Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.150.2.3
      1 /*	$NetBSD: ip6_output.c,v 1.150.2.3 2014/08/20 00:04:36 tls Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.150.2.3 2014/08/20 00:04:36 tls Exp $");
     66 
     67 #include "opt_inet.h"
     68 #include "opt_inet6.h"
     69 #include "opt_ipsec.h"
     70 
     71 #include <sys/param.h>
     72 #include <sys/malloc.h>
     73 #include <sys/mbuf.h>
     74 #include <sys/errno.h>
     75 #include <sys/protosw.h>
     76 #include <sys/socket.h>
     77 #include <sys/socketvar.h>
     78 #include <sys/systm.h>
     79 #include <sys/proc.h>
     80 #include <sys/kauth.h>
     81 
     82 #include <net/if.h>
     83 #include <net/route.h>
     84 #include <net/pfil.h>
     85 
     86 #include <netinet/in.h>
     87 #include <netinet/in_var.h>
     88 #include <netinet/ip6.h>
     89 #include <netinet/icmp6.h>
     90 #include <netinet/in_offload.h>
     91 #include <netinet/portalgo.h>
     92 #include <netinet6/in6_offload.h>
     93 #include <netinet6/ip6_var.h>
     94 #include <netinet6/ip6_private.h>
     95 #include <netinet6/in6_pcb.h>
     96 #include <netinet6/nd6.h>
     97 #include <netinet6/ip6protosw.h>
     98 #include <netinet6/scope6_var.h>
     99 
    100 #ifdef IPSEC
    101 #include <netipsec/ipsec.h>
    102 #include <netipsec/ipsec6.h>
    103 #include <netipsec/key.h>
    104 #include <netipsec/xform.h>
    105 #endif
    106 
    107 
    108 #include <net/net_osdep.h>
    109 
    110 extern pfil_head_t *inet6_pfil_hook;	/* XXX */
    111 
    112 struct ip6_exthdrs {
    113 	struct mbuf *ip6e_ip6;
    114 	struct mbuf *ip6e_hbh;
    115 	struct mbuf *ip6e_dest1;
    116 	struct mbuf *ip6e_rthdr;
    117 	struct mbuf *ip6e_dest2;
    118 };
    119 
    120 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
    121 	kauth_cred_t, int);
    122 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
    123 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
    124 	int, int, int);
    125 static int ip6_setmoptions(const struct sockopt *, struct ip6_moptions **);
    126 static int ip6_getmoptions(struct sockopt *, struct ip6_moptions *);
    127 static int ip6_copyexthdr(struct mbuf **, void *, int);
    128 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
    129 	struct ip6_frag **);
    130 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
    131 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
    132 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *,
    133     const struct in6_addr *, u_long *, int *);
    134 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
    135 
    136 #ifdef RFC2292
    137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
    138 #endif
    139 
    140 /*
    141  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    142  * header (with pri, len, nxt, hlim, src, dst).
    143  * This function may modify ver and hlim only.
    144  * The mbuf chain containing the packet will be freed.
    145  * The mbuf opt, if present, will not be freed.
    146  *
    147  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    148  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
    149  * which is rt_rmx.rmx_mtu.
    150  */
    151 int
    152 ip6_output(
    153     struct mbuf *m0,
    154     struct ip6_pktopts *opt,
    155     struct route *ro,
    156     int flags,
    157     struct ip6_moptions *im6o,
    158     struct socket *so,
    159     struct ifnet **ifpp		/* XXX: just for statistics */
    160 )
    161 {
    162 	struct ip6_hdr *ip6, *mhip6;
    163 	struct ifnet *ifp, *origifp;
    164 	struct mbuf *m = m0;
    165 	int hlen, tlen, len, off;
    166 	bool tso;
    167 	struct route ip6route;
    168 	struct rtentry *rt = NULL;
    169 	const struct sockaddr_in6 *dst = NULL;
    170 	struct sockaddr_in6 src_sa, dst_sa;
    171 	int error = 0;
    172 	struct in6_ifaddr *ia = NULL;
    173 	u_long mtu;
    174 	int alwaysfrag, dontfrag;
    175 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    176 	struct ip6_exthdrs exthdrs;
    177 	struct in6_addr finaldst, src0, dst0;
    178 	u_int32_t zone;
    179 	struct route *ro_pmtu = NULL;
    180 	int hdrsplit = 0;
    181 	int needipsec = 0;
    182 #ifdef IPSEC
    183 	struct secpolicy *sp = NULL;
    184 #endif
    185 
    186 	memset(&ip6route, 0, sizeof(ip6route));
    187 
    188 #ifdef  DIAGNOSTIC
    189 	if ((m->m_flags & M_PKTHDR) == 0)
    190 		panic("ip6_output: no HDR");
    191 
    192 	if ((m->m_pkthdr.csum_flags &
    193 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
    194 		panic("ip6_output: IPv4 checksum offload flags: %d",
    195 		    m->m_pkthdr.csum_flags);
    196 	}
    197 
    198 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
    199 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
    200 		panic("ip6_output: conflicting checksum offload flags: %d",
    201 		    m->m_pkthdr.csum_flags);
    202 	}
    203 #endif
    204 
    205 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    206 
    207 #define MAKE_EXTHDR(hp, mp)						\
    208     do {								\
    209 	if (hp) {							\
    210 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    211 		error = ip6_copyexthdr((mp), (void *)(hp), 		\
    212 		    ((eh)->ip6e_len + 1) << 3);				\
    213 		if (error)						\
    214 			goto freehdrs;					\
    215 	}								\
    216     } while (/*CONSTCOND*/ 0)
    217 
    218 	memset(&exthdrs, 0, sizeof(exthdrs));
    219 	if (opt) {
    220 		/* Hop-by-Hop options header */
    221 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    222 		/* Destination options header(1st part) */
    223 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    224 		/* Routing header */
    225 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    226 		/* Destination options header(2nd part) */
    227 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    228 	}
    229 
    230 	/*
    231 	 * Calculate the total length of the extension header chain.
    232 	 * Keep the length of the unfragmentable part for fragmentation.
    233 	 */
    234 	optlen = 0;
    235 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    236 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    237 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    238 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    239 	/* NOTE: we don't add AH/ESP length here. do that later. */
    240 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    241 
    242 #ifdef IPSEC
    243 	if (ipsec_used) {
    244 		/* Check the security policy (SP) for the packet */
    245 
    246 		sp = ipsec6_check_policy(m, so, flags, &needipsec, &error);
    247 		if (error != 0) {
    248 			/*
    249 			 * Hack: -EINVAL is used to signal that a packet
    250 			 * should be silently discarded.  This is typically
    251 			 * because we asked key management for an SA and
    252 			 * it was delayed (e.g. kicked up to IKE).
    253 			 */
    254 			if (error == -EINVAL)
    255 				error = 0;
    256 			goto freehdrs;
    257 		}
    258 	}
    259 #endif /* IPSEC */
    260 
    261 
    262 	if (needipsec &&
    263 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    264 		in6_delayed_cksum(m);
    265 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    266 	}
    267 
    268 
    269 	/*
    270 	 * If we need IPsec, or there is at least one extension header,
    271 	 * separate IP6 header from the payload.
    272 	 */
    273 	if ((needipsec || optlen) && !hdrsplit) {
    274 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    275 			m = NULL;
    276 			goto freehdrs;
    277 		}
    278 		m = exthdrs.ip6e_ip6;
    279 		hdrsplit++;
    280 	}
    281 
    282 	/* adjust pointer */
    283 	ip6 = mtod(m, struct ip6_hdr *);
    284 
    285 	/* adjust mbuf packet header length */
    286 	m->m_pkthdr.len += optlen;
    287 	plen = m->m_pkthdr.len - sizeof(*ip6);
    288 
    289 	/* If this is a jumbo payload, insert a jumbo payload option. */
    290 	if (plen > IPV6_MAXPACKET) {
    291 		if (!hdrsplit) {
    292 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    293 				m = NULL;
    294 				goto freehdrs;
    295 			}
    296 			m = exthdrs.ip6e_ip6;
    297 			hdrsplit++;
    298 		}
    299 		/* adjust pointer */
    300 		ip6 = mtod(m, struct ip6_hdr *);
    301 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    302 			goto freehdrs;
    303 		optlen += 8; /* XXX JUMBOOPTLEN */
    304 		ip6->ip6_plen = 0;
    305 	} else
    306 		ip6->ip6_plen = htons(plen);
    307 
    308 	/*
    309 	 * Concatenate headers and fill in next header fields.
    310 	 * Here we have, on "m"
    311 	 *	IPv6 payload
    312 	 * and we insert headers accordingly.  Finally, we should be getting:
    313 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    314 	 *
    315 	 * during the header composing process, "m" points to IPv6 header.
    316 	 * "mprev" points to an extension header prior to esp.
    317 	 */
    318 	{
    319 		u_char *nexthdrp = &ip6->ip6_nxt;
    320 		struct mbuf *mprev = m;
    321 
    322 		/*
    323 		 * we treat dest2 specially.  this makes IPsec processing
    324 		 * much easier.  the goal here is to make mprev point the
    325 		 * mbuf prior to dest2.
    326 		 *
    327 		 * result: IPv6 dest2 payload
    328 		 * m and mprev will point to IPv6 header.
    329 		 */
    330 		if (exthdrs.ip6e_dest2) {
    331 			if (!hdrsplit)
    332 				panic("assumption failed: hdr not split");
    333 			exthdrs.ip6e_dest2->m_next = m->m_next;
    334 			m->m_next = exthdrs.ip6e_dest2;
    335 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    336 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    337 		}
    338 
    339 #define MAKE_CHAIN(m, mp, p, i)\
    340     do {\
    341 	if (m) {\
    342 		if (!hdrsplit) \
    343 			panic("assumption failed: hdr not split"); \
    344 		*mtod((m), u_char *) = *(p);\
    345 		*(p) = (i);\
    346 		p = mtod((m), u_char *);\
    347 		(m)->m_next = (mp)->m_next;\
    348 		(mp)->m_next = (m);\
    349 		(mp) = (m);\
    350 	}\
    351     } while (/*CONSTCOND*/ 0)
    352 		/*
    353 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    354 		 * m will point to IPv6 header.  mprev will point to the
    355 		 * extension header prior to dest2 (rthdr in the above case).
    356 		 */
    357 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    358 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    359 		    IPPROTO_DSTOPTS);
    360 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    361 		    IPPROTO_ROUTING);
    362 
    363 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
    364 		    sizeof(struct ip6_hdr) + optlen);
    365 	}
    366 
    367 	/*
    368 	 * If there is a routing header, replace destination address field
    369 	 * with the first hop of the routing header.
    370 	 */
    371 	if (exthdrs.ip6e_rthdr) {
    372 		struct ip6_rthdr *rh;
    373 		struct ip6_rthdr0 *rh0;
    374 		struct in6_addr *addr;
    375 		struct sockaddr_in6 sa;
    376 
    377 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    378 		    struct ip6_rthdr *));
    379 		finaldst = ip6->ip6_dst;
    380 		switch (rh->ip6r_type) {
    381 		case IPV6_RTHDR_TYPE_0:
    382 			 rh0 = (struct ip6_rthdr0 *)rh;
    383 			 addr = (struct in6_addr *)(rh0 + 1);
    384 
    385 			 /*
    386 			  * construct a sockaddr_in6 form of
    387 			  * the first hop.
    388 			  *
    389 			  * XXX: we may not have enough
    390 			  * information about its scope zone;
    391 			  * there is no standard API to pass
    392 			  * the information from the
    393 			  * application.
    394 			  */
    395 			 sockaddr_in6_init(&sa, addr, 0, 0, 0);
    396 			 if ((error = sa6_embedscope(&sa,
    397 			     ip6_use_defzone)) != 0) {
    398 				 goto bad;
    399 			 }
    400 			 ip6->ip6_dst = sa.sin6_addr;
    401 			 (void)memmove(&addr[0], &addr[1],
    402 			     sizeof(struct in6_addr) *
    403 			     (rh0->ip6r0_segleft - 1));
    404 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
    405 			 /* XXX */
    406 			 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
    407 			 break;
    408 		default:	/* is it possible? */
    409 			 error = EINVAL;
    410 			 goto bad;
    411 		}
    412 	}
    413 
    414 	/* Source address validation */
    415 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    416 	    (flags & IPV6_UNSPECSRC) == 0) {
    417 		error = EOPNOTSUPP;
    418 		IP6_STATINC(IP6_STAT_BADSCOPE);
    419 		goto bad;
    420 	}
    421 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    422 		error = EOPNOTSUPP;
    423 		IP6_STATINC(IP6_STAT_BADSCOPE);
    424 		goto bad;
    425 	}
    426 
    427 	IP6_STATINC(IP6_STAT_LOCALOUT);
    428 
    429 	/*
    430 	 * Route packet.
    431 	 */
    432 	/* initialize cached route */
    433 	if (ro == NULL) {
    434 		ro = &ip6route;
    435 	}
    436 	ro_pmtu = ro;
    437 	if (opt && opt->ip6po_rthdr)
    438 		ro = &opt->ip6po_route;
    439 
    440  	/*
    441 	 * if specified, try to fill in the traffic class field.
    442 	 * do not override if a non-zero value is already set.
    443 	 * we check the diffserv field and the ecn field separately.
