ip6_output.c revision 1.16 1 /* $NetBSD: ip6_output.c,v 1.16 2000/02/20 00:56:43 darrenr Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1988, 1990, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * 4. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 *
64 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
65 */
66
67 #include "opt_inet.h"
68 #include "opt_ipsec.h"
69 #include "opt_pfil_hooks.h"
70
71 #include <sys/param.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/errno.h>
75 #include <sys/protosw.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80
81 #include <net/if.h>
82 #include <net/route.h>
83 #ifdef PFIL_HOOKS
84 #include <net/pfil.h>
85 #endif
86
87 #include <netinet/in.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip6.h>
90 #include <netinet/icmp6.h>
91 #include <netinet6/ip6_var.h>
92 #include <netinet6/in6_pcb.h>
93 #include <netinet6/nd6.h>
94
95 #ifdef IPSEC
96 #include <netinet6/ipsec.h>
97 #include <netkey/key.h>
98 #include <netkey/key_debug.h>
99 #endif /* IPSEC */
100
101 #include "loop.h"
102
103 #include <net/net_osdep.h>
104
105 #ifdef IPV6FIREWALL
106 #include <netinet6/ip6_fw.h>
107 #endif
108
109 struct ip6_exthdrs {
110 struct mbuf *ip6e_ip6;
111 struct mbuf *ip6e_hbh;
112 struct mbuf *ip6e_dest1;
113 struct mbuf *ip6e_rthdr;
114 struct mbuf *ip6e_dest2;
115 };
116
117 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
118 struct socket *));
119 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
120 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
121 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
122 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
123 struct ip6_frag **));
124 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
125 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
126
127 extern struct ifnet **ifindex2ifnet;
128 extern struct ifnet loif[NLOOP];
129
130 /*
131 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
132 * header (with pri, len, nxt, hlim, src, dst).
133 * This function may modify ver and hlim only.
134 * The mbuf chain containing the packet will be freed.
135 * The mbuf opt, if present, will not be freed.
136 */
137 int
138 ip6_output(m0, opt, ro, flags, im6o, ifpp)
139 struct mbuf *m0;
140 struct ip6_pktopts *opt;
141 struct route_in6 *ro;
142 int flags;
143 struct ip6_moptions *im6o;
144 struct ifnet **ifpp; /* XXX: just for statistics */
145 {
146 struct ip6_hdr *ip6, *mhip6;
147 struct ifnet *ifp;
148 struct mbuf *m = m0;
149 int hlen, tlen, len, off;
150 struct route_in6 ip6route;
151 struct sockaddr_in6 *dst;
152 int error = 0;
153 struct in6_ifaddr *ia;
154 u_long mtu;
155 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
156 struct ip6_exthdrs exthdrs;
157 struct in6_addr finaldst;
158 struct route_in6 *ro_pmtu = NULL;
159 int hdrsplit = 0;
160 int needipsec = 0;
161 #ifdef PFIL_HOOKS
162 struct packet_filter_hook *pfh;
163 struct mbuf *m1;
164 int rv;
165 #endif /* PFIL_HOOKS */
166 #ifdef IPSEC
167 int needipsectun = 0;
168 struct socket *so;
169 struct secpolicy *sp = NULL;
170
171 /* for AH processing. stupid to have "socket" variable in IP layer... */
172 so = (struct socket *)m->m_pkthdr.rcvif;
173 m->m_pkthdr.rcvif = NULL;
174 ip6 = mtod(m, struct ip6_hdr *);
175 #endif /* IPSEC */
176
177 #define MAKE_EXTHDR(hp,mp) \
178 { \
179 if (hp) { \
180 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
181 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
182 ((eh)->ip6e_len + 1) << 3); \
183 if (error) \
184 goto freehdrs; \
185 } \
186 }
187
188 bzero(&exthdrs, sizeof(exthdrs));
189 if (opt) {
190 /* Hop-by-Hop options header */
191 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
192 /* Destination options header(1st part) */
193 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
194 /* Routing header */
195 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
196 /* Destination options header(2nd part) */
197 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
198 }
199
200 #ifdef IPSEC
201 /* get a security policy for this packet */
202 if (so == NULL)
203 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
204 else
205 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
206
207 if (sp == NULL) {
208 ipsec6stat.out_inval++;
209 goto bad;
210 }
211
212 error = 0;
213
214 /* check policy */
215 switch (sp->policy) {
216 case IPSEC_POLICY_DISCARD:
217 /*
218 * This packet is just discarded.
219 */
220 ipsec6stat.out_polvio++;
221 goto bad;
222
223 case IPSEC_POLICY_BYPASS:
224 case IPSEC_POLICY_NONE:
225 /* no need to do IPsec. */
226 needipsec = 0;
227 break;
228
229 case IPSEC_POLICY_IPSEC:
230 if (sp->req == NULL) {
231 /* XXX should be panic ? */
232 printf("ip6_output: No IPsec request specified.\n");
233 error = EINVAL;
234 goto bad;
235 }
236 needipsec = 1;
237 break;
238
239 case IPSEC_POLICY_ENTRUST:
240 default:
241 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
242 }
243 #endif /* IPSEC */
244
245 /*
246 * Calculate the total length of the extension header chain.
247 * Keep the length of the unfragmentable part for fragmentation.
248 */
249 optlen = 0;
250 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
251 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
252 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
253 unfragpartlen = optlen + sizeof(struct ip6_hdr);
254 /* NOTE: we don't add AH/ESP length here. do that later. */
255 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
256
257 /*
258 * If we need IPsec, or there is at least one extension header,
259 * separate IP6 header from the payload.
260 */
261 if ((needipsec || optlen) && !hdrsplit) {
262 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
263 m = NULL;
264 goto freehdrs;
265 }
266 m = exthdrs.ip6e_ip6;
267 hdrsplit++;
268 }
269
270 /* adjust pointer */
271 ip6 = mtod(m, struct ip6_hdr *);
272
273 /* adjust mbuf packet header length */
274 m->m_pkthdr.len += optlen;
275 plen = m->m_pkthdr.len - sizeof(*ip6);
276
277 /* If this is a jumbo payload, insert a jumbo payload option. */
278 if (plen > IPV6_MAXPACKET) {
279 if (!hdrsplit) {
280 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
281 m = NULL;
282 goto freehdrs;
283 }
284 m = exthdrs.ip6e_ip6;
285 hdrsplit++;
286 }
287 /* adjust pointer */
288 ip6 = mtod(m, struct ip6_hdr *);
289 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
290 goto freehdrs;
291 ip6->ip6_plen = 0;
292 } else
293 ip6->ip6_plen = htons(plen);
294
295 /*
296 * Concatenate headers and fill in next header fields.
297 * Here we have, on "m"
298 * IPv6 payload
299 * and we insert headers accordingly. Finally, we should be getting:
300 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
301 *
302 * during the header composing process, "m" points to IPv6 header.
303 * "mprev" points to an extension header prior to esp.
304 */
305 {
306 u_char *nexthdrp = &ip6->ip6_nxt;
307 struct mbuf *mprev = m;
308
309 /*
310 * we treat dest2 specially. this makes IPsec processing
311 * much easier.
312 *
313 * result: IPv6 dest2 payload
314 * m and mprev will point to IPv6 header.
315 */
316 if (exthdrs.ip6e_dest2) {
317 if (!hdrsplit)
318 panic("assumption failed: hdr not split");
319 exthdrs.ip6e_dest2->m_next = m->m_next;
320 m->m_next = exthdrs.ip6e_dest2;
321 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
322 ip6->ip6_nxt = IPPROTO_DSTOPTS;
323 }
324
325 #define MAKE_CHAIN(m,mp,p,i)\
326 {\
327 if (m) {\
328 if (!hdrsplit) \
329 panic("assumption failed: hdr not split"); \
330 *mtod((m), u_char *) = *(p);\
331 *(p) = (i);\
332 p = mtod((m), u_char *);\
333 (m)->m_next = (mp)->m_next;\
334 (mp)->m_next = (m);\
335 (mp) = (m);\
336 }\
337 }
338 /*
339 * result: IPv6 hbh dest1 rthdr dest2 payload
340 * m will point to IPv6 header. mprev will point to the
341 * extension header prior to dest2 (rthdr in the above case).
