ip6_output.c revision 1.159 1 /* $NetBSD: ip6_output.c,v 1.159 2014/10/11 20:53:16 christos Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.159 2014/10/11 20:53:16 christos Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70
71 #include <sys/param.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/errno.h>
75 #include <sys/protosw.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/kauth.h>
81
82 #include <net/if.h>
83 #include <net/route.h>
84 #include <net/pfil.h>
85
86 #include <netinet/in.h>
87 #include <netinet/in_var.h>
88 #include <netinet/ip6.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/icmp6.h>
91 #include <netinet/in_offload.h>
92 #include <netinet/portalgo.h>
93 #include <netinet6/in6_offload.h>
94 #include <netinet6/ip6_var.h>
95 #include <netinet6/ip6_private.h>
96 #include <netinet6/in6_pcb.h>
97 #include <netinet6/nd6.h>
98 #include <netinet6/ip6protosw.h>
99 #include <netinet6/scope6_var.h>
100
101 #ifdef IPSEC
102 #include <netipsec/ipsec.h>
103 #include <netipsec/ipsec6.h>
104 #include <netipsec/key.h>
105 #include <netipsec/xform.h>
106 #endif
107
108
109 #include <net/net_osdep.h>
110
111 extern pfil_head_t *inet6_pfil_hook; /* XXX */
112
113 struct ip6_exthdrs {
114 struct mbuf *ip6e_ip6;
115 struct mbuf *ip6e_hbh;
116 struct mbuf *ip6e_dest1;
117 struct mbuf *ip6e_rthdr;
118 struct mbuf *ip6e_dest2;
119 };
120
121 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
122 kauth_cred_t, int);
123 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
124 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
125 int, int, int);
126 static int ip6_setmoptions(const struct sockopt *, struct ip6_moptions **);
127 static int ip6_getmoptions(struct sockopt *, struct ip6_moptions *);
128 static int ip6_copyexthdr(struct mbuf **, void *, int);
129 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
130 struct ip6_frag **);
131 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
132 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
133 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *,
134 const struct in6_addr *, u_long *, int *);
135 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
136
137 #ifdef RFC2292
138 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
139 #endif
140
141 /*
142 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
143 * header (with pri, len, nxt, hlim, src, dst).
144 * This function may modify ver and hlim only.
145 * The mbuf chain containing the packet will be freed.
146 * The mbuf opt, if present, will not be freed.
147 *
148 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
149 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
150 * which is rt_rmx.rmx_mtu.
151 */
152 int
153 ip6_output(
154 struct mbuf *m0,
155 struct ip6_pktopts *opt,
156 struct route *ro,
157 int flags,
158 struct ip6_moptions *im6o,
159 struct socket *so,
160 struct ifnet **ifpp /* XXX: just for statistics */
161 )
162 {
163 struct ip6_hdr *ip6, *mhip6;
164 struct ifnet *ifp, *origifp;
165 struct mbuf *m = m0;
166 int hlen, tlen, len, off;
167 bool tso;
168 struct route ip6route;
169 struct rtentry *rt = NULL;
170 const struct sockaddr_in6 *dst = NULL;
171 struct sockaddr_in6 src_sa, dst_sa;
172 int error = 0;
173 struct in6_ifaddr *ia = NULL;
174 u_long mtu;
175 int alwaysfrag, dontfrag;
176 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
177 struct ip6_exthdrs exthdrs;
178 struct in6_addr finaldst, src0, dst0;
179 u_int32_t zone;
180 struct route *ro_pmtu = NULL;
181 int hdrsplit = 0;
182 int needipsec = 0;
183 #ifdef IPSEC
184 struct secpolicy *sp = NULL;
185 #endif
186
187 memset(&ip6route, 0, sizeof(ip6route));
188
189 #ifdef DIAGNOSTIC
190 if ((m->m_flags & M_PKTHDR) == 0)
191 panic("ip6_output: no HDR");
192
193 if ((m->m_pkthdr.csum_flags &
194 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
195 panic("ip6_output: IPv4 checksum offload flags: %d",
196 m->m_pkthdr.csum_flags);
197 }
198
199 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
200 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
201 panic("ip6_output: conflicting checksum offload flags: %d",
202 m->m_pkthdr.csum_flags);
203 }
204 #endif
205
206 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
207
208 #define MAKE_EXTHDR(hp, mp) \
209 do { \
210 if (hp) { \
211 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
212 error = ip6_copyexthdr((mp), (void *)(hp), \
213 ((eh)->ip6e_len + 1) << 3); \
214 if (error) \
215 goto freehdrs; \
216 } \
217 } while (/*CONSTCOND*/ 0)
218
219 memset(&exthdrs, 0, sizeof(exthdrs));
220 if (opt) {
221 /* Hop-by-Hop options header */
222 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
223 /* Destination options header(1st part) */
224 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
225 /* Routing header */
226 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
227 /* Destination options header(2nd part) */
228 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
229 }
230
231 /*
232 * Calculate the total length of the extension header chain.
233 * Keep the length of the unfragmentable part for fragmentation.
234 */
235 optlen = 0;
236 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
237 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
238 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
239 unfragpartlen = optlen + sizeof(struct ip6_hdr);
240 /* NOTE: we don't add AH/ESP length here. do that later. */
241 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
242
243 #ifdef IPSEC
244 if (ipsec_used) {
245 /* Check the security policy (SP) for the packet */
246
247 sp = ipsec6_check_policy(m, so, flags, &needipsec, &error);
248 if (error != 0) {
249 /*
250 * Hack: -EINVAL is used to signal that a packet
251 * should be silently discarded. This is typically
252 * because we asked key management for an SA and
253 * it was delayed (e.g. kicked up to IKE).
254 */
255 if (error == -EINVAL)
256 error = 0;
257 goto freehdrs;
258 }
259 }
260 #endif /* IPSEC */
261
262
263 if (needipsec &&
264 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
265 in6_delayed_cksum(m);
266 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
267 }
268
269
270 /*
271 * If we need IPsec, or there is at least one extension header,
272 * separate IP6 header from the payload.
273 */
274 if ((needipsec || optlen) && !hdrsplit) {
275 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
276 m = NULL;
277 goto freehdrs;
278 }
279 m = exthdrs.ip6e_ip6;
280 hdrsplit++;
281 }
282
283 /* adjust pointer */
284 ip6 = mtod(m, struct ip6_hdr *);
285
286 /* adjust mbuf packet header length */
287 m->m_pkthdr.len += optlen;
288 plen = m->m_pkthdr.len - sizeof(*ip6);
289
290 /* If this is a jumbo payload, insert a jumbo payload option. */
291 if (plen > IPV6_MAXPACKET) {
292 if (!hdrsplit) {
293 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
294 m = NULL;
295 goto freehdrs;
296 }
297 m = exthdrs.ip6e_ip6;
298 hdrsplit++;
299 }
300 /* adjust pointer */
301 ip6 = mtod(m, struct ip6_hdr *);
302 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
303 goto freehdrs;
304 optlen += 8; /* XXX JUMBOOPTLEN */
305 ip6->ip6_plen = 0;
306 } else
307 ip6->ip6_plen = htons(plen);
308
309 /*
310 * Concatenate headers and fill in next header fields.
311 * Here we have, on "m"
312 * IPv6 payload
313 * and we insert headers accordingly. Finally, we should be getting:
314 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
315 *
316 * during the header composing process, "m" points to IPv6 header.
317 * "mprev" points to an extension header prior to esp.
318 */
319 {
320 u_char *nexthdrp = &ip6->ip6_nxt;
321 struct mbuf *mprev = m;
322
323 /*
324 * we treat dest2 specially. this makes IPsec processing
325 * much easier. the goal here is to make mprev point the
326 * mbuf prior to dest2.
327 *
328 * result: IPv6 dest2 payload
329 * m and mprev will point to IPv6 header.
330 */
331 if (exthdrs.ip6e_dest2) {
332 if (!hdrsplit)
333 panic("assumption failed: hdr not split");
334 exthdrs.ip6e_dest2->m_next = m->m_next;
335 m->m_next = exthdrs.ip6e_dest2;
336 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
337 ip6->ip6_nxt = IPPROTO_DSTOPTS;
338 }
339
340 #define MAKE_CHAIN(m, mp, p, i)\
341 do {\
342 if (m) {\
343 if (!hdrsplit) \
344 panic("assumption failed: hdr not split"); \
345 *mtod((m), u_char *) = *(p);\
346 *(p) = (i);\
347 p = mtod((m), u_char *);\
348 (m)->m_next = (mp)->m_next;\
349 (mp)->m_next = (m);\
350 (mp) = (m);\
351 }\
352 } while (/*CONSTCOND*/ 0)
353 /*
354 * result: IPv6 hbh dest1 rthdr dest2 payload
355 * m will point to IPv6 header. mprev will point to the
356 * extension header prior to dest2 (rthdr in the above case).
357 */
358 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
359 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
360 IPPROTO_DSTOPTS);
361 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
362 IPPROTO_ROUTING);
363
364 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
365 sizeof(struct ip6_hdr) + optlen);
366 }
367
368 /*
369 * If there is a routing header, replace destination address field
370 * with the first hop of the routing header.
371 */
372 if (exthdrs.ip6e_rthdr) {
373 struct ip6_rthdr *rh;
374 struct ip6_rthdr0 *rh0;
375 struct in6_addr *addr;
376 struct sockaddr_in6 sa;
377
378 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
379 struct ip6_rthdr *));
380 finaldst = ip6->ip6_dst;
381 switch (rh->ip6r_type) {
382 case IPV6_RTHDR_TYPE_0:
383 rh0 = (struct ip6_rthdr0 *)rh;
384 addr = (struct in6_addr *)(rh0 + 1);
385
386 /*
387 * construct a sockaddr_in6 form of
388 * the first hop.
389 *
390 * XXX: we may not have enough
391 * information about its scope zone;
392 * there is no standard API to pass
393 * the information from the
394 * application.
395 */
396 sockaddr_in6_init(&sa, addr, 0, 0, 0);
397 if ((error = sa6_embedscope(&sa,
398 ip6_use_defzone)) != 0) {
399 goto bad;
400 }
401 ip6->ip6_dst = sa.sin6_addr;
402 (void)memmove(&addr[0], &addr[1],
403 sizeof(struct in6_addr) *
404 (rh0->ip6r0_segleft - 1));
405 addr[rh0->ip6r0_segleft - 1] = finaldst;
406 /* XXX */
407 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
408 break;
409 default: /* is it possible? */
410 error = EINVAL;
411 goto bad;
412 }
413 }
414
415 /* Source address validation */
416 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
417 (flags & IPV6_UNSPECSRC) == 0) {
418 error = EOPNOTSUPP;
419 IP6_STATINC(IP6_STAT_BADSCOPE);
420 goto bad;
421 }
422 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
423 error = EOPNOTSUPP;
424 IP6_STATINC(IP6_STAT_BADSCOPE);
425 goto bad;
426 }
427
428 IP6_STATINC(IP6_STAT_LOCALOUT);
429
430 /*
431 * Route packet.
432 */
433 /* initialize cached route */
434 if (ro == NULL) {
435 ro = &ip6route;
436 }
437 ro_pmtu = ro;
438 if (opt && opt->ip6po_rthdr)
439 ro = &opt->ip6po_route;
440
441 /*
442 * if specified, try to fill in the traffic class field.
443 * do not override if a non-zero value is already set.
444 * we check the diffserv field and the ecn field separately.
