ip6_output.c revision 1.146 1 /* $NetBSD: ip6_output.c,v 1.146 2012/03/13 18:40:59 elad Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.146 2012/03/13 18:40:59 elad Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_pfil_hooks.h"
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/kauth.h>
82
83 #include <net/if.h>
84 #include <net/route.h>
85 #ifdef PFIL_HOOKS
86 #include <net/pfil.h>
87 #endif
88
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip6.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet6/in6_offload.h>
95 #include <netinet6/ip6_var.h>
96 #include <netinet6/ip6_private.h>
97 #include <netinet6/in6_pcb.h>
98 #include <netinet6/nd6.h>
99 #include <netinet6/ip6protosw.h>
100 #include <netinet6/scope6_var.h>
101
102 #ifdef KAME_IPSEC
103 #include <netinet6/ipsec.h>
104 #include <netinet6/ipsec_private.h>
105 #include <netkey/key.h>
106 #endif /* KAME_IPSEC */
107
108 #ifdef FAST_IPSEC
109 #include <netipsec/ipsec.h>
110 #include <netipsec/ipsec6.h>
111 #include <netipsec/key.h>
112 #include <netipsec/xform.h>
113 #endif
114
115
116 #include <net/net_osdep.h>
117
118 #ifdef PFIL_HOOKS
119 extern struct pfil_head inet6_pfil_hook; /* XXX */
120 #endif
121
122 struct ip6_exthdrs {
123 struct mbuf *ip6e_ip6;
124 struct mbuf *ip6e_hbh;
125 struct mbuf *ip6e_dest1;
126 struct mbuf *ip6e_rthdr;
127 struct mbuf *ip6e_dest2;
128 };
129
130 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
131 kauth_cred_t, int);
132 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
133 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
134 int, int, int);
135 static int ip6_setmoptions(const struct sockopt *, struct ip6_moptions **);
136 static int ip6_getmoptions(struct sockopt *, struct ip6_moptions *);
137 static int ip6_copyexthdr(struct mbuf **, void *, int);
138 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
139 struct ip6_frag **);
140 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
141 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
142 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *,
143 const struct in6_addr *, u_long *, int *);
144 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
145
146 #ifdef RFC2292
147 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
148 #endif
149
150 /*
151 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
152 * header (with pri, len, nxt, hlim, src, dst).
153 * This function may modify ver and hlim only.
154 * The mbuf chain containing the packet will be freed.
155 * The mbuf opt, if present, will not be freed.
156 *
157 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
158 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
159 * which is rt_rmx.rmx_mtu.
160 */
161 int
162 ip6_output(
163 struct mbuf *m0,
164 struct ip6_pktopts *opt,
165 struct route *ro,
166 int flags,
167 struct ip6_moptions *im6o,
168 struct socket *so,
169 struct ifnet **ifpp /* XXX: just for statistics */
170 )
171 {
172 struct ip6_hdr *ip6, *mhip6;
173 struct ifnet *ifp, *origifp;
174 struct mbuf *m = m0;
175 int hlen, tlen, len, off;
176 bool tso;
177 struct route ip6route;
178 struct rtentry *rt = NULL;
179 const struct sockaddr_in6 *dst = NULL;
180 struct sockaddr_in6 src_sa, dst_sa;
181 int error = 0;
182 struct in6_ifaddr *ia = NULL;
183 u_long mtu;
184 int alwaysfrag, dontfrag;
185 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
186 struct ip6_exthdrs exthdrs;
187 struct in6_addr finaldst, src0, dst0;
188 u_int32_t zone;
189 struct route *ro_pmtu = NULL;
190 int hdrsplit = 0;
191 int needipsec = 0;
192 #ifdef KAME_IPSEC
193 int needipsectun = 0;
194 struct secpolicy *sp = NULL;
195
196 ip6 = mtod(m, struct ip6_hdr *);
197 #endif /* KAME_IPSEC */
198 #ifdef FAST_IPSEC
199 struct secpolicy *sp = NULL;
200 int s;
201 #endif
202
203 memset(&ip6route, 0, sizeof(ip6route));
204
205 #ifdef DIAGNOSTIC
206 if ((m->m_flags & M_PKTHDR) == 0)
207 panic("ip6_output: no HDR");
208
209 if ((m->m_pkthdr.csum_flags &
210 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
211 panic("ip6_output: IPv4 checksum offload flags: %d",
212 m->m_pkthdr.csum_flags);
213 }
214
215 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
216 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
217 panic("ip6_output: conflicting checksum offload flags: %d",
218 m->m_pkthdr.csum_flags);
219 }
220 #endif
221
222 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
223
224 #define MAKE_EXTHDR(hp, mp) \
225 do { \
226 if (hp) { \
227 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
228 error = ip6_copyexthdr((mp), (void *)(hp), \
229 ((eh)->ip6e_len + 1) << 3); \
230 if (error) \
231 goto freehdrs; \
232 } \
233 } while (/*CONSTCOND*/ 0)
234
235 memset(&exthdrs, 0, sizeof(exthdrs));
236 if (opt) {
237 /* Hop-by-Hop options header */
238 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
239 /* Destination options header(1st part) */
240 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
241 /* Routing header */
242 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
243 /* Destination options header(2nd part) */
244 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
245 }
246
247 #ifdef KAME_IPSEC
248 if ((flags & IPV6_FORWARDING) != 0) {
249 needipsec = 0;
250 goto skippolicycheck;
251 }
252
253 /* get a security policy for this packet */
254 if (so == NULL)
255 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
256 else {
257 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
258 IPSEC_DIR_OUTBOUND)) {
259 needipsec = 0;
260 goto skippolicycheck;
261 }
262 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
263 }
264
265 if (sp == NULL) {
266 IPSEC6_STATINC(IPSEC_STAT_OUT_INVAL);
267 goto freehdrs;
268 }
269
270 error = 0;
271
272 /* check policy */
273 switch (sp->policy) {
274 case IPSEC_POLICY_DISCARD:
275 /*
276 * This packet is just discarded.
277 */
278 IPSEC6_STATINC(IPSEC_STAT_OUT_POLVIO);
279 goto freehdrs;
280
281 case IPSEC_POLICY_BYPASS:
282 case IPSEC_POLICY_NONE:
283 /* no need to do IPsec. */
284 needipsec = 0;
285 break;
286
287 case IPSEC_POLICY_IPSEC:
288 if (sp->req == NULL) {
289 /* XXX should be panic ? */
290 printf("ip6_output: No IPsec request specified.\n");
291 error = EINVAL;
292 goto freehdrs;
293 }
294 needipsec = 1;
295 break;
296
297 case IPSEC_POLICY_ENTRUST:
298 default:
299 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
300 }
301
302 skippolicycheck:;
303 #endif /* KAME_IPSEC */
304
305 /*
306 * Calculate the total length of the extension header chain.
307 * Keep the length of the unfragmentable part for fragmentation.
308 */
309 optlen = 0;
310 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
311 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
312 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
313 unfragpartlen = optlen + sizeof(struct ip6_hdr);
314 /* NOTE: we don't add AH/ESP length here. do that later. */
315 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
316
317 #ifdef FAST_IPSEC
318 /* Check the security policy (SP) for the packet */
319
320 sp = ipsec6_check_policy(m,so,flags,&needipsec,&error);
321 if (error != 0) {
322 /*
323 * Hack: -EINVAL is used to signal that a packet
324 * should be silently discarded. This is typically
325 * because we asked key management for an SA and
326 * it was delayed (e.g. kicked up to IKE).
327 */
328 if (error == -EINVAL)
329 error = 0;
330 goto freehdrs;
331 }
332 #endif /* FAST_IPSEC */
333
334
335 if (needipsec &&
336 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
337 in6_delayed_cksum(m);
338 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
339 }
340
341
342 /*
343 * If we need IPsec, or there is at least one extension header,
344 * separate IP6 header from the payload.
345 */
346 if ((needipsec || optlen) && !hdrsplit) {
347 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
348 m = NULL;
349 goto freehdrs;
350 }
351 m = exthdrs.ip6e_ip6;
352 hdrsplit++;
353 }
354
355 /* adjust pointer */
356 ip6 = mtod(m, struct ip6_hdr *);
357
358 /* adjust mbuf packet header length */
359 m->m_pkthdr.len += optlen;
360 plen = m->m_pkthdr.len - sizeof(*ip6);
361
362 /* If this is a jumbo payload, insert a jumbo payload option. */
363 if (plen > IPV6_MAXPACKET) {
364 if (!hdrsplit) {
365 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
366 m = NULL;
367 goto freehdrs;
368 }
369 m = exthdrs.ip6e_ip6;
370 hdrsplit++;
371 }
372 /* adjust pointer */
373 ip6 = mtod(m, struct ip6_hdr *);
374 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
375 goto freehdrs;
376 optlen += 8; /* XXX JUMBOOPTLEN */
377 ip6->ip6_plen = 0;
378 } else
379 ip6->ip6_plen = htons(plen);
380
381 /*
382 * Concatenate headers and fill in next header fields.
383 * Here we have, on "m"
384 * IPv6 payload
385 * and we insert headers accordingly. Finally, we should be getting:
386 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
387 *
388 * during the header composing process, "m" points to IPv6 header.
389 * "mprev" points to an extension header prior to esp.
390 */
391 {
392 u_char *nexthdrp = &ip6->ip6_nxt;
393 struct mbuf *mprev = m;
394
395 /*
396 * we treat dest2 specially. this makes IPsec processing
397 * much easier. the goal here is to make mprev point the
398 * mbuf prior to dest2.
399 *
400 * result: IPv6 dest2 payload
401 * m and mprev will point to IPv6 header.
402 */
403 if (exthdrs.ip6e_dest2) {
404 if (!hdrsplit)
405 panic("assumption failed: hdr not split");
406 exthdrs.ip6e_dest2->m_next = m->m_next;
407 m->m_next = exthdrs.ip6e_dest2;
408 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
409 ip6->ip6_nxt = IPPROTO_DSTOPTS;
410 }
411
412 #define MAKE_CHAIN(m, mp, p, i)\
413 do {\
414 if (m) {\
415 if (!hdrsplit) \
416 panic("assumption failed: hdr not split"); \
417 *mtod((m), u_char *) = *(p);\
418 *(p) = (i);\
419 p = mtod((m), u_char *);\
420 (m)->m_next = (mp)->m_next;\
421 (mp)->m_next = (m);\
422 (mp) = (m);\
423 }\
424 } while (/*CONSTCOND*/ 0)
425 /*
426 * result: IPv6 hbh dest1 rthdr dest2 payload
427 * m will point to IPv6 header. mprev will point to the
428 * extension header prior to dest2 (rthdr in the above case).
429 */
430 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
431 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
432 IPPROTO_DSTOPTS);
433 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
434 IPPROTO_ROUTING);
435
436 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
437 sizeof(struct ip6_hdr) + optlen);
438
439 #ifdef KAME_IPSEC
440 if (!needipsec)
441 goto skip_ipsec2;
442
443 /*
444 * pointers after IPsec headers are not valid any more.
445 * other pointers need a great care too.
446 * (IPsec routines should not mangle mbufs prior to AH/ESP)
447 */
448 exthdrs.ip6e_dest2 = NULL;
449
450 {
451 struct ip6_rthdr *rh = NULL;
452 int segleft_org = 0;
453 struct ipsec_output_state state;
454
455 if (exthdrs.ip6e_rthdr) {
456 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
457 segleft_org = rh->ip6r_segleft;
458 rh->ip6r_segleft = 0;
459 }
460
461 memset(&state, 0, sizeof(state));
462 state.m = m;
463 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
464 &needipsectun);
465 m = state.m;
466 if (error) {
467 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
468 /* mbuf is already reclaimed in ipsec6_output_trans. */
469 m = NULL;
470 switch (error) {
471 case EHOSTUNREACH:
472 case ENETUNREACH:
473 case EMSGSIZE:
474 case ENOBUFS:
475 case ENOMEM:
476 break;
477 default:
478 printf("ip6_output (ipsec): error code %d\n", error);
479 /* FALLTHROUGH */
480 case ENOENT:
481 /* don't show these error codes to the user */
482 error = 0;
483 break;
484 }
485 goto bad;
486 }
487 if (exthdrs.ip6e_rthdr) {
488 /* ah6_output doesn't modify mbuf chain */
489 rh->ip6r_segleft = segleft_org;
490 }
491 }
492 skip_ipsec2:;
493 #endif
494 }
495
496 /*
497 * If there is a routing header, replace destination address field
498 * with the first hop of the routing header.
