.h>
     99 #include <netinet6/ip6protosw.h>
    100 #include <netinet6/scope6_var.h>
    101 
    102 #ifdef IPSEC
    103 #include <netinet6/ipsec.h>
    104 #include <netkey/key.h>
    105 #endif /* IPSEC */
    106 
    107 #ifdef FAST_IPSEC
    108 #include <netipsec/ipsec.h>
    109 #include <netipsec/ipsec6.h>
    110 #include <netipsec/key.h>
    111 #include <netipsec/xform.h>
    112 #endif
    113 
    114 
    115 #include <net/net_osdep.h>
    116 
    117 #ifdef PFIL_HOOKS
    118 extern struct pfil_head inet6_pfil_hook;	/* XXX */
    119 #endif
    120 
    121 struct ip6_exthdrs {
    122 	struct mbuf *ip6e_ip6;
    123 	struct mbuf *ip6e_hbh;
    124 	struct mbuf *ip6e_dest1;
    125 	struct mbuf *ip6e_rthdr;
    126 	struct mbuf *ip6e_dest2;
    127 };
    128 
    129 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
    130 	int, int);
    131 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct mbuf **);
    132 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, int,
    133 	int, int, int);
    134 static int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *);
    135 static int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf **);
    136 static int ip6_copyexthdr(struct mbuf **, void *, int);
    137 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
    138 	struct ip6_frag **);
    139 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
    140 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
    141 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *,
    142     const struct in6_addr *, u_long *, int *);
    143 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
    144 
    145 #ifdef RFC2292
    146 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *,
    147 	struct socket *);
    148 #endif
    149 
    150 #define	IN6_NEED_CHECKSUM(ifp, csum_flags) \
    151 	(__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
    152 	(((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \
    153 	(((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum)))
    154 
    155 /*
    156  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    157  * header (with pri, len, nxt, hlim, src, dst).
    158  * This function may modify ver and hlim only.
    159  * The mbuf chain containing the packet will be freed.
    160  * The mbuf opt, if present, will not be freed.
    161  *
    162  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    163  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
    164  * which is rt_rmx.rmx_mtu.
    165  */
    166 int
    167 ip6_output(
    168     struct mbuf *m0,
    169     struct ip6_pktopts *opt,
    170     struct route *ro,
    171     int flags,
    172     struct ip6_moptions *im6o,
    173     struct socket *so,
    174     struct ifnet **ifpp		/* XXX: just for statistics */
    175 )
    176 {
    177 	struct ip6_hdr *ip6, *mhip6;
    178 	struct ifnet *ifp, *origifp;
    179 	struct mbuf *m = m0;
    180 	int hlen, tlen, len, off;
    181 	bool tso;
    182 	struct route ip6route;
    183 	struct rtentry *rt = NULL;
    184 	const struct sockaddr_in6 *dst = NULL;
    185 	struct sockaddr_in6 src_sa, dst_sa;
    186 	int error = 0;
    187 	struct in6_ifaddr *ia = NULL;
    188 	u_long mtu;
    189 	int alwaysfrag, dontfrag;
    190 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    191 	struct ip6_exthdrs exthdrs;
    192 	struct in6_addr finaldst, src0, dst0;
    193 	u_int32_t zone;
    194 	struct route *ro_pmtu = NULL;
    195 	int hdrsplit = 0;
    196 	int needipsec = 0;
    197 #ifdef IPSEC
    198 	int needipsectun = 0;
    199 	struct secpolicy *sp = NULL;
    200 
    201 	ip6 = mtod(m, struct ip6_hdr *);
    202 #endif /* IPSEC */
    203 #ifdef FAST_IPSEC
    204 	struct secpolicy *sp = NULL;
    205 	int s;
    206 #endif
    207 
    208 	memset(&ip6route, 0, sizeof(ip6route));
    209 
    210 #ifdef  DIAGNOSTIC
    211 	if ((m->m_flags & M_PKTHDR) == 0)
    212 		panic("ip6_output: no HDR");
    213 
    214 	if ((m->m_pkthdr.csum_flags &
    215 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
    216 		panic("ip6_output: IPv4 checksum offload flags: %d",
    217 		    m->m_pkthdr.csum_flags);
    218 	}
    219 
    220 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
    221 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
    222 		panic("ip6_output: conflicting checksum offload flags: %d",
    223 		    m->m_pkthdr.csum_flags);
    224 	}
    225 #endif
    226 
    227 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    228 
    229 #define MAKE_EXTHDR(hp, mp)						\
    230     do {								\
    231 	if (hp) {							\
    232 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    233 		error = ip6_copyexthdr((mp), (void *)(hp), 		\
    234 		    ((eh)->ip6e_len + 1) << 3);				\
    235 		if (error)						\
    236 			goto freehdrs;					\
    237 	}								\
    238     } while (/*CONSTCOND*/ 0)
    239 
    240 	bzero(&exthdrs, sizeof(exthdrs));
    241 	if (opt) {
    242 		/* Hop-by-Hop options header */
    243 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    244 		/* Destination options header(1st part) */
    245 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    246 		/* Routing header */
    247 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    248 		/* Destination options header(2nd part) */
    249 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    250 	}
    251 
    252 #ifdef IPSEC
    253 	if ((flags & IPV6_FORWARDING) != 0) {
    254 		needipsec = 0;
    255 		goto skippolicycheck;
    256 	}
    257 
    258 	/* get a security policy for this packet */
    259 	if (so == NULL)
    260 		sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
    261 	else {
    262 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
    263 					 IPSEC_DIR_OUTBOUND)) {
    264 			needipsec = 0;
    265 			goto skippolicycheck;
    266 		}
    267 		sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    268 	}
    269 
    270 	if (sp == NULL) {
    271 		ipsec6stat.out_inval++;
    272 		goto freehdrs;
    273 	}
    274 
    275 	error = 0;
    276 
    277 	/* check policy */
    278 	switch (sp->policy) {
    279 	case IPSEC_POLICY_DISCARD:
    280 		/*
    281 		 * This packet is just discarded.
    282 		 */
    283 		ipsec6stat.out_polvio++;
    284 		goto freehdrs;
    285 
    286 	case IPSEC_POLICY_BYPASS:
    287 	case IPSEC_POLICY_NONE:
    288 		/* no need to do IPsec. */
    289 		needipsec = 0;
    290 		break;
    291 
    292 	case IPSEC_POLICY_IPSEC:
    293 		if (sp->req == NULL) {
    294 			/* XXX should be panic ? */
    295 			printf("ip6_output: No IPsec request specified.\n");
    296 			error = EINVAL;
    297 			goto freehdrs;
    298 		}
    299 		needipsec = 1;
    300 		break;
    301 
    302 	case IPSEC_POLICY_ENTRUST:
    303 	default:
    304 		printf("ip6_output: Invalid policy found. %d\n", sp->policy);
    305 	}
    306 
    307   skippolicycheck:;
    308 #endif /* IPSEC */
    309 
    310 	/*
    311 	 * Calculate the total length of the extension header chain.
    312 	 * Keep the length of the unfragmentable part for fragmentation.
    313 	 */
    314 	optlen = 0;
    315 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    316 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    317 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    318 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    319 	/* NOTE: we don't add AH/ESP length here. do that later. */
    320 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    321 
    322 #ifdef FAST_IPSEC
    323 	/* Check the security policy (SP) for the packet */
    324 
    325 	/* XXX For moment, we doesn't support packet with extented action */
    326 	if (optlen !=0)
    327 		goto freehdrs;
    328 
    329 	sp = ipsec6_check_policy(m,so,flags,&needipsec,&error);
    330 	if (error != 0) {
    331 		/*
    332 		 * Hack: -EINVAL is used to signal that a packet
    333 		 * should be silently discarded.  This is typically
    334 		 * because we asked key management for an SA and
    335 		 * it was delayed (e.g. kicked up to IKE).
    336 		 */
    337 	if (error == -EINVAL)
    338 		error = 0;
    339 	goto freehdrs;
    340     }
    341 #endif /* FAST_IPSEC */
    342 
    343 
    344 	if (needipsec &&
    345 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    346 		in6_delayed_cksum(m);
    347 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    348 	}
    349 
    350 
    351 	/*
    352 	 * If we need IPsec, or there is at least one extension header,
    353 	 * separate IP6 header from the payload.
    354 	 */
    355 	if ((needipsec || optlen) && !hdrsplit) {
    356 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    357 			m = NULL;
    358 			goto freehdrs;
    359 		}
    360 		m = exthdrs.ip6e_ip6;
    361 		hdrsplit++;
    362 	}
    363 
    364 	/* adjust pointer */
    365 	ip6 = mtod(m, struct ip6_hdr *);
    366 
    367 	/* adjust mbuf packet header length */
    368 	m->m_pkthdr.len += optlen;
    369 	plen = m->m_pkthdr.len - sizeof(*ip6);
    370 
    371 	/* If this is a jumbo payload, insert a jumbo payload option. */
    372 	if (plen > IPV6_MAXPACKET) {
    373 		if (!hdrsplit) {
    374 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    375 				m = NULL;
    376 				goto freehdrs;
    377 			}
    378 			m = exthdrs.ip6e_ip6;
    379 			hdrsplit++;
    380 		}
    381 		/* adjust pointer */
    382 		ip6 = mtod(m, struct ip6_hdr *);
    383 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    384 			goto freehdrs;
    385 		optlen += 8; /* XXX JUMBOOPTLEN */
    386 		ip6->ip6_plen = 0;
    387 	} else
    388 		ip6->ip6_plen = htons(plen);
    389 
    390 	/*
    391 	 * Concatenate headers and fill in next header fields.
    392 	 * Here we have, on "m"
    393 	 *	IPv6 payload
    394 	 * and we insert headers accordingly.  Finally, we should be getting:
    395 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    396 	 *
    397 	 * during the header composing process, "m" points to IPv6 header.
    398 	 * "mprev" points to an extension header prior to esp.
    399 	 */
    400 	{
    401 		u_char *nexthdrp = &ip6->ip6_nxt;
    402 		struct mbuf *mprev = m;
    403 
    404 		/*
    405 		 * we treat dest2 specially.  this makes IPsec processing
    406 		 * much easier.  the goal here is to make mprev point the
    407 		 * mbuf prior to dest2.
    408 		 *
    409 		 * result: IPv6 dest2 payload
    410 		 * m and mprev will point to IPv6 header.
    411 		 */
    412 		if (exthdrs.ip6e_dest2) {
    413 			if (!hdrsplit)
    414 				panic("assumption failed: hdr not split");
    415 			exthdrs.ip6e_dest2->m_next = m->m_next;
    416 			m->m_next = exthdrs.ip6e_dest2;
    417 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    418 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    419 		}
    420 
    421 #define MAKE_CHAIN(m, mp, p, i)\
    422     do {\
    423 	if (m) {\
    424 		if (!hdrsplit) \
    425 			panic("assumption failed: hdr not split"); \
    426 		*mtod((m), u_char *) = *(p);\
    427 		*(p) = (i);\
    428 		p = mtod((m), u_char *);\
    429 		(m)->m_next = (mp)->m_next;\
    430 		(mp)->m_next = (m);\
    431 		(mp) = (m);\
    432 	}\
    433     } while (/*CONSTCOND*/ 0)
    434 		/*
    435 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    436 		 * m will point to IPv6 header.  mprev will point to the
    437 		 * extension header prior to dest2 (rthdr in the above case).
    438 		 */
    439 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    440 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    441 		    IPPROTO_DSTOPTS);
    442 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    443 		    IPPROTO_ROUTING);
    444 
    445 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
    446 		    sizeof(struct ip6_hdr) + optlen);
    447 
    448 #ifdef IPSEC
    449 		if (!needipsec)
    450 			goto skip_ipsec2;
    451 
    452 		/*
    453 		 * pointers after IPsec headers are not valid any more.
    454 		 * other pointers need a great care too.
    455 		 * (IPsec routines should not mangle mbufs prior to AH/ESP)
    456 		 */
    457 		exthdrs.ip6e_dest2 = NULL;
    458 
    459 	    {
    460 		struct ip6_rthdr *rh = NULL;
    461 		int segleft_org = 0;
    462 		struct ipsec_output_state state;
    463 
    464 		if (exthdrs.ip6e_rthdr) {
    465 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
    466 			segleft_org = rh->ip6r_segleft;
    467 			rh->ip6r_segleft = 0;
    468 		}
    469 
    470 		bzero(&state, sizeof(state));
    471 		state.m = m;
    472 		error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
    473 		    &needipsectun);
    474 		m = state.m;
    475 		if (error) {
    476 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
    477 			/* mbuf is already reclaimed in ipsec6_output_trans. */
    478 			m = NULL;
    479 			switch (error) {
    480 			case EHOSTUNREACH:
    481 			case ENETUNREACH:
    482 			case EMSGSIZE:
    483 			case ENOBUFS:
    484 			case ENOMEM:
    485 				break;
    486 			default:
    487 				printf("ip6_output (ipsec): error code %d\n", error);
    488 				/* FALLTHROUGH */
    489 			case ENOENT:
    490 				/* don't show these error codes to the user */
    491 				error = 0;
    492 				break;
    493 			}
    494 			goto bad;
    495 		}
    496 		if (exthdrs.ip6e_rthdr) {
    497 			/* ah6_output doesn't modify mbuf chain */
    498 			rh->ip6r_segleft = segleft_org;
    499 		}
    500 	    }
    501 skip_ipsec2:;
    502 #endif
    503 	}
    504 
    505 	/*
    506 	 * If there is a routing header, replace destination address field
    507 	 * with the first hop of the routing header.
    508 	 */
    509 	if (exthdrs.ip6e_rthdr) {
    510 		struct ip6_rthdr *rh;
    511 		struct ip6_rthdr0 *rh0;
    512 		struct in6_addr *addr;
    513 		struct sockaddr_in6 sa;
    514 
    515 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    516 		    struct ip6_rthdr *));
    517 		finaldst = ip6->ip6_dst;
    518 		switch (rh->ip6r_type) {
    519 		case IPV6_RTHDR_TYPE_0:
    520 			 rh0 = (struct ip6_rthdr0 *)rh;
    521 			 addr = (struct in6_addr *)(rh0 + 1);
    522 
    523 			 /*
    524 			  * construct a sockaddr_in6 form of
    525 			  * the first hop.
