Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.155
      1 /*	$NetBSD: ip6_output.c,v 1.155 2013/10/03 20:27:55 christos Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.155 2013/10/03 20:27:55 christos Exp $");
     66 
     67 #include "opt_inet.h"
     68 #include "opt_inet6.h"
     69 #include "opt_ipsec.h"
     70 
     71 #include <sys/param.h>
     72 #include <sys/malloc.h>
     73 #include <sys/mbuf.h>
     74 #include <sys/errno.h>
     75 #include <sys/protosw.h>
     76 #include <sys/socket.h>
     77 #include <sys/socketvar.h>
     78 #include <sys/systm.h>
     79 #include <sys/proc.h>
     80 #include <sys/kauth.h>
     81 
     82 #include <net/if.h>
     83 #include <net/route.h>
     84 #include <net/pfil.h>
     85 
     86 #include <netinet/in.h>
     87 #include <netinet/in_var.h>
     88 #include <netinet/ip6.h>
     89 #include <netinet/icmp6.h>
     90 #include <netinet/in_offload.h>
     91 #include <netinet/portalgo.h>
     92 #include <netinet6/in6_offload.h>
     93 #include <netinet6/ip6_var.h>
     94 #include <netinet6/ip6_private.h>
     95 #include <netinet6/in6_pcb.h>
     96 #include <netinet6/nd6.h>
     97 #include <netinet6/ip6protosw.h>
     98 #include <netinet6/scope6_var.h>
     99 
    100 #ifdef IPSEC
    101 #include <netipsec/ipsec.h>
    102 #include <netipsec/ipsec6.h>
    103 #include <netipsec/key.h>
    104 #include <netipsec/xform.h>
    105 #endif
    106 
    107 
    108 #include <net/net_osdep.h>
    109 
    110 extern pfil_head_t *inet6_pfil_hook;	/* XXX */
    111 
    112 struct ip6_exthdrs {
    113 	struct mbuf *ip6e_ip6;
    114 	struct mbuf *ip6e_hbh;
    115 	struct mbuf *ip6e_dest1;
    116 	struct mbuf *ip6e_rthdr;
    117 	struct mbuf *ip6e_dest2;
    118 };
    119 
    120 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
    121 	kauth_cred_t, int);
    122 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
    123 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
    124 	int, int, int);
    125 static int ip6_setmoptions(const struct sockopt *, struct ip6_moptions **);
    126 static int ip6_getmoptions(struct sockopt *, struct ip6_moptions *);
    127 static int ip6_copyexthdr(struct mbuf **, void *, int);
    128 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
    129 	struct ip6_frag **);
    130 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
    131 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
    132 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *,
    133     const struct in6_addr *, u_long *, int *);
    134 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
    135 
    136 #ifdef RFC2292
    137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
    138 #endif
    139 
    140 /*
    141  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    142  * header (with pri, len, nxt, hlim, src, dst).
    143  * This function may modify ver and hlim only.
    144  * The mbuf chain containing the packet will be freed.
    145  * The mbuf opt, if present, will not be freed.
    146  *
    147  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    148  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
    149  * which is rt_rmx.rmx_mtu.
    150  */
    151 int
    152 ip6_output(
    153     struct mbuf *m0,
    154     struct ip6_pktopts *opt,
    155     struct route *ro,
    156     int flags,
    157     struct ip6_moptions *im6o,
    158     struct socket *so,
    159     struct ifnet **ifpp		/* XXX: just for statistics */
    160 )
    161 {
    162 	struct ip6_hdr *ip6, *mhip6;
    163 	struct ifnet *ifp, *origifp;
    164 	struct mbuf *m = m0;
    165 	int hlen, tlen, len, off;
    166 	bool tso;
    167 	struct route ip6route;
    168 	struct rtentry *rt = NULL;
    169 	const struct sockaddr_in6 *dst = NULL;
    170 	struct sockaddr_in6 src_sa, dst_sa;
    171 	int error = 0;
    172 	struct in6_ifaddr *ia = NULL;
    173 	u_long mtu;
    174 	int alwaysfrag, dontfrag;
    175 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    176 	struct ip6_exthdrs exthdrs;
    177 	struct in6_addr finaldst, src0, dst0;
    178 	u_int32_t zone;
    179 	struct route *ro_pmtu = NULL;
    180 	int hdrsplit = 0;
    181 	int needipsec = 0;
    182 #ifdef IPSEC
    183 	struct secpolicy *sp = NULL;
    184 	int s;
    185 #endif
    186 
    187 	memset(&ip6route, 0, sizeof(ip6route));
    188 
    189 #ifdef  DIAGNOSTIC
    190 	if ((m->m_flags & M_PKTHDR) == 0)
    191 		panic("ip6_output: no HDR");
    192 
    193 	if ((m->m_pkthdr.csum_flags &
    194 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
    195 		panic("ip6_output: IPv4 checksum offload flags: %d",
    196 		    m->m_pkthdr.csum_flags);
    197 	}
    198 
    199 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
    200 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
    201 		panic("ip6_output: conflicting checksum offload flags: %d",
    202 		    m->m_pkthdr.csum_flags);
    203 	}
    204 #endif
    205 
    206 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    207 
    208 #define MAKE_EXTHDR(hp, mp)						\
    209     do {								\
    210 	if (hp) {							\
    211 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    212 		error = ip6_copyexthdr((mp), (void *)(hp), 		\
    213 		    ((eh)->ip6e_len + 1) << 3);				\
    214 		if (error)						\
    215 			goto freehdrs;					\
    216 	}								\
    217     } while (/*CONSTCOND*/ 0)
    218 
    219 	memset(&exthdrs, 0, sizeof(exthdrs));
    220 	if (opt) {
    221 		/* Hop-by-Hop options header */
    222 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    223 		/* Destination options header(1st part) */
    224 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    225 		/* Routing header */
    226 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    227 		/* Destination options header(2nd part) */
    228 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    229 	}
    230 
    231 	/*
    232 	 * Calculate the total length of the extension header chain.
    233 	 * Keep the length of the unfragmentable part for fragmentation.
    234 	 */
    235 	optlen = 0;
    236 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    237 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    238 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    239 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    240 	/* NOTE: we don't add AH/ESP length here. do that later. */
    241 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    242 
    243 #ifdef IPSEC
    244 	/* Check the security policy (SP) for the packet */
    245 
    246 	sp = ipsec6_check_policy(m,so,flags,&needipsec,&error);
    247 	if (error != 0) {
    248 		/*
    249 		 * Hack: -EINVAL is used to signal that a packet
    250 		 * should be silently discarded.  This is typically
    251 		 * because we asked key management for an SA and
    252 		 * it was delayed (e.g. kicked up to IKE).
    253 		 */
    254 	if (error == -EINVAL)
    255 		error = 0;
    256 	goto freehdrs;
    257     }
    258 #endif /* IPSEC */
    259 
    260 
    261 	if (needipsec &&
    262 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    263 		in6_delayed_cksum(m);
    264 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    265 	}
    266 
    267 
    268 	/*
    269 	 * If we need IPsec, or there is at least one extension header,
    270 	 * separate IP6 header from the payload.
    271 	 */
    272 	if ((needipsec || optlen) && !hdrsplit) {
    273 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    274 			m = NULL;
    275 			goto freehdrs;
    276 		}
    277 		m = exthdrs.ip6e_ip6;
    278 		hdrsplit++;
    279 	}
    280 
    281 	/* adjust pointer */
    282 	ip6 = mtod(m, struct ip6_hdr *);
    283 
    284 	/* adjust mbuf packet header length */
    285 	m->m_pkthdr.len += optlen;
    286 	plen = m->m_pkthdr.len - sizeof(*ip6);
    287 
    288 	/* If this is a jumbo payload, insert a jumbo payload option. */
    289 	if (plen > IPV6_MAXPACKET) {
    290 		if (!hdrsplit) {
    291 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    292 				m = NULL;
    293 				goto freehdrs;
    294 			}
    295 			m = exthdrs.ip6e_ip6;
    296 			hdrsplit++;
    297 		}
    298 		/* adjust pointer */
    299 		ip6 = mtod(m, struct ip6_hdr *);
    300 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    301 			goto freehdrs;
    302 		optlen += 8; /* XXX JUMBOOPTLEN */
    303 		ip6->ip6_plen = 0;
    304 	} else
    305 		ip6->ip6_plen = htons(plen);
    306 
    307 	/*
    308 	 * Concatenate headers and fill in next header fields.
    309 	 * Here we have, on "m"
    310 	 *	IPv6 payload
    311 	 * and we insert headers accordingly.  Finally, we should be getting:
    312 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    313 	 *
    314 	 * during the header composing process, "m" points to IPv6 header.
    315 	 * "mprev" points to an extension header prior to esp.
    316 	 */
    317 	{
    318 		u_char *nexthdrp = &ip6->ip6_nxt;
    319 		struct mbuf *mprev = m;
    320 
    321 		/*
    322 		 * we treat dest2 specially.  this makes IPsec processing
    323 		 * much easier.  the goal here is to make mprev point the
    324 		 * mbuf prior to dest2.
    325 		 *
    326 		 * result: IPv6 dest2 payload
    327 		 * m and mprev will point to IPv6 header.
    328 		 */
    329 		if (exthdrs.ip6e_dest2) {
    330 			if (!hdrsplit)
    331 				panic("assumption failed: hdr not split");
    332 			exthdrs.ip6e_dest2->m_next = m->m_next;
    333 			m->m_next = exthdrs.ip6e_dest2;
    334 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    335 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    336 		}
    337 
    338 #define MAKE_CHAIN(m, mp, p, i)\
    339     do {\
    340 	if (m) {\
    341 		if (!hdrsplit) \
    342 			panic("assumption failed: hdr not split"); \
    343 		*mtod((m), u_char *) = *(p);\
    344 		*(p) = (i);\
    345 		p = mtod((m), u_char *);\
    346 		(m)->m_next = (mp)->m_next;\
    347 		(mp)->m_next = (m);\
    348 		(mp) = (m);\
    349 	}\
    350     } while (/*CONSTCOND*/ 0)
    351 		/*
    352 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    353 		 * m will point to IPv6 header.  mprev will point to the
    354 		 * extension header prior to dest2 (rthdr in the above case).
    355 		 */
    356 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    357 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    358 		    IPPROTO_DSTOPTS);
    359 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    360 		    IPPROTO_ROUTING);
    361 
    362 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
    363 		    sizeof(struct ip6_hdr) + optlen);
    364 	}
    365 
    366 	/*
    367 	 * If there is a routing header, replace destination address field
    368 	 * with the first hop of the routing header.
    369 	 */
    370 	if (exthdrs.ip6e_rthdr) {
    371 		struct ip6_rthdr *rh;
    372 		struct ip6_rthdr0 *rh0;
    373 		struct in6_addr *addr;
    374 		struct sockaddr_in6 sa;
    375 
    376 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    377 		    struct ip6_rthdr *));
    378 		finaldst = ip6->ip6_dst;
    379 		switch (rh->ip6r_type) {
    380 		case IPV6_RTHDR_TYPE_0:
    381 			 rh0 = (struct ip6_rthdr0 *)rh;
    382 			 addr = (struct in6_addr *)(rh0 + 1);
    383 
    384 			 /*
    385 			  * construct a sockaddr_in6 form of
    386 			  * the first hop.
    387 			  *
    388 			  * XXX: we may not have enough
    389 			  * information about its scope zone;
    390 			  * there is no standard API to pass
    391 			  * the information from the
    392 			  * application.
    393 			  */
    394 			 sockaddr_in6_init(&sa, addr, 0, 0, 0);
    395 			 if ((error = sa6_embedscope(&sa,
    396 			     ip6_use_defzone)) != 0) {
    397 				 goto bad;
    398 			 }
    399 			 ip6->ip6_dst = sa.sin6_addr;
    400 			 (void)memmove(&addr[0], &addr[1],
    401 			     sizeof(struct in6_addr) *
    402 			     (rh0->ip6r0_segleft - 1));
    403 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
    404 			 /* XXX */
    405 			 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
    406 			 break;
    407 		default:	/* is it possible? */
    408 			 error = EINVAL;
    409 			 goto bad;
    410 		}
    411 	}
    412 
    413 	/* Source address validation */
    414 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    415 	    (flags & IPV6_UNSPECSRC) == 0) {
    416 		error = EOPNOTSUPP;
    417 		IP6_STATINC(IP6_STAT_BADSCOPE);
    418 		goto bad;
    419 	}
    420 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    421 		error = EOPNOTSUPP;
    422 		IP6_STATINC(IP6_STAT_BADSCOPE);
    423 		goto bad;
    424 	}
    425 
    426 	IP6_STATINC(IP6_STAT_LOCALOUT);
    427 
    428 	/*
    429 	 * Route packet.
    430 	 */
    431 	/* initialize cached route */
    432 	if (ro == NULL) {
    433 		ro = &ip6route;
    434 	}
    435 	ro_pmtu = ro;
    436 	if (opt && opt->ip6po_rthdr)
    437 		ro = &opt->ip6po_route;
    438 
    439  	/*
    440 	 * if specified, try to fill in the traffic class field.
    441 	 * do not override if a non-zero value is already set.
    442 	 * we check the diffserv field and the ecn field separately.