445 */
446 if (opt && opt->ip6po_tclass >= 0) {
447 int mask = 0;
448
449 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
450 mask |= 0xfc;
451 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
452 mask |= 0x03;
453 if (mask != 0)
454 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
455 }
456
457 /* fill in or override the hop limit field, if necessary. */
458 if (opt && opt->ip6po_hlim != -1)
459 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
460 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
461 if (im6o != NULL)
462 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
463 else
464 ip6->ip6_hlim = ip6_defmcasthlim;
465 }
466
467 #ifdef IPSEC
468 if (needipsec) {
469 int s = splsoftnet();
470 error = ipsec6_process_packet(m, sp->req);
471
472 /*
473 * Preserve KAME behaviour: ENOENT can be returned
474 * when an SA acquire is in progress. Don't propagate
475 * this to user-level; it confuses applications.
476 * XXX this will go away when the SADB is redone.
477 */
478 if (error == ENOENT)
479 error = 0;
480 splx(s);
481 goto done;
482 }
483 #endif /* IPSEC */
484
485 /* adjust pointer */
486 ip6 = mtod(m, struct ip6_hdr *);
487
488 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
489 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
490 &ifp, &rt, 0)) != 0) {
491 if (ifp != NULL)
492 in6_ifstat_inc(ifp, ifs6_out_discard);
493 goto bad;
494 }
495 if (rt == NULL) {
496 /*
497 * If in6_selectroute() does not return a route entry,
498 * dst may not have been updated.
499 */
500 error = rtcache_setdst(ro, sin6tosa(&dst_sa));
501 if (error) {
502 goto bad;
503 }
504 }
505
506 /*
507 * then rt (for unicast) and ifp must be non-NULL valid values.
508 */
509 if ((flags & IPV6_FORWARDING) == 0) {
510 /* XXX: the FORWARDING flag can be set for mrouting. */
511 in6_ifstat_inc(ifp, ifs6_out_request);
512 }
513 if (rt != NULL) {
514 ia = (struct in6_ifaddr *)(rt->rt_ifa);
515 rt->rt_use++;
516 }
517
518 /*
519 * The outgoing interface must be in the zone of source and
520 * destination addresses. We should use ia_ifp to support the
521 * case of sending packets to an address of our own.
522 */
523 if (ia != NULL && ia->ia_ifp)
524 origifp = ia->ia_ifp;
525 else
526 origifp = ifp;
527
528 src0 = ip6->ip6_src;
529 if (in6_setscope(&src0, origifp, &zone))
530 goto badscope;
531 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
532 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
533 goto badscope;
534
535 dst0 = ip6->ip6_dst;
536 if (in6_setscope(&dst0, origifp, &zone))
537 goto badscope;
538 /* re-initialize to be sure */
539 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
540 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
541 goto badscope;
542
543 /* scope check is done. */
544
545 if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
546 if (dst == NULL)
547 dst = satocsin6(rtcache_getdst(ro));
548 KASSERT(dst != NULL);
549 } else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) {
550 /*
551 * The nexthop is explicitly specified by the
552 * application. We assume the next hop is an IPv6
553 * address.
554 */
555 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
556 } else if ((rt->rt_flags & RTF_GATEWAY))
557 dst = (struct sockaddr_in6 *)rt->rt_gateway;
558 else if (dst == NULL)
559 dst = satocsin6(rtcache_getdst(ro));
560
561 /*
562 * XXXXXX: original code follows:
563 */
564 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
565 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
566 else {
567 struct in6_multi *in6m;
568
569 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
570
571 in6_ifstat_inc(ifp, ifs6_out_mcast);
572
573 /*
574 * Confirm that the outgoing interface supports multicast.
575 */
576 if (!(ifp->if_flags & IFF_MULTICAST)) {
577 IP6_STATINC(IP6_STAT_NOROUTE);
578 in6_ifstat_inc(ifp, ifs6_out_discard);
579 error = ENETUNREACH;
580 goto bad;
581 }
582
583 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
584 if (in6m != NULL &&
585 (im6o == NULL || im6o->im6o_multicast_loop)) {
586 /*
587 * If we belong to the destination multicast group
588 * on the outgoing interface, and the caller did not
589 * forbid loopback, loop back a copy.
590 */
591 KASSERT(dst != NULL);
592 ip6_mloopback(ifp, m, dst);
593 } else {
594 /*
595 * If we are acting as a multicast router, perform
596 * multicast forwarding as if the packet had just
597 * arrived on the interface to which we are about
598 * to send. The multicast forwarding function
599 * recursively calls this function, using the
600 * IPV6_FORWARDING flag to prevent infinite recursion.
601 *
602 * Multicasts that are looped back by ip6_mloopback(),
603 * above, will be forwarded by the ip6_input() routine,
604 * if necessary.
605 */
606 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
607 if (ip6_mforward(ip6, ifp, m) != 0) {
608 m_freem(m);
609 goto done;
610 }
611 }
612 }
613 /*
614 * Multicasts with a hoplimit of zero may be looped back,
615 * above, but must not be transmitted on a network.
616 * Also, multicasts addressed to the loopback interface
617 * are not sent -- the above call to ip6_mloopback() will
618 * loop back a copy if this host actually belongs to the
619 * destination group on the loopback interface.
620 */
621 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
622 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
623 m_freem(m);
624 goto done;
625 }
626 }
627
628 /*
629 * Fill the outgoing inteface to tell the upper layer
630 * to increment per-interface statistics.
631 */
632 if (ifpp)
633 *ifpp = ifp;
634
635 /* Determine path MTU. */
636 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
637 &alwaysfrag)) != 0)
638 goto bad;
639
640 /*
641 * The caller of this function may specify to use the minimum MTU
642 * in some cases.
643 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
644 * setting. The logic is a bit complicated; by default, unicast
645 * packets will follow path MTU while multicast packets will be sent at
646 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
647 * including unicast ones will be sent at the minimum MTU. Multicast
648 * packets will always be sent at the minimum MTU unless
649 * IP6PO_MINMTU_DISABLE is explicitly specified.
650 * See RFC 3542 for more details.
651 */
652 if (mtu > IPV6_MMTU) {
653 if ((flags & IPV6_MINMTU))
654 mtu = IPV6_MMTU;
655 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
656 mtu = IPV6_MMTU;
657 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
658 (opt == NULL ||
659 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
660 mtu = IPV6_MMTU;
661 }
662 }
663
664 /*
665 * clear embedded scope identifiers if necessary.
666 * in6_clearscope will touch the addresses only when necessary.
667 */
668 in6_clearscope(&ip6->ip6_src);
669 in6_clearscope(&ip6->ip6_dst);
670
671 /*
672 * If the outgoing packet contains a hop-by-hop options header,
673 * it must be examined and processed even by the source node.
674 * (RFC 2460, section 4.)
675 */
676 if (ip6->ip6_nxt == IPV6_HOPOPTS) {
677 u_int32_t dummy1; /* XXX unused */
678 u_int32_t dummy2; /* XXX unused */
679 int hoff = sizeof(struct ip6_hdr);
680
681 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
682 /* m was already freed at this point */
683 error = EINVAL;/* better error? */
684 goto done;
685 }
686
687 ip6 = mtod(m, struct ip6_hdr *);
688 }
689
690 /*
691 * Run through list of hooks for output packets.
692 */
693 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
694 goto done;
695 if (m == NULL)
696 goto done;
697 ip6 = mtod(m, struct ip6_hdr *);
698
699 /*
700 * Send the packet to the outgoing interface.
701 * If necessary, do IPv6 fragmentation before sending.
702 *
703 * the logic here is rather complex:
704 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
705 * 1-a: send as is if tlen <= path mtu
706 * 1-b: fragment if tlen > path mtu
707 *
708 * 2: if user asks us not to fragment (dontfrag == 1)
709 * 2-a: send as is if tlen <= interface mtu
710 * 2-b: error if tlen > interface mtu
711 *
712 * 3: if we always need to attach fragment header (alwaysfrag == 1)
713 * always fragment
714 *
715 * 4: if dontfrag == 1 && alwaysfrag == 1
716 * error, as we cannot handle this conflicting request
717 */
718 tlen = m->m_pkthdr.len;
719 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
720 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
721 dontfrag = 1;
722 else
723 dontfrag = 0;
724
725 if (dontfrag && alwaysfrag) { /* case 4 */
726 /* conflicting request - can't transmit */
727 error = EMSGSIZE;
728 goto bad;
729 }
730 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */
731 /*
732 * Even if the DONTFRAG option is specified, we cannot send the
733 * packet when the data length is larger than the MTU of the
734 * outgoing interface.
735 * Notify the error by sending IPV6_PATHMTU ancillary data as
736 * well as returning an error code (the latter is not described
737 * in the API spec.)
738 */
739 u_int32_t mtu32;
740 struct ip6ctlparam ip6cp;
741
742 mtu32 = (u_int32_t)mtu;
743 memset(&ip6cp, 0, sizeof(ip6cp));
744 ip6cp.ip6c_cmdarg = (void *)&mtu32;
745 pfctlinput2(PRC_MSGSIZE,
746 rtcache_getdst(ro_pmtu), &ip6cp);
747
748 error = EMSGSIZE;
749 goto bad;
750 }
751
752 /*
753 * transmit packet without fragmentation
754 */
755 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
756 /* case 1-a and 2-a */
757 struct in6_ifaddr *ia6;
758 int sw_csum;
759
760 ip6 = mtod(m, struct ip6_hdr *);
761 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
762 if (ia6) {
763 /* Record statistics for this interface address. */
764 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
765 }
766
767 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
768 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
769 if (IN6_NEED_CHECKSUM(ifp,
770 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
771 in6_delayed_cksum(m);
772 }
773 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
774 }
775
776 KASSERT(dst != NULL);
777 if (__predict_true(!tso ||
778 (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
779 error = nd6_output(ifp, origifp, m, dst, rt);
780 } else {
781 error = ip6_tso_output(ifp, origifp, m, dst, rt);
782 }
783 goto done;
784 }
785
786 if (tso) {
787 error = EINVAL; /* XXX */
788 goto bad;
789 }
790
791 /*
792 * try to fragment the packet. case 1-b and 3
793 */
794 if (mtu < IPV6_MMTU) {
795 /* path MTU cannot be less than IPV6_MMTU */
796 error = EMSGSIZE;
797 in6_ifstat_inc(ifp, ifs6_out_fragfail);
798 goto bad;
799 } else if (ip6->ip6_plen == 0) {
800 /* jumbo payload cannot be fragmented */
801 error = EMSGSIZE;
802 in6_ifstat_inc(ifp, ifs6_out_fragfail);
803 goto bad;
804 } else {
805 struct mbuf **mnext, *m_frgpart;
806 struct ip6_frag *ip6f;
807 u_int32_t id = htonl(ip6_randomid());
808 u_char nextproto;
809 #if 0 /* see below */
810 struct ip6ctlparam ip6cp;
811 u_int32_t mtu32;
812 #endif
813
814 /*
815 * Too large for the destination or interface;
816 * fragment if possible.
817 * Must be able to put at least 8 bytes per fragment.
818 */
819 hlen = unfragpartlen;
820 if (mtu > IPV6_MAXPACKET)
821 mtu = IPV6_MAXPACKET;
822
823 #if 0
824 /*
825 * It is believed this code is a leftover from the
826 * development of the IPV6_RECVPATHMTU sockopt and
827 * associated work to implement RFC3542.
828 * It's not entirely clear what the intent of the API
829 * is at this point, so disable this code for now.
830 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
831 * will send notifications if the application requests.
832 */
833
834 /* Notify a proper path MTU to applications. */
835 mtu32 = (u_int32_t)mtu;
836 memset(&ip6cp, 0, sizeof(ip6cp));
837 ip6cp.ip6c_cmdarg = (void *)&mtu32;
838 pfctlinput2(PRC_MSGSIZE,
839 rtcache_getdst(ro_pmtu), &ip6cp);
840 #endif
841
842 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
843 if (len < 8) {
844 error = EMSGSIZE;
845 in6_ifstat_inc(ifp, ifs6_out_fragfail);
846 goto bad;
847 }
848
849 mnext = &m->m_nextpkt;
850
851 /*
852 * Change the next header field of the last header in the
853 * unfragmentable part.