499 */
500 if (exthdrs.ip6e_rthdr) {
501 struct ip6_rthdr *rh;
502 struct ip6_rthdr0 *rh0;
503 struct in6_addr *addr;
504 struct sockaddr_in6 sa;
505
506 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
507 struct ip6_rthdr *));
508 finaldst = ip6->ip6_dst;
509 switch (rh->ip6r_type) {
510 case IPV6_RTHDR_TYPE_0:
511 rh0 = (struct ip6_rthdr0 *)rh;
512 addr = (struct in6_addr *)(rh0 + 1);
513
514 /*
515 * construct a sockaddr_in6 form of
516 * the first hop.
517 *
518 * XXX: we may not have enough
519 * information about its scope zone;
520 * there is no standard API to pass
521 * the information from the
522 * application.
523 */
524 sockaddr_in6_init(&sa, addr, 0, 0, 0);
525 if ((error = sa6_embedscope(&sa,
526 ip6_use_defzone)) != 0) {
527 goto bad;
528 }
529 ip6->ip6_dst = sa.sin6_addr;
530 (void)memmove(&addr[0], &addr[1],
531 sizeof(struct in6_addr) *
532 (rh0->ip6r0_segleft - 1));
533 addr[rh0->ip6r0_segleft - 1] = finaldst;
534 /* XXX */
535 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
536 break;
537 default: /* is it possible? */
538 error = EINVAL;
539 goto bad;
540 }
541 }
542
543 /* Source address validation */
544 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
545 (flags & IPV6_UNSPECSRC) == 0) {
546 error = EOPNOTSUPP;
547 IP6_STATINC(IP6_STAT_BADSCOPE);
548 goto bad;
549 }
550 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
551 error = EOPNOTSUPP;
552 IP6_STATINC(IP6_STAT_BADSCOPE);
553 goto bad;
554 }
555
556 IP6_STATINC(IP6_STAT_LOCALOUT);
557
558 /*
559 * Route packet.
560 */
561 /* initialize cached route */
562 if (ro == NULL) {
563 ro = &ip6route;
564 }
565 ro_pmtu = ro;
566 if (opt && opt->ip6po_rthdr)
567 ro = &opt->ip6po_route;
568
569 /*
570 * if specified, try to fill in the traffic class field.
571 * do not override if a non-zero value is already set.
572 * we check the diffserv field and the ecn field separately.
573 */
574 if (opt && opt->ip6po_tclass >= 0) {
575 int mask = 0;
576
577 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
578 mask |= 0xfc;
579 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
580 mask |= 0x03;
581 if (mask != 0)
582 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
583 }
584
585 /* fill in or override the hop limit field, if necessary. */
586 if (opt && opt->ip6po_hlim != -1)
587 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
588 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
589 if (im6o != NULL)
590 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
591 else
592 ip6->ip6_hlim = ip6_defmcasthlim;
593 }
594
595 #ifdef KAME_IPSEC
596 if (needipsec && needipsectun) {
597 struct ipsec_output_state state;
598
599 /*
600 * All the extension headers will become inaccessible
601 * (since they can be encrypted).
602 * Don't panic, we need no more updates to extension headers
603 * on inner IPv6 packet (since they are now encapsulated).
604 *
605 * IPv6 [ESP|AH] IPv6 [extension headers] payload
606 */
607 memset(&exthdrs, 0, sizeof(exthdrs));
608 exthdrs.ip6e_ip6 = m;
609
610 memset(&state, 0, sizeof(state));
611 state.m = m;
612 state.ro = ro;
613 state.dst = rtcache_getdst(ro);
614
615 error = ipsec6_output_tunnel(&state, sp, flags);
616
617 m = state.m;
618 ro_pmtu = ro = state.ro;
619 dst = satocsin6(state.dst);
620 if (error) {
621 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
622 m0 = m = NULL;
623 m = NULL;
624 switch (error) {
625 case EHOSTUNREACH:
626 case ENETUNREACH:
627 case EMSGSIZE:
628 case ENOBUFS:
629 case ENOMEM:
630 break;
631 default:
632 printf("ip6_output (ipsec): error code %d\n", error);
633 /* FALLTHROUGH */
634 case ENOENT:
635 /* don't show these error codes to the user */
636 error = 0;
637 break;
638 }
639 goto bad;
640 }
641
642 exthdrs.ip6e_ip6 = m;
643 }
644 #endif /* KAME_IPSEC */
645 #ifdef FAST_IPSEC
646 if (needipsec) {
647 s = splsoftnet();
648 error = ipsec6_process_packet(m,sp->req);
649
650 /*
651 * Preserve KAME behaviour: ENOENT can be returned
652 * when an SA acquire is in progress. Don't propagate
653 * this to user-level; it confuses applications.
654 * XXX this will go away when the SADB is redone.
655 */
656 if (error == ENOENT)
657 error = 0;
658 splx(s);
659 goto done;
660 }
661 #endif /* FAST_IPSEC */
662
663
664
665 /* adjust pointer */
666 ip6 = mtod(m, struct ip6_hdr *);
667
668 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
669 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
670 &ifp, &rt, 0)) != 0) {
671 if (ifp != NULL)
672 in6_ifstat_inc(ifp, ifs6_out_discard);
673 goto bad;
674 }
675 if (rt == NULL) {
676 /*
677 * If in6_selectroute() does not return a route entry,
678 * dst may not have been updated.
679 */
680 error = rtcache_setdst(ro, sin6tosa(&dst_sa));
681 if (error) {
682 goto bad;
683 }
684 }
685
686 /*
687 * then rt (for unicast) and ifp must be non-NULL valid values.
688 */
689 if ((flags & IPV6_FORWARDING) == 0) {
690 /* XXX: the FORWARDING flag can be set for mrouting. */
691 in6_ifstat_inc(ifp, ifs6_out_request);
692 }
693 if (rt != NULL) {
694 ia = (struct in6_ifaddr *)(rt->rt_ifa);
695 rt->rt_use++;
696 }
697
698 /*
699 * The outgoing interface must be in the zone of source and
700 * destination addresses. We should use ia_ifp to support the
701 * case of sending packets to an address of our own.
702 */
703 if (ia != NULL && ia->ia_ifp)
704 origifp = ia->ia_ifp;
705 else
706 origifp = ifp;
707
708 src0 = ip6->ip6_src;
709 if (in6_setscope(&src0, origifp, &zone))
710 goto badscope;
711 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
712 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
713 goto badscope;
714
715 dst0 = ip6->ip6_dst;
716 if (in6_setscope(&dst0, origifp, &zone))
717 goto badscope;
718 /* re-initialize to be sure */
719 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
720 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
721 goto badscope;
722
723 /* scope check is done. */
724
725 if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
726 if (dst == NULL)
727 dst = satocsin6(rtcache_getdst(ro));
728 KASSERT(dst != NULL);
729 } else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) {
730 /*
731 * The nexthop is explicitly specified by the
732 * application. We assume the next hop is an IPv6
733 * address.
734 */
735 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
736 } else if ((rt->rt_flags & RTF_GATEWAY))
737 dst = (struct sockaddr_in6 *)rt->rt_gateway;
738 else if (dst == NULL)
739 dst = satocsin6(rtcache_getdst(ro));
740
741 /*
742 * XXXXXX: original code follows:
743 */
744 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
745 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
746 else {
747 struct in6_multi *in6m;
748
749 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
750
751 in6_ifstat_inc(ifp, ifs6_out_mcast);
752
753 /*
754 * Confirm that the outgoing interface supports multicast.
755 */
756 if (!(ifp->if_flags & IFF_MULTICAST)) {
757 IP6_STATINC(IP6_STAT_NOROUTE);
758 in6_ifstat_inc(ifp, ifs6_out_discard);
759 error = ENETUNREACH;
760 goto bad;
761 }
762
763 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
764 if (in6m != NULL &&
765 (im6o == NULL || im6o->im6o_multicast_loop)) {
766 /*
767 * If we belong to the destination multicast group
768 * on the outgoing interface, and the caller did not
769 * forbid loopback, loop back a copy.
770 */
771 KASSERT(dst != NULL);
772 ip6_mloopback(ifp, m, dst);
773 } else {
774 /*
775 * If we are acting as a multicast router, perform
776 * multicast forwarding as if the packet had just
777 * arrived on the interface to which we are about
778 * to send. The multicast forwarding function
779 * recursively calls this function, using the
780 * IPV6_FORWARDING flag to prevent infinite recursion.
781 *
782 * Multicasts that are looped back by ip6_mloopback(),
783 * above, will be forwarded by the ip6_input() routine,
784 * if necessary.
785 */
786 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
787 if (ip6_mforward(ip6, ifp, m) != 0) {
788 m_freem(m);
789 goto done;
790 }
791 }
792 }
793 /*
794 * Multicasts with a hoplimit of zero may be looped back,
795 * above, but must not be transmitted on a network.
796 * Also, multicasts addressed to the loopback interface
797 * are not sent -- the above call to ip6_mloopback() will
798 * loop back a copy if this host actually belongs to the
799 * destination group on the loopback interface.
800 */
801 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
802 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
803 m_freem(m);
804 goto done;
805 }
806 }
807
808 /*
809 * Fill the outgoing inteface to tell the upper layer
810 * to increment per-interface statistics.
811 */
812 if (ifpp)
813 *ifpp = ifp;
814
815 /* Determine path MTU. */
816 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
817 &alwaysfrag)) != 0)
818 goto bad;
819 #ifdef KAME_IPSEC
820 if (needipsectun)
821 mtu = IPV6_MMTU;
822 #endif
823
824 /*
825 * The caller of this function may specify to use the minimum MTU
826 * in some cases.
827 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
828 * setting. The logic is a bit complicated; by default, unicast
829 * packets will follow path MTU while multicast packets will be sent at
830 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
831 * including unicast ones will be sent at the minimum MTU. Multicast
832 * packets will always be sent at the minimum MTU unless
833 * IP6PO_MINMTU_DISABLE is explicitly specified.
834 * See RFC 3542 for more details.
835 */
836 if (mtu > IPV6_MMTU) {
837 if ((flags & IPV6_MINMTU))
838 mtu = IPV6_MMTU;
839 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
840 mtu = IPV6_MMTU;
841 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
842 (opt == NULL ||
843 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
844 mtu = IPV6_MMTU;
845 }
846 }
847
848 /*
849 * clear embedded scope identifiers if necessary.
850 * in6_clearscope will touch the addresses only when necessary.
851 */
852 in6_clearscope(&ip6->ip6_src);
853 in6_clearscope(&ip6->ip6_dst);
854
855 /*
856 * If the outgoing packet contains a hop-by-hop options header,
857 * it must be examined and processed even by the source node.
858 * (RFC 2460, section 4.)
859 */
860 if (ip6->ip6_nxt == IPV6_HOPOPTS) {
861 u_int32_t dummy1; /* XXX unused */
862 u_int32_t dummy2; /* XXX unused */
863 int hoff = sizeof(struct ip6_hdr);
864
865 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
866 /* m was already freed at this point */
867 error = EINVAL;/* better error? */
868 goto done;
869 }
870
871 ip6 = mtod(m, struct ip6_hdr *);
872 }
873
874 #ifdef PFIL_HOOKS
875 /*
876 * Run through list of hooks for output packets.
877 */
878 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
879 goto done;
880 if (m == NULL)
881 goto done;
882 ip6 = mtod(m, struct ip6_hdr *);
883 #endif /* PFIL_HOOKS */
884 /*
885 * Send the packet to the outgoing interface.
886 * If necessary, do IPv6 fragmentation before sending.
887 *
888 * the logic here is rather complex:
889 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
890 * 1-a: send as is if tlen <= path mtu
891 * 1-b: fragment if tlen > path mtu
892 *
893 * 2: if user asks us not to fragment (dontfrag == 1)
894 * 2-a: send as is if tlen <= interface mtu
895 * 2-b: error if tlen > interface mtu
896 *
897 * 3: if we always need to attach fragment header (alwaysfrag == 1)
898 * always fragment
899 *
900 * 4: if dontfrag == 1 && alwaysfrag == 1
901 * error, as we cannot handle this conflicting request
902 */
903 tlen = m->m_pkthdr.len;
904 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
905 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
906 dontfrag = 1;
907 else
908 dontfrag = 0;
909
910 if (dontfrag && alwaysfrag) { /* case 4 */
911 /* conflicting request - can't transmit */
912 error = EMSGSIZE;
913 goto bad;
914 }
915 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */
916 /*
917 * Even if the DONTFRAG option is specified, we cannot send the
918 * packet when the data length is larger than the MTU of the
919 * outgoing interface.
