Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.149
      1 /*	$NetBSD: ip6_output.c,v 1.149 2012/06/25 15:28:40 christos Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.149 2012/06/25 15:28:40 christos Exp $");
     66 
     67 #include "opt_inet.h"
     68 #include "opt_inet6.h"
     69 #include "opt_ipsec.h"
     70 #include "opt_pfil_hooks.h"
     71 
     72 #include <sys/param.h>
     73 #include <sys/malloc.h>
     74 #include <sys/mbuf.h>
     75 #include <sys/errno.h>
     76 #include <sys/protosw.h>
     77 #include <sys/socket.h>
     78 #include <sys/socketvar.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/kauth.h>
     82 
     83 #include <net/if.h>
     84 #include <net/route.h>
     85 #ifdef PFIL_HOOKS
     86 #include <net/pfil.h>
     87 #endif
     88 
     89 #include <netinet/in.h>
     90 #include <netinet/in_var.h>
     91 #include <netinet/ip6.h>
     92 #include <netinet/icmp6.h>
     93 #include <netinet/in_offload.h>
     94 #include <netinet/portalgo.h>
     95 #include <netinet6/in6_offload.h>
     96 #include <netinet6/ip6_var.h>
     97 #include <netinet6/ip6_private.h>
     98 #include <netinet6/in6_pcb.h>
     99 #include <netinet6/nd6.h>
    100 #include <netinet6/ip6protosw.h>
    101 #include <netinet6/scope6_var.h>
    102 
    103 #ifdef FAST_IPSEC
    104 #include <netipsec/ipsec.h>
    105 #include <netipsec/ipsec6.h>
    106 #include <netipsec/key.h>
    107 #include <netipsec/xform.h>
    108 #endif
    109 
    110 
    111 #include <net/net_osdep.h>
    112 
    113 #ifdef PFIL_HOOKS
    114 extern struct pfil_head inet6_pfil_hook;	/* XXX */
    115 #endif
    116 
    117 struct ip6_exthdrs {
    118 	struct mbuf *ip6e_ip6;
    119 	struct mbuf *ip6e_hbh;
    120 	struct mbuf *ip6e_dest1;
    121 	struct mbuf *ip6e_rthdr;
    122 	struct mbuf *ip6e_dest2;
    123 };
    124 
    125 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
    126 	kauth_cred_t, int);
    127 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
    128 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
    129 	int, int, int);
    130 static int ip6_setmoptions(const struct sockopt *, struct ip6_moptions **);
    131 static int ip6_getmoptions(struct sockopt *, struct ip6_moptions *);
    132 static int ip6_copyexthdr(struct mbuf **, void *, int);
    133 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
    134 	struct ip6_frag **);
    135 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
    136 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
    137 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *,
    138     const struct in6_addr *, u_long *, int *);
    139 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
    140 
    141 #ifdef RFC2292
    142 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
    143 #endif
    144 
    145 /*
    146  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    147  * header (with pri, len, nxt, hlim, src, dst).
    148  * This function may modify ver and hlim only.
    149  * The mbuf chain containing the packet will be freed.
    150  * The mbuf opt, if present, will not be freed.
    151  *
    152  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    153  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
    154  * which is rt_rmx.rmx_mtu.
    155  */
    156 int
    157 ip6_output(
    158     struct mbuf *m0,
    159     struct ip6_pktopts *opt,
    160     struct route *ro,
    161     int flags,
    162     struct ip6_moptions *im6o,
    163     struct socket *so,
    164     struct ifnet **ifpp		/* XXX: just for statistics */
    165 )
    166 {
    167 	struct ip6_hdr *ip6, *mhip6;
    168 	struct ifnet *ifp, *origifp;
    169 	struct mbuf *m = m0;
    170 	int hlen, tlen, len, off;
    171 	bool tso;
    172 	struct route ip6route;
    173 	struct rtentry *rt = NULL;
    174 	const struct sockaddr_in6 *dst = NULL;
    175 	struct sockaddr_in6 src_sa, dst_sa;
    176 	int error = 0;
    177 	struct in6_ifaddr *ia = NULL;
    178 	u_long mtu;
    179 	int alwaysfrag, dontfrag;
    180 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    181 	struct ip6_exthdrs exthdrs;
    182 	struct in6_addr finaldst, src0, dst0;
    183 	u_int32_t zone;
    184 	struct route *ro_pmtu = NULL;
    185 	int hdrsplit = 0;
    186 	int needipsec = 0;
    187 #ifdef FAST_IPSEC
    188 	struct secpolicy *sp = NULL;
    189 	int s;
    190 #endif
    191 
    192 	memset(&ip6route, 0, sizeof(ip6route));
    193 
    194 #ifdef  DIAGNOSTIC
    195 	if ((m->m_flags & M_PKTHDR) == 0)
    196 		panic("ip6_output: no HDR");
    197 
    198 	if ((m->m_pkthdr.csum_flags &
    199 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
    200 		panic("ip6_output: IPv4 checksum offload flags: %d",
    201 		    m->m_pkthdr.csum_flags);
    202 	}
    203 
    204 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
    205 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
    206 		panic("ip6_output: conflicting checksum offload flags: %d",
    207 		    m->m_pkthdr.csum_flags);
    208 	}
    209 #endif
    210 
    211 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    212 
    213 #define MAKE_EXTHDR(hp, mp)						\
    214     do {								\
    215 	if (hp) {							\
    216 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    217 		error = ip6_copyexthdr((mp), (void *)(hp), 		\
    218 		    ((eh)->ip6e_len + 1) << 3);				\
    219 		if (error)						\
    220 			goto freehdrs;					\
    221 	}								\
    222     } while (/*CONSTCOND*/ 0)
    223 
    224 	memset(&exthdrs, 0, sizeof(exthdrs));
    225 	if (opt) {
    226 		/* Hop-by-Hop options header */
    227 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    228 		/* Destination options header(1st part) */
    229 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    230 		/* Routing header */
    231 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    232 		/* Destination options header(2nd part) */
    233 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    234 	}
    235 
    236 	/*
    237 	 * Calculate the total length of the extension header chain.
    238 	 * Keep the length of the unfragmentable part for fragmentation.
    239 	 */
    240 	optlen = 0;
    241 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    242 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    243 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    244 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    245 	/* NOTE: we don't add AH/ESP length here. do that later. */
    246 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    247 
    248 #ifdef FAST_IPSEC
    249 	/* Check the security policy (SP) for the packet */
    250 
    251 	sp = ipsec6_check_policy(m,so,flags,&needipsec,&error);
    252 	if (error != 0) {
    253 		/*
    254 		 * Hack: -EINVAL is used to signal that a packet
    255 		 * should be silently discarded.  This is typically
    256 		 * because we asked key management for an SA and
    257 		 * it was delayed (e.g. kicked up to IKE).
    258 		 */
    259 	if (error == -EINVAL)
    260 		error = 0;
    261 	goto freehdrs;
    262     }
    263 #endif /* FAST_IPSEC */
    264 
    265 
    266 	if (needipsec &&
    267 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    268 		in6_delayed_cksum(m);
    269 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    270 	}
    271 
    272 
    273 	/*
    274 	 * If we need IPsec, or there is at least one extension header,
    275 	 * separate IP6 header from the payload.
    276 	 */
    277 	if ((needipsec || optlen) && !hdrsplit) {
    278 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    279 			m = NULL;
    280 			goto freehdrs;
    281 		}
    282 		m = exthdrs.ip6e_ip6;
    283 		hdrsplit++;
    284 	}
    285 
    286 	/* adjust pointer */
    287 	ip6 = mtod(m, struct ip6_hdr *);
    288 
    289 	/* adjust mbuf packet header length */
    290 	m->m_pkthdr.len += optlen;
    291 	plen = m->m_pkthdr.len - sizeof(*ip6);
    292 
    293 	/* If this is a jumbo payload, insert a jumbo payload option. */
    294 	if (plen > IPV6_MAXPACKET) {
    295 		if (!hdrsplit) {
    296 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    297 				m = NULL;
    298 				goto freehdrs;
    299 			}
    300 			m = exthdrs.ip6e_ip6;
    301 			hdrsplit++;
    302 		}
    303 		/* adjust pointer */
    304 		ip6 = mtod(m, struct ip6_hdr *);
    305 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    306 			goto freehdrs;
    307 		optlen += 8; /* XXX JUMBOOPTLEN */
    308 		ip6->ip6_plen = 0;
    309 	} else
    310 		ip6->ip6_plen = htons(plen);
    311 
    312 	/*
    313 	 * Concatenate headers and fill in next header fields.
    314 	 * Here we have, on "m"
    315 	 *	IPv6 payload
    316 	 * and we insert headers accordingly.  Finally, we should be getting:
    317 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    318 	 *
    319 	 * during the header composing process, "m" points to IPv6 header.
    320 	 * "mprev" points to an extension header prior to esp.
    321 	 */
    322 	{
    323 		u_char *nexthdrp = &ip6->ip6_nxt;
    324 		struct mbuf *mprev = m;
    325 
    326 		/*
    327 		 * we treat dest2 specially.  this makes IPsec processing
    328 		 * much easier.  the goal here is to make mprev point the
    329 		 * mbuf prior to dest2.
    330 		 *
    331 		 * result: IPv6 dest2 payload
    332 		 * m and mprev will point to IPv6 header.
    333 		 */
    334 		if (exthdrs.ip6e_dest2) {
    335 			if (!hdrsplit)
    336 				panic("assumption failed: hdr not split");
    337 			exthdrs.ip6e_dest2->m_next = m->m_next;
    338 			m->m_next = exthdrs.ip6e_dest2;
    339 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    340 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    341 		}
    342 
    343 #define MAKE_CHAIN(m, mp, p, i)\
    344     do {\
    345 	if (m) {\
    346 		if (!hdrsplit) \
    347 			panic("assumption failed: hdr not split"); \
    348 		*mtod((m), u_char *) = *(p);\
    349 		*(p) = (i);\
    350 		p = mtod((m), u_char *);\
    351 		(m)->m_next = (mp)->m_next;\
    352 		(mp)->m_next = (m);\
    353 		(mp) = (m);\
    354 	}\
    355     } while (/*CONSTCOND*/ 0)
    356 		/*
    357 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    358 		 * m will point to IPv6 header.  mprev will point to the
    359 		 * extension header prior to dest2 (rthdr in the above case).
    360 		 */
    361 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    362 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    363 		    IPPROTO_DSTOPTS);
    364 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    365 		    IPPROTO_ROUTING);
    366 
    367 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
    368 		    sizeof(struct ip6_hdr) + optlen);
    369 	}
    370 
    371 	/*
    372 	 * If there is a routing header, replace destination address field
    373 	 * with the first hop of the routing header.
    374 	 */
    375 	if (exthdrs.ip6e_rthdr) {
    376 		struct ip6_rthdr *rh;
    377 		struct ip6_rthdr0 *rh0;
    378 		struct in6_addr *addr;
    379 		struct sockaddr_in6 sa;
    380 
    381 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    382 		    struct ip6_rthdr *));
    383 		finaldst = ip6->ip6_dst;
    384 		switch (rh->ip6r_type) {
    385 		case IPV6_RTHDR_TYPE_0:
    386 			 rh0 = (struct ip6_rthdr0 *)rh;
    387 			 addr = (struct in6_addr *)(rh0 + 1);
    388 
    389 			 /*
    390 			  * construct a sockaddr_in6 form of
    391 			  * the first hop.
    392 			  *
    393 			  * XXX: we may not have enough
    394 			  * information about its scope zone;
    395 			  * there is no standard API to pass
    396 			  * the information from the
    397 			  * application.
    398 			  */
    399 			 sockaddr_in6_init(&sa, addr, 0, 0, 0);
    400 			 if ((error = sa6_embedscope(&sa,
    401 			     ip6_use_defzone)) != 0) {
    402 				 goto bad;
    403 			 }
    404 			 ip6->ip6_dst = sa.sin6_addr;
    405 			 (void)memmove(&addr[0], &addr[1],
    406 			     sizeof(struct in6_addr) *
    407 			     (rh0->ip6r0_segleft - 1));
    408 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
    409 			 /* XXX */
    410 			 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
    411 			 break;
    412 		default:	/* is it possible? */
    413 			 error = EINVAL;
    414 			 goto bad;
    415 		}
    416 	}
    417 
    418 	/* Source address validation */
    419 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    420 	    (flags & IPV6_UNSPECSRC) == 0) {
    421 		error = EOPNOTSUPP;
    422 		IP6_STATINC(IP6_STAT_BADSCOPE);
    423 		goto bad;
    424 	}
    425 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    426 		error = EOPNOTSUPP;
    427 		IP6_STATINC(IP6_STAT_BADSCOPE);
    428 		goto bad;
    429 	}
    430 
    431 	IP6_STATINC(IP6_STAT_LOCALOUT);
    432 
    433 	/*
    434 	 * Route packet.
    435 	 */
    436 	/* initialize cached route */
    437 	if (ro == NULL) {
    438 		ro = &ip6route;
    439 	}
    440 	ro_pmtu = ro;
    441 	if (opt && opt->ip6po_rthdr)
    442 		ro = &opt->ip6po_route;
    443 
    444  	/*
    445 	 * if specified, try to fill in the traffic class field.
    446 	 * do not override if a non-zero value is already set.