854 */
855 if (exthdrs.ip6e_rthdr) {
856 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
857 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
858 } else if (exthdrs.ip6e_dest1) {
859 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
860 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
861 } else if (exthdrs.ip6e_hbh) {
862 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
863 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
864 } else {
865 nextproto = ip6->ip6_nxt;
866 ip6->ip6_nxt = IPPROTO_FRAGMENT;
867 }
868
869 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
870 != 0) {
871 if (IN6_NEED_CHECKSUM(ifp,
872 m->m_pkthdr.csum_flags &
873 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
874 in6_delayed_cksum(m);
875 }
876 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
877 }
878
879 /*
880 * Loop through length of segment after first fragment,
881 * make new header and copy data of each part and link onto
882 * chain.
883 */
884 m0 = m;
885 for (off = hlen; off < tlen; off += len) {
886 struct mbuf *mlast;
887
888 MGETHDR(m, M_DONTWAIT, MT_HEADER);
889 if (!m) {
890 error = ENOBUFS;
891 IP6_STATINC(IP6_STAT_ODROPPED);
892 goto sendorfree;
893 }
894 m->m_pkthdr.rcvif = NULL;
895 m->m_flags = m0->m_flags & M_COPYFLAGS;
896 *mnext = m;
897 mnext = &m->m_nextpkt;
898 m->m_data += max_linkhdr;
899 mhip6 = mtod(m, struct ip6_hdr *);
900 *mhip6 = *ip6;
901 m->m_len = sizeof(*mhip6);
902 /*
903 * ip6f must be valid if error is 0. But how
904 * can a compiler be expected to infer this?
905 */
906 ip6f = NULL;
907 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
908 if (error) {
909 IP6_STATINC(IP6_STAT_ODROPPED);
910 goto sendorfree;
911 }
912 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
913 if (off + len >= tlen)
914 len = tlen - off;
915 else
916 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
917 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
918 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
919 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
920 error = ENOBUFS;
921 IP6_STATINC(IP6_STAT_ODROPPED);
922 goto sendorfree;
923 }
924 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
925 ;
926 mlast->m_next = m_frgpart;
927 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
928 m->m_pkthdr.rcvif = NULL;
929 ip6f->ip6f_reserved = 0;
930 ip6f->ip6f_ident = id;
931 ip6f->ip6f_nxt = nextproto;
932 IP6_STATINC(IP6_STAT_OFRAGMENTS);
933 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
934 }
935
936 in6_ifstat_inc(ifp, ifs6_out_fragok);
937 }
938
939 /*
940 * Remove leading garbages.
941 */
942 sendorfree:
943 m = m0->m_nextpkt;
944 m0->m_nextpkt = 0;
945 m_freem(m0);
946 for (m0 = m; m; m = m0) {
947 m0 = m->m_nextpkt;
948 m->m_nextpkt = 0;
949 if (error == 0) {
950 struct in6_ifaddr *ia6;
951 ip6 = mtod(m, struct ip6_hdr *);
952 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
953 if (ia6) {
954 /*
955 * Record statistics for this interface
956 * address.
957 */
958 ia6->ia_ifa.ifa_data.ifad_outbytes +=
959 m->m_pkthdr.len;
960 }
961 KASSERT(dst != NULL);
962 error = nd6_output(ifp, origifp, m, dst, rt);
963 } else
964 m_freem(m);
965 }
966
967 if (error == 0)
968 IP6_STATINC(IP6_STAT_FRAGMENTED);
969
970 done:
971 rtcache_free(&ip6route);
972
973 #ifdef IPSEC
974 if (sp != NULL)
975 KEY_FREESP(&sp);
976 #endif /* IPSEC */
977
978
979 return (error);
980
981 freehdrs:
982 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
983 m_freem(exthdrs.ip6e_dest1);
984 m_freem(exthdrs.ip6e_rthdr);
985 m_freem(exthdrs.ip6e_dest2);
986 /* FALLTHROUGH */
987 bad:
988 m_freem(m);
989 goto done;
990 badscope:
991 IP6_STATINC(IP6_STAT_BADSCOPE);
992 in6_ifstat_inc(origifp, ifs6_out_discard);
993 if (error == 0)
994 error = EHOSTUNREACH; /* XXX */
995 goto bad;
996 }
997
998 static int
999 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1000 {
1001 struct mbuf *m;
1002
1003 if (hlen > MCLBYTES)
1004 return (ENOBUFS); /* XXX */
1005
1006 MGET(m, M_DONTWAIT, MT_DATA);
1007 if (!m)
1008 return (ENOBUFS);
1009
1010 if (hlen > MLEN) {
1011 MCLGET(m, M_DONTWAIT);
1012 if ((m->m_flags & M_EXT) == 0) {
1013 m_free(m);
1014 return (ENOBUFS);
1015 }
1016 }
1017 m->m_len = hlen;
1018 if (hdr)
1019 bcopy(hdr, mtod(m, void *), hlen);
1020
1021 *mp = m;
1022 return (0);
1023 }
1024
1025 /*
1026 * Process a delayed payload checksum calculation.
1027 */
1028 void
1029 in6_delayed_cksum(struct mbuf *m)
1030 {
1031 uint16_t csum, offset;
1032
1033 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1034 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1035 KASSERT((m->m_pkthdr.csum_flags
1036 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1037
1038 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1039 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1040 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1041 csum = 0xffff;
1042 }
1043
1044 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1045 if ((offset + sizeof(csum)) > m->m_len) {
1046 m_copyback(m, offset, sizeof(csum), &csum);
1047 } else {
1048 *(uint16_t *)(mtod(m, char *) + offset) = csum;
1049 }
1050 }
1051
1052 /*
1053 * Insert jumbo payload option.
1054 */
1055 static int
1056 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1057 {
1058 struct mbuf *mopt;
1059 u_int8_t *optbuf;
1060 u_int32_t v;
1061
1062 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1063
1064 /*
1065 * If there is no hop-by-hop options header, allocate new one.
1066 * If there is one but it doesn't have enough space to store the
1067 * jumbo payload option, allocate a cluster to store the whole options.
1068 * Otherwise, use it to store the options.
1069 */
1070 if (exthdrs->ip6e_hbh == 0) {
1071 MGET(mopt, M_DONTWAIT, MT_DATA);
1072 if (mopt == 0)
1073 return (ENOBUFS);
1074 mopt->m_len = JUMBOOPTLEN;
1075 optbuf = mtod(mopt, u_int8_t *);
1076 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1077 exthdrs->ip6e_hbh = mopt;
1078 } else {
1079 struct ip6_hbh *hbh;
1080
1081 mopt = exthdrs->ip6e_hbh;
1082 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1083 /*
1084 * XXX assumption:
1085 * - exthdrs->ip6e_hbh is not referenced from places
1086 * other than exthdrs.
1087 * - exthdrs->ip6e_hbh is not an mbuf chain.
1088 */
1089 int oldoptlen = mopt->m_len;
1090 struct mbuf *n;
1091
1092 /*
1093 * XXX: give up if the whole (new) hbh header does
1094 * not fit even in an mbuf cluster.
1095 */
1096 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1097 return (ENOBUFS);
1098
1099 /*
1100 * As a consequence, we must always prepare a cluster
1101 * at this point.
1102 */
1103 MGET(n, M_DONTWAIT, MT_DATA);
1104 if (n) {
1105 MCLGET(n, M_DONTWAIT);
1106 if ((n->m_flags & M_EXT) == 0) {
1107 m_freem(n);
1108 n = NULL;
1109 }
1110 }
1111 if (!n)
1112 return (ENOBUFS);
1113 n->m_len = oldoptlen + JUMBOOPTLEN;
1114 bcopy(mtod(mopt, void *), mtod(n, void *),
1115 oldoptlen);
1116 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1117 m_freem(mopt);
1118 mopt = exthdrs->ip6e_hbh = n;
1119 } else {
1120 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1121 mopt->m_len += JUMBOOPTLEN;
1122 }
1123 optbuf[0] = IP6OPT_PADN;
1124 optbuf[1] = 0;
1125
1126 /*
1127 * Adjust the header length according to the pad and
1128 * the jumbo payload option.
1129 */
1130 hbh = mtod(mopt, struct ip6_hbh *);
1131 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1132 }
1133
1134 /* fill in the option. */
1135 optbuf[2] = IP6OPT_JUMBO;
1136 optbuf[3] = 4;
1137 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1138 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1139
1140 /* finally, adjust the packet header length */
1141 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1142
1143 return (0);
1144 #undef JUMBOOPTLEN
1145 }
1146
1147 /*
1148 * Insert fragment header and copy unfragmentable header portions.
1149 *
1150 * *frghdrp will not be read, and it is guaranteed that either an
1151 * error is returned or that *frghdrp will point to space allocated
1152 * for the fragment header.
1153 */
1154 static int
1155 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1156 struct ip6_frag **frghdrp)
1157 {
1158 struct mbuf *n, *mlast;
1159
1160 if (hlen > sizeof(struct ip6_hdr)) {
1161 n = m_copym(m0, sizeof(struct ip6_hdr),
1162 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1163 if (n == 0)
1164 return (ENOBUFS);
1165 m->m_next = n;
1166 } else
1167 n = m;
1168
1169 /* Search for the last mbuf of unfragmentable part. */
1170 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1171 ;
1172
1173 if ((mlast->m_flags & M_EXT) == 0 &&
1174 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1175 /* use the trailing space of the last mbuf for the fragment hdr */
1176 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1177 mlast->m_len);
1178 mlast->m_len += sizeof(struct ip6_frag);
1179 m->m_pkthdr.len += sizeof(struct ip6_frag);
1180 } else {
1181 /* allocate a new mbuf for the fragment header */
1182 struct mbuf *mfrg;
1183
1184 MGET(mfrg, M_DONTWAIT, MT_DATA);
1185 if (mfrg == 0)
1186 return (ENOBUFS);
1187 mfrg->m_len = sizeof(struct ip6_frag);
1188 *frghdrp = mtod(mfrg, struct ip6_frag *);
1189 mlast->m_next = mfrg;
1190 }
1191
1192 return (0);
1193 }
1194
1195 static int
1196 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp,
1197 const struct in6_addr *dst, u_long *mtup, int *alwaysfragp)
1198 {
1199 struct rtentry *rt;
1200 u_int32_t mtu = 0;
1201 int alwaysfrag = 0;
1202 int error = 0;
1203
1204 if (ro_pmtu != ro) {
1205 union {
1206 struct sockaddr dst;
1207 struct sockaddr_in6 dst6;
1208 } u;
1209
1210 /* The first hop and the final destination may differ. */
1211 sockaddr_in6_init(&u.dst6, dst, 0, 0, 0);
1212 rt = rtcache_lookup(ro_pmtu, &u.dst);
1213 } else
1214 rt = rtcache_validate(ro_pmtu);
1215 if (rt != NULL) {
1216 u_int32_t ifmtu;
1217
1218 if (ifp == NULL)
1219 ifp = rt->rt_ifp;
1220 ifmtu = IN6_LINKMTU(ifp);
1221 mtu = rt->rt_rmx.rmx_mtu;
1222 if (mtu == 0)
1223 mtu = ifmtu;
1224 else if (mtu < IPV6_MMTU) {
1225 /*
1226 * RFC2460 section 5, last paragraph:
1227 * if we record ICMPv6 too big message with
1228 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1229 * or smaller, with fragment header attached.
1230 * (fragment header is needed regardless from the
1231 * packet size, for translators to identify packets)
1232 */
1233 alwaysfrag = 1;
1234 mtu = IPV6_MMTU;
1235 } else if (mtu > ifmtu) {
1236 /*
1237 * The MTU on the route is larger than the MTU on
1238 * the interface! This shouldn't happen, unless the
1239 * MTU of the interface has been changed after the
1240 * interface was brought up. Change the MTU in the
1241 * route to match the interface MTU (as long as the
1242 * field isn't locked).