    526 			  *
    527 			  * XXX: we may not have enough
    528 			  * information about its scope zone;
    529 			  * there is no standard API to pass
    530 			  * the information from the
    531 			  * application.
    532 			  */
    533 			 sockaddr_in6_init(&sa, addr, 0, 0, 0);
    534 			 if ((error = sa6_embedscope(&sa,
    535 			     ip6_use_defzone)) != 0) {
    536 				 goto bad;
    537 			 }
    538 			 ip6->ip6_dst = sa.sin6_addr;
    539 			 (void)memmove(&addr[0], &addr[1],
    540 			     sizeof(struct in6_addr) *
    541 			     (rh0->ip6r0_segleft - 1));
    542 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
    543 			 /* XXX */
    544 			 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
    545 			 break;
    546 		default:	/* is it possible? */
    547 			 error = EINVAL;
    548 			 goto bad;
    549 		}
    550 	}
    551 
    552 	/* Source address validation */
    553 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    554 	    (flags & IPV6_UNSPECSRC) == 0) {
    555 		error = EOPNOTSUPP;
    556 		IP6_STATINC(IP6_STAT_BADSCOPE);
    557 		goto bad;
    558 	}
    559 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    560 		error = EOPNOTSUPP;
    561 		IP6_STATINC(IP6_STAT_BADSCOPE);
    562 		goto bad;
    563 	}
    564 
    565 	IP6_STATINC(IP6_STAT_LOCALOUT);
    566 
    567 	/*
    568 	 * Route packet.
    569 	 */
    570 	/* initialize cached route */
    571 	if (ro == NULL) {
    572 		ro = &ip6route;
    573 	}
    574 	ro_pmtu = ro;
    575 	if (opt && opt->ip6po_rthdr)
    576 		ro = &opt->ip6po_route;
    577 
    578  	/*
    579 	 * if specified, try to fill in the traffic class field.
    580 	 * do not override if a non-zero value is already set.
    581 	 * we check the diffserv field and the ecn field separately.
    582 	 */
    583 	if (opt && opt->ip6po_tclass >= 0) {
    584 		int mask = 0;
    585 
    586 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    587 			mask |= 0xfc;
    588 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    589 			mask |= 0x03;
    590 		if (mask != 0)
    591 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    592 	}
    593 
    594 	/* fill in or override the hop limit field, if necessary. */
    595 	if (opt && opt->ip6po_hlim != -1)
    596 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    597 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    598 		if (im6o != NULL)
    599 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    600 		else
    601 			ip6->ip6_hlim = ip6_defmcasthlim;
    602 	}
    603 
    604 #ifdef IPSEC
    605 	if (needipsec && needipsectun) {
    606 		struct ipsec_output_state state;
    607 
    608 		/*
    609 		 * All the extension headers will become inaccessible
    610 		 * (since they can be encrypted).
    611 		 * Don't panic, we need no more updates to extension headers
    612 		 * on inner IPv6 packet (since they are now encapsulated).
    613 		 *
    614 		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
    615 		 */
    616 		bzero(&exthdrs, sizeof(exthdrs));
    617 		exthdrs.ip6e_ip6 = m;
    618 
    619 		bzero(&state, sizeof(state));
    620 		state.m = m;
    621 		state.ro = ro;
    622 		state.dst = rtcache_getdst(ro);
    623 
    624 		error = ipsec6_output_tunnel(&state, sp, flags);
    625 
    626 		m = state.m;
    627 		ro_pmtu = ro = state.ro;
    628 		dst = satocsin6(state.dst);
    629 		if (error) {
    630 			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
    631 			m0 = m = NULL;
    632 			m = NULL;
    633 			switch (error) {
    634 			case EHOSTUNREACH:
    635 			case ENETUNREACH:
    636 			case EMSGSIZE:
    637 			case ENOBUFS:
    638 			case ENOMEM:
    639 				break;
    640 			default:
    641 				printf("ip6_output (ipsec): error code %d\n", error);
    642 				/* FALLTHROUGH */
    643 			case ENOENT:
    644 				/* don't show these error codes to the user */
    645 				error = 0;
    646 				break;
    647 			}
    648 			goto bad;
    649 		}
    650 
    651 		exthdrs.ip6e_ip6 = m;
    652 	}
    653 #endif /* IPSEC */
    654 #ifdef FAST_IPSEC
    655 	if (needipsec) {
    656 		s = splsoftnet();
    657 		error = ipsec6_process_packet(m,sp->req);
    658 
    659 		/*
    660 		 * Preserve KAME behaviour: ENOENT can be returned
    661 		 * when an SA acquire is in progress.  Don't propagate
    662 		 * this to user-level; it confuses applications.
    663 		 * XXX this will go away when the SADB is redone.
    664 		 */
    665 		if (error == ENOENT)
    666 			error = 0;
    667 		splx(s);
    668 		goto done;
    669 	}
    670 #endif /* FAST_IPSEC */
    671 
    672 
    673 
    674 	/* adjust pointer */
    675 	ip6 = mtod(m, struct ip6_hdr *);
    676 
    677 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    678 	if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
    679 	    &ifp, &rt, 0)) != 0) {
    680 		if (ifp != NULL)
    681 			in6_ifstat_inc(ifp, ifs6_out_discard);
    682 		goto bad;
    683 	}
    684 	if (rt == NULL) {
    685 		/*
    686 		 * If in6_selectroute() does not return a route entry,
    687 		 * dst may not have been updated.
    688 		 */
    689 		rtcache_setdst(ro, sin6tosa(&dst_sa));
    690 	}
    691 
    692 	/*
    693 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    694 	 */
    695 	if ((flags & IPV6_FORWARDING) == 0) {
    696 		/* XXX: the FORWARDING flag can be set for mrouting. */
    697 		in6_ifstat_inc(ifp, ifs6_out_request);
    698 	}
    699 	if (rt != NULL) {
    700 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    701 		rt->rt_use++;
    702 	}
    703 
    704 	/*
    705 	 * The outgoing interface must be in the zone of source and
    706 	 * destination addresses.  We should use ia_ifp to support the
    707 	 * case of sending packets to an address of our own.
    708 	 */
    709 	if (ia != NULL && ia->ia_ifp)
    710 		origifp = ia->ia_ifp;
    711 	else
    712 		origifp = ifp;
    713 
    714 	src0 = ip6->ip6_src;
    715 	if (in6_setscope(&src0, origifp, &zone))
    716 		goto badscope;
    717 	sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
    718 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    719 		goto badscope;
    720 
    721 	dst0 = ip6->ip6_dst;
    722 	if (in6_setscope(&dst0, origifp, &zone))
    723 		goto badscope;
    724 	/* re-initialize to be sure */
    725 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    726 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    727 		goto badscope;
    728 
    729 	/* scope check is done. */
    730 
    731 	if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    732 		if (dst == NULL)
    733 			dst = satocsin6(rtcache_getdst(ro));
    734 		KASSERT(dst != NULL);
    735 	} else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) {
    736 		/*
    737 		 * The nexthop is explicitly specified by the
    738 		 * application.  We assume the next hop is an IPv6
    739 		 * address.
    740 		 */
    741 		dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
    742 	} else if ((rt->rt_flags & RTF_GATEWAY))
    743 		dst = (struct sockaddr_in6 *)rt->rt_gateway;
    744 	else if (dst == NULL)
    745 		dst = satocsin6(rtcache_getdst(ro));
    746 
    747 	/*
    748 	 * XXXXXX: original code follows:
    749 	 */
    750 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    751 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    752 	else {
    753 		struct	in6_multi *in6m;
    754 
    755 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    756 
    757 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    758 
    759 		/*
    760 		 * Confirm that the outgoing interface supports multicast.
    761 		 */
    762 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    763 			IP6_STATINC(IP6_STAT_NOROUTE);
    764 			in6_ifstat_inc(ifp, ifs6_out_discard);
    765 			error = ENETUNREACH;
    766 			goto bad;
    767 		}
    768 
    769 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
    770 		if (in6m != NULL &&
    771 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    772 			/*
    773 			 * If we belong to the destination multicast group
    774 			 * on the outgoing interface, and the caller did not
    775 			 * forbid loopback, loop back a copy.
    776 			 */
    777 			KASSERT(dst != NULL);
    778 			ip6_mloopback(ifp, m, dst);
    779 		} else {
    780 			/*
    781 			 * If we are acting as a multicast router, perform
    782 			 * multicast forwarding as if the packet had just
    783 			 * arrived on the interface to which we are about
    784 			 * to send.  The multicast forwarding function
    785 			 * recursively calls this function, using the
    786 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    787 			 *
    788 			 * Multicasts that are looped back by ip6_mloopback(),
    789 			 * above, will be forwarded by the ip6_input() routine,
    790 			 * if necessary.
    791 			 */
    792 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    793 				if (ip6_mforward(ip6, ifp, m) != 0) {
    794 					m_freem(m);
    795 					goto done;
    796 				}
    797 			}
    798 		}
    799 		/*
    800 		 * Multicasts with a hoplimit of zero may be looped back,
    801 		 * above, but must not be transmitted on a network.
    802 		 * Also, multicasts addressed to the loopback interface
    803 		 * are not sent -- the above call to ip6_mloopback() will
    804 		 * loop back a copy if this host actually belongs to the
    805 		 * destination group on the loopback interface.
    806 		 */
    807 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    808 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    809 			m_freem(m);
    810 			goto done;
    811 		}
    812 	}
    813 
    814 	/*
    815 	 * Fill the outgoing inteface to tell the upper layer
    816 	 * to increment per-interface statistics.
    817 	 */
    818 	if (ifpp)
    819 		*ifpp = ifp;
    820 
    821 	/* Determine path MTU. */
    822 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
    823 	    &alwaysfrag)) != 0)
    824 		goto bad;
    825 #ifdef IPSEC
    826 	if (needipsectun)
    827 		mtu = IPV6_MMTU;
    828 #endif
    829 
    830 	/*
    831 	 * The caller of this function may specify to use the minimum MTU
    832 	 * in some cases.
    833 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
    834 	 * setting.  The logic is a bit complicated; by default, unicast
    835 	 * packets will follow path MTU while multicast packets will be sent at
    836 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
    837 	 * including unicast ones will be sent at the minimum MTU.  Multicast
    838 	 * packets will always be sent at the minimum MTU unless
    839 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
    840 	 * See RFC 3542 for more details.
    841 	 */
    842 	if (mtu > IPV6_MMTU) {
    843 		if ((flags & IPV6_MINMTU))
    844 			mtu = IPV6_MMTU;
    845 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
    846 			mtu = IPV6_MMTU;
    847 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
    848 			 (opt == NULL ||
    849 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
    850 			mtu = IPV6_MMTU;
    851 		}
    852 	}
    853 
    854 	/*
    855 	 * clear embedded scope identifiers if necessary.
    856 	 * in6_clearscope will touch the addresses only when necessary.
    857 	 */
    858 	in6_clearscope(&ip6->ip6_src);
    859 	in6_clearscope(&ip6->ip6_dst);
    860 
    861 	/*
    862 	 * If the outgoing packet contains a hop-by-hop options header,
    863 	 * it must be examined and processed even by the source node.
    864 	 * (RFC 2460, section 4.)
    865 	 */
    866 	if (exthdrs.ip6e_hbh) {
    867 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
    868 		u_int32_t dummy1; /* XXX unused */
    869 		u_int32_t dummy2; /* XXX unused */
    870 
    871 		/*
    872 		 *  XXX: if we have to send an ICMPv6 error to the sender,
    873 		 *       we need the M_LOOP flag since icmp6_error() expects
    874 		 *       the IPv6 and the hop-by-hop options header are
    875 		 *       continuous unless the flag is set.
    876 		 */
    877 		m->m_flags |= M_LOOP;
    878 		m->m_pkthdr.rcvif = ifp;
    879 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
    880 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
    881 		    &dummy1, &dummy2) < 0) {
    882 			/* m was already freed at this point */
    883 			error = EINVAL;/* better error? */
    884 			goto done;
    885 		}
    886 		m->m_flags &= ~M_LOOP; /* XXX */
    887 		m->m_pkthdr.rcvif = NULL;
    888 	}
    889 
    890 #ifdef PFIL_HOOKS
    891 	/*
    892 	 * Run through list of hooks for output packets.
    893 	 */
    894 	if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    895 		goto done;
    896 	if (m == NULL)
    897 		goto done;
    898 	ip6 = mtod(m, struct ip6_hdr *);
    899 #endif /* PFIL_HOOKS */
    900 	/*
    901 	 * Send the packet to the outgoing interface.
    902 	 * If necessary, do IPv6 fragmentation before sending.
    903 	 *
    904 	 * the logic here is rather complex:
    905 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    906 	 * 1-a:	send as is if tlen <= path mtu
    907 	 * 1-b:	fragment if tlen > path mtu
    908 	 *
    909 	 * 2: if user asks us not to fragment (dontfrag == 1)
    910 	 * 2-a:	send as is if tlen <= interface mtu
    911 	 * 2-b:	error if tlen > interface mtu
    912 	 *
    913 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    914 	 *	always fragment
    915 	 *
    916 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    917 	 *	error, as we cannot handle this conflicting request
    918 	 */
    919 	tlen = m->m_pkthdr.len;
    920 	tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
    921 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
    922 		dontfrag = 1;
    923 	else
    924 		dontfrag = 0;
    925 
    926 	if (dontfrag && alwaysfrag) {	/* case 4 */
    927 		/* conflicting request - can't transmit */
    928 		error = EMSGSIZE;
    929 		goto bad;
    930 	}
    931 	if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) {	/* case 2-b */
    932 		/*
    933 		 * Even if the DONTFRAG option is specified, we cannot send the
    934 		 * packet when the data length is larger than the MTU of the
    935 		 * outgoing interface.
    936 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    937 		 * well as returning an error code (the latter is not described
    938 		 * in the API spec.)
