ip6_output.c revision 1.154 1 /* $NetBSD: ip6_output.c,v 1.154 2013/06/29 21:06:58 rmind Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.154 2013/06/29 21:06:58 rmind Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70
71 #include <sys/param.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/errno.h>
75 #include <sys/protosw.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/kauth.h>
81
82 #include <net/if.h>
83 #include <net/route.h>
84 #include <net/pfil.h>
85
86 #include <netinet/in.h>
87 #include <netinet/in_var.h>
88 #include <netinet/ip6.h>
89 #include <netinet/icmp6.h>
90 #include <netinet/in_offload.h>
91 #include <netinet/portalgo.h>
92 #include <netinet6/in6_offload.h>
93 #include <netinet6/ip6_var.h>
94 #include <netinet6/ip6_private.h>
95 #include <netinet6/in6_pcb.h>
96 #include <netinet6/nd6.h>
97 #include <netinet6/ip6protosw.h>
98 #include <netinet6/scope6_var.h>
99
100 #ifdef IPSEC
101 #include <netipsec/ipsec.h>
102 #include <netipsec/ipsec6.h>
103 #include <netipsec/key.h>
104 #include <netipsec/xform.h>
105 #endif
106
107
108 #include <net/net_osdep.h>
109
110 extern pfil_head_t *inet6_pfil_hook; /* XXX */
111
112 struct ip6_exthdrs {
113 struct mbuf *ip6e_ip6;
114 struct mbuf *ip6e_hbh;
115 struct mbuf *ip6e_dest1;
116 struct mbuf *ip6e_rthdr;
117 struct mbuf *ip6e_dest2;
118 };
119
120 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
121 kauth_cred_t, int);
122 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
123 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
124 int, int, int);
125 static int ip6_setmoptions(const struct sockopt *, struct ip6_moptions **);
126 static int ip6_getmoptions(struct sockopt *, struct ip6_moptions *);
127 static int ip6_copyexthdr(struct mbuf **, void *, int);
128 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
129 struct ip6_frag **);
130 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
131 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
132 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *,
133 const struct in6_addr *, u_long *, int *);
134 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
135
136 #ifdef RFC2292
137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
138 #endif
139
140 /*
141 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
142 * header (with pri, len, nxt, hlim, src, dst).
143 * This function may modify ver and hlim only.
144 * The mbuf chain containing the packet will be freed.
145 * The mbuf opt, if present, will not be freed.
146 *
147 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
148 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
149 * which is rt_rmx.rmx_mtu.
150 */
151 int
152 ip6_output(
153 struct mbuf *m0,
154 struct ip6_pktopts *opt,
155 struct route *ro,
156 int flags,
157 struct ip6_moptions *im6o,
158 struct socket *so,
159 struct ifnet **ifpp /* XXX: just for statistics */
160 )
161 {
162 struct ip6_hdr *ip6, *mhip6;
163 struct ifnet *ifp, *origifp;
164 struct mbuf *m = m0;
165 int hlen, tlen, len, off;
166 bool tso;
167 struct route ip6route;
168 struct rtentry *rt = NULL;
169 const struct sockaddr_in6 *dst = NULL;
170 struct sockaddr_in6 src_sa, dst_sa;
171 int error = 0;
172 struct in6_ifaddr *ia = NULL;
173 u_long mtu;
174 int alwaysfrag, dontfrag;
175 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
176 struct ip6_exthdrs exthdrs;
177 struct in6_addr finaldst, src0, dst0;
178 u_int32_t zone;
179 struct route *ro_pmtu = NULL;
180 int hdrsplit = 0;
181 int needipsec = 0;
182 #ifdef IPSEC
183 struct secpolicy *sp = NULL;
184 int s;
185 #endif
186
187 memset(&ip6route, 0, sizeof(ip6route));
188
189 #ifdef DIAGNOSTIC
190 if ((m->m_flags & M_PKTHDR) == 0)
191 panic("ip6_output: no HDR");
192
193 if ((m->m_pkthdr.csum_flags &
194 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
195 panic("ip6_output: IPv4 checksum offload flags: %d",
196 m->m_pkthdr.csum_flags);
197 }
198
199 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
200 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
201 panic("ip6_output: conflicting checksum offload flags: %d",
202 m->m_pkthdr.csum_flags);
203 }
204 #endif
205
206 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
207
208 #define MAKE_EXTHDR(hp, mp) \
209 do { \
210 if (hp) { \
211 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
212 error = ip6_copyexthdr((mp), (void *)(hp), \
213 ((eh)->ip6e_len + 1) << 3); \
214 if (error) \
215 goto freehdrs; \
216 } \
217 } while (/*CONSTCOND*/ 0)
218
219 memset(&exthdrs, 0, sizeof(exthdrs));
220 if (opt) {
221 /* Hop-by-Hop options header */
222 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
223 /* Destination options header(1st part) */
224 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
225 /* Routing header */
226 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
227 /* Destination options header(2nd part) */
228 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
229 }
230
231 /*
232 * Calculate the total length of the extension header chain.
233 * Keep the length of the unfragmentable part for fragmentation.
234 */
235 optlen = 0;
236 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
237 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
238 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
239 unfragpartlen = optlen + sizeof(struct ip6_hdr);
240 /* NOTE: we don't add AH/ESP length here. do that later. */
241 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
242
243 #ifdef IPSEC
244 /* Check the security policy (SP) for the packet */
245
246 sp = ipsec6_check_policy(m,so,flags,&needipsec,&error);
247 if (error != 0) {
248 /*
249 * Hack: -EINVAL is used to signal that a packet
250 * should be silently discarded. This is typically
251 * because we asked key management for an SA and
252 * it was delayed (e.g. kicked up to IKE).
253 */
254 if (error == -EINVAL)
255 error = 0;
256 goto freehdrs;
257 }
258 #endif /* IPSEC */
259
260
261 if (needipsec &&
262 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
263 in6_delayed_cksum(m);
264 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
265 }
266
267
268 /*
269 * If we need IPsec, or there is at least one extension header,
270 * separate IP6 header from the payload.
271 */
272 if ((needipsec || optlen) && !hdrsplit) {
273 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
274 m = NULL;
275 goto freehdrs;
276 }
277 m = exthdrs.ip6e_ip6;
278 hdrsplit++;
279 }
280
281 /* adjust pointer */
282 ip6 = mtod(m, struct ip6_hdr *);
283
284 /* adjust mbuf packet header length */
285 m->m_pkthdr.len += optlen;
286 plen = m->m_pkthdr.len - sizeof(*ip6);
287
288 /* If this is a jumbo payload, insert a jumbo payload option. */
289 if (plen > IPV6_MAXPACKET) {
290 if (!hdrsplit) {
291 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
292 m = NULL;
293 goto freehdrs;
294 }
295 m = exthdrs.ip6e_ip6;
296 hdrsplit++;
297 }
298 /* adjust pointer */
299 ip6 = mtod(m, struct ip6_hdr *);
300 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
301 goto freehdrs;
302 optlen += 8; /* XXX JUMBOOPTLEN */
303 ip6->ip6_plen = 0;
304 } else
305 ip6->ip6_plen = htons(plen);
306
307 /*
308 * Concatenate headers and fill in next header fields.
309 * Here we have, on "m"
310 * IPv6 payload
311 * and we insert headers accordingly. Finally, we should be getting:
312 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
313 *
314 * during the header composing process, "m" points to IPv6 header.
315 * "mprev" points to an extension header prior to esp.
316 */
317 {
318 u_char *nexthdrp = &ip6->ip6_nxt;
319 struct mbuf *mprev = m;
320
321 /*
322 * we treat dest2 specially. this makes IPsec processing
323 * much easier. the goal here is to make mprev point the
324 * mbuf prior to dest2.
325 *
326 * result: IPv6 dest2 payload
327 * m and mprev will point to IPv6 header.
328 */
329 if (exthdrs.ip6e_dest2) {
330 if (!hdrsplit)
331 panic("assumption failed: hdr not split");
332 exthdrs.ip6e_dest2->m_next = m->m_next;
333 m->m_next = exthdrs.ip6e_dest2;
334 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
335 ip6->ip6_nxt = IPPROTO_DSTOPTS;
336 }
337
338 #define MAKE_CHAIN(m, mp, p, i)\
339 do {\
340 if (m) {\
341 if (!hdrsplit) \
342 panic("assumption failed: hdr not split"); \
343 *mtod((m), u_char *) = *(p);\
344 *(p) = (i);\
345 p = mtod((m), u_char *);\
346 (m)->m_next = (mp)->m_next;\
347 (mp)->m_next = (m);\
348 (mp) = (m);\
349 }\
350 } while (/*CONSTCOND*/ 0)
351 /*
352 * result: IPv6 hbh dest1 rthdr dest2 payload
353 * m will point to IPv6 header. mprev will point to the
354 * extension header prior to dest2 (rthdr in the above case).
355 */
356 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
357 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
358 IPPROTO_DSTOPTS);
359 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
360 IPPROTO_ROUTING);
361
362 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
363 sizeof(struct ip6_hdr) + optlen);
364 }
365
366 /*
367 * If there is a routing header, replace destination address field
368 * with the first hop of the routing header.
369 */
370 if (exthdrs.ip6e_rthdr) {
371 struct ip6_rthdr *rh;
372 struct ip6_rthdr0 *rh0;
373 struct in6_addr *addr;
374 struct sockaddr_in6 sa;
375
376 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
377 struct ip6_rthdr *));
378 finaldst = ip6->ip6_dst;
379 switch (rh->ip6r_type) {
380 case IPV6_RTHDR_TYPE_0:
381 rh0 = (struct ip6_rthdr0 *)rh;
382 addr = (struct in6_addr *)(rh0 + 1);
383
384 /*
385 * construct a sockaddr_in6 form of
386 * the first hop.
387 *
388 * XXX: we may not have enough
389 * information about its scope zone;
390 * there is no standard API to pass
391 * the information from the
392 * application.
393 */
394 sockaddr_in6_init(&sa, addr, 0, 0, 0);
395 if ((error = sa6_embedscope(&sa,
396 ip6_use_defzone)) != 0) {
397 goto bad;
398 }
399 ip6->ip6_dst = sa.sin6_addr;
400 (void)memmove(&addr[0], &addr[1],
401 sizeof(struct in6_addr) *
402 (rh0->ip6r0_segleft - 1));
403 addr[rh0->ip6r0_segleft - 1] = finaldst;
404 /* XXX */
405 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
406 break;
407 default: /* is it possible? */
408 error = EINVAL;
409 goto bad;
410 }
411 }
412
413 /* Source address validation */
414 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
415 (flags & IPV6_UNSPECSRC) == 0) {
416 error = EOPNOTSUPP;
417 IP6_STATINC(IP6_STAT_BADSCOPE);
418 goto bad;
419 }
420 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
421 error = EOPNOTSUPP;
422 IP6_STATINC(IP6_STAT_BADSCOPE);
423 goto bad;
424 }
425
426 IP6_STATINC(IP6_STAT_LOCALOUT);
427
428 /*
429 * Route packet.
430 */
431 /* initialize cached route */
432 if (ro == NULL) {
433 ro = &ip6route;
434 }
435 ro_pmtu = ro;
436 if (opt && opt->ip6po_rthdr)
437 ro = &opt->ip6po_route;
438
439 /*
440 * if specified, try to fill in the traffic class field.
441 * do not override if a non-zero value is already set.
442 * we check the diffserv field and the ecn field separately.