    444 	 */
    445 	if (opt && opt->ip6po_tclass >= 0) {
    446 		int mask = 0;
    447 
    448 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    449 			mask |= 0xfc;
    450 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    451 			mask |= 0x03;
    452 		if (mask != 0)
    453 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    454 	}
    455 
    456 	/* fill in or override the hop limit field, if necessary. */
    457 	if (opt && opt->ip6po_hlim != -1)
    458 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    459 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    460 		if (im6o != NULL)
    461 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    462 		else
    463 			ip6->ip6_hlim = ip6_defmcasthlim;
    464 	}
    465 
    466 #ifdef IPSEC
    467 	if (needipsec) {
    468 		int s = splsoftnet();
    469 		error = ipsec6_process_packet(m, sp->req);
    470 
    471 		/*
    472 		 * Preserve KAME behaviour: ENOENT can be returned
    473 		 * when an SA acquire is in progress.  Don't propagate
    474 		 * this to user-level; it confuses applications.
    475 		 * XXX this will go away when the SADB is redone.
    476 		 */
    477 		if (error == ENOENT)
    478 			error = 0;
    479 		splx(s);
    480 		goto done;
    481 	}
    482 #endif /* IPSEC */
    483 
    484 	/* adjust pointer */
    485 	ip6 = mtod(m, struct ip6_hdr *);
    486 
    487 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    488 	if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
    489 	    &ifp, &rt, 0)) != 0) {
    490 		if (ifp != NULL)
    491 			in6_ifstat_inc(ifp, ifs6_out_discard);
    492 		goto bad;
    493 	}
    494 	if (rt == NULL) {
    495 		/*
    496 		 * If in6_selectroute() does not return a route entry,
    497 		 * dst may not have been updated.
    498 		 */
    499 		error = rtcache_setdst(ro, sin6tosa(&dst_sa));
    500 		if (error) {
    501 			goto bad;
    502 		}
    503 	}
    504 
    505 	/*
    506 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    507 	 */
    508 	if ((flags & IPV6_FORWARDING) == 0) {
    509 		/* XXX: the FORWARDING flag can be set for mrouting. */
    510 		in6_ifstat_inc(ifp, ifs6_out_request);
    511 	}
    512 	if (rt != NULL) {
    513 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    514 		rt->rt_use++;
    515 	}
    516 
    517 	/*
    518 	 * The outgoing interface must be in the zone of source and
    519 	 * destination addresses.  We should use ia_ifp to support the
    520 	 * case of sending packets to an address of our own.
    521 	 */
    522 	if (ia != NULL && ia->ia_ifp)
    523 		origifp = ia->ia_ifp;
    524 	else
    525 		origifp = ifp;
    526 
    527 	src0 = ip6->ip6_src;
    528 	if (in6_setscope(&src0, origifp, &zone))
    529 		goto badscope;
    530 	sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
    531 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    532 		goto badscope;
    533 
    534 	dst0 = ip6->ip6_dst;
    535 	if (in6_setscope(&dst0, origifp, &zone))
    536 		goto badscope;
    537 	/* re-initialize to be sure */
    538 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    539 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    540 		goto badscope;
    541 
    542 	/* scope check is done. */
    543 
    544 	if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    545 		if (dst == NULL)
    546 			dst = satocsin6(rtcache_getdst(ro));
    547 		KASSERT(dst != NULL);
    548 	} else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) {
    549 		/*
    550 		 * The nexthop is explicitly specified by the
    551 		 * application.  We assume the next hop is an IPv6
    552 		 * address.
    553 		 */
    554 		dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
    555 	} else if ((rt->rt_flags & RTF_GATEWAY))
    556 		dst = (struct sockaddr_in6 *)rt->rt_gateway;
    557 	else if (dst == NULL)
    558 		dst = satocsin6(rtcache_getdst(ro));
    559 
    560 	/*
    561 	 * XXXXXX: original code follows:
    562 	 */
    563 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    564 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    565 	else {
    566 		struct	in6_multi *in6m;
    567 
    568 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    569 
    570 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    571 
    572 		/*
    573 		 * Confirm that the outgoing interface supports multicast.
    574 		 */
    575 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    576 			IP6_STATINC(IP6_STAT_NOROUTE);
    577 			in6_ifstat_inc(ifp, ifs6_out_discard);
    578 			error = ENETUNREACH;
    579 			goto bad;
    580 		}
    581 
    582 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
    583 		if (in6m != NULL &&
    584 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    585 			/*
    586 			 * If we belong to the destination multicast group
    587 			 * on the outgoing interface, and the caller did not
    588 			 * forbid loopback, loop back a copy.
    589 			 */
    590 			KASSERT(dst != NULL);
    591 			ip6_mloopback(ifp, m, dst);
    592 		} else {
    593 			/*
    594 			 * If we are acting as a multicast router, perform
    595 			 * multicast forwarding as if the packet had just
    596 			 * arrived on the interface to which we are about
    597 			 * to send.  The multicast forwarding function
    598 			 * recursively calls this function, using the
    599 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    600 			 *
    601 			 * Multicasts that are looped back by ip6_mloopback(),
    602 			 * above, will be forwarded by the ip6_input() routine,
    603 			 * if necessary.
    604 			 */
    605 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    606 				if (ip6_mforward(ip6, ifp, m) != 0) {
    607 					m_freem(m);
    608 					goto done;
    609 				}
    610 			}
    611 		}
    612 		/*
    613 		 * Multicasts with a hoplimit of zero may be looped back,
    614 		 * above, but must not be transmitted on a network.
    615 		 * Also, multicasts addressed to the loopback interface
    616 		 * are not sent -- the above call to ip6_mloopback() will
    617 		 * loop back a copy if this host actually belongs to the
    618 		 * destination group on the loopback interface.
    619 		 */
    620 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    621 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    622 			m_freem(m);
    623 			goto done;
    624 		}
    625 	}
    626 
    627 	/*
    628 	 * Fill the outgoing inteface to tell the upper layer
    629 	 * to increment per-interface statistics.
    630 	 */
    631 	if (ifpp)
    632 		*ifpp = ifp;
    633 
    634 	/* Determine path MTU. */
    635 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
    636 	    &alwaysfrag)) != 0)
    637 		goto bad;
    638 
    639 	/*
    640 	 * The caller of this function may specify to use the minimum MTU
    641 	 * in some cases.
    642 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
    643 	 * setting.  The logic is a bit complicated; by default, unicast
    644 	 * packets will follow path MTU while multicast packets will be sent at
    645 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
    646 	 * including unicast ones will be sent at the minimum MTU.  Multicast
    647 	 * packets will always be sent at the minimum MTU unless
    648 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
    649 	 * See RFC 3542 for more details.
    650 	 */
    651 	if (mtu > IPV6_MMTU) {
    652 		if ((flags & IPV6_MINMTU))
    653 			mtu = IPV6_MMTU;
    654 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
    655 			mtu = IPV6_MMTU;
    656 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
    657 			 (opt == NULL ||
    658 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
    659 			mtu = IPV6_MMTU;
    660 		}
    661 	}
    662 
    663 	/*
    664 	 * clear embedded scope identifiers if necessary.
    665 	 * in6_clearscope will touch the addresses only when necessary.
    666 	 */
    667 	in6_clearscope(&ip6->ip6_src);
    668 	in6_clearscope(&ip6->ip6_dst);
    669 
    670 	/*
    671 	 * If the outgoing packet contains a hop-by-hop options header,
    672 	 * it must be examined and processed even by the source node.
    673 	 * (RFC 2460, section 4.)
    674 	 */
    675 	if (ip6->ip6_nxt == IPV6_HOPOPTS) {
    676 		u_int32_t dummy1; /* XXX unused */
    677 		u_int32_t dummy2; /* XXX unused */
    678 		int hoff = sizeof(struct ip6_hdr);
    679 
    680 		if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
    681 			/* m was already freed at this point */
    682 			error = EINVAL;/* better error? */
    683 			goto done;
    684 		}
    685 
    686 		ip6 = mtod(m, struct ip6_hdr *);
    687 	}
    688 
    689 	/*
    690 	 * Run through list of hooks for output packets.
    691 	 */
    692 	if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    693 		goto done;
    694 	if (m == NULL)
    695 		goto done;
    696 	ip6 = mtod(m, struct ip6_hdr *);
    697 
    698 	/*
    699 	 * Send the packet to the outgoing interface.
    700 	 * If necessary, do IPv6 fragmentation before sending.
    701 	 *
    702 	 * the logic here is rather complex:
    703 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    704 	 * 1-a:	send as is if tlen <= path mtu
    705 	 * 1-b:	fragment if tlen > path mtu
    706 	 *
    707 	 * 2: if user asks us not to fragment (dontfrag == 1)
    708 	 * 2-a:	send as is if tlen <= interface mtu
    709 	 * 2-b:	error if tlen > interface mtu
    710 	 *
    711 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    712 	 *	always fragment
    713 	 *
    714 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    715 	 *	error, as we cannot handle this conflicting request
    716 	 */
    717 	tlen = m->m_pkthdr.len;
    718 	tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
    719 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
    720 		dontfrag = 1;
    721 	else
    722 		dontfrag = 0;
    723 
    724 	if (dontfrag && alwaysfrag) {	/* case 4 */
    725 		/* conflicting request - can't transmit */
    726 		error = EMSGSIZE;
    727 		goto bad;
    728 	}
    729 	if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) {	/* case 2-b */
    730 		/*
    731 		 * Even if the DONTFRAG option is specified, we cannot send the
    732 		 * packet when the data length is larger than the MTU of the
    733 		 * outgoing interface.
    734 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    735 		 * well as returning an error code (the latter is not described
    736 		 * in the API spec.)
    737 		 */
    738 		u_int32_t mtu32;
    739 		struct ip6ctlparam ip6cp;
    740 
    741 		mtu32 = (u_int32_t)mtu;
    742 		memset(&ip6cp, 0, sizeof(ip6cp));
    743 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    744 		pfctlinput2(PRC_MSGSIZE,
    745 		    rtcache_getdst(ro_pmtu), &ip6cp);
    746 
    747 		error = EMSGSIZE;
    748 		goto bad;
    749 	}
    750 
    751 	/*
    752 	 * transmit packet without fragmentation
    753 	 */
    754 	if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
    755 		/* case 1-a and 2-a */
    756 		struct in6_ifaddr *ia6;
    757 		int sw_csum;
    758 
    759 		ip6 = mtod(m, struct ip6_hdr *);
    760 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    761 		if (ia6) {
    762 			/* Record statistics for this interface address. */
    763 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    764 		}
    765 
    766 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    767 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    768 			if (IN6_NEED_CHECKSUM(ifp,
    769 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    770 				in6_delayed_cksum(m);
    771 			}
    772 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    773 		}
    774 
    775 		KASSERT(dst != NULL);
    776 		if (__predict_true(!tso ||
    777 		    (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
    778 			error = nd6_output(ifp, origifp, m, dst, rt);
    779 		} else {
    780 			error = ip6_tso_output(ifp, origifp, m, dst, rt);
    781 		}
    782 		goto done;
    783 	}
    784 
    785 	if (tso) {
    786 		error = EINVAL; /* XXX */
    787 		goto bad;
    788 	}
    789 
    790 	/*
    791 	 * try to fragment the packet.  case 1-b and 3
    792 	 */
    793 	if (mtu < IPV6_MMTU) {
    794 		/* path MTU cannot be less than IPV6_MMTU */
    795 		error = EMSGSIZE;
    796 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    797 		goto bad;
    798 	} else if (ip6->ip6_plen == 0) {
    799 		/* jumbo payload cannot be fragmented */
    800 		error = EMSGSIZE;
    801 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    802 		goto bad;
    803 	} else {
    804 		struct mbuf **mnext, *m_frgpart;
    805 		struct ip6_frag *ip6f;
    806 		u_int32_t id = htonl(ip6_randomid());
    807 		u_char nextproto;
    808 #if 0				/* see below */
    809 		struct ip6ctlparam ip6cp;
    810 		u_int32_t mtu32;
    811 #endif
    812 
    813 		/*
    814 		 * Too large for the destination or interface;
    815 		 * fragment if possible.
    816 		 * Must be able to put at least 8 bytes per fragment.
    817 		 */
    818 		hlen = unfragpartlen;
    819 		if (mtu > IPV6_MAXPACKET)
    820 			mtu = IPV6_MAXPACKET;
    821 
    822 #if 0
    823 		/*
    824 		 * It is believed this code is a leftover from the
    825 		 * development of the IPV6_RECVPATHMTU sockopt and
    826 		 * associated work to implement RFC3542.
    827 		 * It's not entirely clear what the intent of the API
    828 		 * is at this point, so disable this code for now.
    829 		 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
    830 		 * will send notifications if the application requests.
    831 		 */
    832 
    833 		/* Notify a proper path MTU to applications. */
    834 		mtu32 = (u_int32_t)mtu;
    835 		memset(&ip6cp, 0, sizeof(ip6cp));
    836 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    837 		pfctlinput2(PRC_MSGSIZE,
    838 		    rtcache_getdst(ro_pmtu), &ip6cp);
    839 #endif
    840 
    841 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    842 		if (len < 8) {
    843 			error = EMSGSIZE;
    844 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
    845 			goto bad;
    846 		}
    847 
    848 		mnext = &m->m_nextpkt;
    849 
    850 		/*
    851 		 * Change the next header field of the last header in the
    852 		 * unfragmentable part.