1243 */
1244 mtu = ifmtu;
1245 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1246 rt->rt_rmx.rmx_mtu = mtu;
1247 }
1248 } else if (ifp) {
1249 mtu = IN6_LINKMTU(ifp);
1250 } else
1251 error = EHOSTUNREACH; /* XXX */
1252
1253 *mtup = mtu;
1254 if (alwaysfragp)
1255 *alwaysfragp = alwaysfrag;
1256 return (error);
1257 }
1258
1259 /*
1260 * IP6 socket option processing.
1261 */
1262 int
1263 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1264 {
1265 int optdatalen, uproto;
1266 void *optdata;
1267 struct in6pcb *in6p = sotoin6pcb(so);
1268 struct ip_moptions **mopts;
1269 int error, optval;
1270 int level, optname;
1271
1272 KASSERT(sopt != NULL);
1273
1274 level = sopt->sopt_level;
1275 optname = sopt->sopt_name;
1276
1277 error = optval = 0;
1278 uproto = (int)so->so_proto->pr_protocol;
1279
1280 switch (level) {
1281 case IPPROTO_IP:
1282 switch (optname) {
1283 case IP_ADD_MEMBERSHIP:
1284 case IP_DROP_MEMBERSHIP:
1285 case IP_MULTICAST_IF:
1286 case IP_MULTICAST_LOOP:
1287 case IP_MULTICAST_TTL:
1288 mopts = &in6p->in6p_v4moptions;
1289 switch (op) {
1290 case PRCO_GETOPT:
1291 return ip_getmoptions(*mopts, sopt);
1292 case PRCO_SETOPT:
1293 return ip_setmoptions(mopts, sopt);
1294 default:
1295 return EINVAL;
1296 }
1297 default:
1298 return ENOPROTOOPT;
1299 }
1300 case IPPROTO_IPV6:
1301 break;
1302 default:
1303 return ENOPROTOOPT;
1304 }
1305 switch (op) {
1306 case PRCO_SETOPT:
1307 switch (optname) {
1308 #ifdef RFC2292
1309 case IPV6_2292PKTOPTIONS:
1310 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
1311 break;
1312 #endif
1313
1314 /*
1315 * Use of some Hop-by-Hop options or some
1316 * Destination options, might require special
1317 * privilege. That is, normal applications
1318 * (without special privilege) might be forbidden
1319 * from setting certain options in outgoing packets,
1320 * and might never see certain options in received
1321 * packets. [RFC 2292 Section 6]
1322 * KAME specific note:
1323 * KAME prevents non-privileged users from sending or
1324 * receiving ANY hbh/dst options in order to avoid
1325 * overhead of parsing options in the kernel.
1326 */
1327 case IPV6_RECVHOPOPTS:
1328 case IPV6_RECVDSTOPTS:
1329 case IPV6_RECVRTHDRDSTOPTS:
1330 error = kauth_authorize_network(kauth_cred_get(),
1331 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
1332 NULL, NULL, NULL);
1333 if (error)
1334 break;
1335 /* FALLTHROUGH */
1336 case IPV6_UNICAST_HOPS:
1337 case IPV6_HOPLIMIT:
1338 case IPV6_FAITH:
1339
1340 case IPV6_RECVPKTINFO:
1341 case IPV6_RECVHOPLIMIT:
1342 case IPV6_RECVRTHDR:
1343 case IPV6_RECVPATHMTU:
1344 case IPV6_RECVTCLASS:
1345 case IPV6_V6ONLY:
1346 error = sockopt_getint(sopt, &optval);
1347 if (error)
1348 break;
1349 switch (optname) {
1350 case IPV6_UNICAST_HOPS:
1351 if (optval < -1 || optval >= 256)
1352 error = EINVAL;
1353 else {
1354 /* -1 = kernel default */
1355 in6p->in6p_hops = optval;
1356 }
1357 break;
1358 #define OPTSET(bit) \
1359 do { \
1360 if (optval) \
1361 in6p->in6p_flags |= (bit); \
1362 else \
1363 in6p->in6p_flags &= ~(bit); \
1364 } while (/*CONSTCOND*/ 0)
1365
1366 #ifdef RFC2292
1367 #define OPTSET2292(bit) \
1368 do { \
1369 in6p->in6p_flags |= IN6P_RFC2292; \
1370 if (optval) \
1371 in6p->in6p_flags |= (bit); \
1372 else \
1373 in6p->in6p_flags &= ~(bit); \
1374 } while (/*CONSTCOND*/ 0)
1375 #endif
1376
1377 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1378
1379 case IPV6_RECVPKTINFO:
1380 #ifdef RFC2292
1381 /* cannot mix with RFC2292 */
1382 if (OPTBIT(IN6P_RFC2292)) {
1383 error = EINVAL;
1384 break;
1385 }
1386 #endif
1387 OPTSET(IN6P_PKTINFO);
1388 break;
1389
1390 case IPV6_HOPLIMIT:
1391 {
1392 struct ip6_pktopts **optp;
1393
1394 #ifdef RFC2292
1395 /* cannot mix with RFC2292 */
1396 if (OPTBIT(IN6P_RFC2292)) {
1397 error = EINVAL;
1398 break;
1399 }
1400 #endif
1401 optp = &in6p->in6p_outputopts;
1402 error = ip6_pcbopt(IPV6_HOPLIMIT,
1403 (u_char *)&optval,
1404 sizeof(optval),
1405 optp,
1406 kauth_cred_get(), uproto);
1407 break;
1408 }
1409
1410 case IPV6_RECVHOPLIMIT:
1411 #ifdef RFC2292
1412 /* cannot mix with RFC2292 */
1413 if (OPTBIT(IN6P_RFC2292)) {
1414 error = EINVAL;
1415 break;
1416 }
1417 #endif
1418 OPTSET(IN6P_HOPLIMIT);
1419 break;
1420
1421 case IPV6_RECVHOPOPTS:
1422 #ifdef RFC2292
1423 /* cannot mix with RFC2292 */
1424 if (OPTBIT(IN6P_RFC2292)) {
1425 error = EINVAL;
1426 break;
1427 }
1428 #endif
1429 OPTSET(IN6P_HOPOPTS);
1430 break;
1431
1432 case IPV6_RECVDSTOPTS:
1433 #ifdef RFC2292
1434 /* cannot mix with RFC2292 */
1435 if (OPTBIT(IN6P_RFC2292)) {
1436 error = EINVAL;
1437 break;
1438 }
1439 #endif
1440 OPTSET(IN6P_DSTOPTS);
1441 break;
1442
1443 case IPV6_RECVRTHDRDSTOPTS:
1444 #ifdef RFC2292
1445 /* cannot mix with RFC2292 */
1446 if (OPTBIT(IN6P_RFC2292)) {
1447 error = EINVAL;
1448 break;
1449 }
1450 #endif
1451 OPTSET(IN6P_RTHDRDSTOPTS);
1452 break;
1453
1454 case IPV6_RECVRTHDR:
1455 #ifdef RFC2292
1456 /* cannot mix with RFC2292 */
1457 if (OPTBIT(IN6P_RFC2292)) {
1458 error = EINVAL;
1459 break;
1460 }
1461 #endif
1462 OPTSET(IN6P_RTHDR);
1463 break;
1464
1465 case IPV6_FAITH:
1466 OPTSET(IN6P_FAITH);
1467 break;
1468
1469 case IPV6_RECVPATHMTU:
1470 /*
1471 * We ignore this option for TCP
1472 * sockets.
1473 * (RFC3542 leaves this case
1474 * unspecified.)
1475 */
1476 if (uproto != IPPROTO_TCP)
1477 OPTSET(IN6P_MTU);
1478 break;
1479
1480 case IPV6_V6ONLY:
1481 /*
1482 * make setsockopt(IPV6_V6ONLY)
1483 * available only prior to bind(2).
1484 * see ipng mailing list, Jun 22 2001.
1485 */
1486 if (in6p->in6p_lport ||
1487 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1488 error = EINVAL;
1489 break;
1490 }
1491 #ifdef INET6_BINDV6ONLY
1492 if (!optval)
1493 error = EINVAL;
1494 #else
1495 OPTSET(IN6P_IPV6_V6ONLY);
1496 #endif
1497 break;
1498 case IPV6_RECVTCLASS:
1499 #ifdef RFC2292
1500 /* cannot mix with RFC2292 XXX */
1501 if (OPTBIT(IN6P_RFC2292)) {
1502 error = EINVAL;
1503 break;
1504 }
1505 #endif
1506 OPTSET(IN6P_TCLASS);
1507 break;
1508
1509 }
1510 break;
1511
1512 case IPV6_OTCLASS:
1513 {
1514 struct ip6_pktopts **optp;
1515 u_int8_t tclass;
1516
1517 error = sockopt_get(sopt, &tclass, sizeof(tclass));
1518 if (error)
1519 break;
1520 optp = &in6p->in6p_outputopts;
1521 error = ip6_pcbopt(optname,
1522 (u_char *)&tclass,
1523 sizeof(tclass),
1524 optp,
1525 kauth_cred_get(), uproto);
1526 break;
1527 }
1528
1529 case IPV6_TCLASS:
1530 case IPV6_DONTFRAG:
1531 case IPV6_USE_MIN_MTU:
1532 error = sockopt_getint(sopt, &optval);
1533 if (error)
1534 break;
1535 {
1536 struct ip6_pktopts **optp;
1537 optp = &in6p->in6p_outputopts;
1538 error = ip6_pcbopt(optname,
1539 (u_char *)&optval,
1540 sizeof(optval),
1541 optp,
1542 kauth_cred_get(), uproto);
1543 break;
1544 }
1545
1546 #ifdef RFC2292
1547 case IPV6_2292PKTINFO:
1548 case IPV6_2292HOPLIMIT:
1549 case IPV6_2292HOPOPTS:
1550 case IPV6_2292DSTOPTS:
1551 case IPV6_2292RTHDR:
1552 /* RFC 2292 */
1553 error = sockopt_getint(sopt, &optval);
1554 if (error)
1555 break;
1556
1557 switch (optname) {
1558 case IPV6_2292PKTINFO:
1559 OPTSET2292(IN6P_PKTINFO);
1560 break;
1561 case IPV6_2292HOPLIMIT:
1562 OPTSET2292(IN6P_HOPLIMIT);
1563 break;
1564 case IPV6_2292HOPOPTS:
1565 /*
1566 * Check super-user privilege.
1567 * See comments for IPV6_RECVHOPOPTS.