342 */
343 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
344 nexthdrp, IPPROTO_HOPOPTS);
345 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
346 nexthdrp, IPPROTO_DSTOPTS);
347 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
348 nexthdrp, IPPROTO_ROUTING);
349
350 #ifdef IPSEC
351 if (!needipsec)
352 goto skip_ipsec2;
353
354 /*
355 * pointers after IPsec headers are not valid any more.
356 * other pointers need a great care too.
357 * (IPsec routines should not mangle mbufs prior to AH/ESP)
358 */
359 exthdrs.ip6e_dest2 = NULL;
360
361 {
362 struct ip6_rthdr *rh = NULL;
363 int segleft_org = 0;
364 struct ipsec_output_state state;
365
366 if (exthdrs.ip6e_rthdr) {
367 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
368 segleft_org = rh->ip6r_segleft;
369 rh->ip6r_segleft = 0;
370 }
371
372 bzero(&state, sizeof(state));
373 state.m = m;
374 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
375 &needipsectun);
376 m = state.m;
377 if (error) {
378 /* mbuf is already reclaimed in ipsec6_output_trans. */
379 m = NULL;
380 switch (error) {
381 case EHOSTUNREACH:
382 case ENETUNREACH:
383 case EMSGSIZE:
384 case ENOBUFS:
385 case ENOMEM:
386 break;
387 default:
388 printf("ip6_output (ipsec): error code %d\n", error);
389 /*fall through*/
390 case ENOENT:
391 /* don't show these error codes to the user */
392 error = 0;
393 break;
394 }
395 goto bad;
396 }
397 if (exthdrs.ip6e_rthdr) {
398 /* ah6_output doesn't modify mbuf chain */
399 rh->ip6r_segleft = segleft_org;
400 }
401 }
402 skip_ipsec2:;
403 #endif
404 }
405
406 /*
407 * If there is a routing header, replace destination address field
408 * with the first hop of the routing header.
409 */
410 if (exthdrs.ip6e_rthdr) {
411 struct ip6_rthdr *rh =
412 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
413 struct ip6_rthdr *));
414 struct ip6_rthdr0 *rh0;
415
416 finaldst = ip6->ip6_dst;
417 switch(rh->ip6r_type) {
418 case IPV6_RTHDR_TYPE_0:
419 rh0 = (struct ip6_rthdr0 *)rh;
420 ip6->ip6_dst = rh0->ip6r0_addr[0];
421 bcopy((caddr_t)&rh0->ip6r0_addr[1],
422 (caddr_t)&rh0->ip6r0_addr[0],
423 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1)
424 );
425 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
426 break;
427 default: /* is it possible? */
428 error = EINVAL;
429 goto bad;
430 }
431 }
432
433 /* Source address validation */
434 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
435 (flags & IPV6_DADOUTPUT) == 0) {
436 error = EOPNOTSUPP;
437 ip6stat.ip6s_badscope++;
438 goto bad;
439 }
440 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
441 error = EOPNOTSUPP;
442 ip6stat.ip6s_badscope++;
443 goto bad;
444 }
445
446 ip6stat.ip6s_localout++;
447
448 /*
449 * Route packet.
450 */
451 if (ro == 0) {
452 ro = &ip6route;
453 bzero((caddr_t)ro, sizeof(*ro));
454 }
455 ro_pmtu = ro;
456 if (opt && opt->ip6po_rthdr)
457 ro = &opt->ip6po_route;
458 dst = (struct sockaddr_in6 *)&ro->ro_dst;
459 /*
460 * If there is a cached route,
461 * check that it is to the same destination
462 * and is still up. If not, free it and try again.
463 */
464 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
465 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
466 RTFREE(ro->ro_rt);
467 ro->ro_rt = (struct rtentry *)0;
468 }
469 if (ro->ro_rt == 0) {
470 bzero(dst, sizeof(*dst));
471 dst->sin6_family = AF_INET6;
472 dst->sin6_len = sizeof(struct sockaddr_in6);
473 dst->sin6_addr = ip6->ip6_dst;
474 }
475 #ifdef IPSEC
476 if (needipsec && needipsectun) {
477 struct ipsec_output_state state;
478
479 /*
480 * All the extension headers will become inaccessible
481 * (since they can be encrypted).
482 * Don't panic, we need no more updates to extension headers
483 * on inner IPv6 packet (since they are now encapsulated).
484 *
485 * IPv6 [ESP|AH] IPv6 [extension headers] payload
486 */
487 bzero(&exthdrs, sizeof(exthdrs));
488 exthdrs.ip6e_ip6 = m;
489
490 bzero(&state, sizeof(state));
491 state.m = m;
492 state.ro = (struct route *)ro;
493 state.dst = (struct sockaddr *)dst;
494
495 error = ipsec6_output_tunnel(&state, sp, flags);
496
497 m = state.m;
498 ro = (struct route_in6 *)state.ro;
499 dst = (struct sockaddr_in6 *)state.dst;
500 if (error) {
501 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
502 m0 = m = NULL;
503 m = NULL;
504 switch (error) {
505 case EHOSTUNREACH:
506 case ENETUNREACH:
507 case EMSGSIZE:
508 case ENOBUFS:
509 case ENOMEM:
510 break;
511 default:
512 printf("ip6_output (ipsec): error code %d\n", error);
513 /*fall through*/
514 case ENOENT:
515 /* don't show these error codes to the user */
516 error = 0;
517 break;
518 }
519 goto bad;
520 }
521
522 exthdrs.ip6e_ip6 = m;
523 }
524 #endif /*IPESC*/
525
526 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
527 /* Unicast */
528
529 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
530 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
531 /* xxx
532 * interface selection comes here
533 * if an interface is specified from an upper layer,
534 * ifp must point it.
535 */
536 if (ro->ro_rt == 0) {
537 /*
538 * NetBSD/OpenBSD always clones routes, if parent is
539 * PRF_CLONING.
540 */
541 rtalloc((struct route *)ro);
542 }
543 if (ro->ro_rt == 0) {
544 ip6stat.ip6s_noroute++;
545 error = EHOSTUNREACH;
546 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
547 goto bad;
548 }
549 ia = ifatoia6(ro->ro_rt->rt_ifa);
550 ifp = ro->ro_rt->rt_ifp;
551 ro->ro_rt->rt_use++;
552 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
553 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
554 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
555
556 in6_ifstat_inc(ifp, ifs6_out_request);
557
558 /*
559 * Check if there is the outgoing interface conflicts with
560 * the interface specified by ifi6_ifindex(if specified).
561 * Note that loopback interface is always okay.
562 * (this happens when we are sending packet toward my
563 * interface)
564 */
565 if (opt && opt->ip6po_pktinfo
566 && opt->ip6po_pktinfo->ipi6_ifindex) {
567 if (!(ifp->if_flags & IFF_LOOPBACK)
568 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
569 ip6stat.ip6s_noroute++;
570 in6_ifstat_inc(ifp, ifs6_out_discard);
571 error = EHOSTUNREACH;
572 goto bad;
573 }
574 }
575
576 if (opt && opt->ip6po_hlim != -1)
577 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
578 } else {
579 /* Multicast */
580 struct in6_multi *in6m;
581
582 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
583
584 /*
585 * See if the caller provided any multicast options
586 */
587 ifp = NULL;
588 if (im6o != NULL) {
589 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
590 if (im6o->im6o_multicast_ifp != NULL)
591 ifp = im6o->im6o_multicast_ifp;
592 } else
593 ip6->ip6_hlim = ip6_defmcasthlim;
594
595 /*
596 * See if the caller provided the outgoing interface
597 * as an ancillary data.