    853 		 */
    854 		if (exthdrs.ip6e_rthdr) {
    855 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    856 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    857 		} else if (exthdrs.ip6e_dest1) {
    858 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    859 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    860 		} else if (exthdrs.ip6e_hbh) {
    861 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    862 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    863 		} else {
    864 			nextproto = ip6->ip6_nxt;
    865 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    866 		}
    867 
    868 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
    869 		    != 0) {
    870 			if (IN6_NEED_CHECKSUM(ifp,
    871 			    m->m_pkthdr.csum_flags &
    872 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    873 				in6_delayed_cksum(m);
    874 			}
    875 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    876 		}
    877 
    878 		/*
    879 		 * Loop through length of segment after first fragment,
    880 		 * make new header and copy data of each part and link onto
    881 		 * chain.
    882 		 */
    883 		m0 = m;
    884 		for (off = hlen; off < tlen; off += len) {
    885 			struct mbuf *mlast;
    886 
    887 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
    888 			if (!m) {
    889 				error = ENOBUFS;
    890 				IP6_STATINC(IP6_STAT_ODROPPED);
    891 				goto sendorfree;
    892 			}
    893 			m->m_pkthdr.rcvif = NULL;
    894 			m->m_flags = m0->m_flags & M_COPYFLAGS;
    895 			*mnext = m;
    896 			mnext = &m->m_nextpkt;
    897 			m->m_data += max_linkhdr;
    898 			mhip6 = mtod(m, struct ip6_hdr *);
    899 			*mhip6 = *ip6;
    900 			m->m_len = sizeof(*mhip6);
    901 			/*
    902 			 * ip6f must be valid if error is 0.  But how
    903 			 * can a compiler be expected to infer this?
    904 			 */
    905 			ip6f = NULL;
    906 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
    907 			if (error) {
    908 				IP6_STATINC(IP6_STAT_ODROPPED);
    909 				goto sendorfree;
    910 			}
    911 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
    912 			if (off + len >= tlen)
    913 				len = tlen - off;
    914 			else
    915 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
    916 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
    917 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
    918 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
    919 				error = ENOBUFS;
    920 				IP6_STATINC(IP6_STAT_ODROPPED);
    921 				goto sendorfree;
    922 			}
    923 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
    924 				;
    925 			mlast->m_next = m_frgpart;
    926 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
    927 			m->m_pkthdr.rcvif = NULL;
    928 			ip6f->ip6f_reserved = 0;
    929 			ip6f->ip6f_ident = id;
    930 			ip6f->ip6f_nxt = nextproto;
    931 			IP6_STATINC(IP6_STAT_OFRAGMENTS);
    932 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
    933 		}
    934 
    935 		in6_ifstat_inc(ifp, ifs6_out_fragok);
    936 	}
    937 
    938 	/*
    939 	 * Remove leading garbages.
    940 	 */
    941 sendorfree:
    942 	m = m0->m_nextpkt;
    943 	m0->m_nextpkt = 0;
    944 	m_freem(m0);
    945 	for (m0 = m; m; m = m0) {
    946 		m0 = m->m_nextpkt;
    947 		m->m_nextpkt = 0;
    948 		if (error == 0) {
    949 			struct in6_ifaddr *ia6;
    950 			ip6 = mtod(m, struct ip6_hdr *);
    951 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    952 			if (ia6) {
    953 				/*
    954 				 * Record statistics for this interface
    955 				 * address.
    956 				 */
    957 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
    958 				    m->m_pkthdr.len;
    959 			}
    960 			KASSERT(dst != NULL);
    961 			error = nd6_output(ifp, origifp, m, dst, rt);
    962 		} else
    963 			m_freem(m);
    964 	}
    965 
    966 	if (error == 0)
    967 		IP6_STATINC(IP6_STAT_FRAGMENTED);
    968 
    969 done:
    970 	rtcache_free(&ip6route);
    971 
    972 #ifdef IPSEC
    973 	if (sp != NULL)
    974 		KEY_FREESP(&sp);
    975 #endif /* IPSEC */
    976 
    977 
    978 	return (error);
    979 
    980 freehdrs:
    981 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
    982 	m_freem(exthdrs.ip6e_dest1);
    983 	m_freem(exthdrs.ip6e_rthdr);
    984 	m_freem(exthdrs.ip6e_dest2);
    985 	/* FALLTHROUGH */
    986 bad:
    987 	m_freem(m);
    988 	goto done;
    989 badscope:
    990 	IP6_STATINC(IP6_STAT_BADSCOPE);
    991 	in6_ifstat_inc(origifp, ifs6_out_discard);
    992 	if (error == 0)
    993 		error = EHOSTUNREACH; /* XXX */
    994 	goto bad;
    995 }
    996 
    997 static int
    998 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
    999 {
   1000 	struct mbuf *m;
   1001 
   1002 	if (hlen > MCLBYTES)
   1003 		return (ENOBUFS); /* XXX */
   1004 
   1005 	MGET(m, M_DONTWAIT, MT_DATA);
   1006 	if (!m)
   1007 		return (ENOBUFS);
   1008 
   1009 	if (hlen > MLEN) {
   1010 		MCLGET(m, M_DONTWAIT);
   1011 		if ((m->m_flags & M_EXT) == 0) {
   1012 			m_free(m);
   1013 			return (ENOBUFS);
   1014 		}
   1015 	}
   1016 	m->m_len = hlen;
   1017 	if (hdr)
   1018 		bcopy(hdr, mtod(m, void *), hlen);
   1019 
   1020 	*mp = m;
   1021 	return (0);
   1022 }
   1023 
   1024 /*
   1025  * Process a delayed payload checksum calculation.
   1026  */
   1027 void
   1028 in6_delayed_cksum(struct mbuf *m)
   1029 {
   1030 	uint16_t csum, offset;
   1031 
   1032 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1033 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1034 	KASSERT((m->m_pkthdr.csum_flags
   1035 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
   1036 
   1037 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
   1038 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
   1039 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
   1040 		csum = 0xffff;
   1041 	}
   1042 
   1043 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
   1044 	if ((offset + sizeof(csum)) > m->m_len) {
   1045 		m_copyback(m, offset, sizeof(csum), &csum);
   1046 	} else {
   1047 		*(uint16_t *)(mtod(m, char *) + offset) = csum;
   1048 	}
   1049 }
   1050 
   1051 /*
   1052  * Insert jumbo payload option.
   1053  */
   1054 static int
   1055 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
   1056 {
   1057 	struct mbuf *mopt;
   1058 	u_int8_t *optbuf;
   1059 	u_int32_t v;
   1060 
   1061 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1062 
   1063 	/*
   1064 	 * If there is no hop-by-hop options header, allocate new one.
   1065 	 * If there is one but it doesn't have enough space to store the
   1066 	 * jumbo payload option, allocate a cluster to store the whole options.
   1067 	 * Otherwise, use it to store the options.
   1068 	 */
   1069 	if (exthdrs->ip6e_hbh == 0) {
   1070 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1071 		if (mopt == 0)
   1072 			return (ENOBUFS);
   1073 		mopt->m_len = JUMBOOPTLEN;
   1074 		optbuf = mtod(mopt, u_int8_t *);
   1075 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1076 		exthdrs->ip6e_hbh = mopt;
   1077 	} else {
   1078 		struct ip6_hbh *hbh;
   1079 
   1080 		mopt = exthdrs->ip6e_hbh;
   1081 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1082 			/*
   1083 			 * XXX assumption:
   1084 			 * - exthdrs->ip6e_hbh is not referenced from places
   1085 			 *   other than exthdrs.
   1086 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1087 			 */
   1088 			int oldoptlen = mopt->m_len;
   1089 			struct mbuf *n;
   1090 
   1091 			/*
   1092 			 * XXX: give up if the whole (new) hbh header does
   1093 			 * not fit even in an mbuf cluster.
   1094 			 */
   1095 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1096 				return (ENOBUFS);
   1097 
   1098 			/*
   1099 			 * As a consequence, we must always prepare a cluster
   1100 			 * at this point.
   1101 			 */
   1102 			MGET(n, M_DONTWAIT, MT_DATA);
   1103 			if (n) {
   1104 				MCLGET(n, M_DONTWAIT);
   1105 				if ((n->m_flags & M_EXT) == 0) {
   1106 					m_freem(n);
   1107 					n = NULL;
   1108 				}
   1109 			}
   1110 			if (!n)
   1111 				return (ENOBUFS);
   1112 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1113 			bcopy(mtod(mopt, void *), mtod(n, void *),
   1114 			    oldoptlen);
   1115 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1116 			m_freem(mopt);
   1117 			mopt = exthdrs->ip6e_hbh = n;
   1118 		} else {
   1119 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1120 			mopt->m_len += JUMBOOPTLEN;
   1121 		}
   1122 		optbuf[0] = IP6OPT_PADN;
   1123 		optbuf[1] = 0;
   1124 
   1125 		/*
   1126 		 * Adjust the header length according to the pad and
   1127 		 * the jumbo payload option.
   1128 		 */
   1129 		hbh = mtod(mopt, struct ip6_hbh *);
   1130 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1131 	}
   1132 
   1133 	/* fill in the option. */
   1134 	optbuf[2] = IP6OPT_JUMBO;
   1135 	optbuf[3] = 4;
   1136 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1137 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
   1138 
   1139 	/* finally, adjust the packet header length */
   1140 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1141 
   1142 	return (0);
   1143 #undef JUMBOOPTLEN
   1144 }
   1145 
   1146 /*
   1147  * Insert fragment header and copy unfragmentable header portions.
   1148  *
   1149  * *frghdrp will not be read, and it is guaranteed that either an
   1150  * error is returned or that *frghdrp will point to space allocated
   1151  * for the fragment header.
   1152  */
   1153 static int
   1154 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
   1155 	struct ip6_frag **frghdrp)
   1156 {
   1157 	struct mbuf *n, *mlast;
   1158 
   1159 	if (hlen > sizeof(struct ip6_hdr)) {
   1160 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1161 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1162 		if (n == 0)
   1163 			return (ENOBUFS);
   1164 		m->m_next = n;
   1165 	} else
   1166 		n = m;
   1167 
   1168 	/* Search for the last mbuf of unfragmentable part. */
   1169 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1170 		;
   1171 
   1172 	if ((mlast->m_flags & M_EXT) == 0 &&
   1173 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1174 		/* use the trailing space of the last mbuf for the fragment hdr */
   1175 		*frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
   1176 		    mlast->m_len);
   1177 		mlast->m_len += sizeof(struct ip6_frag);
   1178 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1179 	} else {
   1180 		/* allocate a new mbuf for the fragment header */
   1181 		struct mbuf *mfrg;
   1182 
   1183 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1184 		if (mfrg == 0)
   1185 			return (ENOBUFS);
   1186 		mfrg->m_len = sizeof(struct ip6_frag);
   1187 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1188 		mlast->m_next = mfrg;
   1189 	}
   1190 
   1191 	return (0);
   1192 }
   1193 
   1194 static int
   1195 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp,
   1196     const struct in6_addr *dst, u_long *mtup, int *alwaysfragp)
   1197 {
   1198 	struct rtentry *rt;
   1199 	u_int32_t mtu = 0;
   1200 	int alwaysfrag = 0;
   1201 	int error = 0;
   1202 
   1203 	if (ro_pmtu != ro) {
   1204 		union {
   1205 			struct sockaddr		dst;
   1206 			struct sockaddr_in6	dst6;
   1207 		} u;
   1208 
   1209 		/* The first hop and the final destination may differ. */
   1210 		sockaddr_in6_init(&u.dst6, dst, 0, 0, 0);
   1211 		rt = rtcache_lookup(ro_pmtu, &u.dst);
   1212 	} else
   1213 		rt = rtcache_validate(ro_pmtu);
   1214 	if (rt != NULL) {
   1215 		u_int32_t ifmtu;
   1216 
   1217 		if (ifp == NULL)
   1218 			ifp = rt->rt_ifp;
   1219 		ifmtu = IN6_LINKMTU(ifp);
   1220 		mtu = rt->rt_rmx.rmx_mtu;
   1221 		if (mtu == 0)
   1222 			mtu = ifmtu;
   1223 		else if (mtu < IPV6_MMTU) {
   1224 			/*
   1225 			 * RFC2460 section 5, last paragraph:
   1226 			 * if we record ICMPv6 too big message with
   1227 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1228 			 * or smaller, with fragment header attached.
   1229 			 * (fragment header is needed regardless from the
   1230 			 * packet size, for translators to identify packets)
   1231 			 */
   1232 			alwaysfrag = 1;
   1233 			mtu = IPV6_MMTU;
   1234 		} else if (mtu > ifmtu) {
   1235 			/*
   1236 			 * The MTU on the route is larger than the MTU on
   1237 			 * the interface!  This shouldn't happen, unless the
   1238 			 * MTU of the interface has been changed after the
   1239 			 * interface was brought up.  Change the MTU in the
   1240 			 * route to match the interface MTU (as long as the
   1241 			 * field isn't locked).