920 * Notify the error by sending IPV6_PATHMTU ancillary data as
921 * well as returning an error code (the latter is not described
922 * in the API spec.)
923 */
924 u_int32_t mtu32;
925 struct ip6ctlparam ip6cp;
926
927 mtu32 = (u_int32_t)mtu;
928 memset(&ip6cp, 0, sizeof(ip6cp));
929 ip6cp.ip6c_cmdarg = (void *)&mtu32;
930 pfctlinput2(PRC_MSGSIZE,
931 rtcache_getdst(ro_pmtu), &ip6cp);
932
933 error = EMSGSIZE;
934 goto bad;
935 }
936
937 /*
938 * transmit packet without fragmentation
939 */
940 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
941 /* case 1-a and 2-a */
942 struct in6_ifaddr *ia6;
943 int sw_csum;
944
945 ip6 = mtod(m, struct ip6_hdr *);
946 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
947 if (ia6) {
948 /* Record statistics for this interface address. */
949 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
950 }
951 #ifdef KAME_IPSEC
952 /* clean ipsec history once it goes out of the node */
953 ipsec_delaux(m);
954 #endif
955
956 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
957 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
958 if (IN6_NEED_CHECKSUM(ifp,
959 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
960 in6_delayed_cksum(m);
961 }
962 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
963 }
964
965 KASSERT(dst != NULL);
966 if (__predict_true(!tso ||
967 (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
968 error = nd6_output(ifp, origifp, m, dst, rt);
969 } else {
970 error = ip6_tso_output(ifp, origifp, m, dst, rt);
971 }
972 goto done;
973 }
974
975 if (tso) {
976 error = EINVAL; /* XXX */
977 goto bad;
978 }
979
980 /*
981 * try to fragment the packet. case 1-b and 3
982 */
983 if (mtu < IPV6_MMTU) {
984 /* path MTU cannot be less than IPV6_MMTU */
985 error = EMSGSIZE;
986 in6_ifstat_inc(ifp, ifs6_out_fragfail);
987 goto bad;
988 } else if (ip6->ip6_plen == 0) {
989 /* jumbo payload cannot be fragmented */
990 error = EMSGSIZE;
991 in6_ifstat_inc(ifp, ifs6_out_fragfail);
992 goto bad;
993 } else {
994 struct mbuf **mnext, *m_frgpart;
995 struct ip6_frag *ip6f;
996 u_int32_t id = htonl(ip6_randomid());
997 u_char nextproto;
998 #if 0 /* see below */
999 struct ip6ctlparam ip6cp;
1000 u_int32_t mtu32;
1001 #endif
1002
1003 /*
1004 * Too large for the destination or interface;
1005 * fragment if possible.
1006 * Must be able to put at least 8 bytes per fragment.
1007 */
1008 hlen = unfragpartlen;
1009 if (mtu > IPV6_MAXPACKET)
1010 mtu = IPV6_MAXPACKET;
1011
1012 #if 0
1013 /*
1014 * It is believed this code is a leftover from the
1015 * development of the IPV6_RECVPATHMTU sockopt and
1016 * associated work to implement RFC3542.
1017 * It's not entirely clear what the intent of the API
1018 * is at this point, so disable this code for now.
1019 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
1020 * will send notifications if the application requests.
1021 */
1022
1023 /* Notify a proper path MTU to applications. */
1024 mtu32 = (u_int32_t)mtu;
1025 memset(&ip6cp, 0, sizeof(ip6cp));
1026 ip6cp.ip6c_cmdarg = (void *)&mtu32;
1027 pfctlinput2(PRC_MSGSIZE,
1028 rtcache_getdst(ro_pmtu), &ip6cp);
1029 #endif
1030
1031 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
1032 if (len < 8) {
1033 error = EMSGSIZE;
1034 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1035 goto bad;
1036 }
1037
1038 mnext = &m->m_nextpkt;
1039
1040 /*
1041 * Change the next header field of the last header in the
1042 * unfragmentable part.
1043 */
1044 if (exthdrs.ip6e_rthdr) {
1045 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1046 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1047 } else if (exthdrs.ip6e_dest1) {
1048 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1049 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1050 } else if (exthdrs.ip6e_hbh) {
1051 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1052 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1053 } else {
1054 nextproto = ip6->ip6_nxt;
1055 ip6->ip6_nxt = IPPROTO_FRAGMENT;
1056 }
1057
1058 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
1059 != 0) {
1060 if (IN6_NEED_CHECKSUM(ifp,
1061 m->m_pkthdr.csum_flags &
1062 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
1063 in6_delayed_cksum(m);
1064 }
1065 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
1066 }
1067
1068 /*
1069 * Loop through length of segment after first fragment,
1070 * make new header and copy data of each part and link onto
1071 * chain.
1072 */
1073 m0 = m;
1074 for (off = hlen; off < tlen; off += len) {
1075 struct mbuf *mlast;
1076
1077 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1078 if (!m) {
1079 error = ENOBUFS;
1080 IP6_STATINC(IP6_STAT_ODROPPED);
1081 goto sendorfree;
1082 }
1083 m->m_pkthdr.rcvif = NULL;
1084 m->m_flags = m0->m_flags & M_COPYFLAGS;
1085 *mnext = m;
1086 mnext = &m->m_nextpkt;
1087 m->m_data += max_linkhdr;
1088 mhip6 = mtod(m, struct ip6_hdr *);
1089 *mhip6 = *ip6;
1090 m->m_len = sizeof(*mhip6);
1091 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1092 if (error) {
1093 IP6_STATINC(IP6_STAT_ODROPPED);
1094 goto sendorfree;
1095 }
1096 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
1097 if (off + len >= tlen)
1098 len = tlen - off;
1099 else
1100 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1101 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
1102 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1103 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1104 error = ENOBUFS;
1105 IP6_STATINC(IP6_STAT_ODROPPED);
1106 goto sendorfree;
1107 }
1108 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
1109 ;
1110 mlast->m_next = m_frgpart;
1111 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1112 m->m_pkthdr.rcvif = NULL;
1113 ip6f->ip6f_reserved = 0;
1114 ip6f->ip6f_ident = id;
1115 ip6f->ip6f_nxt = nextproto;
1116 IP6_STATINC(IP6_STAT_OFRAGMENTS);
1117 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1118 }
1119
1120 in6_ifstat_inc(ifp, ifs6_out_fragok);
1121 }
1122
1123 /*
1124 * Remove leading garbages.
1125 */
1126 sendorfree:
1127 m = m0->m_nextpkt;
1128 m0->m_nextpkt = 0;
1129 m_freem(m0);
1130 for (m0 = m; m; m = m0) {
1131 m0 = m->m_nextpkt;
1132 m->m_nextpkt = 0;
1133 if (error == 0) {
1134 struct in6_ifaddr *ia6;
1135 ip6 = mtod(m, struct ip6_hdr *);
1136 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1137 if (ia6) {
1138 /*
1139 * Record statistics for this interface
1140 * address.
1141 */
1142 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1143 m->m_pkthdr.len;
1144 }
1145 #ifdef KAME_IPSEC
1146 /* clean ipsec history once it goes out of the node */
1147 ipsec_delaux(m);
1148 #endif
1149 KASSERT(dst != NULL);
1150 error = nd6_output(ifp, origifp, m, dst, rt);
1151 } else
1152 m_freem(m);
1153 }
1154
1155 if (error == 0)
1156 IP6_STATINC(IP6_STAT_FRAGMENTED);
1157
1158 done:
1159 rtcache_free(&ip6route);
1160
1161 #ifdef KAME_IPSEC
1162 if (sp != NULL)
1163 key_freesp(sp);
1164 #endif /* KAME_IPSEC */
1165 #ifdef FAST_IPSEC
1166 if (sp != NULL)
1167 KEY_FREESP(&sp);
1168 #endif /* FAST_IPSEC */
1169
1170
1171 return (error);
1172
1173 freehdrs:
1174 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1175 m_freem(exthdrs.ip6e_dest1);
1176 m_freem(exthdrs.ip6e_rthdr);
1177 m_freem(exthdrs.ip6e_dest2);
1178 /* FALLTHROUGH */
1179 bad:
1180 m_freem(m);
1181 goto done;
1182 badscope:
1183 IP6_STATINC(IP6_STAT_BADSCOPE);
1184 in6_ifstat_inc(origifp, ifs6_out_discard);
1185 if (error == 0)
1186 error = EHOSTUNREACH; /* XXX */
1187 goto bad;
1188 }
1189
1190 static int
1191 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1192 {
1193 struct mbuf *m;
1194
1195 if (hlen > MCLBYTES)
1196 return (ENOBUFS); /* XXX */
1197
1198 MGET(m, M_DONTWAIT, MT_DATA);
1199 if (!m)
1200 return (ENOBUFS);
1201
1202 if (hlen > MLEN) {
1203 MCLGET(m, M_DONTWAIT);
1204 if ((m->m_flags & M_EXT) == 0) {
1205 m_free(m);
1206 return (ENOBUFS);
1207 }
1208 }
1209 m->m_len = hlen;
1210 if (hdr)
1211 bcopy(hdr, mtod(m, void *), hlen);
1212
1213 *mp = m;
1214 return (0);
1215 }
1216
1217 /*
1218 * Process a delayed payload checksum calculation.
1219 */
1220 void
1221 in6_delayed_cksum(struct mbuf *m)
1222 {
1223 uint16_t csum, offset;
1224
1225 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1226 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1227 KASSERT((m->m_pkthdr.csum_flags
1228 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1229
1230 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1231 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1232 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1233 csum = 0xffff;
1234 }
1235
1236 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1237 if ((offset + sizeof(csum)) > m->m_len) {
1238 m_copyback(m, offset, sizeof(csum), &csum);
1239 } else {
1240 *(uint16_t *)(mtod(m, char *) + offset) = csum;
1241 }
1242 }
1243
1244 /*
1245 * Insert jumbo payload option.
1246 */
1247 static int
1248 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1249 {
1250 struct mbuf *mopt;
1251 u_int8_t *optbuf;
1252 u_int32_t v;
1253
1254 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1255
1256 /*
1257 * If there is no hop-by-hop options header, allocate new one.
1258 * If there is one but it doesn't have enough space to store the
1259 * jumbo payload option, allocate a cluster to store the whole options.
1260 * Otherwise, use it to store the options.
1261 */
1262 if (exthdrs->ip6e_hbh == 0) {
1263 MGET(mopt, M_DONTWAIT, MT_DATA);
1264 if (mopt == 0)
1265 return (ENOBUFS);
1266 mopt->m_len = JUMBOOPTLEN;
1267 optbuf = mtod(mopt, u_int8_t *);
1268 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1269 exthdrs->ip6e_hbh = mopt;
1270 } else {
1271 struct ip6_hbh *hbh;
1272
1273 mopt = exthdrs->ip6e_hbh;
1274 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1275 /*
1276 * XXX assumption:
1277 * - exthdrs->ip6e_hbh is not referenced from places
1278 * other than exthdrs.
1279 * - exthdrs->ip6e_hbh is not an mbuf chain.
1280 */
1281 int oldoptlen = mopt->m_len;
1282 struct mbuf *n;
1283
1284 /*
1285 * XXX: give up if the whole (new) hbh header does
1286 * not fit even in an mbuf cluster.
1287 */
1288 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1289 return (ENOBUFS);
1290
1291 /*
1292 * As a consequence, we must always prepare a cluster
1293 * at this point.
1294 */
1295 MGET(n, M_DONTWAIT, MT_DATA);
1296 if (n) {
1297 MCLGET(n, M_DONTWAIT);
1298 if ((n->m_flags & M_EXT) == 0) {
1299 m_freem(n);
1300 n = NULL;
1301 }
1302 }
1303 if (!n)
1304 return (ENOBUFS);
1305 n->m_len = oldoptlen + JUMBOOPTLEN;
1306 bcopy(mtod(mopt, void *), mtod(n, void *),
1307 oldoptlen);
1308 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1309 m_freem(mopt);
1310 mopt = exthdrs->ip6e_hbh = n;
1311 } else {
1312 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1313 mopt->m_len += JUMBOOPTLEN;
1314 }
1315 optbuf[0] = IP6OPT_PADN;
1316 optbuf[1] = 0;
1317
1318 /*
1319 * Adjust the header length according to the pad and
1320 * the jumbo payload option.