443 */
444 if (opt && opt->ip6po_tclass >= 0) {
445 int mask = 0;
446
447 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
448 mask |= 0xfc;
449 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
450 mask |= 0x03;
451 if (mask != 0)
452 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
453 }
454
455 /* fill in or override the hop limit field, if necessary. */
456 if (opt && opt->ip6po_hlim != -1)
457 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
458 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
459 if (im6o != NULL)
460 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
461 else
462 ip6->ip6_hlim = ip6_defmcasthlim;
463 }
464
465 #ifdef IPSEC
466 if (needipsec) {
467 s = splsoftnet();
468 error = ipsec6_process_packet(m,sp->req);
469
470 /*
471 * Preserve KAME behaviour: ENOENT can be returned
472 * when an SA acquire is in progress. Don't propagate
473 * this to user-level; it confuses applications.
474 * XXX this will go away when the SADB is redone.
475 */
476 if (error == ENOENT)
477 error = 0;
478 splx(s);
479 goto done;
480 }
481 #endif /* IPSEC */
482
483
484
485 /* adjust pointer */
486 ip6 = mtod(m, struct ip6_hdr *);
487
488 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
489 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
490 &ifp, &rt, 0)) != 0) {
491 if (ifp != NULL)
492 in6_ifstat_inc(ifp, ifs6_out_discard);
493 goto bad;
494 }
495 if (rt == NULL) {
496 /*
497 * If in6_selectroute() does not return a route entry,
498 * dst may not have been updated.
499 */
500 error = rtcache_setdst(ro, sin6tosa(&dst_sa));
501 if (error) {
502 goto bad;
503 }
504 }
505
506 /*
507 * then rt (for unicast) and ifp must be non-NULL valid values.
508 */
509 if ((flags & IPV6_FORWARDING) == 0) {
510 /* XXX: the FORWARDING flag can be set for mrouting. */
511 in6_ifstat_inc(ifp, ifs6_out_request);
512 }
513 if (rt != NULL) {
514 ia = (struct in6_ifaddr *)(rt->rt_ifa);
515 rt->rt_use++;
516 }
517
518 /*
519 * The outgoing interface must be in the zone of source and
520 * destination addresses. We should use ia_ifp to support the
521 * case of sending packets to an address of our own.
522 */
523 if (ia != NULL && ia->ia_ifp)
524 origifp = ia->ia_ifp;
525 else
526 origifp = ifp;
527
528 src0 = ip6->ip6_src;
529 if (in6_setscope(&src0, origifp, &zone))
530 goto badscope;
531 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
532 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
533 goto badscope;
534
535 dst0 = ip6->ip6_dst;
536 if (in6_setscope(&dst0, origifp, &zone))
537 goto badscope;
538 /* re-initialize to be sure */
539 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
540 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
541 goto badscope;
542
543 /* scope check is done. */
544
545 if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
546 if (dst == NULL)
547 dst = satocsin6(rtcache_getdst(ro));
548 KASSERT(dst != NULL);
549 } else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) {
550 /*
551 * The nexthop is explicitly specified by the
552 * application. We assume the next hop is an IPv6
553 * address.
554 */
555 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
556 } else if ((rt->rt_flags & RTF_GATEWAY))
557 dst = (struct sockaddr_in6 *)rt->rt_gateway;
558 else if (dst == NULL)
559 dst = satocsin6(rtcache_getdst(ro));
560
561 /*
562 * XXXXXX: original code follows:
563 */
564 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
565 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
566 else {
567 struct in6_multi *in6m;
568
569 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
570
571 in6_ifstat_inc(ifp, ifs6_out_mcast);
572
573 /*
574 * Confirm that the outgoing interface supports multicast.
575 */
576 if (!(ifp->if_flags & IFF_MULTICAST)) {
577 IP6_STATINC(IP6_STAT_NOROUTE);
578 in6_ifstat_inc(ifp, ifs6_out_discard);
579 error = ENETUNREACH;
580 goto bad;
581 }
582
583 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
584 if (in6m != NULL &&
585 (im6o == NULL || im6o->im6o_multicast_loop)) {
586 /*
587 * If we belong to the destination multicast group
588 * on the outgoing interface, and the caller did not
589 * forbid loopback, loop back a copy.
590 */
591 KASSERT(dst != NULL);
592 ip6_mloopback(ifp, m, dst);
593 } else {
594 /*
595 * If we are acting as a multicast router, perform
596 * multicast forwarding as if the packet had just
597 * arrived on the interface to which we are about
598 * to send. The multicast forwarding function
599 * recursively calls this function, using the
600 * IPV6_FORWARDING flag to prevent infinite recursion.
601 *
602 * Multicasts that are looped back by ip6_mloopback(),
603 * above, will be forwarded by the ip6_input() routine,
604 * if necessary.
605 */
606 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
607 if (ip6_mforward(ip6, ifp, m) != 0) {
608 m_freem(m);
609 goto done;
610 }
611 }
612 }
613 /*
614 * Multicasts with a hoplimit of zero may be looped back,
615 * above, but must not be transmitted on a network.
616 * Also, multicasts addressed to the loopback interface
617 * are not sent -- the above call to ip6_mloopback() will
618 * loop back a copy if this host actually belongs to the
619 * destination group on the loopback interface.
620 */
621 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
622 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
623 m_freem(m);
624 goto done;
625 }
626 }
627
628 /*
629 * Fill the outgoing inteface to tell the upper layer
630 * to increment per-interface statistics.
631 */
632 if (ifpp)
633 *ifpp = ifp;
634
635 /* Determine path MTU. */
636 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
637 &alwaysfrag)) != 0)
638 goto bad;
639
640 /*
641 * The caller of this function may specify to use the minimum MTU
642 * in some cases.
643 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
644 * setting. The logic is a bit complicated; by default, unicast
645 * packets will follow path MTU while multicast packets will be sent at
646 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
647 * including unicast ones will be sent at the minimum MTU. Multicast
648 * packets will always be sent at the minimum MTU unless
649 * IP6PO_MINMTU_DISABLE is explicitly specified.
650 * See RFC 3542 for more details.
651 */
652 if (mtu > IPV6_MMTU) {
653 if ((flags & IPV6_MINMTU))
654 mtu = IPV6_MMTU;
655 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
656 mtu = IPV6_MMTU;
657 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
658 (opt == NULL ||
659 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
660 mtu = IPV6_MMTU;
661 }
662 }
663
664 /*
665 * clear embedded scope identifiers if necessary.
666 * in6_clearscope will touch the addresses only when necessary.
667 */
668 in6_clearscope(&ip6->ip6_src);
669 in6_clearscope(&ip6->ip6_dst);
670
671 /*
672 * If the outgoing packet contains a hop-by-hop options header,
673 * it must be examined and processed even by the source node.
674 * (RFC 2460, section 4.)
675 */
676 if (ip6->ip6_nxt == IPV6_HOPOPTS) {
677 u_int32_t dummy1; /* XXX unused */
678 u_int32_t dummy2; /* XXX unused */
679 int hoff = sizeof(struct ip6_hdr);
680
681 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
682 /* m was already freed at this point */
683 error = EINVAL;/* better error? */
684 goto done;
685 }
686
687 ip6 = mtod(m, struct ip6_hdr *);
688 }
689
690 /*
691 * Run through list of hooks for output packets.
692 */
693 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
694 goto done;
695 if (m == NULL)
696 goto done;
697 ip6 = mtod(m, struct ip6_hdr *);
698
699 /*
700 * Send the packet to the outgoing interface.
701 * If necessary, do IPv6 fragmentation before sending.
702 *
703 * the logic here is rather complex:
704 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
705 * 1-a: send as is if tlen <= path mtu
706 * 1-b: fragment if tlen > path mtu
707 *
708 * 2: if user asks us not to fragment (dontfrag == 1)
709 * 2-a: send as is if tlen <= interface mtu
710 * 2-b: error if tlen > interface mtu
711 *
712 * 3: if we always need to attach fragment header (alwaysfrag == 1)
713 * always fragment
714 *
715 * 4: if dontfrag == 1 && alwaysfrag == 1
716 * error, as we cannot handle this conflicting request
717 */
718 tlen = m->m_pkthdr.len;
719 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
720 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
721 dontfrag = 1;
722 else
723 dontfrag = 0;
724
725 if (dontfrag && alwaysfrag) { /* case 4 */
726 /* conflicting request - can't transmit */
727 error = EMSGSIZE;
728 goto bad;
729 }
730 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */
731 /*
732 * Even if the DONTFRAG option is specified, we cannot send the
733 * packet when the data length is larger than the MTU of the
734 * outgoing interface.
735 * Notify the error by sending IPV6_PATHMTU ancillary data as
736 * well as returning an error code (the latter is not described
737 * in the API spec.)
738 */
739 u_int32_t mtu32;
740 struct ip6ctlparam ip6cp;
741
742 mtu32 = (u_int32_t)mtu;
743 memset(&ip6cp, 0, sizeof(ip6cp));
744 ip6cp.ip6c_cmdarg = (void *)&mtu32;
745 pfctlinput2(PRC_MSGSIZE,
746 rtcache_getdst(ro_pmtu), &ip6cp);
747
748 error = EMSGSIZE;
749 goto bad;
750 }
751
752 /*
753 * transmit packet without fragmentation
754 */
755 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
756 /* case 1-a and 2-a */
757 struct in6_ifaddr *ia6;
758 int sw_csum;
759
760 ip6 = mtod(m, struct ip6_hdr *);
761 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
762 if (ia6) {
763 /* Record statistics for this interface address. */
764 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
765 }
766
767 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
768 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
769 if (IN6_NEED_CHECKSUM(ifp,
770 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
771 in6_delayed_cksum(m);
772 }
773 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
774 }
775
776 KASSERT(dst != NULL);
777 if (__predict_true(!tso ||
778 (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
779 error = nd6_output(ifp, origifp, m, dst, rt);
780 } else {
781 error = ip6_tso_output(ifp, origifp, m, dst, rt);
782 }
783 goto done;
784 }
785
786 if (tso) {
787 error = EINVAL; /* XXX */
788 goto bad;
789 }
790
791 /*
792 * try to fragment the packet. case 1-b and 3
793 */
794 if (mtu < IPV6_MMTU) {
795 /* path MTU cannot be less than IPV6_MMTU */
796 error = EMSGSIZE;
797 in6_ifstat_inc(ifp, ifs6_out_fragfail);
798 goto bad;
799 } else if (ip6->ip6_plen == 0) {
800 /* jumbo payload cannot be fragmented */
801 error = EMSGSIZE;
802 in6_ifstat_inc(ifp, ifs6_out_fragfail);
803 goto bad;
804 } else {
805 struct mbuf **mnext, *m_frgpart;
806 struct ip6_frag *ip6f;
807 u_int32_t id = htonl(ip6_randomid());
808 u_char nextproto;
809 #if 0 /* see below */
810 struct ip6ctlparam ip6cp;
811 u_int32_t mtu32;
812 #endif
813
814 /*
815 * Too large for the destination or interface;
816 * fragment if possible.
817 * Must be able to put at least 8 bytes per fragment.
818 */
819 hlen = unfragpartlen;
820 if (mtu > IPV6_MAXPACKET)
821 mtu = IPV6_MAXPACKET;
822
823 #if 0
824 /*
825 * It is believed this code is a leftover from the
826 * development of the IPV6_RECVPATHMTU sockopt and
827 * associated work to implement RFC3542.
828 * It's not entirely clear what the intent of the API
829 * is at this point, so disable this code for now.
830 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
831 * will send notifications if the application requests.
832 */
833
834 /* Notify a proper path MTU to applications. */
835 mtu32 = (u_int32_t)mtu;
836 memset(&ip6cp, 0, sizeof(ip6cp));
837 ip6cp.ip6c_cmdarg = (void *)&mtu32;
838 pfctlinput2(PRC_MSGSIZE,
839 rtcache_getdst(ro_pmtu), &ip6cp);
840 #endif
841
842 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
843 if (len < 8) {
844 error = EMSGSIZE;
845 in6_ifstat_inc(ifp, ifs6_out_fragfail);
846 goto bad;
847 }
848
849 mnext = &m->m_nextpkt;
850
851 /*
852 * Change the next header field of the last header in the
853 * unfragmentable part.