    939 		 */
    940 		u_int32_t mtu32;
    941 		struct ip6ctlparam ip6cp;
    942 
    943 		mtu32 = (u_int32_t)mtu;
    944 		bzero(&ip6cp, sizeof(ip6cp));
    945 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    946 		pfctlinput2(PRC_MSGSIZE,
    947 		    rtcache_getdst(ro_pmtu), &ip6cp);
    948 
    949 		error = EMSGSIZE;
    950 		goto bad;
    951 	}
    952 
    953 	/*
    954 	 * transmit packet without fragmentation
    955 	 */
    956 	if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
    957 		/* case 1-a and 2-a */
    958 		struct in6_ifaddr *ia6;
    959 		int sw_csum;
    960 
    961 		ip6 = mtod(m, struct ip6_hdr *);
    962 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    963 		if (ia6) {
    964 			/* Record statistics for this interface address. */
    965 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    966 		}
    967 #ifdef IPSEC
    968 		/* clean ipsec history once it goes out of the node */
    969 		ipsec_delaux(m);
    970 #endif
    971 
    972 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    973 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    974 			if (IN6_NEED_CHECKSUM(ifp,
    975 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    976 				in6_delayed_cksum(m);
    977 			}
    978 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    979 		}
    980 
    981 		KASSERT(dst != NULL);
    982 		if (__predict_true(!tso ||
    983 		    (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
    984 			error = nd6_output(ifp, origifp, m, dst, rt);
    985 		} else {
    986 			error = ip6_tso_output(ifp, origifp, m, dst, rt);
    987 		}
    988 		goto done;
    989 	}
    990 
    991 	if (tso) {
    992 		error = EINVAL; /* XXX */
    993 		goto bad;
    994 	}
    995 
    996 	/*
    997 	 * try to fragment the packet.  case 1-b and 3
    998 	 */
    999 	if (mtu < IPV6_MMTU) {
   1000 		/* path MTU cannot be less than IPV6_MMTU */
   1001 		error = EMSGSIZE;
   1002 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
   1003 		goto bad;
   1004 	} else if (ip6->ip6_plen == 0) {
   1005 		/* jumbo payload cannot be fragmented */
   1006 		error = EMSGSIZE;
   1007 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
   1008 		goto bad;
   1009 	} else {
   1010 		struct mbuf **mnext, *m_frgpart;
   1011 		struct ip6_frag *ip6f;
   1012 		u_int32_t id = htonl(ip6_randomid());
   1013 		u_char nextproto;
   1014 #if 0				/* see below */
   1015 		struct ip6ctlparam ip6cp;
   1016 		u_int32_t mtu32;
   1017 #endif
   1018 
   1019 		/*
   1020 		 * Too large for the destination or interface;
   1021 		 * fragment if possible.
   1022 		 * Must be able to put at least 8 bytes per fragment.
   1023 		 */
   1024 		hlen = unfragpartlen;
   1025 		if (mtu > IPV6_MAXPACKET)
   1026 			mtu = IPV6_MAXPACKET;
   1027 
   1028 #if 0
   1029 		/*
   1030 		 * It is believed this code is a leftover from the
   1031 		 * development of the IPV6_RECVPATHMTU sockopt and
   1032 		 * associated work to implement RFC3542.
   1033 		 * It's not entirely clear what the intent of the API
   1034 		 * is at this point, so disable this code for now.
   1035 		 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
   1036 		 * will send notifications if the application requests.
   1037 		 */
   1038 
   1039 		/* Notify a proper path MTU to applications. */
   1040 		mtu32 = (u_int32_t)mtu;
   1041 		bzero(&ip6cp, sizeof(ip6cp));
   1042 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
   1043 		pfctlinput2(PRC_MSGSIZE,
   1044 		    rtcache_getdst(ro_pmtu), &ip6cp);
   1045 #endif
   1046 
   1047 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
   1048 		if (len < 8) {
   1049 			error = EMSGSIZE;
   1050 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
   1051 			goto bad;
   1052 		}
   1053 
   1054 		mnext = &m->m_nextpkt;
   1055 
   1056 		/*
   1057 		 * Change the next header field of the last header in the
   1058 		 * unfragmentable part.
   1059 		 */
   1060 		if (exthdrs.ip6e_rthdr) {
   1061 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
   1062 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
   1063 		} else if (exthdrs.ip6e_dest1) {
   1064 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
   1065 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
   1066 		} else if (exthdrs.ip6e_hbh) {
   1067 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
   1068 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
   1069 		} else {
   1070 			nextproto = ip6->ip6_nxt;
   1071 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
   1072 		}
   1073 
   1074 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
   1075 		    != 0) {
   1076 			if (IN6_NEED_CHECKSUM(ifp,
   1077 			    m->m_pkthdr.csum_flags &
   1078 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
   1079 				in6_delayed_cksum(m);
   1080 			}
   1081 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
   1082 		}
   1083 
   1084 		/*
   1085 		 * Loop through length of segment after first fragment,
   1086 		 * make new header and copy data of each part and link onto
   1087 		 * chain.
   1088 		 */
   1089 		m0 = m;
   1090 		for (off = hlen; off < tlen; off += len) {
   1091 			struct mbuf *mlast;
   1092 
   1093 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
   1094 			if (!m) {
   1095 				error = ENOBUFS;
   1096 				IP6_STATINC(IP6_STAT_ODROPPED);
   1097 				goto sendorfree;
   1098 			}
   1099 			m->m_pkthdr.rcvif = NULL;
   1100 			m->m_flags = m0->m_flags & M_COPYFLAGS;
   1101 			*mnext = m;
   1102 			mnext = &m->m_nextpkt;
   1103 			m->m_data += max_linkhdr;
   1104 			mhip6 = mtod(m, struct ip6_hdr *);
   1105 			*mhip6 = *ip6;
   1106 			m->m_len = sizeof(*mhip6);
   1107 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
   1108 			if (error) {
   1109 				IP6_STATINC(IP6_STAT_ODROPPED);
   1110 				goto sendorfree;
   1111 			}
   1112 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
   1113 			if (off + len >= tlen)
   1114 				len = tlen - off;
   1115 			else
   1116 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
   1117 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
   1118 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
   1119 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
   1120 				error = ENOBUFS;
   1121 				IP6_STATINC(IP6_STAT_ODROPPED);
   1122 				goto sendorfree;
   1123 			}
   1124 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
   1125 				;
   1126 			mlast->m_next = m_frgpart;
   1127 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
   1128 			m->m_pkthdr.rcvif = (struct ifnet *)0;
   1129 			ip6f->ip6f_reserved = 0;
   1130 			ip6f->ip6f_ident = id;
   1131 			ip6f->ip6f_nxt = nextproto;
   1132 			IP6_STATINC(IP6_STAT_OFRAGMENTS);
   1133 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
   1134 		}
   1135 
   1136 		in6_ifstat_inc(ifp, ifs6_out_fragok);
   1137 	}
   1138 
   1139 	/*
   1140 	 * Remove leading garbages.
   1141 	 */
   1142 sendorfree:
   1143 	m = m0->m_nextpkt;
   1144 	m0->m_nextpkt = 0;
   1145 	m_freem(m0);
   1146 	for (m0 = m; m; m = m0) {
   1147 		m0 = m->m_nextpkt;
   1148 		m->m_nextpkt = 0;
   1149 		if (error == 0) {
   1150 			struct in6_ifaddr *ia6;
   1151 			ip6 = mtod(m, struct ip6_hdr *);
   1152 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
   1153 			if (ia6) {
   1154 				/*
   1155 				 * Record statistics for this interface
   1156 				 * address.
   1157 				 */
   1158 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
   1159 				    m->m_pkthdr.len;
   1160 			}
   1161 #ifdef IPSEC
   1162 			/* clean ipsec history once it goes out of the node */
   1163 			ipsec_delaux(m);
   1164 #endif
   1165 			KASSERT(dst != NULL);
   1166 			error = nd6_output(ifp, origifp, m, dst, rt);
   1167 		} else
   1168 			m_freem(m);
   1169 	}
   1170 
   1171 	if (error == 0)
   1172 		IP6_STATINC(IP6_STAT_FRAGMENTED);
   1173 
   1174 done:
   1175 	rtcache_free(&ip6route);
   1176 
   1177 #ifdef IPSEC
   1178 	if (sp != NULL)
   1179 		key_freesp(sp);
   1180 #endif /* IPSEC */
   1181 #ifdef FAST_IPSEC
   1182 	if (sp != NULL)
   1183 		KEY_FREESP(&sp);
   1184 #endif /* FAST_IPSEC */
   1185 
   1186 
   1187 	return (error);
   1188 
   1189 freehdrs:
   1190 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
   1191 	m_freem(exthdrs.ip6e_dest1);
   1192 	m_freem(exthdrs.ip6e_rthdr);
   1193 	m_freem(exthdrs.ip6e_dest2);
   1194 	/* FALLTHROUGH */
   1195 bad:
   1196 	m_freem(m);
   1197 	goto done;
   1198 badscope:
   1199 	IP6_STATINC(IP6_STAT_BADSCOPE);
   1200 	in6_ifstat_inc(origifp, ifs6_out_discard);
   1201 	if (error == 0)
   1202 		error = EHOSTUNREACH; /* XXX */
   1203 	goto bad;
   1204 }
   1205 
   1206 static int
   1207 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
   1208 {
   1209 	struct mbuf *m;
   1210 
   1211 	if (hlen > MCLBYTES)
   1212 		return (ENOBUFS); /* XXX */
   1213 
   1214 	MGET(m, M_DONTWAIT, MT_DATA);
   1215 	if (!m)
   1216 		return (ENOBUFS);
   1217 
   1218 	if (hlen > MLEN) {
   1219 		MCLGET(m, M_DONTWAIT);
   1220 		if ((m->m_flags & M_EXT) == 0) {
   1221 			m_free(m);
   1222 			return (ENOBUFS);
   1223 		}
   1224 	}
   1225 	m->m_len = hlen;
   1226 	if (hdr)
   1227 		bcopy(hdr, mtod(m, void *), hlen);
   1228 
   1229 	*mp = m;
   1230 	return (0);
   1231 }
   1232 
   1233 /*
   1234  * Process a delayed payload checksum calculation.
   1235  */
   1236 void
   1237 in6_delayed_cksum(struct mbuf *m)
   1238 {
   1239 	uint16_t csum, offset;
   1240 
   1241 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1242 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1243 	KASSERT((m->m_pkthdr.csum_flags
   1244 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
   1245 
   1246 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
   1247 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
   1248 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
   1249 		csum = 0xffff;
   1250 	}
   1251 
   1252 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
   1253 	if ((offset + sizeof(csum)) > m->m_len) {
   1254 		m_copyback(m, offset, sizeof(csum), &csum);
   1255 	} else {
   1256 		*(uint16_t *)(mtod(m, char *) + offset) = csum;
   1257 	}
   1258 }
   1259 
   1260 /*
   1261  * Insert jumbo payload option.
   1262  */
   1263 static int
   1264 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
   1265 {
   1266 	struct mbuf *mopt;
   1267 	u_int8_t *optbuf;
   1268 	u_int32_t v;
   1269 
   1270 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1271 
   1272 	/*
   1273 	 * If there is no hop-by-hop options header, allocate new one.
   1274 	 * If there is one but it doesn't have enough space to store the
   1275 	 * jumbo payload option, allocate a cluster to store the whole options.
   1276 	 * Otherwise, use it to store the options.
   1277 	 */
   1278 	if (exthdrs->ip6e_hbh == 0) {
   1279 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1280 		if (mopt == 0)
   1281 			return (ENOBUFS);
   1282 		mopt->m_len = JUMBOOPTLEN;
   1283 		optbuf = mtod(mopt, u_int8_t *);
   1284 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1285 		exthdrs->ip6e_hbh = mopt;
   1286 	} else {
   1287 		struct ip6_hbh *hbh;
   1288 
   1289 		mopt = exthdrs->ip6e_hbh;
   1290 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1291 			/*
   1292 			 * XXX assumption:
   1293 			 * - exthdrs->ip6e_hbh is not referenced from places
   1294 			 *   other than exthdrs.
   1295 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1296 			 */
   1297 			int oldoptlen = mopt->m_len;
   1298 			struct mbuf *n;
   1299 
   1300 			/*
   1301 			 * XXX: give up if the whole (new) hbh header does
   1302 			 * not fit even in an mbuf cluster.
   1303 			 */
   1304 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1305 				return (ENOBUFS);
   1306 
   1307 			/*
   1308 			 * As a consequence, we must always prepare a cluster
   1309 			 * at this point.
   1310 			 */
   1311 			MGET(n, M_DONTWAIT, MT_DATA);
   1312 			if (n) {
   1313 				MCLGET(n, M_DONTWAIT);
   1314 				if ((n->m_flags & M_EXT) == 0) {
   1315 					m_freem(n);
   1316 					n = NULL;
   1317 				}
   1318 			}
   1319 			if (!n)
   1320 				return (ENOBUFS);
   1321 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1322 			bcopy(mtod(mopt, void *), mtod(n, void *),
   1323 			    oldoptlen);
   1324 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1325 			m_freem(mopt);
   1326 			mopt = exthdrs->ip6e_hbh = n;
   1327 		} else {
   1328 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1329 			mopt->m_len += JUMBOOPTLEN;
   1330 		}
   1331 		optbuf[0] = IP6OPT_PADN;
   1332 		optbuf[1] = 0;
   1333 
   1334 		/*
   1335 		 * Adjust the header length according to the pad and
   1336 		 * the jumbo payload option.
   1337 		 */
   1338 		hbh = mtod(mopt, struct ip6_hbh *);
   1339 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1340 	}
   1341 
   1342 	/* fill in the option. */
   1343 	optbuf[2] = IP6OPT_JUMBO;
   1344 	optbuf[3] = 4;
   1345 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1346 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
   1347 
   1348 	/* finally, adjust the packet header length */
   1349 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1350 
   1351 	return (0);
   1352 #undef JUMBOOPTLEN
   1353 }
   1354 
   1355 /*
   1356  * Insert fragment header and copy unfragmentable header portions.