    443 	 */
    444 	if (opt && opt->ip6po_tclass >= 0) {
    445 		int mask = 0;
    446 
    447 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    448 			mask |= 0xfc;
    449 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    450 			mask |= 0x03;
    451 		if (mask != 0)
    452 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    453 	}
    454 
    455 	/* fill in or override the hop limit field, if necessary. */
    456 	if (opt && opt->ip6po_hlim != -1)
    457 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    458 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    459 		if (im6o != NULL)
    460 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    461 		else
    462 			ip6->ip6_hlim = ip6_defmcasthlim;
    463 	}
    464 
    465 #ifdef IPSEC
    466 	if (needipsec) {
    467 		s = splsoftnet();
    468 		error = ipsec6_process_packet(m,sp->req);
    469 
    470 		/*
    471 		 * Preserve KAME behaviour: ENOENT can be returned
    472 		 * when an SA acquire is in progress.  Don't propagate
    473 		 * this to user-level; it confuses applications.
    474 		 * XXX this will go away when the SADB is redone.
    475 		 */
    476 		if (error == ENOENT)
    477 			error = 0;
    478 		splx(s);
    479 		goto done;
    480 	}
    481 #endif /* IPSEC */
    482 
    483 
    484 
    485 	/* adjust pointer */
    486 	ip6 = mtod(m, struct ip6_hdr *);
    487 
    488 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    489 	if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
    490 	    &ifp, &rt, 0)) != 0) {
    491 		if (ifp != NULL)
    492 			in6_ifstat_inc(ifp, ifs6_out_discard);
    493 		goto bad;
    494 	}
    495 	if (rt == NULL) {
    496 		/*
    497 		 * If in6_selectroute() does not return a route entry,
    498 		 * dst may not have been updated.
    499 		 */
    500 		error = rtcache_setdst(ro, sin6tosa(&dst_sa));
    501 		if (error) {
    502 			goto bad;
    503 		}
    504 	}
    505 
    506 	/*
    507 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    508 	 */
    509 	if ((flags & IPV6_FORWARDING) == 0) {
    510 		/* XXX: the FORWARDING flag can be set for mrouting. */
    511 		in6_ifstat_inc(ifp, ifs6_out_request);
    512 	}
    513 	if (rt != NULL) {
    514 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    515 		rt->rt_use++;
    516 	}
    517 
    518 	/*
    519 	 * The outgoing interface must be in the zone of source and
    520 	 * destination addresses.  We should use ia_ifp to support the
    521 	 * case of sending packets to an address of our own.
    522 	 */
    523 	if (ia != NULL && ia->ia_ifp)
    524 		origifp = ia->ia_ifp;
    525 	else
    526 		origifp = ifp;
    527 
    528 	src0 = ip6->ip6_src;
    529 	if (in6_setscope(&src0, origifp, &zone))
    530 		goto badscope;
    531 	sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
    532 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    533 		goto badscope;
    534 
    535 	dst0 = ip6->ip6_dst;
    536 	if (in6_setscope(&dst0, origifp, &zone))
    537 		goto badscope;
    538 	/* re-initialize to be sure */
    539 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    540 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    541 		goto badscope;
    542 
    543 	/* scope check is done. */
    544 
    545 	if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    546 		if (dst == NULL)
    547 			dst = satocsin6(rtcache_getdst(ro));
    548 		KASSERT(dst != NULL);
    549 	} else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) {
    550 		/*
    551 		 * The nexthop is explicitly specified by the
    552 		 * application.  We assume the next hop is an IPv6
    553 		 * address.
    554 		 */
    555 		dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
    556 	} else if ((rt->rt_flags & RTF_GATEWAY))
    557 		dst = (struct sockaddr_in6 *)rt->rt_gateway;
    558 	else if (dst == NULL)
    559 		dst = satocsin6(rtcache_getdst(ro));
    560 
    561 	/*
    562 	 * XXXXXX: original code follows:
    563 	 */
    564 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    565 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    566 	else {
    567 		struct	in6_multi *in6m;
    568 
    569 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    570 
    571 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    572 
    573 		/*
    574 		 * Confirm that the outgoing interface supports multicast.
    575 		 */
    576 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    577 			IP6_STATINC(IP6_STAT_NOROUTE);
    578 			in6_ifstat_inc(ifp, ifs6_out_discard);
    579 			error = ENETUNREACH;
    580 			goto bad;
    581 		}
    582 
    583 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
    584 		if (in6m != NULL &&
    585 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    586 			/*
    587 			 * If we belong to the destination multicast group
    588 			 * on the outgoing interface, and the caller did not
    589 			 * forbid loopback, loop back a copy.
    590 			 */
    591 			KASSERT(dst != NULL);
    592 			ip6_mloopback(ifp, m, dst);
    593 		} else {
    594 			/*
    595 			 * If we are acting as a multicast router, perform
    596 			 * multicast forwarding as if the packet had just
    597 			 * arrived on the interface to which we are about
    598 			 * to send.  The multicast forwarding function
    599 			 * recursively calls this function, using the
    600 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    601 			 *
    602 			 * Multicasts that are looped back by ip6_mloopback(),
    603 			 * above, will be forwarded by the ip6_input() routine,
    604 			 * if necessary.
    605 			 */
    606 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    607 				if (ip6_mforward(ip6, ifp, m) != 0) {
    608 					m_freem(m);
    609 					goto done;
    610 				}
    611 			}
    612 		}
    613 		/*
    614 		 * Multicasts with a hoplimit of zero may be looped back,
    615 		 * above, but must not be transmitted on a network.
    616 		 * Also, multicasts addressed to the loopback interface
    617 		 * are not sent -- the above call to ip6_mloopback() will
    618 		 * loop back a copy if this host actually belongs to the
    619 		 * destination group on the loopback interface.
    620 		 */
    621 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    622 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    623 			m_freem(m);
    624 			goto done;
    625 		}
    626 	}
    627 
    628 	/*
    629 	 * Fill the outgoing inteface to tell the upper layer
    630 	 * to increment per-interface statistics.
    631 	 */
    632 	if (ifpp)
    633 		*ifpp = ifp;
    634 
    635 	/* Determine path MTU. */
    636 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
    637 	    &alwaysfrag)) != 0)
    638 		goto bad;
    639 
    640 	/*
    641 	 * The caller of this function may specify to use the minimum MTU
    642 	 * in some cases.
    643 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
    644 	 * setting.  The logic is a bit complicated; by default, unicast
    645 	 * packets will follow path MTU while multicast packets will be sent at
    646 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
    647 	 * including unicast ones will be sent at the minimum MTU.  Multicast
    648 	 * packets will always be sent at the minimum MTU unless
    649 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
    650 	 * See RFC 3542 for more details.
    651 	 */
    652 	if (mtu > IPV6_MMTU) {
    653 		if ((flags & IPV6_MINMTU))
    654 			mtu = IPV6_MMTU;
    655 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
    656 			mtu = IPV6_MMTU;
    657 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
    658 			 (opt == NULL ||
    659 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
    660 			mtu = IPV6_MMTU;
    661 		}
    662 	}
    663 
    664 	/*
    665 	 * clear embedded scope identifiers if necessary.
    666 	 * in6_clearscope will touch the addresses only when necessary.
    667 	 */
    668 	in6_clearscope(&ip6->ip6_src);
    669 	in6_clearscope(&ip6->ip6_dst);
    670 
    671 	/*
    672 	 * If the outgoing packet contains a hop-by-hop options header,
    673 	 * it must be examined and processed even by the source node.
    674 	 * (RFC 2460, section 4.)
    675 	 */
    676 	if (ip6->ip6_nxt == IPV6_HOPOPTS) {
    677 		u_int32_t dummy1; /* XXX unused */
    678 		u_int32_t dummy2; /* XXX unused */
    679 		int hoff = sizeof(struct ip6_hdr);
    680 
    681 		if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
    682 			/* m was already freed at this point */
    683 			error = EINVAL;/* better error? */
    684 			goto done;
    685 		}
    686 
    687 		ip6 = mtod(m, struct ip6_hdr *);
    688 	}
    689 
    690 	/*
    691 	 * Run through list of hooks for output packets.
    692 	 */
    693 	if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    694 		goto done;
    695 	if (m == NULL)
    696 		goto done;
    697 	ip6 = mtod(m, struct ip6_hdr *);
    698 
    699 	/*
    700 	 * Send the packet to the outgoing interface.
    701 	 * If necessary, do IPv6 fragmentation before sending.
    702 	 *
    703 	 * the logic here is rather complex:
    704 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    705 	 * 1-a:	send as is if tlen <= path mtu
    706 	 * 1-b:	fragment if tlen > path mtu
    707 	 *
    708 	 * 2: if user asks us not to fragment (dontfrag == 1)
    709 	 * 2-a:	send as is if tlen <= interface mtu
    710 	 * 2-b:	error if tlen > interface mtu
    711 	 *
    712 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    713 	 *	always fragment
    714 	 *
    715 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    716 	 *	error, as we cannot handle this conflicting request
    717 	 */
    718 	tlen = m->m_pkthdr.len;
    719 	tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
    720 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
    721 		dontfrag = 1;
    722 	else
    723 		dontfrag = 0;
    724 
    725 	if (dontfrag && alwaysfrag) {	/* case 4 */
    726 		/* conflicting request - can't transmit */
    727 		error = EMSGSIZE;
    728 		goto bad;
    729 	}
    730 	if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) {	/* case 2-b */
    731 		/*
    732 		 * Even if the DONTFRAG option is specified, we cannot send the
    733 		 * packet when the data length is larger than the MTU of the
    734 		 * outgoing interface.
    735 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    736 		 * well as returning an error code (the latter is not described
    737 		 * in the API spec.)
    738 		 */
    739 		u_int32_t mtu32;
    740 		struct ip6ctlparam ip6cp;
    741 
    742 		mtu32 = (u_int32_t)mtu;
    743 		memset(&ip6cp, 0, sizeof(ip6cp));
    744 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    745 		pfctlinput2(PRC_MSGSIZE,
    746 		    rtcache_getdst(ro_pmtu), &ip6cp);
    747 
    748 		error = EMSGSIZE;
    749 		goto bad;
    750 	}
    751 
    752 	/*
    753 	 * transmit packet without fragmentation
    754 	 */
    755 	if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
    756 		/* case 1-a and 2-a */
    757 		struct in6_ifaddr *ia6;
    758 		int sw_csum;
    759 
    760 		ip6 = mtod(m, struct ip6_hdr *);
    761 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    762 		if (ia6) {
    763 			/* Record statistics for this interface address. */
    764 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    765 		}
    766 
    767 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    768 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    769 			if (IN6_NEED_CHECKSUM(ifp,
    770 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    771 				in6_delayed_cksum(m);
    772 			}
    773 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    774 		}
    775 
    776 		KASSERT(dst != NULL);
    777 		if (__predict_true(!tso ||
    778 		    (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
    779 			error = nd6_output(ifp, origifp, m, dst, rt);
    780 		} else {
    781 			error = ip6_tso_output(ifp, origifp, m, dst, rt);
    782 		}
    783 		goto done;
    784 	}
    785 
    786 	if (tso) {
    787 		error = EINVAL; /* XXX */
    788 		goto bad;
    789 	}
    790 
    791 	/*
    792 	 * try to fragment the packet.  case 1-b and 3
    793 	 */
    794 	if (mtu < IPV6_MMTU) {
    795 		/* path MTU cannot be less than IPV6_MMTU */
    796 		error = EMSGSIZE;
    797 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    798 		goto bad;
    799 	} else if (ip6->ip6_plen == 0) {
    800 		/* jumbo payload cannot be fragmented */
    801 		error = EMSGSIZE;
    802 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    803 		goto bad;
    804 	} else {
    805 		struct mbuf **mnext, *m_frgpart;
    806 		struct ip6_frag *ip6f;
    807 		u_int32_t id = htonl(ip6_randomid());
    808 		u_char nextproto;
    809 #if 0				/* see below */
    810 		struct ip6ctlparam ip6cp;
    811 		u_int32_t mtu32;
    812 #endif
    813 
    814 		/*
    815 		 * Too large for the destination or interface;
    816 		 * fragment if possible.
    817 		 * Must be able to put at least 8 bytes per fragment.
    818 		 */
    819 		hlen = unfragpartlen;
    820 		if (mtu > IPV6_MAXPACKET)
    821 			mtu = IPV6_MAXPACKET;
    822 
    823 #if 0
    824 		/*
    825 		 * It is believed this code is a leftover from the
    826 		 * development of the IPV6_RECVPATHMTU sockopt and
    827 		 * associated work to implement RFC3542.
    828 		 * It's not entirely clear what the intent of the API
    829 		 * is at this point, so disable this code for now.
    830 		 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
    831 		 * will send notifications if the application requests.
    832 		 */
    833 
    834 		/* Notify a proper path MTU to applications. */
    835 		mtu32 = (u_int32_t)mtu;
    836 		memset(&ip6cp, 0, sizeof(ip6cp));
    837 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    838 		pfctlinput2(PRC_MSGSIZE,
    839 		    rtcache_getdst(ro_pmtu), &ip6cp);
    840 #endif
    841 
    842 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    843 		if (len < 8) {
    844 			error = EMSGSIZE;
    845 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
    846 			goto bad;
    847 		}
    848 
    849 		mnext = &m->m_nextpkt;
    850 
    851 		/*
    852 		 * Change the next header field of the last header in the
    853 		 * unfragmentable part.