854 */
855 if (exthdrs.ip6e_rthdr) {
856 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
857 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
858 } else if (exthdrs.ip6e_dest1) {
859 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
860 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
861 } else if (exthdrs.ip6e_hbh) {
862 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
863 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
864 } else {
865 nextproto = ip6->ip6_nxt;
866 ip6->ip6_nxt = IPPROTO_FRAGMENT;
867 }
868
869 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
870 != 0) {
871 if (IN6_NEED_CHECKSUM(ifp,
872 m->m_pkthdr.csum_flags &
873 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
874 in6_delayed_cksum(m);
875 }
876 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
877 }
878
879 /*
880 * Loop through length of segment after first fragment,
881 * make new header and copy data of each part and link onto
882 * chain.
883 */
884 m0 = m;
885 for (off = hlen; off < tlen; off += len) {
886 struct mbuf *mlast;
887
888 MGETHDR(m, M_DONTWAIT, MT_HEADER);
889 if (!m) {
890 error = ENOBUFS;
891 IP6_STATINC(IP6_STAT_ODROPPED);
892 goto sendorfree;
893 }
894 m->m_pkthdr.rcvif = NULL;
895 m->m_flags = m0->m_flags & M_COPYFLAGS;
896 *mnext = m;
897 mnext = &m->m_nextpkt;
898 m->m_data += max_linkhdr;
899 mhip6 = mtod(m, struct ip6_hdr *);
900 *mhip6 = *ip6;
901 m->m_len = sizeof(*mhip6);
902 /*
903 * ip6f must be valid if error is 0. But how
904 * can a compiler be expected to infer this?
905 */
906 ip6f = NULL;
907 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
908 if (error) {
909 IP6_STATINC(IP6_STAT_ODROPPED);
910 goto sendorfree;
911 }
912 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
913 if (off + len >= tlen)
914 len = tlen - off;
915 else
916 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
917 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
918 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
919 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
920 error = ENOBUFS;
921 IP6_STATINC(IP6_STAT_ODROPPED);
922 goto sendorfree;
923 }
924 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
925 ;
926 mlast->m_next = m_frgpart;
927 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
928 m->m_pkthdr.rcvif = NULL;
929 ip6f->ip6f_reserved = 0;
930 ip6f->ip6f_ident = id;
931 ip6f->ip6f_nxt = nextproto;
932 IP6_STATINC(IP6_STAT_OFRAGMENTS);
933 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
934 }
935
936 in6_ifstat_inc(ifp, ifs6_out_fragok);
937 }
938
939 /*
940 * Remove leading garbages.
941 */
942 sendorfree:
943 m = m0->m_nextpkt;
944 m0->m_nextpkt = 0;
945 m_freem(m0);
946 for (m0 = m; m; m = m0) {
947 m0 = m->m_nextpkt;
948 m->m_nextpkt = 0;
949 if (error == 0) {
950 struct in6_ifaddr *ia6;
951 ip6 = mtod(m, struct ip6_hdr *);
952 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
953 if (ia6) {
954 /*
955 * Record statistics for this interface
956 * address.
957 */
958 ia6->ia_ifa.ifa_data.ifad_outbytes +=
959 m->m_pkthdr.len;
960 }
961 KASSERT(dst != NULL);
962 error = nd6_output(ifp, origifp, m, dst, rt);
963 } else
964 m_freem(m);
965 }
966
967 if (error == 0)
968 IP6_STATINC(IP6_STAT_FRAGMENTED);
969
970 done:
971 rtcache_free(&ip6route);
972
973 #ifdef IPSEC
974 if (sp != NULL)
975 KEY_FREESP(&sp);
976 #endif /* IPSEC */
977
978
979 return (error);
980
981 freehdrs:
982 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
983 m_freem(exthdrs.ip6e_dest1);
984 m_freem(exthdrs.ip6e_rthdr);
985 m_freem(exthdrs.ip6e_dest2);
986 /* FALLTHROUGH */
987 bad:
988 m_freem(m);
989 goto done;
990 badscope:
991 IP6_STATINC(IP6_STAT_BADSCOPE);
992 in6_ifstat_inc(origifp, ifs6_out_discard);
993 if (error == 0)
994 error = EHOSTUNREACH; /* XXX */
995 goto bad;
996 }
997
998 static int
999 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1000 {
1001 struct mbuf *m;
1002
1003 if (hlen > MCLBYTES)
1004 return (ENOBUFS); /* XXX */
1005
1006 MGET(m, M_DONTWAIT, MT_DATA);
1007 if (!m)
1008 return (ENOBUFS);
1009
1010 if (hlen > MLEN) {
1011 MCLGET(m, M_DONTWAIT);
1012 if ((m->m_flags & M_EXT) == 0) {
1013 m_free(m);
1014 return (ENOBUFS);
1015 }
1016 }
1017 m->m_len = hlen;
1018 if (hdr)
1019 bcopy(hdr, mtod(m, void *), hlen);
1020
1021 *mp = m;
1022 return (0);
1023 }
1024
1025 /*
1026 * Process a delayed payload checksum calculation.
1027 */
1028 void
1029 in6_delayed_cksum(struct mbuf *m)
1030 {
1031 uint16_t csum, offset;
1032
1033 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1034 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1035 KASSERT((m->m_pkthdr.csum_flags
1036 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1037
1038 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1039 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1040 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1041 csum = 0xffff;
1042 }
1043
1044 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1045 if ((offset + sizeof(csum)) > m->m_len) {
1046 m_copyback(m, offset, sizeof(csum), &csum);
1047 } else {
1048 *(uint16_t *)(mtod(m, char *) + offset) = csum;
1049 }
1050 }
1051
1052 /*
1053 * Insert jumbo payload option.
1054 */
1055 static int
1056 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1057 {
1058 struct mbuf *mopt;
1059 u_int8_t *optbuf;
1060 u_int32_t v;
1061
1062 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1063
1064 /*
1065 * If there is no hop-by-hop options header, allocate new one.
1066 * If there is one but it doesn't have enough space to store the
1067 * jumbo payload option, allocate a cluster to store the whole options.
1068 * Otherwise, use it to store the options.
1069 */
1070 if (exthdrs->ip6e_hbh == 0) {
1071 MGET(mopt, M_DONTWAIT, MT_DATA);
1072 if (mopt == 0)
1073 return (ENOBUFS);
1074 mopt->m_len = JUMBOOPTLEN;
1075 optbuf = mtod(mopt, u_int8_t *);
1076 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1077 exthdrs->ip6e_hbh = mopt;
1078 } else {
1079 struct ip6_hbh *hbh;
1080
1081 mopt = exthdrs->ip6e_hbh;
1082 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1083 /*
1084 * XXX assumption:
1085 * - exthdrs->ip6e_hbh is not referenced from places
1086 * other than exthdrs.
1087 * - exthdrs->ip6e_hbh is not an mbuf chain.
1088 */
1089 int oldoptlen = mopt->m_len;
1090 struct mbuf *n;
1091
1092 /*
1093 * XXX: give up if the whole (new) hbh header does
1094 * not fit even in an mbuf cluster.
1095 */
1096 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1097 return (ENOBUFS);
1098
1099 /*
1100 * As a consequence, we must always prepare a cluster
1101 * at this point.
1102 */
1103 MGET(n, M_DONTWAIT, MT_DATA);
1104 if (n) {
1105 MCLGET(n, M_DONTWAIT);
1106 if ((n->m_flags & M_EXT) == 0) {
1107 m_freem(n);
1108 n = NULL;
1109 }
1110 }
1111 if (!n)
1112 return (ENOBUFS);
1113 n->m_len = oldoptlen + JUMBOOPTLEN;
1114 bcopy(mtod(mopt, void *), mtod(n, void *),
1115 oldoptlen);
1116 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1117 m_freem(mopt);
1118 mopt = exthdrs->ip6e_hbh = n;
1119 } else {
1120 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1121 mopt->m_len += JUMBOOPTLEN;
1122 }
1123 optbuf[0] = IP6OPT_PADN;
1124 optbuf[1] = 0;
1125
1126 /*
1127 * Adjust the header length according to the pad and
1128 * the jumbo payload option.
1129 */
1130 hbh = mtod(mopt, struct ip6_hbh *);
1131 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1132 }
1133
1134 /* fill in the option. */
1135 optbuf[2] = IP6OPT_JUMBO;
1136 optbuf[3] = 4;
1137 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1138 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1139
1140 /* finally, adjust the packet header length */
1141 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1142
1143 return (0);
1144 #undef JUMBOOPTLEN
1145 }
1146
1147 /*
1148 * Insert fragment header and copy unfragmentable header portions.
1149 *
1150 * *frghdrp will not be read, and it is guaranteed that either an
1151 * error is returned or that *frghdrp will point to space allocated
1152 * for the fragment header.
1153 */
1154 static int
1155 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1156 struct ip6_frag **frghdrp)
1157 {
1158 struct mbuf *n, *mlast;
1159
1160 if (hlen > sizeof(struct ip6_hdr)) {
1161 n = m_copym(m0, sizeof(struct ip6_hdr),
1162 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1163 if (n == 0)
1164 return (ENOBUFS);
1165 m->m_next = n;
1166 } else
1167 n = m;
1168
1169 /* Search for the last mbuf of unfragmentable part. */
1170 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1171 ;
1172
1173 if ((mlast->m_flags & M_EXT) == 0 &&
1174 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1175 /* use the trailing space of the last mbuf for the fragment hdr */
1176 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1177 mlast->m_len);
1178 mlast->m_len += sizeof(struct ip6_frag);
1179 m->m_pkthdr.len += sizeof(struct ip6_frag);
1180 } else {
1181 /* allocate a new mbuf for the fragment header */
1182 struct mbuf *mfrg;
1183
1184 MGET(mfrg, M_DONTWAIT, MT_DATA);
1185 if (mfrg == 0)
1186 return (ENOBUFS);
1187 mfrg->m_len = sizeof(struct ip6_frag);
1188 *frghdrp = mtod(mfrg, struct ip6_frag *);
1189 mlast->m_next = mfrg;
1190 }
1191
1192 return (0);
1193 }
1194
1195 static int
1196 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp,
1197 const struct in6_addr *dst, u_long *mtup, int *alwaysfragp)
1198 {
1199 struct rtentry *rt;
1200 u_int32_t mtu = 0;
1201 int alwaysfrag = 0;
1202 int error = 0;
1203
1204 if (ro_pmtu != ro) {
1205 union {
1206 struct sockaddr dst;
1207 struct sockaddr_in6 dst6;
1208 } u;
1209
1210 /* The first hop and the final destination may differ. */
1211 sockaddr_in6_init(&u.dst6, dst, 0, 0, 0);
1212 rt = rtcache_lookup(ro_pmtu, &u.dst);
1213 } else
1214 rt = rtcache_validate(ro_pmtu);
1215 if (rt != NULL) {
1216 u_int32_t ifmtu;
1217
1218 if (ifp == NULL)
1219 ifp = rt->rt_ifp;
1220 ifmtu = IN6_LINKMTU(ifp);
1221 mtu = rt->rt_rmx.rmx_mtu;
1222 if (mtu == 0)
1223 mtu = ifmtu;
1224 else if (mtu < IPV6_MMTU) {
1225 /*
1226 * RFC2460 section 5, last paragraph:
1227 * if we record ICMPv6 too big message with
1228 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1229 * or smaller, with fragment header attached.