   1357  */
   1358 static int
   1359 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
   1360 	struct ip6_frag **frghdrp)
   1361 {
   1362 	struct mbuf *n, *mlast;
   1363 
   1364 	if (hlen > sizeof(struct ip6_hdr)) {
   1365 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1366 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1367 		if (n == 0)
   1368 			return (ENOBUFS);
   1369 		m->m_next = n;
   1370 	} else
   1371 		n = m;
   1372 
   1373 	/* Search for the last mbuf of unfragmentable part. */
   1374 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1375 		;
   1376 
   1377 	if ((mlast->m_flags & M_EXT) == 0 &&
   1378 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1379 		/* use the trailing space of the last mbuf for the fragment hdr */
   1380 		*frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
   1381 		    mlast->m_len);
   1382 		mlast->m_len += sizeof(struct ip6_frag);
   1383 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1384 	} else {
   1385 		/* allocate a new mbuf for the fragment header */
   1386 		struct mbuf *mfrg;
   1387 
   1388 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1389 		if (mfrg == 0)
   1390 			return (ENOBUFS);
   1391 		mfrg->m_len = sizeof(struct ip6_frag);
   1392 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1393 		mlast->m_next = mfrg;
   1394 	}
   1395 
   1396 	return (0);
   1397 }
   1398 
   1399 static int
   1400 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp,
   1401     const struct in6_addr *dst, u_long *mtup, int *alwaysfragp)
   1402 {
   1403 	struct rtentry *rt;
   1404 	u_int32_t mtu = 0;
   1405 	int alwaysfrag = 0;
   1406 	int error = 0;
   1407 
   1408 	if (ro_pmtu != ro) {
   1409 		union {
   1410 			struct sockaddr		dst;
   1411 			struct sockaddr_in6	dst6;
   1412 		} u;
   1413 
   1414 		/* The first hop and the final destination may differ. */
   1415 		sockaddr_in6_init(&u.dst6, dst, 0, 0, 0);
   1416 		rt = rtcache_lookup(ro_pmtu, &u.dst);
   1417 	} else
   1418 		rt = rtcache_validate(ro_pmtu);
   1419 	if (rt != NULL) {
   1420 		u_int32_t ifmtu;
   1421 
   1422 		if (ifp == NULL)
   1423 			ifp = rt->rt_ifp;
   1424 		ifmtu = IN6_LINKMTU(ifp);
   1425 		mtu = rt->rt_rmx.rmx_mtu;
   1426 		if (mtu == 0)
   1427 			mtu = ifmtu;
   1428 		else if (mtu < IPV6_MMTU) {
   1429 			/*
   1430 			 * RFC2460 section 5, last paragraph:
   1431 			 * if we record ICMPv6 too big message with
   1432 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1433 			 * or smaller, with fragment header attached.
   1434 			 * (fragment header is needed regardless from the
   1435 			 * packet size, for translators to identify packets)
   1436 			 */
   1437 			alwaysfrag = 1;
   1438 			mtu = IPV6_MMTU;
   1439 		} else if (mtu > ifmtu) {
   1440 			/*
   1441 			 * The MTU on the route is larger than the MTU on
   1442 			 * the interface!  This shouldn't happen, unless the
   1443 			 * MTU of the interface has been changed after the
   1444 			 * interface was brought up.  Change the MTU in the
   1445 			 * route to match the interface MTU (as long as the
   1446 			 * field isn't locked).
   1447 			 */
   1448 			mtu = ifmtu;
   1449 			if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
   1450 				rt->rt_rmx.rmx_mtu = mtu;
   1451 		}
   1452 	} else if (ifp) {
   1453 		mtu = IN6_LINKMTU(ifp);
   1454 	} else
   1455 		error = EHOSTUNREACH; /* XXX */
   1456 
   1457 	*mtup = mtu;
   1458 	if (alwaysfragp)
   1459 		*alwaysfragp = alwaysfrag;
   1460 	return (error);
   1461 }
   1462 
   1463 /*
   1464  * IP6 socket option processing.
   1465  */
   1466 int
   1467 ip6_ctloutput(int op, struct socket *so, int level, int optname,
   1468     struct mbuf **mp)
   1469 {
   1470 	int privileged, optdatalen, uproto;
   1471 	void *optdata;
   1472 	struct in6pcb *in6p = sotoin6pcb(so);
   1473 	struct mbuf *m = *mp;
   1474 	int error, optval;
   1475 	int optlen;
   1476 	struct lwp *l = curlwp;	/* XXX */
   1477 
   1478 	optlen = m ? m->m_len : 0;
   1479 	error = optval = 0;
   1480 	privileged = (l == 0 || kauth_authorize_generic(l->l_cred,
   1481 	    KAUTH_GENERIC_ISSUSER, NULL)) ? 0 : 1;
   1482 	uproto = (int)so->so_proto->pr_protocol;
   1483 
   1484 	if (level != IPPROTO_IPV6) {
   1485 		if (op == PRCO_SETOPT && *mp)
   1486 			(void)m_free(*mp);
   1487 		return ENOPROTOOPT;
   1488 	}
   1489 	switch (op) {
   1490 	case PRCO_SETOPT:
   1491 		switch (optname) {
   1492 #ifdef RFC2292
   1493 		case IPV6_2292PKTOPTIONS:
   1494 			/* m is freed in ip6_pcbopts */
   1495 			error = ip6_pcbopts(&in6p->in6p_outputopts,
   1496 			    m, so);
   1497 			break;
   1498 #endif
   1499 
   1500 		/*
   1501 		 * Use of some Hop-by-Hop options or some
   1502 		 * Destination options, might require special
   1503 		 * privilege.  That is, normal applications
   1504 		 * (without special privilege) might be forbidden
   1505 		 * from setting certain options in outgoing packets,
   1506 		 * and might never see certain options in received
   1507 		 * packets. [RFC 2292 Section 6]
   1508 		 * KAME specific note:
   1509 		 *  KAME prevents non-privileged users from sending or
   1510 		 *  receiving ANY hbh/dst options in order to avoid
   1511 		 *  overhead of parsing options in the kernel.
   1512 		 */
   1513 		case IPV6_RECVHOPOPTS:
   1514 		case IPV6_RECVDSTOPTS:
   1515 		case IPV6_RECVRTHDRDSTOPTS:
   1516 			if (!privileged) {
   1517 				error = EPERM;
   1518 				break;
   1519 			}
   1520 			/* FALLTHROUGH */
   1521 		case IPV6_UNICAST_HOPS:
   1522 		case IPV6_HOPLIMIT:
   1523 		case IPV6_FAITH:
   1524 
   1525 		case IPV6_RECVPKTINFO:
   1526 		case IPV6_RECVHOPLIMIT:
   1527 		case IPV6_RECVRTHDR:
   1528 		case IPV6_RECVPATHMTU:
   1529 		case IPV6_RECVTCLASS:
   1530 		case IPV6_V6ONLY:
   1531 			if (optlen != sizeof(int)) {
   1532 				error = EINVAL;
   1533 				break;
   1534 			}
   1535 			optval = *mtod(m, int *);
   1536 			switch (optname) {
   1537 
   1538 			case IPV6_UNICAST_HOPS:
   1539 				if (optval < -1 || optval >= 256)
   1540 					error = EINVAL;
   1541 				else {
   1542 					/* -1 = kernel default */
   1543 					in6p->in6p_hops = optval;
   1544 				}
   1545 				break;
   1546 #define OPTSET(bit) \
   1547 do { \
   1548 if (optval) \
   1549 	in6p->in6p_flags |= (bit); \
   1550 else \
   1551 	in6p->in6p_flags &= ~(bit); \
   1552 } while (/*CONSTCOND*/ 0)
   1553 
   1554 #ifdef RFC2292
   1555 #define OPTSET2292(bit) 			\
   1556 do { 						\
   1557 in6p->in6p_flags |= IN6P_RFC2292; 	\
   1558 if (optval) 				\
   1559 	in6p->in6p_flags |= (bit); 	\
   1560 else 					\
   1561 	in6p->in6p_flags &= ~(bit); 	\
   1562 } while (/*CONSTCOND*/ 0)
   1563 #endif
   1564 
   1565 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
   1566 
   1567 			case IPV6_RECVPKTINFO:
   1568 #ifdef RFC2292
   1569 				/* cannot mix with RFC2292 */
   1570 				if (OPTBIT(IN6P_RFC2292)) {
   1571 					error = EINVAL;
   1572 					break;
   1573 				}
   1574 #endif
   1575 				OPTSET(IN6P_PKTINFO);
   1576 				break;
   1577 
   1578 			case IPV6_HOPLIMIT:
   1579 			{
   1580 				struct ip6_pktopts **optp;
   1581 
   1582 #ifdef RFC2292
   1583 				/* cannot mix with RFC2292 */
   1584 				if (OPTBIT(IN6P_RFC2292)) {
   1585 					error = EINVAL;
   1586 					break;
   1587 				}
   1588 #endif
   1589 				optp = &in6p->in6p_outputopts;
   1590 				error = ip6_pcbopt(IPV6_HOPLIMIT,
   1591 						   (u_char *)&optval,
   1592 						   sizeof(optval),
   1593 						   optp,
   1594 						   privileged, uproto);
   1595 				break;
   1596 			}
   1597 
   1598 			case IPV6_RECVHOPLIMIT:
   1599 #ifdef RFC2292
   1600 				/* cannot mix with RFC2292 */
   1601 				if (OPTBIT(IN6P_RFC2292)) {
   1602 					error = EINVAL;
   1603 					break;
   1604 				}
   1605 #endif
   1606 				OPTSET(IN6P_HOPLIMIT);
   1607 				break;
   1608 
   1609 			case IPV6_RECVHOPOPTS:
   1610 #ifdef RFC2292
   1611 				/* cannot mix with RFC2292 */
   1612 				if (OPTBIT(IN6P_RFC2292)) {
   1613 					error = EINVAL;
   1614 					break;
   1615 				}
   1616 #endif
   1617 				OPTSET(IN6P_HOPOPTS);
   1618 				break;
   1619 
   1620 			case IPV6_RECVDSTOPTS:
   1621 #ifdef RFC2292
   1622 				/* cannot mix with RFC2292 */
   1623 				if (OPTBIT(IN6P_RFC2292)) {
   1624 					error = EINVAL;
   1625 					break;
   1626 				}
   1627 #endif
   1628 				OPTSET(IN6P_DSTOPTS);
   1629 				break;
   1630 
   1631 			case IPV6_RECVRTHDRDSTOPTS:
   1632 #ifdef RFC2292
   1633 				/* cannot mix with RFC2292 */
   1634 				if (OPTBIT(IN6P_RFC2292)) {
   1635 					error = EINVAL;
   1636 					break;
   1637 				}
   1638 #endif
   1639 				OPTSET(IN6P_RTHDRDSTOPTS);
   1640 				break;
   1641 
   1642 			case IPV6_RECVRTHDR:
   1643 #ifdef RFC2292
   1644 				/* cannot mix with RFC2292 */
   1645 				if (OPTBIT(IN6P_RFC2292)) {
   1646 					error = EINVAL;
   1647 					break;
   1648 				}
   1649 #endif
   1650 				OPTSET(IN6P_RTHDR);
   1651 				break;
   1652 
   1653 			case IPV6_FAITH:
   1654 				OPTSET(IN6P_FAITH);
   1655 				break;
   1656 
   1657 			case IPV6_RECVPATHMTU:
   1658 				/*
   1659 				 * We ignore this option for TCP
   1660 				 * sockets.
   1661 				 * (RFC3542 leaves this case
   1662 				 * unspecified.)
   1663 				 */
   1664 				if (uproto != IPPROTO_TCP)
   1665 					OPTSET(IN6P_MTU);
   1666 				break;
   1667 
   1668 			case IPV6_V6ONLY:
   1669 				/*
   1670 				 * make setsockopt(IPV6_V6ONLY)
   1671 				 * available only prior to bind(2).
   1672 				 * see ipng mailing list, Jun 22 2001.
   1673 				 */
   1674 				if (in6p->in6p_lport ||
   1675 				    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
   1676 					error = EINVAL;
   1677 					break;
   1678 				}
   1679 #ifdef INET6_BINDV6ONLY
   1680 				if (!optval)
   1681 					error = EINVAL;
   1682 #else
   1683 				OPTSET(IN6P_IPV6_V6ONLY);
   1684 #endif
   1685 				break;
   1686 			case IPV6_RECVTCLASS:
   1687 #ifdef RFC2292
   1688 				/* cannot mix with RFC2292 XXX */
   1689 				if (OPTBIT(IN6P_RFC2292)) {
   1690 					error = EINVAL;
   1691 					break;
   1692 				}
   1693 #endif
   1694 				OPTSET(IN6P_TCLASS);
   1695 				break;
   1696 
   1697 			}
   1698 			break;
   1699 
   1700 		case IPV6_OTCLASS:
   1701 		{
   1702 			struct ip6_pktopts **optp;
   1703 			u_int8_t tclass;
   1704 
   1705 			if (optlen != sizeof(tclass)) {
   1706 				error = EINVAL;
   1707 				break;
   1708 			}
   1709 			tclass = *mtod(m, u_int8_t *);
   1710 			optp = &in6p->in6p_outputopts;
   1711 			error = ip6_pcbopt(optname,
   1712 					   (u_char *)&tclass,
   1713 					   sizeof(tclass),
   1714 					   optp,
   1715 					   privileged, uproto);
   1716 			break;
   1717 		}
   1718 
   1719 		case IPV6_TCLASS:
   1720 		case IPV6_DONTFRAG:
   1721 		case IPV6_USE_MIN_MTU:
   1722 			if (optlen != sizeof(optval)) {
   1723 				error = EINVAL;
   1724 				break;
   1725 			}
   1726 			optval = *mtod(m, int *);
   1727 			{
   1728 				struct ip6_pktopts **optp;
   1729 				optp = &in6p->in6p_outputopts;
   1730 				error = ip6_pcbopt(optname,
   1731 						   (u_char *)&optval,
   1732 						   sizeof(optval),
   1733 						   optp,
   1734 						   privileged, uproto);
   1735 				break;
   1736 			}
   1737 
   1738 #ifdef RFC2292
   1739 		case IPV6_2292PKTINFO:
   1740 		case IPV6_2292HOPLIMIT:
   1741 		case IPV6_2292HOPOPTS:
   1742 		case IPV6_2292DSTOPTS:
   1743 		case IPV6_2292RTHDR:
   1744 			/* RFC 2292 */
   1745 			if (optlen != sizeof(int)) {
   1746 				error = EINVAL;
   1747 				break;
   1748 			}
   1749 			optval = *mtod(m, int *);
   1750 			switch (optname) {
   1751 			case IPV6_2292PKTINFO:
   1752 				OPTSET2292(IN6P_PKTINFO);
   1753 				break;
   1754 			case IPV6_2292HOPLIMIT:
   1755 				OPTSET2292(IN6P_HOPLIMIT);
   1756 				break;
   1757 			case IPV6_2292HOPOPTS:
   1758 				/*
   1759 				 * Check super-user privilege.