1321 */
1322 hbh = mtod(mopt, struct ip6_hbh *);
1323 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1324 }
1325
1326 /* fill in the option. */
1327 optbuf[2] = IP6OPT_JUMBO;
1328 optbuf[3] = 4;
1329 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1330 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1331
1332 /* finally, adjust the packet header length */
1333 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1334
1335 return (0);
1336 #undef JUMBOOPTLEN
1337 }
1338
1339 /*
1340 * Insert fragment header and copy unfragmentable header portions.
1341 */
1342 static int
1343 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1344 struct ip6_frag **frghdrp)
1345 {
1346 struct mbuf *n, *mlast;
1347
1348 if (hlen > sizeof(struct ip6_hdr)) {
1349 n = m_copym(m0, sizeof(struct ip6_hdr),
1350 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1351 if (n == 0)
1352 return (ENOBUFS);
1353 m->m_next = n;
1354 } else
1355 n = m;
1356
1357 /* Search for the last mbuf of unfragmentable part. */
1358 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1359 ;
1360
1361 if ((mlast->m_flags & M_EXT) == 0 &&
1362 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1363 /* use the trailing space of the last mbuf for the fragment hdr */
1364 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1365 mlast->m_len);
1366 mlast->m_len += sizeof(struct ip6_frag);
1367 m->m_pkthdr.len += sizeof(struct ip6_frag);
1368 } else {
1369 /* allocate a new mbuf for the fragment header */
1370 struct mbuf *mfrg;
1371
1372 MGET(mfrg, M_DONTWAIT, MT_DATA);
1373 if (mfrg == 0)
1374 return (ENOBUFS);
1375 mfrg->m_len = sizeof(struct ip6_frag);
1376 *frghdrp = mtod(mfrg, struct ip6_frag *);
1377 mlast->m_next = mfrg;
1378 }
1379
1380 return (0);
1381 }
1382
1383 static int
1384 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp,
1385 const struct in6_addr *dst, u_long *mtup, int *alwaysfragp)
1386 {
1387 struct rtentry *rt;
1388 u_int32_t mtu = 0;
1389 int alwaysfrag = 0;
1390 int error = 0;
1391
1392 if (ro_pmtu != ro) {
1393 union {
1394 struct sockaddr dst;
1395 struct sockaddr_in6 dst6;
1396 } u;
1397
1398 /* The first hop and the final destination may differ. */
1399 sockaddr_in6_init(&u.dst6, dst, 0, 0, 0);
1400 rt = rtcache_lookup(ro_pmtu, &u.dst);
1401 } else
1402 rt = rtcache_validate(ro_pmtu);
1403 if (rt != NULL) {
1404 u_int32_t ifmtu;
1405
1406 if (ifp == NULL)
1407 ifp = rt->rt_ifp;
1408 ifmtu = IN6_LINKMTU(ifp);
1409 mtu = rt->rt_rmx.rmx_mtu;
1410 if (mtu == 0)
1411 mtu = ifmtu;
1412 else if (mtu < IPV6_MMTU) {
1413 /*
1414 * RFC2460 section 5, last paragraph:
1415 * if we record ICMPv6 too big message with
1416 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1417 * or smaller, with fragment header attached.
1418 * (fragment header is needed regardless from the
1419 * packet size, for translators to identify packets)
1420 */
1421 alwaysfrag = 1;
1422 mtu = IPV6_MMTU;
1423 } else if (mtu > ifmtu) {
1424 /*
1425 * The MTU on the route is larger than the MTU on
1426 * the interface! This shouldn't happen, unless the
1427 * MTU of the interface has been changed after the
1428 * interface was brought up. Change the MTU in the
1429 * route to match the interface MTU (as long as the
1430 * field isn't locked).
1431 */
1432 mtu = ifmtu;
1433 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1434 rt->rt_rmx.rmx_mtu = mtu;
1435 }
1436 } else if (ifp) {
1437 mtu = IN6_LINKMTU(ifp);
1438 } else
1439 error = EHOSTUNREACH; /* XXX */
1440
1441 *mtup = mtu;
1442 if (alwaysfragp)
1443 *alwaysfragp = alwaysfrag;
1444 return (error);
1445 }
1446
1447 /*
1448 * IP6 socket option processing.
1449 */
1450 int
1451 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1452 {
1453 int optdatalen, uproto;
1454 void *optdata;
1455 struct in6pcb *in6p = sotoin6pcb(so);
1456 int error, optval;
1457 int level, optname;
1458
1459 KASSERT(sopt != NULL);
1460
1461 level = sopt->sopt_level;
1462 optname = sopt->sopt_name;
1463
1464 error = optval = 0;
1465 uproto = (int)so->so_proto->pr_protocol;
1466
1467 if (level != IPPROTO_IPV6) {
1468 return ENOPROTOOPT;
1469 }
1470 switch (op) {
1471 case PRCO_SETOPT:
1472 switch (optname) {
1473 #ifdef RFC2292
1474 case IPV6_2292PKTOPTIONS:
1475 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
1476 break;
1477 #endif
1478
1479 /*
1480 * Use of some Hop-by-Hop options or some
1481 * Destination options, might require special
1482 * privilege. That is, normal applications
1483 * (without special privilege) might be forbidden
1484 * from setting certain options in outgoing packets,
1485 * and might never see certain options in received
1486 * packets. [RFC 2292 Section 6]
1487 * KAME specific note:
1488 * KAME prevents non-privileged users from sending or
1489 * receiving ANY hbh/dst options in order to avoid
1490 * overhead of parsing options in the kernel.
1491 */
1492 case IPV6_RECVHOPOPTS:
1493 case IPV6_RECVDSTOPTS:
1494 case IPV6_RECVRTHDRDSTOPTS:
1495 error = kauth_authorize_network(kauth_cred_get(),
1496 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
1497 NULL, NULL, NULL);
1498 if (error)
1499 break;
1500 /* FALLTHROUGH */
1501 case IPV6_UNICAST_HOPS:
1502 case IPV6_HOPLIMIT:
1503 case IPV6_FAITH:
1504
1505 case IPV6_RECVPKTINFO:
1506 case IPV6_RECVHOPLIMIT:
1507 case IPV6_RECVRTHDR:
1508 case IPV6_RECVPATHMTU:
1509 case IPV6_RECVTCLASS:
1510 case IPV6_V6ONLY:
1511 error = sockopt_getint(sopt, &optval);
1512 if (error)
1513 break;
1514 switch (optname) {
1515 case IPV6_UNICAST_HOPS:
1516 if (optval < -1 || optval >= 256)
1517 error = EINVAL;
1518 else {
1519 /* -1 = kernel default */
1520 in6p->in6p_hops = optval;
1521 }
1522 break;
1523 #define OPTSET(bit) \
1524 do { \
1525 if (optval) \
1526 in6p->in6p_flags |= (bit); \
1527 else \
1528 in6p->in6p_flags &= ~(bit); \
1529 } while (/*CONSTCOND*/ 0)
1530
1531 #ifdef RFC2292
1532 #define OPTSET2292(bit) \
1533 do { \
1534 in6p->in6p_flags |= IN6P_RFC2292; \
1535 if (optval) \
1536 in6p->in6p_flags |= (bit); \
1537 else \
1538 in6p->in6p_flags &= ~(bit); \
1539 } while (/*CONSTCOND*/ 0)
1540 #endif
1541
1542 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1543
1544 case IPV6_RECVPKTINFO:
1545 #ifdef RFC2292
1546 /* cannot mix with RFC2292 */
1547 if (OPTBIT(IN6P_RFC2292)) {
1548 error = EINVAL;
1549 break;
1550 }
1551 #endif
1552 OPTSET(IN6P_PKTINFO);
1553 break;
1554
1555 case IPV6_HOPLIMIT:
1556 {
1557 struct ip6_pktopts **optp;
1558
1559 #ifdef RFC2292
1560 /* cannot mix with RFC2292 */
1561 if (OPTBIT(IN6P_RFC2292)) {
1562 error = EINVAL;
1563 break;
1564 }
1565 #endif
1566 optp = &in6p->in6p_outputopts;
1567 error = ip6_pcbopt(IPV6_HOPLIMIT,
1568 (u_char *)&optval,
1569 sizeof(optval),
1570 optp,
1571 kauth_cred_get(), uproto);
1572 break;
1573 }
1574
1575 case IPV6_RECVHOPLIMIT:
1576 #ifdef RFC2292
1577 /* cannot mix with RFC2292 */
1578 if (OPTBIT(IN6P_RFC2292)) {
1579 error = EINVAL;
1580 break;
1581 }
1582 #endif
1583 OPTSET(IN6P_HOPLIMIT);
1584 break;
1585
1586 case IPV6_RECVHOPOPTS:
1587 #ifdef RFC2292
1588 /* cannot mix with RFC2292 */
1589 if (OPTBIT(IN6P_RFC2292)) {
1590 error = EINVAL;
1591 break;
1592 }
1593 #endif
1594 OPTSET(IN6P_HOPOPTS);
1595 break;
1596
1597 case IPV6_RECVDSTOPTS:
1598 #ifdef RFC2292
1599 /* cannot mix with RFC2292 */
1600 if (OPTBIT(IN6P_RFC2292)) {
1601 error = EINVAL;
1602 break;
1603 }
1604 #endif
1605 OPTSET(IN6P_DSTOPTS);
1606 break;
1607
1608 case IPV6_RECVRTHDRDSTOPTS:
1609 #ifdef RFC2292
1610 /* cannot mix with RFC2292 */
1611 if (OPTBIT(IN6P_RFC2292)) {
1612 error = EINVAL;
1613 break;
1614 }
1615 #endif
1616 OPTSET(IN6P_RTHDRDSTOPTS);
1617 break;
1618
1619 case IPV6_RECVRTHDR:
1620 #ifdef RFC2292
1621 /* cannot mix with RFC2292 */
1622 if (OPTBIT(IN6P_RFC2292)) {
1623 error = EINVAL;
1624 break;
1625 }
1626 #endif
1627 OPTSET(IN6P_RTHDR);
1628 break;
1629
1630 case IPV6_FAITH:
1631 OPTSET(IN6P_FAITH);
1632 break;
1633
1634 case IPV6_RECVPATHMTU:
1635 /*
1636 * We ignore this option for TCP
1637 * sockets.
1638 * (RFC3542 leaves this case
1639 * unspecified.)
1640 */
1641 if (uproto != IPPROTO_TCP)
1642 OPTSET(IN6P_MTU);
1643 break;
1644
1645 case IPV6_V6ONLY:
1646 /*
1647 * make setsockopt(IPV6_V6ONLY)
1648 * available only prior to bind(2).
1649 * see ipng mailing list, Jun 22 2001.
1650 */
1651 if (in6p->in6p_lport ||
1652 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1653 error = EINVAL;
1654 break;
1655 }
1656 #ifdef INET6_BINDV6ONLY
1657 if (!optval)
1658 error = EINVAL;
1659 #else
1660 OPTSET(IN6P_IPV6_V6ONLY);
1661 #endif
1662 break;
1663 case IPV6_RECVTCLASS:
1664 #ifdef RFC2292
1665 /* cannot mix with RFC2292 XXX */
1666 if (OPTBIT(IN6P_RFC2292)) {
1667 error = EINVAL;
1668 break;
1669 }
1670 #endif
1671 OPTSET(IN6P_TCLASS);
1672 break;
1673
1674 }
1675 break;
1676
1677 case IPV6_OTCLASS:
1678 {
1679 struct ip6_pktopts **optp;
1680 u_int8_t tclass;
1681
1682 error = sockopt_get(sopt, &tclass, sizeof(tclass));
1683 if (error)
1684 break;
1685 optp = &in6p->in6p_outputopts;
1686 error = ip6_pcbopt(optname,
1687 (u_char *)&tclass,
1688 sizeof(tclass),
1689 optp,
1690 kauth_cred_get(), uproto);
1691 break;
1692 }
1693
1694 case IPV6_TCLASS:
1695 case IPV6_DONTFRAG:
1696 case IPV6_USE_MIN_MTU:
1697 error = sockopt_getint(sopt, &optval);
1698 if (error)
1699 break;
1700 {
1701 struct ip6_pktopts **optp;
1702 optp = &in6p->in6p_outputopts;
1703 error = ip6_pcbopt(optname,
1704 (u_char *)&optval,
1705 sizeof(optval),
1706 optp,
1707 kauth_cred_get(), uproto);
1708 break;
1709 }
1710
1711 #ifdef RFC2292
1712 case IPV6_2292PKTINFO:
1713 case IPV6_2292HOPLIMIT:
1714 case IPV6_2292HOPOPTS:
1715 case IPV6_2292DSTOPTS:
1716 case IPV6_2292RTHDR:
1717 /* RFC 2292 */
1718 error = sockopt_getint(sopt, &optval);
1719 if (error)
1720 break;
1721
1722 switch (optname) {
1723 case IPV6_2292PKTINFO:
1724 OPTSET2292(IN6P_PKTINFO);
1725 break;
1726 case IPV6_2292HOPLIMIT:
1727 OPTSET2292(IN6P_HOPLIMIT);
1728 break;
1729 case IPV6_2292HOPOPTS:
1730 /*
1731 * Check super-user privilege.