1230 * (fragment header is needed regardless from the
1231 * packet size, for translators to identify packets)
1232 */
1233 alwaysfrag = 1;
1234 mtu = IPV6_MMTU;
1235 } else if (mtu > ifmtu) {
1236 /*
1237 * The MTU on the route is larger than the MTU on
1238 * the interface! This shouldn't happen, unless the
1239 * MTU of the interface has been changed after the
1240 * interface was brought up. Change the MTU in the
1241 * route to match the interface MTU (as long as the
1242 * field isn't locked).
1243 */
1244 mtu = ifmtu;
1245 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1246 rt->rt_rmx.rmx_mtu = mtu;
1247 }
1248 } else if (ifp) {
1249 mtu = IN6_LINKMTU(ifp);
1250 } else
1251 error = EHOSTUNREACH; /* XXX */
1252
1253 *mtup = mtu;
1254 if (alwaysfragp)
1255 *alwaysfragp = alwaysfrag;
1256 return (error);
1257 }
1258
1259 /*
1260 * IP6 socket option processing.
1261 */
1262 int
1263 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1264 {
1265 int optdatalen, uproto;
1266 void *optdata;
1267 struct in6pcb *in6p = sotoin6pcb(so);
1268 int error, optval;
1269 int level, optname;
1270
1271 KASSERT(sopt != NULL);
1272
1273 level = sopt->sopt_level;
1274 optname = sopt->sopt_name;
1275
1276 error = optval = 0;
1277 uproto = (int)so->so_proto->pr_protocol;
1278
1279 if (level != IPPROTO_IPV6) {
1280 return ENOPROTOOPT;
1281 }
1282 switch (op) {
1283 case PRCO_SETOPT:
1284 switch (optname) {
1285 #ifdef RFC2292
1286 case IPV6_2292PKTOPTIONS:
1287 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
1288 break;
1289 #endif
1290
1291 /*
1292 * Use of some Hop-by-Hop options or some
1293 * Destination options, might require special
1294 * privilege. That is, normal applications
1295 * (without special privilege) might be forbidden
1296 * from setting certain options in outgoing packets,
1297 * and might never see certain options in received
1298 * packets. [RFC 2292 Section 6]
1299 * KAME specific note:
1300 * KAME prevents non-privileged users from sending or
1301 * receiving ANY hbh/dst options in order to avoid
1302 * overhead of parsing options in the kernel.
1303 */
1304 case IPV6_RECVHOPOPTS:
1305 case IPV6_RECVDSTOPTS:
1306 case IPV6_RECVRTHDRDSTOPTS:
1307 error = kauth_authorize_network(kauth_cred_get(),
1308 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
1309 NULL, NULL, NULL);
1310 if (error)
1311 break;
1312 /* FALLTHROUGH */
1313 case IPV6_UNICAST_HOPS:
1314 case IPV6_HOPLIMIT:
1315 case IPV6_FAITH:
1316
1317 case IPV6_RECVPKTINFO:
1318 case IPV6_RECVHOPLIMIT:
1319 case IPV6_RECVRTHDR:
1320 case IPV6_RECVPATHMTU:
1321 case IPV6_RECVTCLASS:
1322 case IPV6_V6ONLY:
1323 error = sockopt_getint(sopt, &optval);
1324 if (error)
1325 break;
1326 switch (optname) {
1327 case IPV6_UNICAST_HOPS:
1328 if (optval < -1 || optval >= 256)
1329 error = EINVAL;
1330 else {
1331 /* -1 = kernel default */
1332 in6p->in6p_hops = optval;
1333 }
1334 break;
1335 #define OPTSET(bit) \
1336 do { \
1337 if (optval) \
1338 in6p->in6p_flags |= (bit); \
1339 else \
1340 in6p->in6p_flags &= ~(bit); \
1341 } while (/*CONSTCOND*/ 0)
1342
1343 #ifdef RFC2292
1344 #define OPTSET2292(bit) \
1345 do { \
1346 in6p->in6p_flags |= IN6P_RFC2292; \
1347 if (optval) \
1348 in6p->in6p_flags |= (bit); \
1349 else \
1350 in6p->in6p_flags &= ~(bit); \
1351 } while (/*CONSTCOND*/ 0)
1352 #endif
1353
1354 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1355
1356 case IPV6_RECVPKTINFO:
1357 #ifdef RFC2292
1358 /* cannot mix with RFC2292 */
1359 if (OPTBIT(IN6P_RFC2292)) {
1360 error = EINVAL;
1361 break;
1362 }
1363 #endif
1364 OPTSET(IN6P_PKTINFO);
1365 break;
1366
1367 case IPV6_HOPLIMIT:
1368 {
1369 struct ip6_pktopts **optp;
1370
1371 #ifdef RFC2292
1372 /* cannot mix with RFC2292 */
1373 if (OPTBIT(IN6P_RFC2292)) {
1374 error = EINVAL;
1375 break;
1376 }
1377 #endif
1378 optp = &in6p->in6p_outputopts;
1379 error = ip6_pcbopt(IPV6_HOPLIMIT,
1380 (u_char *)&optval,
1381 sizeof(optval),
1382 optp,
1383 kauth_cred_get(), uproto);
1384 break;
1385 }
1386
1387 case IPV6_RECVHOPLIMIT:
1388 #ifdef RFC2292
1389 /* cannot mix with RFC2292 */
1390 if (OPTBIT(IN6P_RFC2292)) {
1391 error = EINVAL;
1392 break;
1393 }
1394 #endif
1395 OPTSET(IN6P_HOPLIMIT);
1396 break;
1397
1398 case IPV6_RECVHOPOPTS:
1399 #ifdef RFC2292
1400 /* cannot mix with RFC2292 */
1401 if (OPTBIT(IN6P_RFC2292)) {
1402 error = EINVAL;
1403 break;
1404 }
1405 #endif
1406 OPTSET(IN6P_HOPOPTS);
1407 break;
1408
1409 case IPV6_RECVDSTOPTS:
1410 #ifdef RFC2292
1411 /* cannot mix with RFC2292 */
1412 if (OPTBIT(IN6P_RFC2292)) {
1413 error = EINVAL;
1414 break;
1415 }
1416 #endif
1417 OPTSET(IN6P_DSTOPTS);
1418 break;
1419
1420 case IPV6_RECVRTHDRDSTOPTS:
1421 #ifdef RFC2292
1422 /* cannot mix with RFC2292 */
1423 if (OPTBIT(IN6P_RFC2292)) {
1424 error = EINVAL;
1425 break;
1426 }
1427 #endif
1428 OPTSET(IN6P_RTHDRDSTOPTS);
1429 break;
1430
1431 case IPV6_RECVRTHDR:
1432 #ifdef RFC2292
1433 /* cannot mix with RFC2292 */
1434 if (OPTBIT(IN6P_RFC2292)) {
1435 error = EINVAL;
1436 break;
1437 }
1438 #endif
1439 OPTSET(IN6P_RTHDR);
1440 break;
1441
1442 case IPV6_FAITH:
1443 OPTSET(IN6P_FAITH);
1444 break;
1445
1446 case IPV6_RECVPATHMTU:
1447 /*
1448 * We ignore this option for TCP
1449 * sockets.
1450 * (RFC3542 leaves this case
1451 * unspecified.)
1452 */
1453 if (uproto != IPPROTO_TCP)
1454 OPTSET(IN6P_MTU);
1455 break;
1456
1457 case IPV6_V6ONLY:
1458 /*
1459 * make setsockopt(IPV6_V6ONLY)
1460 * available only prior to bind(2).
1461 * see ipng mailing list, Jun 22 2001.
1462 */
1463 if (in6p->in6p_lport ||
1464 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1465 error = EINVAL;
1466 break;
1467 }
1468 #ifdef INET6_BINDV6ONLY
1469 if (!optval)
1470 error = EINVAL;
1471 #else
1472 OPTSET(IN6P_IPV6_V6ONLY);
1473 #endif
1474 break;
1475 case IPV6_RECVTCLASS:
1476 #ifdef RFC2292
1477 /* cannot mix with RFC2292 XXX */
1478 if (OPTBIT(IN6P_RFC2292)) {
1479 error = EINVAL;
1480 break;
1481 }
1482 #endif
1483 OPTSET(IN6P_TCLASS);
1484 break;
1485
1486 }
1487 break;
1488
1489 case IPV6_OTCLASS:
1490 {
1491 struct ip6_pktopts **optp;
1492 u_int8_t tclass;
1493
1494 error = sockopt_get(sopt, &tclass, sizeof(tclass));
1495 if (error)
1496 break;
1497 optp = &in6p->in6p_outputopts;
1498 error = ip6_pcbopt(optname,
1499 (u_char *)&tclass,
1500 sizeof(tclass),
1501 optp,
1502 kauth_cred_get(), uproto);
1503 break;
1504 }
1505
1506 case IPV6_TCLASS:
1507 case IPV6_DONTFRAG:
1508 case IPV6_USE_MIN_MTU:
1509 error = sockopt_getint(sopt, &optval);
1510 if (error)
1511 break;
1512 {
1513 struct ip6_pktopts **optp;
1514 optp = &in6p->in6p_outputopts;
1515 error = ip6_pcbopt(optname,
1516 (u_char *)&optval,
1517 sizeof(optval),
1518 optp,
1519 kauth_cred_get(), uproto);
1520 break;
1521 }
1522
1523 #ifdef RFC2292
1524 case IPV6_2292PKTINFO:
1525 case IPV6_2292HOPLIMIT:
1526 case IPV6_2292HOPOPTS:
1527 case IPV6_2292DSTOPTS:
1528 case IPV6_2292RTHDR:
1529 /* RFC 2292 */
1530 error = sockopt_getint(sopt, &optval);
1531 if (error)
1532 break;
1533
1534 switch (optname) {
1535 case IPV6_2292PKTINFO:
1536 OPTSET2292(IN6P_PKTINFO);
1537 break;
1538 case IPV6_2292HOPLIMIT:
1539 OPTSET2292(IN6P_HOPLIMIT);
1540 break;
1541 case IPV6_2292HOPOPTS:
1542 /*
1543 * Check super-user privilege.
1544 * See comments for IPV6_RECVHOPOPTS.