   1760 				 * See comments for IPV6_RECVHOPOPTS.
   1761 				 */
   1762 				if (!privileged)
   1763 					return (EPERM);
   1764 				OPTSET2292(IN6P_HOPOPTS);
   1765 				break;
   1766 			case IPV6_2292DSTOPTS:
   1767 				if (!privileged)
   1768 					return (EPERM);
   1769 				OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
   1770 				break;
   1771 			case IPV6_2292RTHDR:
   1772 				OPTSET2292(IN6P_RTHDR);
   1773 				break;
   1774 			}
   1775 			break;
   1776 #endif
   1777 		case IPV6_PKTINFO:
   1778 		case IPV6_HOPOPTS:
   1779 		case IPV6_RTHDR:
   1780 		case IPV6_DSTOPTS:
   1781 		case IPV6_RTHDRDSTOPTS:
   1782 		case IPV6_NEXTHOP:
   1783 		{
   1784 			/* new advanced API (RFC3542) */
   1785 			u_char *optbuf;
   1786 			int optbuflen;
   1787 			struct ip6_pktopts **optp;
   1788 			if (!m) {
   1789 				error = EINVAL;
   1790 				break;
   1791 			}
   1792 
   1793 #ifdef RFC2292
   1794 			/* cannot mix with RFC2292 */
   1795 			if (OPTBIT(IN6P_RFC2292)) {
   1796 				error = EINVAL;
   1797 				break;
   1798 			}
   1799 #endif
   1800 
   1801 			if (m && m->m_next) {
   1802 				error = EINVAL;	/* XXX */
   1803 				break;
   1804 			}
   1805 
   1806 			optbuf = mtod(m, u_char *);
   1807 			optbuflen = m->m_len;
   1808 			optp = &in6p->in6p_outputopts;
   1809 			error = ip6_pcbopt(optname, optbuf, optbuflen,
   1810 			    optp, privileged, uproto);
   1811 			break;
   1812 		}
   1813 #undef OPTSET
   1814 
   1815 		case IPV6_MULTICAST_IF:
   1816 		case IPV6_MULTICAST_HOPS:
   1817 		case IPV6_MULTICAST_LOOP:
   1818 		case IPV6_JOIN_GROUP:
   1819 		case IPV6_LEAVE_GROUP:
   1820 			error = ip6_setmoptions(optname,
   1821 			    &in6p->in6p_moptions, m);
   1822 			break;
   1823 
   1824 		case IPV6_PORTRANGE:
   1825 			if (!m) {
   1826 				error = EINVAL;
   1827 				break;
   1828 			}
   1829 			optval = *mtod(m, int *);
   1830 
   1831 			switch (optval) {
   1832 			case IPV6_PORTRANGE_DEFAULT:
   1833 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1834 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1835 				break;
   1836 
   1837 			case IPV6_PORTRANGE_HIGH:
   1838 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1839 				in6p->in6p_flags |= IN6P_HIGHPORT;
   1840 				break;
   1841 
   1842 			case IPV6_PORTRANGE_LOW:
   1843 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1844 				in6p->in6p_flags |= IN6P_LOWPORT;
   1845 				break;
   1846 
   1847 			default:
   1848 				error = EINVAL;
   1849 				break;
   1850 			}
   1851 			break;
   1852 
   1853 
   1854 #if defined(IPSEC) || defined(FAST_IPSEC)
   1855 		case IPV6_IPSEC_POLICY:
   1856 		{
   1857 			void *req = NULL;
   1858 			size_t len = 0;
   1859 			if (m) {
   1860 				req = mtod(m, void *);
   1861 				len = m->m_len;
   1862 			}
   1863 			error = ipsec6_set_policy(in6p, optname, req,
   1864 						  len, privileged);
   1865 		}
   1866 			break;
   1867 #endif /* IPSEC */
   1868 
   1869 		default:
   1870 			error = ENOPROTOOPT;
   1871 			break;
   1872 		}
   1873 		if (m)
   1874 			(void)m_free(m);
   1875 		break;
   1876 
   1877 	case PRCO_GETOPT:
   1878 		switch (optname) {
   1879 #ifdef RFC2292
   1880 		case IPV6_2292PKTOPTIONS:
   1881 			/*
   1882 			 * RFC3542 (effectively) deprecated the
   1883 			 * semantics of the 2292-style pktoptions.
   1884 			 * Since it was not reliable in nature (i.e.,
   1885 			 * applications had to expect the lack of some
   1886 			 * information after all), it would make sense
   1887 			 * to simplify this part by always returning
   1888 			 * empty data.
   1889 			 */
   1890 			*mp = m_get(M_WAIT, MT_SOOPTS);
   1891 			(*mp)->m_len = 0;
   1892 			break;
   1893 #endif
   1894 
   1895 		case IPV6_RECVHOPOPTS:
   1896 		case IPV6_RECVDSTOPTS:
   1897 		case IPV6_RECVRTHDRDSTOPTS:
   1898 		case IPV6_UNICAST_HOPS:
   1899 		case IPV6_RECVPKTINFO:
   1900 		case IPV6_RECVHOPLIMIT:
   1901 		case IPV6_RECVRTHDR:
   1902 		case IPV6_RECVPATHMTU:
   1903 
   1904 		case IPV6_FAITH:
   1905 		case IPV6_V6ONLY:
   1906 		case IPV6_PORTRANGE:
   1907 		case IPV6_RECVTCLASS:
   1908 			switch (optname) {
   1909 
   1910 			case IPV6_RECVHOPOPTS:
   1911 				optval = OPTBIT(IN6P_HOPOPTS);
   1912 				break;
   1913 
   1914 			case IPV6_RECVDSTOPTS:
   1915 				optval = OPTBIT(IN6P_DSTOPTS);
   1916 				break;
   1917 
   1918 			case IPV6_RECVRTHDRDSTOPTS:
   1919 				optval = OPTBIT(IN6P_RTHDRDSTOPTS);
   1920 				break;
   1921 
   1922 			case IPV6_UNICAST_HOPS:
   1923 				optval = in6p->in6p_hops;
   1924 				break;
   1925 
   1926 			case IPV6_RECVPKTINFO:
   1927 				optval = OPTBIT(IN6P_PKTINFO);
   1928 				break;
   1929 
   1930 			case IPV6_RECVHOPLIMIT:
   1931 				optval = OPTBIT(IN6P_HOPLIMIT);
   1932 				break;
   1933 
   1934 			case IPV6_RECVRTHDR:
   1935 				optval = OPTBIT(IN6P_RTHDR);
   1936 				break;
   1937 
   1938 			case IPV6_RECVPATHMTU:
   1939 				optval = OPTBIT(IN6P_MTU);
   1940 				break;
   1941 
   1942 			case IPV6_FAITH:
   1943 				optval = OPTBIT(IN6P_FAITH);
   1944 				break;
   1945 
   1946 			case IPV6_V6ONLY:
   1947 				optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1948 				break;
   1949 
   1950 			case IPV6_PORTRANGE:
   1951 			    {
   1952 				int flags;
   1953 				flags = in6p->in6p_flags;
   1954 				if (flags & IN6P_HIGHPORT)
   1955 					optval = IPV6_PORTRANGE_HIGH;
   1956 				else if (flags & IN6P_LOWPORT)
   1957 					optval = IPV6_PORTRANGE_LOW;
   1958 				else
   1959 					optval = 0;
   1960 				break;
   1961 			    }
   1962 			case IPV6_RECVTCLASS:
   1963 				optval = OPTBIT(IN6P_TCLASS);
   1964 				break;
   1965 
   1966 			}
   1967 			if (error)
   1968 				break;
   1969 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1970 			m->m_len = sizeof(int);
   1971 			*mtod(m, int *) = optval;
   1972 			break;
   1973 
   1974 		case IPV6_PATHMTU:
   1975 		    {
   1976 			u_long pmtu = 0;
   1977 			struct ip6_mtuinfo mtuinfo;
   1978 			struct route *ro = &in6p->in6p_route;
   1979 
   1980 			if (!(so->so_state & SS_ISCONNECTED))
   1981 				return (ENOTCONN);
   1982 			/*
   1983 			 * XXX: we dot not consider the case of source
   1984 			 * routing, or optional information to specify
   1985 			 * the outgoing interface.
   1986 			 */
   1987 			error = ip6_getpmtu(ro, NULL, NULL,
   1988 			    &in6p->in6p_faddr, &pmtu, NULL);
   1989 			if (error)
   1990 				break;
   1991 			if (pmtu > IPV6_MAXPACKET)
   1992 				pmtu = IPV6_MAXPACKET;
   1993 
   1994 			memset(&mtuinfo, 0, sizeof(mtuinfo));
   1995 			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
   1996 			optdata = (void *)&mtuinfo;
   1997 			optdatalen = sizeof(mtuinfo);
   1998 			if (optdatalen > MCLBYTES)
   1999 				return (EMSGSIZE); /* XXX */
   2000 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   2001 			if (optdatalen > MLEN)
   2002 				MCLGET(m, M_WAIT);
   2003 			m->m_len = optdatalen;
   2004 			memcpy(mtod(m, void *), optdata, optdatalen);
   2005 			break;
   2006 		    }
   2007 
   2008 #ifdef RFC2292
   2009 		case IPV6_2292PKTINFO:
   2010 		case IPV6_2292HOPLIMIT:
   2011 		case IPV6_2292HOPOPTS:
   2012 		case IPV6_2292RTHDR:
   2013 		case IPV6_2292DSTOPTS:
   2014 			switch (optname) {
   2015 			case IPV6_2292PKTINFO:
   2016 				optval = OPTBIT(IN6P_PKTINFO);
   2017 				break;
   2018 			case IPV6_2292HOPLIMIT:
   2019 				optval = OPTBIT(IN6P_HOPLIMIT);
   2020 				break;
   2021 			case IPV6_2292HOPOPTS:
   2022 				optval = OPTBIT(IN6P_HOPOPTS);
   2023 				break;
   2024 			case IPV6_2292RTHDR:
   2025 				optval = OPTBIT(IN6P_RTHDR);
   2026 				break;
   2027 			case IPV6_2292DSTOPTS:
   2028 				optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
   2029 				break;
   2030 			}
   2031 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   2032 			m->m_len = sizeof(int);
   2033 			*mtod(m, int *) = optval;
   2034 			break;
   2035 #endif
   2036 		case IPV6_PKTINFO:
   2037 		case IPV6_HOPOPTS:
   2038 		case IPV6_RTHDR:
   2039 		case IPV6_DSTOPTS:
   2040 		case IPV6_RTHDRDSTOPTS:
   2041 		case IPV6_NEXTHOP:
   2042 		case IPV6_OTCLASS:
   2043 		case IPV6_TCLASS:
   2044 		case IPV6_DONTFRAG:
   2045 		case IPV6_USE_MIN_MTU:
   2046 			error = ip6_getpcbopt(in6p->in6p_outputopts,
   2047 			    optname, mp);
   2048 			break;
   2049 
   2050 		case IPV6_MULTICAST_IF:
   2051 		case IPV6_MULTICAST_HOPS:
   2052 		case IPV6_MULTICAST_LOOP:
   2053 		case IPV6_JOIN_GROUP:
   2054 		case IPV6_LEAVE_GROUP:
   2055 			error = ip6_getmoptions(optname,
   2056 			    in6p->in6p_moptions, mp);
   2057 			break;
   2058 
   2059 #if defined(IPSEC) || defined(FAST_IPSEC)
   2060 		case IPV6_IPSEC_POLICY:
   2061 		    {
   2062 			void *req = NULL;
   2063 			size_t len = 0;
   2064 			if (m) {
   2065 				req = mtod(m, void *);
   2066 				len = m->m_len;
   2067 			}
   2068 			error = ipsec6_get_policy(in6p, req, len, mp);
   2069 			break;
   2070 		    }
   2071 #endif /* IPSEC */
   2072 
   2073 
   2074 
   2075 
   2076 		default:
   2077 			error = ENOPROTOOPT;
   2078 			break;
   2079 		}
   2080 		break;
   2081 	}
   2082 	return (error);
   2083 }
   2084 
   2085 int
   2086 ip6_raw_ctloutput(int op, struct socket *so, int level, int optname,
   2087 	struct mbuf **mp)
   2088 {
   2089 	int error = 0, optval, optlen;
   2090 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   2091 	struct in6pcb *in6p = sotoin6pcb(so);
   2092 	struct mbuf *m = *mp;
   2093 
   2094 	optlen = m ? m->m_len : 0;
   2095 
   2096 	if (level != IPPROTO_IPV6) {
   2097 		if (op == PRCO_SETOPT && *mp)
   2098 			(void)m_free(*mp);
   2099 		return ENOPROTOOPT;
   2100 	}
   2101 
   2102 	switch (optname) {
   2103 	case IPV6_CHECKSUM:
   2104 		/*
   2105 		 * For ICMPv6 sockets, no modification allowed for checksum
   2106 		 * offset, permit "no change" values to help existing apps.
   2107 		 *
   2108 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
   2109 		 * for an ICMPv6 socket will fail."  The current
   2110 		 * behavior does not meet RFC3542.
   2111 		 */
   2112 		switch (op) {
   2113 		case PRCO_SETOPT:
   2114 			if (optlen != sizeof(int)) {
   2115 				error = EINVAL;
   2116 				break;
   2117 			}
   2118 			optval = *mtod(m, int *);
   2119 			if ((optval % 2) != 0) {
   2120 				/* the API assumes even offset values */
   2121 				error = EINVAL;
   2122 			} else if (so->so_proto->pr_protocol ==
   2123 			    IPPROTO_ICMPV6) {
   2124 				if (optval != icmp6off)
   2125 					error = EINVAL;
   2126 			} else
   2127 				in6p->in6p_cksum = optval;
   2128 			break;
   2129 
   2130 		case PRCO_GETOPT:
   2131 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   2132 				optval = icmp6off;
   2133 			else
   2134 				optval = in6p->in6p_cksum;
   2135 
   2136 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   2137 			m->m_len = sizeof(int);
   2138 			*mtod(m, int *) = optval;
   2139 			break;
   2140 
   2141 		default:
   2142 			error = EINVAL;
   2143 			break;
   2144 		}
   2145 		break;
   2146 
   2147 	default:
   2148 		error = ENOPROTOOPT;
   2149 		break;
   2150 	}
   2151 
   2152 	if (op == PRCO_SETOPT && m)
   2153 		(void)m_free(m);
   2154 
   2155 	return (error);
   2156 }
   2157 
   2158 #ifdef RFC2292
   2159 /*
   2160  * Set up IP6 options in pcb for insertion in output packets or
   2161  * specifying behavior of outgoing packets.