    447 	 * we check the diffserv field and the ecn field separately.
    448 	 */
    449 	if (opt && opt->ip6po_tclass >= 0) {
    450 		int mask = 0;
    451 
    452 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    453 			mask |= 0xfc;
    454 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    455 			mask |= 0x03;
    456 		if (mask != 0)
    457 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    458 	}
    459 
    460 	/* fill in or override the hop limit field, if necessary. */
    461 	if (opt && opt->ip6po_hlim != -1)
    462 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    463 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    464 		if (im6o != NULL)
    465 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    466 		else
    467 			ip6->ip6_hlim = ip6_defmcasthlim;
    468 	}
    469 
    470 #ifdef FAST_IPSEC
    471 	if (needipsec) {
    472 		s = splsoftnet();
    473 		error = ipsec6_process_packet(m,sp->req);
    474 
    475 		/*
    476 		 * Preserve KAME behaviour: ENOENT can be returned
    477 		 * when an SA acquire is in progress.  Don't propagate
    478 		 * this to user-level; it confuses applications.
    479 		 * XXX this will go away when the SADB is redone.
    480 		 */
    481 		if (error == ENOENT)
    482 			error = 0;
    483 		splx(s);
    484 		goto done;
    485 	}
    486 #endif /* FAST_IPSEC */
    487 
    488 
    489 
    490 	/* adjust pointer */
    491 	ip6 = mtod(m, struct ip6_hdr *);
    492 
    493 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    494 	if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
    495 	    &ifp, &rt, 0)) != 0) {
    496 		if (ifp != NULL)
    497 			in6_ifstat_inc(ifp, ifs6_out_discard);
    498 		goto bad;
    499 	}
    500 	if (rt == NULL) {
    501 		/*
    502 		 * If in6_selectroute() does not return a route entry,
    503 		 * dst may not have been updated.
    504 		 */
    505 		error = rtcache_setdst(ro, sin6tosa(&dst_sa));
    506 		if (error) {
    507 			goto bad;
    508 		}
    509 	}
    510 
    511 	/*
    512 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    513 	 */
    514 	if ((flags & IPV6_FORWARDING) == 0) {
    515 		/* XXX: the FORWARDING flag can be set for mrouting. */
    516 		in6_ifstat_inc(ifp, ifs6_out_request);
    517 	}
    518 	if (rt != NULL) {
    519 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    520 		rt->rt_use++;
    521 	}
    522 
    523 	/*
    524 	 * The outgoing interface must be in the zone of source and
    525 	 * destination addresses.  We should use ia_ifp to support the
    526 	 * case of sending packets to an address of our own.
    527 	 */
    528 	if (ia != NULL && ia->ia_ifp)
    529 		origifp = ia->ia_ifp;
    530 	else
    531 		origifp = ifp;
    532 
    533 	src0 = ip6->ip6_src;
    534 	if (in6_setscope(&src0, origifp, &zone))
    535 		goto badscope;
    536 	sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
    537 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    538 		goto badscope;
    539 
    540 	dst0 = ip6->ip6_dst;
    541 	if (in6_setscope(&dst0, origifp, &zone))
    542 		goto badscope;
    543 	/* re-initialize to be sure */
    544 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    545 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    546 		goto badscope;
    547 
    548 	/* scope check is done. */
    549 
    550 	if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    551 		if (dst == NULL)
    552 			dst = satocsin6(rtcache_getdst(ro));
    553 		KASSERT(dst != NULL);
    554 	} else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) {
    555 		/*
    556 		 * The nexthop is explicitly specified by the
    557 		 * application.  We assume the next hop is an IPv6
    558 		 * address.
    559 		 */
    560 		dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
    561 	} else if ((rt->rt_flags & RTF_GATEWAY))
    562 		dst = (struct sockaddr_in6 *)rt->rt_gateway;
    563 	else if (dst == NULL)
    564 		dst = satocsin6(rtcache_getdst(ro));
    565 
    566 	/*
    567 	 * XXXXXX: original code follows:
    568 	 */
    569 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    570 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    571 	else {
    572 		struct	in6_multi *in6m;
    573 
    574 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    575 
    576 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    577 
    578 		/*
    579 		 * Confirm that the outgoing interface supports multicast.
    580 		 */
    581 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    582 			IP6_STATINC(IP6_STAT_NOROUTE);
    583 			in6_ifstat_inc(ifp, ifs6_out_discard);
    584 			error = ENETUNREACH;
    585 			goto bad;
    586 		}
    587 
    588 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
    589 		if (in6m != NULL &&
    590 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    591 			/*
    592 			 * If we belong to the destination multicast group
    593 			 * on the outgoing interface, and the caller did not
    594 			 * forbid loopback, loop back a copy.
    595 			 */
    596 			KASSERT(dst != NULL);
    597 			ip6_mloopback(ifp, m, dst);
    598 		} else {
    599 			/*
    600 			 * If we are acting as a multicast router, perform
    601 			 * multicast forwarding as if the packet had just
    602 			 * arrived on the interface to which we are about
    603 			 * to send.  The multicast forwarding function
    604 			 * recursively calls this function, using the
    605 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    606 			 *
    607 			 * Multicasts that are looped back by ip6_mloopback(),
    608 			 * above, will be forwarded by the ip6_input() routine,
    609 			 * if necessary.
    610 			 */
    611 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    612 				if (ip6_mforward(ip6, ifp, m) != 0) {
    613 					m_freem(m);
    614 					goto done;
    615 				}
    616 			}
    617 		}
    618 		/*
    619 		 * Multicasts with a hoplimit of zero may be looped back,
    620 		 * above, but must not be transmitted on a network.
    621 		 * Also, multicasts addressed to the loopback interface
    622 		 * are not sent -- the above call to ip6_mloopback() will
    623 		 * loop back a copy if this host actually belongs to the
    624 		 * destination group on the loopback interface.
    625 		 */
    626 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    627 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    628 			m_freem(m);
    629 			goto done;
    630 		}
    631 	}
    632 
    633 	/*
    634 	 * Fill the outgoing inteface to tell the upper layer
    635 	 * to increment per-interface statistics.
    636 	 */
    637 	if (ifpp)
    638 		*ifpp = ifp;
    639 
    640 	/* Determine path MTU. */
    641 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
    642 	    &alwaysfrag)) != 0)
    643 		goto bad;
    644 
    645 	/*
    646 	 * The caller of this function may specify to use the minimum MTU
    647 	 * in some cases.
    648 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
    649 	 * setting.  The logic is a bit complicated; by default, unicast
    650 	 * packets will follow path MTU while multicast packets will be sent at
    651 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
    652 	 * including unicast ones will be sent at the minimum MTU.  Multicast
    653 	 * packets will always be sent at the minimum MTU unless
    654 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
    655 	 * See RFC 3542 for more details.
    656 	 */
    657 	if (mtu > IPV6_MMTU) {
    658 		if ((flags & IPV6_MINMTU))
    659 			mtu = IPV6_MMTU;
    660 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
    661 			mtu = IPV6_MMTU;
    662 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
    663 			 (opt == NULL ||
    664 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
    665 			mtu = IPV6_MMTU;
    666 		}
    667 	}
    668 
    669 	/*
    670 	 * clear embedded scope identifiers if necessary.
    671 	 * in6_clearscope will touch the addresses only when necessary.
    672 	 */
    673 	in6_clearscope(&ip6->ip6_src);
    674 	in6_clearscope(&ip6->ip6_dst);
    675 
    676 	/*
    677 	 * If the outgoing packet contains a hop-by-hop options header,
    678 	 * it must be examined and processed even by the source node.
    679 	 * (RFC 2460, section 4.)
    680 	 */
    681 	if (ip6->ip6_nxt == IPV6_HOPOPTS) {
    682 		u_int32_t dummy1; /* XXX unused */
    683 		u_int32_t dummy2; /* XXX unused */
    684 		int hoff = sizeof(struct ip6_hdr);
    685 
    686 		if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
    687 			/* m was already freed at this point */
    688 			error = EINVAL;/* better error? */
    689 			goto done;
    690 		}
    691 
    692 		ip6 = mtod(m, struct ip6_hdr *);
    693 	}
    694 
    695 #ifdef PFIL_HOOKS
    696 	/*
    697 	 * Run through list of hooks for output packets.
    698 	 */
    699 	if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    700 		goto done;
    701 	if (m == NULL)
    702 		goto done;
    703 	ip6 = mtod(m, struct ip6_hdr *);
    704 #endif /* PFIL_HOOKS */
    705 	/*
    706 	 * Send the packet to the outgoing interface.
    707 	 * If necessary, do IPv6 fragmentation before sending.
    708 	 *
    709 	 * the logic here is rather complex:
    710 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    711 	 * 1-a:	send as is if tlen <= path mtu
    712 	 * 1-b:	fragment if tlen > path mtu
    713 	 *
    714 	 * 2: if user asks us not to fragment (dontfrag == 1)
    715 	 * 2-a:	send as is if tlen <= interface mtu
    716 	 * 2-b:	error if tlen > interface mtu
    717 	 *
    718 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    719 	 *	always fragment
    720 	 *
    721 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    722 	 *	error, as we cannot handle this conflicting request
    723 	 */
    724 	tlen = m->m_pkthdr.len;
    725 	tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
    726 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
    727 		dontfrag = 1;
    728 	else
    729 		dontfrag = 0;
    730 
    731 	if (dontfrag && alwaysfrag) {	/* case 4 */
    732 		/* conflicting request - can't transmit */
    733 		error = EMSGSIZE;
    734 		goto bad;
    735 	}
    736 	if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) {	/* case 2-b */
    737 		/*
    738 		 * Even if the DONTFRAG option is specified, we cannot send the
    739 		 * packet when the data length is larger than the MTU of the
    740 		 * outgoing interface.
    741 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    742 		 * well as returning an error code (the latter is not described
    743 		 * in the API spec.)
    744 		 */
    745 		u_int32_t mtu32;
    746 		struct ip6ctlparam ip6cp;
    747 
    748 		mtu32 = (u_int32_t)mtu;
    749 		memset(&ip6cp, 0, sizeof(ip6cp));
    750 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    751 		pfctlinput2(PRC_MSGSIZE,
    752 		    rtcache_getdst(ro_pmtu), &ip6cp);
    753 
    754 		error = EMSGSIZE;
    755 		goto bad;
    756 	}
    757 
    758 	/*
    759 	 * transmit packet without fragmentation
    760 	 */
    761 	if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
    762 		/* case 1-a and 2-a */
    763 		struct in6_ifaddr *ia6;
    764 		int sw_csum;
    765 
    766 		ip6 = mtod(m, struct ip6_hdr *);
    767 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    768 		if (ia6) {
    769 			/* Record statistics for this interface address. */
    770 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    771 		}
    772 
    773 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    774 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    775 			if (IN6_NEED_CHECKSUM(ifp,
    776 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    777 				in6_delayed_cksum(m);
    778 			}
    779 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    780 		}
    781 
    782 		KASSERT(dst != NULL);
    783 		if (__predict_true(!tso ||
    784 		    (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
    785 			error = nd6_output(ifp, origifp, m, dst, rt);
    786 		} else {
    787 			error = ip6_tso_output(ifp, origifp, m, dst, rt);
    788 		}
    789 		goto done;
    790 	}
    791 
    792 	if (tso) {
    793 		error = EINVAL; /* XXX */
    794 		goto bad;
    795 	}
    796 
    797 	/*
    798 	 * try to fragment the packet.  case 1-b and 3
    799 	 */
    800 	if (mtu < IPV6_MMTU) {
    801 		/* path MTU cannot be less than IPV6_MMTU */
    802 		error = EMSGSIZE;
    803 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    804 		goto bad;
    805 	} else if (ip6->ip6_plen == 0) {
    806 		/* jumbo payload cannot be fragmented */
    807 		error = EMSGSIZE;
    808 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    809 		goto bad;
    810 	} else {
    811 		struct mbuf **mnext, *m_frgpart;
    812 		struct ip6_frag *ip6f;
    813 		u_int32_t id = htonl(ip6_randomid());
    814 		u_char nextproto;
    815 #if 0				/* see below */
    816 		struct ip6ctlparam ip6cp;
    817 		u_int32_t mtu32;
    818 #endif
    819 
    820 		/*
    821 		 * Too large for the destination or interface;
    822 		 * fragment if possible.
    823 		 * Must be able to put at least 8 bytes per fragment.
    824 		 */
    825 		hlen = unfragpartlen;
    826 		if (mtu > IPV6_MAXPACKET)
    827 			mtu = IPV6_MAXPACKET;
    828 
    829 #if 0
    830 		/*
    831 		 * It is believed this code is a leftover from the
    832 		 * development of the IPV6_RECVPATHMTU sockopt and
    833 		 * associated work to implement RFC3542.
    834 		 * It's not entirely clear what the intent of the API
    835 		 * is at this point, so disable this code for now.
    836 		 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
    837 		 * will send notifications if the application requests.
    838 		 */
    839 
    840 		/* Notify a proper path MTU to applications. */
    841 		mtu32 = (u_int32_t)mtu;
    842 		memset(&ip6cp, 0, sizeof(ip6cp));
    843 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    844 		pfctlinput2(PRC_MSGSIZE,
    845 		    rtcache_getdst(ro_pmtu), &ip6cp);
    846 #endif
    847 
    848 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    849 		if (len < 8) {
    850 			error = EMSGSIZE;
    851 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
    852 			goto bad;
    853 		}
    854 
    855 		mnext = &m->m_nextpkt;
    856 
    857 		/*
    858 		 * Change the next header field of the last header in the
    859 		 * unfragmentable part.