1545 */
1546 error =
1547 kauth_authorize_network(kauth_cred_get(),
1548 KAUTH_NETWORK_IPV6,
1549 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1550 NULL, NULL);
1551 if (error)
1552 return (error);
1553 OPTSET2292(IN6P_HOPOPTS);
1554 break;
1555 case IPV6_2292DSTOPTS:
1556 error =
1557 kauth_authorize_network(kauth_cred_get(),
1558 KAUTH_NETWORK_IPV6,
1559 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1560 NULL, NULL);
1561 if (error)
1562 return (error);
1563 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1564 break;
1565 case IPV6_2292RTHDR:
1566 OPTSET2292(IN6P_RTHDR);
1567 break;
1568 }
1569 break;
1570 #endif
1571 case IPV6_PKTINFO:
1572 case IPV6_HOPOPTS:
1573 case IPV6_RTHDR:
1574 case IPV6_DSTOPTS:
1575 case IPV6_RTHDRDSTOPTS:
1576 case IPV6_NEXTHOP: {
1577 /* new advanced API (RFC3542) */
1578 void *optbuf;
1579 int optbuflen;
1580 struct ip6_pktopts **optp;
1581
1582 #ifdef RFC2292
1583 /* cannot mix with RFC2292 */
1584 if (OPTBIT(IN6P_RFC2292)) {
1585 error = EINVAL;
1586 break;
1587 }
1588 #endif
1589
1590 optbuflen = sopt->sopt_size;
1591 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1592 if (optbuf == NULL) {
1593 error = ENOBUFS;
1594 break;
1595 }
1596
1597 sockopt_get(sopt, optbuf, optbuflen);
1598 optp = &in6p->in6p_outputopts;
1599 error = ip6_pcbopt(optname, optbuf, optbuflen,
1600 optp, kauth_cred_get(), uproto);
1601 break;
1602 }
1603 #undef OPTSET
1604
1605 case IPV6_MULTICAST_IF:
1606 case IPV6_MULTICAST_HOPS:
1607 case IPV6_MULTICAST_LOOP:
1608 case IPV6_JOIN_GROUP:
1609 case IPV6_LEAVE_GROUP:
1610 error = ip6_setmoptions(sopt, &in6p->in6p_moptions);
1611 break;
1612
1613 case IPV6_PORTRANGE:
1614 error = sockopt_getint(sopt, &optval);
1615 if (error)
1616 break;
1617
1618 switch (optval) {
1619 case IPV6_PORTRANGE_DEFAULT:
1620 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1621 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1622 break;
1623
1624 case IPV6_PORTRANGE_HIGH:
1625 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1626 in6p->in6p_flags |= IN6P_HIGHPORT;
1627 break;
1628
1629 case IPV6_PORTRANGE_LOW:
1630 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1631 in6p->in6p_flags |= IN6P_LOWPORT;
1632 break;
1633
1634 default:
1635 error = EINVAL;
1636 break;
1637 }
1638 break;
1639
1640 case IPV6_PORTALGO:
1641 error = sockopt_getint(sopt, &optval);
1642 if (error)
1643 break;
1644
1645 error = portalgo_algo_index_select(
1646 (struct inpcb_hdr *)in6p, optval);
1647 break;
1648
1649 #if defined(IPSEC)
1650 case IPV6_IPSEC_POLICY:
1651 error = ipsec6_set_policy(in6p, optname,
1652 sopt->sopt_data, sopt->sopt_size, kauth_cred_get());
1653 break;
1654 #endif /* IPSEC */
1655
1656 default:
1657 error = ENOPROTOOPT;
1658 break;
1659 }
1660 break;
1661
1662 case PRCO_GETOPT:
1663 switch (optname) {
1664 #ifdef RFC2292
1665 case IPV6_2292PKTOPTIONS:
1666 /*
1667 * RFC3542 (effectively) deprecated the
1668 * semantics of the 2292-style pktoptions.
1669 * Since it was not reliable in nature (i.e.,
1670 * applications had to expect the lack of some
1671 * information after all), it would make sense
1672 * to simplify this part by always returning
1673 * empty data.
1674 */
1675 break;
1676 #endif
1677
1678 case IPV6_RECVHOPOPTS:
1679 case IPV6_RECVDSTOPTS:
1680 case IPV6_RECVRTHDRDSTOPTS:
1681 case IPV6_UNICAST_HOPS:
1682 case IPV6_RECVPKTINFO:
1683 case IPV6_RECVHOPLIMIT:
1684 case IPV6_RECVRTHDR:
1685 case IPV6_RECVPATHMTU:
1686
1687 case IPV6_FAITH:
1688 case IPV6_V6ONLY:
1689 case IPV6_PORTRANGE:
1690 case IPV6_RECVTCLASS:
1691 switch (optname) {
1692
1693 case IPV6_RECVHOPOPTS:
1694 optval = OPTBIT(IN6P_HOPOPTS);
1695 break;
1696
1697 case IPV6_RECVDSTOPTS:
1698 optval = OPTBIT(IN6P_DSTOPTS);
1699 break;
1700
1701 case IPV6_RECVRTHDRDSTOPTS:
1702 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1703 break;
1704
1705 case IPV6_UNICAST_HOPS:
1706 optval = in6p->in6p_hops;
1707 break;
1708
1709 case IPV6_RECVPKTINFO:
1710 optval = OPTBIT(IN6P_PKTINFO);
1711 break;
1712
1713 case IPV6_RECVHOPLIMIT:
1714 optval = OPTBIT(IN6P_HOPLIMIT);
1715 break;
1716
1717 case IPV6_RECVRTHDR:
1718 optval = OPTBIT(IN6P_RTHDR);
1719 break;
1720
1721 case IPV6_RECVPATHMTU:
1722 optval = OPTBIT(IN6P_MTU);
1723 break;
1724
1725 case IPV6_FAITH:
1726 optval = OPTBIT(IN6P_FAITH);
1727 break;
1728
1729 case IPV6_V6ONLY:
1730 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1731 break;
1732
1733 case IPV6_PORTRANGE:
1734 {
1735 int flags;
1736 flags = in6p->in6p_flags;
1737 if (flags & IN6P_HIGHPORT)
1738 optval = IPV6_PORTRANGE_HIGH;
1739 else if (flags & IN6P_LOWPORT)
1740 optval = IPV6_PORTRANGE_LOW;
1741 else
1742 optval = 0;
1743 break;
1744 }
1745 case IPV6_RECVTCLASS:
1746 optval = OPTBIT(IN6P_TCLASS);
1747 break;
1748
1749 }
1750 if (error)
1751 break;
1752 error = sockopt_setint(sopt, optval);
1753 break;
1754
1755 case IPV6_PATHMTU:
1756 {
1757 u_long pmtu = 0;
1758 struct ip6_mtuinfo mtuinfo;
1759 struct route *ro = &in6p->in6p_route;
1760
1761 if (!(so->so_state & SS_ISCONNECTED))
1762 return (ENOTCONN);
1763 /*
1764 * XXX: we dot not consider the case of source
1765 * routing, or optional information to specify
1766 * the outgoing interface.
1767 */
1768 error = ip6_getpmtu(ro, NULL, NULL,
1769 &in6p->in6p_faddr, &pmtu, NULL);
1770 if (error)
1771 break;
1772 if (pmtu > IPV6_MAXPACKET)
1773 pmtu = IPV6_MAXPACKET;
1774
1775 memset(&mtuinfo, 0, sizeof(mtuinfo));
1776 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1777 optdata = (void *)&mtuinfo;
1778 optdatalen = sizeof(mtuinfo);
1779 if (optdatalen > MCLBYTES)
1780 return (EMSGSIZE); /* XXX */
1781 error = sockopt_set(sopt, optdata, optdatalen);
1782 break;
1783 }
1784
1785 #ifdef RFC2292
1786 case IPV6_2292PKTINFO:
1787 case IPV6_2292HOPLIMIT:
1788 case IPV6_2292HOPOPTS:
1789 case IPV6_2292RTHDR:
1790 case IPV6_2292DSTOPTS:
1791 switch (optname) {
1792 case IPV6_2292PKTINFO:
1793 optval = OPTBIT(IN6P_PKTINFO);
1794 break;
1795 case IPV6_2292HOPLIMIT:
1796 optval = OPTBIT(IN6P_HOPLIMIT);
1797 break;
1798 case IPV6_2292HOPOPTS:
1799 optval = OPTBIT(IN6P_HOPOPTS);
1800 break;
1801 case IPV6_2292RTHDR:
1802 optval = OPTBIT(IN6P_RTHDR);
1803 break;
1804 case IPV6_2292DSTOPTS:
1805 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1806 break;
1807 }
1808 error = sockopt_setint(sopt, optval);
1809 break;
1810 #endif
1811 case IPV6_PKTINFO:
1812 case IPV6_HOPOPTS:
1813 case IPV6_RTHDR:
1814 case IPV6_DSTOPTS:
1815 case IPV6_RTHDRDSTOPTS:
1816 case IPV6_NEXTHOP:
1817 case IPV6_OTCLASS:
1818 case IPV6_TCLASS:
1819 case IPV6_DONTFRAG:
1820 case IPV6_USE_MIN_MTU:
1821 error = ip6_getpcbopt(in6p->in6p_outputopts,
1822 optname, sopt);
1823 break;
1824
1825 case IPV6_MULTICAST_IF:
1826 case IPV6_MULTICAST_HOPS:
1827 case IPV6_MULTICAST_LOOP:
1828 case IPV6_JOIN_GROUP:
1829 case IPV6_LEAVE_GROUP:
1830 error = ip6_getmoptions(sopt, in6p->in6p_moptions);
1831 break;
1832
1833 case IPV6_PORTALGO:
1834 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
1835 error = sockopt_setint(sopt, optval);
1836 break;
1837
1838 #if defined(IPSEC)
1839 case IPV6_IPSEC_POLICY:
1840 {
1841 struct mbuf *m = NULL;
1842
1843 /* XXX this will return EINVAL as sopt is empty */
1844 error = ipsec6_get_policy(in6p, sopt->sopt_data,
1845 sopt->sopt_size, &m);
1846 if (!error)
1847 error = sockopt_setmbuf(sopt, m);
1848
1849 break;
1850 }
1851 #endif /* IPSEC */
1852
1853 default:
1854 error = ENOPROTOOPT;
1855 break;
1856 }
1857 break;
1858 }
1859 return (error);
1860 }
1861
1862 int
1863 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1864 {
1865 int error = 0, optval;
1866 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1867 struct in6pcb *in6p = sotoin6pcb(so);
1868 int level, optname;
1869
1870 KASSERT(sopt != NULL);
1871
1872 level = sopt->sopt_level;
1873 optname = sopt->sopt_name;
1874
1875 if (level != IPPROTO_IPV6) {
1876 return ENOPROTOOPT;
1877 }
1878
1879 switch (optname) {
1880 case IPV6_CHECKSUM:
1881 /*
1882 * For ICMPv6 sockets, no modification allowed for checksum
1883 * offset, permit "no change" values to help existing apps.
1884 *
1885 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
1886 * for an ICMPv6 socket will fail." The current
1887 * behavior does not meet RFC3542.
1888 */
1889 switch (op) {
1890 case PRCO_SETOPT:
1891 error = sockopt_getint(sopt, &optval);
1892 if (error)
1893 break;
1894 if ((optval % 2) != 0) {
1895 /* the API assumes even offset values */
1896 error = EINVAL;
1897 } else if (so->so_proto->pr_protocol ==
1898 IPPROTO_ICMPV6) {
1899 if (optval != icmp6off)
1900 error = EINVAL;
1901 } else
1902 in6p->in6p_cksum = optval;
1903 break;
1904
1905 case PRCO_GETOPT:
1906 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1907 optval = icmp6off;
1908 else
1909 optval = in6p->in6p_cksum;
1910
1911 error = sockopt_setint(sopt, optval);
1912 break;
1913
1914 default:
1915 error = EINVAL;
1916 break;
1917 }
1918 break;
1919
1920 default:
1921 error = ENOPROTOOPT;
1922 break;
1923 }
1924
1925 return (error);
1926 }
1927
1928 #ifdef RFC2292
1929 /*
1930 * Set up IP6 options in pcb for insertion in output packets or
1931 * specifying behavior of outgoing packets.
1932 */
1933 static int
1934 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
1935 struct sockopt *sopt)
1936 {
1937 struct ip6_pktopts *opt = *pktopt;
1938 struct mbuf *m;
1939 int error = 0;
1940
1941 /* turn off any old options. */
1942 if (opt) {
1943 #ifdef DIAGNOSTIC
1944 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
1945 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
1946 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
1947 printf("ip6_pcbopts: all specified options are cleared.\n");
1948 #endif
1949 ip6_clearpktopts(opt, -1);
1950 } else {
1951 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
1952 if (opt == NULL)
1953 return (ENOBUFS);
1954 }
1955 *pktopt = NULL;
1956
1957 if (sopt == NULL || sopt->sopt_size == 0) {
1958 /*
1959 * Only turning off any previous options, regardless of
1960 * whether the opt is just created or given.
1961 */
1962 free(opt, M_IP6OPT);
1963 return (0);
1964 }
1965
1966 /* set options specified by user. */
1967 m = sockopt_getmbuf(sopt);
1968 if (m == NULL) {
1969 free(opt, M_IP6OPT);
1970 return (ENOBUFS);
1971 }
1972
1973 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
1974 so->so_proto->pr_protocol);
1975 m_freem(m);
1976 if (error != 0) {
1977 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
1978 free(opt, M_IP6OPT);
1979 return (error);
1980 }
1981 *pktopt = opt;
1982 return (0);
1983 }
1984 #endif
1985
1986 /*
1987 * initialize ip6_pktopts. beware that there are non-zero default values in
1988 * the struct.