    854 		 */
    855 		if (exthdrs.ip6e_rthdr) {
    856 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    857 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    858 		} else if (exthdrs.ip6e_dest1) {
    859 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    860 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    861 		} else if (exthdrs.ip6e_hbh) {
    862 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    863 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    864 		} else {
    865 			nextproto = ip6->ip6_nxt;
    866 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    867 		}
    868 
    869 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
    870 		    != 0) {
    871 			if (IN6_NEED_CHECKSUM(ifp,
    872 			    m->m_pkthdr.csum_flags &
    873 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    874 				in6_delayed_cksum(m);
    875 			}
    876 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    877 		}
    878 
    879 		/*
    880 		 * Loop through length of segment after first fragment,
    881 		 * make new header and copy data of each part and link onto
    882 		 * chain.
    883 		 */
    884 		m0 = m;
    885 		for (off = hlen; off < tlen; off += len) {
    886 			struct mbuf *mlast;
    887 
    888 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
    889 			if (!m) {
    890 				error = ENOBUFS;
    891 				IP6_STATINC(IP6_STAT_ODROPPED);
    892 				goto sendorfree;
    893 			}
    894 			m->m_pkthdr.rcvif = NULL;
    895 			m->m_flags = m0->m_flags & M_COPYFLAGS;
    896 			*mnext = m;
    897 			mnext = &m->m_nextpkt;
    898 			m->m_data += max_linkhdr;
    899 			mhip6 = mtod(m, struct ip6_hdr *);
    900 			*mhip6 = *ip6;
    901 			m->m_len = sizeof(*mhip6);
    902 			/*
    903 			 * ip6f must be valid if error is 0.  But how
    904 			 * can a compiler be expected to infer this?
    905 			 */
    906 			ip6f = NULL;
    907 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
    908 			if (error) {
    909 				IP6_STATINC(IP6_STAT_ODROPPED);
    910 				goto sendorfree;
    911 			}
    912 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
    913 			if (off + len >= tlen)
    914 				len = tlen - off;
    915 			else
    916 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
    917 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
    918 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
    919 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
    920 				error = ENOBUFS;
    921 				IP6_STATINC(IP6_STAT_ODROPPED);
    922 				goto sendorfree;
    923 			}
    924 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
    925 				;
    926 			mlast->m_next = m_frgpart;
    927 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
    928 			m->m_pkthdr.rcvif = NULL;
    929 			ip6f->ip6f_reserved = 0;
    930 			ip6f->ip6f_ident = id;
    931 			ip6f->ip6f_nxt = nextproto;
    932 			IP6_STATINC(IP6_STAT_OFRAGMENTS);
    933 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
    934 		}
    935 
    936 		in6_ifstat_inc(ifp, ifs6_out_fragok);
    937 	}
    938 
    939 	/*
    940 	 * Remove leading garbages.
    941 	 */
    942 sendorfree:
    943 	m = m0->m_nextpkt;
    944 	m0->m_nextpkt = 0;
    945 	m_freem(m0);
    946 	for (m0 = m; m; m = m0) {
    947 		m0 = m->m_nextpkt;
    948 		m->m_nextpkt = 0;
    949 		if (error == 0) {
    950 			struct in6_ifaddr *ia6;
    951 			ip6 = mtod(m, struct ip6_hdr *);
    952 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    953 			if (ia6) {
    954 				/*
    955 				 * Record statistics for this interface
    956 				 * address.
    957 				 */
    958 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
    959 				    m->m_pkthdr.len;
    960 			}
    961 			KASSERT(dst != NULL);
    962 			error = nd6_output(ifp, origifp, m, dst, rt);
    963 		} else
    964 			m_freem(m);
    965 	}
    966 
    967 	if (error == 0)
    968 		IP6_STATINC(IP6_STAT_FRAGMENTED);
    969 
    970 done:
    971 	rtcache_free(&ip6route);
    972 
    973 #ifdef IPSEC
    974 	if (sp != NULL)
    975 		KEY_FREESP(&sp);
    976 #endif /* IPSEC */
    977 
    978 
    979 	return (error);
    980 
    981 freehdrs:
    982 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
    983 	m_freem(exthdrs.ip6e_dest1);
    984 	m_freem(exthdrs.ip6e_rthdr);
    985 	m_freem(exthdrs.ip6e_dest2);
    986 	/* FALLTHROUGH */
    987 bad:
    988 	m_freem(m);
    989 	goto done;
    990 badscope:
    991 	IP6_STATINC(IP6_STAT_BADSCOPE);
    992 	in6_ifstat_inc(origifp, ifs6_out_discard);
    993 	if (error == 0)
    994 		error = EHOSTUNREACH; /* XXX */
    995 	goto bad;
    996 }
    997 
    998 static int
    999 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
   1000 {
   1001 	struct mbuf *m;
   1002 
   1003 	if (hlen > MCLBYTES)
   1004 		return (ENOBUFS); /* XXX */
   1005 
   1006 	MGET(m, M_DONTWAIT, MT_DATA);
   1007 	if (!m)
   1008 		return (ENOBUFS);
   1009 
   1010 	if (hlen > MLEN) {
   1011 		MCLGET(m, M_DONTWAIT);
   1012 		if ((m->m_flags & M_EXT) == 0) {
   1013 			m_free(m);
   1014 			return (ENOBUFS);
   1015 		}
   1016 	}
   1017 	m->m_len = hlen;
   1018 	if (hdr)
   1019 		bcopy(hdr, mtod(m, void *), hlen);
   1020 
   1021 	*mp = m;
   1022 	return (0);
   1023 }
   1024 
   1025 /*
   1026  * Process a delayed payload checksum calculation.
   1027  */
   1028 void
   1029 in6_delayed_cksum(struct mbuf *m)
   1030 {
   1031 	uint16_t csum, offset;
   1032 
   1033 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1034 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1035 	KASSERT((m->m_pkthdr.csum_flags
   1036 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
   1037 
   1038 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
   1039 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
   1040 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
   1041 		csum = 0xffff;
   1042 	}
   1043 
   1044 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
   1045 	if ((offset + sizeof(csum)) > m->m_len) {
   1046 		m_copyback(m, offset, sizeof(csum), &csum);
   1047 	} else {
   1048 		*(uint16_t *)(mtod(m, char *) + offset) = csum;
   1049 	}
   1050 }
   1051 
   1052 /*
   1053  * Insert jumbo payload option.
   1054  */
   1055 static int
   1056 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
   1057 {
   1058 	struct mbuf *mopt;
   1059 	u_int8_t *optbuf;
   1060 	u_int32_t v;
   1061 
   1062 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1063 
   1064 	/*
   1065 	 * If there is no hop-by-hop options header, allocate new one.
   1066 	 * If there is one but it doesn't have enough space to store the
   1067 	 * jumbo payload option, allocate a cluster to store the whole options.
   1068 	 * Otherwise, use it to store the options.
   1069 	 */
   1070 	if (exthdrs->ip6e_hbh == 0) {
   1071 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1072 		if (mopt == 0)
   1073 			return (ENOBUFS);
   1074 		mopt->m_len = JUMBOOPTLEN;
   1075 		optbuf = mtod(mopt, u_int8_t *);
   1076 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1077 		exthdrs->ip6e_hbh = mopt;
   1078 	} else {
   1079 		struct ip6_hbh *hbh;
   1080 
   1081 		mopt = exthdrs->ip6e_hbh;
   1082 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1083 			/*
   1084 			 * XXX assumption:
   1085 			 * - exthdrs->ip6e_hbh is not referenced from places
   1086 			 *   other than exthdrs.
   1087 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1088 			 */
   1089 			int oldoptlen = mopt->m_len;
   1090 			struct mbuf *n;
   1091 
   1092 			/*
   1093 			 * XXX: give up if the whole (new) hbh header does
   1094 			 * not fit even in an mbuf cluster.
   1095 			 */
   1096 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1097 				return (ENOBUFS);
   1098 
   1099 			/*
   1100 			 * As a consequence, we must always prepare a cluster
   1101 			 * at this point.
   1102 			 */
   1103 			MGET(n, M_DONTWAIT, MT_DATA);
   1104 			if (n) {
   1105 				MCLGET(n, M_DONTWAIT);
   1106 				if ((n->m_flags & M_EXT) == 0) {
   1107 					m_freem(n);
   1108 					n = NULL;
   1109 				}
   1110 			}
   1111 			if (!n)
   1112 				return (ENOBUFS);
   1113 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1114 			bcopy(mtod(mopt, void *), mtod(n, void *),
   1115 			    oldoptlen);
   1116 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1117 			m_freem(mopt);
   1118 			mopt = exthdrs->ip6e_hbh = n;
   1119 		} else {
   1120 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1121 			mopt->m_len += JUMBOOPTLEN;
   1122 		}
   1123 		optbuf[0] = IP6OPT_PADN;
   1124 		optbuf[1] = 0;
   1125 
   1126 		/*
   1127 		 * Adjust the header length according to the pad and
   1128 		 * the jumbo payload option.
   1129 		 */
   1130 		hbh = mtod(mopt, struct ip6_hbh *);
   1131 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1132 	}
   1133 
   1134 	/* fill in the option. */
   1135 	optbuf[2] = IP6OPT_JUMBO;
   1136 	optbuf[3] = 4;
   1137 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1138 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
   1139 
   1140 	/* finally, adjust the packet header length */
   1141 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1142 
   1143 	return (0);
   1144 #undef JUMBOOPTLEN
   1145 }
   1146 
   1147 /*
   1148  * Insert fragment header and copy unfragmentable header portions.
   1149  *
   1150  * *frghdrp will not be read, and it is guaranteed that either an
   1151  * error is returned or that *frghdrp will point to space allocated
   1152  * for the fragment header.
   1153  */
   1154 static int
   1155 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
   1156 	struct ip6_frag **frghdrp)
   1157 {
   1158 	struct mbuf *n, *mlast;
   1159 
   1160 	if (hlen > sizeof(struct ip6_hdr)) {
   1161 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1162 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1163 		if (n == 0)
   1164 			return (ENOBUFS);
   1165 		m->m_next = n;
   1166 	} else
   1167 		n = m;
   1168 
   1169 	/* Search for the last mbuf of unfragmentable part. */
   1170 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1171 		;
   1172 
   1173 	if ((mlast->m_flags & M_EXT) == 0 &&
   1174 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1175 		/* use the trailing space of the last mbuf for the fragment hdr */
   1176 		*frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
   1177 		    mlast->m_len);
   1178 		mlast->m_len += sizeof(struct ip6_frag);
   1179 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1180 	} else {
   1181 		/* allocate a new mbuf for the fragment header */
   1182 		struct mbuf *mfrg;
   1183 
   1184 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1185 		if (mfrg == 0)
   1186 			return (ENOBUFS);
   1187 		mfrg->m_len = sizeof(struct ip6_frag);
   1188 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1189 		mlast->m_next = mfrg;
   1190 	}
   1191 
   1192 	return (0);
   1193 }
   1194 
   1195 static int
   1196 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp,
   1197     const struct in6_addr *dst, u_long *mtup, int *alwaysfragp)
   1198 {
   1199 	struct rtentry *rt;
   1200 	u_int32_t mtu = 0;
   1201 	int alwaysfrag = 0;
   1202 	int error = 0;
   1203 
   1204 	if (ro_pmtu != ro) {
   1205 		union {
   1206 			struct sockaddr		dst;
   1207 			struct sockaddr_in6	dst6;
   1208 		} u;
   1209 
   1210 		/* The first hop and the final destination may differ. */
   1211 		sockaddr_in6_init(&u.dst6, dst, 0, 0, 0);
   1212 		rt = rtcache_lookup(ro_pmtu, &u.dst);
   1213 	} else
   1214 		rt = rtcache_validate(ro_pmtu);
   1215 	if (rt != NULL) {
   1216 		u_int32_t ifmtu;
   1217 
   1218 		if (ifp == NULL)
   1219 			ifp = rt->rt_ifp;
   1220 		ifmtu = IN6_LINKMTU(ifp);
   1221 		mtu = rt->rt_rmx.rmx_mtu;
   1222 		if (mtu == 0)
   1223 			mtu = ifmtu;
   1224 		else if (mtu < IPV6_MMTU) {
   1225 			/*
   1226 			 * RFC2460 section 5, last paragraph:
   1227 			 * if we record ICMPv6 too big message with
   1228 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1229 			 * or smaller, with fragment header attached.
   1230 			 * (fragment header is needed regardless from the
   1231 			 * packet size, for translators to identify packets)
   1232 			 */
   1233 			alwaysfrag = 1;
   1234 			mtu = IPV6_MMTU;
   1235 		} else if (mtu > ifmtu) {
   1236 			/*
   1237 			 * The MTU on the route is larger than the MTU on
   1238 			 * the interface!  This shouldn't happen, unless the
   1239 			 * MTU of the interface has been changed after the
   1240 			 * interface was brought up.  Change the MTU in the
   1241 			 * route to match the interface MTU (as long as the
   1242 			 * field isn't locked).
   1243 			 */
   1244 			mtu = ifmtu;
   1245 			if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
   1246 				rt->rt_rmx.rmx_mtu = mtu;
   1247 		}
   1248 	} else if (ifp) {
   1249 		mtu = IN6_LINKMTU(ifp);
   1250 	} else
   1251 		error = EHOSTUNREACH; /* XXX */
   1252 
   1253 	*mtup = mtu;
   1254 	if (alwaysfragp)
   1255 		*alwaysfragp = alwaysfrag;
   1256 	return (error);
   1257 }
   1258 
   1259 /*
   1260  * IP6 socket option processing.