    860 		 */
    861 		if (exthdrs.ip6e_rthdr) {
    862 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    863 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    864 		} else if (exthdrs.ip6e_dest1) {
    865 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    866 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    867 		} else if (exthdrs.ip6e_hbh) {
    868 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    869 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    870 		} else {
    871 			nextproto = ip6->ip6_nxt;
    872 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    873 		}
    874 
    875 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
    876 		    != 0) {
    877 			if (IN6_NEED_CHECKSUM(ifp,
    878 			    m->m_pkthdr.csum_flags &
    879 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    880 				in6_delayed_cksum(m);
    881 			}
    882 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    883 		}
    884 
    885 		/*
    886 		 * Loop through length of segment after first fragment,
    887 		 * make new header and copy data of each part and link onto
    888 		 * chain.
    889 		 */
    890 		m0 = m;
    891 		for (off = hlen; off < tlen; off += len) {
    892 			struct mbuf *mlast;
    893 
    894 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
    895 			if (!m) {
    896 				error = ENOBUFS;
    897 				IP6_STATINC(IP6_STAT_ODROPPED);
    898 				goto sendorfree;
    899 			}
    900 			m->m_pkthdr.rcvif = NULL;
    901 			m->m_flags = m0->m_flags & M_COPYFLAGS;
    902 			*mnext = m;
    903 			mnext = &m->m_nextpkt;
    904 			m->m_data += max_linkhdr;
    905 			mhip6 = mtod(m, struct ip6_hdr *);
    906 			*mhip6 = *ip6;
    907 			m->m_len = sizeof(*mhip6);
    908 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
    909 			if (error) {
    910 				IP6_STATINC(IP6_STAT_ODROPPED);
    911 				goto sendorfree;
    912 			}
    913 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
    914 			if (off + len >= tlen)
    915 				len = tlen - off;
    916 			else
    917 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
    918 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
    919 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
    920 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
    921 				error = ENOBUFS;
    922 				IP6_STATINC(IP6_STAT_ODROPPED);
    923 				goto sendorfree;
    924 			}
    925 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
    926 				;
    927 			mlast->m_next = m_frgpart;
    928 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
    929 			m->m_pkthdr.rcvif = NULL;
    930 			ip6f->ip6f_reserved = 0;
    931 			ip6f->ip6f_ident = id;
    932 			ip6f->ip6f_nxt = nextproto;
    933 			IP6_STATINC(IP6_STAT_OFRAGMENTS);
    934 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
    935 		}
    936 
    937 		in6_ifstat_inc(ifp, ifs6_out_fragok);
    938 	}
    939 
    940 	/*
    941 	 * Remove leading garbages.
    942 	 */
    943 sendorfree:
    944 	m = m0->m_nextpkt;
    945 	m0->m_nextpkt = 0;
    946 	m_freem(m0);
    947 	for (m0 = m; m; m = m0) {
    948 		m0 = m->m_nextpkt;
    949 		m->m_nextpkt = 0;
    950 		if (error == 0) {
    951 			struct in6_ifaddr *ia6;
    952 			ip6 = mtod(m, struct ip6_hdr *);
    953 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    954 			if (ia6) {
    955 				/*
    956 				 * Record statistics for this interface
    957 				 * address.
    958 				 */
    959 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
    960 				    m->m_pkthdr.len;
    961 			}
    962 			KASSERT(dst != NULL);
    963 			error = nd6_output(ifp, origifp, m, dst, rt);
    964 		} else
    965 			m_freem(m);
    966 	}
    967 
    968 	if (error == 0)
    969 		IP6_STATINC(IP6_STAT_FRAGMENTED);
    970 
    971 done:
    972 	rtcache_free(&ip6route);
    973 
    974 #ifdef FAST_IPSEC
    975 	if (sp != NULL)
    976 		KEY_FREESP(&sp);
    977 #endif /* FAST_IPSEC */
    978 
    979 
    980 	return (error);
    981 
    982 freehdrs:
    983 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
    984 	m_freem(exthdrs.ip6e_dest1);
    985 	m_freem(exthdrs.ip6e_rthdr);
    986 	m_freem(exthdrs.ip6e_dest2);
    987 	/* FALLTHROUGH */
    988 bad:
    989 	m_freem(m);
    990 	goto done;
    991 badscope:
    992 	IP6_STATINC(IP6_STAT_BADSCOPE);
    993 	in6_ifstat_inc(origifp, ifs6_out_discard);
    994 	if (error == 0)
    995 		error = EHOSTUNREACH; /* XXX */
    996 	goto bad;
    997 }
    998 
    999 static int
   1000 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
   1001 {
   1002 	struct mbuf *m;
   1003 
   1004 	if (hlen > MCLBYTES)
   1005 		return (ENOBUFS); /* XXX */
   1006 
   1007 	MGET(m, M_DONTWAIT, MT_DATA);
   1008 	if (!m)
   1009 		return (ENOBUFS);
   1010 
   1011 	if (hlen > MLEN) {
   1012 		MCLGET(m, M_DONTWAIT);
   1013 		if ((m->m_flags & M_EXT) == 0) {
   1014 			m_free(m);
   1015 			return (ENOBUFS);
   1016 		}
   1017 	}
   1018 	m->m_len = hlen;
   1019 	if (hdr)
   1020 		bcopy(hdr, mtod(m, void *), hlen);
   1021 
   1022 	*mp = m;
   1023 	return (0);
   1024 }
   1025 
   1026 /*
   1027  * Process a delayed payload checksum calculation.
   1028  */
   1029 void
   1030 in6_delayed_cksum(struct mbuf *m)
   1031 {
   1032 	uint16_t csum, offset;
   1033 
   1034 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1035 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1036 	KASSERT((m->m_pkthdr.csum_flags
   1037 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
   1038 
   1039 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
   1040 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
   1041 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
   1042 		csum = 0xffff;
   1043 	}
   1044 
   1045 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
   1046 	if ((offset + sizeof(csum)) > m->m_len) {
   1047 		m_copyback(m, offset, sizeof(csum), &csum);
   1048 	} else {
   1049 		*(uint16_t *)(mtod(m, char *) + offset) = csum;
   1050 	}
   1051 }
   1052 
   1053 /*
   1054  * Insert jumbo payload option.
   1055  */
   1056 static int
   1057 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
   1058 {
   1059 	struct mbuf *mopt;
   1060 	u_int8_t *optbuf;
   1061 	u_int32_t v;
   1062 
   1063 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1064 
   1065 	/*
   1066 	 * If there is no hop-by-hop options header, allocate new one.
   1067 	 * If there is one but it doesn't have enough space to store the
   1068 	 * jumbo payload option, allocate a cluster to store the whole options.
   1069 	 * Otherwise, use it to store the options.
   1070 	 */
   1071 	if (exthdrs->ip6e_hbh == 0) {
   1072 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1073 		if (mopt == 0)
   1074 			return (ENOBUFS);
   1075 		mopt->m_len = JUMBOOPTLEN;
   1076 		optbuf = mtod(mopt, u_int8_t *);
   1077 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1078 		exthdrs->ip6e_hbh = mopt;
   1079 	} else {
   1080 		struct ip6_hbh *hbh;
   1081 
   1082 		mopt = exthdrs->ip6e_hbh;
   1083 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1084 			/*
   1085 			 * XXX assumption:
   1086 			 * - exthdrs->ip6e_hbh is not referenced from places
   1087 			 *   other than exthdrs.
   1088 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1089 			 */
   1090 			int oldoptlen = mopt->m_len;
   1091 			struct mbuf *n;
   1092 
   1093 			/*
   1094 			 * XXX: give up if the whole (new) hbh header does
   1095 			 * not fit even in an mbuf cluster.
   1096 			 */
   1097 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1098 				return (ENOBUFS);
   1099 
   1100 			/*
   1101 			 * As a consequence, we must always prepare a cluster
   1102 			 * at this point.
   1103 			 */
   1104 			MGET(n, M_DONTWAIT, MT_DATA);
   1105 			if (n) {
   1106 				MCLGET(n, M_DONTWAIT);
   1107 				if ((n->m_flags & M_EXT) == 0) {
   1108 					m_freem(n);
   1109 					n = NULL;
   1110 				}
   1111 			}
   1112 			if (!n)
   1113 				return (ENOBUFS);
   1114 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1115 			bcopy(mtod(mopt, void *), mtod(n, void *),
   1116 			    oldoptlen);
   1117 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1118 			m_freem(mopt);
   1119 			mopt = exthdrs->ip6e_hbh = n;
   1120 		} else {
   1121 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1122 			mopt->m_len += JUMBOOPTLEN;
   1123 		}
   1124 		optbuf[0] = IP6OPT_PADN;
   1125 		optbuf[1] = 0;
   1126 
   1127 		/*
   1128 		 * Adjust the header length according to the pad and
   1129 		 * the jumbo payload option.
   1130 		 */
   1131 		hbh = mtod(mopt, struct ip6_hbh *);
   1132 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1133 	}
   1134 
   1135 	/* fill in the option. */
   1136 	optbuf[2] = IP6OPT_JUMBO;
   1137 	optbuf[3] = 4;
   1138 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1139 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
   1140 
   1141 	/* finally, adjust the packet header length */
   1142 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1143 
   1144 	return (0);
   1145 #undef JUMBOOPTLEN
   1146 }
   1147 
   1148 /*
   1149  * Insert fragment header and copy unfragmentable header portions.
   1150  */
   1151 static int
   1152 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
   1153 	struct ip6_frag **frghdrp)
   1154 {
   1155 	struct mbuf *n, *mlast;
   1156 
   1157 	if (hlen > sizeof(struct ip6_hdr)) {
   1158 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1159 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1160 		if (n == 0)
   1161 			return (ENOBUFS);
   1162 		m->m_next = n;
   1163 	} else
   1164 		n = m;
   1165 
   1166 	/* Search for the last mbuf of unfragmentable part. */
   1167 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1168 		;
   1169 
   1170 	if ((mlast->m_flags & M_EXT) == 0 &&
   1171 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1172 		/* use the trailing space of the last mbuf for the fragment hdr */
   1173 		*frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
   1174 		    mlast->m_len);
   1175 		mlast->m_len += sizeof(struct ip6_frag);
   1176 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1177 	} else {
   1178 		/* allocate a new mbuf for the fragment header */
   1179 		struct mbuf *mfrg;
   1180 
   1181 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1182 		if (mfrg == 0)
   1183 			return (ENOBUFS);
   1184 		mfrg->m_len = sizeof(struct ip6_frag);
   1185 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1186 		mlast->m_next = mfrg;
   1187 	}
   1188 
   1189 	return (0);
   1190 }
   1191 
   1192 static int
   1193 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp,
   1194     const struct in6_addr *dst, u_long *mtup, int *alwaysfragp)
   1195 {
   1196 	struct rtentry *rt;
   1197 	u_int32_t mtu = 0;
   1198 	int alwaysfrag = 0;
   1199 	int error = 0;
   1200 
   1201 	if (ro_pmtu != ro) {
   1202 		union {
   1203 			struct sockaddr		dst;
   1204 			struct sockaddr_in6	dst6;
   1205 		} u;
   1206 
   1207 		/* The first hop and the final destination may differ. */
   1208 		sockaddr_in6_init(&u.dst6, dst, 0, 0, 0);
   1209 		rt = rtcache_lookup(ro_pmtu, &u.dst);
   1210 	} else
   1211 		rt = rtcache_validate(ro_pmtu);
   1212 	if (rt != NULL) {
   1213 		u_int32_t ifmtu;
   1214 
   1215 		if (ifp == NULL)
   1216 			ifp = rt->rt_ifp;
   1217 		ifmtu = IN6_LINKMTU(ifp);
   1218 		mtu = rt->rt_rmx.rmx_mtu;
   1219 		if (mtu == 0)
   1220 			mtu = ifmtu;
   1221 		else if (mtu < IPV6_MMTU) {
   1222 			/*
   1223 			 * RFC2460 section 5, last paragraph:
   1224 			 * if we record ICMPv6 too big message with
   1225 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1226 			 * or smaller, with fragment header attached.
   1227 			 * (fragment header is needed regardless from the
   1228 			 * packet size, for translators to identify packets)
   1229 			 */
   1230 			alwaysfrag = 1;
   1231 			mtu = IPV6_MMTU;
   1232 		} else if (mtu > ifmtu) {
   1233 			/*
   1234 			 * The MTU on the route is larger than the MTU on
   1235 			 * the interface!  This shouldn't happen, unless the
   1236 			 * MTU of the interface has been changed after the
   1237 			 * interface was brought up.  Change the MTU in the
   1238 			 * route to match the interface MTU (as long as the
   1239 			 * field isn't locked).
   1240 			 */
   1241 			mtu = ifmtu;
   1242 			if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
   1243 				rt->rt_rmx.rmx_mtu = mtu;
   1244 		}
   1245 	} else if (ifp) {
   1246 		mtu = IN6_LINKMTU(ifp);
   1247 	} else
   1248 		error = EHOSTUNREACH; /* XXX */
   1249 
   1250 	*mtup = mtu;
   1251 	if (alwaysfragp)
   1252 		*alwaysfragp = alwaysfrag;
   1253 	return (error);
   1254 }
   1255 
   1256 /*
   1257  * IP6 socket option processing.