1568 */
1569 error =
1570 kauth_authorize_network(kauth_cred_get(),
1571 KAUTH_NETWORK_IPV6,
1572 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1573 NULL, NULL);
1574 if (error)
1575 return (error);
1576 OPTSET2292(IN6P_HOPOPTS);
1577 break;
1578 case IPV6_2292DSTOPTS:
1579 error =
1580 kauth_authorize_network(kauth_cred_get(),
1581 KAUTH_NETWORK_IPV6,
1582 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1583 NULL, NULL);
1584 if (error)
1585 return (error);
1586 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1587 break;
1588 case IPV6_2292RTHDR:
1589 OPTSET2292(IN6P_RTHDR);
1590 break;
1591 }
1592 break;
1593 #endif
1594 case IPV6_PKTINFO:
1595 case IPV6_HOPOPTS:
1596 case IPV6_RTHDR:
1597 case IPV6_DSTOPTS:
1598 case IPV6_RTHDRDSTOPTS:
1599 case IPV6_NEXTHOP: {
1600 /* new advanced API (RFC3542) */
1601 void *optbuf;
1602 int optbuflen;
1603 struct ip6_pktopts **optp;
1604
1605 #ifdef RFC2292
1606 /* cannot mix with RFC2292 */
1607 if (OPTBIT(IN6P_RFC2292)) {
1608 error = EINVAL;
1609 break;
1610 }
1611 #endif
1612
1613 optbuflen = sopt->sopt_size;
1614 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1615 if (optbuf == NULL) {
1616 error = ENOBUFS;
1617 break;
1618 }
1619
1620 error = sockopt_get(sopt, optbuf, optbuflen);
1621 if (error) {
1622 free(optbuf, M_IP6OPT);
1623 break;
1624 }
1625 optp = &in6p->in6p_outputopts;
1626 error = ip6_pcbopt(optname, optbuf, optbuflen,
1627 optp, kauth_cred_get(), uproto);
1628
1629 free(optbuf, M_IP6OPT);
1630 break;
1631 }
1632 #undef OPTSET
1633
1634 case IPV6_MULTICAST_IF:
1635 case IPV6_MULTICAST_HOPS:
1636 case IPV6_MULTICAST_LOOP:
1637 case IPV6_JOIN_GROUP:
1638 case IPV6_LEAVE_GROUP:
1639 error = ip6_setmoptions(sopt, &in6p->in6p_moptions);
1640 break;
1641
1642 case IPV6_PORTRANGE:
1643 error = sockopt_getint(sopt, &optval);
1644 if (error)
1645 break;
1646
1647 switch (optval) {
1648 case IPV6_PORTRANGE_DEFAULT:
1649 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1650 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1651 break;
1652
1653 case IPV6_PORTRANGE_HIGH:
1654 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1655 in6p->in6p_flags |= IN6P_HIGHPORT;
1656 break;
1657
1658 case IPV6_PORTRANGE_LOW:
1659 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1660 in6p->in6p_flags |= IN6P_LOWPORT;
1661 break;
1662
1663 default:
1664 error = EINVAL;
1665 break;
1666 }
1667 break;
1668
1669 case IPV6_PORTALGO:
1670 error = sockopt_getint(sopt, &optval);
1671 if (error)
1672 break;
1673
1674 error = portalgo_algo_index_select(
1675 (struct inpcb_hdr *)in6p, optval);
1676 break;
1677
1678 #if defined(IPSEC)
1679 case IPV6_IPSEC_POLICY:
1680 if (ipsec_enabled) {
1681 error = ipsec6_set_policy(in6p, optname,
1682 sopt->sopt_data, sopt->sopt_size,
1683 kauth_cred_get());
1684 break;
1685 }
1686 /*FALLTHROUGH*/
1687 #endif /* IPSEC */
1688
1689 default:
1690 error = ENOPROTOOPT;
1691 break;
1692 }
1693 break;
1694
1695 case PRCO_GETOPT:
1696 switch (optname) {
1697 #ifdef RFC2292
1698 case IPV6_2292PKTOPTIONS:
1699 /*
1700 * RFC3542 (effectively) deprecated the
1701 * semantics of the 2292-style pktoptions.
1702 * Since it was not reliable in nature (i.e.,
1703 * applications had to expect the lack of some
1704 * information after all), it would make sense
1705 * to simplify this part by always returning
1706 * empty data.
1707 */
1708 break;
1709 #endif
1710
1711 case IPV6_RECVHOPOPTS:
1712 case IPV6_RECVDSTOPTS:
1713 case IPV6_RECVRTHDRDSTOPTS:
1714 case IPV6_UNICAST_HOPS:
1715 case IPV6_RECVPKTINFO:
1716 case IPV6_RECVHOPLIMIT:
1717 case IPV6_RECVRTHDR:
1718 case IPV6_RECVPATHMTU:
1719
1720 case IPV6_FAITH:
1721 case IPV6_V6ONLY:
1722 case IPV6_PORTRANGE:
1723 case IPV6_RECVTCLASS:
1724 switch (optname) {
1725
1726 case IPV6_RECVHOPOPTS:
1727 optval = OPTBIT(IN6P_HOPOPTS);
1728 break;
1729
1730 case IPV6_RECVDSTOPTS:
1731 optval = OPTBIT(IN6P_DSTOPTS);
1732 break;
1733
1734 case IPV6_RECVRTHDRDSTOPTS:
1735 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1736 break;
1737
1738 case IPV6_UNICAST_HOPS:
1739 optval = in6p->in6p_hops;
1740 break;
1741
1742 case IPV6_RECVPKTINFO:
1743 optval = OPTBIT(IN6P_PKTINFO);
1744 break;
1745
1746 case IPV6_RECVHOPLIMIT:
1747 optval = OPTBIT(IN6P_HOPLIMIT);
1748 break;
1749
1750 case IPV6_RECVRTHDR:
1751 optval = OPTBIT(IN6P_RTHDR);
1752 break;
1753
1754 case IPV6_RECVPATHMTU:
1755 optval = OPTBIT(IN6P_MTU);
1756 break;
1757
1758 case IPV6_FAITH:
1759 optval = OPTBIT(IN6P_FAITH);
1760 break;
1761
1762 case IPV6_V6ONLY:
1763 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1764 break;
1765
1766 case IPV6_PORTRANGE:
1767 {
1768 int flags;
1769 flags = in6p->in6p_flags;
1770 if (flags & IN6P_HIGHPORT)
1771 optval = IPV6_PORTRANGE_HIGH;
1772 else if (flags & IN6P_LOWPORT)
1773 optval = IPV6_PORTRANGE_LOW;
1774 else
1775 optval = 0;
1776 break;
1777 }
1778 case IPV6_RECVTCLASS:
1779 optval = OPTBIT(IN6P_TCLASS);
1780 break;
1781
1782 }
1783 if (error)
1784 break;
1785 error = sockopt_setint(sopt, optval);
1786 break;
1787
1788 case IPV6_PATHMTU:
1789 {
1790 u_long pmtu = 0;
1791 struct ip6_mtuinfo mtuinfo;
1792 struct route *ro = &in6p->in6p_route;
1793
1794 if (!(so->so_state & SS_ISCONNECTED))
1795 return (ENOTCONN);
1796 /*
1797 * XXX: we dot not consider the case of source
1798 * routing, or optional information to specify
1799 * the outgoing interface.
1800 */
1801 error = ip6_getpmtu(ro, NULL, NULL,
1802 &in6p->in6p_faddr, &pmtu, NULL);
1803 if (error)
1804 break;
1805 if (pmtu > IPV6_MAXPACKET)
1806 pmtu = IPV6_MAXPACKET;
1807
1808 memset(&mtuinfo, 0, sizeof(mtuinfo));
1809 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1810 optdata = (void *)&mtuinfo;
1811 optdatalen = sizeof(mtuinfo);
1812 if (optdatalen > MCLBYTES)
1813 return (EMSGSIZE); /* XXX */
1814 error = sockopt_set(sopt, optdata, optdatalen);
1815 break;
1816 }
1817
1818 #ifdef RFC2292
1819 case IPV6_2292PKTINFO:
1820 case IPV6_2292HOPLIMIT:
1821 case IPV6_2292HOPOPTS:
1822 case IPV6_2292RTHDR:
1823 case IPV6_2292DSTOPTS:
1824 switch (optname) {
1825 case IPV6_2292PKTINFO:
1826 optval = OPTBIT(IN6P_PKTINFO);
1827 break;
1828 case IPV6_2292HOPLIMIT:
1829 optval = OPTBIT(IN6P_HOPLIMIT);
1830 break;
1831 case IPV6_2292HOPOPTS:
1832 optval = OPTBIT(IN6P_HOPOPTS);
1833 break;
1834 case IPV6_2292RTHDR:
1835 optval = OPTBIT(IN6P_RTHDR);
1836 break;
1837 case IPV6_2292DSTOPTS:
1838 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1839 break;
1840 }
1841 error = sockopt_setint(sopt, optval);
1842 break;
1843 #endif
1844 case IPV6_PKTINFO:
1845 case IPV6_HOPOPTS:
1846 case IPV6_RTHDR:
1847 case IPV6_DSTOPTS:
1848 case IPV6_RTHDRDSTOPTS:
1849 case IPV6_NEXTHOP:
1850 case IPV6_OTCLASS:
1851 case IPV6_TCLASS:
1852 case IPV6_DONTFRAG:
1853 case IPV6_USE_MIN_MTU:
1854 error = ip6_getpcbopt(in6p->in6p_outputopts,
1855 optname, sopt);
1856 break;
1857
1858 case IPV6_MULTICAST_IF:
1859 case IPV6_MULTICAST_HOPS:
1860 case IPV6_MULTICAST_LOOP:
1861 case IPV6_JOIN_GROUP:
1862 case IPV6_LEAVE_GROUP:
1863 error = ip6_getmoptions(sopt, in6p->in6p_moptions);
1864 break;
1865
1866 case IPV6_PORTALGO:
1867 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
1868 error = sockopt_setint(sopt, optval);
1869 break;
1870
1871 #if defined(IPSEC)
1872 case IPV6_IPSEC_POLICY:
1873 if (ipsec_used) {
1874 struct mbuf *m = NULL;
1875
1876 /*
1877 * XXX: this will return EINVAL as sopt is
1878 * empty
1879 */
1880 error = ipsec6_get_policy(in6p, sopt->sopt_data,
1881 sopt->sopt_size, &m);
1882 if (!error)
1883 error = sockopt_setmbuf(sopt, m);
1884 break;
1885 }
1886 /*FALLTHROUGH*/
1887 #endif /* IPSEC */
1888
1889 default:
1890 error = ENOPROTOOPT;
1891 break;
1892 }
1893 break;
1894 }
1895 return (error);
1896 }
1897
1898 int
1899 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1900 {
1901 int error = 0, optval;
1902 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1903 struct in6pcb *in6p = sotoin6pcb(so);
1904 int level, optname;
1905
1906 KASSERT(sopt != NULL);
1907
1908 level = sopt->sopt_level;
1909 optname = sopt->sopt_name;
1910
1911 if (level != IPPROTO_IPV6) {
1912 return ENOPROTOOPT;
1913 }
1914
1915 switch (optname) {
1916 case IPV6_CHECKSUM:
1917 /*
1918 * For ICMPv6 sockets, no modification allowed for checksum
1919 * offset, permit "no change" values to help existing apps.
1920 *
1921 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
1922 * for an ICMPv6 socket will fail." The current
1923 * behavior does not meet RFC3542.
1924 */
1925 switch (op) {
1926 case PRCO_SETOPT:
1927 error = sockopt_getint(sopt, &optval);
1928 if (error)
1929 break;
1930 if ((optval % 2) != 0) {
1931 /* the API assumes even offset values */
1932 error = EINVAL;
1933 } else if (so->so_proto->pr_protocol ==
1934 IPPROTO_ICMPV6) {
1935 if (optval != icmp6off)
1936 error = EINVAL;
1937 } else
1938 in6p->in6p_cksum = optval;
1939 break;
1940
1941 case PRCO_GETOPT:
1942 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1943 optval = icmp6off;
1944 else
1945 optval = in6p->in6p_cksum;
1946
1947 error = sockopt_setint(sopt, optval);
1948 break;
1949
1950 default:
1951 error = EINVAL;
1952 break;
1953 }
1954 break;
1955
1956 default:
1957 error = ENOPROTOOPT;
1958 break;
1959 }
1960
1961 return (error);
1962 }
1963
1964 #ifdef RFC2292
1965 /*
1966 * Set up IP6 options in pcb for insertion in output packets or
1967 * specifying behavior of outgoing packets.