598 * Boundary check for ifindex is assumed to be already done.
599 */
600 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
601 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
602
603 /*
604 * If the destination is a node-local scope multicast,
605 * the packet should be loop-backed only.
606 */
607 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
608 /*
609 * If the outgoing interface is already specified,
610 * it should be a loopback interface.
611 */
612 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
613 ip6stat.ip6s_badscope++;
614 error = ENETUNREACH; /* XXX: better error? */
615 /* XXX correct ifp? */
616 in6_ifstat_inc(ifp, ifs6_out_discard);
617 goto bad;
618 }
619 else {
620 ifp = &loif[0];
621 }
622 }
623
624 if (opt && opt->ip6po_hlim != -1)
625 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
626
627 /*
628 * If caller did not provide an interface lookup a
629 * default in the routing table. This is either a
630 * default for the speicfied group (i.e. a host
631 * route), or a multicast default (a route for the
632 * ``net'' ff00::/8).
633 */
634 if (ifp == NULL) {
635 if (ro->ro_rt == 0) {
636 ro->ro_rt = rtalloc1((struct sockaddr *)
637 &ro->ro_dst, 0
638 );
639 }
640 if (ro->ro_rt == 0) {
641 ip6stat.ip6s_noroute++;
642 error = EHOSTUNREACH;
643 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
644 goto bad;
645 }
646 ia = ifatoia6(ro->ro_rt->rt_ifa);
647 ifp = ro->ro_rt->rt_ifp;
648 ro->ro_rt->rt_use++;
649 }
650
651 if ((flags & IPV6_FORWARDING) == 0)
652 in6_ifstat_inc(ifp, ifs6_out_request);
653 in6_ifstat_inc(ifp, ifs6_out_mcast);
654
655 /*
656 * Confirm that the outgoing interface supports multicast.
657 */
658 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
659 ip6stat.ip6s_noroute++;
660 in6_ifstat_inc(ifp, ifs6_out_discard);
661 error = ENETUNREACH;
662 goto bad;
663 }
664 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
665 if (in6m != NULL &&
666 (im6o == NULL || im6o->im6o_multicast_loop)) {
667 /*
668 * If we belong to the destination multicast group
669 * on the outgoing interface, and the caller did not
670 * forbid loopback, loop back a copy.
671 */
672 ip6_mloopback(ifp, m, dst);
673 } else {
674 /*
675 * If we are acting as a multicast router, perform
676 * multicast forwarding as if the packet had just
677 * arrived on the interface to which we are about
678 * to send. The multicast forwarding function
679 * recursively calls this function, using the
680 * IPV6_FORWARDING flag to prevent infinite recursion.
681 *
682 * Multicasts that are looped back by ip6_mloopback(),
683 * above, will be forwarded by the ip6_input() routine,
684 * if necessary.
685 */
686 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
687 if (ip6_mforward(ip6, ifp, m) != NULL) {
688 m_freem(m);
689 goto done;
690 }
691 }
692 }
693 /*
694 * Multicasts with a hoplimit of zero may be looped back,
695 * above, but must not be transmitted on a network.
696 * Also, multicasts addressed to the loopback interface
697 * are not sent -- the above call to ip6_mloopback() will
698 * loop back a copy if this host actually belongs to the
699 * destination group on the loopback interface.
700 */
701 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
702 m_freem(m);
703 goto done;
704 }
705 }
706
707 /*
708 * Fill the outgoing inteface to tell the upper layer
709 * to increment per-interface statistics.
710 */
711 if (ifpp)
712 *ifpp = ifp;
713
714 /*
715 * Determine path MTU.
716 */
717 if (ro_pmtu != ro) {
718 /* The first hop and the final destination may differ. */
719 struct sockaddr_in6 *sin6_fin =
720 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
721 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
722 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
723 &finaldst))) {
724 RTFREE(ro_pmtu->ro_rt);
725 ro_pmtu->ro_rt = (struct rtentry *)0;
726 }
727 if (ro_pmtu->ro_rt == 0) {
728 bzero(sin6_fin, sizeof(*sin6_fin));
729 sin6_fin->sin6_family = AF_INET6;
730 sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
731 sin6_fin->sin6_addr = finaldst;
732
733 rtalloc((struct route *)ro_pmtu);
734 }
735 }
736 if (ro_pmtu->ro_rt != NULL) {
737 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
738
739 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
740 if (mtu > ifmtu) {
741 /*
742 * The MTU on the route is larger than the MTU on
743 * the interface! This shouldn't happen, unless the
744 * MTU of the interface has been changed after the
745 * interface was brought up. Change the MTU in the
746 * route to match the interface MTU (as long as the
747 * field isn't locked).
748 */
749 mtu = ifmtu;
750 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
751 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
752 }
753 } else {
754 mtu = nd_ifinfo[ifp->if_index].linkmtu;
755 }
756
757 /*
758 * Fake link-local scope-class addresses
759 */
760 if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
761 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
762 ip6->ip6_src.s6_addr16[1] = 0;
763 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
764 ip6->ip6_dst.s6_addr16[1] = 0;
765 }
766
767 /*
768 * If the outgoing packet contains a hop-by-hop options header,
769 * it must be examined and processed even by the source node.
770 * (RFC 2460, section 4.)
771 */
772 if (exthdrs.ip6e_hbh) {
773 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh,
774 struct ip6_hbh *);
775 u_int32_t dummy1; /* XXX unused */
776 u_int32_t dummy2; /* XXX unused */
777
778 /*
779 * XXX: if we have to send an ICMPv6 error to the sender,
780 * we need the M_LOOP flag since icmp6_error() expects
781 * the IPv6 and the hop-by-hop options header are
782 * continuous unless the flag is set.
783 */
784 m->m_flags |= M_LOOP;
785 m->m_pkthdr.rcvif = ifp;
786 if (ip6_process_hopopts(m,
787 (u_int8_t *)(hbh + 1),
788 ((hbh->ip6h_len + 1) << 3) -
789 sizeof(struct ip6_hbh),
790 &dummy1, &dummy2) < 0) {
791 /* m was already freed at this point */
792 error = EINVAL;/* better error? */
793 goto done;
794 }
795 m->m_flags &= ~M_LOOP; /* XXX */
796 m->m_pkthdr.rcvif = NULL;
797 }
798
799 #ifdef PFIL_HOOKS
800 /*
801 * Run through list of hooks for output packets.
802 */
803 m1 = m;
804 pfh = pfil_hook_get(PFIL_OUT, &inetsw[ip_protox[IPPROTO_IPV6]].pr_pfh);
805 for (; pfh; pfh = pfh->pfil_link.tqe_next)
806 if (pfh->pfil_func) {
807 rv = pfh->pfil_func(ip6, sizeof(*ip6), ifp, 1, &m1);
808 if (rv) {
809 error = EHOSTUNREACH;
810 goto done;
811 }
812 m = m1;
813 if (m == NULL)
814 goto done;
815 ip6 = mtod(m, struct ip6_hdr *);
816 }
817 #endif /* PFIL_HOOKS */
818 /*
819 * Send the packet to the outgoing interface.
820 * If necessary, do IPv6 fragmentation before sending.
821 */
822 tlen = m->m_pkthdr.len;
823 if (tlen <= mtu
824 #ifdef notyet
825 /*
826 * On any link that cannot convey a 1280-octet packet in one piece,
827 * link-specific fragmentation and reassembly must be provided at
828 * a layer below IPv6. [RFC 2460, sec.5]
829 * Thus if the interface has ability of link-level fragmentation,
830 * we can just send the packet even if the packet size is
831 * larger than the link's MTU.