   2162  */
   2163 static int
   2164 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, struct socket *so)
   2165 {
   2166 	struct ip6_pktopts *opt = *pktopt;
   2167 	int error = 0;
   2168 	struct lwp *l = curlwp;	/* XXX */
   2169 	int priv = 0;
   2170 
   2171 	/* turn off any old options. */
   2172 	if (opt) {
   2173 #ifdef DIAGNOSTIC
   2174 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
   2175 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
   2176 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2177 		    printf("ip6_pcbopts: all specified options are cleared.\n");
   2178 #endif
   2179 		ip6_clearpktopts(opt, -1);
   2180 	} else
   2181 		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
   2182 	*pktopt = NULL;
   2183 
   2184 	if (!m || m->m_len == 0) {
   2185 		/*
   2186 		 * Only turning off any previous options, regardless of
   2187 		 * whether the opt is just created or given.
   2188 		 */
   2189 		free(opt, M_IP6OPT);
   2190 		return (0);
   2191 	}
   2192 
   2193 	/*  set options specified by user. */
   2194 	if (l && !kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
   2195 	    NULL))
   2196 		priv = 1;
   2197 	if ((error = ip6_setpktopts(m, opt, NULL, priv,
   2198 	    so->so_proto->pr_protocol)) != 0) {
   2199 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
   2200 		free(opt, M_IP6OPT);
   2201 		return (error);
   2202 	}
   2203 	*pktopt = opt;
   2204 	return (0);
   2205 }
   2206 #endif
   2207 
   2208 /*
   2209  * initialize ip6_pktopts.  beware that there are non-zero default values in
   2210  * the struct.
   2211  */
   2212 void
   2213 ip6_initpktopts(struct ip6_pktopts *opt)
   2214 {
   2215 
   2216 	memset(opt, 0, sizeof(*opt));
   2217 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
   2218 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
   2219 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
   2220 }
   2221 
   2222 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
   2223 static int
   2224 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
   2225     int priv, int uproto)
   2226 {
   2227 	struct ip6_pktopts *opt;
   2228 
   2229 	if (*pktopt == NULL) {
   2230 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
   2231 		    M_WAITOK);
   2232 		ip6_initpktopts(*pktopt);
   2233 	}
   2234 	opt = *pktopt;
   2235 
   2236 	return (ip6_setpktopt(optname, buf, len, opt, priv, 1, 0, uproto));
   2237 }
   2238 
   2239 static int
   2240 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf **mp)
   2241 {
   2242 	void *optdata = NULL;
   2243 	int optdatalen = 0;
   2244 	struct ip6_ext *ip6e;
   2245 	int error = 0;
   2246 	struct in6_pktinfo null_pktinfo;
   2247 	int deftclass = 0, on;
   2248 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
   2249 	struct mbuf *m;
   2250 
   2251 	switch (optname) {
   2252 	case IPV6_PKTINFO:
   2253 		if (pktopt && pktopt->ip6po_pktinfo)
   2254 			optdata = (void *)pktopt->ip6po_pktinfo;
   2255 		else {
   2256 			/* XXX: we don't have to do this every time... */
   2257 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
   2258 			optdata = (void *)&null_pktinfo;
   2259 		}
   2260 		optdatalen = sizeof(struct in6_pktinfo);
   2261 		break;
   2262 	case IPV6_OTCLASS:
   2263 		/* XXX */
   2264 		return (EINVAL);
   2265 	case IPV6_TCLASS:
   2266 		if (pktopt && pktopt->ip6po_tclass >= 0)
   2267 			optdata = (void *)&pktopt->ip6po_tclass;
   2268 		else
   2269 			optdata = (void *)&deftclass;
   2270 		optdatalen = sizeof(int);
   2271 		break;
   2272 	case IPV6_HOPOPTS:
   2273 		if (pktopt && pktopt->ip6po_hbh) {
   2274 			optdata = (void *)pktopt->ip6po_hbh;
   2275 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
   2276 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2277 		}
   2278 		break;
   2279 	case IPV6_RTHDR:
   2280 		if (pktopt && pktopt->ip6po_rthdr) {
   2281 			optdata = (void *)pktopt->ip6po_rthdr;
   2282 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
   2283 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2284 		}
   2285 		break;
   2286 	case IPV6_RTHDRDSTOPTS:
   2287 		if (pktopt && pktopt->ip6po_dest1) {
   2288 			optdata = (void *)pktopt->ip6po_dest1;
   2289 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
   2290 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2291 		}
   2292 		break;
   2293 	case IPV6_DSTOPTS:
   2294 		if (pktopt && pktopt->ip6po_dest2) {
   2295 			optdata = (void *)pktopt->ip6po_dest2;
   2296 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
   2297 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2298 		}
   2299 		break;
   2300 	case IPV6_NEXTHOP:
   2301 		if (pktopt && pktopt->ip6po_nexthop) {
   2302 			optdata = (void *)pktopt->ip6po_nexthop;
   2303 			optdatalen = pktopt->ip6po_nexthop->sa_len;
   2304 		}
   2305 		break;
   2306 	case IPV6_USE_MIN_MTU:
   2307 		if (pktopt)
   2308 			optdata = (void *)&pktopt->ip6po_minmtu;
   2309 		else
   2310 			optdata = (void *)&defminmtu;
   2311 		optdatalen = sizeof(int);
   2312 		break;
   2313 	case IPV6_DONTFRAG:
   2314 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
   2315 			on = 1;
   2316 		else
   2317 			on = 0;
   2318 		optdata = (void *)&on;
   2319 		optdatalen = sizeof(on);
   2320 		break;
   2321 	default:		/* should not happen */
   2322 #ifdef DIAGNOSTIC
   2323 		panic("ip6_getpcbopt: unexpected option\n");
   2324 #endif
   2325 		return (ENOPROTOOPT);
   2326 	}
   2327 
   2328 	if (optdatalen > MCLBYTES)
   2329 		return (EMSGSIZE); /* XXX */
   2330 	*mp = m = m_get(M_WAIT, MT_SOOPTS);
   2331 	if (optdatalen > MLEN)
   2332 		MCLGET(m, M_WAIT);
   2333 	m->m_len = optdatalen;
   2334 	if (optdatalen)
   2335 		memcpy(mtod(m, void *), optdata, optdatalen);
   2336 
   2337 	return (error);
   2338 }
   2339 
   2340 void
   2341 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
   2342 {
   2343 	if (optname == -1 || optname == IPV6_PKTINFO) {
   2344 		if (pktopt->ip6po_pktinfo)
   2345 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
   2346 		pktopt->ip6po_pktinfo = NULL;
   2347 	}
   2348 	if (optname == -1 || optname == IPV6_HOPLIMIT)
   2349 		pktopt->ip6po_hlim = -1;
   2350 	if (optname == -1 || optname == IPV6_TCLASS)
   2351 		pktopt->ip6po_tclass = -1;
   2352 	if (optname == -1 || optname == IPV6_NEXTHOP) {
   2353 		rtcache_free(&pktopt->ip6po_nextroute);
   2354 		if (pktopt->ip6po_nexthop)
   2355 			free(pktopt->ip6po_nexthop, M_IP6OPT);
   2356 		pktopt->ip6po_nexthop = NULL;
   2357 	}
   2358 	if (optname == -1 || optname == IPV6_HOPOPTS) {
   2359 		if (pktopt->ip6po_hbh)
   2360 			free(pktopt->ip6po_hbh, M_IP6OPT);
   2361 		pktopt->ip6po_hbh = NULL;
   2362 	}
   2363 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
   2364 		if (pktopt->ip6po_dest1)
   2365 			free(pktopt->ip6po_dest1, M_IP6OPT);
   2366 		pktopt->ip6po_dest1 = NULL;
   2367 	}
   2368 	if (optname == -1 || optname == IPV6_RTHDR) {
   2369 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2370 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
   2371 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
   2372 		rtcache_free(&pktopt->ip6po_route);
   2373 	}
   2374 	if (optname == -1 || optname == IPV6_DSTOPTS) {
   2375 		if (pktopt->ip6po_dest2)
   2376 			free(pktopt->ip6po_dest2, M_IP6OPT);
   2377 		pktopt->ip6po_dest2 = NULL;
   2378 	}
   2379 }
   2380 
   2381 #define PKTOPT_EXTHDRCPY(type) 					\
   2382 do {								\
   2383 	if (src->type) {					\
   2384 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
   2385 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
   2386 		if (dst->type == NULL && canwait == M_NOWAIT)	\
   2387 			goto bad;				\
   2388 		memcpy(dst->type, src->type, hlen);		\
   2389 	}							\
   2390 } while (/*CONSTCOND*/ 0)
   2391 
   2392 static int
   2393 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
   2394 {
   2395 	dst->ip6po_hlim = src->ip6po_hlim;
   2396 	dst->ip6po_tclass = src->ip6po_tclass;
   2397 	dst->ip6po_flags = src->ip6po_flags;
   2398 	if (src->ip6po_pktinfo) {
   2399 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
   2400 		    M_IP6OPT, canwait);
   2401 		if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT)
   2402 			goto bad;
   2403 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
   2404 	}
   2405 	if (src->ip6po_nexthop) {
   2406 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
   2407 		    M_IP6OPT, canwait);
   2408 		if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT)
   2409 			goto bad;
   2410 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
   2411 		    src->ip6po_nexthop->sa_len);
   2412 	}
   2413 	PKTOPT_EXTHDRCPY(ip6po_hbh);
   2414 	PKTOPT_EXTHDRCPY(ip6po_dest1);
   2415 	PKTOPT_EXTHDRCPY(ip6po_dest2);
   2416 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
   2417 	return (0);
   2418 
   2419   bad:
   2420 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
   2421 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
   2422 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
   2423 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
   2424 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
   2425 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
   2426 
   2427 	return (ENOBUFS);
   2428 }
   2429 #undef PKTOPT_EXTHDRCPY
   2430 
   2431 struct ip6_pktopts *
   2432 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
   2433 {
   2434 	int error;
   2435 	struct ip6_pktopts *dst;
   2436 
   2437 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
   2438 	if (dst == NULL && canwait == M_NOWAIT)
   2439 		return (NULL);
   2440 	ip6_initpktopts(dst);
   2441 
   2442 	if ((error = copypktopts(dst, src, canwait)) != 0) {
   2443 		free(dst, M_IP6OPT);
   2444 		return (NULL);
   2445 	}
   2446 
   2447 	return (dst);
   2448 }
   2449 
   2450 void
   2451 ip6_freepcbopts(struct ip6_pktopts *pktopt)
   2452 {
   2453 	if (pktopt == NULL)
   2454 		return;
   2455 
   2456 	ip6_clearpktopts(pktopt, -1);
   2457 
   2458 	free(pktopt, M_IP6OPT);
   2459 }
   2460 
   2461 /*
   2462  * Set the IP6 multicast options in response to user setsockopt().
   2463  */
   2464 static int
   2465 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m)
   2466 {
   2467 	int error = 0;
   2468 	u_int loop, ifindex;
   2469 	struct ipv6_mreq *mreq;
   2470 	struct ifnet *ifp;
   2471 	struct ip6_moptions *im6o = *im6op;
   2472 	struct route ro;
   2473 	struct in6_multi_mship *imm;
   2474 	struct lwp *l = curlwp;	/* XXX */
   2475 
   2476 	if (im6o == NULL) {
   2477 		/*
   2478 		 * No multicast option buffer attached to the pcb;
   2479 		 * allocate one and initialize to default values.
   2480 		 */
   2481 		im6o = (struct ip6_moptions *)
   2482 			malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
   2483 
   2484 		if (im6o == NULL)
   2485 			return (ENOBUFS);
   2486 		*im6op = im6o;
   2487 		im6o->im6o_multicast_ifp = NULL;
   2488 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2489 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   2490 		LIST_INIT(&im6o->im6o_memberships);
   2491 	}
   2492 
   2493 	switch (optname) {
   2494 
   2495 	case IPV6_MULTICAST_IF:
   2496 		/*
   2497 		 * Select the interface for outgoing multicast packets.
   2498 		 */
   2499 		if (m == NULL || m->m_len != sizeof(u_int)) {
   2500 			error = EINVAL;
   2501 			break;
   2502 		}
   2503 		bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
   2504 		if (ifindex != 0) {
   2505 			if (if_indexlim <= ifindex || !ifindex2ifnet[ifindex]) {
   2506 				error = ENXIO;	/* XXX EINVAL? */
   2507 				break;
   2508 			}
   2509 			ifp = ifindex2ifnet[ifindex];
   2510 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   2511 				error = EADDRNOTAVAIL;
   2512 				break;
   2513 			}
   2514 		} else
   2515 			ifp = NULL;
   2516 		im6o->im6o_multicast_ifp = ifp;
   2517 		break;
   2518 
   2519 	case IPV6_MULTICAST_HOPS:
   2520 	    {
   2521 		/*
   2522 		 * Set the IP6 hoplimit for outgoing multicast packets.
   2523 		 */
   2524 		int optval;
   2525 		if (m == NULL || m->m_len != sizeof(int)) {
   2526 			error = EINVAL;
   2527 			break;
   2528 		}
   2529 		bcopy(mtod(m, u_int *), &optval, sizeof(optval));
   2530 		if (optval < -1 || optval >= 256)
   2531 			error = EINVAL;
   2532 		else if (optval == -1)
   2533 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2534 		else
   2535 			im6o->im6o_multicast_hlim = optval;
   2536 		break;
   2537 	    }
   2538 
   2539 	case IPV6_MULTICAST_LOOP:
   2540 		/*
   2541 		 * Set the loopback flag for outgoing multicast packets.