1968 */
1969 static int
1970 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
1971 struct sockopt *sopt)
1972 {
1973 struct ip6_pktopts *opt = *pktopt;
1974 struct mbuf *m;
1975 int error = 0;
1976
1977 /* turn off any old options. */
1978 if (opt) {
1979 #ifdef DIAGNOSTIC
1980 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
1981 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
1982 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
1983 printf("ip6_pcbopts: all specified options are cleared.\n");
1984 #endif
1985 ip6_clearpktopts(opt, -1);
1986 } else {
1987 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
1988 if (opt == NULL)
1989 return (ENOBUFS);
1990 }
1991 *pktopt = NULL;
1992
1993 if (sopt == NULL || sopt->sopt_size == 0) {
1994 /*
1995 * Only turning off any previous options, regardless of
1996 * whether the opt is just created or given.
1997 */
1998 free(opt, M_IP6OPT);
1999 return (0);
2000 }
2001
2002 /* set options specified by user. */
2003 m = sockopt_getmbuf(sopt);
2004 if (m == NULL) {
2005 free(opt, M_IP6OPT);
2006 return (ENOBUFS);
2007 }
2008
2009 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
2010 so->so_proto->pr_protocol);
2011 m_freem(m);
2012 if (error != 0) {
2013 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2014 free(opt, M_IP6OPT);
2015 return (error);
2016 }
2017 *pktopt = opt;
2018 return (0);
2019 }
2020 #endif
2021
2022 /*
2023 * initialize ip6_pktopts. beware that there are non-zero default values in
2024 * the struct.
2025 */
2026 void
2027 ip6_initpktopts(struct ip6_pktopts *opt)
2028 {
2029
2030 memset(opt, 0, sizeof(*opt));
2031 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2032 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2033 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2034 }
2035
2036 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2037 static int
2038 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2039 kauth_cred_t cred, int uproto)
2040 {
2041 struct ip6_pktopts *opt;
2042
2043 if (*pktopt == NULL) {
2044 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2045 M_NOWAIT);
2046 if (*pktopt == NULL)
2047 return (ENOBUFS);
2048
2049 ip6_initpktopts(*pktopt);
2050 }
2051 opt = *pktopt;
2052
2053 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2054 }
2055
2056 static int
2057 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2058 {
2059 void *optdata = NULL;
2060 int optdatalen = 0;
2061 struct ip6_ext *ip6e;
2062 int error = 0;
2063 struct in6_pktinfo null_pktinfo;
2064 int deftclass = 0, on;
2065 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2066
2067 switch (optname) {
2068 case IPV6_PKTINFO:
2069 if (pktopt && pktopt->ip6po_pktinfo)
2070 optdata = (void *)pktopt->ip6po_pktinfo;
2071 else {
2072 /* XXX: we don't have to do this every time... */
2073 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2074 optdata = (void *)&null_pktinfo;
2075 }
2076 optdatalen = sizeof(struct in6_pktinfo);
2077 break;
2078 case IPV6_OTCLASS:
2079 /* XXX */
2080 return (EINVAL);
2081 case IPV6_TCLASS:
2082 if (pktopt && pktopt->ip6po_tclass >= 0)
2083 optdata = (void *)&pktopt->ip6po_tclass;
2084 else
2085 optdata = (void *)&deftclass;
2086 optdatalen = sizeof(int);
2087 break;
2088 case IPV6_HOPOPTS:
2089 if (pktopt && pktopt->ip6po_hbh) {
2090 optdata = (void *)pktopt->ip6po_hbh;
2091 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2092 optdatalen = (ip6e->ip6e_len + 1) << 3;
2093 }
2094 break;
2095 case IPV6_RTHDR:
2096 if (pktopt && pktopt->ip6po_rthdr) {
2097 optdata = (void *)pktopt->ip6po_rthdr;
2098 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2099 optdatalen = (ip6e->ip6e_len + 1) << 3;
2100 }
2101 break;
2102 case IPV6_RTHDRDSTOPTS:
2103 if (pktopt && pktopt->ip6po_dest1) {
2104 optdata = (void *)pktopt->ip6po_dest1;
2105 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2106 optdatalen = (ip6e->ip6e_len + 1) << 3;
2107 }
2108 break;
2109 case IPV6_DSTOPTS:
2110 if (pktopt && pktopt->ip6po_dest2) {
2111 optdata = (void *)pktopt->ip6po_dest2;
2112 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2113 optdatalen = (ip6e->ip6e_len + 1) << 3;
2114 }
2115 break;
2116 case IPV6_NEXTHOP:
2117 if (pktopt && pktopt->ip6po_nexthop) {
2118 optdata = (void *)pktopt->ip6po_nexthop;
2119 optdatalen = pktopt->ip6po_nexthop->sa_len;
2120 }
2121 break;
2122 case IPV6_USE_MIN_MTU:
2123 if (pktopt)
2124 optdata = (void *)&pktopt->ip6po_minmtu;
2125 else
2126 optdata = (void *)&defminmtu;
2127 optdatalen = sizeof(int);
2128 break;
2129 case IPV6_DONTFRAG:
2130 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2131 on = 1;
2132 else
2133 on = 0;
2134 optdata = (void *)&on;
2135 optdatalen = sizeof(on);
2136 break;
2137 default: /* should not happen */
2138 #ifdef DIAGNOSTIC
2139 panic("ip6_getpcbopt: unexpected option\n");
2140 #endif
2141 return (ENOPROTOOPT);
2142 }
2143
2144 error = sockopt_set(sopt, optdata, optdatalen);
2145
2146 return (error);
2147 }
2148
2149 void
2150 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2151 {
2152 if (optname == -1 || optname == IPV6_PKTINFO) {
2153 if (pktopt->ip6po_pktinfo)
2154 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2155 pktopt->ip6po_pktinfo = NULL;
2156 }
2157 if (optname == -1 || optname == IPV6_HOPLIMIT)
2158 pktopt->ip6po_hlim = -1;
2159 if (optname == -1 || optname == IPV6_TCLASS)
2160 pktopt->ip6po_tclass = -1;
2161 if (optname == -1 || optname == IPV6_NEXTHOP) {
2162 rtcache_free(&pktopt->ip6po_nextroute);
2163 if (pktopt->ip6po_nexthop)
2164 free(pktopt->ip6po_nexthop, M_IP6OPT);
2165 pktopt->ip6po_nexthop = NULL;
2166 }
2167 if (optname == -1 || optname == IPV6_HOPOPTS) {
2168 if (pktopt->ip6po_hbh)
2169 free(pktopt->ip6po_hbh, M_IP6OPT);
2170 pktopt->ip6po_hbh = NULL;
2171 }
2172 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2173 if (pktopt->ip6po_dest1)
2174 free(pktopt->ip6po_dest1, M_IP6OPT);
2175 pktopt->ip6po_dest1 = NULL;
2176 }
2177 if (optname == -1 || optname == IPV6_RTHDR) {
2178 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2179 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2180 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2181 rtcache_free(&pktopt->ip6po_route);
2182 }
2183 if (optname == -1 || optname == IPV6_DSTOPTS) {
2184 if (pktopt->ip6po_dest2)
2185 free(pktopt->ip6po_dest2, M_IP6OPT);
2186 pktopt->ip6po_dest2 = NULL;
2187 }
2188 }
2189
2190 #define PKTOPT_EXTHDRCPY(type) \
2191 do { \
2192 if (src->type) { \
2193 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2194 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2195 if (dst->type == NULL) \
2196 goto bad; \
2197 memcpy(dst->type, src->type, hlen); \
2198 } \
2199 } while (/*CONSTCOND*/ 0)
2200
2201 static int
2202 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2203 {
2204 dst->ip6po_hlim = src->ip6po_hlim;
2205 dst->ip6po_tclass = src->ip6po_tclass;
2206 dst->ip6po_flags = src->ip6po_flags;
2207 if (src->ip6po_pktinfo) {
2208 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2209 M_IP6OPT, canwait);
2210 if (dst->ip6po_pktinfo == NULL)
2211 goto bad;
2212 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2213 }
2214 if (src->ip6po_nexthop) {
2215 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2216 M_IP6OPT, canwait);
2217 if (dst->ip6po_nexthop == NULL)
2218 goto bad;
2219 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2220 src->ip6po_nexthop->sa_len);
2221 }
2222 PKTOPT_EXTHDRCPY(ip6po_hbh);
2223 PKTOPT_EXTHDRCPY(ip6po_dest1);
2224 PKTOPT_EXTHDRCPY(ip6po_dest2);
2225 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2226 return (0);
2227
2228 bad:
2229 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2230 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2231 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2232 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2233 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2234 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2235
2236 return (ENOBUFS);
2237 }
2238 #undef PKTOPT_EXTHDRCPY
2239
2240 struct ip6_pktopts *
2241 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2242 {
2243 int error;
2244 struct ip6_pktopts *dst;
2245
2246 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2247 if (dst == NULL)
2248 return (NULL);
2249 ip6_initpktopts(dst);
2250
2251 if ((error = copypktopts(dst, src, canwait)) != 0) {
2252 free(dst, M_IP6OPT);
2253 return (NULL);
2254 }
2255
2256 return (dst);
2257 }
2258
2259 void
2260 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2261 {
2262 if (pktopt == NULL)
2263 return;
2264
2265 ip6_clearpktopts(pktopt, -1);
2266
2267 free(pktopt, M_IP6OPT);
2268 }
2269
2270 /*
2271 * Set the IP6 multicast options in response to user setsockopt().
2272 */
2273 static int
2274 ip6_setmoptions(const struct sockopt *sopt, struct ip6_moptions **im6op)
2275 {
2276 int error = 0;
2277 u_int loop, ifindex;
2278 struct ipv6_mreq mreq;
2279 struct ifnet *ifp;
2280 struct ip6_moptions *im6o = *im6op;
2281 struct route ro;
2282 struct in6_multi_mship *imm;
2283 struct lwp *l = curlwp; /* XXX */
2284
2285 if (im6o == NULL) {
2286 /*
2287 * No multicast option buffer attached to the pcb;
2288 * allocate one and initialize to default values.
2289 */
2290 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2291 if (im6o == NULL)
2292 return (ENOBUFS);
2293
2294 *im6op = im6o;
2295 im6o->im6o_multicast_ifp = NULL;
2296 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2297 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2298 LIST_INIT(&im6o->im6o_memberships);
2299 }
2300
2301 switch (sopt->sopt_name) {
2302
2303 case IPV6_MULTICAST_IF:
2304 /*
2305 * Select the interface for outgoing multicast packets.
2306 */
2307 error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2308 if (error != 0)
2309 break;
2310
2311 if (ifindex != 0) {
2312 if ((ifp = if_byindex(ifindex)) == NULL) {
2313 error = ENXIO; /* XXX EINVAL? */
2314 break;
2315 }
2316 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2317 error = EADDRNOTAVAIL;
2318 break;
2319 }
2320 } else
2321 ifp = NULL;
2322 im6o->im6o_multicast_ifp = ifp;
2323 break;
2324
2325 case IPV6_MULTICAST_HOPS:
2326 {
2327 /*
2328 * Set the IP6 hoplimit for outgoing multicast packets.
2329 */
2330 int optval;
2331
2332 error = sockopt_getint(sopt, &optval);
2333 if (error != 0)
2334 break;
2335
2336 if (optval < -1 || optval >= 256)
2337 error = EINVAL;
2338 else if (optval == -1)
2339 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2340 else
2341 im6o->im6o_multicast_hlim = optval;
2342 break;
2343 }
2344
2345 case IPV6_MULTICAST_LOOP:
2346 /*
2347 * Set the loopback flag for outgoing multicast packets.
2348 * Must be zero or one.
2349 */
2350 error = sockopt_get(sopt, &loop, sizeof(loop));
2351 if (error != 0)
2352 break;
2353 if (loop > 1) {
2354 error = EINVAL;
2355 break;
2356 }
2357 im6o->im6o_multicast_loop = loop;
2358 break;
2359
2360 case IPV6_JOIN_GROUP:
2361 /*
2362 * Add a multicast group membership.
2363 * Group must be a valid IP6 multicast address.