   1242 			 */
   1243 			mtu = ifmtu;
   1244 			if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
   1245 				rt->rt_rmx.rmx_mtu = mtu;
   1246 		}
   1247 	} else if (ifp) {
   1248 		mtu = IN6_LINKMTU(ifp);
   1249 	} else
   1250 		error = EHOSTUNREACH; /* XXX */
   1251 
   1252 	*mtup = mtu;
   1253 	if (alwaysfragp)
   1254 		*alwaysfragp = alwaysfrag;
   1255 	return (error);
   1256 }
   1257 
   1258 /*
   1259  * IP6 socket option processing.
   1260  */
   1261 int
   1262 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1263 {
   1264 	int optdatalen, uproto;
   1265 	void *optdata;
   1266 	struct in6pcb *in6p = sotoin6pcb(so);
   1267 	int error, optval;
   1268 	int level, optname;
   1269 
   1270 	KASSERT(sopt != NULL);
   1271 
   1272 	level = sopt->sopt_level;
   1273 	optname = sopt->sopt_name;
   1274 
   1275 	error = optval = 0;
   1276 	uproto = (int)so->so_proto->pr_protocol;
   1277 
   1278 	if (level != IPPROTO_IPV6) {
   1279 		return ENOPROTOOPT;
   1280 	}
   1281 	switch (op) {
   1282 	case PRCO_SETOPT:
   1283 		switch (optname) {
   1284 #ifdef RFC2292
   1285 		case IPV6_2292PKTOPTIONS:
   1286 			error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
   1287 			break;
   1288 #endif
   1289 
   1290 		/*
   1291 		 * Use of some Hop-by-Hop options or some
   1292 		 * Destination options, might require special
   1293 		 * privilege.  That is, normal applications
   1294 		 * (without special privilege) might be forbidden
   1295 		 * from setting certain options in outgoing packets,
   1296 		 * and might never see certain options in received
   1297 		 * packets. [RFC 2292 Section 6]
   1298 		 * KAME specific note:
   1299 		 *  KAME prevents non-privileged users from sending or
   1300 		 *  receiving ANY hbh/dst options in order to avoid
   1301 		 *  overhead of parsing options in the kernel.
   1302 		 */
   1303 		case IPV6_RECVHOPOPTS:
   1304 		case IPV6_RECVDSTOPTS:
   1305 		case IPV6_RECVRTHDRDSTOPTS:
   1306 			error = kauth_authorize_network(kauth_cred_get(),
   1307 			    KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
   1308 			    NULL, NULL, NULL);
   1309 			if (error)
   1310 				break;
   1311 			/* FALLTHROUGH */
   1312 		case IPV6_UNICAST_HOPS:
   1313 		case IPV6_HOPLIMIT:
   1314 		case IPV6_FAITH:
   1315 
   1316 		case IPV6_RECVPKTINFO:
   1317 		case IPV6_RECVHOPLIMIT:
   1318 		case IPV6_RECVRTHDR:
   1319 		case IPV6_RECVPATHMTU:
   1320 		case IPV6_RECVTCLASS:
   1321 		case IPV6_V6ONLY:
   1322 			error = sockopt_getint(sopt, &optval);
   1323 			if (error)
   1324 				break;
   1325 			switch (optname) {
   1326 			case IPV6_UNICAST_HOPS:
   1327 				if (optval < -1 || optval >= 256)
   1328 					error = EINVAL;
   1329 				else {
   1330 					/* -1 = kernel default */
   1331 					in6p->in6p_hops = optval;
   1332 				}
   1333 				break;
   1334 #define OPTSET(bit) \
   1335 do { \
   1336 if (optval) \
   1337 	in6p->in6p_flags |= (bit); \
   1338 else \
   1339 	in6p->in6p_flags &= ~(bit); \
   1340 } while (/*CONSTCOND*/ 0)
   1341 
   1342 #ifdef RFC2292
   1343 #define OPTSET2292(bit) 			\
   1344 do { 						\
   1345 in6p->in6p_flags |= IN6P_RFC2292; 	\
   1346 if (optval) 				\
   1347 	in6p->in6p_flags |= (bit); 	\
   1348 else 					\
   1349 	in6p->in6p_flags &= ~(bit); 	\
   1350 } while (/*CONSTCOND*/ 0)
   1351 #endif
   1352 
   1353 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
   1354 
   1355 			case IPV6_RECVPKTINFO:
   1356 #ifdef RFC2292
   1357 				/* cannot mix with RFC2292 */
   1358 				if (OPTBIT(IN6P_RFC2292)) {
   1359 					error = EINVAL;
   1360 					break;
   1361 				}
   1362 #endif
   1363 				OPTSET(IN6P_PKTINFO);
   1364 				break;
   1365 
   1366 			case IPV6_HOPLIMIT:
   1367 			{
   1368 				struct ip6_pktopts **optp;
   1369 
   1370 #ifdef RFC2292
   1371 				/* cannot mix with RFC2292 */
   1372 				if (OPTBIT(IN6P_RFC2292)) {
   1373 					error = EINVAL;
   1374 					break;
   1375 				}
   1376 #endif
   1377 				optp = &in6p->in6p_outputopts;
   1378 				error = ip6_pcbopt(IPV6_HOPLIMIT,
   1379 						   (u_char *)&optval,
   1380 						   sizeof(optval),
   1381 						   optp,
   1382 						   kauth_cred_get(), uproto);
   1383 				break;
   1384 			}
   1385 
   1386 			case IPV6_RECVHOPLIMIT:
   1387 #ifdef RFC2292
   1388 				/* cannot mix with RFC2292 */
   1389 				if (OPTBIT(IN6P_RFC2292)) {
   1390 					error = EINVAL;
   1391 					break;
   1392 				}
   1393 #endif
   1394 				OPTSET(IN6P_HOPLIMIT);
   1395 				break;
   1396 
   1397 			case IPV6_RECVHOPOPTS:
   1398 #ifdef RFC2292
   1399 				/* cannot mix with RFC2292 */
   1400 				if (OPTBIT(IN6P_RFC2292)) {
   1401 					error = EINVAL;
   1402 					break;
   1403 				}
   1404 #endif
   1405 				OPTSET(IN6P_HOPOPTS);
   1406 				break;
   1407 
   1408 			case IPV6_RECVDSTOPTS:
   1409 #ifdef RFC2292
   1410 				/* cannot mix with RFC2292 */
   1411 				if (OPTBIT(IN6P_RFC2292)) {
   1412 					error = EINVAL;
   1413 					break;
   1414 				}
   1415 #endif
   1416 				OPTSET(IN6P_DSTOPTS);
   1417 				break;
   1418 
   1419 			case IPV6_RECVRTHDRDSTOPTS:
   1420 #ifdef RFC2292
   1421 				/* cannot mix with RFC2292 */
   1422 				if (OPTBIT(IN6P_RFC2292)) {
   1423 					error = EINVAL;
   1424 					break;
   1425 				}
   1426 #endif
   1427 				OPTSET(IN6P_RTHDRDSTOPTS);
   1428 				break;
   1429 
   1430 			case IPV6_RECVRTHDR:
   1431 #ifdef RFC2292
   1432 				/* cannot mix with RFC2292 */
   1433 				if (OPTBIT(IN6P_RFC2292)) {
   1434 					error = EINVAL;
   1435 					break;
   1436 				}
   1437 #endif
   1438 				OPTSET(IN6P_RTHDR);
   1439 				break;
   1440 
   1441 			case IPV6_FAITH:
   1442 				OPTSET(IN6P_FAITH);
   1443 				break;
   1444 
   1445 			case IPV6_RECVPATHMTU:
   1446 				/*
   1447 				 * We ignore this option for TCP
   1448 				 * sockets.
   1449 				 * (RFC3542 leaves this case
   1450 				 * unspecified.)
   1451 				 */
   1452 				if (uproto != IPPROTO_TCP)
   1453 					OPTSET(IN6P_MTU);
   1454 				break;
   1455 
   1456 			case IPV6_V6ONLY:
   1457 				/*
   1458 				 * make setsockopt(IPV6_V6ONLY)
   1459 				 * available only prior to bind(2).
   1460 				 * see ipng mailing list, Jun 22 2001.
   1461 				 */
   1462 				if (in6p->in6p_lport ||
   1463 				    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
   1464 					error = EINVAL;
   1465 					break;
   1466 				}
   1467 #ifdef INET6_BINDV6ONLY
   1468 				if (!optval)
   1469 					error = EINVAL;
   1470 #else
   1471 				OPTSET(IN6P_IPV6_V6ONLY);
   1472 #endif
   1473 				break;
   1474 			case IPV6_RECVTCLASS:
   1475 #ifdef RFC2292
   1476 				/* cannot mix with RFC2292 XXX */
   1477 				if (OPTBIT(IN6P_RFC2292)) {
   1478 					error = EINVAL;
   1479 					break;
   1480 				}
   1481 #endif
   1482 				OPTSET(IN6P_TCLASS);
   1483 				break;
   1484 
   1485 			}
   1486 			break;
   1487 
   1488 		case IPV6_OTCLASS:
   1489 		{
   1490 			struct ip6_pktopts **optp;
   1491 			u_int8_t tclass;
   1492 
   1493 			error = sockopt_get(sopt, &tclass, sizeof(tclass));
   1494 			if (error)
   1495 				break;
   1496 			optp = &in6p->in6p_outputopts;
   1497 			error = ip6_pcbopt(optname,
   1498 					   (u_char *)&tclass,
   1499 					   sizeof(tclass),
   1500 					   optp,
   1501 					   kauth_cred_get(), uproto);
   1502 			break;
   1503 		}
   1504 
   1505 		case IPV6_TCLASS:
   1506 		case IPV6_DONTFRAG:
   1507 		case IPV6_USE_MIN_MTU:
   1508 			error = sockopt_getint(sopt, &optval);
   1509 			if (error)
   1510 				break;
   1511 			{
   1512 				struct ip6_pktopts **optp;
   1513 				optp = &in6p->in6p_outputopts;
   1514 				error = ip6_pcbopt(optname,
   1515 						   (u_char *)&optval,
   1516 						   sizeof(optval),
   1517 						   optp,
   1518 						   kauth_cred_get(), uproto);
   1519 				break;
   1520 			}
   1521 
   1522 #ifdef RFC2292
   1523 		case IPV6_2292PKTINFO:
   1524 		case IPV6_2292HOPLIMIT:
   1525 		case IPV6_2292HOPOPTS:
   1526 		case IPV6_2292DSTOPTS:
   1527 		case IPV6_2292RTHDR:
   1528 			/* RFC 2292 */
   1529 			error = sockopt_getint(sopt, &optval);
   1530 			if (error)
   1531 				break;
   1532 
   1533 			switch (optname) {
   1534 			case IPV6_2292PKTINFO:
   1535 				OPTSET2292(IN6P_PKTINFO);
   1536 				break;
   1537 			case IPV6_2292HOPLIMIT:
   1538 				OPTSET2292(IN6P_HOPLIMIT);
   1539 				break;
   1540 			case IPV6_2292HOPOPTS:
   1541 				/*
   1542 				 * Check super-user privilege.
   1543 				 * See comments for IPV6_RECVHOPOPTS.