   1261  */
   1262 int
   1263 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1264 {
   1265 	int optdatalen, uproto;
   1266 	void *optdata;
   1267 	struct in6pcb *in6p = sotoin6pcb(so);
   1268 	int error, optval;
   1269 	int level, optname;
   1270 
   1271 	KASSERT(sopt != NULL);
   1272 
   1273 	level = sopt->sopt_level;
   1274 	optname = sopt->sopt_name;
   1275 
   1276 	error = optval = 0;
   1277 	uproto = (int)so->so_proto->pr_protocol;
   1278 
   1279 	if (level != IPPROTO_IPV6) {
   1280 		return ENOPROTOOPT;
   1281 	}
   1282 	switch (op) {
   1283 	case PRCO_SETOPT:
   1284 		switch (optname) {
   1285 #ifdef RFC2292
   1286 		case IPV6_2292PKTOPTIONS:
   1287 			error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
   1288 			break;
   1289 #endif
   1290 
   1291 		/*
   1292 		 * Use of some Hop-by-Hop options or some
   1293 		 * Destination options, might require special
   1294 		 * privilege.  That is, normal applications
   1295 		 * (without special privilege) might be forbidden
   1296 		 * from setting certain options in outgoing packets,
   1297 		 * and might never see certain options in received
   1298 		 * packets. [RFC 2292 Section 6]
   1299 		 * KAME specific note:
   1300 		 *  KAME prevents non-privileged users from sending or
   1301 		 *  receiving ANY hbh/dst options in order to avoid
   1302 		 *  overhead of parsing options in the kernel.
   1303 		 */
   1304 		case IPV6_RECVHOPOPTS:
   1305 		case IPV6_RECVDSTOPTS:
   1306 		case IPV6_RECVRTHDRDSTOPTS:
   1307 			error = kauth_authorize_network(kauth_cred_get(),
   1308 			    KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
   1309 			    NULL, NULL, NULL);
   1310 			if (error)
   1311 				break;
   1312 			/* FALLTHROUGH */
   1313 		case IPV6_UNICAST_HOPS:
   1314 		case IPV6_HOPLIMIT:
   1315 		case IPV6_FAITH:
   1316 
   1317 		case IPV6_RECVPKTINFO:
   1318 		case IPV6_RECVHOPLIMIT:
   1319 		case IPV6_RECVRTHDR:
   1320 		case IPV6_RECVPATHMTU:
   1321 		case IPV6_RECVTCLASS:
   1322 		case IPV6_V6ONLY:
   1323 			error = sockopt_getint(sopt, &optval);
   1324 			if (error)
   1325 				break;
   1326 			switch (optname) {
   1327 			case IPV6_UNICAST_HOPS:
   1328 				if (optval < -1 || optval >= 256)
   1329 					error = EINVAL;
   1330 				else {
   1331 					/* -1 = kernel default */
   1332 					in6p->in6p_hops = optval;
   1333 				}
   1334 				break;
   1335 #define OPTSET(bit) \
   1336 do { \
   1337 if (optval) \
   1338 	in6p->in6p_flags |= (bit); \
   1339 else \
   1340 	in6p->in6p_flags &= ~(bit); \
   1341 } while (/*CONSTCOND*/ 0)
   1342 
   1343 #ifdef RFC2292
   1344 #define OPTSET2292(bit) 			\
   1345 do { 						\
   1346 in6p->in6p_flags |= IN6P_RFC2292; 	\
   1347 if (optval) 				\
   1348 	in6p->in6p_flags |= (bit); 	\
   1349 else 					\
   1350 	in6p->in6p_flags &= ~(bit); 	\
   1351 } while (/*CONSTCOND*/ 0)
   1352 #endif
   1353 
   1354 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
   1355 
   1356 			case IPV6_RECVPKTINFO:
   1357 #ifdef RFC2292
   1358 				/* cannot mix with RFC2292 */
   1359 				if (OPTBIT(IN6P_RFC2292)) {
   1360 					error = EINVAL;
   1361 					break;
   1362 				}
   1363 #endif
   1364 				OPTSET(IN6P_PKTINFO);
   1365 				break;
   1366 
   1367 			case IPV6_HOPLIMIT:
   1368 			{
   1369 				struct ip6_pktopts **optp;
   1370 
   1371 #ifdef RFC2292
   1372 				/* cannot mix with RFC2292 */
   1373 				if (OPTBIT(IN6P_RFC2292)) {
   1374 					error = EINVAL;
   1375 					break;
   1376 				}
   1377 #endif
   1378 				optp = &in6p->in6p_outputopts;
   1379 				error = ip6_pcbopt(IPV6_HOPLIMIT,
   1380 						   (u_char *)&optval,
   1381 						   sizeof(optval),
   1382 						   optp,
   1383 						   kauth_cred_get(), uproto);
   1384 				break;
   1385 			}
   1386 
   1387 			case IPV6_RECVHOPLIMIT:
   1388 #ifdef RFC2292
   1389 				/* cannot mix with RFC2292 */
   1390 				if (OPTBIT(IN6P_RFC2292)) {
   1391 					error = EINVAL;
   1392 					break;
   1393 				}
   1394 #endif
   1395 				OPTSET(IN6P_HOPLIMIT);
   1396 				break;
   1397 
   1398 			case IPV6_RECVHOPOPTS:
   1399 #ifdef RFC2292
   1400 				/* cannot mix with RFC2292 */
   1401 				if (OPTBIT(IN6P_RFC2292)) {
   1402 					error = EINVAL;
   1403 					break;
   1404 				}
   1405 #endif
   1406 				OPTSET(IN6P_HOPOPTS);
   1407 				break;
   1408 
   1409 			case IPV6_RECVDSTOPTS:
   1410 #ifdef RFC2292
   1411 				/* cannot mix with RFC2292 */
   1412 				if (OPTBIT(IN6P_RFC2292)) {
   1413 					error = EINVAL;
   1414 					break;
   1415 				}
   1416 #endif
   1417 				OPTSET(IN6P_DSTOPTS);
   1418 				break;
   1419 
   1420 			case IPV6_RECVRTHDRDSTOPTS:
   1421 #ifdef RFC2292
   1422 				/* cannot mix with RFC2292 */
   1423 				if (OPTBIT(IN6P_RFC2292)) {
   1424 					error = EINVAL;
   1425 					break;
   1426 				}
   1427 #endif
   1428 				OPTSET(IN6P_RTHDRDSTOPTS);
   1429 				break;
   1430 
   1431 			case IPV6_RECVRTHDR:
   1432 #ifdef RFC2292
   1433 				/* cannot mix with RFC2292 */
   1434 				if (OPTBIT(IN6P_RFC2292)) {
   1435 					error = EINVAL;
   1436 					break;
   1437 				}
   1438 #endif
   1439 				OPTSET(IN6P_RTHDR);
   1440 				break;
   1441 
   1442 			case IPV6_FAITH:
   1443 				OPTSET(IN6P_FAITH);
   1444 				break;
   1445 
   1446 			case IPV6_RECVPATHMTU:
   1447 				/*
   1448 				 * We ignore this option for TCP
   1449 				 * sockets.
   1450 				 * (RFC3542 leaves this case
   1451 				 * unspecified.)
   1452 				 */
   1453 				if (uproto != IPPROTO_TCP)
   1454 					OPTSET(IN6P_MTU);
   1455 				break;
   1456 
   1457 			case IPV6_V6ONLY:
   1458 				/*
   1459 				 * make setsockopt(IPV6_V6ONLY)
   1460 				 * available only prior to bind(2).
   1461 				 * see ipng mailing list, Jun 22 2001.
   1462 				 */
   1463 				if (in6p->in6p_lport ||
   1464 				    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
   1465 					error = EINVAL;
   1466 					break;
   1467 				}
   1468 #ifdef INET6_BINDV6ONLY
   1469 				if (!optval)
   1470 					error = EINVAL;
   1471 #else
   1472 				OPTSET(IN6P_IPV6_V6ONLY);
   1473 #endif
   1474 				break;
   1475 			case IPV6_RECVTCLASS:
   1476 #ifdef RFC2292
   1477 				/* cannot mix with RFC2292 XXX */
   1478 				if (OPTBIT(IN6P_RFC2292)) {
   1479 					error = EINVAL;
   1480 					break;
   1481 				}
   1482 #endif
   1483 				OPTSET(IN6P_TCLASS);
   1484 				break;
   1485 
   1486 			}
   1487 			break;
   1488 
   1489 		case IPV6_OTCLASS:
   1490 		{
   1491 			struct ip6_pktopts **optp;
   1492 			u_int8_t tclass;
   1493 
   1494 			error = sockopt_get(sopt, &tclass, sizeof(tclass));
   1495 			if (error)
   1496 				break;
   1497 			optp = &in6p->in6p_outputopts;
   1498 			error = ip6_pcbopt(optname,
   1499 					   (u_char *)&tclass,
   1500 					   sizeof(tclass),
   1501 					   optp,
   1502 					   kauth_cred_get(), uproto);
   1503 			break;
   1504 		}
   1505 
   1506 		case IPV6_TCLASS:
   1507 		case IPV6_DONTFRAG:
   1508 		case IPV6_USE_MIN_MTU:
   1509 			error = sockopt_getint(sopt, &optval);
   1510 			if (error)
   1511 				break;
   1512 			{
   1513 				struct ip6_pktopts **optp;
   1514 				optp = &in6p->in6p_outputopts;
   1515 				error = ip6_pcbopt(optname,
   1516 						   (u_char *)&optval,
   1517 						   sizeof(optval),
   1518 						   optp,
   1519 						   kauth_cred_get(), uproto);
   1520 				break;
   1521 			}
   1522 
   1523 #ifdef RFC2292
   1524 		case IPV6_2292PKTINFO:
   1525 		case IPV6_2292HOPLIMIT:
   1526 		case IPV6_2292HOPOPTS:
   1527 		case IPV6_2292DSTOPTS:
   1528 		case IPV6_2292RTHDR:
   1529 			/* RFC 2292 */
   1530 			error = sockopt_getint(sopt, &optval);
   1531 			if (error)
   1532 				break;
   1533 
   1534 			switch (optname) {
   1535 			case IPV6_2292PKTINFO:
   1536 				OPTSET2292(IN6P_PKTINFO);
   1537 				break;
   1538 			case IPV6_2292HOPLIMIT:
   1539 				OPTSET2292(IN6P_HOPLIMIT);
   1540 				break;
   1541 			case IPV6_2292HOPOPTS:
   1542 				/*
   1543 				 * Check super-user privilege.
   1544 				 * See comments for IPV6_RECVHOPOPTS.
   1545 				 */
   1546 				error =
   1547 				    kauth_authorize_network(kauth_cred_get(),
   1548 				    KAUTH_NETWORK_IPV6,
   1549 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1550 				    NULL, NULL);
   1551 				if (error)
   1552 					return (error);
   1553 				OPTSET2292(IN6P_HOPOPTS);
   1554 				break;
   1555 			case IPV6_2292DSTOPTS:
   1556 				error =
   1557 				    kauth_authorize_network(kauth_cred_get(),
   1558 				    KAUTH_NETWORK_IPV6,
   1559 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1560 				    NULL, NULL);
   1561 				if (error)
   1562 					return (error);
   1563 				OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
   1564 				break;
   1565 			case IPV6_2292RTHDR:
   1566 				OPTSET2292(IN6P_RTHDR);
   1567 				break;
   1568 			}
   1569 			break;
   1570 #endif
   1571 		case IPV6_PKTINFO:
   1572 		case IPV6_HOPOPTS:
   1573 		case IPV6_RTHDR:
   1574 		case IPV6_DSTOPTS:
   1575 		case IPV6_RTHDRDSTOPTS:
   1576 		case IPV6_NEXTHOP: {
   1577 			/* new advanced API (RFC3542) */
   1578 			void *optbuf;
   1579 			int optbuflen;
   1580 			struct ip6_pktopts **optp;
   1581 
   1582 #ifdef RFC2292
   1583 			/* cannot mix with RFC2292 */
   1584 			if (OPTBIT(IN6P_RFC2292)) {
   1585 				error = EINVAL;
   1586 				break;
   1587 			}
   1588 #endif
   1589 
   1590 			optbuflen = sopt->sopt_size;
   1591 			optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
   1592 			if (optbuf == NULL) {
   1593 				error = ENOBUFS;
   1594 				break;
   1595 			}
   1596 
   1597 			error = sockopt_get(sopt, optbuf, optbuflen);
   1598 			if (error) {
   1599 				free(optbuf, M_IP6OPT);
   1600 				break;
   1601 			}
   1602 			optp = &in6p->in6p_outputopts;
   1603 			error = ip6_pcbopt(optname, optbuf, optbuflen,
   1604 			    optp, kauth_cred_get(), uproto);
   1605 			break;
   1606 			}
   1607 #undef OPTSET
   1608 
   1609 		case IPV6_MULTICAST_IF:
   1610 		case IPV6_MULTICAST_HOPS:
   1611 		case IPV6_MULTICAST_LOOP:
   1612 		case IPV6_JOIN_GROUP:
   1613 		case IPV6_LEAVE_GROUP:
   1614 			error = ip6_setmoptions(sopt, &in6p->in6p_moptions);
   1615 			break;
   1616 
   1617 		case IPV6_PORTRANGE:
   1618 			error = sockopt_getint(sopt, &optval);
   1619 			if (error)
   1620 				break;
   1621 
   1622 			switch (optval) {
   1623 			case IPV6_PORTRANGE_DEFAULT:
   1624 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1625 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1626 				break;
   1627 
   1628 			case IPV6_PORTRANGE_HIGH:
   1629 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1630 				in6p->in6p_flags |= IN6P_HIGHPORT;
   1631 				break;
   1632 
   1633 			case IPV6_PORTRANGE_LOW:
   1634 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1635 				in6p->in6p_flags |= IN6P_LOWPORT;
   1636 				break;
   1637 
   1638 			default:
   1639 				error = EINVAL;
   1640 				break;
   1641 			}
   1642 			break;
   1643 
   1644 		case IPV6_PORTALGO:
   1645 			error = sockopt_getint(sopt, &optval);
   1646 			if (error)
   1647 				break;
   1648 
   1649 			error = portalgo_algo_index_select(
   1650 			    (struct inpcb_hdr *)in6p, optval);
   1651 			break;
   1652 
   1653 #if defined(IPSEC)
   1654 		case IPV6_IPSEC_POLICY:
   1655 			error = ipsec6_set_policy(in6p, optname,
   1656 			    sopt->sopt_data, sopt->sopt_size, kauth_cred_get());
   1657 			break;
   1658 #endif /* IPSEC */
   1659 
   1660 		default:
   1661 			error = ENOPROTOOPT;
   1662 			break;
   1663 		}
   1664 		break;
   1665 
   1666 	case PRCO_GETOPT:
   1667 		switch (optname) {
   1668 #ifdef RFC2292
   1669 		case IPV6_2292PKTOPTIONS:
   1670 			/*
   1671 			 * RFC3542 (effectively) deprecated the
   1672 			 * semantics of the 2292-style pktoptions.