2364 */
2365 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2366 if (error != 0)
2367 break;
2368
2369 if (IN6_IS_ADDR_UNSPECIFIED(&mreq.ipv6mr_multiaddr)) {
2370 /*
2371 * We use the unspecified address to specify to accept
2372 * all multicast addresses. Only super user is allowed
2373 * to do this.
2374 */
2375 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_IPV6,
2376 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
2377 {
2378 error = EACCES;
2379 break;
2380 }
2381 } else if (!IN6_IS_ADDR_MULTICAST(&mreq.ipv6mr_multiaddr)) {
2382 error = EINVAL;
2383 break;
2384 }
2385
2386 /*
2387 * If no interface was explicitly specified, choose an
2388 * appropriate one according to the given multicast address.
2389 */
2390 if (mreq.ipv6mr_interface == 0) {
2391 struct rtentry *rt;
2392 union {
2393 struct sockaddr dst;
2394 struct sockaddr_in6 dst6;
2395 } u;
2396
2397 /*
2398 * Look up the routing table for the
2399 * address, and choose the outgoing interface.
2400 * XXX: is it a good approach?
2401 */
2402 memset(&ro, 0, sizeof(ro));
2403 sockaddr_in6_init(&u.dst6, &mreq.ipv6mr_multiaddr, 0,
2404 0, 0);
2405 rtcache_setdst(&ro, &u.dst);
2406 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
2407 : NULL;
2408 rtcache_free(&ro);
2409 } else {
2410 /*
2411 * If the interface is specified, validate it.
2412 */
2413 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
2414 error = ENXIO; /* XXX EINVAL? */
2415 break;
2416 }
2417 }
2418
2419 /*
2420 * See if we found an interface, and confirm that it
2421 * supports multicast
2422 */
2423 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2424 error = EADDRNOTAVAIL;
2425 break;
2426 }
2427
2428 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2429 error = EADDRNOTAVAIL; /* XXX: should not happen */
2430 break;
2431 }
2432
2433 /*
2434 * See if the membership already exists.
2435 */
2436 for (imm = im6o->im6o_memberships.lh_first;
2437 imm != NULL; imm = imm->i6mm_chain.le_next)
2438 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2439 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2440 &mreq.ipv6mr_multiaddr))
2441 break;
2442 if (imm != NULL) {
2443 error = EADDRINUSE;
2444 break;
2445 }
2446 /*
2447 * Everything looks good; add a new record to the multicast
2448 * address list for the given interface.
2449 */
2450 imm = in6_joingroup(ifp, &mreq.ipv6mr_multiaddr, &error, 0);
2451 if (imm == NULL)
2452 break;
2453 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2454 break;
2455
2456 case IPV6_LEAVE_GROUP:
2457 /*
2458 * Drop a multicast group membership.
2459 * Group must be a valid IP6 multicast address.
2460 */
2461 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2462 if (error != 0)
2463 break;
2464
2465 /*
2466 * If an interface address was specified, get a pointer
2467 * to its ifnet structure.
2468 */
2469 if (mreq.ipv6mr_interface != 0) {
2470 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
2471 error = ENXIO; /* XXX EINVAL? */
2472 break;
2473 }
2474 } else
2475 ifp = NULL;
2476
2477 /* Fill in the scope zone ID */
2478 if (ifp) {
2479 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2480 /* XXX: should not happen */
2481 error = EADDRNOTAVAIL;
2482 break;
2483 }
2484 } else if (mreq.ipv6mr_interface != 0) {
2485 /*
2486 * XXX: This case would happens when the (positive)
2487 * index is in the valid range, but the corresponding
2488 * interface has been detached dynamically. The above
2489 * check probably avoids such case to happen here, but
2490 * we check it explicitly for safety.
2491 */
2492 error = EADDRNOTAVAIL;
2493 break;
2494 } else { /* ipv6mr_interface == 0 */
2495 struct sockaddr_in6 sa6_mc;
2496
2497 /*
2498 * The API spec says as follows:
2499 * If the interface index is specified as 0, the
2500 * system may choose a multicast group membership to
2501 * drop by matching the multicast address only.
2502 * On the other hand, we cannot disambiguate the scope
2503 * zone unless an interface is provided. Thus, we
2504 * check if there's ambiguity with the default scope
2505 * zone as the last resort.
2506 */
2507 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2508 0, 0, 0);
2509 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2510 if (error != 0)
2511 break;
2512 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2513 }
2514
2515 /*
2516 * Find the membership in the membership list.
2517 */
2518 for (imm = im6o->im6o_memberships.lh_first;
2519 imm != NULL; imm = imm->i6mm_chain.le_next) {
2520 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2521 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2522 &mreq.ipv6mr_multiaddr))
2523 break;
2524 }
2525 if (imm == NULL) {
2526 /* Unable to resolve interface */
2527 error = EADDRNOTAVAIL;
2528 break;
2529 }
2530 /*
2531 * Give up the multicast address record to which the
2532 * membership points.
2533 */
2534 LIST_REMOVE(imm, i6mm_chain);
2535 in6_leavegroup(imm);
2536 break;
2537
2538 default:
2539 error = EOPNOTSUPP;
2540 break;
2541 }
2542
2543 /*
2544 * If all options have default values, no need to keep the mbuf.
2545 */
2546 if (im6o->im6o_multicast_ifp == NULL &&
2547 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2548 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2549 im6o->im6o_memberships.lh_first == NULL) {
2550 free(*im6op, M_IPMOPTS);
2551 *im6op = NULL;
2552 }
2553
2554 return (error);
2555 }
2556
2557 /*
2558 * Return the IP6 multicast options in response to user getsockopt().
2559 */
2560 static int
2561 ip6_getmoptions(struct sockopt *sopt, struct ip6_moptions *im6o)
2562 {
2563 u_int optval;
2564 int error;
2565
2566 switch (sopt->sopt_name) {
2567 case IPV6_MULTICAST_IF:
2568 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2569 optval = 0;
2570 else
2571 optval = im6o->im6o_multicast_ifp->if_index;
2572
2573 error = sockopt_set(sopt, &optval, sizeof(optval));
2574 break;
2575
2576 case IPV6_MULTICAST_HOPS:
2577 if (im6o == NULL)
2578 optval = ip6_defmcasthlim;
2579 else
2580 optval = im6o->im6o_multicast_hlim;
2581
2582 error = sockopt_set(sopt, &optval, sizeof(optval));
2583 break;
2584
2585 case IPV6_MULTICAST_LOOP:
2586 if (im6o == NULL)
2587 optval = IPV6_DEFAULT_MULTICAST_LOOP;
2588 else
2589 optval = im6o->im6o_multicast_loop;
2590
2591 error = sockopt_set(sopt, &optval, sizeof(optval));
2592 break;
2593
2594 default:
2595 error = EOPNOTSUPP;
2596 }
2597
2598 return (error);
2599 }
2600
2601 /*
2602 * Discard the IP6 multicast options.
2603 */
2604 void
2605 ip6_freemoptions(struct ip6_moptions *im6o)
2606 {
2607 struct in6_multi_mship *imm;
2608
2609 if (im6o == NULL)
2610 return;
2611
2612 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2613 LIST_REMOVE(imm, i6mm_chain);
2614 in6_leavegroup(imm);
2615 }
2616 free(im6o, M_IPMOPTS);
2617 }
2618
2619 /*
2620 * Set IPv6 outgoing packet options based on advanced API.
2621 */
2622 int
2623 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2624 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2625 {
2626 struct cmsghdr *cm = 0;
2627
2628 if (control == NULL || opt == NULL)
2629 return (EINVAL);
2630
2631 ip6_initpktopts(opt);
2632 if (stickyopt) {
2633 int error;
2634
2635 /*
2636 * If stickyopt is provided, make a local copy of the options
2637 * for this particular packet, then override them by ancillary
2638 * objects.
2639 * XXX: copypktopts() does not copy the cached route to a next
2640 * hop (if any). This is not very good in terms of efficiency,
2641 * but we can allow this since this option should be rarely
2642 * used.
2643 */
2644 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2645 return (error);
2646 }
2647
2648 /*
2649 * XXX: Currently, we assume all the optional information is stored
2650 * in a single mbuf.
2651 */
2652 if (control->m_next)
2653 return (EINVAL);
2654
2655 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2656 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2657 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2658 int error;
2659
2660 if (control->m_len < CMSG_LEN(0))
2661 return (EINVAL);
2662
2663 cm = mtod(control, struct cmsghdr *);
2664 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2665 return (EINVAL);
2666 if (cm->cmsg_level != IPPROTO_IPV6)
2667 continue;
2668
2669 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2670 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2671 if (error)
2672 return (error);
2673 }
2674
2675 return (0);
2676 }
2677
2678 /*
2679 * Set a particular packet option, as a sticky option or an ancillary data
2680 * item. "len" can be 0 only when it's a sticky option.
2681 * We have 4 cases of combination of "sticky" and "cmsg":
2682 * "sticky=0, cmsg=0": impossible
2683 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2684 * "sticky=1, cmsg=0": RFC3542 socket option
2685 * "sticky=1, cmsg=1": RFC2292 socket option
2686 */
2687 static int
2688 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2689 kauth_cred_t cred, int sticky, int cmsg, int uproto)
2690 {
2691 int minmtupolicy;
2692 int error;
2693
2694 if (!sticky && !cmsg) {
2695 #ifdef DIAGNOSTIC
2696 printf("ip6_setpktopt: impossible case\n");
2697 #endif
2698 return (EINVAL);
2699 }
2700
2701 /*
2702 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2703 * not be specified in the context of RFC3542. Conversely,
2704 * RFC3542 types should not be specified in the context of RFC2292.
2705 */
2706 if (!cmsg) {
2707 switch (optname) {
2708 case IPV6_2292PKTINFO:
2709 case IPV6_2292HOPLIMIT:
2710 case IPV6_2292NEXTHOP:
2711 case IPV6_2292HOPOPTS:
2712 case IPV6_2292DSTOPTS:
2713 case IPV6_2292RTHDR:
2714 case IPV6_2292PKTOPTIONS:
2715 return (ENOPROTOOPT);
2716 }
2717 }
2718 if (sticky && cmsg) {
2719 switch (optname) {
2720 case IPV6_PKTINFO:
2721 case IPV6_HOPLIMIT:
2722 case IPV6_NEXTHOP:
2723 case IPV6_HOPOPTS:
2724 case IPV6_DSTOPTS:
2725 case IPV6_RTHDRDSTOPTS:
2726 case IPV6_RTHDR:
2727 case IPV6_USE_MIN_MTU:
2728 case IPV6_DONTFRAG:
2729 case IPV6_OTCLASS:
2730 case IPV6_TCLASS:
2731 return (ENOPROTOOPT);
2732 }
2733 }
2734
2735 switch (optname) {
2736 #ifdef RFC2292
2737 case IPV6_2292PKTINFO:
2738 #endif
2739 case IPV6_PKTINFO:
2740 {
2741 struct ifnet *ifp = NULL;
2742 struct in6_pktinfo *pktinfo;
2743
2744 if (len != sizeof(struct in6_pktinfo))
2745 return (EINVAL);
2746
2747 pktinfo = (struct in6_pktinfo *)buf;
2748
2749 /*
2750 * An application can clear any sticky IPV6_PKTINFO option by
2751 * doing a "regular" setsockopt with ipi6_addr being
2752 * in6addr_any and ipi6_ifindex being zero.