   1258  */
   1259 int
   1260 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1261 {
   1262 	int optdatalen, uproto;
   1263 	void *optdata;
   1264 	struct in6pcb *in6p = sotoin6pcb(so);
   1265 	int error, optval;
   1266 	int level, optname;
   1267 
   1268 	KASSERT(sopt != NULL);
   1269 
   1270 	level = sopt->sopt_level;
   1271 	optname = sopt->sopt_name;
   1272 
   1273 	error = optval = 0;
   1274 	uproto = (int)so->so_proto->pr_protocol;
   1275 
   1276 	if (level != IPPROTO_IPV6) {
   1277 		return ENOPROTOOPT;
   1278 	}
   1279 	switch (op) {
   1280 	case PRCO_SETOPT:
   1281 		switch (optname) {
   1282 #ifdef RFC2292
   1283 		case IPV6_2292PKTOPTIONS:
   1284 			error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
   1285 			break;
   1286 #endif
   1287 
   1288 		/*
   1289 		 * Use of some Hop-by-Hop options or some
   1290 		 * Destination options, might require special
   1291 		 * privilege.  That is, normal applications
   1292 		 * (without special privilege) might be forbidden
   1293 		 * from setting certain options in outgoing packets,
   1294 		 * and might never see certain options in received
   1295 		 * packets. [RFC 2292 Section 6]
   1296 		 * KAME specific note:
   1297 		 *  KAME prevents non-privileged users from sending or
   1298 		 *  receiving ANY hbh/dst options in order to avoid
   1299 		 *  overhead of parsing options in the kernel.
   1300 		 */
   1301 		case IPV6_RECVHOPOPTS:
   1302 		case IPV6_RECVDSTOPTS:
   1303 		case IPV6_RECVRTHDRDSTOPTS:
   1304 			error = kauth_authorize_network(kauth_cred_get(),
   1305 			    KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
   1306 			    NULL, NULL, NULL);
   1307 			if (error)
   1308 				break;
   1309 			/* FALLTHROUGH */
   1310 		case IPV6_UNICAST_HOPS:
   1311 		case IPV6_HOPLIMIT:
   1312 		case IPV6_FAITH:
   1313 
   1314 		case IPV6_RECVPKTINFO:
   1315 		case IPV6_RECVHOPLIMIT:
   1316 		case IPV6_RECVRTHDR:
   1317 		case IPV6_RECVPATHMTU:
   1318 		case IPV6_RECVTCLASS:
   1319 		case IPV6_V6ONLY:
   1320 			error = sockopt_getint(sopt, &optval);
   1321 			if (error)
   1322 				break;
   1323 			switch (optname) {
   1324 			case IPV6_UNICAST_HOPS:
   1325 				if (optval < -1 || optval >= 256)
   1326 					error = EINVAL;
   1327 				else {
   1328 					/* -1 = kernel default */
   1329 					in6p->in6p_hops = optval;
   1330 				}
   1331 				break;
   1332 #define OPTSET(bit) \
   1333 do { \
   1334 if (optval) \
   1335 	in6p->in6p_flags |= (bit); \
   1336 else \
   1337 	in6p->in6p_flags &= ~(bit); \
   1338 } while (/*CONSTCOND*/ 0)
   1339 
   1340 #ifdef RFC2292
   1341 #define OPTSET2292(bit) 			\
   1342 do { 						\
   1343 in6p->in6p_flags |= IN6P_RFC2292; 	\
   1344 if (optval) 				\
   1345 	in6p->in6p_flags |= (bit); 	\
   1346 else 					\
   1347 	in6p->in6p_flags &= ~(bit); 	\
   1348 } while (/*CONSTCOND*/ 0)
   1349 #endif
   1350 
   1351 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
   1352 
   1353 			case IPV6_RECVPKTINFO:
   1354 #ifdef RFC2292
   1355 				/* cannot mix with RFC2292 */
   1356 				if (OPTBIT(IN6P_RFC2292)) {
   1357 					error = EINVAL;
   1358 					break;
   1359 				}
   1360 #endif
   1361 				OPTSET(IN6P_PKTINFO);
   1362 				break;
   1363 
   1364 			case IPV6_HOPLIMIT:
   1365 			{
   1366 				struct ip6_pktopts **optp;
   1367 
   1368 #ifdef RFC2292
   1369 				/* cannot mix with RFC2292 */
   1370 				if (OPTBIT(IN6P_RFC2292)) {
   1371 					error = EINVAL;
   1372 					break;
   1373 				}
   1374 #endif
   1375 				optp = &in6p->in6p_outputopts;
   1376 				error = ip6_pcbopt(IPV6_HOPLIMIT,
   1377 						   (u_char *)&optval,
   1378 						   sizeof(optval),
   1379 						   optp,
   1380 						   kauth_cred_get(), uproto);
   1381 				break;
   1382 			}
   1383 
   1384 			case IPV6_RECVHOPLIMIT:
   1385 #ifdef RFC2292
   1386 				/* cannot mix with RFC2292 */
   1387 				if (OPTBIT(IN6P_RFC2292)) {
   1388 					error = EINVAL;
   1389 					break;
   1390 				}
   1391 #endif
   1392 				OPTSET(IN6P_HOPLIMIT);
   1393 				break;
   1394 
   1395 			case IPV6_RECVHOPOPTS:
   1396 #ifdef RFC2292
   1397 				/* cannot mix with RFC2292 */
   1398 				if (OPTBIT(IN6P_RFC2292)) {
   1399 					error = EINVAL;
   1400 					break;
   1401 				}
   1402 #endif
   1403 				OPTSET(IN6P_HOPOPTS);
   1404 				break;
   1405 
   1406 			case IPV6_RECVDSTOPTS:
   1407 #ifdef RFC2292
   1408 				/* cannot mix with RFC2292 */
   1409 				if (OPTBIT(IN6P_RFC2292)) {
   1410 					error = EINVAL;
   1411 					break;
   1412 				}
   1413 #endif
   1414 				OPTSET(IN6P_DSTOPTS);
   1415 				break;
   1416 
   1417 			case IPV6_RECVRTHDRDSTOPTS:
   1418 #ifdef RFC2292
   1419 				/* cannot mix with RFC2292 */
   1420 				if (OPTBIT(IN6P_RFC2292)) {
   1421 					error = EINVAL;
   1422 					break;
   1423 				}
   1424 #endif
   1425 				OPTSET(IN6P_RTHDRDSTOPTS);
   1426 				break;
   1427 
   1428 			case IPV6_RECVRTHDR:
   1429 #ifdef RFC2292
   1430 				/* cannot mix with RFC2292 */
   1431 				if (OPTBIT(IN6P_RFC2292)) {
   1432 					error = EINVAL;
   1433 					break;
   1434 				}
   1435 #endif
   1436 				OPTSET(IN6P_RTHDR);
   1437 				break;
   1438 
   1439 			case IPV6_FAITH:
   1440 				OPTSET(IN6P_FAITH);
   1441 				break;
   1442 
   1443 			case IPV6_RECVPATHMTU:
   1444 				/*
   1445 				 * We ignore this option for TCP
   1446 				 * sockets.
   1447 				 * (RFC3542 leaves this case
   1448 				 * unspecified.)
   1449 				 */
   1450 				if (uproto != IPPROTO_TCP)
   1451 					OPTSET(IN6P_MTU);
   1452 				break;
   1453 
   1454 			case IPV6_V6ONLY:
   1455 				/*
   1456 				 * make setsockopt(IPV6_V6ONLY)
   1457 				 * available only prior to bind(2).
   1458 				 * see ipng mailing list, Jun 22 2001.
   1459 				 */
   1460 				if (in6p->in6p_lport ||
   1461 				    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
   1462 					error = EINVAL;
   1463 					break;
   1464 				}
   1465 #ifdef INET6_BINDV6ONLY
   1466 				if (!optval)
   1467 					error = EINVAL;
   1468 #else
   1469 				OPTSET(IN6P_IPV6_V6ONLY);
   1470 #endif
   1471 				break;
   1472 			case IPV6_RECVTCLASS:
   1473 #ifdef RFC2292
   1474 				/* cannot mix with RFC2292 XXX */
   1475 				if (OPTBIT(IN6P_RFC2292)) {
   1476 					error = EINVAL;
   1477 					break;
   1478 				}
   1479 #endif
   1480 				OPTSET(IN6P_TCLASS);
   1481 				break;
   1482 
   1483 			}
   1484 			break;
   1485 
   1486 		case IPV6_OTCLASS:
   1487 		{
   1488 			struct ip6_pktopts **optp;
   1489 			u_int8_t tclass;
   1490 
   1491 			error = sockopt_get(sopt, &tclass, sizeof(tclass));
   1492 			if (error)
   1493 				break;
   1494 			optp = &in6p->in6p_outputopts;
   1495 			error = ip6_pcbopt(optname,
   1496 					   (u_char *)&tclass,
   1497 					   sizeof(tclass),
   1498 					   optp,
   1499 					   kauth_cred_get(), uproto);
   1500 			break;
   1501 		}
   1502 
   1503 		case IPV6_TCLASS:
   1504 		case IPV6_DONTFRAG:
   1505 		case IPV6_USE_MIN_MTU:
   1506 			error = sockopt_getint(sopt, &optval);
   1507 			if (error)
   1508 				break;
   1509 			{
   1510 				struct ip6_pktopts **optp;
   1511 				optp = &in6p->in6p_outputopts;
   1512 				error = ip6_pcbopt(optname,
   1513 						   (u_char *)&optval,
   1514 						   sizeof(optval),
   1515 						   optp,
   1516 						   kauth_cred_get(), uproto);
   1517 				break;
   1518 			}
   1519 
   1520 #ifdef RFC2292
   1521 		case IPV6_2292PKTINFO:
   1522 		case IPV6_2292HOPLIMIT:
   1523 		case IPV6_2292HOPOPTS:
   1524 		case IPV6_2292DSTOPTS:
   1525 		case IPV6_2292RTHDR:
   1526 			/* RFC 2292 */
   1527 			error = sockopt_getint(sopt, &optval);
   1528 			if (error)
   1529 				break;
   1530 
   1531 			switch (optname) {
   1532 			case IPV6_2292PKTINFO:
   1533 				OPTSET2292(IN6P_PKTINFO);
   1534 				break;
   1535 			case IPV6_2292HOPLIMIT:
   1536 				OPTSET2292(IN6P_HOPLIMIT);
   1537 				break;
   1538 			case IPV6_2292HOPOPTS:
   1539 				/*
   1540 				 * Check super-user privilege.
   1541 				 * See comments for IPV6_RECVHOPOPTS.
   1542 				 */
   1543 				error =
   1544 				    kauth_authorize_network(kauth_cred_get(),
   1545 				    KAUTH_NETWORK_IPV6,
   1546 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1547 				    NULL, NULL);
   1548 				if (error)
   1549 					return (error);
   1550 				OPTSET2292(IN6P_HOPOPTS);
   1551 				break;
   1552 			case IPV6_2292DSTOPTS:
   1553 				error =
   1554 				    kauth_authorize_network(kauth_cred_get(),
   1555 				    KAUTH_NETWORK_IPV6,
   1556 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1557 				    NULL, NULL);
   1558 				if (error)
   1559 					return (error);
   1560 				OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
   1561 				break;
   1562 			case IPV6_2292RTHDR:
   1563 				OPTSET2292(IN6P_RTHDR);
   1564 				break;
   1565 			}
   1566 			break;
   1567 #endif
   1568 		case IPV6_PKTINFO:
   1569 		case IPV6_HOPOPTS:
   1570 		case IPV6_RTHDR:
   1571 		case IPV6_DSTOPTS:
   1572 		case IPV6_RTHDRDSTOPTS:
   1573 		case IPV6_NEXTHOP: {
   1574 			/* new advanced API (RFC3542) */
   1575 			void *optbuf;
   1576 			int optbuflen;
   1577 			struct ip6_pktopts **optp;
   1578 
   1579 #ifdef RFC2292
   1580 			/* cannot mix with RFC2292 */
   1581 			if (OPTBIT(IN6P_RFC2292)) {
   1582 				error = EINVAL;
   1583 				break;
   1584 			}
   1585 #endif
   1586 
   1587 			optbuflen = sopt->sopt_size;
   1588 			optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
   1589 			if (optbuf == NULL) {
   1590 				error = ENOBUFS;
   1591 				break;
   1592 			}
   1593 
   1594 			sockopt_get(sopt, optbuf, optbuflen);
   1595 			optp = &in6p->in6p_outputopts;
   1596 			error = ip6_pcbopt(optname, optbuf, optbuflen,
   1597 			    optp, kauth_cred_get(), uproto);
   1598 			break;
   1599 			}
   1600 #undef OPTSET
   1601 
   1602 		case IPV6_MULTICAST_IF:
   1603 		case IPV6_MULTICAST_HOPS:
   1604 		case IPV6_MULTICAST_LOOP:
   1605 		case IPV6_JOIN_GROUP:
   1606 		case IPV6_LEAVE_GROUP:
   1607 			error = ip6_setmoptions(sopt, &in6p->in6p_moptions);
   1608 			break;
   1609 
   1610 		case IPV6_PORTRANGE:
   1611 			error = sockopt_getint(sopt, &optval);
   1612 			if (error)
   1613 				break;
   1614 
   1615 			switch (optval) {
   1616 			case IPV6_PORTRANGE_DEFAULT:
   1617 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1618 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1619 				break;
   1620 
   1621 			case IPV6_PORTRANGE_HIGH:
   1622 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1623 				in6p->in6p_flags |= IN6P_HIGHPORT;
   1624 				break;
   1625 
   1626 			case IPV6_PORTRANGE_LOW:
   1627 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1628 				in6p->in6p_flags |= IN6P_LOWPORT;
   1629 				break;
   1630 
   1631 			default:
   1632 				error = EINVAL;
   1633 				break;
   1634 			}
   1635 			break;
   1636 
   1637 		case IPV6_PORTALGO:
   1638 			error = sockopt_getint(sopt, &optval);
   1639 			if (error)
   1640 				break;
   1641 
   1642 			error = portalgo_algo_index_select(
   1643 			    (struct inpcb_hdr *)in6p, optval);
   1644 			break;
   1645 
   1646 #if defined(FAST_IPSEC)
   1647 		case IPV6_IPSEC_POLICY:
   1648 			error = ipsec6_set_policy(in6p, optname,
   1649 			    sopt->sopt_data, sopt->sopt_size, kauth_cred_get());
   1650 			break;
   1651 #endif /* IPSEC */
   1652 
   1653 		default:
   1654 			error = ENOPROTOOPT;
   1655 			break;
   1656 		}
   1657 		break;
   1658 
   1659 	case PRCO_GETOPT:
   1660 		switch (optname) {
   1661 #ifdef RFC2292
   1662 		case IPV6_2292PKTOPTIONS:
   1663 			/*
   1664 			 * RFC3542 (effectively) deprecated the
   1665 			 * semantics of the 2292-style pktoptions.