   1544 				 */
   1545 				error =
   1546 				    kauth_authorize_network(kauth_cred_get(),
   1547 				    KAUTH_NETWORK_IPV6,
   1548 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1549 				    NULL, NULL);
   1550 				if (error)
   1551 					return (error);
   1552 				OPTSET2292(IN6P_HOPOPTS);
   1553 				break;
   1554 			case IPV6_2292DSTOPTS:
   1555 				error =
   1556 				    kauth_authorize_network(kauth_cred_get(),
   1557 				    KAUTH_NETWORK_IPV6,
   1558 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1559 				    NULL, NULL);
   1560 				if (error)
   1561 					return (error);
   1562 				OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
   1563 				break;
   1564 			case IPV6_2292RTHDR:
   1565 				OPTSET2292(IN6P_RTHDR);
   1566 				break;
   1567 			}
   1568 			break;
   1569 #endif
   1570 		case IPV6_PKTINFO:
   1571 		case IPV6_HOPOPTS:
   1572 		case IPV6_RTHDR:
   1573 		case IPV6_DSTOPTS:
   1574 		case IPV6_RTHDRDSTOPTS:
   1575 		case IPV6_NEXTHOP: {
   1576 			/* new advanced API (RFC3542) */
   1577 			void *optbuf;
   1578 			int optbuflen;
   1579 			struct ip6_pktopts **optp;
   1580 
   1581 #ifdef RFC2292
   1582 			/* cannot mix with RFC2292 */
   1583 			if (OPTBIT(IN6P_RFC2292)) {
   1584 				error = EINVAL;
   1585 				break;
   1586 			}
   1587 #endif
   1588 
   1589 			optbuflen = sopt->sopt_size;
   1590 			optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
   1591 			if (optbuf == NULL) {
   1592 				error = ENOBUFS;
   1593 				break;
   1594 			}
   1595 
   1596 			error = sockopt_get(sopt, optbuf, optbuflen);
   1597 			if (error) {
   1598 				free(optbuf, M_IP6OPT);
   1599 				break;
   1600 			}
   1601 			optp = &in6p->in6p_outputopts;
   1602 			error = ip6_pcbopt(optname, optbuf, optbuflen,
   1603 			    optp, kauth_cred_get(), uproto);
   1604 			break;
   1605 			}
   1606 #undef OPTSET
   1607 
   1608 		case IPV6_MULTICAST_IF:
   1609 		case IPV6_MULTICAST_HOPS:
   1610 		case IPV6_MULTICAST_LOOP:
   1611 		case IPV6_JOIN_GROUP:
   1612 		case IPV6_LEAVE_GROUP:
   1613 			error = ip6_setmoptions(sopt, &in6p->in6p_moptions);
   1614 			break;
   1615 
   1616 		case IPV6_PORTRANGE:
   1617 			error = sockopt_getint(sopt, &optval);
   1618 			if (error)
   1619 				break;
   1620 
   1621 			switch (optval) {
   1622 			case IPV6_PORTRANGE_DEFAULT:
   1623 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1624 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1625 				break;
   1626 
   1627 			case IPV6_PORTRANGE_HIGH:
   1628 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1629 				in6p->in6p_flags |= IN6P_HIGHPORT;
   1630 				break;
   1631 
   1632 			case IPV6_PORTRANGE_LOW:
   1633 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1634 				in6p->in6p_flags |= IN6P_LOWPORT;
   1635 				break;
   1636 
   1637 			default:
   1638 				error = EINVAL;
   1639 				break;
   1640 			}
   1641 			break;
   1642 
   1643 		case IPV6_PORTALGO:
   1644 			error = sockopt_getint(sopt, &optval);
   1645 			if (error)
   1646 				break;
   1647 
   1648 			error = portalgo_algo_index_select(
   1649 			    (struct inpcb_hdr *)in6p, optval);
   1650 			break;
   1651 
   1652 #if defined(IPSEC)
   1653 		case IPV6_IPSEC_POLICY:
   1654 			if (ipsec_enabled) {
   1655 				error = ipsec6_set_policy(in6p, optname,
   1656 				    sopt->sopt_data, sopt->sopt_size,
   1657 				    kauth_cred_get());
   1658 				break;
   1659 			}
   1660 			/*FALLTHROUGH*/
   1661 #endif /* IPSEC */
   1662 
   1663 		default:
   1664 			error = ENOPROTOOPT;
   1665 			break;
   1666 		}
   1667 		break;
   1668 
   1669 	case PRCO_GETOPT:
   1670 		switch (optname) {
   1671 #ifdef RFC2292
   1672 		case IPV6_2292PKTOPTIONS:
   1673 			/*
   1674 			 * RFC3542 (effectively) deprecated the
   1675 			 * semantics of the 2292-style pktoptions.
   1676 			 * Since it was not reliable in nature (i.e.,
   1677 			 * applications had to expect the lack of some
   1678 			 * information after all), it would make sense
   1679 			 * to simplify this part by always returning
   1680 			 * empty data.
   1681 			 */
   1682 			break;
   1683 #endif
   1684 
   1685 		case IPV6_RECVHOPOPTS:
   1686 		case IPV6_RECVDSTOPTS:
   1687 		case IPV6_RECVRTHDRDSTOPTS:
   1688 		case IPV6_UNICAST_HOPS:
   1689 		case IPV6_RECVPKTINFO:
   1690 		case IPV6_RECVHOPLIMIT:
   1691 		case IPV6_RECVRTHDR:
   1692 		case IPV6_RECVPATHMTU:
   1693 
   1694 		case IPV6_FAITH:
   1695 		case IPV6_V6ONLY:
   1696 		case IPV6_PORTRANGE:
   1697 		case IPV6_RECVTCLASS:
   1698 			switch (optname) {
   1699 
   1700 			case IPV6_RECVHOPOPTS:
   1701 				optval = OPTBIT(IN6P_HOPOPTS);
   1702 				break;
   1703 
   1704 			case IPV6_RECVDSTOPTS:
   1705 				optval = OPTBIT(IN6P_DSTOPTS);
   1706 				break;
   1707 
   1708 			case IPV6_RECVRTHDRDSTOPTS:
   1709 				optval = OPTBIT(IN6P_RTHDRDSTOPTS);
   1710 				break;
   1711 
   1712 			case IPV6_UNICAST_HOPS:
   1713 				optval = in6p->in6p_hops;
   1714 				break;
   1715 
   1716 			case IPV6_RECVPKTINFO:
   1717 				optval = OPTBIT(IN6P_PKTINFO);
   1718 				break;
   1719 
   1720 			case IPV6_RECVHOPLIMIT:
   1721 				optval = OPTBIT(IN6P_HOPLIMIT);
   1722 				break;
   1723 
   1724 			case IPV6_RECVRTHDR:
   1725 				optval = OPTBIT(IN6P_RTHDR);
   1726 				break;
   1727 
   1728 			case IPV6_RECVPATHMTU:
   1729 				optval = OPTBIT(IN6P_MTU);
   1730 				break;
   1731 
   1732 			case IPV6_FAITH:
   1733 				optval = OPTBIT(IN6P_FAITH);
   1734 				break;
   1735 
   1736 			case IPV6_V6ONLY:
   1737 				optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1738 				break;
   1739 
   1740 			case IPV6_PORTRANGE:
   1741 			    {
   1742 				int flags;
   1743 				flags = in6p->in6p_flags;
   1744 				if (flags & IN6P_HIGHPORT)
   1745 					optval = IPV6_PORTRANGE_HIGH;
   1746 				else if (flags & IN6P_LOWPORT)
   1747 					optval = IPV6_PORTRANGE_LOW;
   1748 				else
   1749 					optval = 0;
   1750 				break;
   1751 			    }
   1752 			case IPV6_RECVTCLASS:
   1753 				optval = OPTBIT(IN6P_TCLASS);
   1754 				break;
   1755 
   1756 			}
   1757 			if (error)
   1758 				break;
   1759 			error = sockopt_setint(sopt, optval);
   1760 			break;
   1761 
   1762 		case IPV6_PATHMTU:
   1763 		    {
   1764 			u_long pmtu = 0;
   1765 			struct ip6_mtuinfo mtuinfo;
   1766 			struct route *ro = &in6p->in6p_route;
   1767 
   1768 			if (!(so->so_state & SS_ISCONNECTED))
   1769 				return (ENOTCONN);
   1770 			/*
   1771 			 * XXX: we dot not consider the case of source
   1772 			 * routing, or optional information to specify
   1773 			 * the outgoing interface.
   1774 			 */
   1775 			error = ip6_getpmtu(ro, NULL, NULL,
   1776 			    &in6p->in6p_faddr, &pmtu, NULL);
   1777 			if (error)
   1778 				break;
   1779 			if (pmtu > IPV6_MAXPACKET)
   1780 				pmtu = IPV6_MAXPACKET;
   1781 
   1782 			memset(&mtuinfo, 0, sizeof(mtuinfo));
   1783 			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
   1784 			optdata = (void *)&mtuinfo;
   1785 			optdatalen = sizeof(mtuinfo);
   1786 			if (optdatalen > MCLBYTES)
   1787 				return (EMSGSIZE); /* XXX */
   1788 			error = sockopt_set(sopt, optdata, optdatalen);
   1789 			break;
   1790 		    }
   1791 
   1792 #ifdef RFC2292
   1793 		case IPV6_2292PKTINFO:
   1794 		case IPV6_2292HOPLIMIT:
   1795 		case IPV6_2292HOPOPTS:
   1796 		case IPV6_2292RTHDR:
   1797 		case IPV6_2292DSTOPTS:
   1798 			switch (optname) {
   1799 			case IPV6_2292PKTINFO:
   1800 				optval = OPTBIT(IN6P_PKTINFO);
   1801 				break;
   1802 			case IPV6_2292HOPLIMIT:
   1803 				optval = OPTBIT(IN6P_HOPLIMIT);
   1804 				break;
   1805 			case IPV6_2292HOPOPTS:
   1806 				optval = OPTBIT(IN6P_HOPOPTS);
   1807 				break;
   1808 			case IPV6_2292RTHDR:
   1809 				optval = OPTBIT(IN6P_RTHDR);
   1810 				break;
   1811 			case IPV6_2292DSTOPTS:
   1812 				optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
   1813 				break;
   1814 			}
   1815 			error = sockopt_setint(sopt, optval);
   1816 			break;
   1817 #endif
   1818 		case IPV6_PKTINFO:
   1819 		case IPV6_HOPOPTS:
   1820 		case IPV6_RTHDR:
   1821 		case IPV6_DSTOPTS:
   1822 		case IPV6_RTHDRDSTOPTS:
   1823 		case IPV6_NEXTHOP:
   1824 		case IPV6_OTCLASS:
   1825 		case IPV6_TCLASS:
   1826 		case IPV6_DONTFRAG:
   1827 		case IPV6_USE_MIN_MTU:
   1828 			error = ip6_getpcbopt(in6p->in6p_outputopts,
   1829 			    optname, sopt);
   1830 			break;
   1831 
   1832 		case IPV6_MULTICAST_IF:
   1833 		case IPV6_MULTICAST_HOPS:
   1834 		case IPV6_MULTICAST_LOOP:
   1835 		case IPV6_JOIN_GROUP:
   1836 		case IPV6_LEAVE_GROUP:
   1837 			error = ip6_getmoptions(sopt, in6p->in6p_moptions);
   1838 			break;
   1839 
   1840 		case IPV6_PORTALGO:
   1841 			optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
   1842 			error = sockopt_setint(sopt, optval);
   1843 			break;
   1844 
   1845 #if defined(IPSEC)
   1846 		case IPV6_IPSEC_POLICY:
   1847 			if (ipsec_used) {
   1848 				struct mbuf *m = NULL;
   1849 
   1850 				/*
   1851 				 * XXX: this will return EINVAL as sopt is
   1852 				 * empty
   1853 				 */
   1854 				error = ipsec6_get_policy(in6p, sopt->sopt_data,
   1855 				    sopt->sopt_size, &m);
   1856 				if (!error)
   1857 					error = sockopt_setmbuf(sopt, m);
   1858 				break;
   1859 			}
   1860 			/*FALLTHROUGH*/
   1861 #endif /* IPSEC */
   1862 
   1863 		default:
   1864 			error = ENOPROTOOPT;
   1865 			break;
   1866 		}
   1867 		break;
   1868 	}
   1869 	return (error);
   1870 }
   1871 
   1872 int
   1873 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1874 {
   1875 	int error = 0, optval;
   1876 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   1877 	struct in6pcb *in6p = sotoin6pcb(so);
   1878 	int level, optname;
   1879 
   1880 	KASSERT(sopt != NULL);
   1881 
   1882 	level = sopt->sopt_level;
   1883 	optname = sopt->sopt_name;
   1884 
   1885 	if (level != IPPROTO_IPV6) {
   1886 		return ENOPROTOOPT;
   1887 	}
   1888 
   1889 	switch (optname) {
   1890 	case IPV6_CHECKSUM:
   1891 		/*
   1892 		 * For ICMPv6 sockets, no modification allowed for checksum
   1893 		 * offset, permit "no change" values to help existing apps.
   1894 		 *
   1895 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
   1896 		 * for an ICMPv6 socket will fail."  The current
   1897 		 * behavior does not meet RFC3542.
   1898 		 */
   1899 		switch (op) {
   1900 		case PRCO_SETOPT:
   1901 			error = sockopt_getint(sopt, &optval);
   1902 			if (error)
   1903 				break;
   1904 			if ((optval % 2) != 0) {
   1905 				/* the API assumes even offset values */
   1906 				error = EINVAL;
   1907 			} else if (so->so_proto->pr_protocol ==
   1908 			    IPPROTO_ICMPV6) {
   1909 				if (optval != icmp6off)
   1910 					error = EINVAL;
   1911 			} else
   1912 				in6p->in6p_cksum = optval;
   1913 			break;
   1914 
   1915 		case PRCO_GETOPT:
   1916 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   1917 				optval = icmp6off;
   1918 			else
   1919 				optval = in6p->in6p_cksum;
   1920 
   1921 			error = sockopt_setint(sopt, optval);
   1922 			break;
   1923 
   1924 		default:
   1925 			error = EINVAL;
   1926 			break;
   1927 		}
   1928 		break;
   1929 
   1930 	default:
   1931 		error = ENOPROTOOPT;
   1932 		break;
   1933 	}
   1934 
   1935 	return (error);
   1936 }
   1937 
   1938 #ifdef RFC2292
   1939 /*
   1940  * Set up IP6 options in pcb for insertion in output packets or
   1941  * specifying behavior of outgoing packets.
   1942  */
   1943 static int
   1944 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
   1945     struct sockopt *sopt)
   1946 {
   1947 	struct ip6_pktopts *opt = *pktopt;
   1948 	struct mbuf *m;
   1949 	int error = 0;
   1950 
   1951 	/* turn off any old options. */
   1952 	if (opt) {
   1953 #ifdef DIAGNOSTIC
   1954 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
   1955 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
   1956 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
   1957 		    printf("ip6_pcbopts: all specified options are cleared.\n");
   1958 #endif
   1959 		ip6_clearpktopts(opt, -1);
   1960 	} else {
   1961 		opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
   1962 		if (opt == NULL)
   1963 			return (ENOBUFS);
   1964 	}
   1965 	*pktopt = NULL;
   1966 
   1967 	if (sopt == NULL || sopt->sopt_size == 0) {
   1968 		/*
   1969 		 * Only turning off any previous options, regardless of
   1970 		 * whether the opt is just created or given.