   1673 			 * Since it was not reliable in nature (i.e.,
   1674 			 * applications had to expect the lack of some
   1675 			 * information after all), it would make sense
   1676 			 * to simplify this part by always returning
   1677 			 * empty data.
   1678 			 */
   1679 			break;
   1680 #endif
   1681 
   1682 		case IPV6_RECVHOPOPTS:
   1683 		case IPV6_RECVDSTOPTS:
   1684 		case IPV6_RECVRTHDRDSTOPTS:
   1685 		case IPV6_UNICAST_HOPS:
   1686 		case IPV6_RECVPKTINFO:
   1687 		case IPV6_RECVHOPLIMIT:
   1688 		case IPV6_RECVRTHDR:
   1689 		case IPV6_RECVPATHMTU:
   1690 
   1691 		case IPV6_FAITH:
   1692 		case IPV6_V6ONLY:
   1693 		case IPV6_PORTRANGE:
   1694 		case IPV6_RECVTCLASS:
   1695 			switch (optname) {
   1696 
   1697 			case IPV6_RECVHOPOPTS:
   1698 				optval = OPTBIT(IN6P_HOPOPTS);
   1699 				break;
   1700 
   1701 			case IPV6_RECVDSTOPTS:
   1702 				optval = OPTBIT(IN6P_DSTOPTS);
   1703 				break;
   1704 
   1705 			case IPV6_RECVRTHDRDSTOPTS:
   1706 				optval = OPTBIT(IN6P_RTHDRDSTOPTS);
   1707 				break;
   1708 
   1709 			case IPV6_UNICAST_HOPS:
   1710 				optval = in6p->in6p_hops;
   1711 				break;
   1712 
   1713 			case IPV6_RECVPKTINFO:
   1714 				optval = OPTBIT(IN6P_PKTINFO);
   1715 				break;
   1716 
   1717 			case IPV6_RECVHOPLIMIT:
   1718 				optval = OPTBIT(IN6P_HOPLIMIT);
   1719 				break;
   1720 
   1721 			case IPV6_RECVRTHDR:
   1722 				optval = OPTBIT(IN6P_RTHDR);
   1723 				break;
   1724 
   1725 			case IPV6_RECVPATHMTU:
   1726 				optval = OPTBIT(IN6P_MTU);
   1727 				break;
   1728 
   1729 			case IPV6_FAITH:
   1730 				optval = OPTBIT(IN6P_FAITH);
   1731 				break;
   1732 
   1733 			case IPV6_V6ONLY:
   1734 				optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1735 				break;
   1736 
   1737 			case IPV6_PORTRANGE:
   1738 			    {
   1739 				int flags;
   1740 				flags = in6p->in6p_flags;
   1741 				if (flags & IN6P_HIGHPORT)
   1742 					optval = IPV6_PORTRANGE_HIGH;
   1743 				else if (flags & IN6P_LOWPORT)
   1744 					optval = IPV6_PORTRANGE_LOW;
   1745 				else
   1746 					optval = 0;
   1747 				break;
   1748 			    }
   1749 			case IPV6_RECVTCLASS:
   1750 				optval = OPTBIT(IN6P_TCLASS);
   1751 				break;
   1752 
   1753 			}
   1754 			if (error)
   1755 				break;
   1756 			error = sockopt_setint(sopt, optval);
   1757 			break;
   1758 
   1759 		case IPV6_PATHMTU:
   1760 		    {
   1761 			u_long pmtu = 0;
   1762 			struct ip6_mtuinfo mtuinfo;
   1763 			struct route *ro = &in6p->in6p_route;
   1764 
   1765 			if (!(so->so_state & SS_ISCONNECTED))
   1766 				return (ENOTCONN);
   1767 			/*
   1768 			 * XXX: we dot not consider the case of source
   1769 			 * routing, or optional information to specify
   1770 			 * the outgoing interface.
   1771 			 */
   1772 			error = ip6_getpmtu(ro, NULL, NULL,
   1773 			    &in6p->in6p_faddr, &pmtu, NULL);
   1774 			if (error)
   1775 				break;
   1776 			if (pmtu > IPV6_MAXPACKET)
   1777 				pmtu = IPV6_MAXPACKET;
   1778 
   1779 			memset(&mtuinfo, 0, sizeof(mtuinfo));
   1780 			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
   1781 			optdata = (void *)&mtuinfo;
   1782 			optdatalen = sizeof(mtuinfo);
   1783 			if (optdatalen > MCLBYTES)
   1784 				return (EMSGSIZE); /* XXX */
   1785 			error = sockopt_set(sopt, optdata, optdatalen);
   1786 			break;
   1787 		    }
   1788 
   1789 #ifdef RFC2292
   1790 		case IPV6_2292PKTINFO:
   1791 		case IPV6_2292HOPLIMIT:
   1792 		case IPV6_2292HOPOPTS:
   1793 		case IPV6_2292RTHDR:
   1794 		case IPV6_2292DSTOPTS:
   1795 			switch (optname) {
   1796 			case IPV6_2292PKTINFO:
   1797 				optval = OPTBIT(IN6P_PKTINFO);
   1798 				break;
   1799 			case IPV6_2292HOPLIMIT:
   1800 				optval = OPTBIT(IN6P_HOPLIMIT);
   1801 				break;
   1802 			case IPV6_2292HOPOPTS:
   1803 				optval = OPTBIT(IN6P_HOPOPTS);
   1804 				break;
   1805 			case IPV6_2292RTHDR:
   1806 				optval = OPTBIT(IN6P_RTHDR);
   1807 				break;
   1808 			case IPV6_2292DSTOPTS:
   1809 				optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
   1810 				break;
   1811 			}
   1812 			error = sockopt_setint(sopt, optval);
   1813 			break;
   1814 #endif
   1815 		case IPV6_PKTINFO:
   1816 		case IPV6_HOPOPTS:
   1817 		case IPV6_RTHDR:
   1818 		case IPV6_DSTOPTS:
   1819 		case IPV6_RTHDRDSTOPTS:
   1820 		case IPV6_NEXTHOP:
   1821 		case IPV6_OTCLASS:
   1822 		case IPV6_TCLASS:
   1823 		case IPV6_DONTFRAG:
   1824 		case IPV6_USE_MIN_MTU:
   1825 			error = ip6_getpcbopt(in6p->in6p_outputopts,
   1826 			    optname, sopt);
   1827 			break;
   1828 
   1829 		case IPV6_MULTICAST_IF:
   1830 		case IPV6_MULTICAST_HOPS:
   1831 		case IPV6_MULTICAST_LOOP:
   1832 		case IPV6_JOIN_GROUP:
   1833 		case IPV6_LEAVE_GROUP:
   1834 			error = ip6_getmoptions(sopt, in6p->in6p_moptions);
   1835 			break;
   1836 
   1837 		case IPV6_PORTALGO:
   1838 			optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
   1839 			error = sockopt_setint(sopt, optval);
   1840 			break;
   1841 
   1842 #if defined(IPSEC)
   1843 		case IPV6_IPSEC_POLICY:
   1844 		    {
   1845 			struct mbuf *m = NULL;
   1846 
   1847 			/* XXX this will return EINVAL as sopt is empty */
   1848 			error = ipsec6_get_policy(in6p, sopt->sopt_data,
   1849 			    sopt->sopt_size, &m);
   1850 			if (!error)
   1851 				error = sockopt_setmbuf(sopt, m);
   1852 
   1853 			break;
   1854 		    }
   1855 #endif /* IPSEC */
   1856 
   1857 		default:
   1858 			error = ENOPROTOOPT;
   1859 			break;
   1860 		}
   1861 		break;
   1862 	}
   1863 	return (error);
   1864 }
   1865 
   1866 int
   1867 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1868 {
   1869 	int error = 0, optval;
   1870 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   1871 	struct in6pcb *in6p = sotoin6pcb(so);
   1872 	int level, optname;
   1873 
   1874 	KASSERT(sopt != NULL);
   1875 
   1876 	level = sopt->sopt_level;
   1877 	optname = sopt->sopt_name;
   1878 
   1879 	if (level != IPPROTO_IPV6) {
   1880 		return ENOPROTOOPT;
   1881 	}
   1882 
   1883 	switch (optname) {
   1884 	case IPV6_CHECKSUM:
   1885 		/*
   1886 		 * For ICMPv6 sockets, no modification allowed for checksum
   1887 		 * offset, permit "no change" values to help existing apps.
   1888 		 *
   1889 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
   1890 		 * for an ICMPv6 socket will fail."  The current
   1891 		 * behavior does not meet RFC3542.
   1892 		 */
   1893 		switch (op) {
   1894 		case PRCO_SETOPT:
   1895 			error = sockopt_getint(sopt, &optval);
   1896 			if (error)
   1897 				break;
   1898 			if ((optval % 2) != 0) {
   1899 				/* the API assumes even offset values */
   1900 				error = EINVAL;
   1901 			} else if (so->so_proto->pr_protocol ==
   1902 			    IPPROTO_ICMPV6) {
   1903 				if (optval != icmp6off)
   1904 					error = EINVAL;
   1905 			} else
   1906 				in6p->in6p_cksum = optval;
   1907 			break;
   1908 
   1909 		case PRCO_GETOPT:
   1910 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   1911 				optval = icmp6off;
   1912 			else
   1913 				optval = in6p->in6p_cksum;
   1914 
   1915 			error = sockopt_setint(sopt, optval);
   1916 			break;
   1917 
   1918 		default:
   1919 			error = EINVAL;
   1920 			break;
   1921 		}
   1922 		break;
   1923 
   1924 	default:
   1925 		error = ENOPROTOOPT;
   1926 		break;
   1927 	}
   1928 
   1929 	return (error);
   1930 }
   1931 
   1932 #ifdef RFC2292
   1933 /*
   1934  * Set up IP6 options in pcb for insertion in output packets or
   1935  * specifying behavior of outgoing packets.
   1936  */
   1937 static int
   1938 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
   1939     struct sockopt *sopt)
   1940 {
   1941 	struct ip6_pktopts *opt = *pktopt;
   1942 	struct mbuf *m;
   1943 	int error = 0;
   1944 
   1945 	/* turn off any old options. */
   1946 	if (opt) {
   1947 #ifdef DIAGNOSTIC
   1948 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
   1949 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
   1950 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
   1951 		    printf("ip6_pcbopts: all specified options are cleared.\n");
   1952 #endif
   1953 		ip6_clearpktopts(opt, -1);
   1954 	} else {
   1955 		opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
   1956 		if (opt == NULL)
   1957 			return (ENOBUFS);
   1958 	}
   1959 	*pktopt = NULL;
   1960 
   1961 	if (sopt == NULL || sopt->sopt_size == 0) {
   1962 		/*
   1963 		 * Only turning off any previous options, regardless of
   1964 		 * whether the opt is just created or given.
   1965 		 */
   1966 		free(opt, M_IP6OPT);
   1967 		return (0);
   1968 	}
   1969 
   1970 	/*  set options specified by user. */
   1971 	m = sockopt_getmbuf(sopt);
   1972 	if (m == NULL) {
   1973 		free(opt, M_IP6OPT);
   1974 		return (ENOBUFS);
   1975 	}
   1976 
   1977 	error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
   1978 	    so->so_proto->pr_protocol);
   1979 	m_freem(m);
   1980 	if (error != 0) {
   1981 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
   1982 		free(opt, M_IP6OPT);
   1983 		return (error);
   1984 	}
   1985 	*pktopt = opt;
   1986 	return (0);
   1987 }
   1988 #endif
   1989 
   1990 /*
   1991  * initialize ip6_pktopts.  beware that there are non-zero default values in
   1992  * the struct.