   1666 			 * Since it was not reliable in nature (i.e.,
   1667 			 * applications had to expect the lack of some
   1668 			 * information after all), it would make sense
   1669 			 * to simplify this part by always returning
   1670 			 * empty data.
   1671 			 */
   1672 			break;
   1673 #endif
   1674 
   1675 		case IPV6_RECVHOPOPTS:
   1676 		case IPV6_RECVDSTOPTS:
   1677 		case IPV6_RECVRTHDRDSTOPTS:
   1678 		case IPV6_UNICAST_HOPS:
   1679 		case IPV6_RECVPKTINFO:
   1680 		case IPV6_RECVHOPLIMIT:
   1681 		case IPV6_RECVRTHDR:
   1682 		case IPV6_RECVPATHMTU:
   1683 
   1684 		case IPV6_FAITH:
   1685 		case IPV6_V6ONLY:
   1686 		case IPV6_PORTRANGE:
   1687 		case IPV6_RECVTCLASS:
   1688 			switch (optname) {
   1689 
   1690 			case IPV6_RECVHOPOPTS:
   1691 				optval = OPTBIT(IN6P_HOPOPTS);
   1692 				break;
   1693 
   1694 			case IPV6_RECVDSTOPTS:
   1695 				optval = OPTBIT(IN6P_DSTOPTS);
   1696 				break;
   1697 
   1698 			case IPV6_RECVRTHDRDSTOPTS:
   1699 				optval = OPTBIT(IN6P_RTHDRDSTOPTS);
   1700 				break;
   1701 
   1702 			case IPV6_UNICAST_HOPS:
   1703 				optval = in6p->in6p_hops;
   1704 				break;
   1705 
   1706 			case IPV6_RECVPKTINFO:
   1707 				optval = OPTBIT(IN6P_PKTINFO);
   1708 				break;
   1709 
   1710 			case IPV6_RECVHOPLIMIT:
   1711 				optval = OPTBIT(IN6P_HOPLIMIT);
   1712 				break;
   1713 
   1714 			case IPV6_RECVRTHDR:
   1715 				optval = OPTBIT(IN6P_RTHDR);
   1716 				break;
   1717 
   1718 			case IPV6_RECVPATHMTU:
   1719 				optval = OPTBIT(IN6P_MTU);
   1720 				break;
   1721 
   1722 			case IPV6_FAITH:
   1723 				optval = OPTBIT(IN6P_FAITH);
   1724 				break;
   1725 
   1726 			case IPV6_V6ONLY:
   1727 				optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1728 				break;
   1729 
   1730 			case IPV6_PORTRANGE:
   1731 			    {
   1732 				int flags;
   1733 				flags = in6p->in6p_flags;
   1734 				if (flags & IN6P_HIGHPORT)
   1735 					optval = IPV6_PORTRANGE_HIGH;
   1736 				else if (flags & IN6P_LOWPORT)
   1737 					optval = IPV6_PORTRANGE_LOW;
   1738 				else
   1739 					optval = 0;
   1740 				break;
   1741 			    }
   1742 			case IPV6_RECVTCLASS:
   1743 				optval = OPTBIT(IN6P_TCLASS);
   1744 				break;
   1745 
   1746 			}
   1747 			if (error)
   1748 				break;
   1749 			error = sockopt_setint(sopt, optval);
   1750 			break;
   1751 
   1752 		case IPV6_PATHMTU:
   1753 		    {
   1754 			u_long pmtu = 0;
   1755 			struct ip6_mtuinfo mtuinfo;
   1756 			struct route *ro = &in6p->in6p_route;
   1757 
   1758 			if (!(so->so_state & SS_ISCONNECTED))
   1759 				return (ENOTCONN);
   1760 			/*
   1761 			 * XXX: we dot not consider the case of source
   1762 			 * routing, or optional information to specify
   1763 			 * the outgoing interface.
   1764 			 */
   1765 			error = ip6_getpmtu(ro, NULL, NULL,
   1766 			    &in6p->in6p_faddr, &pmtu, NULL);
   1767 			if (error)
   1768 				break;
   1769 			if (pmtu > IPV6_MAXPACKET)
   1770 				pmtu = IPV6_MAXPACKET;
   1771 
   1772 			memset(&mtuinfo, 0, sizeof(mtuinfo));
   1773 			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
   1774 			optdata = (void *)&mtuinfo;
   1775 			optdatalen = sizeof(mtuinfo);
   1776 			if (optdatalen > MCLBYTES)
   1777 				return (EMSGSIZE); /* XXX */
   1778 			error = sockopt_set(sopt, optdata, optdatalen);
   1779 			break;
   1780 		    }
   1781 
   1782 #ifdef RFC2292
   1783 		case IPV6_2292PKTINFO:
   1784 		case IPV6_2292HOPLIMIT:
   1785 		case IPV6_2292HOPOPTS:
   1786 		case IPV6_2292RTHDR:
   1787 		case IPV6_2292DSTOPTS:
   1788 			switch (optname) {
   1789 			case IPV6_2292PKTINFO:
   1790 				optval = OPTBIT(IN6P_PKTINFO);
   1791 				break;
   1792 			case IPV6_2292HOPLIMIT:
   1793 				optval = OPTBIT(IN6P_HOPLIMIT);
   1794 				break;
   1795 			case IPV6_2292HOPOPTS:
   1796 				optval = OPTBIT(IN6P_HOPOPTS);
   1797 				break;
   1798 			case IPV6_2292RTHDR:
   1799 				optval = OPTBIT(IN6P_RTHDR);
   1800 				break;
   1801 			case IPV6_2292DSTOPTS:
   1802 				optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
   1803 				break;
   1804 			}
   1805 			error = sockopt_setint(sopt, optval);
   1806 			break;
   1807 #endif
   1808 		case IPV6_PKTINFO:
   1809 		case IPV6_HOPOPTS:
   1810 		case IPV6_RTHDR:
   1811 		case IPV6_DSTOPTS:
   1812 		case IPV6_RTHDRDSTOPTS:
   1813 		case IPV6_NEXTHOP:
   1814 		case IPV6_OTCLASS:
   1815 		case IPV6_TCLASS:
   1816 		case IPV6_DONTFRAG:
   1817 		case IPV6_USE_MIN_MTU:
   1818 			error = ip6_getpcbopt(in6p->in6p_outputopts,
   1819 			    optname, sopt);
   1820 			break;
   1821 
   1822 		case IPV6_MULTICAST_IF:
   1823 		case IPV6_MULTICAST_HOPS:
   1824 		case IPV6_MULTICAST_LOOP:
   1825 		case IPV6_JOIN_GROUP:
   1826 		case IPV6_LEAVE_GROUP:
   1827 			error = ip6_getmoptions(sopt, in6p->in6p_moptions);
   1828 			break;
   1829 
   1830 		case IPV6_PORTALGO:
   1831 			optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
   1832 			error = sockopt_setint(sopt, optval);
   1833 			break;
   1834 
   1835 #if defined(FAST_IPSEC)
   1836 		case IPV6_IPSEC_POLICY:
   1837 		    {
   1838 			struct mbuf *m = NULL;
   1839 
   1840 			/* XXX this will return EINVAL as sopt is empty */
   1841 			error = ipsec6_get_policy(in6p, sopt->sopt_data,
   1842 			    sopt->sopt_size, &m);
   1843 			if (!error)
   1844 				error = sockopt_setmbuf(sopt, m);
   1845 
   1846 			break;
   1847 		    }
   1848 #endif /* IPSEC */
   1849 
   1850 		default:
   1851 			error = ENOPROTOOPT;
   1852 			break;
   1853 		}
   1854 		break;
   1855 	}
   1856 	return (error);
   1857 }
   1858 
   1859 int
   1860 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1861 {
   1862 	int error = 0, optval;
   1863 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   1864 	struct in6pcb *in6p = sotoin6pcb(so);
   1865 	int level, optname;
   1866 
   1867 	KASSERT(sopt != NULL);
   1868 
   1869 	level = sopt->sopt_level;
   1870 	optname = sopt->sopt_name;
   1871 
   1872 	if (level != IPPROTO_IPV6) {
   1873 		return ENOPROTOOPT;
   1874 	}
   1875 
   1876 	switch (optname) {
   1877 	case IPV6_CHECKSUM:
   1878 		/*
   1879 		 * For ICMPv6 sockets, no modification allowed for checksum
   1880 		 * offset, permit "no change" values to help existing apps.
   1881 		 *
   1882 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
   1883 		 * for an ICMPv6 socket will fail."  The current
   1884 		 * behavior does not meet RFC3542.
   1885 		 */
   1886 		switch (op) {
   1887 		case PRCO_SETOPT:
   1888 			error = sockopt_getint(sopt, &optval);
   1889 			if (error)
   1890 				break;
   1891 			if ((optval % 2) != 0) {
   1892 				/* the API assumes even offset values */
   1893 				error = EINVAL;
   1894 			} else if (so->so_proto->pr_protocol ==
   1895 			    IPPROTO_ICMPV6) {
   1896 				if (optval != icmp6off)
   1897 					error = EINVAL;
   1898 			} else
   1899 				in6p->in6p_cksum = optval;
   1900 			break;
   1901 
   1902 		case PRCO_GETOPT:
   1903 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   1904 				optval = icmp6off;
   1905 			else
   1906 				optval = in6p->in6p_cksum;
   1907 
   1908 			error = sockopt_setint(sopt, optval);
   1909 			break;
   1910 
   1911 		default:
   1912 			error = EINVAL;
   1913 			break;
   1914 		}
   1915 		break;
   1916 
   1917 	default:
   1918 		error = ENOPROTOOPT;
   1919 		break;
   1920 	}
   1921 
   1922 	return (error);
   1923 }
   1924 
   1925 #ifdef RFC2292
   1926 /*
   1927  * Set up IP6 options in pcb for insertion in output packets or
   1928  * specifying behavior of outgoing packets.
   1929  */
   1930 static int
   1931 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
   1932     struct sockopt *sopt)
   1933 {
   1934 	struct ip6_pktopts *opt = *pktopt;
   1935 	struct mbuf *m;
   1936 	int error = 0;
   1937 
   1938 	/* turn off any old options. */
   1939 	if (opt) {
   1940 #ifdef DIAGNOSTIC
   1941 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
   1942 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
   1943 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
   1944 		    printf("ip6_pcbopts: all specified options are cleared.\n");
   1945 #endif
   1946 		ip6_clearpktopts(opt, -1);
   1947 	} else {
   1948 		opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
   1949 		if (opt == NULL)
   1950 			return (ENOBUFS);
   1951 	}
   1952 	*pktopt = NULL;
   1953 
   1954 	if (sopt == NULL || sopt->sopt_size == 0) {
   1955 		/*
   1956 		 * Only turning off any previous options, regardless of
   1957 		 * whether the opt is just created or given.
   1958 		 */
   1959 		free(opt, M_IP6OPT);
   1960 		return (0);
   1961 	}
   1962 
   1963 	/*  set options specified by user. */
   1964 	m = sockopt_getmbuf(sopt);
   1965 	if (m == NULL) {
   1966 		free(opt, M_IP6OPT);
   1967 		return (ENOBUFS);
   1968 	}
   1969 
   1970 	error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
   1971 	    so->so_proto->pr_protocol);
   1972 	m_freem(m);
   1973 	if (error != 0) {
   1974 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
   1975 		free(opt, M_IP6OPT);
   1976 		return (error);
   1977 	}
   1978 	*pktopt = opt;
   1979 	return (0);
   1980 }
   1981 #endif
   1982 
   1983 /*
   1984  * initialize ip6_pktopts.  beware that there are non-zero default values in
   1985  * the struct.