   1971 		 */
   1972 		free(opt, M_IP6OPT);
   1973 		return (0);
   1974 	}
   1975 
   1976 	/*  set options specified by user. */
   1977 	m = sockopt_getmbuf(sopt);
   1978 	if (m == NULL) {
   1979 		free(opt, M_IP6OPT);
   1980 		return (ENOBUFS);
   1981 	}
   1982 
   1983 	error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
   1984 	    so->so_proto->pr_protocol);
   1985 	m_freem(m);
   1986 	if (error != 0) {
   1987 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
   1988 		free(opt, M_IP6OPT);
   1989 		return (error);
   1990 	}
   1991 	*pktopt = opt;
   1992 	return (0);
   1993 }
   1994 #endif
   1995 
   1996 /*
   1997  * initialize ip6_pktopts.  beware that there are non-zero default values in
   1998  * the struct.
   1999  */
   2000 void
   2001 ip6_initpktopts(struct ip6_pktopts *opt)
   2002 {
   2003 
   2004 	memset(opt, 0, sizeof(*opt));
   2005 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
   2006 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
   2007 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
   2008 }
   2009 
   2010 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
   2011 static int
   2012 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
   2013     kauth_cred_t cred, int uproto)
   2014 {
   2015 	struct ip6_pktopts *opt;
   2016 
   2017 	if (*pktopt == NULL) {
   2018 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
   2019 		    M_NOWAIT);
   2020 		if (*pktopt == NULL)
   2021 			return (ENOBUFS);
   2022 
   2023 		ip6_initpktopts(*pktopt);
   2024 	}
   2025 	opt = *pktopt;
   2026 
   2027 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
   2028 }
   2029 
   2030 static int
   2031 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
   2032 {
   2033 	void *optdata = NULL;
   2034 	int optdatalen = 0;
   2035 	struct ip6_ext *ip6e;
   2036 	int error = 0;
   2037 	struct in6_pktinfo null_pktinfo;
   2038 	int deftclass = 0, on;
   2039 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
   2040 
   2041 	switch (optname) {
   2042 	case IPV6_PKTINFO:
   2043 		if (pktopt && pktopt->ip6po_pktinfo)
   2044 			optdata = (void *)pktopt->ip6po_pktinfo;
   2045 		else {
   2046 			/* XXX: we don't have to do this every time... */
   2047 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
   2048 			optdata = (void *)&null_pktinfo;
   2049 		}
   2050 		optdatalen = sizeof(struct in6_pktinfo);
   2051 		break;
   2052 	case IPV6_OTCLASS:
   2053 		/* XXX */
   2054 		return (EINVAL);
   2055 	case IPV6_TCLASS:
   2056 		if (pktopt && pktopt->ip6po_tclass >= 0)
   2057 			optdata = (void *)&pktopt->ip6po_tclass;
   2058 		else
   2059 			optdata = (void *)&deftclass;
   2060 		optdatalen = sizeof(int);
   2061 		break;
   2062 	case IPV6_HOPOPTS:
   2063 		if (pktopt && pktopt->ip6po_hbh) {
   2064 			optdata = (void *)pktopt->ip6po_hbh;
   2065 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
   2066 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2067 		}
   2068 		break;
   2069 	case IPV6_RTHDR:
   2070 		if (pktopt && pktopt->ip6po_rthdr) {
   2071 			optdata = (void *)pktopt->ip6po_rthdr;
   2072 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
   2073 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2074 		}
   2075 		break;
   2076 	case IPV6_RTHDRDSTOPTS:
   2077 		if (pktopt && pktopt->ip6po_dest1) {
   2078 			optdata = (void *)pktopt->ip6po_dest1;
   2079 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
   2080 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2081 		}
   2082 		break;
   2083 	case IPV6_DSTOPTS:
   2084 		if (pktopt && pktopt->ip6po_dest2) {
   2085 			optdata = (void *)pktopt->ip6po_dest2;
   2086 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
   2087 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2088 		}
   2089 		break;
   2090 	case IPV6_NEXTHOP:
   2091 		if (pktopt && pktopt->ip6po_nexthop) {
   2092 			optdata = (void *)pktopt->ip6po_nexthop;
   2093 			optdatalen = pktopt->ip6po_nexthop->sa_len;
   2094 		}
   2095 		break;
   2096 	case IPV6_USE_MIN_MTU:
   2097 		if (pktopt)
   2098 			optdata = (void *)&pktopt->ip6po_minmtu;
   2099 		else
   2100 			optdata = (void *)&defminmtu;
   2101 		optdatalen = sizeof(int);
   2102 		break;
   2103 	case IPV6_DONTFRAG:
   2104 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
   2105 			on = 1;
   2106 		else
   2107 			on = 0;
   2108 		optdata = (void *)&on;
   2109 		optdatalen = sizeof(on);
   2110 		break;
   2111 	default:		/* should not happen */
   2112 #ifdef DIAGNOSTIC
   2113 		panic("ip6_getpcbopt: unexpected option\n");
   2114 #endif
   2115 		return (ENOPROTOOPT);
   2116 	}
   2117 
   2118 	error = sockopt_set(sopt, optdata, optdatalen);
   2119 
   2120 	return (error);
   2121 }
   2122 
   2123 void
   2124 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
   2125 {
   2126 	if (optname == -1 || optname == IPV6_PKTINFO) {
   2127 		if (pktopt->ip6po_pktinfo)
   2128 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
   2129 		pktopt->ip6po_pktinfo = NULL;
   2130 	}
   2131 	if (optname == -1 || optname == IPV6_HOPLIMIT)
   2132 		pktopt->ip6po_hlim = -1;
   2133 	if (optname == -1 || optname == IPV6_TCLASS)
   2134 		pktopt->ip6po_tclass = -1;
   2135 	if (optname == -1 || optname == IPV6_NEXTHOP) {
   2136 		rtcache_free(&pktopt->ip6po_nextroute);
   2137 		if (pktopt->ip6po_nexthop)
   2138 			free(pktopt->ip6po_nexthop, M_IP6OPT);
   2139 		pktopt->ip6po_nexthop = NULL;
   2140 	}
   2141 	if (optname == -1 || optname == IPV6_HOPOPTS) {
   2142 		if (pktopt->ip6po_hbh)
   2143 			free(pktopt->ip6po_hbh, M_IP6OPT);
   2144 		pktopt->ip6po_hbh = NULL;
   2145 	}
   2146 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
   2147 		if (pktopt->ip6po_dest1)
   2148 			free(pktopt->ip6po_dest1, M_IP6OPT);
   2149 		pktopt->ip6po_dest1 = NULL;
   2150 	}
   2151 	if (optname == -1 || optname == IPV6_RTHDR) {
   2152 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2153 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
   2154 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
   2155 		rtcache_free(&pktopt->ip6po_route);
   2156 	}
   2157 	if (optname == -1 || optname == IPV6_DSTOPTS) {
   2158 		if (pktopt->ip6po_dest2)
   2159 			free(pktopt->ip6po_dest2, M_IP6OPT);
   2160 		pktopt->ip6po_dest2 = NULL;
   2161 	}
   2162 }
   2163 
   2164 #define PKTOPT_EXTHDRCPY(type) 					\
   2165 do {								\
   2166 	if (src->type) {					\
   2167 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
   2168 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
   2169 		if (dst->type == NULL)				\
   2170 			goto bad;				\
   2171 		memcpy(dst->type, src->type, hlen);		\
   2172 	}							\
   2173 } while (/*CONSTCOND*/ 0)
   2174 
   2175 static int
   2176 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
   2177 {
   2178 	dst->ip6po_hlim = src->ip6po_hlim;
   2179 	dst->ip6po_tclass = src->ip6po_tclass;
   2180 	dst->ip6po_flags = src->ip6po_flags;
   2181 	if (src->ip6po_pktinfo) {
   2182 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
   2183 		    M_IP6OPT, canwait);
   2184 		if (dst->ip6po_pktinfo == NULL)
   2185 			goto bad;
   2186 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
   2187 	}
   2188 	if (src->ip6po_nexthop) {
   2189 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
   2190 		    M_IP6OPT, canwait);
   2191 		if (dst->ip6po_nexthop == NULL)
   2192 			goto bad;
   2193 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
   2194 		    src->ip6po_nexthop->sa_len);
   2195 	}
   2196 	PKTOPT_EXTHDRCPY(ip6po_hbh);
   2197 	PKTOPT_EXTHDRCPY(ip6po_dest1);
   2198 	PKTOPT_EXTHDRCPY(ip6po_dest2);
   2199 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
   2200 	return (0);
   2201 
   2202   bad:
   2203 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
   2204 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
   2205 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
   2206 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
   2207 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
   2208 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
   2209 
   2210 	return (ENOBUFS);
   2211 }
   2212 #undef PKTOPT_EXTHDRCPY
   2213 
   2214 struct ip6_pktopts *
   2215 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
   2216 {
   2217 	int error;
   2218 	struct ip6_pktopts *dst;
   2219 
   2220 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
   2221 	if (dst == NULL)
   2222 		return (NULL);
   2223 	ip6_initpktopts(dst);
   2224 
   2225 	if ((error = copypktopts(dst, src, canwait)) != 0) {
   2226 		free(dst, M_IP6OPT);
   2227 		return (NULL);
   2228 	}
   2229 
   2230 	return (dst);
   2231 }
   2232 
   2233 void
   2234 ip6_freepcbopts(struct ip6_pktopts *pktopt)
   2235 {
   2236 	if (pktopt == NULL)
   2237 		return;
   2238 
   2239 	ip6_clearpktopts(pktopt, -1);
   2240 
   2241 	free(pktopt, M_IP6OPT);
   2242 }
   2243 
   2244 /*
   2245  * Set the IP6 multicast options in response to user setsockopt().
   2246  */
   2247 static int
   2248 ip6_setmoptions(const struct sockopt *sopt, struct ip6_moptions **im6op)
   2249 {
   2250 	int error = 0;
   2251 	u_int loop, ifindex;
   2252 	struct ipv6_mreq mreq;
   2253 	struct ifnet *ifp;
   2254 	struct ip6_moptions *im6o = *im6op;
   2255 	struct route ro;
   2256 	struct in6_multi_mship *imm;
   2257 	struct lwp *l = curlwp;	/* XXX */
   2258 
   2259 	if (im6o == NULL) {
   2260 		/*
   2261 		 * No multicast option buffer attached to the pcb;
   2262 		 * allocate one and initialize to default values.
   2263 		 */
   2264 		im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
   2265 		if (im6o == NULL)
   2266 			return (ENOBUFS);
   2267 
   2268 		*im6op = im6o;
   2269 		im6o->im6o_multicast_ifp = NULL;
   2270 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2271 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   2272 		LIST_INIT(&im6o->im6o_memberships);
   2273 	}
   2274 
   2275 	switch (sopt->sopt_name) {
   2276 
   2277 	case IPV6_MULTICAST_IF:
   2278 		/*
   2279 		 * Select the interface for outgoing multicast packets.
   2280 		 */
   2281 		error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
   2282 		if (error != 0)
   2283 			break;
   2284 
   2285 		if (ifindex != 0) {
   2286 			if ((ifp = if_byindex(ifindex)) == NULL) {
   2287 				error = ENXIO;	/* XXX EINVAL? */
   2288 				break;
   2289 			}
   2290 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   2291 				error = EADDRNOTAVAIL;
   2292 				break;
   2293 			}
   2294 		} else
   2295 			ifp = NULL;
   2296 		im6o->im6o_multicast_ifp = ifp;
   2297 		break;
   2298 
   2299 	case IPV6_MULTICAST_HOPS:
   2300 	    {
   2301 		/*
   2302 		 * Set the IP6 hoplimit for outgoing multicast packets.
   2303 		 */
   2304 		int optval;
   2305 
   2306 		error = sockopt_getint(sopt, &optval);
   2307 		if (error != 0)
   2308 			break;
   2309 
   2310 		if (optval < -1 || optval >= 256)
   2311 			error = EINVAL;
   2312 		else if (optval == -1)
   2313 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2314 		else
   2315 			im6o->im6o_multicast_hlim = optval;
   2316 		break;
   2317 	    }
   2318 
   2319 	case IPV6_MULTICAST_LOOP:
   2320 		/*
   2321 		 * Set the loopback flag for outgoing multicast packets.
   2322 		 * Must be zero or one.
   2323 		 */
   2324 		error = sockopt_get(sopt, &loop, sizeof(loop));
   2325 		if (error != 0)
   2326 			break;
   2327 		if (loop > 1) {
   2328 			error = EINVAL;
   2329 			break;
   2330 		}
   2331 		im6o->im6o_multicast_loop = loop;
   2332 		break;
   2333 
   2334 	case IPV6_JOIN_GROUP:
   2335 		/*
   2336 		 * Add a multicast group membership.
   2337 		 * Group must be a valid IP6 multicast address.
   2338 		 */
   2339 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2340 		if (error != 0)
   2341 			break;
   2342 
   2343 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq.ipv6mr_multiaddr)) {
   2344 			/*
   2345 			 * We use the unspecified address to specify to accept
   2346 			 * all multicast addresses. Only super user is allowed
   2347 			 * to do this.