832 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
833 */
834
835 || ifp->if_flags & IFF_FRAGMENTABLE
836 #endif
837 )
838 {
839 #ifdef IFA_STATS
840 if (IFA_STATS) {
841 struct in6_ifaddr *ia6;
842 ip6 = mtod(m, struct ip6_hdr *);
843 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
844 if (ia6) {
845 ia->ia_ifa.ifa_data.ifad_outbytes +=
846 m->m_pkthdr.len;
847 }
848 }
849 #endif
850 #ifdef OLDIP6OUTPUT
851 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst,
852 ro->ro_rt);
853 #else
854 error = nd6_output(ifp, m, dst, ro->ro_rt);
855 #endif
856 goto done;
857 } else if (mtu < IPV6_MMTU) {
858 /*
859 * note that path MTU is never less than IPV6_MMTU
860 * (see icmp6_input).
861 */
862 error = EMSGSIZE;
863 in6_ifstat_inc(ifp, ifs6_out_fragfail);
864 goto bad;
865 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
866 error = EMSGSIZE;
867 in6_ifstat_inc(ifp, ifs6_out_fragfail);
868 goto bad;
869 } else {
870 struct mbuf **mnext, *m_frgpart;
871 struct ip6_frag *ip6f;
872 u_int32_t id = htonl(ip6_id++);
873 u_char nextproto;
874
875 /*
876 * Too large for the destination or interface;
877 * fragment if possible.
878 * Must be able to put at least 8 bytes per fragment.
879 */
880 hlen = unfragpartlen;
881 if (mtu > IPV6_MAXPACKET)
882 mtu = IPV6_MAXPACKET;
883 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
884 if (len < 8) {
885 error = EMSGSIZE;
886 in6_ifstat_inc(ifp, ifs6_out_fragfail);
887 goto bad;
888 }
889
890 mnext = &m->m_nextpkt;
891
892 /*
893 * Change the next header field of the last header in the
894 * unfragmentable part.
895 */
896 if (exthdrs.ip6e_rthdr) {
897 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
898 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
899 }
900 else if (exthdrs.ip6e_dest1) {
901 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
902 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
903 }
904 else if (exthdrs.ip6e_hbh) {
905 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
906 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
907 }
908 else {
909 nextproto = ip6->ip6_nxt;
910 ip6->ip6_nxt = IPPROTO_FRAGMENT;
911 }
912
913 /*
914 * Loop through length of segment after first fragment,
915 * make new header and copy data of each part and link onto chain.
916 */
917 m0 = m;
918 for (off = hlen; off < tlen; off += len) {
919 MGETHDR(m, M_DONTWAIT, MT_HEADER);
920 if (!m) {
921 error = ENOBUFS;
922 ip6stat.ip6s_odropped++;
923 goto sendorfree;
924 }
925 m->m_flags = m0->m_flags & M_COPYFLAGS;
926 *mnext = m;
927 mnext = &m->m_nextpkt;
928 m->m_data += max_linkhdr;
929 mhip6 = mtod(m, struct ip6_hdr *);
930 *mhip6 = *ip6;
931 m->m_len = sizeof(*mhip6);
932 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
933 if (error) {
934 ip6stat.ip6s_odropped++;
935 goto sendorfree;
936 }
937 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
938 if (off + len >= tlen)
939 len = tlen - off;
940 else
941 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
942 mhip6->ip6_plen = htons((u_short)(len + hlen +
943 sizeof(*ip6f) -
944 sizeof(struct ip6_hdr)));
945 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
946 error = ENOBUFS;
947 ip6stat.ip6s_odropped++;
948 goto sendorfree;
949 }
950 m_cat(m, m_frgpart);
951 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
952 m->m_pkthdr.rcvif = (struct ifnet *)0;
953 ip6f->ip6f_reserved = 0;
954 ip6f->ip6f_ident = id;
955 ip6f->ip6f_nxt = nextproto;
956 ip6stat.ip6s_ofragments++;
957 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
958 }
959
960 in6_ifstat_inc(ifp, ifs6_out_fragok);
961 }
962
963 /*
964 * Remove leading garbages.
965 */
966 sendorfree:
967 m = m0->m_nextpkt;
968 m0->m_nextpkt = 0;
969 m_freem(m0);
970 for (m0 = m; m; m = m0) {
971 m0 = m->m_nextpkt;
972 m->m_nextpkt = 0;
973 if (error == 0) {
974 #ifdef IFA_STATS
975 if (IFA_STATS) {
976 struct in6_ifaddr *ia6;
977 ip6 = mtod(m, struct ip6_hdr *);
978 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
979 if (ia6) {
980 ia->ia_ifa.ifa_data.ifad_outbytes +=
981 m->m_pkthdr.len;
982 }
983 }
984 #endif
985 #ifdef OLDIP6OUTPUT
986 error = (*ifp->if_output)(ifp, m,
987 (struct sockaddr *)dst,
988 ro->ro_rt);
989 #else
990 error = nd6_output(ifp, m, dst, ro->ro_rt);
991 #endif
992 }
993 else
994 m_freem(m);
995 }
996
997 if (error == 0)
998 ip6stat.ip6s_fragmented++;
999
1000 done:
1001 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1002 RTFREE(ro->ro_rt);
1003 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1004 RTFREE(ro_pmtu->ro_rt);
1005 }
1006
1007 #ifdef IPSEC
1008 if (sp != NULL)
1009 key_freesp(sp);
1010 #endif /* IPSEC */
1011
1012 return(error);
1013
1014 freehdrs:
1015 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1016 m_freem(exthdrs.ip6e_dest1);
1017 m_freem(exthdrs.ip6e_rthdr);
1018 m_freem(exthdrs.ip6e_dest2);
1019 /* fall through */
1020 bad:
1021 m_freem(m);
1022 goto done;
1023 }
1024
1025 static int
1026 ip6_copyexthdr(mp, hdr, hlen)
1027 struct mbuf **mp;
1028 caddr_t hdr;
1029 int hlen;
1030 {
1031 struct mbuf *m;
1032
1033 if (hlen > MCLBYTES)
1034 return(ENOBUFS); /* XXX */
1035
1036 MGET(m, M_DONTWAIT, MT_DATA);
1037 if (!m)
1038 return(ENOBUFS);
1039
1040 if (hlen > MLEN) {
1041 MCLGET(m, M_DONTWAIT);
1042 if ((m->m_flags & M_EXT) == 0) {
1043 m_free(m);
1044 return(ENOBUFS);
1045 }
1046 }
1047 m->m_len = hlen;
1048 if (hdr)
1049 bcopy(hdr, mtod(m, caddr_t), hlen);
1050
1051 *mp = m;
1052 return(0);
1053 }
1054
1055 /*
1056 * Insert jumbo payload option.
1057 */
1058 static int
1059 ip6_insert_jumboopt(exthdrs, plen)
1060 struct ip6_exthdrs *exthdrs;
1061 u_int32_t plen;
1062 {
1063 struct mbuf *mopt;
1064 u_char *optbuf;
1065
1066 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1067
1068 /*
1069 * If there is no hop-by-hop options header, allocate new one.
1070 * If there is one but it doesn't have enough space to store the
1071 * jumbo payload option, allocate a cluster to store the whole options.
1072 * Otherwise, use it to store the options.
1073 */
1074 if (exthdrs->ip6e_hbh == 0) {
1075 MGET(mopt, M_DONTWAIT, MT_DATA);
1076 if (mopt == 0)
1077 return(ENOBUFS);
1078 mopt->m_len = JUMBOOPTLEN;
1079 optbuf = mtod(mopt, u_char *);
1080 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1081 exthdrs->ip6e_hbh = mopt;
1082 }
1083 else {
1084 struct ip6_hbh *hbh;
1085
1086 mopt = exthdrs->ip6e_hbh;
1087 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1088 caddr_t oldoptp = mtod(mopt, caddr_t);
1089 int oldoptlen = mopt->m_len;
1090
1091 if (mopt->m_flags & M_EXT)
1092 return(ENOBUFS); /* XXX */
1093 MCLGET(mopt, M_DONTWAIT);
1094 if ((mopt->m_flags & M_EXT) == 0)
1095 return(ENOBUFS);
1096
1097 bcopy(oldoptp, mtod(mopt, caddr_t), oldoptlen);
1098 optbuf = mtod(mopt, caddr_t) + oldoptlen;
1099 mopt->m_len = oldoptlen + JUMBOOPTLEN;
1100 }
1101 else {
1102 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1103 mopt->m_len += JUMBOOPTLEN;
1104 }
1105 optbuf[0] = IP6OPT_PADN;
1106 optbuf[1] = 1;
1107
1108 /*
1109 * Adjust the header length according to the pad and
1110 * the jumbo payload option.