2753 * [RFC 3542, Section 6]
2754 */
2755 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2756 pktinfo->ipi6_ifindex == 0 &&
2757 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2758 ip6_clearpktopts(opt, optname);
2759 break;
2760 }
2761
2762 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2763 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2764 return (EINVAL);
2765 }
2766
2767 /* Validate the interface index if specified. */
2768 if (pktinfo->ipi6_ifindex) {
2769 ifp = if_byindex(pktinfo->ipi6_ifindex);
2770 if (ifp == NULL)
2771 return (ENXIO);
2772 }
2773
2774 /*
2775 * We store the address anyway, and let in6_selectsrc()
2776 * validate the specified address. This is because ipi6_addr
2777 * may not have enough information about its scope zone, and
2778 * we may need additional information (such as outgoing
2779 * interface or the scope zone of a destination address) to
2780 * disambiguate the scope.
2781 * XXX: the delay of the validation may confuse the
2782 * application when it is used as a sticky option.
2783 */
2784 if (opt->ip6po_pktinfo == NULL) {
2785 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2786 M_IP6OPT, M_NOWAIT);
2787 if (opt->ip6po_pktinfo == NULL)
2788 return (ENOBUFS);
2789 }
2790 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2791 break;
2792 }
2793
2794 #ifdef RFC2292
2795 case IPV6_2292HOPLIMIT:
2796 #endif
2797 case IPV6_HOPLIMIT:
2798 {
2799 int *hlimp;
2800
2801 /*
2802 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2803 * to simplify the ordering among hoplimit options.
2804 */
2805 if (optname == IPV6_HOPLIMIT && sticky)
2806 return (ENOPROTOOPT);
2807
2808 if (len != sizeof(int))
2809 return (EINVAL);
2810 hlimp = (int *)buf;
2811 if (*hlimp < -1 || *hlimp > 255)
2812 return (EINVAL);
2813
2814 opt->ip6po_hlim = *hlimp;
2815 break;
2816 }
2817
2818 case IPV6_OTCLASS:
2819 if (len != sizeof(u_int8_t))
2820 return (EINVAL);
2821
2822 opt->ip6po_tclass = *(u_int8_t *)buf;
2823 break;
2824
2825 case IPV6_TCLASS:
2826 {
2827 int tclass;
2828
2829 if (len != sizeof(int))
2830 return (EINVAL);
2831 tclass = *(int *)buf;
2832 if (tclass < -1 || tclass > 255)
2833 return (EINVAL);
2834
2835 opt->ip6po_tclass = tclass;
2836 break;
2837 }
2838
2839 #ifdef RFC2292
2840 case IPV6_2292NEXTHOP:
2841 #endif
2842 case IPV6_NEXTHOP:
2843 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2844 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2845 if (error)
2846 return (error);
2847
2848 if (len == 0) { /* just remove the option */
2849 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2850 break;
2851 }
2852
2853 /* check if cmsg_len is large enough for sa_len */
2854 if (len < sizeof(struct sockaddr) || len < *buf)
2855 return (EINVAL);
2856
2857 switch (((struct sockaddr *)buf)->sa_family) {
2858 case AF_INET6:
2859 {
2860 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2861
2862 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2863 return (EINVAL);
2864
2865 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2866 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2867 return (EINVAL);
2868 }
2869 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
2870 != 0) {
2871 return (error);
2872 }
2873 break;
2874 }
2875 case AF_LINK: /* eventually be supported? */
2876 default:
2877 return (EAFNOSUPPORT);
2878 }
2879
2880 /* turn off the previous option, then set the new option. */
2881 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2882 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2883 if (opt->ip6po_nexthop == NULL)
2884 return (ENOBUFS);
2885 memcpy(opt->ip6po_nexthop, buf, *buf);
2886 break;
2887
2888 #ifdef RFC2292
2889 case IPV6_2292HOPOPTS:
2890 #endif
2891 case IPV6_HOPOPTS:
2892 {
2893 struct ip6_hbh *hbh;
2894 int hbhlen;
2895
2896 /*
2897 * XXX: We don't allow a non-privileged user to set ANY HbH
2898 * options, since per-option restriction has too much
2899 * overhead.
2900 */
2901 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2902 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2903 if (error)
2904 return (error);
2905
2906 if (len == 0) {
2907 ip6_clearpktopts(opt, IPV6_HOPOPTS);
2908 break; /* just remove the option */
2909 }
2910
2911 /* message length validation */
2912 if (len < sizeof(struct ip6_hbh))
2913 return (EINVAL);
2914 hbh = (struct ip6_hbh *)buf;
2915 hbhlen = (hbh->ip6h_len + 1) << 3;
2916 if (len != hbhlen)
2917 return (EINVAL);
2918
2919 /* turn off the previous option, then set the new option. */
2920 ip6_clearpktopts(opt, IPV6_HOPOPTS);
2921 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2922 if (opt->ip6po_hbh == NULL)
2923 return (ENOBUFS);
2924 memcpy(opt->ip6po_hbh, hbh, hbhlen);
2925
2926 break;
2927 }
2928
2929 #ifdef RFC2292
2930 case IPV6_2292DSTOPTS:
2931 #endif
2932 case IPV6_DSTOPTS:
2933 case IPV6_RTHDRDSTOPTS:
2934 {
2935 struct ip6_dest *dest, **newdest = NULL;
2936 int destlen;
2937
2938 /* XXX: see the comment for IPV6_HOPOPTS */
2939 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2940 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2941 if (error)
2942 return (error);
2943
2944 if (len == 0) {
2945 ip6_clearpktopts(opt, optname);
2946 break; /* just remove the option */
2947 }
2948
2949 /* message length validation */
2950 if (len < sizeof(struct ip6_dest))
2951 return (EINVAL);
2952 dest = (struct ip6_dest *)buf;
2953 destlen = (dest->ip6d_len + 1) << 3;
2954 if (len != destlen)
2955 return (EINVAL);
2956 /*
2957 * Determine the position that the destination options header
2958 * should be inserted; before or after the routing header.
2959 */
2960 switch (optname) {
2961 case IPV6_2292DSTOPTS:
2962 /*
2963 * The old advanced API is ambiguous on this point.
2964 * Our approach is to determine the position based
2965 * according to the existence of a routing header.
2966 * Note, however, that this depends on the order of the
2967 * extension headers in the ancillary data; the 1st
2968 * part of the destination options header must appear
2969 * before the routing header in the ancillary data,
2970 * too.
2971 * RFC3542 solved the ambiguity by introducing
2972 * separate ancillary data or option types.
2973 */
2974 if (opt->ip6po_rthdr == NULL)
2975 newdest = &opt->ip6po_dest1;
2976 else
2977 newdest = &opt->ip6po_dest2;
2978 break;
2979 case IPV6_RTHDRDSTOPTS:
2980 newdest = &opt->ip6po_dest1;
2981 break;
2982 case IPV6_DSTOPTS:
2983 newdest = &opt->ip6po_dest2;
2984 break;
2985 }
2986
2987 /* turn off the previous option, then set the new option. */
2988 ip6_clearpktopts(opt, optname);
2989 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2990 if (*newdest == NULL)
2991 return (ENOBUFS);
2992 memcpy(*newdest, dest, destlen);
2993
2994 break;
2995 }
2996
2997 #ifdef RFC2292
2998 case IPV6_2292RTHDR:
2999 #endif
3000 case IPV6_RTHDR:
3001 {
3002 struct ip6_rthdr *rth;
3003 int rthlen;
3004
3005 if (len == 0) {
3006 ip6_clearpktopts(opt, IPV6_RTHDR);
3007 break; /* just remove the option */
3008 }
3009
3010 /* message length validation */
3011 if (len < sizeof(struct ip6_rthdr))
3012 return (EINVAL);
3013 rth = (struct ip6_rthdr *)buf;
3014 rthlen = (rth->ip6r_len + 1) << 3;
3015 if (len != rthlen)
3016 return (EINVAL);
3017 switch (rth->ip6r_type) {
3018 case IPV6_RTHDR_TYPE_0:
3019 if (rth->ip6r_len == 0) /* must contain one addr */
3020 return (EINVAL);
3021 if (rth->ip6r_len % 2) /* length must be even */
3022 return (EINVAL);
3023 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3024 return (EINVAL);
3025 break;
3026 default:
3027 return (EINVAL); /* not supported */
3028 }
3029 /* turn off the previous option */
3030 ip6_clearpktopts(opt, IPV6_RTHDR);
3031 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3032 if (opt->ip6po_rthdr == NULL)
3033 return (ENOBUFS);
3034 memcpy(opt->ip6po_rthdr, rth, rthlen);
3035 break;
3036 }
3037
3038 case IPV6_USE_MIN_MTU:
3039 if (len != sizeof(int))
3040 return (EINVAL);
3041 minmtupolicy = *(int *)buf;
3042 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3043 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3044 minmtupolicy != IP6PO_MINMTU_ALL) {
3045 return (EINVAL);
3046 }
3047 opt->ip6po_minmtu = minmtupolicy;
3048 break;
3049
3050 case IPV6_DONTFRAG:
3051 if (len != sizeof(int))
3052 return (EINVAL);
3053
3054 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3055 /*
3056 * we ignore this option for TCP sockets.
3057 * (RFC3542 leaves this case unspecified.)
3058 */
3059 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3060 } else
3061 opt->ip6po_flags |= IP6PO_DONTFRAG;
3062 break;
3063
3064 default:
3065 return (ENOPROTOOPT);
3066 } /* end of switch */
3067
3068 return (0);
3069 }
3070
3071 /*
3072 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3073 * packet to the input queue of a specified interface. Note that this
3074 * calls the output routine of the loopback "driver", but with an interface
3075 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3076 */
3077 void
3078 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3079 const struct sockaddr_in6 *dst)
3080 {
3081 struct mbuf *copym;
3082 struct ip6_hdr *ip6;
3083
3084 copym = m_copy(m, 0, M_COPYALL);
3085 if (copym == NULL)
3086 return;
3087
3088 /*
3089 * Make sure to deep-copy IPv6 header portion in case the data
3090 * is in an mbuf cluster, so that we can safely override the IPv6
3091 * header portion later.
3092 */
3093 if ((copym->m_flags & M_EXT) != 0 ||
3094 copym->m_len < sizeof(struct ip6_hdr)) {
3095 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3096 if (copym == NULL)
3097 return;
3098 }
3099
3100 #ifdef DIAGNOSTIC
3101 if (copym->m_len < sizeof(*ip6)) {
3102 m_freem(copym);
3103 return;
3104 }
3105 #endif
3106
3107 ip6 = mtod(copym, struct ip6_hdr *);
3108 /*
3109 * clear embedded scope identifiers if necessary.
3110 * in6_clearscope will touch the addresses only when necessary.
3111 */
3112 in6_clearscope(&ip6->ip6_src);
3113 in6_clearscope(&ip6->ip6_dst);
3114
3115 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3116 }
3117
3118 /*
3119 * Chop IPv6 header off from the payload.
3120 */
3121 static int
3122 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3123 {
3124 struct mbuf *mh;
3125 struct ip6_hdr *ip6;
3126
3127 ip6 = mtod(m, struct ip6_hdr *);
3128 if (m->m_len > sizeof(*ip6)) {
3129 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3130 if (mh == 0) {
3131 m_freem(m);
3132 return ENOBUFS;
3133 }
3134 M_MOVE_PKTHDR(mh, m);
3135 MH_ALIGN(mh, sizeof(*ip6));
3136 m->m_len -= sizeof(*ip6);
3137 m->m_data += sizeof(*ip6);
3138 mh->m_next = m;
3139 m = mh;
3140 m->m_len = sizeof(*ip6);
3141 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
3142 }
3143 exthdrs->ip6e_ip6 = m;
3144 return 0;
3145 }
3146
3147 /*
3148 * Compute IPv6 extension header length.
3149 */
3150 int
3151 ip6_optlen(struct in6pcb *in6p)
3152 {
3153 int len;
3154
3155 if (!in6p->in6p_outputopts)
3156 return 0;
3157
3158 len = 0;
3159 #define elen(x) \
3160 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3161
3162 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3163 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3164 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3165 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3166 return len;
3167 #undef elen
3168 }
3169