1732 * See comments for IPV6_RECVHOPOPTS.
1733 */
1734 error =
1735 kauth_authorize_network(kauth_cred_get(),
1736 KAUTH_NETWORK_IPV6,
1737 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1738 NULL, NULL);
1739 if (error)
1740 return (error);
1741 OPTSET2292(IN6P_HOPOPTS);
1742 break;
1743 case IPV6_2292DSTOPTS:
1744 error =
1745 kauth_authorize_network(kauth_cred_get(),
1746 KAUTH_NETWORK_IPV6,
1747 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1748 NULL, NULL);
1749 if (error)
1750 return (error);
1751 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1752 break;
1753 case IPV6_2292RTHDR:
1754 OPTSET2292(IN6P_RTHDR);
1755 break;
1756 }
1757 break;
1758 #endif
1759 case IPV6_PKTINFO:
1760 case IPV6_HOPOPTS:
1761 case IPV6_RTHDR:
1762 case IPV6_DSTOPTS:
1763 case IPV6_RTHDRDSTOPTS:
1764 case IPV6_NEXTHOP: {
1765 /* new advanced API (RFC3542) */
1766 void *optbuf;
1767 int optbuflen;
1768 struct ip6_pktopts **optp;
1769
1770 #ifdef RFC2292
1771 /* cannot mix with RFC2292 */
1772 if (OPTBIT(IN6P_RFC2292)) {
1773 error = EINVAL;
1774 break;
1775 }
1776 #endif
1777
1778 optbuflen = sopt->sopt_size;
1779 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1780 if (optbuf == NULL) {
1781 error = ENOBUFS;
1782 break;
1783 }
1784
1785 sockopt_get(sopt, optbuf, optbuflen);
1786 optp = &in6p->in6p_outputopts;
1787 error = ip6_pcbopt(optname, optbuf, optbuflen,
1788 optp, kauth_cred_get(), uproto);
1789 break;
1790 }
1791 #undef OPTSET
1792
1793 case IPV6_MULTICAST_IF:
1794 case IPV6_MULTICAST_HOPS:
1795 case IPV6_MULTICAST_LOOP:
1796 case IPV6_JOIN_GROUP:
1797 case IPV6_LEAVE_GROUP:
1798 error = ip6_setmoptions(sopt, &in6p->in6p_moptions);
1799 break;
1800
1801 case IPV6_PORTRANGE:
1802 error = sockopt_getint(sopt, &optval);
1803 if (error)
1804 break;
1805
1806 switch (optval) {
1807 case IPV6_PORTRANGE_DEFAULT:
1808 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1809 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1810 break;
1811
1812 case IPV6_PORTRANGE_HIGH:
1813 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1814 in6p->in6p_flags |= IN6P_HIGHPORT;
1815 break;
1816
1817 case IPV6_PORTRANGE_LOW:
1818 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1819 in6p->in6p_flags |= IN6P_LOWPORT;
1820 break;
1821
1822 default:
1823 error = EINVAL;
1824 break;
1825 }
1826 break;
1827
1828
1829 #if defined(KAME_IPSEC) || defined(FAST_IPSEC)
1830 case IPV6_IPSEC_POLICY:
1831 error = ipsec6_set_policy(in6p, optname,
1832 sopt->sopt_data, sopt->sopt_size, kauth_cred_get());
1833 break;
1834 #endif /* IPSEC */
1835
1836 default:
1837 error = ENOPROTOOPT;
1838 break;
1839 }
1840 break;
1841
1842 case PRCO_GETOPT:
1843 switch (optname) {
1844 #ifdef RFC2292
1845 case IPV6_2292PKTOPTIONS:
1846 /*
1847 * RFC3542 (effectively) deprecated the
1848 * semantics of the 2292-style pktoptions.
1849 * Since it was not reliable in nature (i.e.,
1850 * applications had to expect the lack of some
1851 * information after all), it would make sense
1852 * to simplify this part by always returning
1853 * empty data.
1854 */
1855 break;
1856 #endif
1857
1858 case IPV6_RECVHOPOPTS:
1859 case IPV6_RECVDSTOPTS:
1860 case IPV6_RECVRTHDRDSTOPTS:
1861 case IPV6_UNICAST_HOPS:
1862 case IPV6_RECVPKTINFO:
1863 case IPV6_RECVHOPLIMIT:
1864 case IPV6_RECVRTHDR:
1865 case IPV6_RECVPATHMTU:
1866
1867 case IPV6_FAITH:
1868 case IPV6_V6ONLY:
1869 case IPV6_PORTRANGE:
1870 case IPV6_RECVTCLASS:
1871 switch (optname) {
1872
1873 case IPV6_RECVHOPOPTS:
1874 optval = OPTBIT(IN6P_HOPOPTS);
1875 break;
1876
1877 case IPV6_RECVDSTOPTS:
1878 optval = OPTBIT(IN6P_DSTOPTS);
1879 break;
1880
1881 case IPV6_RECVRTHDRDSTOPTS:
1882 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1883 break;
1884
1885 case IPV6_UNICAST_HOPS:
1886 optval = in6p->in6p_hops;
1887 break;
1888
1889 case IPV6_RECVPKTINFO:
1890 optval = OPTBIT(IN6P_PKTINFO);
1891 break;
1892
1893 case IPV6_RECVHOPLIMIT:
1894 optval = OPTBIT(IN6P_HOPLIMIT);
1895 break;
1896
1897 case IPV6_RECVRTHDR:
1898 optval = OPTBIT(IN6P_RTHDR);
1899 break;
1900
1901 case IPV6_RECVPATHMTU:
1902 optval = OPTBIT(IN6P_MTU);
1903 break;
1904
1905 case IPV6_FAITH:
1906 optval = OPTBIT(IN6P_FAITH);
1907 break;
1908
1909 case IPV6_V6ONLY:
1910 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1911 break;
1912
1913 case IPV6_PORTRANGE:
1914 {
1915 int flags;
1916 flags = in6p->in6p_flags;
1917 if (flags & IN6P_HIGHPORT)
1918 optval = IPV6_PORTRANGE_HIGH;
1919 else if (flags & IN6P_LOWPORT)
1920 optval = IPV6_PORTRANGE_LOW;
1921 else
1922 optval = 0;
1923 break;
1924 }
1925 case IPV6_RECVTCLASS:
1926 optval = OPTBIT(IN6P_TCLASS);
1927 break;
1928
1929 }
1930 if (error)
1931 break;
1932 error = sockopt_setint(sopt, optval);
1933 break;
1934
1935 case IPV6_PATHMTU:
1936 {
1937 u_long pmtu = 0;
1938 struct ip6_mtuinfo mtuinfo;
1939 struct route *ro = &in6p->in6p_route;
1940
1941 if (!(so->so_state & SS_ISCONNECTED))
1942 return (ENOTCONN);
1943 /*
1944 * XXX: we dot not consider the case of source
1945 * routing, or optional information to specify
1946 * the outgoing interface.
1947 */
1948 error = ip6_getpmtu(ro, NULL, NULL,
1949 &in6p->in6p_faddr, &pmtu, NULL);
1950 if (error)
1951 break;
1952 if (pmtu > IPV6_MAXPACKET)
1953 pmtu = IPV6_MAXPACKET;
1954
1955 memset(&mtuinfo, 0, sizeof(mtuinfo));
1956 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1957 optdata = (void *)&mtuinfo;
1958 optdatalen = sizeof(mtuinfo);
1959 if (optdatalen > MCLBYTES)
1960 return (EMSGSIZE); /* XXX */
1961 error = sockopt_set(sopt, optdata, optdatalen);
1962 break;
1963 }
1964
1965 #ifdef RFC2292
1966 case IPV6_2292PKTINFO:
1967 case IPV6_2292HOPLIMIT:
1968 case IPV6_2292HOPOPTS:
1969 case IPV6_2292RTHDR:
1970 case IPV6_2292DSTOPTS:
1971 switch (optname) {
1972 case IPV6_2292PKTINFO:
1973 optval = OPTBIT(IN6P_PKTINFO);
1974 break;
1975 case IPV6_2292HOPLIMIT:
1976 optval = OPTBIT(IN6P_HOPLIMIT);
1977 break;
1978 case IPV6_2292HOPOPTS:
1979 optval = OPTBIT(IN6P_HOPOPTS);
1980 break;
1981 case IPV6_2292RTHDR:
1982 optval = OPTBIT(IN6P_RTHDR);
1983 break;
1984 case IPV6_2292DSTOPTS:
1985 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1986 break;
1987 }
1988 error = sockopt_setint(sopt, optval);
1989 break;
1990 #endif
1991 case IPV6_PKTINFO:
1992 case IPV6_HOPOPTS:
1993 case IPV6_RTHDR:
1994 case IPV6_DSTOPTS:
1995 case IPV6_RTHDRDSTOPTS:
1996 case IPV6_NEXTHOP:
1997 case IPV6_OTCLASS:
1998 case IPV6_TCLASS:
1999 case IPV6_DONTFRAG:
2000 case IPV6_USE_MIN_MTU:
2001 error = ip6_getpcbopt(in6p->in6p_outputopts,
2002 optname, sopt);
2003 break;
2004
2005 case IPV6_MULTICAST_IF:
2006 case IPV6_MULTICAST_HOPS:
2007 case IPV6_MULTICAST_LOOP:
2008 case IPV6_JOIN_GROUP:
2009 case IPV6_LEAVE_GROUP:
2010 error = ip6_getmoptions(sopt, in6p->in6p_moptions);
2011 break;
2012
2013 #if defined(KAME_IPSEC) || defined(FAST_IPSEC)
2014 case IPV6_IPSEC_POLICY:
2015 {
2016 struct mbuf *m = NULL;
2017
2018 /* XXX this will return EINVAL as sopt is empty */
2019 error = ipsec6_get_policy(in6p, sopt->sopt_data,
2020 sopt->sopt_size, &m);
2021 if (!error)
2022 error = sockopt_setmbuf(sopt, m);
2023
2024 break;
2025 }
2026 #endif /* IPSEC */
2027
2028 default:
2029 error = ENOPROTOOPT;
2030 break;
2031 }
2032 break;
2033 }
2034 return (error);
2035 }
2036
2037 int
2038 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
2039 {
2040 int error = 0, optval;
2041 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2042 struct in6pcb *in6p = sotoin6pcb(so);
2043 int level, optname;
2044
2045 KASSERT(sopt != NULL);
2046
2047 level = sopt->sopt_level;
2048 optname = sopt->sopt_name;
2049
2050 if (level != IPPROTO_IPV6) {
2051 return ENOPROTOOPT;
2052 }
2053
2054 switch (optname) {
2055 case IPV6_CHECKSUM:
2056 /*
2057 * For ICMPv6 sockets, no modification allowed for checksum
2058 * offset, permit "no change" values to help existing apps.
2059 *
2060 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
2061 * for an ICMPv6 socket will fail." The current
2062 * behavior does not meet RFC3542.