   1993  */
   1994 void
   1995 ip6_initpktopts(struct ip6_pktopts *opt)
   1996 {
   1997 
   1998 	memset(opt, 0, sizeof(*opt));
   1999 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
   2000 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
   2001 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
   2002 }
   2003 
   2004 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
   2005 static int
   2006 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
   2007     kauth_cred_t cred, int uproto)
   2008 {
   2009 	struct ip6_pktopts *opt;
   2010 
   2011 	if (*pktopt == NULL) {
   2012 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
   2013 		    M_NOWAIT);
   2014 		if (*pktopt == NULL)
   2015 			return (ENOBUFS);
   2016 
   2017 		ip6_initpktopts(*pktopt);
   2018 	}
   2019 	opt = *pktopt;
   2020 
   2021 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
   2022 }
   2023 
   2024 static int
   2025 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
   2026 {
   2027 	void *optdata = NULL;
   2028 	int optdatalen = 0;
   2029 	struct ip6_ext *ip6e;
   2030 	int error = 0;
   2031 	struct in6_pktinfo null_pktinfo;
   2032 	int deftclass = 0, on;
   2033 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
   2034 
   2035 	switch (optname) {
   2036 	case IPV6_PKTINFO:
   2037 		if (pktopt && pktopt->ip6po_pktinfo)
   2038 			optdata = (void *)pktopt->ip6po_pktinfo;
   2039 		else {
   2040 			/* XXX: we don't have to do this every time... */
   2041 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
   2042 			optdata = (void *)&null_pktinfo;
   2043 		}
   2044 		optdatalen = sizeof(struct in6_pktinfo);
   2045 		break;
   2046 	case IPV6_OTCLASS:
   2047 		/* XXX */
   2048 		return (EINVAL);
   2049 	case IPV6_TCLASS:
   2050 		if (pktopt && pktopt->ip6po_tclass >= 0)
   2051 			optdata = (void *)&pktopt->ip6po_tclass;
   2052 		else
   2053 			optdata = (void *)&deftclass;
   2054 		optdatalen = sizeof(int);
   2055 		break;
   2056 	case IPV6_HOPOPTS:
   2057 		if (pktopt && pktopt->ip6po_hbh) {
   2058 			optdata = (void *)pktopt->ip6po_hbh;
   2059 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
   2060 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2061 		}
   2062 		break;
   2063 	case IPV6_RTHDR:
   2064 		if (pktopt && pktopt->ip6po_rthdr) {
   2065 			optdata = (void *)pktopt->ip6po_rthdr;
   2066 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
   2067 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2068 		}
   2069 		break;
   2070 	case IPV6_RTHDRDSTOPTS:
   2071 		if (pktopt && pktopt->ip6po_dest1) {
   2072 			optdata = (void *)pktopt->ip6po_dest1;
   2073 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
   2074 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2075 		}
   2076 		break;
   2077 	case IPV6_DSTOPTS:
   2078 		if (pktopt && pktopt->ip6po_dest2) {
   2079 			optdata = (void *)pktopt->ip6po_dest2;
   2080 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
   2081 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2082 		}
   2083 		break;
   2084 	case IPV6_NEXTHOP:
   2085 		if (pktopt && pktopt->ip6po_nexthop) {
   2086 			optdata = (void *)pktopt->ip6po_nexthop;
   2087 			optdatalen = pktopt->ip6po_nexthop->sa_len;
   2088 		}
   2089 		break;
   2090 	case IPV6_USE_MIN_MTU:
   2091 		if (pktopt)
   2092 			optdata = (void *)&pktopt->ip6po_minmtu;
   2093 		else
   2094 			optdata = (void *)&defminmtu;
   2095 		optdatalen = sizeof(int);
   2096 		break;
   2097 	case IPV6_DONTFRAG:
   2098 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
   2099 			on = 1;
   2100 		else
   2101 			on = 0;
   2102 		optdata = (void *)&on;
   2103 		optdatalen = sizeof(on);
   2104 		break;
   2105 	default:		/* should not happen */
   2106 #ifdef DIAGNOSTIC
   2107 		panic("ip6_getpcbopt: unexpected option\n");
   2108 #endif
   2109 		return (ENOPROTOOPT);
   2110 	}
   2111 
   2112 	error = sockopt_set(sopt, optdata, optdatalen);
   2113 
   2114 	return (error);
   2115 }
   2116 
   2117 void
   2118 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
   2119 {
   2120 	if (optname == -1 || optname == IPV6_PKTINFO) {
   2121 		if (pktopt->ip6po_pktinfo)
   2122 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
   2123 		pktopt->ip6po_pktinfo = NULL;
   2124 	}
   2125 	if (optname == -1 || optname == IPV6_HOPLIMIT)
   2126 		pktopt->ip6po_hlim = -1;
   2127 	if (optname == -1 || optname == IPV6_TCLASS)
   2128 		pktopt->ip6po_tclass = -1;
   2129 	if (optname == -1 || optname == IPV6_NEXTHOP) {
   2130 		rtcache_free(&pktopt->ip6po_nextroute);
   2131 		if (pktopt->ip6po_nexthop)
   2132 			free(pktopt->ip6po_nexthop, M_IP6OPT);
   2133 		pktopt->ip6po_nexthop = NULL;
   2134 	}
   2135 	if (optname == -1 || optname == IPV6_HOPOPTS) {
   2136 		if (pktopt->ip6po_hbh)
   2137 			free(pktopt->ip6po_hbh, M_IP6OPT);
   2138 		pktopt->ip6po_hbh = NULL;
   2139 	}
   2140 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
   2141 		if (pktopt->ip6po_dest1)
   2142 			free(pktopt->ip6po_dest1, M_IP6OPT);
   2143 		pktopt->ip6po_dest1 = NULL;
   2144 	}
   2145 	if (optname == -1 || optname == IPV6_RTHDR) {
   2146 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2147 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
   2148 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
   2149 		rtcache_free(&pktopt->ip6po_route);
   2150 	}
   2151 	if (optname == -1 || optname == IPV6_DSTOPTS) {
   2152 		if (pktopt->ip6po_dest2)
   2153 			free(pktopt->ip6po_dest2, M_IP6OPT);
   2154 		pktopt->ip6po_dest2 = NULL;
   2155 	}
   2156 }
   2157 
   2158 #define PKTOPT_EXTHDRCPY(type) 					\
   2159 do {								\
   2160 	if (src->type) {					\
   2161 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
   2162 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
   2163 		if (dst->type == NULL)				\
   2164 			goto bad;				\
   2165 		memcpy(dst->type, src->type, hlen);		\
   2166 	}							\
   2167 } while (/*CONSTCOND*/ 0)
   2168 
   2169 static int
   2170 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
   2171 {
   2172 	dst->ip6po_hlim = src->ip6po_hlim;
   2173 	dst->ip6po_tclass = src->ip6po_tclass;
   2174 	dst->ip6po_flags = src->ip6po_flags;
   2175 	if (src->ip6po_pktinfo) {
   2176 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
   2177 		    M_IP6OPT, canwait);
   2178 		if (dst->ip6po_pktinfo == NULL)
   2179 			goto bad;
   2180 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
   2181 	}
   2182 	if (src->ip6po_nexthop) {
   2183 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
   2184 		    M_IP6OPT, canwait);
   2185 		if (dst->ip6po_nexthop == NULL)
   2186 			goto bad;
   2187 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
   2188 		    src->ip6po_nexthop->sa_len);
   2189 	}
   2190 	PKTOPT_EXTHDRCPY(ip6po_hbh);
   2191 	PKTOPT_EXTHDRCPY(ip6po_dest1);
   2192 	PKTOPT_EXTHDRCPY(ip6po_dest2);
   2193 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
   2194 	return (0);
   2195 
   2196   bad:
   2197 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
   2198 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
   2199 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
   2200 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
   2201 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
   2202 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
   2203 
   2204 	return (ENOBUFS);
   2205 }
   2206 #undef PKTOPT_EXTHDRCPY
   2207 
   2208 struct ip6_pktopts *
   2209 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
   2210 {
   2211 	int error;
   2212 	struct ip6_pktopts *dst;
   2213 
   2214 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
   2215 	if (dst == NULL)
   2216 		return (NULL);
   2217 	ip6_initpktopts(dst);
   2218 
   2219 	if ((error = copypktopts(dst, src, canwait)) != 0) {
   2220 		free(dst, M_IP6OPT);
   2221 		return (NULL);
   2222 	}
   2223 
   2224 	return (dst);
   2225 }
   2226 
   2227 void
   2228 ip6_freepcbopts(struct ip6_pktopts *pktopt)
   2229 {
   2230 	if (pktopt == NULL)
   2231 		return;
   2232 
   2233 	ip6_clearpktopts(pktopt, -1);
   2234 
   2235 	free(pktopt, M_IP6OPT);
   2236 }
   2237 
   2238 /*
   2239  * Set the IP6 multicast options in response to user setsockopt().
   2240  */
   2241 static int
   2242 ip6_setmoptions(const struct sockopt *sopt, struct ip6_moptions **im6op)
   2243 {
   2244 	int error = 0;
   2245 	u_int loop, ifindex;
   2246 	struct ipv6_mreq mreq;
   2247 	struct ifnet *ifp;
   2248 	struct ip6_moptions *im6o = *im6op;
   2249 	struct route ro;
   2250 	struct in6_multi_mship *imm;
   2251 	struct lwp *l = curlwp;	/* XXX */
   2252 
   2253 	if (im6o == NULL) {
   2254 		/*
   2255 		 * No multicast option buffer attached to the pcb;
   2256 		 * allocate one and initialize to default values.
   2257 		 */
   2258 		im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
   2259 		if (im6o == NULL)
   2260 			return (ENOBUFS);
   2261 
   2262 		*im6op = im6o;
   2263 		im6o->im6o_multicast_ifp = NULL;
   2264 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2265 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   2266 		LIST_INIT(&im6o->im6o_memberships);
   2267 	}
   2268 
   2269 	switch (sopt->sopt_name) {
   2270 
   2271 	case IPV6_MULTICAST_IF:
   2272 		/*
   2273 		 * Select the interface for outgoing multicast packets.
   2274 		 */
   2275 		error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
   2276 		if (error != 0)
   2277 			break;
   2278 
   2279 		if (ifindex != 0) {
   2280 			if (if_indexlim <= ifindex || !ifindex2ifnet[ifindex]) {
   2281 				error = ENXIO;	/* XXX EINVAL? */
   2282 				break;
   2283 			}
   2284 			ifp = ifindex2ifnet[ifindex];
   2285 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   2286 				error = EADDRNOTAVAIL;
   2287 				break;
   2288 			}
   2289 		} else
   2290 			ifp = NULL;
   2291 		im6o->im6o_multicast_ifp = ifp;
   2292 		break;
   2293 
   2294 	case IPV6_MULTICAST_HOPS:
   2295 	    {
   2296 		/*
   2297 		 * Set the IP6 hoplimit for outgoing multicast packets.
   2298 		 */
   2299 		int optval;
   2300 
   2301 		error = sockopt_getint(sopt, &optval);
   2302 		if (error != 0)
   2303 			break;
   2304 
   2305 		if (optval < -1 || optval >= 256)
   2306 			error = EINVAL;
   2307 		else if (optval == -1)
   2308 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2309 		else
   2310 			im6o->im6o_multicast_hlim = optval;
   2311 		break;
   2312 	    }
   2313 
   2314 	case IPV6_MULTICAST_LOOP:
   2315 		/*
   2316 		 * Set the loopback flag for outgoing multicast packets.
   2317 		 * Must be zero or one.
   2318 		 */
   2319 		error = sockopt_get(sopt, &loop, sizeof(loop));
   2320 		if (error != 0)
   2321 			break;
   2322 		if (loop > 1) {
   2323 			error = EINVAL;
   2324 			break;
   2325 		}
   2326 		im6o->im6o_multicast_loop = loop;
   2327 		break;
   2328 
   2329 	case IPV6_JOIN_GROUP:
   2330 		/*
   2331 		 * Add a multicast group membership.
   2332 		 * Group must be a valid IP6 multicast address.
   2333 		 */
   2334 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2335 		if (error != 0)
   2336 			break;
   2337 
   2338 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq.ipv6mr_multiaddr)) {
   2339 			/*
   2340 			 * We use the unspecified address to specify to accept
   2341 			 * all multicast addresses. Only super user is allowed
   2342 			 * to do this.
   2343 			 */
   2344 			if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_IPV6,
   2345 			    KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
   2346 			{
   2347 				error = EACCES;
   2348 				break;
   2349 			}
   2350 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq.ipv6mr_multiaddr)) {
   2351 			error = EINVAL;
   2352 			break;
   2353 		}
   2354 
   2355 		/*
   2356 		 * If no interface was explicitly specified, choose an
   2357 		 * appropriate one according to the given multicast address.