1111 */
1112 hbh = mtod(mopt, struct ip6_hbh *);
1113 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1114 }
1115
1116 /* fill in the option. */
1117 optbuf[2] = IP6OPT_JUMBO;
1118 optbuf[3] = 4;
1119 *(u_int32_t *)&optbuf[4] = htonl(plen + JUMBOOPTLEN);
1120
1121 /* finally, adjust the packet header length */
1122 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1123
1124 return(0);
1125 #undef JUMBOOPTLEN
1126 }
1127
1128 /*
1129 * Insert fragment header and copy unfragmentable header portions.
1130 */
1131 static int
1132 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1133 struct mbuf *m0, *m;
1134 int hlen;
1135 struct ip6_frag **frghdrp;
1136 {
1137 struct mbuf *n, *mlast;
1138
1139 if (hlen > sizeof(struct ip6_hdr)) {
1140 n = m_copym(m0, sizeof(struct ip6_hdr),
1141 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1142 if (n == 0)
1143 return(ENOBUFS);
1144 m->m_next = n;
1145 }
1146 else
1147 n = m;
1148
1149 /* Search for the last mbuf of unfragmentable part. */
1150 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1151 ;
1152
1153 if ((mlast->m_flags & M_EXT) == 0 &&
1154 M_TRAILINGSPACE(mlast) < sizeof(struct ip6_frag)) {
1155 /* use the trailing space of the last mbuf for the fragment hdr */
1156 *frghdrp =
1157 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1158 mlast->m_len += sizeof(struct ip6_frag);
1159 m->m_pkthdr.len += sizeof(struct ip6_frag);
1160 }
1161 else {
1162 /* allocate a new mbuf for the fragment header */
1163 struct mbuf *mfrg;
1164
1165 MGET(mfrg, M_DONTWAIT, MT_DATA);
1166 if (mfrg == 0)
1167 return(ENOBUFS);
1168 mfrg->m_len = sizeof(struct ip6_frag);
1169 *frghdrp = mtod(mfrg, struct ip6_frag *);
1170 mlast->m_next = mfrg;
1171 }
1172
1173 return(0);
1174 }
1175
1176 /*
1177 * IP6 socket option processing.
1178 */
1179 int
1180 ip6_ctloutput(op, so, level, optname, mp)
1181 int op;
1182 struct socket *so;
1183 int level, optname;
1184 struct mbuf **mp;
1185 {
1186 register struct in6pcb *in6p = sotoin6pcb(so);
1187 register struct mbuf *m = *mp;
1188 register int optval = 0;
1189 int error = 0;
1190 struct proc *p = curproc; /* XXX */
1191
1192 if (level == IPPROTO_IPV6)
1193 switch (op) {
1194
1195 case PRCO_SETOPT:
1196 switch (optname) {
1197 case IPV6_PKTOPTIONS:
1198 return(ip6_pcbopts(&in6p->in6p_outputopts,
1199 m, so));
1200 case IPV6_HOPOPTS:
1201 case IPV6_DSTOPTS:
1202 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1203 error = EPERM;
1204 break;
1205 }
1206 /* fall through */
1207 case IPV6_UNICAST_HOPS:
1208 case IPV6_RECVOPTS:
1209 case IPV6_RECVRETOPTS:
1210 case IPV6_RECVDSTADDR:
1211 case IPV6_PKTINFO:
1212 case IPV6_HOPLIMIT:
1213 case IPV6_RTHDR:
1214 case IPV6_CHECKSUM:
1215 case IPV6_FAITH:
1216 #ifndef INET6_BINDV6ONLY
1217 case IPV6_BINDV6ONLY:
1218 #endif
1219 if (!m || m->m_len != sizeof(int))
1220 error = EINVAL;
1221 else {
1222 optval = *mtod(m, int *);
1223 switch (optname) {
1224
1225 case IPV6_UNICAST_HOPS:
1226 if (optval < -1 || optval >= 256)
1227 error = EINVAL;
1228 else {
1229 /* -1 = kernel default */
1230 in6p->in6p_hops = optval;
1231 }
1232 break;
1233 #define OPTSET(bit) \
1234 if (optval) \
1235 in6p->in6p_flags |= bit; \
1236 else \
1237 in6p->in6p_flags &= ~bit;
1238
1239 case IPV6_RECVOPTS:
1240 OPTSET(IN6P_RECVOPTS);
1241 break;
1242
1243 case IPV6_RECVRETOPTS:
1244 OPTSET(IN6P_RECVRETOPTS);
1245 break;
1246
1247 case IPV6_RECVDSTADDR:
1248 OPTSET(IN6P_RECVDSTADDR);
1249 break;
1250
1251 case IPV6_PKTINFO:
1252 OPTSET(IN6P_PKTINFO);
1253 break;
1254
1255 case IPV6_HOPLIMIT:
1256 OPTSET(IN6P_HOPLIMIT);
1257 break;
1258
1259 case IPV6_HOPOPTS:
1260 OPTSET(IN6P_HOPOPTS);
1261 break;
1262
1263 case IPV6_DSTOPTS:
1264 OPTSET(IN6P_DSTOPTS);
1265 break;
1266
1267 case IPV6_RTHDR:
1268 OPTSET(IN6P_RTHDR);
1269 break;
1270
1271 case IPV6_CHECKSUM:
1272 in6p->in6p_cksum = optval;
1273 break;
1274
1275 case IPV6_FAITH:
1276 OPTSET(IN6P_FAITH);
1277 break;
1278
1279 #ifndef INET6_BINDV6ONLY
1280 case IPV6_BINDV6ONLY:
1281 OPTSET(IN6P_BINDV6ONLY);
1282 break;
1283 #endif
1284 }
1285 }
1286 break;
1287 #undef OPTSET
1288
1289 case IPV6_MULTICAST_IF:
1290 case IPV6_MULTICAST_HOPS:
1291 case IPV6_MULTICAST_LOOP:
1292 case IPV6_JOIN_GROUP:
1293 case IPV6_LEAVE_GROUP:
1294 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m);
1295 break;
1296
1297 case IPV6_PORTRANGE:
1298 optval = *mtod(m, int *);
1299
1300 switch (optval) {
1301 case IPV6_PORTRANGE_DEFAULT:
1302 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1303 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1304 break;
1305
1306 case IPV6_PORTRANGE_HIGH:
1307 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1308 in6p->in6p_flags |= IN6P_HIGHPORT;
1309 break;
1310
1311 case IPV6_PORTRANGE_LOW:
1312 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1313 in6p->in6p_flags |= IN6P_LOWPORT;
1314 break;
1315
1316 default:
1317 error = EINVAL;
1318 break;
1319 }
1320 break;
1321
1322 #ifdef IPSEC
1323 case IPV6_IPSEC_POLICY:
1324 {
1325 caddr_t req = NULL;
1326 size_t len = 0;
1327
1328 int priv = 0;
1329 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1330 priv = 0;
1331 else
1332 priv = 1;
1333 if (m) {
1334 req = mtod(m, caddr_t);
1335 len = m->m_len;
1336 }
1337 error = ipsec6_set_policy(in6p,
1338 optname, req, len, priv);
1339 }
1340 break;
1341 #endif /* IPSEC */
1342
1343 default:
1344 error = ENOPROTOOPT;
1345 break;
1346 }
1347 if (m)
1348 (void)m_free(m);
1349 break;
1350
1351 case PRCO_GETOPT:
1352 switch (optname) {
1353
1354 case IPV6_OPTIONS:
1355 case IPV6_RETOPTS:
1356 #if 0
1357 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1358 if (in6p->in6p_options) {
1359 m->m_len = in6p->in6p_options->m_len;
1360 bcopy(mtod(in6p->in6p_options, caddr_t),
1361 mtod(m, caddr_t),
1362 (unsigned)m->m_len);
1363 } else
1364 m->m_len = 0;
1365 break;
1366 #else
1367 error = ENOPROTOOPT;
1368 break;
1369 #endif
1370
1371 case IPV6_PKTOPTIONS:
1372 if (in6p->in6p_options) {
1373 *mp = m_copym(in6p->in6p_options, 0,
1374 M_COPYALL, M_WAIT);
1375 } else {
1376 *mp = m_get(M_WAIT, MT_SOOPTS);
1377 (*mp)->m_len = 0;
1378 }
1379 break;
1380
1381 case IPV6_HOPOPTS:
1382 case IPV6_DSTOPTS:
1383 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1384 error = EPERM;
1385 break;
1386 }
1387 /* fall through */
1388 case IPV6_UNICAST_HOPS:
1389 case IPV6_RECVOPTS:
1390 case IPV6_RECVRETOPTS:
1391 case IPV6_RECVDSTADDR:
1392 case IPV6_PORTRANGE:
1393 case IPV6_PKTINFO:
1394 case IPV6_HOPLIMIT:
1395 case IPV6_RTHDR:
1396 case IPV6_CHECKSUM:
1397 case IPV6_FAITH:
1398 #ifndef INET6_BINDV6ONLY
1399 case IPV6_BINDV6ONLY:
1400 #endif
1401 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1402 m->m_len = sizeof(int);
1403 switch (optname) {
1404
1405 case IPV6_UNICAST_HOPS:
1406 optval = in6p->in6p_hops;
1407 break;
1408
1409 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1410
1411 case IPV6_RECVOPTS:
1412 optval = OPTBIT(IN6P_RECVOPTS);
1413 break;
1414
1415 case IPV6_RECVRETOPTS:
1416 optval = OPTBIT(IN6P_RECVRETOPTS);
1417 break;
1418
1419 case IPV6_RECVDSTADDR:
1420 optval = OPTBIT(IN6P_RECVDSTADDR);
1421 break;
1422
1423 case IPV6_PORTRANGE:
1424 {
1425 int flags;
1426 flags = in6p->in6p_flags;
1427 if (flags & IN6P_HIGHPORT)
1428 optval = IPV6_PORTRANGE_HIGH;
1429 else if (flags & IN6P_LOWPORT)
1430 optval = IPV6_PORTRANGE_LOW;
1431 else
1432 optval = 0;
1433 break;
1434 }
1435
1436 case IPV6_PKTINFO:
1437 optval = OPTBIT(IN6P_PKTINFO);
1438 break;
1439
1440 case IPV6_HOPLIMIT:
1441 optval = OPTBIT(IN6P_HOPLIMIT);
1442 break;
1443
1444 case IPV6_HOPOPTS:
1445 optval = OPTBIT(IN6P_HOPOPTS);
1446 break;
1447
1448 case IPV6_DSTOPTS:
1449 optval = OPTBIT(IN6P_DSTOPTS);
1450 break;
1451
1452 case IPV6_RTHDR:
1453 optval = OPTBIT(IN6P_RTHDR);
1454 break;
1455
1456 case IPV6_CHECKSUM:
1457 optval = in6p->in6p_cksum;
1458 break;
1459
1460 case IPV6_FAITH:
1461 optval = OPTBIT(IN6P_FAITH);
1462 break;
1463
1464 #ifndef INET6_BINDV6ONLY
1465 case IPV6_BINDV6ONLY:
1466 optval = OPTBIT(IN6P_BINDV6ONLY);
1467 break;
1468 #endif
1469 }
1470 *mtod(m, int *) = optval;
1471 break;
1472
1473 case IPV6_MULTICAST_IF:
1474 case IPV6_MULTICAST_HOPS:
1475 case IPV6_MULTICAST_LOOP:
1476 case IPV6_JOIN_GROUP:
1477 case IPV6_LEAVE_GROUP:
1478 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1479 break;
1480
1481 #ifdef IPSEC
1482 case IPV6_IPSEC_POLICY:
1483 {
1484 caddr_t req = NULL;
1485 size_t len = 0;
1486
1487 if (m) {
1488 req = mtod(m, caddr_t);
1489 len = m->m_len;
1490 }
1491 error = ipsec6_get_policy(in6p, req, len, mp);
1492 break;
1493 }
1494 #endif /* IPSEC */
1495
1496 default:
1497 error = ENOPROTOOPT;
1498 break;
1499 }
1500 break;
1501 }
1502 else {
1503 error = EINVAL;
1504 if (op == PRCO_SETOPT && *mp)
1505 (void)m_free(*mp);
1506 }
1507 return(error);
1508 }
1509
1510 /*
1511 * Set up IP6 options in pcb for insertion in output packets.
1512 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1513 * with destination address if source routed.
1514 */
1515 static int
1516 ip6_pcbopts(pktopt, m, so)
1517 struct ip6_pktopts **pktopt;
1518 register struct mbuf *m;
1519 struct socket *so;
1520 {
1521 register struct ip6_pktopts *opt = *pktopt;
1522 int error = 0;
1523 struct proc *p = curproc; /* XXX */
1524 int priv = 0;
1525
1526 /* turn off any old options. */
1527 if (opt) {
1528 if (opt->ip6po_m)
1529 (void)m_free(opt->ip6po_m);
1530 }
1531 else
1532 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1533 *pktopt = 0;
1534
1535 if (!m || m->m_len == 0) {
1536 /*
1537 * Only turning off any previous options.
1538 */
1539 if (opt)
1540 free(opt, M_IP6OPT);
1541 if (m)
1542 (void)m_free(m);
1543 return(0);
1544 }
1545
1546 /* set options specified by user. */
1547 if (p && !suser(p->p_ucred, &p->p_acflag))
1548 priv = 1;
1549 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1550 (void)m_free(m);
1551 return(error);
1552 }
1553 *pktopt = opt;
1554 return(0);
1555 }
1556
1557 /*
1558 * Set the IP6 multicast options in response to user setsockopt().
1559 */
1560 static int
1561 ip6_setmoptions(optname, im6op, m)
1562 int optname;
1563 struct ip6_moptions **im6op;
1564 struct mbuf *m;
1565 {
1566 int error = 0;
1567 u_int loop, ifindex;
1568 struct ipv6_mreq *mreq;
1569 struct ifnet *ifp;
1570 struct ip6_moptions *im6o = *im6op;
1571 struct route_in6 ro;
1572 struct sockaddr_in6 *dst;
1573 struct in6_multi_mship *imm;
1574 struct proc *p = curproc; /* XXX */
1575
1576 if (im6o == NULL) {
1577 /*
1578 * No multicast option buffer attached to the pcb;
1579 * allocate one and initialize to default values.
1580 */
1581 im6o = (struct ip6_moptions *)
1582 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1583
1584 if (im6o == NULL)
1585 return(ENOBUFS);
1586 *im6op = im6o;
1587 im6o->im6o_multicast_ifp = NULL;
1588 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1589 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1590 LIST_INIT(&im6o->im6o_memberships);
1591 }
1592
1593 switch (optname) {
1594
1595 case IPV6_MULTICAST_IF:
1596 /*
1597 * Select the interface for outgoing multicast packets.