1989 */
1990 void
1991 ip6_initpktopts(struct ip6_pktopts *opt)
1992 {
1993
1994 memset(opt, 0, sizeof(*opt));
1995 opt->ip6po_hlim = -1; /* -1 means default hop limit */
1996 opt->ip6po_tclass = -1; /* -1 means default traffic class */
1997 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
1998 }
1999
2000 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2001 static int
2002 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2003 kauth_cred_t cred, int uproto)
2004 {
2005 struct ip6_pktopts *opt;
2006
2007 if (*pktopt == NULL) {
2008 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2009 M_NOWAIT);
2010 if (*pktopt == NULL)
2011 return (ENOBUFS);
2012
2013 ip6_initpktopts(*pktopt);
2014 }
2015 opt = *pktopt;
2016
2017 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2018 }
2019
2020 static int
2021 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2022 {
2023 void *optdata = NULL;
2024 int optdatalen = 0;
2025 struct ip6_ext *ip6e;
2026 int error = 0;
2027 struct in6_pktinfo null_pktinfo;
2028 int deftclass = 0, on;
2029 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2030
2031 switch (optname) {
2032 case IPV6_PKTINFO:
2033 if (pktopt && pktopt->ip6po_pktinfo)
2034 optdata = (void *)pktopt->ip6po_pktinfo;
2035 else {
2036 /* XXX: we don't have to do this every time... */
2037 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2038 optdata = (void *)&null_pktinfo;
2039 }
2040 optdatalen = sizeof(struct in6_pktinfo);
2041 break;
2042 case IPV6_OTCLASS:
2043 /* XXX */
2044 return (EINVAL);
2045 case IPV6_TCLASS:
2046 if (pktopt && pktopt->ip6po_tclass >= 0)
2047 optdata = (void *)&pktopt->ip6po_tclass;
2048 else
2049 optdata = (void *)&deftclass;
2050 optdatalen = sizeof(int);
2051 break;
2052 case IPV6_HOPOPTS:
2053 if (pktopt && pktopt->ip6po_hbh) {
2054 optdata = (void *)pktopt->ip6po_hbh;
2055 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2056 optdatalen = (ip6e->ip6e_len + 1) << 3;
2057 }
2058 break;
2059 case IPV6_RTHDR:
2060 if (pktopt && pktopt->ip6po_rthdr) {
2061 optdata = (void *)pktopt->ip6po_rthdr;
2062 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2063 optdatalen = (ip6e->ip6e_len + 1) << 3;
2064 }
2065 break;
2066 case IPV6_RTHDRDSTOPTS:
2067 if (pktopt && pktopt->ip6po_dest1) {
2068 optdata = (void *)pktopt->ip6po_dest1;
2069 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2070 optdatalen = (ip6e->ip6e_len + 1) << 3;
2071 }
2072 break;
2073 case IPV6_DSTOPTS:
2074 if (pktopt && pktopt->ip6po_dest2) {
2075 optdata = (void *)pktopt->ip6po_dest2;
2076 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2077 optdatalen = (ip6e->ip6e_len + 1) << 3;
2078 }
2079 break;
2080 case IPV6_NEXTHOP:
2081 if (pktopt && pktopt->ip6po_nexthop) {
2082 optdata = (void *)pktopt->ip6po_nexthop;
2083 optdatalen = pktopt->ip6po_nexthop->sa_len;
2084 }
2085 break;
2086 case IPV6_USE_MIN_MTU:
2087 if (pktopt)
2088 optdata = (void *)&pktopt->ip6po_minmtu;
2089 else
2090 optdata = (void *)&defminmtu;
2091 optdatalen = sizeof(int);
2092 break;
2093 case IPV6_DONTFRAG:
2094 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2095 on = 1;
2096 else
2097 on = 0;
2098 optdata = (void *)&on;
2099 optdatalen = sizeof(on);
2100 break;
2101 default: /* should not happen */
2102 #ifdef DIAGNOSTIC
2103 panic("ip6_getpcbopt: unexpected option\n");
2104 #endif
2105 return (ENOPROTOOPT);
2106 }
2107
2108 error = sockopt_set(sopt, optdata, optdatalen);
2109
2110 return (error);
2111 }
2112
2113 void
2114 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2115 {
2116 if (optname == -1 || optname == IPV6_PKTINFO) {
2117 if (pktopt->ip6po_pktinfo)
2118 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2119 pktopt->ip6po_pktinfo = NULL;
2120 }
2121 if (optname == -1 || optname == IPV6_HOPLIMIT)
2122 pktopt->ip6po_hlim = -1;
2123 if (optname == -1 || optname == IPV6_TCLASS)
2124 pktopt->ip6po_tclass = -1;
2125 if (optname == -1 || optname == IPV6_NEXTHOP) {
2126 rtcache_free(&pktopt->ip6po_nextroute);
2127 if (pktopt->ip6po_nexthop)
2128 free(pktopt->ip6po_nexthop, M_IP6OPT);
2129 pktopt->ip6po_nexthop = NULL;
2130 }
2131 if (optname == -1 || optname == IPV6_HOPOPTS) {
2132 if (pktopt->ip6po_hbh)
2133 free(pktopt->ip6po_hbh, M_IP6OPT);
2134 pktopt->ip6po_hbh = NULL;
2135 }
2136 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2137 if (pktopt->ip6po_dest1)
2138 free(pktopt->ip6po_dest1, M_IP6OPT);
2139 pktopt->ip6po_dest1 = NULL;
2140 }
2141 if (optname == -1 || optname == IPV6_RTHDR) {
2142 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2143 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2144 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2145 rtcache_free(&pktopt->ip6po_route);
2146 }
2147 if (optname == -1 || optname == IPV6_DSTOPTS) {
2148 if (pktopt->ip6po_dest2)
2149 free(pktopt->ip6po_dest2, M_IP6OPT);
2150 pktopt->ip6po_dest2 = NULL;
2151 }
2152 }
2153
2154 #define PKTOPT_EXTHDRCPY(type) \
2155 do { \
2156 if (src->type) { \
2157 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2158 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2159 if (dst->type == NULL) \
2160 goto bad; \
2161 memcpy(dst->type, src->type, hlen); \
2162 } \
2163 } while (/*CONSTCOND*/ 0)
2164
2165 static int
2166 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2167 {
2168 dst->ip6po_hlim = src->ip6po_hlim;
2169 dst->ip6po_tclass = src->ip6po_tclass;
2170 dst->ip6po_flags = src->ip6po_flags;
2171 if (src->ip6po_pktinfo) {
2172 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2173 M_IP6OPT, canwait);
2174 if (dst->ip6po_pktinfo == NULL)
2175 goto bad;
2176 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2177 }
2178 if (src->ip6po_nexthop) {
2179 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2180 M_IP6OPT, canwait);
2181 if (dst->ip6po_nexthop == NULL)
2182 goto bad;
2183 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2184 src->ip6po_nexthop->sa_len);
2185 }
2186 PKTOPT_EXTHDRCPY(ip6po_hbh);
2187 PKTOPT_EXTHDRCPY(ip6po_dest1);
2188 PKTOPT_EXTHDRCPY(ip6po_dest2);
2189 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2190 return (0);
2191
2192 bad:
2193 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2194 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2195 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2196 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2197 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2198 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2199
2200 return (ENOBUFS);
2201 }
2202 #undef PKTOPT_EXTHDRCPY
2203
2204 struct ip6_pktopts *
2205 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2206 {
2207 int error;
2208 struct ip6_pktopts *dst;
2209
2210 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2211 if (dst == NULL)
2212 return (NULL);
2213 ip6_initpktopts(dst);
2214
2215 if ((error = copypktopts(dst, src, canwait)) != 0) {
2216 free(dst, M_IP6OPT);
2217 return (NULL);
2218 }
2219
2220 return (dst);
2221 }
2222
2223 void
2224 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2225 {
2226 if (pktopt == NULL)
2227 return;
2228
2229 ip6_clearpktopts(pktopt, -1);
2230
2231 free(pktopt, M_IP6OPT);
2232 }
2233
2234 /*
2235 * Set the IP6 multicast options in response to user setsockopt().
2236 */
2237 static int
2238 ip6_setmoptions(const struct sockopt *sopt, struct ip6_moptions **im6op)
2239 {
2240 int error = 0;
2241 u_int loop, ifindex;
2242 struct ipv6_mreq mreq;
2243 struct ifnet *ifp;
2244 struct ip6_moptions *im6o = *im6op;
2245 struct route ro;
2246 struct in6_multi_mship *imm;
2247 struct lwp *l = curlwp; /* XXX */
2248
2249 if (im6o == NULL) {
2250 /*
2251 * No multicast option buffer attached to the pcb;
2252 * allocate one and initialize to default values.
2253 */
2254 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2255 if (im6o == NULL)
2256 return (ENOBUFS);
2257
2258 *im6op = im6o;
2259 im6o->im6o_multicast_ifp = NULL;
2260 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2261 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2262 LIST_INIT(&im6o->im6o_memberships);
2263 }
2264
2265 switch (sopt->sopt_name) {
2266
2267 case IPV6_MULTICAST_IF:
2268 /*
2269 * Select the interface for outgoing multicast packets.
2270 */
2271 error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2272 if (error != 0)
2273 break;
2274
2275 if (ifindex != 0) {
2276 if (if_indexlim <= ifindex || !ifindex2ifnet[ifindex]) {
2277 error = ENXIO; /* XXX EINVAL? */
2278 break;
2279 }
2280 ifp = ifindex2ifnet[ifindex];
2281 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2282 error = EADDRNOTAVAIL;
2283 break;
2284 }
2285 } else
2286 ifp = NULL;
2287 im6o->im6o_multicast_ifp = ifp;
2288 break;
2289
2290 case IPV6_MULTICAST_HOPS:
2291 {
2292 /*
2293 * Set the IP6 hoplimit for outgoing multicast packets.
2294 */
2295 int optval;
2296
2297 error = sockopt_getint(sopt, &optval);
2298 if (error != 0)
2299 break;
2300
2301 if (optval < -1 || optval >= 256)
2302 error = EINVAL;
2303 else if (optval == -1)
2304 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2305 else
2306 im6o->im6o_multicast_hlim = optval;
2307 break;
2308 }
2309
2310 case IPV6_MULTICAST_LOOP:
2311 /*
2312 * Set the loopback flag for outgoing multicast packets.
2313 * Must be zero or one.
2314 */
2315 error = sockopt_get(sopt, &loop, sizeof(loop));
2316 if (error != 0)
2317 break;
2318 if (loop > 1) {
2319 error = EINVAL;
2320 break;
2321 }
2322 im6o->im6o_multicast_loop = loop;
2323 break;
2324
2325 case IPV6_JOIN_GROUP:
2326 /*
2327 * Add a multicast group membership.
2328 * Group must be a valid IP6 multicast address.
2329 */
2330 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2331 if (error != 0)
2332 break;
2333
2334 if (IN6_IS_ADDR_UNSPECIFIED(&mreq.ipv6mr_multiaddr)) {
2335 /*
2336 * We use the unspecified address to specify to accept
2337 * all multicast addresses. Only super user is allowed
2338 * to do this.
2339 */
2340 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_IPV6,
2341 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
2342 {
2343 error = EACCES;
2344 break;
2345 }
2346 } else if (!IN6_IS_ADDR_MULTICAST(&mreq.ipv6mr_multiaddr)) {
2347 error = EINVAL;
2348 break;
2349 }
2350
2351 /*
2352 * If no interface was explicitly specified, choose an
2353 * appropriate one according to the given multicast address.