   1986  */
   1987 void
   1988 ip6_initpktopts(struct ip6_pktopts *opt)
   1989 {
   1990 
   1991 	memset(opt, 0, sizeof(*opt));
   1992 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
   1993 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
   1994 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
   1995 }
   1996 
   1997 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
   1998 static int
   1999 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
   2000     kauth_cred_t cred, int uproto)
   2001 {
   2002 	struct ip6_pktopts *opt;
   2003 
   2004 	if (*pktopt == NULL) {
   2005 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
   2006 		    M_NOWAIT);
   2007 		if (*pktopt == NULL)
   2008 			return (ENOBUFS);
   2009 
   2010 		ip6_initpktopts(*pktopt);
   2011 	}
   2012 	opt = *pktopt;
   2013 
   2014 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
   2015 }
   2016 
   2017 static int
   2018 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
   2019 {
   2020 	void *optdata = NULL;
   2021 	int optdatalen = 0;
   2022 	struct ip6_ext *ip6e;
   2023 	int error = 0;
   2024 	struct in6_pktinfo null_pktinfo;
   2025 	int deftclass = 0, on;
   2026 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
   2027 
   2028 	switch (optname) {
   2029 	case IPV6_PKTINFO:
   2030 		if (pktopt && pktopt->ip6po_pktinfo)
   2031 			optdata = (void *)pktopt->ip6po_pktinfo;
   2032 		else {
   2033 			/* XXX: we don't have to do this every time... */
   2034 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
   2035 			optdata = (void *)&null_pktinfo;
   2036 		}
   2037 		optdatalen = sizeof(struct in6_pktinfo);
   2038 		break;
   2039 	case IPV6_OTCLASS:
   2040 		/* XXX */
   2041 		return (EINVAL);
   2042 	case IPV6_TCLASS:
   2043 		if (pktopt && pktopt->ip6po_tclass >= 0)
   2044 			optdata = (void *)&pktopt->ip6po_tclass;
   2045 		else
   2046 			optdata = (void *)&deftclass;
   2047 		optdatalen = sizeof(int);
   2048 		break;
   2049 	case IPV6_HOPOPTS:
   2050 		if (pktopt && pktopt->ip6po_hbh) {
   2051 			optdata = (void *)pktopt->ip6po_hbh;
   2052 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
   2053 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2054 		}
   2055 		break;
   2056 	case IPV6_RTHDR:
   2057 		if (pktopt && pktopt->ip6po_rthdr) {
   2058 			optdata = (void *)pktopt->ip6po_rthdr;
   2059 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
   2060 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2061 		}
   2062 		break;
   2063 	case IPV6_RTHDRDSTOPTS:
   2064 		if (pktopt && pktopt->ip6po_dest1) {
   2065 			optdata = (void *)pktopt->ip6po_dest1;
   2066 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
   2067 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2068 		}
   2069 		break;
   2070 	case IPV6_DSTOPTS:
   2071 		if (pktopt && pktopt->ip6po_dest2) {
   2072 			optdata = (void *)pktopt->ip6po_dest2;
   2073 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
   2074 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2075 		}
   2076 		break;
   2077 	case IPV6_NEXTHOP:
   2078 		if (pktopt && pktopt->ip6po_nexthop) {
   2079 			optdata = (void *)pktopt->ip6po_nexthop;
   2080 			optdatalen = pktopt->ip6po_nexthop->sa_len;
   2081 		}
   2082 		break;
   2083 	case IPV6_USE_MIN_MTU:
   2084 		if (pktopt)
   2085 			optdata = (void *)&pktopt->ip6po_minmtu;
   2086 		else
   2087 			optdata = (void *)&defminmtu;
   2088 		optdatalen = sizeof(int);
   2089 		break;
   2090 	case IPV6_DONTFRAG:
   2091 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
   2092 			on = 1;
   2093 		else
   2094 			on = 0;
   2095 		optdata = (void *)&on;
   2096 		optdatalen = sizeof(on);
   2097 		break;
   2098 	default:		/* should not happen */
   2099 #ifdef DIAGNOSTIC
   2100 		panic("ip6_getpcbopt: unexpected option\n");
   2101 #endif
   2102 		return (ENOPROTOOPT);
   2103 	}
   2104 
   2105 	error = sockopt_set(sopt, optdata, optdatalen);
   2106 
   2107 	return (error);
   2108 }
   2109 
   2110 void
   2111 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
   2112 {
   2113 	if (optname == -1 || optname == IPV6_PKTINFO) {
   2114 		if (pktopt->ip6po_pktinfo)
   2115 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
   2116 		pktopt->ip6po_pktinfo = NULL;
   2117 	}
   2118 	if (optname == -1 || optname == IPV6_HOPLIMIT)
   2119 		pktopt->ip6po_hlim = -1;
   2120 	if (optname == -1 || optname == IPV6_TCLASS)
   2121 		pktopt->ip6po_tclass = -1;
   2122 	if (optname == -1 || optname == IPV6_NEXTHOP) {
   2123 		rtcache_free(&pktopt->ip6po_nextroute);
   2124 		if (pktopt->ip6po_nexthop)
   2125 			free(pktopt->ip6po_nexthop, M_IP6OPT);
   2126 		pktopt->ip6po_nexthop = NULL;
   2127 	}
   2128 	if (optname == -1 || optname == IPV6_HOPOPTS) {
   2129 		if (pktopt->ip6po_hbh)
   2130 			free(pktopt->ip6po_hbh, M_IP6OPT);
   2131 		pktopt->ip6po_hbh = NULL;
   2132 	}
   2133 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
   2134 		if (pktopt->ip6po_dest1)
   2135 			free(pktopt->ip6po_dest1, M_IP6OPT);
   2136 		pktopt->ip6po_dest1 = NULL;
   2137 	}
   2138 	if (optname == -1 || optname == IPV6_RTHDR) {
   2139 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2140 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
   2141 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
   2142 		rtcache_free(&pktopt->ip6po_route);
   2143 	}
   2144 	if (optname == -1 || optname == IPV6_DSTOPTS) {
   2145 		if (pktopt->ip6po_dest2)
   2146 			free(pktopt->ip6po_dest2, M_IP6OPT);
   2147 		pktopt->ip6po_dest2 = NULL;
   2148 	}
   2149 }
   2150 
   2151 #define PKTOPT_EXTHDRCPY(type) 					\
   2152 do {								\
   2153 	if (src->type) {					\
   2154 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
   2155 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
   2156 		if (dst->type == NULL)				\
   2157 			goto bad;				\
   2158 		memcpy(dst->type, src->type, hlen);		\
   2159 	}							\
   2160 } while (/*CONSTCOND*/ 0)
   2161 
   2162 static int
   2163 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
   2164 {
   2165 	dst->ip6po_hlim = src->ip6po_hlim;
   2166 	dst->ip6po_tclass = src->ip6po_tclass;
   2167 	dst->ip6po_flags = src->ip6po_flags;
   2168 	if (src->ip6po_pktinfo) {
   2169 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
   2170 		    M_IP6OPT, canwait);
   2171 		if (dst->ip6po_pktinfo == NULL)
   2172 			goto bad;
   2173 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
   2174 	}
   2175 	if (src->ip6po_nexthop) {
   2176 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
   2177 		    M_IP6OPT, canwait);
   2178 		if (dst->ip6po_nexthop == NULL)
   2179 			goto bad;
   2180 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
   2181 		    src->ip6po_nexthop->sa_len);
   2182 	}
   2183 	PKTOPT_EXTHDRCPY(ip6po_hbh);
   2184 	PKTOPT_EXTHDRCPY(ip6po_dest1);
   2185 	PKTOPT_EXTHDRCPY(ip6po_dest2);
   2186 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
   2187 	return (0);
   2188 
   2189   bad:
   2190 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
   2191 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
   2192 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
   2193 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
   2194 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
   2195 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
   2196 
   2197 	return (ENOBUFS);
   2198 }
   2199 #undef PKTOPT_EXTHDRCPY
   2200 
   2201 struct ip6_pktopts *
   2202 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
   2203 {
   2204 	int error;
   2205 	struct ip6_pktopts *dst;
   2206 
   2207 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
   2208 	if (dst == NULL)
   2209 		return (NULL);
   2210 	ip6_initpktopts(dst);
   2211 
   2212 	if ((error = copypktopts(dst, src, canwait)) != 0) {
   2213 		free(dst, M_IP6OPT);
   2214 		return (NULL);
   2215 	}
   2216 
   2217 	return (dst);
   2218 }
   2219 
   2220 void
   2221 ip6_freepcbopts(struct ip6_pktopts *pktopt)
   2222 {
   2223 	if (pktopt == NULL)
   2224 		return;
   2225 
   2226 	ip6_clearpktopts(pktopt, -1);
   2227 
   2228 	free(pktopt, M_IP6OPT);
   2229 }
   2230 
   2231 /*
   2232  * Set the IP6 multicast options in response to user setsockopt().
   2233  */
   2234 static int
   2235 ip6_setmoptions(const struct sockopt *sopt, struct ip6_moptions **im6op)
   2236 {
   2237 	int error = 0;
   2238 	u_int loop, ifindex;
   2239 	struct ipv6_mreq mreq;
   2240 	struct ifnet *ifp;
   2241 	struct ip6_moptions *im6o = *im6op;
   2242 	struct route ro;
   2243 	struct in6_multi_mship *imm;
   2244 	struct lwp *l = curlwp;	/* XXX */
   2245 
   2246 	if (im6o == NULL) {
   2247 		/*
   2248 		 * No multicast option buffer attached to the pcb;
   2249 		 * allocate one and initialize to default values.
   2250 		 */
   2251 		im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
   2252 		if (im6o == NULL)
   2253 			return (ENOBUFS);
   2254 
   2255 		*im6op = im6o;
   2256 		im6o->im6o_multicast_ifp = NULL;
   2257 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2258 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   2259 		LIST_INIT(&im6o->im6o_memberships);
   2260 	}
   2261 
   2262 	switch (sopt->sopt_name) {
   2263 
   2264 	case IPV6_MULTICAST_IF:
   2265 		/*
   2266 		 * Select the interface for outgoing multicast packets.
   2267 		 */
   2268 		error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
   2269 		if (error != 0)
   2270 			break;
   2271 
   2272 		if (ifindex != 0) {
   2273 			if (if_indexlim <= ifindex || !ifindex2ifnet[ifindex]) {
   2274 				error = ENXIO;	/* XXX EINVAL? */
   2275 				break;
   2276 			}
   2277 			ifp = ifindex2ifnet[ifindex];
   2278 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   2279 				error = EADDRNOTAVAIL;
   2280 				break;
   2281 			}
   2282 		} else
   2283 			ifp = NULL;
   2284 		im6o->im6o_multicast_ifp = ifp;
   2285 		break;
   2286 
   2287 	case IPV6_MULTICAST_HOPS:
   2288 	    {
   2289 		/*
   2290 		 * Set the IP6 hoplimit for outgoing multicast packets.
   2291 		 */
   2292 		int optval;
   2293 
   2294 		error = sockopt_getint(sopt, &optval);
   2295 		if (error != 0)
   2296 			break;
   2297 
   2298 		if (optval < -1 || optval >= 256)
   2299 			error = EINVAL;
   2300 		else if (optval == -1)
   2301 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2302 		else
   2303 			im6o->im6o_multicast_hlim = optval;
   2304 		break;
   2305 	    }
   2306 
   2307 	case IPV6_MULTICAST_LOOP:
   2308 		/*
   2309 		 * Set the loopback flag for outgoing multicast packets.
   2310 		 * Must be zero or one.
   2311 		 */
   2312 		error = sockopt_get(sopt, &loop, sizeof(loop));
   2313 		if (error != 0)
   2314 			break;
   2315 		if (loop > 1) {
   2316 			error = EINVAL;
   2317 			break;
   2318 		}
   2319 		im6o->im6o_multicast_loop = loop;
   2320 		break;
   2321 
   2322 	case IPV6_JOIN_GROUP:
   2323 		/*
   2324 		 * Add a multicast group membership.
   2325 		 * Group must be a valid IP6 multicast address.
   2326 		 */
   2327 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2328 		if (error != 0)
   2329 			break;
   2330 
   2331 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq.ipv6mr_multiaddr)) {
   2332 			/*
   2333 			 * We use the unspecified address to specify to accept
   2334 			 * all multicast addresses. Only super user is allowed
   2335 			 * to do this.
   2336 			 */
   2337 			if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_IPV6,
   2338 			    KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
   2339 			{
   2340 				error = EACCES;
   2341 				break;
   2342 			}
   2343 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq.ipv6mr_multiaddr)) {
   2344 			error = EINVAL;
   2345 			break;
   2346 		}
   2347 
   2348 		/*
   2349 		 * If no interface was explicitly specified, choose an
   2350 		 * appropriate one according to the given multicast address.