   2348 			 */
   2349 			if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_IPV6,
   2350 			    KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
   2351 			{
   2352 				error = EACCES;
   2353 				break;
   2354 			}
   2355 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq.ipv6mr_multiaddr)) {
   2356 			error = EINVAL;
   2357 			break;
   2358 		}
   2359 
   2360 		/*
   2361 		 * If no interface was explicitly specified, choose an
   2362 		 * appropriate one according to the given multicast address.
   2363 		 */
   2364 		if (mreq.ipv6mr_interface == 0) {
   2365 			struct rtentry *rt;
   2366 			union {
   2367 				struct sockaddr		dst;
   2368 				struct sockaddr_in6	dst6;
   2369 			} u;
   2370 
   2371 			/*
   2372 			 * Look up the routing table for the
   2373 			 * address, and choose the outgoing interface.
   2374 			 *   XXX: is it a good approach?
   2375 			 */
   2376 			memset(&ro, 0, sizeof(ro));
   2377 			sockaddr_in6_init(&u.dst6, &mreq.ipv6mr_multiaddr, 0,
   2378 			    0, 0);
   2379 			rtcache_setdst(&ro, &u.dst);
   2380 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
   2381 			                                        : NULL;
   2382 			rtcache_free(&ro);
   2383 		} else {
   2384 			/*
   2385 			 * If the interface is specified, validate it.
   2386 			 */
   2387 			if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
   2388 				error = ENXIO;	/* XXX EINVAL? */
   2389 				break;
   2390 			}
   2391 		}
   2392 
   2393 		/*
   2394 		 * See if we found an interface, and confirm that it
   2395 		 * supports multicast
   2396 		 */
   2397 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   2398 			error = EADDRNOTAVAIL;
   2399 			break;
   2400 		}
   2401 
   2402 		if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
   2403 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   2404 			break;
   2405 		}
   2406 
   2407 		/*
   2408 		 * See if the membership already exists.
   2409 		 */
   2410 		for (imm = im6o->im6o_memberships.lh_first;
   2411 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   2412 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2413 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2414 			    &mreq.ipv6mr_multiaddr))
   2415 				break;
   2416 		if (imm != NULL) {
   2417 			error = EADDRINUSE;
   2418 			break;
   2419 		}
   2420 		/*
   2421 		 * Everything looks good; add a new record to the multicast
   2422 		 * address list for the given interface.
   2423 		 */
   2424 		imm = in6_joingroup(ifp, &mreq.ipv6mr_multiaddr, &error, 0);
   2425 		if (imm == NULL)
   2426 			break;
   2427 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2428 		break;
   2429 
   2430 	case IPV6_LEAVE_GROUP:
   2431 		/*
   2432 		 * Drop a multicast group membership.
   2433 		 * Group must be a valid IP6 multicast address.
   2434 		 */
   2435 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2436 		if (error != 0)
   2437 			break;
   2438 
   2439 		/*
   2440 		 * If an interface address was specified, get a pointer
   2441 		 * to its ifnet structure.
   2442 		 */
   2443 		if (mreq.ipv6mr_interface != 0) {
   2444 			if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
   2445 				error = ENXIO;	/* XXX EINVAL? */
   2446 				break;
   2447 			}
   2448 		} else
   2449 			ifp = NULL;
   2450 
   2451 		/* Fill in the scope zone ID */
   2452 		if (ifp) {
   2453 			if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
   2454 				/* XXX: should not happen */
   2455 				error = EADDRNOTAVAIL;
   2456 				break;
   2457 			}
   2458 		} else if (mreq.ipv6mr_interface != 0) {
   2459 			/*
   2460 			 * XXX: This case would happens when the (positive)
   2461 			 * index is in the valid range, but the corresponding
   2462 			 * interface has been detached dynamically.  The above
   2463 			 * check probably avoids such case to happen here, but
   2464 			 * we check it explicitly for safety.
   2465 			 */
   2466 			error = EADDRNOTAVAIL;
   2467 			break;
   2468 		} else {	/* ipv6mr_interface == 0 */
   2469 			struct sockaddr_in6 sa6_mc;
   2470 
   2471 			/*
   2472 			 * The API spec says as follows:
   2473 			 *  If the interface index is specified as 0, the
   2474 			 *  system may choose a multicast group membership to
   2475 			 *  drop by matching the multicast address only.
   2476 			 * On the other hand, we cannot disambiguate the scope
   2477 			 * zone unless an interface is provided.  Thus, we
   2478 			 * check if there's ambiguity with the default scope
   2479 			 * zone as the last resort.
   2480 			 */
   2481 			sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
   2482 			    0, 0, 0);
   2483 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2484 			if (error != 0)
   2485 				break;
   2486 			mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2487 		}
   2488 
   2489 		/*
   2490 		 * Find the membership in the membership list.
   2491 		 */
   2492 		for (imm = im6o->im6o_memberships.lh_first;
   2493 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   2494 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2495 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2496 			    &mreq.ipv6mr_multiaddr))
   2497 				break;
   2498 		}
   2499 		if (imm == NULL) {
   2500 			/* Unable to resolve interface */
   2501 			error = EADDRNOTAVAIL;
   2502 			break;
   2503 		}
   2504 		/*
   2505 		 * Give up the multicast address record to which the
   2506 		 * membership points.
   2507 		 */
   2508 		LIST_REMOVE(imm, i6mm_chain);
   2509 		in6_leavegroup(imm);
   2510 		break;
   2511 
   2512 	default:
   2513 		error = EOPNOTSUPP;
   2514 		break;
   2515 	}
   2516 
   2517 	/*
   2518 	 * If all options have default values, no need to keep the mbuf.
   2519 	 */
   2520 	if (im6o->im6o_multicast_ifp == NULL &&
   2521 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2522 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2523 	    im6o->im6o_memberships.lh_first == NULL) {
   2524 		free(*im6op, M_IPMOPTS);
   2525 		*im6op = NULL;
   2526 	}
   2527 
   2528 	return (error);
   2529 }
   2530 
   2531 /*
   2532  * Return the IP6 multicast options in response to user getsockopt().
   2533  */
   2534 static int
   2535 ip6_getmoptions(struct sockopt *sopt, struct ip6_moptions *im6o)
   2536 {
   2537 	u_int optval;
   2538 	int error;
   2539 
   2540 	switch (sopt->sopt_name) {
   2541 	case IPV6_MULTICAST_IF:
   2542 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
   2543 			optval = 0;
   2544 		else
   2545 			optval = im6o->im6o_multicast_ifp->if_index;
   2546 
   2547 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2548 		break;
   2549 
   2550 	case IPV6_MULTICAST_HOPS:
   2551 		if (im6o == NULL)
   2552 			optval = ip6_defmcasthlim;
   2553 		else
   2554 			optval = im6o->im6o_multicast_hlim;
   2555 
   2556 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2557 		break;
   2558 
   2559 	case IPV6_MULTICAST_LOOP:
   2560 		if (im6o == NULL)
   2561 			optval = IPV6_DEFAULT_MULTICAST_LOOP;
   2562 		else
   2563 			optval = im6o->im6o_multicast_loop;
   2564 
   2565 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2566 		break;
   2567 
   2568 	default:
   2569 		error = EOPNOTSUPP;
   2570 	}
   2571 
   2572 	return (error);
   2573 }
   2574 
   2575 /*
   2576  * Discard the IP6 multicast options.
   2577  */
   2578 void
   2579 ip6_freemoptions(struct ip6_moptions *im6o)
   2580 {
   2581 	struct in6_multi_mship *imm;
   2582 
   2583 	if (im6o == NULL)
   2584 		return;
   2585 
   2586 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   2587 		LIST_REMOVE(imm, i6mm_chain);
   2588 		in6_leavegroup(imm);
   2589 	}
   2590 	free(im6o, M_IPMOPTS);
   2591 }
   2592 
   2593 /*
   2594  * Set IPv6 outgoing packet options based on advanced API.
   2595  */
   2596 int
   2597 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
   2598 	struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
   2599 {
   2600 	struct cmsghdr *cm = 0;
   2601 
   2602 	if (control == NULL || opt == NULL)
   2603 		return (EINVAL);
   2604 
   2605 	ip6_initpktopts(opt);
   2606 	if (stickyopt) {
   2607 		int error;
   2608 
   2609 		/*
   2610 		 * If stickyopt is provided, make a local copy of the options
   2611 		 * for this particular packet, then override them by ancillary
   2612 		 * objects.
   2613 		 * XXX: copypktopts() does not copy the cached route to a next
   2614 		 * hop (if any).  This is not very good in terms of efficiency,
   2615 		 * but we can allow this since this option should be rarely
   2616 		 * used.
   2617 		 */
   2618 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
   2619 			return (error);
   2620 	}
   2621 
   2622 	/*
   2623 	 * XXX: Currently, we assume all the optional information is stored
   2624 	 * in a single mbuf.
   2625 	 */
   2626 	if (control->m_next)
   2627 		return (EINVAL);
   2628 
   2629 	/* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
   2630 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2631 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2632 		int error;
   2633 
   2634 		if (control->m_len < CMSG_LEN(0))
   2635 			return (EINVAL);
   2636 
   2637 		cm = mtod(control, struct cmsghdr *);
   2638 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   2639 			return (EINVAL);
   2640 		if (cm->cmsg_level != IPPROTO_IPV6)
   2641 			continue;
   2642 
   2643 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
   2644 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
   2645 		if (error)
   2646 			return (error);
   2647 	}
   2648 
   2649 	return (0);
   2650 }
   2651 
   2652 /*
   2653  * Set a particular packet option, as a sticky option or an ancillary data
   2654  * item.  "len" can be 0 only when it's a sticky option.
   2655  * We have 4 cases of combination of "sticky" and "cmsg":
   2656  * "sticky=0, cmsg=0": impossible
   2657  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
   2658  * "sticky=1, cmsg=0": RFC3542 socket option
   2659  * "sticky=1, cmsg=1": RFC2292 socket option
   2660  */
   2661 static int
   2662 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
   2663     kauth_cred_t cred, int sticky, int cmsg, int uproto)
   2664 {
   2665 	int minmtupolicy;
   2666 	int error;
   2667 
   2668 	if (!sticky && !cmsg) {
   2669 #ifdef DIAGNOSTIC
   2670 		printf("ip6_setpktopt: impossible case\n");
   2671 #endif
   2672 		return (EINVAL);
   2673 	}
   2674 
   2675 	/*
   2676 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
   2677 	 * not be specified in the context of RFC3542.  Conversely,
   2678 	 * RFC3542 types should not be specified in the context of RFC2292.
   2679 	 */
   2680 	if (!cmsg) {
   2681 		switch (optname) {
   2682 		case IPV6_2292PKTINFO:
   2683 		case IPV6_2292HOPLIMIT:
   2684 		case IPV6_2292NEXTHOP:
   2685 		case IPV6_2292HOPOPTS:
   2686 		case IPV6_2292DSTOPTS:
   2687 		case IPV6_2292RTHDR:
   2688 		case IPV6_2292PKTOPTIONS:
   2689 			return (ENOPROTOOPT);
   2690 		}
   2691 	}
   2692 	if (sticky && cmsg) {
   2693 		switch (optname) {
   2694 		case IPV6_PKTINFO:
   2695 		case IPV6_HOPLIMIT:
   2696 		case IPV6_NEXTHOP:
   2697 		case IPV6_HOPOPTS:
   2698 		case IPV6_DSTOPTS:
   2699 		case IPV6_RTHDRDSTOPTS:
   2700 		case IPV6_RTHDR:
   2701 		case IPV6_USE_MIN_MTU:
   2702 		case IPV6_DONTFRAG:
   2703 		case IPV6_OTCLASS:
   2704 		case IPV6_TCLASS:
   2705 			return (ENOPROTOOPT);
   2706 		}
   2707 	}
   2708 
   2709 	switch (optname) {
   2710 #ifdef RFC2292
   2711 	case IPV6_2292PKTINFO:
   2712 #endif
   2713 	case IPV6_PKTINFO:
   2714 	{
   2715 		struct ifnet *ifp = NULL;
   2716 		struct in6_pktinfo *pktinfo;
   2717 
   2718 		if (len != sizeof(struct in6_pktinfo))
   2719 			return (EINVAL);
   2720 
   2721 		pktinfo = (struct in6_pktinfo *)buf;
   2722 
   2723 		/*
   2724 		 * An application can clear any sticky IPV6_PKTINFO option by
   2725 		 * doing a "regular" setsockopt with ipi6_addr being
   2726 		 * in6addr_any and ipi6_ifindex being zero.
   2727 		 * [RFC 3542, Section 6]
   2728 		 */
   2729 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
   2730 		    pktinfo->ipi6_ifindex == 0 &&
   2731 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2732 			ip6_clearpktopts(opt, optname);
   2733 			break;
   2734 		}
   2735 
   2736 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
   2737 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2738 			return (EINVAL);
   2739 		}
   2740 
   2741 		/* Validate the interface index if specified. */
   2742 		if (pktinfo->ipi6_ifindex) {
   2743 			ifp = if_byindex(pktinfo->ipi6_ifindex);
   2744 			if (ifp == NULL)
   2745 				return (ENXIO);
   2746 		}
   2747 
   2748 		/*
   2749 		 * We store the address anyway, and let in6_selectsrc()
   2750 		 * validate the specified address.  This is because ipi6_addr
   2751 		 * may not have enough information about its scope zone, and
   2752 		 * we may need additional information (such as outgoing
   2753 		 * interface or the scope zone of a destination address) to
   2754 		 * disambiguate the scope.