   2358 		 */
   2359 		if (mreq.ipv6mr_interface == 0) {
   2360 			struct rtentry *rt;
   2361 			union {
   2362 				struct sockaddr		dst;
   2363 				struct sockaddr_in6	dst6;
   2364 			} u;
   2365 
   2366 			/*
   2367 			 * Look up the routing table for the
   2368 			 * address, and choose the outgoing interface.
   2369 			 *   XXX: is it a good approach?
   2370 			 */
   2371 			memset(&ro, 0, sizeof(ro));
   2372 			sockaddr_in6_init(&u.dst6, &mreq.ipv6mr_multiaddr, 0,
   2373 			    0, 0);
   2374 			rtcache_setdst(&ro, &u.dst);
   2375 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
   2376 			                                        : NULL;
   2377 			rtcache_free(&ro);
   2378 		} else {
   2379 			/*
   2380 			 * If the interface is specified, validate it.
   2381 			 */
   2382 			if (if_indexlim <= mreq.ipv6mr_interface ||
   2383 			    !ifindex2ifnet[mreq.ipv6mr_interface]) {
   2384 				error = ENXIO;	/* XXX EINVAL? */
   2385 				break;
   2386 			}
   2387 			ifp = ifindex2ifnet[mreq.ipv6mr_interface];
   2388 		}
   2389 
   2390 		/*
   2391 		 * See if we found an interface, and confirm that it
   2392 		 * supports multicast
   2393 		 */
   2394 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   2395 			error = EADDRNOTAVAIL;
   2396 			break;
   2397 		}
   2398 
   2399 		if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
   2400 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   2401 			break;
   2402 		}
   2403 
   2404 		/*
   2405 		 * See if the membership already exists.
   2406 		 */
   2407 		for (imm = im6o->im6o_memberships.lh_first;
   2408 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   2409 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2410 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2411 			    &mreq.ipv6mr_multiaddr))
   2412 				break;
   2413 		if (imm != NULL) {
   2414 			error = EADDRINUSE;
   2415 			break;
   2416 		}
   2417 		/*
   2418 		 * Everything looks good; add a new record to the multicast
   2419 		 * address list for the given interface.
   2420 		 */
   2421 		imm = in6_joingroup(ifp, &mreq.ipv6mr_multiaddr, &error, 0);
   2422 		if (imm == NULL)
   2423 			break;
   2424 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2425 		break;
   2426 
   2427 	case IPV6_LEAVE_GROUP:
   2428 		/*
   2429 		 * Drop a multicast group membership.
   2430 		 * Group must be a valid IP6 multicast address.
   2431 		 */
   2432 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2433 		if (error != 0)
   2434 			break;
   2435 
   2436 		/*
   2437 		 * If an interface address was specified, get a pointer
   2438 		 * to its ifnet structure.
   2439 		 */
   2440 		if (mreq.ipv6mr_interface != 0) {
   2441 			if (if_indexlim <= mreq.ipv6mr_interface ||
   2442 			    !ifindex2ifnet[mreq.ipv6mr_interface]) {
   2443 				error = ENXIO;	/* XXX EINVAL? */
   2444 				break;
   2445 			}
   2446 			ifp = ifindex2ifnet[mreq.ipv6mr_interface];
   2447 		} else
   2448 			ifp = NULL;
   2449 
   2450 		/* Fill in the scope zone ID */
   2451 		if (ifp) {
   2452 			if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
   2453 				/* XXX: should not happen */
   2454 				error = EADDRNOTAVAIL;
   2455 				break;
   2456 			}
   2457 		} else if (mreq.ipv6mr_interface != 0) {
   2458 			/*
   2459 			 * XXX: This case would happens when the (positive)
   2460 			 * index is in the valid range, but the corresponding
   2461 			 * interface has been detached dynamically.  The above
   2462 			 * check probably avoids such case to happen here, but
   2463 			 * we check it explicitly for safety.
   2464 			 */
   2465 			error = EADDRNOTAVAIL;
   2466 			break;
   2467 		} else {	/* ipv6mr_interface == 0 */
   2468 			struct sockaddr_in6 sa6_mc;
   2469 
   2470 			/*
   2471 			 * The API spec says as follows:
   2472 			 *  If the interface index is specified as 0, the
   2473 			 *  system may choose a multicast group membership to
   2474 			 *  drop by matching the multicast address only.
   2475 			 * On the other hand, we cannot disambiguate the scope
   2476 			 * zone unless an interface is provided.  Thus, we
   2477 			 * check if there's ambiguity with the default scope
   2478 			 * zone as the last resort.
   2479 			 */
   2480 			sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
   2481 			    0, 0, 0);
   2482 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2483 			if (error != 0)
   2484 				break;
   2485 			mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2486 		}
   2487 
   2488 		/*
   2489 		 * Find the membership in the membership list.
   2490 		 */
   2491 		for (imm = im6o->im6o_memberships.lh_first;
   2492 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   2493 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2494 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2495 			    &mreq.ipv6mr_multiaddr))
   2496 				break;
   2497 		}
   2498 		if (imm == NULL) {
   2499 			/* Unable to resolve interface */
   2500 			error = EADDRNOTAVAIL;
   2501 			break;
   2502 		}
   2503 		/*
   2504 		 * Give up the multicast address record to which the
   2505 		 * membership points.
   2506 		 */
   2507 		LIST_REMOVE(imm, i6mm_chain);
   2508 		in6_leavegroup(imm);
   2509 		break;
   2510 
   2511 	default:
   2512 		error = EOPNOTSUPP;
   2513 		break;
   2514 	}
   2515 
   2516 	/*
   2517 	 * If all options have default values, no need to keep the mbuf.
   2518 	 */
   2519 	if (im6o->im6o_multicast_ifp == NULL &&
   2520 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2521 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2522 	    im6o->im6o_memberships.lh_first == NULL) {
   2523 		free(*im6op, M_IPMOPTS);
   2524 		*im6op = NULL;
   2525 	}
   2526 
   2527 	return (error);
   2528 }
   2529 
   2530 /*
   2531  * Return the IP6 multicast options in response to user getsockopt().
   2532  */
   2533 static int
   2534 ip6_getmoptions(struct sockopt *sopt, struct ip6_moptions *im6o)
   2535 {
   2536 	u_int optval;
   2537 	int error;
   2538 
   2539 	switch (sopt->sopt_name) {
   2540 	case IPV6_MULTICAST_IF:
   2541 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
   2542 			optval = 0;
   2543 		else
   2544 			optval = im6o->im6o_multicast_ifp->if_index;
   2545 
   2546 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2547 		break;
   2548 
   2549 	case IPV6_MULTICAST_HOPS:
   2550 		if (im6o == NULL)
   2551 			optval = ip6_defmcasthlim;
   2552 		else
   2553 			optval = im6o->im6o_multicast_hlim;
   2554 
   2555 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2556 		break;
   2557 
   2558 	case IPV6_MULTICAST_LOOP:
   2559 		if (im6o == NULL)
   2560 			optval = IPV6_DEFAULT_MULTICAST_LOOP;
   2561 		else
   2562 			optval = im6o->im6o_multicast_loop;
   2563 
   2564 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2565 		break;
   2566 
   2567 	default:
   2568 		error = EOPNOTSUPP;
   2569 	}
   2570 
   2571 	return (error);
   2572 }
   2573 
   2574 /*
   2575  * Discard the IP6 multicast options.
   2576  */
   2577 void
   2578 ip6_freemoptions(struct ip6_moptions *im6o)
   2579 {
   2580 	struct in6_multi_mship *imm;
   2581 
   2582 	if (im6o == NULL)
   2583 		return;
   2584 
   2585 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   2586 		LIST_REMOVE(imm, i6mm_chain);
   2587 		in6_leavegroup(imm);
   2588 	}
   2589 	free(im6o, M_IPMOPTS);
   2590 }
   2591 
   2592 /*
   2593  * Set IPv6 outgoing packet options based on advanced API.
   2594  */
   2595 int
   2596 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
   2597 	struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
   2598 {
   2599 	struct cmsghdr *cm = 0;
   2600 
   2601 	if (control == NULL || opt == NULL)
   2602 		return (EINVAL);
   2603 
   2604 	ip6_initpktopts(opt);
   2605 	if (stickyopt) {
   2606 		int error;
   2607 
   2608 		/*
   2609 		 * If stickyopt is provided, make a local copy of the options
   2610 		 * for this particular packet, then override them by ancillary
   2611 		 * objects.
   2612 		 * XXX: copypktopts() does not copy the cached route to a next
   2613 		 * hop (if any).  This is not very good in terms of efficiency,
   2614 		 * but we can allow this since this option should be rarely
   2615 		 * used.
   2616 		 */
   2617 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
   2618 			return (error);
   2619 	}
   2620 
   2621 	/*
   2622 	 * XXX: Currently, we assume all the optional information is stored
   2623 	 * in a single mbuf.
   2624 	 */
   2625 	if (control->m_next)
   2626 		return (EINVAL);
   2627 
   2628 	/* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
   2629 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2630 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2631 		int error;
   2632 
   2633 		if (control->m_len < CMSG_LEN(0))
   2634 			return (EINVAL);
   2635 
   2636 		cm = mtod(control, struct cmsghdr *);
   2637 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   2638 			return (EINVAL);
   2639 		if (cm->cmsg_level != IPPROTO_IPV6)
   2640 			continue;
   2641 
   2642 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
   2643 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
   2644 		if (error)
   2645 			return (error);
   2646 	}
   2647 
   2648 	return (0);
   2649 }
   2650 
   2651 /*
   2652  * Set a particular packet option, as a sticky option or an ancillary data
   2653  * item.  "len" can be 0 only when it's a sticky option.
   2654  * We have 4 cases of combination of "sticky" and "cmsg":
   2655  * "sticky=0, cmsg=0": impossible
   2656  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
   2657  * "sticky=1, cmsg=0": RFC3542 socket option
   2658  * "sticky=1, cmsg=1": RFC2292 socket option
   2659  */
   2660 static int
   2661 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
   2662     kauth_cred_t cred, int sticky, int cmsg, int uproto)
   2663 {
   2664 	int minmtupolicy;
   2665 	int error;
   2666 
   2667 	if (!sticky && !cmsg) {
   2668 #ifdef DIAGNOSTIC
   2669 		printf("ip6_setpktopt: impossible case\n");
   2670 #endif
   2671 		return (EINVAL);
   2672 	}
   2673 
   2674 	/*
   2675 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
   2676 	 * not be specified in the context of RFC3542.  Conversely,
   2677 	 * RFC3542 types should not be specified in the context of RFC2292.
   2678 	 */
   2679 	if (!cmsg) {
   2680 		switch (optname) {
   2681 		case IPV6_2292PKTINFO:
   2682 		case IPV6_2292HOPLIMIT:
   2683 		case IPV6_2292NEXTHOP:
   2684 		case IPV6_2292HOPOPTS:
   2685 		case IPV6_2292DSTOPTS:
   2686 		case IPV6_2292RTHDR:
   2687 		case IPV6_2292PKTOPTIONS:
   2688 			return (ENOPROTOOPT);
   2689 		}
   2690 	}
   2691 	if (sticky && cmsg) {
   2692 		switch (optname) {
   2693 		case IPV6_PKTINFO:
   2694 		case IPV6_HOPLIMIT:
   2695 		case IPV6_NEXTHOP:
   2696 		case IPV6_HOPOPTS:
   2697 		case IPV6_DSTOPTS:
   2698 		case IPV6_RTHDRDSTOPTS:
   2699 		case IPV6_RTHDR:
   2700 		case IPV6_USE_MIN_MTU:
   2701 		case IPV6_DONTFRAG:
   2702 		case IPV6_OTCLASS:
   2703 		case IPV6_TCLASS:
   2704 			return (ENOPROTOOPT);
   2705 		}
   2706 	}
   2707 
   2708 	switch (optname) {
   2709 #ifdef RFC2292
   2710 	case IPV6_2292PKTINFO:
   2711 #endif
   2712 	case IPV6_PKTINFO:
   2713 	{
   2714 		struct ifnet *ifp = NULL;
   2715 		struct in6_pktinfo *pktinfo;
   2716 
   2717 		if (len != sizeof(struct in6_pktinfo))
   2718 			return (EINVAL);
   2719 
   2720 		pktinfo = (struct in6_pktinfo *)buf;
   2721 
   2722 		/*
   2723 		 * An application can clear any sticky IPV6_PKTINFO option by
   2724 		 * doing a "regular" setsockopt with ipi6_addr being
   2725 		 * in6addr_any and ipi6_ifindex being zero.
   2726 		 * [RFC 3542, Section 6]
   2727 		 */
   2728 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
   2729 		    pktinfo->ipi6_ifindex == 0 &&
   2730 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2731 			ip6_clearpktopts(opt, optname);
   2732 			break;
   2733 		}
   2734 
   2735 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
   2736 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2737 			return (EINVAL);
   2738 		}
   2739 
   2740 		/* validate the interface index if specified. */
   2741 		if (pktinfo->ipi6_ifindex >= if_indexlim) {
   2742 			 return (ENXIO);
   2743 		}
   2744 		if (pktinfo->ipi6_ifindex) {
   2745 			ifp = ifindex2ifnet[pktinfo->ipi6_ifindex];
   2746 			if (ifp == NULL)
   2747 				return (ENXIO);
   2748 		}
   2749 
   2750 		/*
   2751 		 * We store the address anyway, and let in6_selectsrc()
   2752 		 * validate the specified address.  This is because ipi6_addr
   2753 		 * may not have enough information about its scope zone, and
   2754 		 * we may need additional information (such as outgoing
   2755 		 * interface or the scope zone of a destination address) to
   2756 		 * disambiguate the scope.