   2351 		 */
   2352 		if (mreq.ipv6mr_interface == 0) {
   2353 			struct rtentry *rt;
   2354 			union {
   2355 				struct sockaddr		dst;
   2356 				struct sockaddr_in6	dst6;
   2357 			} u;
   2358 
   2359 			/*
   2360 			 * Look up the routing table for the
   2361 			 * address, and choose the outgoing interface.
   2362 			 *   XXX: is it a good approach?
   2363 			 */
   2364 			memset(&ro, 0, sizeof(ro));
   2365 			sockaddr_in6_init(&u.dst6, &mreq.ipv6mr_multiaddr, 0,
   2366 			    0, 0);
   2367 			rtcache_setdst(&ro, &u.dst);
   2368 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
   2369 			                                        : NULL;
   2370 			rtcache_free(&ro);
   2371 		} else {
   2372 			/*
   2373 			 * If the interface is specified, validate it.
   2374 			 */
   2375 			if (if_indexlim <= mreq.ipv6mr_interface ||
   2376 			    !ifindex2ifnet[mreq.ipv6mr_interface]) {
   2377 				error = ENXIO;	/* XXX EINVAL? */
   2378 				break;
   2379 			}
   2380 			ifp = ifindex2ifnet[mreq.ipv6mr_interface];
   2381 		}
   2382 
   2383 		/*
   2384 		 * See if we found an interface, and confirm that it
   2385 		 * supports multicast
   2386 		 */
   2387 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   2388 			error = EADDRNOTAVAIL;
   2389 			break;
   2390 		}
   2391 
   2392 		if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
   2393 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   2394 			break;
   2395 		}
   2396 
   2397 		/*
   2398 		 * See if the membership already exists.
   2399 		 */
   2400 		for (imm = im6o->im6o_memberships.lh_first;
   2401 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   2402 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2403 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2404 			    &mreq.ipv6mr_multiaddr))
   2405 				break;
   2406 		if (imm != NULL) {
   2407 			error = EADDRINUSE;
   2408 			break;
   2409 		}
   2410 		/*
   2411 		 * Everything looks good; add a new record to the multicast
   2412 		 * address list for the given interface.
   2413 		 */
   2414 		imm = in6_joingroup(ifp, &mreq.ipv6mr_multiaddr, &error, 0);
   2415 		if (imm == NULL)
   2416 			break;
   2417 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2418 		break;
   2419 
   2420 	case IPV6_LEAVE_GROUP:
   2421 		/*
   2422 		 * Drop a multicast group membership.
   2423 		 * Group must be a valid IP6 multicast address.
   2424 		 */
   2425 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2426 		if (error != 0)
   2427 			break;
   2428 
   2429 		/*
   2430 		 * If an interface address was specified, get a pointer
   2431 		 * to its ifnet structure.
   2432 		 */
   2433 		if (mreq.ipv6mr_interface != 0) {
   2434 			if (if_indexlim <= mreq.ipv6mr_interface ||
   2435 			    !ifindex2ifnet[mreq.ipv6mr_interface]) {
   2436 				error = ENXIO;	/* XXX EINVAL? */
   2437 				break;
   2438 			}
   2439 			ifp = ifindex2ifnet[mreq.ipv6mr_interface];
   2440 		} else
   2441 			ifp = NULL;
   2442 
   2443 		/* Fill in the scope zone ID */
   2444 		if (ifp) {
   2445 			if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
   2446 				/* XXX: should not happen */
   2447 				error = EADDRNOTAVAIL;
   2448 				break;
   2449 			}
   2450 		} else if (mreq.ipv6mr_interface != 0) {
   2451 			/*
   2452 			 * XXX: This case would happens when the (positive)
   2453 			 * index is in the valid range, but the corresponding
   2454 			 * interface has been detached dynamically.  The above
   2455 			 * check probably avoids such case to happen here, but
   2456 			 * we check it explicitly for safety.
   2457 			 */
   2458 			error = EADDRNOTAVAIL;
   2459 			break;
   2460 		} else {	/* ipv6mr_interface == 0 */
   2461 			struct sockaddr_in6 sa6_mc;
   2462 
   2463 			/*
   2464 			 * The API spec says as follows:
   2465 			 *  If the interface index is specified as 0, the
   2466 			 *  system may choose a multicast group membership to
   2467 			 *  drop by matching the multicast address only.
   2468 			 * On the other hand, we cannot disambiguate the scope
   2469 			 * zone unless an interface is provided.  Thus, we
   2470 			 * check if there's ambiguity with the default scope
   2471 			 * zone as the last resort.
   2472 			 */
   2473 			sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
   2474 			    0, 0, 0);
   2475 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2476 			if (error != 0)
   2477 				break;
   2478 			mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2479 		}
   2480 
   2481 		/*
   2482 		 * Find the membership in the membership list.
   2483 		 */
   2484 		for (imm = im6o->im6o_memberships.lh_first;
   2485 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   2486 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2487 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2488 			    &mreq.ipv6mr_multiaddr))
   2489 				break;
   2490 		}
   2491 		if (imm == NULL) {
   2492 			/* Unable to resolve interface */
   2493 			error = EADDRNOTAVAIL;
   2494 			break;
   2495 		}
   2496 		/*
   2497 		 * Give up the multicast address record to which the
   2498 		 * membership points.
   2499 		 */
   2500 		LIST_REMOVE(imm, i6mm_chain);
   2501 		in6_leavegroup(imm);
   2502 		break;
   2503 
   2504 	default:
   2505 		error = EOPNOTSUPP;
   2506 		break;
   2507 	}
   2508 
   2509 	/*
   2510 	 * If all options have default values, no need to keep the mbuf.
   2511 	 */
   2512 	if (im6o->im6o_multicast_ifp == NULL &&
   2513 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2514 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2515 	    im6o->im6o_memberships.lh_first == NULL) {
   2516 		free(*im6op, M_IPMOPTS);
   2517 		*im6op = NULL;
   2518 	}
   2519 
   2520 	return (error);
   2521 }
   2522 
   2523 /*
   2524  * Return the IP6 multicast options in response to user getsockopt().
   2525  */
   2526 static int
   2527 ip6_getmoptions(struct sockopt *sopt, struct ip6_moptions *im6o)
   2528 {
   2529 	u_int optval;
   2530 	int error;
   2531 
   2532 	switch (sopt->sopt_name) {
   2533 	case IPV6_MULTICAST_IF:
   2534 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
   2535 			optval = 0;
   2536 		else
   2537 			optval = im6o->im6o_multicast_ifp->if_index;
   2538 
   2539 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2540 		break;
   2541 
   2542 	case IPV6_MULTICAST_HOPS:
   2543 		if (im6o == NULL)
   2544 			optval = ip6_defmcasthlim;
   2545 		else
   2546 			optval = im6o->im6o_multicast_hlim;
   2547 
   2548 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2549 		break;
   2550 
   2551 	case IPV6_MULTICAST_LOOP:
   2552 		if (im6o == NULL)
   2553 			optval = ip6_defmcasthlim;
   2554 		else
   2555 			optval = im6o->im6o_multicast_loop;
   2556 
   2557 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2558 		break;
   2559 
   2560 	default:
   2561 		error = EOPNOTSUPP;
   2562 	}
   2563 
   2564 	return (error);
   2565 }
   2566 
   2567 /*
   2568  * Discard the IP6 multicast options.
   2569  */
   2570 void
   2571 ip6_freemoptions(struct ip6_moptions *im6o)
   2572 {
   2573 	struct in6_multi_mship *imm;
   2574 
   2575 	if (im6o == NULL)
   2576 		return;
   2577 
   2578 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   2579 		LIST_REMOVE(imm, i6mm_chain);
   2580 		in6_leavegroup(imm);
   2581 	}
   2582 	free(im6o, M_IPMOPTS);
   2583 }
   2584 
   2585 /*
   2586  * Set IPv6 outgoing packet options based on advanced API.
   2587  */
   2588 int
   2589 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
   2590 	struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
   2591 {
   2592 	struct cmsghdr *cm = 0;
   2593 
   2594 	if (control == NULL || opt == NULL)
   2595 		return (EINVAL);
   2596 
   2597 	ip6_initpktopts(opt);
   2598 	if (stickyopt) {
   2599 		int error;
   2600 
   2601 		/*
   2602 		 * If stickyopt is provided, make a local copy of the options
   2603 		 * for this particular packet, then override them by ancillary
   2604 		 * objects.
   2605 		 * XXX: copypktopts() does not copy the cached route to a next
   2606 		 * hop (if any).  This is not very good in terms of efficiency,
   2607 		 * but we can allow this since this option should be rarely
   2608 		 * used.
   2609 		 */
   2610 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
   2611 			return (error);
   2612 	}
   2613 
   2614 	/*
   2615 	 * XXX: Currently, we assume all the optional information is stored
   2616 	 * in a single mbuf.
   2617 	 */
   2618 	if (control->m_next)
   2619 		return (EINVAL);
   2620 
   2621 	/* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
   2622 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2623 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2624 		int error;
   2625 
   2626 		if (control->m_len < CMSG_LEN(0))
   2627 			return (EINVAL);
   2628 
   2629 		cm = mtod(control, struct cmsghdr *);
   2630 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   2631 			return (EINVAL);
   2632 		if (cm->cmsg_level != IPPROTO_IPV6)
   2633 			continue;
   2634 
   2635 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
   2636 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
   2637 		if (error)
   2638 			return (error);
   2639 	}
   2640 
   2641 	return (0);
   2642 }
   2643 
   2644 /*
   2645  * Set a particular packet option, as a sticky option or an ancillary data
   2646  * item.  "len" can be 0 only when it's a sticky option.
   2647  * We have 4 cases of combination of "sticky" and "cmsg":
   2648  * "sticky=0, cmsg=0": impossible
   2649  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
   2650  * "sticky=1, cmsg=0": RFC3542 socket option
   2651  * "sticky=1, cmsg=1": RFC2292 socket option
   2652  */
   2653 static int
   2654 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
   2655     kauth_cred_t cred, int sticky, int cmsg, int uproto)
   2656 {
   2657 	int minmtupolicy;
   2658 	int error;
   2659 
   2660 	if (!sticky && !cmsg) {
   2661 #ifdef DIAGNOSTIC
   2662 		printf("ip6_setpktopt: impossible case\n");
   2663 #endif
   2664 		return (EINVAL);
   2665 	}
   2666 
   2667 	/*
   2668 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
   2669 	 * not be specified in the context of RFC3542.  Conversely,
   2670 	 * RFC3542 types should not be specified in the context of RFC2292.
   2671 	 */
   2672 	if (!cmsg) {
   2673 		switch (optname) {
   2674 		case IPV6_2292PKTINFO:
   2675 		case IPV6_2292HOPLIMIT:
   2676 		case IPV6_2292NEXTHOP:
   2677 		case IPV6_2292HOPOPTS:
   2678 		case IPV6_2292DSTOPTS:
   2679 		case IPV6_2292RTHDR:
   2680 		case IPV6_2292PKTOPTIONS:
   2681 			return (ENOPROTOOPT);
   2682 		}
   2683 	}
   2684 	if (sticky && cmsg) {
   2685 		switch (optname) {
   2686 		case IPV6_PKTINFO:
   2687 		case IPV6_HOPLIMIT:
   2688 		case IPV6_NEXTHOP:
   2689 		case IPV6_HOPOPTS:
   2690 		case IPV6_DSTOPTS:
   2691 		case IPV6_RTHDRDSTOPTS:
   2692 		case IPV6_RTHDR:
   2693 		case IPV6_USE_MIN_MTU:
   2694 		case IPV6_DONTFRAG:
   2695 		case IPV6_OTCLASS:
   2696 		case IPV6_TCLASS:
   2697 			return (ENOPROTOOPT);
   2698 		}
   2699 	}
   2700 
   2701 	switch (optname) {
   2702 #ifdef RFC2292
   2703 	case IPV6_2292PKTINFO:
   2704 #endif
   2705 	case IPV6_PKTINFO:
   2706 	{
   2707 		struct ifnet *ifp = NULL;
   2708 		struct in6_pktinfo *pktinfo;
   2709 
   2710 		if (len != sizeof(struct in6_pktinfo))
   2711 			return (EINVAL);
   2712 
   2713 		pktinfo = (struct in6_pktinfo *)buf;
   2714 
   2715 		/*
   2716 		 * An application can clear any sticky IPV6_PKTINFO option by
   2717 		 * doing a "regular" setsockopt with ipi6_addr being
   2718 		 * in6addr_any and ipi6_ifindex being zero.
   2719 		 * [RFC 3542, Section 6]
   2720 		 */
   2721 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
   2722 		    pktinfo->ipi6_ifindex == 0 &&
   2723 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2724 			ip6_clearpktopts(opt, optname);
   2725 			break;
   2726 		}
   2727 
   2728 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
   2729 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2730 			return (EINVAL);
   2731 		}
   2732 
   2733 		/* validate the interface index if specified. */
   2734 		if (pktinfo->ipi6_ifindex >= if_indexlim) {
   2735 			 return (ENXIO);
   2736 		}
   2737 		if (pktinfo->ipi6_ifindex) {
   2738 			ifp = ifindex2ifnet[pktinfo->ipi6_ifindex];
   2739 			if (ifp == NULL)
   2740 				return (ENXIO);
   2741 		}
   2742 
   2743 		/*
   2744 		 * We store the address anyway, and let in6_selectsrc()
   2745 		 * validate the specified address.  This is because ipi6_addr
   2746 		 * may not have enough information about its scope zone, and
   2747 		 * we may need additional information (such as outgoing
   2748 		 * interface or the scope zone of a destination address) to
   2749 		 * disambiguate the scope.