2063 */
2064 switch (op) {
2065 case PRCO_SETOPT:
2066 error = sockopt_getint(sopt, &optval);
2067 if (error)
2068 break;
2069 if ((optval % 2) != 0) {
2070 /* the API assumes even offset values */
2071 error = EINVAL;
2072 } else if (so->so_proto->pr_protocol ==
2073 IPPROTO_ICMPV6) {
2074 if (optval != icmp6off)
2075 error = EINVAL;
2076 } else
2077 in6p->in6p_cksum = optval;
2078 break;
2079
2080 case PRCO_GETOPT:
2081 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2082 optval = icmp6off;
2083 else
2084 optval = in6p->in6p_cksum;
2085
2086 error = sockopt_setint(sopt, optval);
2087 break;
2088
2089 default:
2090 error = EINVAL;
2091 break;
2092 }
2093 break;
2094
2095 default:
2096 error = ENOPROTOOPT;
2097 break;
2098 }
2099
2100 return (error);
2101 }
2102
2103 #ifdef RFC2292
2104 /*
2105 * Set up IP6 options in pcb for insertion in output packets or
2106 * specifying behavior of outgoing packets.
2107 */
2108 static int
2109 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
2110 struct sockopt *sopt)
2111 {
2112 struct ip6_pktopts *opt = *pktopt;
2113 struct mbuf *m;
2114 int error = 0;
2115
2116 /* turn off any old options. */
2117 if (opt) {
2118 #ifdef DIAGNOSTIC
2119 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2120 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2121 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2122 printf("ip6_pcbopts: all specified options are cleared.\n");
2123 #endif
2124 ip6_clearpktopts(opt, -1);
2125 } else {
2126 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2127 if (opt == NULL)
2128 return (ENOBUFS);
2129 }
2130 *pktopt = NULL;
2131
2132 if (sopt == NULL || sopt->sopt_size == 0) {
2133 /*
2134 * Only turning off any previous options, regardless of
2135 * whether the opt is just created or given.
2136 */
2137 free(opt, M_IP6OPT);
2138 return (0);
2139 }
2140
2141 /* set options specified by user. */
2142 m = sockopt_getmbuf(sopt);
2143 if (m == NULL) {
2144 free(opt, M_IP6OPT);
2145 return (ENOBUFS);
2146 }
2147
2148 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
2149 so->so_proto->pr_protocol);
2150 m_freem(m);
2151 if (error != 0) {
2152 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2153 free(opt, M_IP6OPT);
2154 return (error);
2155 }
2156 *pktopt = opt;
2157 return (0);
2158 }
2159 #endif
2160
2161 /*
2162 * initialize ip6_pktopts. beware that there are non-zero default values in
2163 * the struct.
2164 */
2165 void
2166 ip6_initpktopts(struct ip6_pktopts *opt)
2167 {
2168
2169 memset(opt, 0, sizeof(*opt));
2170 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2171 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2172 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2173 }
2174
2175 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2176 static int
2177 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2178 kauth_cred_t cred, int uproto)
2179 {
2180 struct ip6_pktopts *opt;
2181
2182 if (*pktopt == NULL) {
2183 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2184 M_NOWAIT);
2185 if (*pktopt == NULL)
2186 return (ENOBUFS);
2187
2188 ip6_initpktopts(*pktopt);
2189 }
2190 opt = *pktopt;
2191
2192 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2193 }
2194
2195 static int
2196 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2197 {
2198 void *optdata = NULL;
2199 int optdatalen = 0;
2200 struct ip6_ext *ip6e;
2201 int error = 0;
2202 struct in6_pktinfo null_pktinfo;
2203 int deftclass = 0, on;
2204 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2205
2206 switch (optname) {
2207 case IPV6_PKTINFO:
2208 if (pktopt && pktopt->ip6po_pktinfo)
2209 optdata = (void *)pktopt->ip6po_pktinfo;
2210 else {
2211 /* XXX: we don't have to do this every time... */
2212 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2213 optdata = (void *)&null_pktinfo;
2214 }
2215 optdatalen = sizeof(struct in6_pktinfo);
2216 break;
2217 case IPV6_OTCLASS:
2218 /* XXX */
2219 return (EINVAL);
2220 case IPV6_TCLASS:
2221 if (pktopt && pktopt->ip6po_tclass >= 0)
2222 optdata = (void *)&pktopt->ip6po_tclass;
2223 else
2224 optdata = (void *)&deftclass;
2225 optdatalen = sizeof(int);
2226 break;
2227 case IPV6_HOPOPTS:
2228 if (pktopt && pktopt->ip6po_hbh) {
2229 optdata = (void *)pktopt->ip6po_hbh;
2230 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2231 optdatalen = (ip6e->ip6e_len + 1) << 3;
2232 }
2233 break;
2234 case IPV6_RTHDR:
2235 if (pktopt && pktopt->ip6po_rthdr) {
2236 optdata = (void *)pktopt->ip6po_rthdr;
2237 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2238 optdatalen = (ip6e->ip6e_len + 1) << 3;
2239 }
2240 break;
2241 case IPV6_RTHDRDSTOPTS:
2242 if (pktopt && pktopt->ip6po_dest1) {
2243 optdata = (void *)pktopt->ip6po_dest1;
2244 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2245 optdatalen = (ip6e->ip6e_len + 1) << 3;
2246 }
2247 break;
2248 case IPV6_DSTOPTS:
2249 if (pktopt && pktopt->ip6po_dest2) {
2250 optdata = (void *)pktopt->ip6po_dest2;
2251 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2252 optdatalen = (ip6e->ip6e_len + 1) << 3;
2253 }
2254 break;
2255 case IPV6_NEXTHOP:
2256 if (pktopt && pktopt->ip6po_nexthop) {
2257 optdata = (void *)pktopt->ip6po_nexthop;
2258 optdatalen = pktopt->ip6po_nexthop->sa_len;
2259 }
2260 break;
2261 case IPV6_USE_MIN_MTU:
2262 if (pktopt)
2263 optdata = (void *)&pktopt->ip6po_minmtu;
2264 else
2265 optdata = (void *)&defminmtu;
2266 optdatalen = sizeof(int);
2267 break;
2268 case IPV6_DONTFRAG:
2269 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2270 on = 1;
2271 else
2272 on = 0;
2273 optdata = (void *)&on;
2274 optdatalen = sizeof(on);
2275 break;
2276 default: /* should not happen */
2277 #ifdef DIAGNOSTIC
2278 panic("ip6_getpcbopt: unexpected option\n");
2279 #endif
2280 return (ENOPROTOOPT);
2281 }
2282
2283 error = sockopt_set(sopt, optdata, optdatalen);
2284
2285 return (error);
2286 }
2287
2288 void
2289 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2290 {
2291 if (optname == -1 || optname == IPV6_PKTINFO) {
2292 if (pktopt->ip6po_pktinfo)
2293 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2294 pktopt->ip6po_pktinfo = NULL;
2295 }
2296 if (optname == -1 || optname == IPV6_HOPLIMIT)
2297 pktopt->ip6po_hlim = -1;
2298 if (optname == -1 || optname == IPV6_TCLASS)
2299 pktopt->ip6po_tclass = -1;
2300 if (optname == -1 || optname == IPV6_NEXTHOP) {
2301 rtcache_free(&pktopt->ip6po_nextroute);
2302 if (pktopt->ip6po_nexthop)
2303 free(pktopt->ip6po_nexthop, M_IP6OPT);
2304 pktopt->ip6po_nexthop = NULL;
2305 }
2306 if (optname == -1 || optname == IPV6_HOPOPTS) {
2307 if (pktopt->ip6po_hbh)
2308 free(pktopt->ip6po_hbh, M_IP6OPT);
2309 pktopt->ip6po_hbh = NULL;
2310 }
2311 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2312 if (pktopt->ip6po_dest1)
2313 free(pktopt->ip6po_dest1, M_IP6OPT);
2314 pktopt->ip6po_dest1 = NULL;
2315 }
2316 if (optname == -1 || optname == IPV6_RTHDR) {
2317 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2318 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2319 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2320 rtcache_free(&pktopt->ip6po_route);
2321 }
2322 if (optname == -1 || optname == IPV6_DSTOPTS) {
2323 if (pktopt->ip6po_dest2)
2324 free(pktopt->ip6po_dest2, M_IP6OPT);
2325 pktopt->ip6po_dest2 = NULL;
2326 }
2327 }
2328
2329 #define PKTOPT_EXTHDRCPY(type) \
2330 do { \
2331 if (src->type) { \
2332 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2333 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2334 if (dst->type == NULL) \
2335 goto bad; \
2336 memcpy(dst->type, src->type, hlen); \
2337 } \
2338 } while (/*CONSTCOND*/ 0)
2339
2340 static int
2341 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2342 {
2343 dst->ip6po_hlim = src->ip6po_hlim;
2344 dst->ip6po_tclass = src->ip6po_tclass;
2345 dst->ip6po_flags = src->ip6po_flags;
2346 if (src->ip6po_pktinfo) {
2347 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2348 M_IP6OPT, canwait);
2349 if (dst->ip6po_pktinfo == NULL)
2350 goto bad;
2351 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2352 }
2353 if (src->ip6po_nexthop) {
2354 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2355 M_IP6OPT, canwait);
2356 if (dst->ip6po_nexthop == NULL)
2357 goto bad;
2358 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2359 src->ip6po_nexthop->sa_len);
2360 }
2361 PKTOPT_EXTHDRCPY(ip6po_hbh);
2362 PKTOPT_EXTHDRCPY(ip6po_dest1);
2363 PKTOPT_EXTHDRCPY(ip6po_dest2);
2364 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2365 return (0);
2366
2367 bad:
2368 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2369 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2370 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2371 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2372 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2373 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2374
2375 return (ENOBUFS);
2376 }
2377 #undef PKTOPT_EXTHDRCPY
2378
2379 struct ip6_pktopts *
2380 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2381 {
2382 int error;
2383 struct ip6_pktopts *dst;
2384
2385 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2386 if (dst == NULL)
2387 return (NULL);
2388 ip6_initpktopts(dst);
2389
2390 if ((error = copypktopts(dst, src, canwait)) != 0) {
2391 free(dst, M_IP6OPT);
2392 return (NULL);
2393 }
2394
2395 return (dst);
2396 }
2397
2398 void
2399 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2400 {
2401 if (pktopt == NULL)
2402 return;
2403
2404 ip6_clearpktopts(pktopt, -1);
2405
2406 free(pktopt, M_IP6OPT);
2407 }
2408
2409 /*
2410 * Set the IP6 multicast options in response to user setsockopt().
2411 */
2412 static int
2413 ip6_setmoptions(const struct sockopt *sopt, struct ip6_moptions **im6op)
2414 {
2415 int error = 0;
2416 u_int loop, ifindex;
2417 struct ipv6_mreq mreq;
2418 struct ifnet *ifp;
2419 struct ip6_moptions *im6o = *im6op;
2420 struct route ro;
2421 struct in6_multi_mship *imm;
2422 struct lwp *l = curlwp; /* XXX */
2423
2424 if (im6o == NULL) {
2425 /*
2426 * No multicast option buffer attached to the pcb;
2427 * allocate one and initialize to default values.
2428 */
2429 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2430 if (im6o == NULL)
2431 return (ENOBUFS);
2432
2433 *im6op = im6o;
2434 im6o->im6o_multicast_ifp = NULL;
2435 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2436 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2437 LIST_INIT(&im6o->im6o_memberships);
2438 }
2439
2440 switch (sopt->sopt_name) {
2441
2442 case IPV6_MULTICAST_IF:
2443 /*
2444 * Select the interface for outgoing multicast packets.
2445 */
2446 error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2447 if (error != 0)
2448 break;
2449
2450 if (ifindex != 0) {
2451 if (if_indexlim <= ifindex || !ifindex2ifnet[ifindex]) {
2452 error = ENXIO; /* XXX EINVAL? */
2453 break;
2454 }
2455 ifp = ifindex2ifnet[ifindex];
2456 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2457 error = EADDRNOTAVAIL;
2458 break;
2459 }
2460 } else
2461 ifp = NULL;
2462 im6o->im6o_multicast_ifp = ifp;
2463 break;
2464
2465 case IPV6_MULTICAST_HOPS:
2466 {
2467 /*
2468 * Set the IP6 hoplimit for outgoing multicast packets.