2354 */
2355 if (mreq.ipv6mr_interface == 0) {
2356 struct rtentry *rt;
2357 union {
2358 struct sockaddr dst;
2359 struct sockaddr_in6 dst6;
2360 } u;
2361
2362 /*
2363 * Look up the routing table for the
2364 * address, and choose the outgoing interface.
2365 * XXX: is it a good approach?
2366 */
2367 memset(&ro, 0, sizeof(ro));
2368 sockaddr_in6_init(&u.dst6, &mreq.ipv6mr_multiaddr, 0,
2369 0, 0);
2370 rtcache_setdst(&ro, &u.dst);
2371 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
2372 : NULL;
2373 rtcache_free(&ro);
2374 } else {
2375 /*
2376 * If the interface is specified, validate it.
2377 */
2378 if (if_indexlim <= mreq.ipv6mr_interface ||
2379 !ifindex2ifnet[mreq.ipv6mr_interface]) {
2380 error = ENXIO; /* XXX EINVAL? */
2381 break;
2382 }
2383 ifp = ifindex2ifnet[mreq.ipv6mr_interface];
2384 }
2385
2386 /*
2387 * See if we found an interface, and confirm that it
2388 * supports multicast
2389 */
2390 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2391 error = EADDRNOTAVAIL;
2392 break;
2393 }
2394
2395 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2396 error = EADDRNOTAVAIL; /* XXX: should not happen */
2397 break;
2398 }
2399
2400 /*
2401 * See if the membership already exists.
2402 */
2403 for (imm = im6o->im6o_memberships.lh_first;
2404 imm != NULL; imm = imm->i6mm_chain.le_next)
2405 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2406 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2407 &mreq.ipv6mr_multiaddr))
2408 break;
2409 if (imm != NULL) {
2410 error = EADDRINUSE;
2411 break;
2412 }
2413 /*
2414 * Everything looks good; add a new record to the multicast
2415 * address list for the given interface.
2416 */
2417 imm = in6_joingroup(ifp, &mreq.ipv6mr_multiaddr, &error, 0);
2418 if (imm == NULL)
2419 break;
2420 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2421 break;
2422
2423 case IPV6_LEAVE_GROUP:
2424 /*
2425 * Drop a multicast group membership.
2426 * Group must be a valid IP6 multicast address.
2427 */
2428 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2429 if (error != 0)
2430 break;
2431
2432 /*
2433 * If an interface address was specified, get a pointer
2434 * to its ifnet structure.
2435 */
2436 if (mreq.ipv6mr_interface != 0) {
2437 if (if_indexlim <= mreq.ipv6mr_interface ||
2438 !ifindex2ifnet[mreq.ipv6mr_interface]) {
2439 error = ENXIO; /* XXX EINVAL? */
2440 break;
2441 }
2442 ifp = ifindex2ifnet[mreq.ipv6mr_interface];
2443 } else
2444 ifp = NULL;
2445
2446 /* Fill in the scope zone ID */
2447 if (ifp) {
2448 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2449 /* XXX: should not happen */
2450 error = EADDRNOTAVAIL;
2451 break;
2452 }
2453 } else if (mreq.ipv6mr_interface != 0) {
2454 /*
2455 * XXX: This case would happens when the (positive)
2456 * index is in the valid range, but the corresponding
2457 * interface has been detached dynamically. The above
2458 * check probably avoids such case to happen here, but
2459 * we check it explicitly for safety.
2460 */
2461 error = EADDRNOTAVAIL;
2462 break;
2463 } else { /* ipv6mr_interface == 0 */
2464 struct sockaddr_in6 sa6_mc;
2465
2466 /*
2467 * The API spec says as follows:
2468 * If the interface index is specified as 0, the
2469 * system may choose a multicast group membership to
2470 * drop by matching the multicast address only.
2471 * On the other hand, we cannot disambiguate the scope
2472 * zone unless an interface is provided. Thus, we
2473 * check if there's ambiguity with the default scope
2474 * zone as the last resort.
2475 */
2476 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2477 0, 0, 0);
2478 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2479 if (error != 0)
2480 break;
2481 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2482 }
2483
2484 /*
2485 * Find the membership in the membership list.
2486 */
2487 for (imm = im6o->im6o_memberships.lh_first;
2488 imm != NULL; imm = imm->i6mm_chain.le_next) {
2489 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2490 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2491 &mreq.ipv6mr_multiaddr))
2492 break;
2493 }
2494 if (imm == NULL) {
2495 /* Unable to resolve interface */
2496 error = EADDRNOTAVAIL;
2497 break;
2498 }
2499 /*
2500 * Give up the multicast address record to which the
2501 * membership points.
2502 */
2503 LIST_REMOVE(imm, i6mm_chain);
2504 in6_leavegroup(imm);
2505 break;
2506
2507 default:
2508 error = EOPNOTSUPP;
2509 break;
2510 }
2511
2512 /*
2513 * If all options have default values, no need to keep the mbuf.
2514 */
2515 if (im6o->im6o_multicast_ifp == NULL &&
2516 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2517 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2518 im6o->im6o_memberships.lh_first == NULL) {
2519 free(*im6op, M_IPMOPTS);
2520 *im6op = NULL;
2521 }
2522
2523 return (error);
2524 }
2525
2526 /*
2527 * Return the IP6 multicast options in response to user getsockopt().
2528 */
2529 static int
2530 ip6_getmoptions(struct sockopt *sopt, struct ip6_moptions *im6o)
2531 {
2532 u_int optval;
2533 int error;
2534
2535 switch (sopt->sopt_name) {
2536 case IPV6_MULTICAST_IF:
2537 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2538 optval = 0;
2539 else
2540 optval = im6o->im6o_multicast_ifp->if_index;
2541
2542 error = sockopt_set(sopt, &optval, sizeof(optval));
2543 break;
2544
2545 case IPV6_MULTICAST_HOPS:
2546 if (im6o == NULL)
2547 optval = ip6_defmcasthlim;
2548 else
2549 optval = im6o->im6o_multicast_hlim;
2550
2551 error = sockopt_set(sopt, &optval, sizeof(optval));
2552 break;
2553
2554 case IPV6_MULTICAST_LOOP:
2555 if (im6o == NULL)
2556 optval = IPV6_DEFAULT_MULTICAST_LOOP;
2557 else
2558 optval = im6o->im6o_multicast_loop;
2559
2560 error = sockopt_set(sopt, &optval, sizeof(optval));
2561 break;
2562
2563 default:
2564 error = EOPNOTSUPP;
2565 }
2566
2567 return (error);
2568 }
2569
2570 /*
2571 * Discard the IP6 multicast options.
2572 */
2573 void
2574 ip6_freemoptions(struct ip6_moptions *im6o)
2575 {
2576 struct in6_multi_mship *imm;
2577
2578 if (im6o == NULL)
2579 return;
2580
2581 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2582 LIST_REMOVE(imm, i6mm_chain);
2583 in6_leavegroup(imm);
2584 }
2585 free(im6o, M_IPMOPTS);
2586 }
2587
2588 /*
2589 * Set IPv6 outgoing packet options based on advanced API.
2590 */
2591 int
2592 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2593 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2594 {
2595 struct cmsghdr *cm = 0;
2596
2597 if (control == NULL || opt == NULL)
2598 return (EINVAL);
2599
2600 ip6_initpktopts(opt);
2601 if (stickyopt) {
2602 int error;
2603
2604 /*
2605 * If stickyopt is provided, make a local copy of the options
2606 * for this particular packet, then override them by ancillary
2607 * objects.
2608 * XXX: copypktopts() does not copy the cached route to a next
2609 * hop (if any). This is not very good in terms of efficiency,
2610 * but we can allow this since this option should be rarely
2611 * used.
2612 */
2613 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2614 return (error);
2615 }
2616
2617 /*
2618 * XXX: Currently, we assume all the optional information is stored
2619 * in a single mbuf.
2620 */
2621 if (control->m_next)
2622 return (EINVAL);
2623
2624 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2625 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2626 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2627 int error;
2628
2629 if (control->m_len < CMSG_LEN(0))
2630 return (EINVAL);
2631
2632 cm = mtod(control, struct cmsghdr *);
2633 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2634 return (EINVAL);
2635 if (cm->cmsg_level != IPPROTO_IPV6)
2636 continue;
2637
2638 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2639 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2640 if (error)
2641 return (error);
2642 }
2643
2644 return (0);
2645 }
2646
2647 /*
2648 * Set a particular packet option, as a sticky option or an ancillary data
2649 * item. "len" can be 0 only when it's a sticky option.
2650 * We have 4 cases of combination of "sticky" and "cmsg":
2651 * "sticky=0, cmsg=0": impossible
2652 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2653 * "sticky=1, cmsg=0": RFC3542 socket option
2654 * "sticky=1, cmsg=1": RFC2292 socket option
2655 */
2656 static int
2657 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2658 kauth_cred_t cred, int sticky, int cmsg, int uproto)
2659 {
2660 int minmtupolicy;
2661 int error;
2662
2663 if (!sticky && !cmsg) {
2664 #ifdef DIAGNOSTIC
2665 printf("ip6_setpktopt: impossible case\n");
2666 #endif
2667 return (EINVAL);
2668 }
2669
2670 /*
2671 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2672 * not be specified in the context of RFC3542. Conversely,
2673 * RFC3542 types should not be specified in the context of RFC2292.
2674 */
2675 if (!cmsg) {
2676 switch (optname) {
2677 case IPV6_2292PKTINFO:
2678 case IPV6_2292HOPLIMIT:
2679 case IPV6_2292NEXTHOP:
2680 case IPV6_2292HOPOPTS:
2681 case IPV6_2292DSTOPTS:
2682 case IPV6_2292RTHDR:
2683 case IPV6_2292PKTOPTIONS:
2684 return (ENOPROTOOPT);
2685 }
2686 }
2687 if (sticky && cmsg) {
2688 switch (optname) {
2689 case IPV6_PKTINFO:
2690 case IPV6_HOPLIMIT:
2691 case IPV6_NEXTHOP:
2692 case IPV6_HOPOPTS:
2693 case IPV6_DSTOPTS:
2694 case IPV6_RTHDRDSTOPTS:
2695 case IPV6_RTHDR:
2696 case IPV6_USE_MIN_MTU:
2697 case IPV6_DONTFRAG:
2698 case IPV6_OTCLASS:
2699 case IPV6_TCLASS:
2700 return (ENOPROTOOPT);
2701 }
2702 }
2703
2704 switch (optname) {
2705 #ifdef RFC2292
2706 case IPV6_2292PKTINFO:
2707 #endif
2708 case IPV6_PKTINFO:
2709 {
2710 struct ifnet *ifp = NULL;
2711 struct in6_pktinfo *pktinfo;
2712
2713 if (len != sizeof(struct in6_pktinfo))
2714 return (EINVAL);
2715
2716 pktinfo = (struct in6_pktinfo *)buf;
2717
2718 /*
2719 * An application can clear any sticky IPV6_PKTINFO option by
2720 * doing a "regular" setsockopt with ipi6_addr being
2721 * in6addr_any and ipi6_ifindex being zero.
2722 * [RFC 3542, Section 6]
2723 */
2724 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2725 pktinfo->ipi6_ifindex == 0 &&
2726 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2727 ip6_clearpktopts(opt, optname);
2728 break;
2729 }
2730
2731 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2732 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2733 return (EINVAL);
2734 }
2735
2736 /* validate the interface index if specified. */
2737 if (pktinfo->ipi6_ifindex >= if_indexlim) {
2738 return (ENXIO);
2739 }
2740 if (pktinfo->ipi6_ifindex) {
2741 ifp = ifindex2ifnet[pktinfo->ipi6_ifindex];
2742 if (ifp == NULL)
2743 return (ENXIO);
2744 }
2745
2746 /*
2747 * We store the address anyway, and let in6_selectsrc()
2748 * validate the specified address. This is because ipi6_addr
2749 * may not have enough information about its scope zone, and
2750 * we may need additional information (such as outgoing
2751 * interface or the scope zone of a destination address) to
2752 * disambiguate the scope.