   2750 		 * XXX: the delay of the validation may confuse the
   2751 		 * application when it is used as a sticky option.
   2752 		 */
   2753 		if (opt->ip6po_pktinfo == NULL) {
   2754 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
   2755 			    M_IP6OPT, M_NOWAIT);
   2756 			if (opt->ip6po_pktinfo == NULL)
   2757 				return (ENOBUFS);
   2758 		}
   2759 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
   2760 		break;
   2761 	}
   2762 
   2763 #ifdef RFC2292
   2764 	case IPV6_2292HOPLIMIT:
   2765 #endif
   2766 	case IPV6_HOPLIMIT:
   2767 	{
   2768 		int *hlimp;
   2769 
   2770 		/*
   2771 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
   2772 		 * to simplify the ordering among hoplimit options.
   2773 		 */
   2774 		if (optname == IPV6_HOPLIMIT && sticky)
   2775 			return (ENOPROTOOPT);
   2776 
   2777 		if (len != sizeof(int))
   2778 			return (EINVAL);
   2779 		hlimp = (int *)buf;
   2780 		if (*hlimp < -1 || *hlimp > 255)
   2781 			return (EINVAL);
   2782 
   2783 		opt->ip6po_hlim = *hlimp;
   2784 		break;
   2785 	}
   2786 
   2787 	case IPV6_OTCLASS:
   2788 		if (len != sizeof(u_int8_t))
   2789 			return (EINVAL);
   2790 
   2791 		opt->ip6po_tclass = *(u_int8_t *)buf;
   2792 		break;
   2793 
   2794 	case IPV6_TCLASS:
   2795 	{
   2796 		int tclass;
   2797 
   2798 		if (len != sizeof(int))
   2799 			return (EINVAL);
   2800 		tclass = *(int *)buf;
   2801 		if (tclass < -1 || tclass > 255)
   2802 			return (EINVAL);
   2803 
   2804 		opt->ip6po_tclass = tclass;
   2805 		break;
   2806 	}
   2807 
   2808 #ifdef RFC2292
   2809 	case IPV6_2292NEXTHOP:
   2810 #endif
   2811 	case IPV6_NEXTHOP:
   2812 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   2813 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2814 		if (error)
   2815 			return (error);
   2816 
   2817 		if (len == 0) {	/* just remove the option */
   2818 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
   2819 			break;
   2820 		}
   2821 
   2822 		/* check if cmsg_len is large enough for sa_len */
   2823 		if (len < sizeof(struct sockaddr) || len < *buf)
   2824 			return (EINVAL);
   2825 
   2826 		switch (((struct sockaddr *)buf)->sa_family) {
   2827 		case AF_INET6:
   2828 		{
   2829 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
   2830 
   2831 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
   2832 				return (EINVAL);
   2833 
   2834 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
   2835 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
   2836 				return (EINVAL);
   2837 			}
   2838 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
   2839 			    != 0) {
   2840 				return (error);
   2841 			}
   2842 			break;
   2843 		}
   2844 		case AF_LINK:	/* eventually be supported? */
   2845 		default:
   2846 			return (EAFNOSUPPORT);
   2847 		}
   2848 
   2849 		/* turn off the previous option, then set the new option. */
   2850 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
   2851 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
   2852 		if (opt->ip6po_nexthop == NULL)
   2853 			return (ENOBUFS);
   2854 		memcpy(opt->ip6po_nexthop, buf, *buf);
   2855 		break;
   2856 
   2857 #ifdef RFC2292
   2858 	case IPV6_2292HOPOPTS:
   2859 #endif
   2860 	case IPV6_HOPOPTS:
   2861 	{
   2862 		struct ip6_hbh *hbh;
   2863 		int hbhlen;
   2864 
   2865 		/*
   2866 		 * XXX: We don't allow a non-privileged user to set ANY HbH
   2867 		 * options, since per-option restriction has too much
   2868 		 * overhead.
   2869 		 */
   2870 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   2871 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2872 		if (error)
   2873 			return (error);
   2874 
   2875 		if (len == 0) {
   2876 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
   2877 			break;	/* just remove the option */
   2878 		}
   2879 
   2880 		/* message length validation */
   2881 		if (len < sizeof(struct ip6_hbh))
   2882 			return (EINVAL);
   2883 		hbh = (struct ip6_hbh *)buf;
   2884 		hbhlen = (hbh->ip6h_len + 1) << 3;
   2885 		if (len != hbhlen)
   2886 			return (EINVAL);
   2887 
   2888 		/* turn off the previous option, then set the new option. */
   2889 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
   2890 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
   2891 		if (opt->ip6po_hbh == NULL)
   2892 			return (ENOBUFS);
   2893 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
   2894 
   2895 		break;
   2896 	}
   2897 
   2898 #ifdef RFC2292
   2899 	case IPV6_2292DSTOPTS:
   2900 #endif
   2901 	case IPV6_DSTOPTS:
   2902 	case IPV6_RTHDRDSTOPTS:
   2903 	{
   2904 		struct ip6_dest *dest, **newdest = NULL;
   2905 		int destlen;
   2906 
   2907 		/* XXX: see the comment for IPV6_HOPOPTS */
   2908 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   2909 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2910 		if (error)
   2911 			return (error);
   2912 
   2913 		if (len == 0) {
   2914 			ip6_clearpktopts(opt, optname);
   2915 			break;	/* just remove the option */
   2916 		}
   2917 
   2918 		/* message length validation */
   2919 		if (len < sizeof(struct ip6_dest))
   2920 			return (EINVAL);
   2921 		dest = (struct ip6_dest *)buf;
   2922 		destlen = (dest->ip6d_len + 1) << 3;
   2923 		if (len != destlen)
   2924 			return (EINVAL);
   2925 		/*
   2926 		 * Determine the position that the destination options header
   2927 		 * should be inserted; before or after the routing header.
   2928 		 */
   2929 		switch (optname) {
   2930 		case IPV6_2292DSTOPTS:
   2931 			/*
   2932 			 * The old advanced API is ambiguous on this point.
   2933 			 * Our approach is to determine the position based
   2934 			 * according to the existence of a routing header.
   2935 			 * Note, however, that this depends on the order of the
   2936 			 * extension headers in the ancillary data; the 1st
   2937 			 * part of the destination options header must appear
   2938 			 * before the routing header in the ancillary data,
   2939 			 * too.
   2940 			 * RFC3542 solved the ambiguity by introducing
   2941 			 * separate ancillary data or option types.
   2942 			 */
   2943 			if (opt->ip6po_rthdr == NULL)
   2944 				newdest = &opt->ip6po_dest1;
   2945 			else
   2946 				newdest = &opt->ip6po_dest2;
   2947 			break;
   2948 		case IPV6_RTHDRDSTOPTS:
   2949 			newdest = &opt->ip6po_dest1;
   2950 			break;
   2951 		case IPV6_DSTOPTS:
   2952 			newdest = &opt->ip6po_dest2;
   2953 			break;
   2954 		}
   2955 
   2956 		/* turn off the previous option, then set the new option. */
   2957 		ip6_clearpktopts(opt, optname);
   2958 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
   2959 		if (*newdest == NULL)
   2960 			return (ENOBUFS);
   2961 		memcpy(*newdest, dest, destlen);
   2962 
   2963 		break;
   2964 	}
   2965 
   2966 #ifdef RFC2292
   2967 	case IPV6_2292RTHDR:
   2968 #endif
   2969 	case IPV6_RTHDR:
   2970 	{
   2971 		struct ip6_rthdr *rth;
   2972 		int rthlen;
   2973 
   2974 		if (len == 0) {
   2975 			ip6_clearpktopts(opt, IPV6_RTHDR);
   2976 			break;	/* just remove the option */
   2977 		}
   2978 
   2979 		/* message length validation */
   2980 		if (len < sizeof(struct ip6_rthdr))
   2981 			return (EINVAL);
   2982 		rth = (struct ip6_rthdr *)buf;
   2983 		rthlen = (rth->ip6r_len + 1) << 3;
   2984 		if (len != rthlen)
   2985 			return (EINVAL);
   2986 		switch (rth->ip6r_type) {
   2987 		case IPV6_RTHDR_TYPE_0:
   2988 			if (rth->ip6r_len == 0)	/* must contain one addr */
   2989 				return (EINVAL);
   2990 			if (rth->ip6r_len % 2) /* length must be even */
   2991 				return (EINVAL);
   2992 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
   2993 				return (EINVAL);
   2994 			break;
   2995 		default:
   2996 			return (EINVAL);	/* not supported */
   2997 		}
   2998 		/* turn off the previous option */
   2999 		ip6_clearpktopts(opt, IPV6_RTHDR);
   3000 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
   3001 		if (opt->ip6po_rthdr == NULL)
   3002 			return (ENOBUFS);
   3003 		memcpy(opt->ip6po_rthdr, rth, rthlen);
   3004 		break;
   3005 	}
   3006 
   3007 	case IPV6_USE_MIN_MTU:
   3008 		if (len != sizeof(int))
   3009 			return (EINVAL);
   3010 		minmtupolicy = *(int *)buf;
   3011 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
   3012 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
   3013 		    minmtupolicy != IP6PO_MINMTU_ALL) {
   3014 			return (EINVAL);
   3015 		}
   3016 		opt->ip6po_minmtu = minmtupolicy;
   3017 		break;
   3018 
   3019 	case IPV6_DONTFRAG:
   3020 		if (len != sizeof(int))
   3021 			return (EINVAL);
   3022 
   3023 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
   3024 			/*
   3025 			 * we ignore this option for TCP sockets.
   3026 			 * (RFC3542 leaves this case unspecified.)
   3027 			 */
   3028 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
   3029 		} else
   3030 			opt->ip6po_flags |= IP6PO_DONTFRAG;
   3031 		break;
   3032 
   3033 	default:
   3034 		return (ENOPROTOOPT);
   3035 	} /* end of switch */
   3036 
   3037 	return (0);
   3038 }
   3039 
   3040 /*
   3041  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   3042  * packet to the input queue of a specified interface.  Note that this
   3043  * calls the output routine of the loopback "driver", but with an interface
   3044  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   3045  */
   3046 void
   3047 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
   3048 	const struct sockaddr_in6 *dst)
   3049 {
   3050 	struct mbuf *copym;
   3051 	struct ip6_hdr *ip6;
   3052 
   3053 	copym = m_copy(m, 0, M_COPYALL);
   3054 	if (copym == NULL)
   3055 		return;
   3056 
   3057 	/*
   3058 	 * Make sure to deep-copy IPv6 header portion in case the data
   3059 	 * is in an mbuf cluster, so that we can safely override the IPv6
   3060 	 * header portion later.
   3061 	 */
   3062 	if ((copym->m_flags & M_EXT) != 0 ||
   3063 	    copym->m_len < sizeof(struct ip6_hdr)) {
   3064 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   3065 		if (copym == NULL)
   3066 			return;
   3067 	}
   3068 
   3069 #ifdef DIAGNOSTIC
   3070 	if (copym->m_len < sizeof(*ip6)) {
   3071 		m_freem(copym);
   3072 		return;
   3073 	}
   3074 #endif
   3075 
   3076 	ip6 = mtod(copym, struct ip6_hdr *);
   3077 	/*
   3078 	 * clear embedded scope identifiers if necessary.
   3079 	 * in6_clearscope will touch the addresses only when necessary.
   3080 	 */
   3081 	in6_clearscope(&ip6->ip6_src);
   3082 	in6_clearscope(&ip6->ip6_dst);
   3083 
   3084 	(void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
   3085 }
   3086 
   3087 /*
   3088  * Chop IPv6 header off from the payload.
   3089  */
   3090 static int
   3091 ip6_splithdr(struct mbuf *m,  struct ip6_exthdrs *exthdrs)
   3092 {
   3093 	struct mbuf *mh;
   3094 	struct ip6_hdr *ip6;
   3095 
   3096 	ip6 = mtod(m, struct ip6_hdr *);
   3097 	if (m->m_len > sizeof(*ip6)) {
   3098 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   3099 		if (mh == 0) {
   3100 			m_freem(m);
   3101 			return ENOBUFS;
   3102 		}
   3103 		M_MOVE_PKTHDR(mh, m);
   3104 		MH_ALIGN(mh, sizeof(*ip6));
   3105 		m->m_len -= sizeof(*ip6);
   3106 		m->m_data += sizeof(*ip6);
   3107 		mh->m_next = m;
   3108 		m = mh;
   3109 		m->m_len = sizeof(*ip6);
   3110 		bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
   3111 	}
   3112 	exthdrs->ip6e_ip6 = m;
   3113 	return 0;
   3114 }
   3115 
   3116 /*
   3117  * Compute IPv6 extension header length.
   3118  */
   3119 int
   3120 ip6_optlen(struct in6pcb *in6p)
   3121 {
   3122 	int len;
   3123 
   3124 	if (!in6p->in6p_outputopts)
   3125 		return 0;
   3126 
   3127 	len = 0;
   3128 #define elen(x) \
   3129     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   3130 
   3131 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   3132 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   3133 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   3134 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   3135 	return len;
   3136 #undef elen
   3137 }
   3138