   2757 		 * XXX: the delay of the validation may confuse the
   2758 		 * application when it is used as a sticky option.
   2759 		 */
   2760 		if (opt->ip6po_pktinfo == NULL) {
   2761 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
   2762 			    M_IP6OPT, M_NOWAIT);
   2763 			if (opt->ip6po_pktinfo == NULL)
   2764 				return (ENOBUFS);
   2765 		}
   2766 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
   2767 		break;
   2768 	}
   2769 
   2770 #ifdef RFC2292
   2771 	case IPV6_2292HOPLIMIT:
   2772 #endif
   2773 	case IPV6_HOPLIMIT:
   2774 	{
   2775 		int *hlimp;
   2776 
   2777 		/*
   2778 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
   2779 		 * to simplify the ordering among hoplimit options.
   2780 		 */
   2781 		if (optname == IPV6_HOPLIMIT && sticky)
   2782 			return (ENOPROTOOPT);
   2783 
   2784 		if (len != sizeof(int))
   2785 			return (EINVAL);
   2786 		hlimp = (int *)buf;
   2787 		if (*hlimp < -1 || *hlimp > 255)
   2788 			return (EINVAL);
   2789 
   2790 		opt->ip6po_hlim = *hlimp;
   2791 		break;
   2792 	}
   2793 
   2794 	case IPV6_OTCLASS:
   2795 		if (len != sizeof(u_int8_t))
   2796 			return (EINVAL);
   2797 
   2798 		opt->ip6po_tclass = *(u_int8_t *)buf;
   2799 		break;
   2800 
   2801 	case IPV6_TCLASS:
   2802 	{
   2803 		int tclass;
   2804 
   2805 		if (len != sizeof(int))
   2806 			return (EINVAL);
   2807 		tclass = *(int *)buf;
   2808 		if (tclass < -1 || tclass > 255)
   2809 			return (EINVAL);
   2810 
   2811 		opt->ip6po_tclass = tclass;
   2812 		break;
   2813 	}
   2814 
   2815 #ifdef RFC2292
   2816 	case IPV6_2292NEXTHOP:
   2817 #endif
   2818 	case IPV6_NEXTHOP:
   2819 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   2820 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2821 		if (error)
   2822 			return (error);
   2823 
   2824 		if (len == 0) {	/* just remove the option */
   2825 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
   2826 			break;
   2827 		}
   2828 
   2829 		/* check if cmsg_len is large enough for sa_len */
   2830 		if (len < sizeof(struct sockaddr) || len < *buf)
   2831 			return (EINVAL);
   2832 
   2833 		switch (((struct sockaddr *)buf)->sa_family) {
   2834 		case AF_INET6:
   2835 		{
   2836 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
   2837 
   2838 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
   2839 				return (EINVAL);
   2840 
   2841 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
   2842 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
   2843 				return (EINVAL);
   2844 			}
   2845 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
   2846 			    != 0) {
   2847 				return (error);
   2848 			}
   2849 			break;
   2850 		}
   2851 		case AF_LINK:	/* eventually be supported? */
   2852 		default:
   2853 			return (EAFNOSUPPORT);
   2854 		}
   2855 
   2856 		/* turn off the previous option, then set the new option. */
   2857 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
   2858 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
   2859 		if (opt->ip6po_nexthop == NULL)
   2860 			return (ENOBUFS);
   2861 		memcpy(opt->ip6po_nexthop, buf, *buf);
   2862 		break;
   2863 
   2864 #ifdef RFC2292
   2865 	case IPV6_2292HOPOPTS:
   2866 #endif
   2867 	case IPV6_HOPOPTS:
   2868 	{
   2869 		struct ip6_hbh *hbh;
   2870 		int hbhlen;
   2871 
   2872 		/*
   2873 		 * XXX: We don't allow a non-privileged user to set ANY HbH
   2874 		 * options, since per-option restriction has too much
   2875 		 * overhead.
   2876 		 */
   2877 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   2878 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2879 		if (error)
   2880 			return (error);
   2881 
   2882 		if (len == 0) {
   2883 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
   2884 			break;	/* just remove the option */
   2885 		}
   2886 
   2887 		/* message length validation */
   2888 		if (len < sizeof(struct ip6_hbh))
   2889 			return (EINVAL);
   2890 		hbh = (struct ip6_hbh *)buf;
   2891 		hbhlen = (hbh->ip6h_len + 1) << 3;
   2892 		if (len != hbhlen)
   2893 			return (EINVAL);
   2894 
   2895 		/* turn off the previous option, then set the new option. */
   2896 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
   2897 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
   2898 		if (opt->ip6po_hbh == NULL)
   2899 			return (ENOBUFS);
   2900 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
   2901 
   2902 		break;
   2903 	}
   2904 
   2905 #ifdef RFC2292
   2906 	case IPV6_2292DSTOPTS:
   2907 #endif
   2908 	case IPV6_DSTOPTS:
   2909 	case IPV6_RTHDRDSTOPTS:
   2910 	{
   2911 		struct ip6_dest *dest, **newdest = NULL;
   2912 		int destlen;
   2913 
   2914 		/* XXX: see the comment for IPV6_HOPOPTS */
   2915 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   2916 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2917 		if (error)
   2918 			return (error);
   2919 
   2920 		if (len == 0) {
   2921 			ip6_clearpktopts(opt, optname);
   2922 			break;	/* just remove the option */
   2923 		}
   2924 
   2925 		/* message length validation */
   2926 		if (len < sizeof(struct ip6_dest))
   2927 			return (EINVAL);
   2928 		dest = (struct ip6_dest *)buf;
   2929 		destlen = (dest->ip6d_len + 1) << 3;
   2930 		if (len != destlen)
   2931 			return (EINVAL);
   2932 		/*
   2933 		 * Determine the position that the destination options header
   2934 		 * should be inserted; before or after the routing header.
   2935 		 */
   2936 		switch (optname) {
   2937 		case IPV6_2292DSTOPTS:
   2938 			/*
   2939 			 * The old advanced API is ambiguous on this point.
   2940 			 * Our approach is to determine the position based
   2941 			 * according to the existence of a routing header.
   2942 			 * Note, however, that this depends on the order of the
   2943 			 * extension headers in the ancillary data; the 1st
   2944 			 * part of the destination options header must appear
   2945 			 * before the routing header in the ancillary data,
   2946 			 * too.
   2947 			 * RFC3542 solved the ambiguity by introducing
   2948 			 * separate ancillary data or option types.
   2949 			 */
   2950 			if (opt->ip6po_rthdr == NULL)
   2951 				newdest = &opt->ip6po_dest1;
   2952 			else
   2953 				newdest = &opt->ip6po_dest2;
   2954 			break;
   2955 		case IPV6_RTHDRDSTOPTS:
   2956 			newdest = &opt->ip6po_dest1;
   2957 			break;
   2958 		case IPV6_DSTOPTS:
   2959 			newdest = &opt->ip6po_dest2;
   2960 			break;
   2961 		}
   2962 
   2963 		/* turn off the previous option, then set the new option. */
   2964 		ip6_clearpktopts(opt, optname);
   2965 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
   2966 		if (*newdest == NULL)
   2967 			return (ENOBUFS);
   2968 		memcpy(*newdest, dest, destlen);
   2969 
   2970 		break;
   2971 	}
   2972 
   2973 #ifdef RFC2292
   2974 	case IPV6_2292RTHDR:
   2975 #endif
   2976 	case IPV6_RTHDR:
   2977 	{
   2978 		struct ip6_rthdr *rth;
   2979 		int rthlen;
   2980 
   2981 		if (len == 0) {
   2982 			ip6_clearpktopts(opt, IPV6_RTHDR);
   2983 			break;	/* just remove the option */
   2984 		}
   2985 
   2986 		/* message length validation */
   2987 		if (len < sizeof(struct ip6_rthdr))
   2988 			return (EINVAL);
   2989 		rth = (struct ip6_rthdr *)buf;
   2990 		rthlen = (rth->ip6r_len + 1) << 3;
   2991 		if (len != rthlen)
   2992 			return (EINVAL);
   2993 		switch (rth->ip6r_type) {
   2994 		case IPV6_RTHDR_TYPE_0:
   2995 			if (rth->ip6r_len == 0)	/* must contain one addr */
   2996 				return (EINVAL);
   2997 			if (rth->ip6r_len % 2) /* length must be even */
   2998 				return (EINVAL);
   2999 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
   3000 				return (EINVAL);
   3001 			break;
   3002 		default:
   3003 			return (EINVAL);	/* not supported */
   3004 		}
   3005 		/* turn off the previous option */
   3006 		ip6_clearpktopts(opt, IPV6_RTHDR);
   3007 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
   3008 		if (opt->ip6po_rthdr == NULL)
   3009 			return (ENOBUFS);
   3010 		memcpy(opt->ip6po_rthdr, rth, rthlen);
   3011 		break;
   3012 	}
   3013 
   3014 	case IPV6_USE_MIN_MTU:
   3015 		if (len != sizeof(int))
   3016 			return (EINVAL);
   3017 		minmtupolicy = *(int *)buf;
   3018 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
   3019 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
   3020 		    minmtupolicy != IP6PO_MINMTU_ALL) {
   3021 			return (EINVAL);
   3022 		}
   3023 		opt->ip6po_minmtu = minmtupolicy;
   3024 		break;
   3025 
   3026 	case IPV6_DONTFRAG:
   3027 		if (len != sizeof(int))
   3028 			return (EINVAL);
   3029 
   3030 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
   3031 			/*
   3032 			 * we ignore this option for TCP sockets.
   3033 			 * (RFC3542 leaves this case unspecified.)
   3034 			 */
   3035 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
   3036 		} else
   3037 			opt->ip6po_flags |= IP6PO_DONTFRAG;
   3038 		break;
   3039 
   3040 	default:
   3041 		return (ENOPROTOOPT);
   3042 	} /* end of switch */
   3043 
   3044 	return (0);
   3045 }
   3046 
   3047 /*
   3048  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   3049  * packet to the input queue of a specified interface.  Note that this
   3050  * calls the output routine of the loopback "driver", but with an interface
   3051  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   3052  */
   3053 void
   3054 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
   3055 	const struct sockaddr_in6 *dst)
   3056 {
   3057 	struct mbuf *copym;
   3058 	struct ip6_hdr *ip6;
   3059 
   3060 	copym = m_copy(m, 0, M_COPYALL);
   3061 	if (copym == NULL)
   3062 		return;
   3063 
   3064 	/*
   3065 	 * Make sure to deep-copy IPv6 header portion in case the data
   3066 	 * is in an mbuf cluster, so that we can safely override the IPv6
   3067 	 * header portion later.
   3068 	 */
   3069 	if ((copym->m_flags & M_EXT) != 0 ||
   3070 	    copym->m_len < sizeof(struct ip6_hdr)) {
   3071 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   3072 		if (copym == NULL)
   3073 			return;
   3074 	}
   3075 
   3076 #ifdef DIAGNOSTIC
   3077 	if (copym->m_len < sizeof(*ip6)) {
   3078 		m_freem(copym);
   3079 		return;
   3080 	}
   3081 #endif
   3082 
   3083 	ip6 = mtod(copym, struct ip6_hdr *);
   3084 	/*
   3085 	 * clear embedded scope identifiers if necessary.
   3086 	 * in6_clearscope will touch the addresses only when necessary.
   3087 	 */
   3088 	in6_clearscope(&ip6->ip6_src);
   3089 	in6_clearscope(&ip6->ip6_dst);
   3090 
   3091 	(void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
   3092 }
   3093 
   3094 /*
   3095  * Chop IPv6 header off from the payload.
   3096  */
   3097 static int
   3098 ip6_splithdr(struct mbuf *m,  struct ip6_exthdrs *exthdrs)
   3099 {
   3100 	struct mbuf *mh;
   3101 	struct ip6_hdr *ip6;
   3102 
   3103 	ip6 = mtod(m, struct ip6_hdr *);
   3104 	if (m->m_len > sizeof(*ip6)) {
   3105 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   3106 		if (mh == 0) {
   3107 			m_freem(m);
   3108 			return ENOBUFS;
   3109 		}
   3110 		M_MOVE_PKTHDR(mh, m);
   3111 		MH_ALIGN(mh, sizeof(*ip6));
   3112 		m->m_len -= sizeof(*ip6);
   3113 		m->m_data += sizeof(*ip6);
   3114 		mh->m_next = m;
   3115 		m = mh;
   3116 		m->m_len = sizeof(*ip6);
   3117 		bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
   3118 	}
   3119 	exthdrs->ip6e_ip6 = m;
   3120 	return 0;
   3121 }
   3122 
   3123 /*
   3124  * Compute IPv6 extension header length.
   3125  */
   3126 int
   3127 ip6_optlen(struct in6pcb *in6p)
   3128 {
   3129 	int len;
   3130 
   3131 	if (!in6p->in6p_outputopts)
   3132 		return 0;
   3133 
   3134 	len = 0;
   3135 #define elen(x) \
   3136     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   3137 
   3138 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   3139 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   3140 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   3141 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   3142 	return len;
   3143 #undef elen
   3144 }
   3145