1598 */
1599 if (m == NULL || m->m_len != sizeof(u_int)) {
1600 error = EINVAL;
1601 break;
1602 }
1603 ifindex = *(mtod(m, u_int *));
1604 if (ifindex < 0 || if_index < ifindex) {
1605 error = ENXIO; /* XXX EINVAL? */
1606 break;
1607 }
1608 ifp = ifindex2ifnet[ifindex];
1609 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1610 error = EADDRNOTAVAIL;
1611 break;
1612 }
1613 im6o->im6o_multicast_ifp = ifp;
1614 break;
1615
1616 case IPV6_MULTICAST_HOPS:
1617 {
1618 /*
1619 * Set the IP6 hoplimit for outgoing multicast packets.
1620 */
1621 int optval;
1622 if (m == NULL || m->m_len != sizeof(int)) {
1623 error = EINVAL;
1624 break;
1625 }
1626 optval = *(mtod(m, u_int *));
1627 if (optval < -1 || optval >= 256)
1628 error = EINVAL;
1629 else if (optval == -1)
1630 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1631 else
1632 im6o->im6o_multicast_hlim = optval;
1633 break;
1634 }
1635
1636 case IPV6_MULTICAST_LOOP:
1637 /*
1638 * Set the loopback flag for outgoing multicast packets.
1639 * Must be zero or one.
1640 */
1641 if (m == NULL || m->m_len != sizeof(u_int) ||
1642 (loop = *(mtod(m, u_int *))) > 1) {
1643 error = EINVAL;
1644 break;
1645 }
1646 im6o->im6o_multicast_loop = loop;
1647 break;
1648
1649 case IPV6_JOIN_GROUP:
1650 /*
1651 * Add a multicast group membership.
1652 * Group must be a valid IP6 multicast address.
1653 */
1654 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1655 error = EINVAL;
1656 break;
1657 }
1658 mreq = mtod(m, struct ipv6_mreq *);
1659 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1660 /*
1661 * We use the unspecified address to specify to accept
1662 * all multicast addresses. Only super user is allowed
1663 * to do this.
1664 */
1665 if (suser(p->p_ucred, &p->p_acflag)) {
1666 error = EACCES;
1667 break;
1668 }
1669 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1670 error = EINVAL;
1671 break;
1672 }
1673
1674 /*
1675 * If the interface is specified, validate it.
1676 */
1677 if (mreq->ipv6mr_interface < 0
1678 || if_index < mreq->ipv6mr_interface) {
1679 error = ENXIO; /* XXX EINVAL? */
1680 break;
1681 }
1682 /*
1683 * If no interface was explicitly specified, choose an
1684 * appropriate one according to the given multicast address.
1685 */
1686 if (mreq->ipv6mr_interface == 0) {
1687 /*
1688 * If the multicast address is in node-local scope,
1689 * the interface should be a loopback interface.
1690 * Otherwise, look up the routing table for the
1691 * address, and choose the outgoing interface.
1692 * XXX: is it a good approach?
1693 */
1694 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1695 ifp = &loif[0];
1696 }
1697 else {
1698 ro.ro_rt = NULL;
1699 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1700 bzero(dst, sizeof(*dst));
1701 dst->sin6_len = sizeof(struct sockaddr_in6);
1702 dst->sin6_family = AF_INET6;
1703 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1704 rtalloc((struct route *)&ro);
1705 if (ro.ro_rt == NULL) {
1706 error = EADDRNOTAVAIL;
1707 break;
1708 }
1709 ifp = ro.ro_rt->rt_ifp;
1710 rtfree(ro.ro_rt);
1711 }
1712 } else
1713 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1714
1715 /*
1716 * See if we found an interface, and confirm that it
1717 * supports multicast
1718 */
1719 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1720 error = EADDRNOTAVAIL;
1721 break;
1722 }
1723 /*
1724 * Put interface index into the multicast address,
1725 * if the address has link-local scope.
1726 */
1727 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1728 mreq->ipv6mr_multiaddr.s6_addr16[1]
1729 = htons(mreq->ipv6mr_interface);
1730 }
1731 /*
1732 * See if the membership already exists.
1733 */
1734 for (imm = im6o->im6o_memberships.lh_first;
1735 imm != NULL; imm = imm->i6mm_chain.le_next)
1736 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1737 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1738 &mreq->ipv6mr_multiaddr))
1739 break;
1740 if (imm != NULL) {
1741 error = EADDRINUSE;
1742 break;
1743 }
1744 /*
1745 * Everything looks good; add a new record to the multicast
1746 * address list for the given interface.
1747 */
1748 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
1749 if (imm == NULL) {
1750 error = ENOBUFS;
1751 break;
1752 }
1753 if ((imm->i6mm_maddr =
1754 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
1755 free(imm, M_IPMADDR);
1756 break;
1757 }
1758 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1759 break;
1760
1761 case IPV6_LEAVE_GROUP:
1762 /*
1763 * Drop a multicast group membership.
1764 * Group must be a valid IP6 multicast address.
1765 */
1766 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1767 error = EINVAL;
1768 break;
1769 }
1770 mreq = mtod(m, struct ipv6_mreq *);
1771 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1772 if (suser(p->p_ucred, &p->p_acflag)) {
1773 error = EACCES;
1774 break;
1775 }
1776 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1777 error = EINVAL;
1778 break;
1779 }
1780 /*
1781 * If an interface address was specified, get a pointer
1782 * to its ifnet structure.
1783 */
1784 if (mreq->ipv6mr_interface < 0
1785 || if_index < mreq->ipv6mr_interface) {
1786 error = ENXIO; /* XXX EINVAL? */
1787 break;
1788 }
1789 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1790 /*
1791 * Put interface index into the multicast address,
1792 * if the address has link-local scope.
1793 */
1794 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1795 mreq->ipv6mr_multiaddr.s6_addr16[1]
1796 = htons(mreq->ipv6mr_interface);
1797 }
1798 /*
1799 * Find the membership in the membership list.
1800 */
1801 for (imm = im6o->im6o_memberships.lh_first;
1802 imm != NULL; imm = imm->i6mm_chain.le_next) {
1803 if ((ifp == NULL ||
1804 imm->i6mm_maddr->in6m_ifp == ifp) &&
1805 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1806 &mreq->ipv6mr_multiaddr))
1807 break;
1808 }
1809 if (imm == NULL) {
1810 /* Unable to resolve interface */
1811 error = EADDRNOTAVAIL;
1812 break;
1813 }
1814 /*
1815 * Give up the multicast address record to which the
1816 * membership points.
1817 */
1818 LIST_REMOVE(imm, i6mm_chain);
1819 in6_delmulti(imm->i6mm_maddr);
1820 free(imm, M_IPMADDR);
1821 break;
1822
1823 default:
1824 error = EOPNOTSUPP;
1825 break;
1826 }
1827
1828 /*
1829 * If all options have default values, no need to keep the mbuf.
1830 */
1831 if (im6o->im6o_multicast_ifp == NULL &&
1832 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1833 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1834 im6o->im6o_memberships.lh_first == NULL) {
1835 free(*im6op, M_IPMOPTS);
1836 *im6op = NULL;
1837 }
1838
1839 return(error);
1840 }
1841
1842 /*
1843 * Return the IP6 multicast options in response to user getsockopt().
1844 */
1845 static int
1846 ip6_getmoptions(optname, im6o, mp)
1847 int optname;
1848 register struct ip6_moptions *im6o;
1849 register struct mbuf **mp;
1850 {
1851 u_int *hlim, *loop, *ifindex;
1852
1853 *mp = m_get(M_WAIT, MT_SOOPTS);
1854
1855 switch (optname) {
1856
1857 case IPV6_MULTICAST_IF:
1858 ifindex = mtod(*mp, u_int *);
1859 (*mp)->m_len = sizeof(u_int);
1860 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1861 *ifindex = 0;
1862 else
1863 *ifindex = im6o->im6o_multicast_ifp->if_index;
1864 return(0);
1865
1866 case IPV6_MULTICAST_HOPS:
1867 hlim = mtod(*mp, u_int *);
1868 (*mp)->m_len = sizeof(u_int);
1869 if (im6o == NULL)
1870 *hlim = ip6_defmcasthlim;
1871 else
1872 *hlim = im6o->im6o_multicast_hlim;
1873 return(0);
1874
1875 case IPV6_MULTICAST_LOOP:
1876 loop = mtod(*mp, u_int *);
1877 (*mp)->m_len = sizeof(u_int);
1878 if (im6o == NULL)
1879 *loop = ip6_defmcasthlim;
1880 else
1881 *loop = im6o->im6o_multicast_loop;
1882 return(0);
1883
1884 default:
1885 return(EOPNOTSUPP);
1886 }
1887 }
1888
1889 /*
1890 * Discard the IP6 multicast options.