   2542 		 * Must be zero or one.
   2543 		 */
   2544 		if (m == NULL || m->m_len != sizeof(u_int)) {
   2545 			error = EINVAL;
   2546 			break;
   2547 		}
   2548 		bcopy(mtod(m, u_int *), &loop, sizeof(loop));
   2549 		if (loop > 1) {
   2550 			error = EINVAL;
   2551 			break;
   2552 		}
   2553 		im6o->im6o_multicast_loop = loop;
   2554 		break;
   2555 
   2556 	case IPV6_JOIN_GROUP:
   2557 		/*
   2558 		 * Add a multicast group membership.
   2559 		 * Group must be a valid IP6 multicast address.
   2560 		 */
   2561 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   2562 			error = EINVAL;
   2563 			break;
   2564 		}
   2565 		mreq = mtod(m, struct ipv6_mreq *);
   2566 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
   2567 			/*
   2568 			 * We use the unspecified address to specify to accept
   2569 			 * all multicast addresses. Only super user is allowed
   2570 			 * to do this.
   2571 			 */
   2572 			if (kauth_authorize_generic(l->l_cred,
   2573 			    KAUTH_GENERIC_ISSUSER, NULL))
   2574 			{
   2575 				error = EACCES;
   2576 				break;
   2577 			}
   2578 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
   2579 			error = EINVAL;
   2580 			break;
   2581 		}
   2582 
   2583 		/*
   2584 		 * If no interface was explicitly specified, choose an
   2585 		 * appropriate one according to the given multicast address.
   2586 		 */
   2587 		if (mreq->ipv6mr_interface == 0) {
   2588 			struct rtentry *rt;
   2589 			union {
   2590 				struct sockaddr		dst;
   2591 				struct sockaddr_in6	dst6;
   2592 			} u;
   2593 
   2594 			/*
   2595 			 * Look up the routing table for the
   2596 			 * address, and choose the outgoing interface.
   2597 			 *   XXX: is it a good approach?
   2598 			 */
   2599 			memset(&ro, 0, sizeof(ro));
   2600 			sockaddr_in6_init(&u.dst6, &mreq->ipv6mr_multiaddr, 0,
   2601 			    0, 0);
   2602 			rtcache_setdst(&ro, &u.dst);
   2603 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
   2604 			                                        : NULL;
   2605 			rtcache_free(&ro);
   2606 		} else {
   2607 			/*
   2608 			 * If the interface is specified, validate it.
   2609 			 */
   2610 			if (if_indexlim <= mreq->ipv6mr_interface ||
   2611 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
   2612 				error = ENXIO;	/* XXX EINVAL? */
   2613 				break;
   2614 			}
   2615 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   2616 		}
   2617 
   2618 		/*
   2619 		 * See if we found an interface, and confirm that it
   2620 		 * supports multicast
   2621 		 */
   2622 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   2623 			error = EADDRNOTAVAIL;
   2624 			break;
   2625 		}
   2626 
   2627 		if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
   2628 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   2629 			break;
   2630 		}
   2631 
   2632 		/*
   2633 		 * See if the membership already exists.
   2634 		 */
   2635 		for (imm = im6o->im6o_memberships.lh_first;
   2636 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   2637 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2638 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2639 			    &mreq->ipv6mr_multiaddr))
   2640 				break;
   2641 		if (imm != NULL) {
   2642 			error = EADDRINUSE;
   2643 			break;
   2644 		}
   2645 		/*
   2646 		 * Everything looks good; add a new record to the multicast
   2647 		 * address list for the given interface.
   2648 		 */
   2649 		imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0);
   2650 		if (imm == NULL)
   2651 			break;
   2652 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2653 		break;
   2654 
   2655 	case IPV6_LEAVE_GROUP:
   2656 		/*
   2657 		 * Drop a multicast group membership.
   2658 		 * Group must be a valid IP6 multicast address.
   2659 		 */
   2660 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   2661 			error = EINVAL;
   2662 			break;
   2663 		}
   2664 		mreq = mtod(m, struct ipv6_mreq *);
   2665 
   2666 		/*
   2667 		 * If an interface address was specified, get a pointer
   2668 		 * to its ifnet structure.
   2669 		 */
   2670 		if (mreq->ipv6mr_interface != 0) {
   2671 			if (if_indexlim <= mreq->ipv6mr_interface ||
   2672 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
   2673 				error = ENXIO;	/* XXX EINVAL? */
   2674 				break;
   2675 			}
   2676 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   2677 		} else
   2678 			ifp = NULL;
   2679 
   2680 		/* Fill in the scope zone ID */
   2681 		if (ifp) {
   2682 			if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
   2683 				/* XXX: should not happen */
   2684 				error = EADDRNOTAVAIL;
   2685 				break;
   2686 			}
   2687 		} else if (mreq->ipv6mr_interface != 0) {
   2688 			/*
   2689 			 * XXX: This case would happens when the (positive)
   2690 			 * index is in the valid range, but the corresponding
   2691 			 * interface has been detached dynamically.  The above
   2692 			 * check probably avoids such case to happen here, but
   2693 			 * we check it explicitly for safety.
   2694 			 */
   2695 			error = EADDRNOTAVAIL;
   2696 			break;
   2697 		} else {	/* ipv6mr_interface == 0 */
   2698 			struct sockaddr_in6 sa6_mc;
   2699 
   2700 			/*
   2701 			 * The API spec says as follows:
   2702 			 *  If the interface index is specified as 0, the
   2703 			 *  system may choose a multicast group membership to
   2704 			 *  drop by matching the multicast address only.
   2705 			 * On the other hand, we cannot disambiguate the scope
   2706 			 * zone unless an interface is provided.  Thus, we
   2707 			 * check if there's ambiguity with the default scope
   2708 			 * zone as the last resort.
   2709 			 */
   2710 			sockaddr_in6_init(&sa6_mc, &mreq->ipv6mr_multiaddr,
   2711 			    0, 0, 0);
   2712 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2713 			if (error != 0)
   2714 				break;
   2715 			mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2716 		}
   2717 
   2718 		/*
   2719 		 * Find the membership in the membership list.
   2720 		 */
   2721 		for (imm = im6o->im6o_memberships.lh_first;
   2722 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   2723 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2724 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2725 			    &mreq->ipv6mr_multiaddr))
   2726 				break;
   2727 		}
   2728 		if (imm == NULL) {
   2729 			/* Unable to resolve interface */
   2730 			error = EADDRNOTAVAIL;
   2731 			break;
   2732 		}
   2733 		/*
   2734 		 * Give up the multicast address record to which the
   2735 		 * membership points.
   2736 		 */
   2737 		LIST_REMOVE(imm, i6mm_chain);
   2738 		in6_leavegroup(imm);
   2739 		break;
   2740 
   2741 	default:
   2742 		error = EOPNOTSUPP;
   2743 		break;
   2744 	}
   2745 
   2746 	/*
   2747 	 * If all options have default values, no need to keep the mbuf.
   2748 	 */
   2749 	if (im6o->im6o_multicast_ifp == NULL &&
   2750 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2751 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2752 	    im6o->im6o_memberships.lh_first == NULL) {
   2753 		free(*im6op, M_IPMOPTS);
   2754 		*im6op = NULL;
   2755 	}
   2756 
   2757 	return (error);
   2758 }
   2759 
   2760 /*
   2761  * Return the IP6 multicast options in response to user getsockopt().
   2762  */
   2763 static int
   2764 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp)
   2765 {
   2766 	u_int *hlim, *loop, *ifindex;
   2767 
   2768 	*mp = m_get(M_WAIT, MT_SOOPTS);
   2769 
   2770 	switch (optname) {
   2771 
   2772 	case IPV6_MULTICAST_IF:
   2773 		ifindex = mtod(*mp, u_int *);
   2774 		(*mp)->m_len = sizeof(u_int);
   2775 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
   2776 			*ifindex = 0;
   2777 		else
   2778 			*ifindex = im6o->im6o_multicast_ifp->if_index;
   2779 		return (0);
   2780 
   2781 	case IPV6_MULTICAST_HOPS:
   2782 		hlim = mtod(*mp, u_int *);
   2783 		(*mp)->m_len = sizeof(u_int);
   2784 		if (im6o == NULL)
   2785 			*hlim = ip6_defmcasthlim;
   2786 		else
   2787 			*hlim = im6o->im6o_multicast_hlim;
   2788 		return (0);
   2789 
   2790 	case IPV6_MULTICAST_LOOP:
   2791 		loop = mtod(*mp, u_int *);
   2792 		(*mp)->m_len = sizeof(u_int);
   2793 		if (im6o == NULL)
   2794 			*loop = ip6_defmcasthlim;
   2795 		else
   2796 			*loop = im6o->im6o_multicast_loop;
   2797 		return (0);
   2798 
   2799 	default:
   2800 		return (EOPNOTSUPP);
   2801 	}
   2802 }
   2803 
   2804 /*
   2805  * Discard the IP6 multicast options.
   2806  */
   2807 void
   2808 ip6_freemoptions(struct ip6_moptions *im6o)
   2809 {
   2810 	struct in6_multi_mship *imm;
   2811 
   2812 	if (im6o == NULL)
   2813 		return;
   2814 
   2815 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   2816 		LIST_REMOVE(imm, i6mm_chain);
   2817 		in6_leavegroup(imm);
   2818 	}
   2819 	free(im6o, M_IPMOPTS);
   2820 }
   2821 
   2822 /*
   2823  * Set IPv6 outgoing packet options based on advanced API.
   2824  */
   2825 int
   2826 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
   2827 	struct ip6_pktopts *stickyopt, int priv, int uproto)
   2828 {
   2829 	struct cmsghdr *cm = 0;
   2830 
   2831 	if (control == NULL || opt == NULL)
   2832 		return (EINVAL);
   2833 
   2834 	ip6_initpktopts(opt);
   2835 	if (stickyopt) {
   2836 		int error;
   2837 
   2838 		/*
   2839 		 * If stickyopt is provided, make a local copy of the options
   2840 		 * for this particular packet, then override them by ancillary
   2841 		 * objects.
   2842 		 * XXX: copypktopts() does not copy the cached route to a next
   2843 		 * hop (if any).  This is not very good in terms of efficiency,
   2844 		 * but we can allow this since this option should be rarely
   2845 		 * used.
   2846 		 */
   2847 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
   2848 			return (error);
   2849 	}
   2850 
   2851 	/*
   2852 	 * XXX: Currently, we assume all the optional information is stored
   2853 	 * in a single mbuf.
   2854 	 */
   2855 	if (control->m_next)
   2856 		return (EINVAL);
   2857 
   2858 	for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2859 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2860 		int error;
   2861 
   2862 		if (control->m_len < CMSG_LEN(0))
   2863 			return (EINVAL);
   2864 
   2865 		cm = mtod(control, struct cmsghdr *);
   2866 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   2867 			return (EINVAL);
   2868 		if (cm->cmsg_level != IPPROTO_IPV6)
   2869 			continue;
   2870 
   2871 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
   2872 		    cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, 1, uproto);
   2873 		if (error)
   2874 			return (error);
   2875 	}
   2876 
   2877 	return (0);
   2878 }
   2879 
   2880 /*
   2881  * Set a particular packet option, as a sticky option or an ancillary data
   2882  * item.  "len" can be 0 only when it's a sticky option.
   2883  * We have 4 cases of combination of "sticky" and "cmsg":
   2884  * "sticky=0, cmsg=0": impossible
   2885  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
   2886  * "sticky=1, cmsg=0": RFC3542 socket option
   2887  * "sticky=1, cmsg=1": RFC2292 socket option
   2888  */
   2889 static int
   2890 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
   2891     int priv, int sticky, int cmsg, int uproto)
   2892 {
   2893 	int minmtupolicy;
   2894 
   2895 	if (!sticky && !cmsg) {
   2896 #ifdef DIAGNOSTIC
   2897 		printf("ip6_setpktopt: impossible case\n");
   2898 #endif
   2899 		return (EINVAL);
   2900 	}
   2901 
   2902 	/*
   2903 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
   2904 	 * not be specified in the context of RFC3542.  Conversely,
   2905 	 * RFC3542 types should not be specified in the context of RFC2292.
   2906 	 */
   2907 	if (!cmsg) {
   2908 		switch (optname) {
   2909 		case IPV6_2292PKTINFO:
   2910 		case IPV6_2292HOPLIMIT:
   2911 		case IPV6_2292NEXTHOP:
   2912 		case IPV6_2292HOPOPTS:
   2913 		case IPV6_2292DSTOPTS:
   2914 		case IPV6_2292RTHDR:
   2915 		case IPV6_2292PKTOPTIONS:
   2916 			return (ENOPROTOOPT);
   2917 		}
   2918 	}
   2919 	if (sticky && cmsg) {
   2920 		switch (optname) {
   2921 		case IPV6_PKTINFO:
   2922 		case IPV6_HOPLIMIT:
   2923 		case IPV6_NEXTHOP:
   2924 		case IPV6_HOPOPTS:
   2925 		case IPV6_DSTOPTS:
   2926 		case IPV6_RTHDRDSTOPTS:
   2927 		case IPV6_RTHDR:
   2928 		case IPV6_USE_MIN_MTU:
   2929 		case IPV6_DONTFRAG:
   2930 		case IPV6_OTCLASS:
   2931 		case IPV6_TCLASS:
   2932 			return (ENOPROTOOPT);
   2933 		}
   2934 	}
   2935 
   2936 	switch (optname) {
   2937 #ifdef RFC2292
   2938 	case IPV6_2292PKTINFO:
   2939 #endif
   2940 	case IPV6_PKTINFO:
   2941 	{
   2942 		struct ifnet *ifp = NULL;
   2943 		struct in6_pktinfo *pktinfo;
   2944 
   2945 		if (len != sizeof(struct in6_pktinfo))
   2946 			return (EINVAL);
   2947 
   2948 		pktinfo = (struct in6_pktinfo *)buf;
   2949 
   2950 		/*
   2951 		 * An application can clear any sticky IPV6_PKTINFO option by
   2952 		 * doing a "regular" setsockopt with ipi6_addr being
   2953 		 * in6addr_any and ipi6_ifindex being zero.