2753 * XXX: the delay of the validation may confuse the
2754 * application when it is used as a sticky option.
2755 */
2756 if (opt->ip6po_pktinfo == NULL) {
2757 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2758 M_IP6OPT, M_NOWAIT);
2759 if (opt->ip6po_pktinfo == NULL)
2760 return (ENOBUFS);
2761 }
2762 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2763 break;
2764 }
2765
2766 #ifdef RFC2292
2767 case IPV6_2292HOPLIMIT:
2768 #endif
2769 case IPV6_HOPLIMIT:
2770 {
2771 int *hlimp;
2772
2773 /*
2774 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2775 * to simplify the ordering among hoplimit options.
2776 */
2777 if (optname == IPV6_HOPLIMIT && sticky)
2778 return (ENOPROTOOPT);
2779
2780 if (len != sizeof(int))
2781 return (EINVAL);
2782 hlimp = (int *)buf;
2783 if (*hlimp < -1 || *hlimp > 255)
2784 return (EINVAL);
2785
2786 opt->ip6po_hlim = *hlimp;
2787 break;
2788 }
2789
2790 case IPV6_OTCLASS:
2791 if (len != sizeof(u_int8_t))
2792 return (EINVAL);
2793
2794 opt->ip6po_tclass = *(u_int8_t *)buf;
2795 break;
2796
2797 case IPV6_TCLASS:
2798 {
2799 int tclass;
2800
2801 if (len != sizeof(int))
2802 return (EINVAL);
2803 tclass = *(int *)buf;
2804 if (tclass < -1 || tclass > 255)
2805 return (EINVAL);
2806
2807 opt->ip6po_tclass = tclass;
2808 break;
2809 }
2810
2811 #ifdef RFC2292
2812 case IPV6_2292NEXTHOP:
2813 #endif
2814 case IPV6_NEXTHOP:
2815 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2816 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2817 if (error)
2818 return (error);
2819
2820 if (len == 0) { /* just remove the option */
2821 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2822 break;
2823 }
2824
2825 /* check if cmsg_len is large enough for sa_len */
2826 if (len < sizeof(struct sockaddr) || len < *buf)
2827 return (EINVAL);
2828
2829 switch (((struct sockaddr *)buf)->sa_family) {
2830 case AF_INET6:
2831 {
2832 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2833
2834 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2835 return (EINVAL);
2836
2837 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2838 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2839 return (EINVAL);
2840 }
2841 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
2842 != 0) {
2843 return (error);
2844 }
2845 break;
2846 }
2847 case AF_LINK: /* eventually be supported? */
2848 default:
2849 return (EAFNOSUPPORT);
2850 }
2851
2852 /* turn off the previous option, then set the new option. */
2853 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2854 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2855 if (opt->ip6po_nexthop == NULL)
2856 return (ENOBUFS);
2857 memcpy(opt->ip6po_nexthop, buf, *buf);
2858 break;
2859
2860 #ifdef RFC2292
2861 case IPV6_2292HOPOPTS:
2862 #endif
2863 case IPV6_HOPOPTS:
2864 {
2865 struct ip6_hbh *hbh;
2866 int hbhlen;
2867
2868 /*
2869 * XXX: We don't allow a non-privileged user to set ANY HbH
2870 * options, since per-option restriction has too much
2871 * overhead.
2872 */
2873 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2874 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2875 if (error)
2876 return (error);
2877
2878 if (len == 0) {
2879 ip6_clearpktopts(opt, IPV6_HOPOPTS);
2880 break; /* just remove the option */
2881 }
2882
2883 /* message length validation */
2884 if (len < sizeof(struct ip6_hbh))
2885 return (EINVAL);
2886 hbh = (struct ip6_hbh *)buf;
2887 hbhlen = (hbh->ip6h_len + 1) << 3;
2888 if (len != hbhlen)
2889 return (EINVAL);
2890
2891 /* turn off the previous option, then set the new option. */
2892 ip6_clearpktopts(opt, IPV6_HOPOPTS);
2893 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2894 if (opt->ip6po_hbh == NULL)
2895 return (ENOBUFS);
2896 memcpy(opt->ip6po_hbh, hbh, hbhlen);
2897
2898 break;
2899 }
2900
2901 #ifdef RFC2292
2902 case IPV6_2292DSTOPTS:
2903 #endif
2904 case IPV6_DSTOPTS:
2905 case IPV6_RTHDRDSTOPTS:
2906 {
2907 struct ip6_dest *dest, **newdest = NULL;
2908 int destlen;
2909
2910 /* XXX: see the comment for IPV6_HOPOPTS */
2911 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2912 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2913 if (error)
2914 return (error);
2915
2916 if (len == 0) {
2917 ip6_clearpktopts(opt, optname);
2918 break; /* just remove the option */
2919 }
2920
2921 /* message length validation */
2922 if (len < sizeof(struct ip6_dest))
2923 return (EINVAL);
2924 dest = (struct ip6_dest *)buf;
2925 destlen = (dest->ip6d_len + 1) << 3;
2926 if (len != destlen)
2927 return (EINVAL);
2928 /*
2929 * Determine the position that the destination options header
2930 * should be inserted; before or after the routing header.
2931 */
2932 switch (optname) {
2933 case IPV6_2292DSTOPTS:
2934 /*
2935 * The old advanced API is ambiguous on this point.
2936 * Our approach is to determine the position based
2937 * according to the existence of a routing header.
2938 * Note, however, that this depends on the order of the
2939 * extension headers in the ancillary data; the 1st
2940 * part of the destination options header must appear
2941 * before the routing header in the ancillary data,
2942 * too.
2943 * RFC3542 solved the ambiguity by introducing
2944 * separate ancillary data or option types.
2945 */
2946 if (opt->ip6po_rthdr == NULL)
2947 newdest = &opt->ip6po_dest1;
2948 else
2949 newdest = &opt->ip6po_dest2;
2950 break;
2951 case IPV6_RTHDRDSTOPTS:
2952 newdest = &opt->ip6po_dest1;
2953 break;
2954 case IPV6_DSTOPTS:
2955 newdest = &opt->ip6po_dest2;
2956 break;
2957 }
2958
2959 /* turn off the previous option, then set the new option. */
2960 ip6_clearpktopts(opt, optname);
2961 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2962 if (*newdest == NULL)
2963 return (ENOBUFS);
2964 memcpy(*newdest, dest, destlen);
2965
2966 break;
2967 }
2968
2969 #ifdef RFC2292
2970 case IPV6_2292RTHDR:
2971 #endif
2972 case IPV6_RTHDR:
2973 {
2974 struct ip6_rthdr *rth;
2975 int rthlen;
2976
2977 if (len == 0) {
2978 ip6_clearpktopts(opt, IPV6_RTHDR);
2979 break; /* just remove the option */
2980 }
2981
2982 /* message length validation */
2983 if (len < sizeof(struct ip6_rthdr))
2984 return (EINVAL);
2985 rth = (struct ip6_rthdr *)buf;
2986 rthlen = (rth->ip6r_len + 1) << 3;
2987 if (len != rthlen)
2988 return (EINVAL);
2989 switch (rth->ip6r_type) {
2990 case IPV6_RTHDR_TYPE_0:
2991 if (rth->ip6r_len == 0) /* must contain one addr */
2992 return (EINVAL);
2993 if (rth->ip6r_len % 2) /* length must be even */
2994 return (EINVAL);
2995 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2996 return (EINVAL);
2997 break;
2998 default:
2999 return (EINVAL); /* not supported */
3000 }
3001 /* turn off the previous option */
3002 ip6_clearpktopts(opt, IPV6_RTHDR);
3003 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3004 if (opt->ip6po_rthdr == NULL)
3005 return (ENOBUFS);
3006 memcpy(opt->ip6po_rthdr, rth, rthlen);
3007 break;
3008 }
3009
3010 case IPV6_USE_MIN_MTU:
3011 if (len != sizeof(int))
3012 return (EINVAL);
3013 minmtupolicy = *(int *)buf;
3014 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3015 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3016 minmtupolicy != IP6PO_MINMTU_ALL) {
3017 return (EINVAL);
3018 }
3019 opt->ip6po_minmtu = minmtupolicy;
3020 break;
3021
3022 case IPV6_DONTFRAG:
3023 if (len != sizeof(int))
3024 return (EINVAL);
3025
3026 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3027 /*
3028 * we ignore this option for TCP sockets.
3029 * (RFC3542 leaves this case unspecified.)
3030 */
3031 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3032 } else
3033 opt->ip6po_flags |= IP6PO_DONTFRAG;
3034 break;
3035
3036 default:
3037 return (ENOPROTOOPT);
3038 } /* end of switch */
3039
3040 return (0);
3041 }
3042
3043 /*
3044 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3045 * packet to the input queue of a specified interface. Note that this
3046 * calls the output routine of the loopback "driver", but with an interface
3047 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3048 */
3049 void
3050 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3051 const struct sockaddr_in6 *dst)
3052 {
3053 struct mbuf *copym;
3054 struct ip6_hdr *ip6;
3055
3056 copym = m_copy(m, 0, M_COPYALL);
3057 if (copym == NULL)
3058 return;
3059
3060 /*
3061 * Make sure to deep-copy IPv6 header portion in case the data
3062 * is in an mbuf cluster, so that we can safely override the IPv6
3063 * header portion later.
3064 */
3065 if ((copym->m_flags & M_EXT) != 0 ||
3066 copym->m_len < sizeof(struct ip6_hdr)) {
3067 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3068 if (copym == NULL)
3069 return;
3070 }
3071
3072 #ifdef DIAGNOSTIC
3073 if (copym->m_len < sizeof(*ip6)) {
3074 m_freem(copym);
3075 return;
3076 }
3077 #endif
3078
3079 ip6 = mtod(copym, struct ip6_hdr *);
3080 /*
3081 * clear embedded scope identifiers if necessary.
3082 * in6_clearscope will touch the addresses only when necessary.
3083 */
3084 in6_clearscope(&ip6->ip6_src);
3085 in6_clearscope(&ip6->ip6_dst);
3086
3087 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3088 }
3089
3090 /*
3091 * Chop IPv6 header off from the payload.
3092 */
3093 static int
3094 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3095 {
3096 struct mbuf *mh;
3097 struct ip6_hdr *ip6;
3098
3099 ip6 = mtod(m, struct ip6_hdr *);
3100 if (m->m_len > sizeof(*ip6)) {
3101 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3102 if (mh == 0) {
3103 m_freem(m);
3104 return ENOBUFS;
3105 }
3106 M_MOVE_PKTHDR(mh, m);
3107 MH_ALIGN(mh, sizeof(*ip6));
3108 m->m_len -= sizeof(*ip6);
3109 m->m_data += sizeof(*ip6);
3110 mh->m_next = m;
3111 m = mh;
3112 m->m_len = sizeof(*ip6);
3113 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
3114 }
3115 exthdrs->ip6e_ip6 = m;
3116 return 0;
3117 }
3118
3119 /*
3120 * Compute IPv6 extension header length.
3121 */
3122 int
3123 ip6_optlen(struct in6pcb *in6p)
3124 {
3125 int len;
3126
3127 if (!in6p->in6p_outputopts)
3128 return 0;
3129
3130 len = 0;
3131 #define elen(x) \
3132 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3133
3134 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3135 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3136 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3137 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3138 return len;
3139 #undef elen
3140 }
3141