2469 */
2470 int optval;
2471
2472 error = sockopt_getint(sopt, &optval);
2473 if (error != 0)
2474 break;
2475
2476 if (optval < -1 || optval >= 256)
2477 error = EINVAL;
2478 else if (optval == -1)
2479 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2480 else
2481 im6o->im6o_multicast_hlim = optval;
2482 break;
2483 }
2484
2485 case IPV6_MULTICAST_LOOP:
2486 /*
2487 * Set the loopback flag for outgoing multicast packets.
2488 * Must be zero or one.
2489 */
2490 error = sockopt_get(sopt, &loop, sizeof(loop));
2491 if (error != 0)
2492 break;
2493 if (loop > 1) {
2494 error = EINVAL;
2495 break;
2496 }
2497 im6o->im6o_multicast_loop = loop;
2498 break;
2499
2500 case IPV6_JOIN_GROUP:
2501 /*
2502 * Add a multicast group membership.
2503 * Group must be a valid IP6 multicast address.
2504 */
2505 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2506 if (error != 0)
2507 break;
2508
2509 if (IN6_IS_ADDR_UNSPECIFIED(&mreq.ipv6mr_multiaddr)) {
2510 /*
2511 * We use the unspecified address to specify to accept
2512 * all multicast addresses. Only super user is allowed
2513 * to do this.
2514 */
2515 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_IPV6,
2516 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
2517 {
2518 error = EACCES;
2519 break;
2520 }
2521 } else if (!IN6_IS_ADDR_MULTICAST(&mreq.ipv6mr_multiaddr)) {
2522 error = EINVAL;
2523 break;
2524 }
2525
2526 /*
2527 * If no interface was explicitly specified, choose an
2528 * appropriate one according to the given multicast address.
2529 */
2530 if (mreq.ipv6mr_interface == 0) {
2531 struct rtentry *rt;
2532 union {
2533 struct sockaddr dst;
2534 struct sockaddr_in6 dst6;
2535 } u;
2536
2537 /*
2538 * Look up the routing table for the
2539 * address, and choose the outgoing interface.
2540 * XXX: is it a good approach?
2541 */
2542 memset(&ro, 0, sizeof(ro));
2543 sockaddr_in6_init(&u.dst6, &mreq.ipv6mr_multiaddr, 0,
2544 0, 0);
2545 rtcache_setdst(&ro, &u.dst);
2546 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
2547 : NULL;
2548 rtcache_free(&ro);
2549 } else {
2550 /*
2551 * If the interface is specified, validate it.
2552 */
2553 if (if_indexlim <= mreq.ipv6mr_interface ||
2554 !ifindex2ifnet[mreq.ipv6mr_interface]) {
2555 error = ENXIO; /* XXX EINVAL? */
2556 break;
2557 }
2558 ifp = ifindex2ifnet[mreq.ipv6mr_interface];
2559 }
2560
2561 /*
2562 * See if we found an interface, and confirm that it
2563 * supports multicast
2564 */
2565 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2566 error = EADDRNOTAVAIL;
2567 break;
2568 }
2569
2570 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2571 error = EADDRNOTAVAIL; /* XXX: should not happen */
2572 break;
2573 }
2574
2575 /*
2576 * See if the membership already exists.
2577 */
2578 for (imm = im6o->im6o_memberships.lh_first;
2579 imm != NULL; imm = imm->i6mm_chain.le_next)
2580 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2581 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2582 &mreq.ipv6mr_multiaddr))
2583 break;
2584 if (imm != NULL) {
2585 error = EADDRINUSE;
2586 break;
2587 }
2588 /*
2589 * Everything looks good; add a new record to the multicast
2590 * address list for the given interface.
2591 */
2592 imm = in6_joingroup(ifp, &mreq.ipv6mr_multiaddr, &error, 0);
2593 if (imm == NULL)
2594 break;
2595 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2596 break;
2597
2598 case IPV6_LEAVE_GROUP:
2599 /*
2600 * Drop a multicast group membership.
2601 * Group must be a valid IP6 multicast address.
2602 */
2603 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2604 if (error != 0)
2605 break;
2606
2607 /*
2608 * If an interface address was specified, get a pointer
2609 * to its ifnet structure.
2610 */
2611 if (mreq.ipv6mr_interface != 0) {
2612 if (if_indexlim <= mreq.ipv6mr_interface ||
2613 !ifindex2ifnet[mreq.ipv6mr_interface]) {
2614 error = ENXIO; /* XXX EINVAL? */
2615 break;
2616 }
2617 ifp = ifindex2ifnet[mreq.ipv6mr_interface];
2618 } else
2619 ifp = NULL;
2620
2621 /* Fill in the scope zone ID */
2622 if (ifp) {
2623 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2624 /* XXX: should not happen */
2625 error = EADDRNOTAVAIL;
2626 break;
2627 }
2628 } else if (mreq.ipv6mr_interface != 0) {
2629 /*
2630 * XXX: This case would happens when the (positive)
2631 * index is in the valid range, but the corresponding
2632 * interface has been detached dynamically. The above
2633 * check probably avoids such case to happen here, but
2634 * we check it explicitly for safety.
2635 */
2636 error = EADDRNOTAVAIL;
2637 break;
2638 } else { /* ipv6mr_interface == 0 */
2639 struct sockaddr_in6 sa6_mc;
2640
2641 /*
2642 * The API spec says as follows:
2643 * If the interface index is specified as 0, the
2644 * system may choose a multicast group membership to
2645 * drop by matching the multicast address only.
2646 * On the other hand, we cannot disambiguate the scope
2647 * zone unless an interface is provided. Thus, we
2648 * check if there's ambiguity with the default scope
2649 * zone as the last resort.
2650 */
2651 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2652 0, 0, 0);
2653 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2654 if (error != 0)
2655 break;
2656 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2657 }
2658
2659 /*
2660 * Find the membership in the membership list.
2661 */
2662 for (imm = im6o->im6o_memberships.lh_first;
2663 imm != NULL; imm = imm->i6mm_chain.le_next) {
2664 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2665 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2666 &mreq.ipv6mr_multiaddr))
2667 break;
2668 }
2669 if (imm == NULL) {
2670 /* Unable to resolve interface */
2671 error = EADDRNOTAVAIL;
2672 break;
2673 }
2674 /*
2675 * Give up the multicast address record to which the
2676 * membership points.
2677 */
2678 LIST_REMOVE(imm, i6mm_chain);
2679 in6_leavegroup(imm);
2680 break;
2681
2682 default:
2683 error = EOPNOTSUPP;
2684 break;
2685 }
2686
2687 /*
2688 * If all options have default values, no need to keep the mbuf.
2689 */
2690 if (im6o->im6o_multicast_ifp == NULL &&
2691 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2692 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2693 im6o->im6o_memberships.lh_first == NULL) {
2694 free(*im6op, M_IPMOPTS);
2695 *im6op = NULL;
2696 }
2697
2698 return (error);
2699 }
2700
2701 /*
2702 * Return the IP6 multicast options in response to user getsockopt().
2703 */
2704 static int
2705 ip6_getmoptions(struct sockopt *sopt, struct ip6_moptions *im6o)
2706 {
2707 u_int optval;
2708 int error;
2709
2710 switch (sopt->sopt_name) {
2711 case IPV6_MULTICAST_IF:
2712 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2713 optval = 0;
2714 else
2715 optval = im6o->im6o_multicast_ifp->if_index;
2716
2717 error = sockopt_set(sopt, &optval, sizeof(optval));
2718 break;
2719
2720 case IPV6_MULTICAST_HOPS:
2721 if (im6o == NULL)
2722 optval = ip6_defmcasthlim;
2723 else
2724 optval = im6o->im6o_multicast_hlim;
2725
2726 error = sockopt_set(sopt, &optval, sizeof(optval));
2727 break;
2728
2729 case IPV6_MULTICAST_LOOP:
2730 if (im6o == NULL)
2731 optval = ip6_defmcasthlim;
2732 else
2733 optval = im6o->im6o_multicast_loop;
2734
2735 error = sockopt_set(sopt, &optval, sizeof(optval));
2736 break;
2737
2738 default:
2739 error = EOPNOTSUPP;
2740 }
2741
2742 return (error);
2743 }
2744
2745 /*
2746 * Discard the IP6 multicast options.
2747 */
2748 void
2749 ip6_freemoptions(struct ip6_moptions *im6o)
2750 {
2751 struct in6_multi_mship *imm;
2752
2753 if (im6o == NULL)
2754 return;
2755
2756 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2757 LIST_REMOVE(imm, i6mm_chain);
2758 in6_leavegroup(imm);
2759 }
2760 free(im6o, M_IPMOPTS);
2761 }
2762
2763 /*
2764 * Set IPv6 outgoing packet options based on advanced API.
2765 */
2766 int
2767 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2768 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2769 {
2770 struct cmsghdr *cm = 0;
2771
2772 if (control == NULL || opt == NULL)
2773 return (EINVAL);
2774
2775 ip6_initpktopts(opt);
2776 if (stickyopt) {
2777 int error;
2778
2779 /*
2780 * If stickyopt is provided, make a local copy of the options
2781 * for this particular packet, then override them by ancillary
2782 * objects.
2783 * XXX: copypktopts() does not copy the cached route to a next
2784 * hop (if any). This is not very good in terms of efficiency,
2785 * but we can allow this since this option should be rarely
2786 * used.
2787 */
2788 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2789 return (error);
2790 }
2791
2792 /*
2793 * XXX: Currently, we assume all the optional information is stored
2794 * in a single mbuf.
2795 */
2796 if (control->m_next)
2797 return (EINVAL);
2798
2799 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2800 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2801 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2802 int error;
2803
2804 if (control->m_len < CMSG_LEN(0))
2805 return (EINVAL);
2806
2807 cm = mtod(control, struct cmsghdr *);
2808 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2809 return (EINVAL);
2810 if (cm->cmsg_level != IPPROTO_IPV6)
2811 continue;
2812
2813 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2814 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2815 if (error)
2816 return (error);
2817 }
2818
2819 return (0);
2820 }
2821
2822 /*
2823 * Set a particular packet option, as a sticky option or an ancillary data
2824 * item. "len" can be 0 only when it's a sticky option.
2825 * We have 4 cases of combination of "sticky" and "cmsg":
2826 * "sticky=0, cmsg=0": impossible
2827 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2828 * "sticky=1, cmsg=0": RFC3542 socket option
2829 * "sticky=1, cmsg=1": RFC2292 socket option
2830 */
2831 static int
2832 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2833 kauth_cred_t cred, int sticky, int cmsg, int uproto)
2834 {
2835 int minmtupolicy;
2836 int error;
2837
2838 if (!sticky && !cmsg) {
2839 #ifdef DIAGNOSTIC
2840 printf("ip6_setpktopt: impossible case\n");
2841 #endif
2842 return (EINVAL);
2843 }
2844
2845 /*
2846 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2847 * not be specified in the context of RFC3542. Conversely,
2848 * RFC3542 types should not be specified in the context of RFC2292.
2849 */
2850 if (!cmsg) {
2851 switch (optname) {
2852 case IPV6_2292PKTINFO:
2853 case IPV6_2292HOPLIMIT:
2854 case IPV6_2292NEXTHOP:
2855 case IPV6_2292HOPOPTS:
2856 case IPV6_2292DSTOPTS:
2857 case IPV6_2292RTHDR:
2858 case IPV6_2292PKTOPTIONS:
2859 return (ENOPROTOOPT);
2860 }
2861 }
2862 if (sticky && cmsg) {
2863 switch (optname) {
2864 case IPV6_PKTINFO:
2865 case IPV6_HOPLIMIT:
2866 case IPV6_NEXTHOP:
2867 case IPV6_HOPOPTS:
2868 case IPV6_DSTOPTS:
2869 case IPV6_RTHDRDSTOPTS:
2870 case IPV6_RTHDR:
2871 case IPV6_USE_MIN_MTU:
2872 case IPV6_DONTFRAG:
2873 case IPV6_OTCLASS:
2874 case IPV6_TCLASS:
2875 return (ENOPROTOOPT);
2876 }
2877 }
2878
2879 switch (optname) {
2880 #ifdef RFC2292
2881 case IPV6_2292PKTINFO:
2882 #endif
2883 case IPV6_PKTINFO:
2884 {
2885 struct ifnet *ifp = NULL;
2886 struct in6_pktinfo *pktinfo;
2887
2888 if (len != sizeof(struct in6_pktinfo))
2889 return (EINVAL);
2890
2891 pktinfo = (struct in6_pktinfo *)buf;
2892
2893 /*
2894 * An application can clear any sticky IPV6_PKTINFO option by
2895 * doing a "regular" setsockopt with ipi6_addr being
2896 * in6addr_any and ipi6_ifindex being zero.