1891 */
1892 void
1893 ip6_freemoptions(im6o)
1894 register struct ip6_moptions *im6o;
1895 {
1896 struct in6_multi_mship *imm;
1897
1898 if (im6o == NULL)
1899 return;
1900
1901 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
1902 LIST_REMOVE(imm, i6mm_chain);
1903 if (imm->i6mm_maddr)
1904 in6_delmulti(imm->i6mm_maddr);
1905 free(imm, M_IPMADDR);
1906 }
1907 free(im6o, M_IPMOPTS);
1908 }
1909
1910 /*
1911 * Set IPv6 outgoing packet options based on advanced API.
1912 */
1913 int
1914 ip6_setpktoptions(control, opt, priv)
1915 struct mbuf *control;
1916 struct ip6_pktopts *opt;
1917 int priv;
1918 {
1919 register struct cmsghdr *cm = 0;
1920
1921 if (control == 0 || opt == 0)
1922 return(EINVAL);
1923
1924 bzero(opt, sizeof(*opt));
1925 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
1926
1927 /*
1928 * XXX: Currently, we assume all the optional information is stored
1929 * in a single mbuf.
1930 */
1931 if (control->m_next)
1932 return(EINVAL);
1933
1934 opt->ip6po_m = control;
1935
1936 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
1937 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1938 cm = mtod(control, struct cmsghdr *);
1939 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
1940 return(EINVAL);
1941 if (cm->cmsg_level != IPPROTO_IPV6)
1942 continue;
1943
1944 switch(cm->cmsg_type) {
1945 case IPV6_PKTINFO:
1946 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
1947 return(EINVAL);
1948 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1949 if (opt->ip6po_pktinfo->ipi6_ifindex &&
1950 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
1951 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
1952 htons(opt->ip6po_pktinfo->ipi6_ifindex);
1953
1954 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
1955 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
1956 return(ENXIO);
1957 }
1958
1959 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
1960 struct ifaddr *ia;
1961 struct sockaddr_in6 sin6;
1962
1963 bzero(&sin6, sizeof(sin6));
1964 sin6.sin6_len = sizeof(sin6);
1965 sin6.sin6_family = AF_INET6;
1966 sin6.sin6_addr =
1967 opt->ip6po_pktinfo->ipi6_addr;
1968 ia = ifa_ifwithaddr(sin6tosa(&sin6));
1969 if (ia == NULL ||
1970 (opt->ip6po_pktinfo->ipi6_ifindex &&
1971 (ia->ifa_ifp->if_index !=
1972 opt->ip6po_pktinfo->ipi6_ifindex))) {
1973 return(EADDRNOTAVAIL);
1974 }
1975 /*
1976 * Check if the requested source address is
1977 * indeed a unicast address assigned to the
1978 * node.
1979 */
1980 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
1981 return(EADDRNOTAVAIL);
1982 }
1983 break;
1984
1985 case IPV6_HOPLIMIT:
1986 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
1987 return(EINVAL);
1988
1989 opt->ip6po_hlim = *(int *)CMSG_DATA(cm);
1990 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
1991 return(EINVAL);
1992 break;
1993
1994 case IPV6_NEXTHOP:
1995 if (!priv)
1996 return(EPERM);
1997 if (cm->cmsg_len < sizeof(u_char) ||
1998 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
1999 return(EINVAL);
2000
2001 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2002
2003 break;
2004
2005 case IPV6_HOPOPTS:
2006 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2007 return(EINVAL);
2008 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2009 if (cm->cmsg_len !=
2010 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
2011 return(EINVAL);
2012 break;
2013
2014 case IPV6_DSTOPTS:
2015 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2016 return(EINVAL);
2017
2018 /*
2019 * If there is no routing header yet, the destination
2020 * options header should be put on the 1st part.
2021 * Otherwise, the header should be on the 2nd part.
2022 * (See RFC 2460, section 4.1)
2023 */
2024 if (opt->ip6po_rthdr == NULL) {
2025 opt->ip6po_dest1 =
2026 (struct ip6_dest *)CMSG_DATA(cm);
2027 if (cm->cmsg_len !=
2028 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
2029 << 3))
2030 return(EINVAL);
2031 }
2032 else {
2033 opt->ip6po_dest2 =
2034 (struct ip6_dest *)CMSG_DATA(cm);
2035 if (cm->cmsg_len !=
2036 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
2037 << 3))
2038 return(EINVAL);
2039 }
2040 break;
2041
2042 case IPV6_RTHDR:
2043 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2044 return(EINVAL);
2045 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
2046 if (cm->cmsg_len !=
2047 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
2048 return(EINVAL);
2049 switch(opt->ip6po_rthdr->ip6r_type) {
2050 case IPV6_RTHDR_TYPE_0:
2051 if (opt->ip6po_rthdr->ip6r_segleft == 0)
2052 return(EINVAL);
2053 break;
2054 default:
2055 return(EINVAL);
2056 }
2057 break;
2058
2059 default:
2060 return(ENOPROTOOPT);
2061 }
2062 }
2063
2064 return(0);
2065 }
2066
2067 /*
2068 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2069 * packet to the input queue of a specified interface. Note that this
2070 * calls the output routine of the loopback "driver", but with an interface
2071 * pointer that might NOT be &loif -- easier than replicating that code here.
2072 */
2073 void
2074 ip6_mloopback(ifp, m, dst)
2075 struct ifnet *ifp;
2076 register struct mbuf *m;
2077 register struct sockaddr_in6 *dst;
2078 {
2079 struct mbuf *copym;
2080
2081 copym = m_copy(m, 0, M_COPYALL);
2082 if (copym != NULL)
2083 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2084 }
2085
2086 /*
2087 * Chop IPv6 header off from the payload.
2088 */
2089 static int
2090 ip6_splithdr(m, exthdrs)
2091 struct mbuf *m;
2092 struct ip6_exthdrs *exthdrs;
2093 {
2094 struct mbuf *mh;
2095 struct ip6_hdr *ip6;
2096
2097 ip6 = mtod(m, struct ip6_hdr *);
2098 if (m->m_len > sizeof(*ip6)) {
2099 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2100 if (mh == 0) {
2101 m_freem(m);
2102 return ENOBUFS;
2103 }
2104 M_COPY_PKTHDR(mh, m);
2105 MH_ALIGN(mh, sizeof(*ip6));
2106 m->m_flags &= ~M_PKTHDR;
2107 m->m_len -= sizeof(*ip6);
2108 m->m_data += sizeof(*ip6);
2109 mh->m_next = m;
2110 m = mh;
2111 m->m_len = sizeof(*ip6);
2112 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2113 }
2114 exthdrs->ip6e_ip6 = m;
2115 return 0;
2116 }
2117
2118 /*
2119 * Compute IPv6 extension header length.
2120 */
2121 int
2122 ip6_optlen(in6p)
2123 struct in6pcb *in6p;
2124 {
2125 int len;
2126
2127 if (!in6p->in6p_outputopts)
2128 return 0;
2129
2130 len = 0;
2131 #define elen(x) \
2132 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2133
2134 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2135 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2136 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2137 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2138 return len;
2139 #undef elen
2140 }
2141