   2755 		 * XXX: the delay of the validation may confuse the
   2756 		 * application when it is used as a sticky option.
   2757 		 */
   2758 		if (opt->ip6po_pktinfo == NULL) {
   2759 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
   2760 			    M_IP6OPT, M_NOWAIT);
   2761 			if (opt->ip6po_pktinfo == NULL)
   2762 				return (ENOBUFS);
   2763 		}
   2764 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
   2765 		break;
   2766 	}
   2767 
   2768 #ifdef RFC2292
   2769 	case IPV6_2292HOPLIMIT:
   2770 #endif
   2771 	case IPV6_HOPLIMIT:
   2772 	{
   2773 		int *hlimp;
   2774 
   2775 		/*
   2776 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
   2777 		 * to simplify the ordering among hoplimit options.
   2778 		 */
   2779 		if (optname == IPV6_HOPLIMIT && sticky)
   2780 			return (ENOPROTOOPT);
   2781 
   2782 		if (len != sizeof(int))
   2783 			return (EINVAL);
   2784 		hlimp = (int *)buf;
   2785 		if (*hlimp < -1 || *hlimp > 255)
   2786 			return (EINVAL);
   2787 
   2788 		opt->ip6po_hlim = *hlimp;
   2789 		break;
   2790 	}
   2791 
   2792 	case IPV6_OTCLASS:
   2793 		if (len != sizeof(u_int8_t))
   2794 			return (EINVAL);
   2795 
   2796 		opt->ip6po_tclass = *(u_int8_t *)buf;
   2797 		break;
   2798 
   2799 	case IPV6_TCLASS:
   2800 	{
   2801 		int tclass;
   2802 
   2803 		if (len != sizeof(int))
   2804 			return (EINVAL);
   2805 		tclass = *(int *)buf;
   2806 		if (tclass < -1 || tclass > 255)
   2807 			return (EINVAL);
   2808 
   2809 		opt->ip6po_tclass = tclass;
   2810 		break;
   2811 	}
   2812 
   2813 #ifdef RFC2292
   2814 	case IPV6_2292NEXTHOP:
   2815 #endif
   2816 	case IPV6_NEXTHOP:
   2817 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   2818 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2819 		if (error)
   2820 			return (error);
   2821 
   2822 		if (len == 0) {	/* just remove the option */
   2823 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
   2824 			break;
   2825 		}
   2826 
   2827 		/* check if cmsg_len is large enough for sa_len */
   2828 		if (len < sizeof(struct sockaddr) || len < *buf)
   2829 			return (EINVAL);
   2830 
   2831 		switch (((struct sockaddr *)buf)->sa_family) {
   2832 		case AF_INET6:
   2833 		{
   2834 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
   2835 
   2836 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
   2837 				return (EINVAL);
   2838 
   2839 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
   2840 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
   2841 				return (EINVAL);
   2842 			}
   2843 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
   2844 			    != 0) {
   2845 				return (error);
   2846 			}
   2847 			break;
   2848 		}
   2849 		case AF_LINK:	/* eventually be supported? */
   2850 		default:
   2851 			return (EAFNOSUPPORT);
   2852 		}
   2853 
   2854 		/* turn off the previous option, then set the new option. */
   2855 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
   2856 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
   2857 		if (opt->ip6po_nexthop == NULL)
   2858 			return (ENOBUFS);
   2859 		memcpy(opt->ip6po_nexthop, buf, *buf);
   2860 		break;
   2861 
   2862 #ifdef RFC2292
   2863 	case IPV6_2292HOPOPTS:
   2864 #endif
   2865 	case IPV6_HOPOPTS:
   2866 	{
   2867 		struct ip6_hbh *hbh;
   2868 		int hbhlen;
   2869 
   2870 		/*
   2871 		 * XXX: We don't allow a non-privileged user to set ANY HbH
   2872 		 * options, since per-option restriction has too much
   2873 		 * overhead.
   2874 		 */
   2875 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   2876 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2877 		if (error)
   2878 			return (error);
   2879 
   2880 		if (len == 0) {
   2881 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
   2882 			break;	/* just remove the option */
   2883 		}
   2884 
   2885 		/* message length validation */
   2886 		if (len < sizeof(struct ip6_hbh))
   2887 			return (EINVAL);
   2888 		hbh = (struct ip6_hbh *)buf;
   2889 		hbhlen = (hbh->ip6h_len + 1) << 3;
   2890 		if (len != hbhlen)
   2891 			return (EINVAL);
   2892 
   2893 		/* turn off the previous option, then set the new option. */
   2894 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
   2895 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
   2896 		if (opt->ip6po_hbh == NULL)
   2897 			return (ENOBUFS);
   2898 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
   2899 
   2900 		break;
   2901 	}
   2902 
   2903 #ifdef RFC2292
   2904 	case IPV6_2292DSTOPTS:
   2905 #endif
   2906 	case IPV6_DSTOPTS:
   2907 	case IPV6_RTHDRDSTOPTS:
   2908 	{
   2909 		struct ip6_dest *dest, **newdest = NULL;
   2910 		int destlen;
   2911 
   2912 		/* XXX: see the comment for IPV6_HOPOPTS */
   2913 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   2914 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2915 		if (error)
   2916 			return (error);
   2917 
   2918 		if (len == 0) {
   2919 			ip6_clearpktopts(opt, optname);
   2920 			break;	/* just remove the option */
   2921 		}
   2922 
   2923 		/* message length validation */
   2924 		if (len < sizeof(struct ip6_dest))
   2925 			return (EINVAL);
   2926 		dest = (struct ip6_dest *)buf;
   2927 		destlen = (dest->ip6d_len + 1) << 3;
   2928 		if (len != destlen)
   2929 			return (EINVAL);
   2930 		/*
   2931 		 * Determine the position that the destination options header
   2932 		 * should be inserted; before or after the routing header.
   2933 		 */
   2934 		switch (optname) {
   2935 		case IPV6_2292DSTOPTS:
   2936 			/*
   2937 			 * The old advanced API is ambiguous on this point.
   2938 			 * Our approach is to determine the position based
   2939 			 * according to the existence of a routing header.
   2940 			 * Note, however, that this depends on the order of the
   2941 			 * extension headers in the ancillary data; the 1st
   2942 			 * part of the destination options header must appear
   2943 			 * before the routing header in the ancillary data,
   2944 			 * too.
   2945 			 * RFC3542 solved the ambiguity by introducing
   2946 			 * separate ancillary data or option types.
   2947 			 */
   2948 			if (opt->ip6po_rthdr == NULL)
   2949 				newdest = &opt->ip6po_dest1;
   2950 			else
   2951 				newdest = &opt->ip6po_dest2;
   2952 			break;
   2953 		case IPV6_RTHDRDSTOPTS:
   2954 			newdest = &opt->ip6po_dest1;
   2955 			break;
   2956 		case IPV6_DSTOPTS:
   2957 			newdest = &opt->ip6po_dest2;
   2958 			break;
   2959 		}
   2960 
   2961 		/* turn off the previous option, then set the new option. */
   2962 		ip6_clearpktopts(opt, optname);
   2963 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
   2964 		if (*newdest == NULL)
   2965 			return (ENOBUFS);
   2966 		memcpy(*newdest, dest, destlen);
   2967 
   2968 		break;
   2969 	}
   2970 
   2971 #ifdef RFC2292
   2972 	case IPV6_2292RTHDR:
   2973 #endif
   2974 	case IPV6_RTHDR:
   2975 	{
   2976 		struct ip6_rthdr *rth;
   2977 		int rthlen;
   2978 
   2979 		if (len == 0) {
   2980 			ip6_clearpktopts(opt, IPV6_RTHDR);
   2981 			break;	/* just remove the option */
   2982 		}
   2983 
   2984 		/* message length validation */
   2985 		if (len < sizeof(struct ip6_rthdr))
   2986 			return (EINVAL);
   2987 		rth = (struct ip6_rthdr *)buf;
   2988 		rthlen = (rth->ip6r_len + 1) << 3;
   2989 		if (len != rthlen)
   2990 			return (EINVAL);
   2991 		switch (rth->ip6r_type) {
   2992 		case IPV6_RTHDR_TYPE_0:
   2993 			if (rth->ip6r_len == 0)	/* must contain one addr */
   2994 				return (EINVAL);
   2995 			if (rth->ip6r_len % 2) /* length must be even */
   2996 				return (EINVAL);
   2997 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
   2998 				return (EINVAL);
   2999 			break;
   3000 		default:
   3001 			return (EINVAL);	/* not supported */
   3002 		}
   3003 		/* turn off the previous option */
   3004 		ip6_clearpktopts(opt, IPV6_RTHDR);
   3005 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
   3006 		if (opt->ip6po_rthdr == NULL)
   3007 			return (ENOBUFS);
   3008 		memcpy(opt->ip6po_rthdr, rth, rthlen);
   3009 		break;
   3010 	}
   3011 
   3012 	case IPV6_USE_MIN_MTU:
   3013 		if (len != sizeof(int))
   3014 			return (EINVAL);
   3015 		minmtupolicy = *(int *)buf;
   3016 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
   3017 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
   3018 		    minmtupolicy != IP6PO_MINMTU_ALL) {
   3019 			return (EINVAL);
   3020 		}
   3021 		opt->ip6po_minmtu = minmtupolicy;
   3022 		break;
   3023 
   3024 	case IPV6_DONTFRAG:
   3025 		if (len != sizeof(int))
   3026 			return (EINVAL);
   3027 
   3028 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
   3029 			/*
   3030 			 * we ignore this option for TCP sockets.
   3031 			 * (RFC3542 leaves this case unspecified.)
   3032 			 */
   3033 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
   3034 		} else
   3035 			opt->ip6po_flags |= IP6PO_DONTFRAG;
   3036 		break;
   3037 
   3038 	default:
   3039 		return (ENOPROTOOPT);
   3040 	} /* end of switch */
   3041 
   3042 	return (0);
   3043 }
   3044 
   3045 /*
   3046  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   3047  * packet to the input queue of a specified interface.  Note that this
   3048  * calls the output routine of the loopback "driver", but with an interface
   3049  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   3050  */
   3051 void
   3052 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
   3053 	const struct sockaddr_in6 *dst)
   3054 {
   3055 	struct mbuf *copym;
   3056 	struct ip6_hdr *ip6;
   3057 
   3058 	copym = m_copy(m, 0, M_COPYALL);
   3059 	if (copym == NULL)
   3060 		return;
   3061 
   3062 	/*
   3063 	 * Make sure to deep-copy IPv6 header portion in case the data
   3064 	 * is in an mbuf cluster, so that we can safely override the IPv6
   3065 	 * header portion later.
   3066 	 */
   3067 	if ((copym->m_flags & M_EXT) != 0 ||
   3068 	    copym->m_len < sizeof(struct ip6_hdr)) {
   3069 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   3070 		if (copym == NULL)
   3071 			return;
   3072 	}
   3073 
   3074 #ifdef DIAGNOSTIC
   3075 	if (copym->m_len < sizeof(*ip6)) {
   3076 		m_freem(copym);
   3077 		return;
   3078 	}
   3079 #endif
   3080 
   3081 	ip6 = mtod(copym, struct ip6_hdr *);
   3082 	/*
   3083 	 * clear embedded scope identifiers if necessary.
   3084 	 * in6_clearscope will touch the addresses only when necessary.
   3085 	 */
   3086 	in6_clearscope(&ip6->ip6_src);
   3087 	in6_clearscope(&ip6->ip6_dst);
   3088 
   3089 	(void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
   3090 }
   3091 
   3092 /*
   3093  * Chop IPv6 header off from the payload.
   3094  */
   3095 static int
   3096 ip6_splithdr(struct mbuf *m,  struct ip6_exthdrs *exthdrs)
   3097 {
   3098 	struct mbuf *mh;
   3099 	struct ip6_hdr *ip6;
   3100 
   3101 	ip6 = mtod(m, struct ip6_hdr *);
   3102 	if (m->m_len > sizeof(*ip6)) {
   3103 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   3104 		if (mh == 0) {
   3105 			m_freem(m);
   3106 			return ENOBUFS;
   3107 		}
   3108 		M_MOVE_PKTHDR(mh, m);
   3109 		MH_ALIGN(mh, sizeof(*ip6));
   3110 		m->m_len -= sizeof(*ip6);
   3111 		m->m_data += sizeof(*ip6);
   3112 		mh->m_next = m;
   3113 		m = mh;
   3114 		m->m_len = sizeof(*ip6);
   3115 		bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
   3116 	}
   3117 	exthdrs->ip6e_ip6 = m;
   3118 	return 0;
   3119 }
   3120 
   3121 /*
   3122  * Compute IPv6 extension header length.
   3123  */
   3124 int
   3125 ip6_optlen(struct in6pcb *in6p)
   3126 {
   3127 	int len;
   3128 
   3129 	if (!in6p->in6p_outputopts)
   3130 		return 0;
   3131 
   3132 	len = 0;
   3133 #define elen(x) \
   3134     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   3135 
   3136 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   3137 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   3138 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   3139 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   3140 	return len;
   3141 #undef elen
   3142 }
   3143