2897 * [RFC 3542, Section 6]
2898 */
2899 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2900 pktinfo->ipi6_ifindex == 0 &&
2901 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2902 ip6_clearpktopts(opt, optname);
2903 break;
2904 }
2905
2906 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2907 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2908 return (EINVAL);
2909 }
2910
2911 /* validate the interface index if specified. */
2912 if (pktinfo->ipi6_ifindex >= if_indexlim) {
2913 return (ENXIO);
2914 }
2915 if (pktinfo->ipi6_ifindex) {
2916 ifp = ifindex2ifnet[pktinfo->ipi6_ifindex];
2917 if (ifp == NULL)
2918 return (ENXIO);
2919 }
2920
2921 /*
2922 * We store the address anyway, and let in6_selectsrc()
2923 * validate the specified address. This is because ipi6_addr
2924 * may not have enough information about its scope zone, and
2925 * we may need additional information (such as outgoing
2926 * interface or the scope zone of a destination address) to
2927 * disambiguate the scope.
2928 * XXX: the delay of the validation may confuse the
2929 * application when it is used as a sticky option.
2930 */
2931 if (opt->ip6po_pktinfo == NULL) {
2932 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2933 M_IP6OPT, M_NOWAIT);
2934 if (opt->ip6po_pktinfo == NULL)
2935 return (ENOBUFS);
2936 }
2937 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2938 break;
2939 }
2940
2941 #ifdef RFC2292
2942 case IPV6_2292HOPLIMIT:
2943 #endif
2944 case IPV6_HOPLIMIT:
2945 {
2946 int *hlimp;
2947
2948 /*
2949 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2950 * to simplify the ordering among hoplimit options.
2951 */
2952 if (optname == IPV6_HOPLIMIT && sticky)
2953 return (ENOPROTOOPT);
2954
2955 if (len != sizeof(int))
2956 return (EINVAL);
2957 hlimp = (int *)buf;
2958 if (*hlimp < -1 || *hlimp > 255)
2959 return (EINVAL);
2960
2961 opt->ip6po_hlim = *hlimp;
2962 break;
2963 }
2964
2965 case IPV6_OTCLASS:
2966 if (len != sizeof(u_int8_t))
2967 return (EINVAL);
2968
2969 opt->ip6po_tclass = *(u_int8_t *)buf;
2970 break;
2971
2972 case IPV6_TCLASS:
2973 {
2974 int tclass;
2975
2976 if (len != sizeof(int))
2977 return (EINVAL);
2978 tclass = *(int *)buf;
2979 if (tclass < -1 || tclass > 255)
2980 return (EINVAL);
2981
2982 opt->ip6po_tclass = tclass;
2983 break;
2984 }
2985
2986 #ifdef RFC2292
2987 case IPV6_2292NEXTHOP:
2988 #endif
2989 case IPV6_NEXTHOP:
2990 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2991 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2992 if (error)
2993 return (error);
2994
2995 if (len == 0) { /* just remove the option */
2996 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2997 break;
2998 }
2999
3000 /* check if cmsg_len is large enough for sa_len */
3001 if (len < sizeof(struct sockaddr) || len < *buf)
3002 return (EINVAL);
3003
3004 switch (((struct sockaddr *)buf)->sa_family) {
3005 case AF_INET6:
3006 {
3007 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3008
3009 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3010 return (EINVAL);
3011
3012 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3013 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3014 return (EINVAL);
3015 }
3016 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
3017 != 0) {
3018 return (error);
3019 }
3020 break;
3021 }
3022 case AF_LINK: /* eventually be supported? */
3023 default:
3024 return (EAFNOSUPPORT);
3025 }
3026
3027 /* turn off the previous option, then set the new option. */
3028 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3029 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3030 if (opt->ip6po_nexthop == NULL)
3031 return (ENOBUFS);
3032 memcpy(opt->ip6po_nexthop, buf, *buf);
3033 break;
3034
3035 #ifdef RFC2292
3036 case IPV6_2292HOPOPTS:
3037 #endif
3038 case IPV6_HOPOPTS:
3039 {
3040 struct ip6_hbh *hbh;
3041 int hbhlen;
3042
3043 /*
3044 * XXX: We don't allow a non-privileged user to set ANY HbH
3045 * options, since per-option restriction has too much
3046 * overhead.
3047 */
3048 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3049 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3050 if (error)
3051 return (error);
3052
3053 if (len == 0) {
3054 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3055 break; /* just remove the option */
3056 }
3057
3058 /* message length validation */
3059 if (len < sizeof(struct ip6_hbh))
3060 return (EINVAL);
3061 hbh = (struct ip6_hbh *)buf;
3062 hbhlen = (hbh->ip6h_len + 1) << 3;
3063 if (len != hbhlen)
3064 return (EINVAL);
3065
3066 /* turn off the previous option, then set the new option. */
3067 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3068 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3069 if (opt->ip6po_hbh == NULL)
3070 return (ENOBUFS);
3071 memcpy(opt->ip6po_hbh, hbh, hbhlen);
3072
3073 break;
3074 }
3075
3076 #ifdef RFC2292
3077 case IPV6_2292DSTOPTS:
3078 #endif
3079 case IPV6_DSTOPTS:
3080 case IPV6_RTHDRDSTOPTS:
3081 {
3082 struct ip6_dest *dest, **newdest = NULL;
3083 int destlen;
3084
3085 /* XXX: see the comment for IPV6_HOPOPTS */
3086 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3087 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3088 if (error)
3089 return (error);
3090
3091 if (len == 0) {
3092 ip6_clearpktopts(opt, optname);
3093 break; /* just remove the option */
3094 }
3095
3096 /* message length validation */
3097 if (len < sizeof(struct ip6_dest))
3098 return (EINVAL);
3099 dest = (struct ip6_dest *)buf;
3100 destlen = (dest->ip6d_len + 1) << 3;
3101 if (len != destlen)
3102 return (EINVAL);
3103 /*
3104 * Determine the position that the destination options header
3105 * should be inserted; before or after the routing header.
3106 */
3107 switch (optname) {
3108 case IPV6_2292DSTOPTS:
3109 /*
3110 * The old advanced API is ambiguous on this point.
3111 * Our approach is to determine the position based
3112 * according to the existence of a routing header.
3113 * Note, however, that this depends on the order of the
3114 * extension headers in the ancillary data; the 1st
3115 * part of the destination options header must appear
3116 * before the routing header in the ancillary data,
3117 * too.
3118 * RFC3542 solved the ambiguity by introducing
3119 * separate ancillary data or option types.
3120 */
3121 if (opt->ip6po_rthdr == NULL)
3122 newdest = &opt->ip6po_dest1;
3123 else
3124 newdest = &opt->ip6po_dest2;
3125 break;
3126 case IPV6_RTHDRDSTOPTS:
3127 newdest = &opt->ip6po_dest1;
3128 break;
3129 case IPV6_DSTOPTS:
3130 newdest = &opt->ip6po_dest2;
3131 break;
3132 }
3133
3134 /* turn off the previous option, then set the new option. */
3135 ip6_clearpktopts(opt, optname);
3136 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3137 if (*newdest == NULL)
3138 return (ENOBUFS);
3139 memcpy(*newdest, dest, destlen);
3140
3141 break;
3142 }
3143
3144 #ifdef RFC2292
3145 case IPV6_2292RTHDR:
3146 #endif
3147 case IPV6_RTHDR:
3148 {
3149 struct ip6_rthdr *rth;
3150 int rthlen;
3151
3152 if (len == 0) {
3153 ip6_clearpktopts(opt, IPV6_RTHDR);
3154 break; /* just remove the option */
3155 }
3156
3157 /* message length validation */
3158 if (len < sizeof(struct ip6_rthdr))
3159 return (EINVAL);
3160 rth = (struct ip6_rthdr *)buf;
3161 rthlen = (rth->ip6r_len + 1) << 3;
3162 if (len != rthlen)
3163 return (EINVAL);
3164 switch (rth->ip6r_type) {
3165 case IPV6_RTHDR_TYPE_0:
3166 if (rth->ip6r_len == 0) /* must contain one addr */
3167 return (EINVAL);
3168 if (rth->ip6r_len % 2) /* length must be even */
3169 return (EINVAL);
3170 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3171 return (EINVAL);
3172 break;
3173 default:
3174 return (EINVAL); /* not supported */
3175 }
3176 /* turn off the previous option */
3177 ip6_clearpktopts(opt, IPV6_RTHDR);
3178 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3179 if (opt->ip6po_rthdr == NULL)
3180 return (ENOBUFS);
3181 memcpy(opt->ip6po_rthdr, rth, rthlen);
3182 break;
3183 }
3184
3185 case IPV6_USE_MIN_MTU:
3186 if (len != sizeof(int))
3187 return (EINVAL);
3188 minmtupolicy = *(int *)buf;
3189 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3190 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3191 minmtupolicy != IP6PO_MINMTU_ALL) {
3192 return (EINVAL);
3193 }
3194 opt->ip6po_minmtu = minmtupolicy;
3195 break;
3196
3197 case IPV6_DONTFRAG:
3198 if (len != sizeof(int))
3199 return (EINVAL);
3200
3201 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3202 /*
3203 * we ignore this option for TCP sockets.
3204 * (RFC3542 leaves this case unspecified.)
3205 */
3206 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3207 } else
3208 opt->ip6po_flags |= IP6PO_DONTFRAG;
3209 break;
3210
3211 default:
3212 return (ENOPROTOOPT);
3213 } /* end of switch */
3214
3215 return (0);
3216 }
3217
3218 /*
3219 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3220 * packet to the input queue of a specified interface. Note that this
3221 * calls the output routine of the loopback "driver", but with an interface
3222 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3223 */
3224 void
3225 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3226 const struct sockaddr_in6 *dst)
3227 {
3228 struct mbuf *copym;
3229 struct ip6_hdr *ip6;
3230
3231 copym = m_copy(m, 0, M_COPYALL);
3232 if (copym == NULL)
3233 return;
3234
3235 /*
3236 * Make sure to deep-copy IPv6 header portion in case the data
3237 * is in an mbuf cluster, so that we can safely override the IPv6
3238 * header portion later.
3239 */
3240 if ((copym->m_flags & M_EXT) != 0 ||
3241 copym->m_len < sizeof(struct ip6_hdr)) {
3242 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3243 if (copym == NULL)
3244 return;
3245 }
3246
3247 #ifdef DIAGNOSTIC
3248 if (copym->m_len < sizeof(*ip6)) {
3249 m_freem(copym);
3250 return;
3251 }
3252 #endif
3253
3254 ip6 = mtod(copym, struct ip6_hdr *);
3255 /*
3256 * clear embedded scope identifiers if necessary.
3257 * in6_clearscope will touch the addresses only when necessary.
3258 */
3259 in6_clearscope(&ip6->ip6_src);
3260 in6_clearscope(&ip6->ip6_dst);
3261
3262 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3263 }
3264
3265 /*
3266 * Chop IPv6 header off from the payload.
3267 */
3268 static int
3269 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3270 {
3271 struct mbuf *mh;
3272 struct ip6_hdr *ip6;
3273
3274 ip6 = mtod(m, struct ip6_hdr *);
3275 if (m->m_len > sizeof(*ip6)) {
3276 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3277 if (mh == 0) {
3278 m_freem(m);
3279 return ENOBUFS;
3280 }
3281 M_MOVE_PKTHDR(mh, m);
3282 MH_ALIGN(mh, sizeof(*ip6));
3283 m->m_len -= sizeof(*ip6);
3284 m->m_data += sizeof(*ip6);
3285 mh->m_next = m;
3286 m = mh;
3287 m->m_len = sizeof(*ip6);
3288 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
3289 }
3290 exthdrs->ip6e_ip6 = m;
3291 return 0;
3292 }
3293
3294 /*
3295 * Compute IPv6 extension header length.
3296 */
3297 int
3298 ip6_optlen(struct in6pcb *in6p)
3299 {
3300 int len;
3301
3302 if (!in6p->in6p_outputopts)
3303 return 0;
3304
3305 len = 0;
3306 #define elen(x) \
3307 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3308
3309 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3310 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3311 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3312 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3313 return len;
3314 #undef elen
3315 }
3316