   2954 		 * [RFC 3542, Section 6]
   2955 		 */
   2956 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
   2957 		    pktinfo->ipi6_ifindex == 0 &&
   2958 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2959 			ip6_clearpktopts(opt, optname);
   2960 			break;
   2961 		}
   2962 
   2963 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
   2964 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2965 			return (EINVAL);
   2966 		}
   2967 
   2968 		/* validate the interface index if specified. */
   2969 		if (pktinfo->ipi6_ifindex >= if_indexlim) {
   2970 			 return (ENXIO);
   2971 		}
   2972 		if (pktinfo->ipi6_ifindex) {
   2973 			ifp = ifindex2ifnet[pktinfo->ipi6_ifindex];
   2974 			if (ifp == NULL)
   2975 				return (ENXIO);
   2976 		}
   2977 
   2978 		/*
   2979 		 * We store the address anyway, and let in6_selectsrc()
   2980 		 * validate the specified address.  This is because ipi6_addr
   2981 		 * may not have enough information about its scope zone, and
   2982 		 * we may need additional information (such as outgoing
   2983 		 * interface or the scope zone of a destination address) to
   2984 		 * disambiguate the scope.
   2985 		 * XXX: the delay of the validation may confuse the
   2986 		 * application when it is used as a sticky option.
   2987 		 */
   2988 		if (opt->ip6po_pktinfo == NULL) {
   2989 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
   2990 			    M_IP6OPT, M_NOWAIT);
   2991 			if (opt->ip6po_pktinfo == NULL)
   2992 				return (ENOBUFS);
   2993 		}
   2994 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
   2995 		break;
   2996 	}
   2997 
   2998 #ifdef RFC2292
   2999 	case IPV6_2292HOPLIMIT:
   3000 #endif
   3001 	case IPV6_HOPLIMIT:
   3002 	{
   3003 		int *hlimp;
   3004 
   3005 		/*
   3006 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
   3007 		 * to simplify the ordering among hoplimit options.
   3008 		 */
   3009 		if (optname == IPV6_HOPLIMIT && sticky)
   3010 			return (ENOPROTOOPT);
   3011 
   3012 		if (len != sizeof(int))
   3013 			return (EINVAL);
   3014 		hlimp = (int *)buf;
   3015 		if (*hlimp < -1 || *hlimp > 255)
   3016 			return (EINVAL);
   3017 
   3018 		opt->ip6po_hlim = *hlimp;
   3019 		break;
   3020 	}
   3021 
   3022 	case IPV6_OTCLASS:
   3023 		if (len != sizeof(u_int8_t))
   3024 			return (EINVAL);
   3025 
   3026 		opt->ip6po_tclass = *(u_int8_t *)buf;
   3027 		break;
   3028 
   3029 	case IPV6_TCLASS:
   3030 	{
   3031 		int tclass;
   3032 
   3033 		if (len != sizeof(int))
   3034 			return (EINVAL);
   3035 		tclass = *(int *)buf;
   3036 		if (tclass < -1 || tclass > 255)
   3037 			return (EINVAL);
   3038 
   3039 		opt->ip6po_tclass = tclass;
   3040 		break;
   3041 	}
   3042 
   3043 #ifdef RFC2292
   3044 	case IPV6_2292NEXTHOP:
   3045 #endif
   3046 	case IPV6_NEXTHOP:
   3047 		if (!priv)
   3048 			return (EPERM);
   3049 
   3050 		if (len == 0) {	/* just remove the option */
   3051 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
   3052 			break;
   3053 		}
   3054 
   3055 		/* check if cmsg_len is large enough for sa_len */
   3056 		if (len < sizeof(struct sockaddr) || len < *buf)
   3057 			return (EINVAL);
   3058 
   3059 		switch (((struct sockaddr *)buf)->sa_family) {
   3060 		case AF_INET6:
   3061 		{
   3062 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
   3063 			int error;
   3064 
   3065 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
   3066 				return (EINVAL);
   3067 
   3068 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
   3069 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
   3070 				return (EINVAL);
   3071 			}
   3072 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
   3073 			    != 0) {
   3074 				return (error);
   3075 			}
   3076 			break;
   3077 		}
   3078 		case AF_LINK:	/* eventually be supported? */
   3079 		default:
   3080 			return (EAFNOSUPPORT);
   3081 		}
   3082 
   3083 		/* turn off the previous option, then set the new option. */
   3084 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
   3085 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
   3086 		if (opt->ip6po_nexthop == NULL)
   3087 			return (ENOBUFS);
   3088 		memcpy(opt->ip6po_nexthop, buf, *buf);
   3089 		break;
   3090 
   3091 #ifdef RFC2292
   3092 	case IPV6_2292HOPOPTS:
   3093 #endif
   3094 	case IPV6_HOPOPTS:
   3095 	{
   3096 		struct ip6_hbh *hbh;
   3097 		int hbhlen;
   3098 
   3099 		/*
   3100 		 * XXX: We don't allow a non-privileged user to set ANY HbH
   3101 		 * options, since per-option restriction has too much
   3102 		 * overhead.
   3103 		 */
   3104 		if (!priv)
   3105 			return (EPERM);
   3106 
   3107 		if (len == 0) {
   3108 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3109 			break;	/* just remove the option */
   3110 		}
   3111 
   3112 		/* message length validation */
   3113 		if (len < sizeof(struct ip6_hbh))
   3114 			return (EINVAL);
   3115 		hbh = (struct ip6_hbh *)buf;
   3116 		hbhlen = (hbh->ip6h_len + 1) << 3;
   3117 		if (len != hbhlen)
   3118 			return (EINVAL);
   3119 
   3120 		/* turn off the previous option, then set the new option. */
   3121 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3122 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
   3123 		if (opt->ip6po_hbh == NULL)
   3124 			return (ENOBUFS);
   3125 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
   3126 
   3127 		break;
   3128 	}
   3129 
   3130 #ifdef RFC2292
   3131 	case IPV6_2292DSTOPTS:
   3132 #endif
   3133 	case IPV6_DSTOPTS:
   3134 	case IPV6_RTHDRDSTOPTS:
   3135 	{
   3136 		struct ip6_dest *dest, **newdest = NULL;
   3137 		int destlen;
   3138 
   3139 		if (!priv)	/* XXX: see the comment for IPV6_HOPOPTS */
   3140 			return (EPERM);
   3141 
   3142 		if (len == 0) {
   3143 			ip6_clearpktopts(opt, optname);
   3144 			break;	/* just remove the option */
   3145 		}
   3146 
   3147 		/* message length validation */
   3148 		if (len < sizeof(struct ip6_dest))
   3149 			return (EINVAL);
   3150 		dest = (struct ip6_dest *)buf;
   3151 		destlen = (dest->ip6d_len + 1) << 3;
   3152 		if (len != destlen)
   3153 			return (EINVAL);
   3154 		/*
   3155 		 * Determine the position that the destination options header
   3156 		 * should be inserted; before or after the routing header.
   3157 		 */
   3158 		switch (optname) {
   3159 		case IPV6_2292DSTOPTS:
   3160 			/*
   3161 			 * The old advanced API is ambiguous on this point.
   3162 			 * Our approach is to determine the position based
   3163 			 * according to the existence of a routing header.
   3164 			 * Note, however, that this depends on the order of the
   3165 			 * extension headers in the ancillary data; the 1st
   3166 			 * part of the destination options header must appear
   3167 			 * before the routing header in the ancillary data,
   3168 			 * too.
   3169 			 * RFC3542 solved the ambiguity by introducing
   3170 			 * separate ancillary data or option types.
   3171 			 */
   3172 			if (opt->ip6po_rthdr == NULL)
   3173 				newdest = &opt->ip6po_dest1;
   3174 			else
   3175 				newdest = &opt->ip6po_dest2;
   3176 			break;
   3177 		case IPV6_RTHDRDSTOPTS:
   3178 			newdest = &opt->ip6po_dest1;
   3179 			break;
   3180 		case IPV6_DSTOPTS:
   3181 			newdest = &opt->ip6po_dest2;
   3182 			break;
   3183 		}
   3184 
   3185 		/* turn off the previous option, then set the new option. */
   3186 		ip6_clearpktopts(opt, optname);
   3187 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
   3188 		if (*newdest == NULL)
   3189 			return (ENOBUFS);
   3190 		memcpy(*newdest, dest, destlen);
   3191 
   3192 		break;
   3193 	}
   3194 
   3195 #ifdef RFC2292
   3196 	case IPV6_2292RTHDR:
   3197 #endif
   3198 	case IPV6_RTHDR:
   3199 	{
   3200 		struct ip6_rthdr *rth;
   3201 		int rthlen;
   3202 
   3203 		if (len == 0) {
   3204 			ip6_clearpktopts(opt, IPV6_RTHDR);
   3205 			break;	/* just remove the option */
   3206 		}
   3207 
   3208 		/* message length validation */
   3209 		if (len < sizeof(struct ip6_rthdr))
   3210 			return (EINVAL);
   3211 		rth = (struct ip6_rthdr *)buf;
   3212 		rthlen = (rth->ip6r_len + 1) << 3;
   3213 		if (len != rthlen)
   3214 			return (EINVAL);
   3215 		switch (rth->ip6r_type) {
   3216 		case IPV6_RTHDR_TYPE_0:
   3217 			if (rth->ip6r_len == 0)	/* must contain one addr */
   3218 				return (EINVAL);
   3219 			if (rth->ip6r_len % 2) /* length must be even */
   3220 				return (EINVAL);
   3221 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
   3222 				return (EINVAL);
   3223 			break;
   3224 		default:
   3225 			return (EINVAL);	/* not supported */
   3226 		}
   3227 		/* turn off the previous option */
   3228 		ip6_clearpktopts(opt, IPV6_RTHDR);
   3229 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
   3230 		if (opt->ip6po_rthdr == NULL)
   3231 			return (ENOBUFS);
   3232 		memcpy(opt->ip6po_rthdr, rth, rthlen);
   3233 		break;
   3234 	}
   3235 
   3236 	case IPV6_USE_MIN_MTU:
   3237 		if (len != sizeof(int))
   3238 			return (EINVAL);
   3239 		minmtupolicy = *(int *)buf;
   3240 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
   3241 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
   3242 		    minmtupolicy != IP6PO_MINMTU_ALL) {
   3243 			return (EINVAL);
   3244 		}
   3245 		opt->ip6po_minmtu = minmtupolicy;
   3246 		break;
   3247 
   3248 	case IPV6_DONTFRAG:
   3249 		if (len != sizeof(int))
   3250 			return (EINVAL);
   3251 
   3252 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
   3253 			/*
   3254 			 * we ignore this option for TCP sockets.
   3255 			 * (RFC3542 leaves this case unspecified.)
   3256 			 */
   3257 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
   3258 		} else
   3259 			opt->ip6po_flags |= IP6PO_DONTFRAG;
   3260 		break;
   3261 
   3262 	default:
   3263 		return (ENOPROTOOPT);
   3264 	} /* end of switch */
   3265 
   3266 	return (0);
   3267 }
   3268 
   3269 /*
   3270  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   3271  * packet to the input queue of a specified interface.  Note that this
   3272  * calls the output routine of the loopback "driver", but with an interface
   3273  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   3274  */
   3275 void
   3276 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
   3277 	const struct sockaddr_in6 *dst)
   3278 {
   3279 	struct mbuf *copym;
   3280 	struct ip6_hdr *ip6;
   3281 
   3282 	copym = m_copy(m, 0, M_COPYALL);
   3283 	if (copym == NULL)
   3284 		return;
   3285 
   3286 	/*
   3287 	 * Make sure to deep-copy IPv6 header portion in case the data
   3288 	 * is in an mbuf cluster, so that we can safely override the IPv6
   3289 	 * header portion later.
   3290 	 */
   3291 	if ((copym->m_flags & M_EXT) != 0 ||
   3292 	    copym->m_len < sizeof(struct ip6_hdr)) {
   3293 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   3294 		if (copym == NULL)
   3295 			return;
   3296 	}
   3297 
   3298 #ifdef DIAGNOSTIC
   3299 	if (copym->m_len < sizeof(*ip6)) {
   3300 		m_freem(copym);
   3301 		return;
   3302 	}
   3303 #endif
   3304 
   3305 	ip6 = mtod(copym, struct ip6_hdr *);
   3306 	/*
   3307 	 * clear embedded scope identifiers if necessary.
   3308 	 * in6_clearscope will touch the addresses only when necessary.
   3309 	 */
   3310 	in6_clearscope(&ip6->ip6_src);
   3311 	in6_clearscope(&ip6->ip6_dst);
   3312 
   3313 	(void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
   3314 }
   3315 
   3316 /*
   3317  * Chop IPv6 header off from the payload.
   3318  */
   3319 static int
   3320 ip6_splithdr(struct mbuf *m,  struct ip6_exthdrs *exthdrs)
   3321 {
   3322 	struct mbuf *mh;
   3323 	struct ip6_hdr *ip6;
   3324 
   3325 	ip6 = mtod(m, struct ip6_hdr *);
   3326 	if (m->m_len > sizeof(*ip6)) {
   3327 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   3328 		if (mh == 0) {
   3329 			m_freem(m);
   3330 			return ENOBUFS;
   3331 		}
   3332 		M_MOVE_PKTHDR(mh, m);
   3333 		MH_ALIGN(mh, sizeof(*ip6));
   3334 		m->m_len -= sizeof(*ip6);
   3335 		m->m_data += sizeof(*ip6);
   3336 		mh->m_next = m;
   3337 		m = mh;
   3338 		m->m_len = sizeof(*ip6);
   3339 		bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
   3340 	}
   3341 	exthdrs->ip6e_ip6 = m;
   3342 	return 0;
   3343 }
   3344 
   3345 /*
   3346  * Compute IPv6 extension header length.
   3347  */
   3348 int
   3349 ip6_optlen(struct in6pcb *in6p)
   3350 {
   3351 	int len;
   3352 
   3353 	if (!in6p->in6p_outputopts)
   3354 		return 0;
   3355 
   3356 	len = 0;
   3357 #define elen(x) \
   3358     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   3359 
   3360 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   3361 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   3362 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   3363 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   3364 	return len;
   3365 #undef elen
   3366 }
   3367