Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.166
      1 /*	$NetBSD: ip6_output.c,v 1.166 2015/08/24 22:21:27 pooka Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.166 2015/08/24 22:21:27 pooka Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_inet.h"
     69 #include "opt_inet6.h"
     70 #include "opt_ipsec.h"
     71 #endif
     72 
     73 #include <sys/param.h>
     74 #include <sys/malloc.h>
     75 #include <sys/mbuf.h>
     76 #include <sys/errno.h>
     77 #include <sys/protosw.h>
     78 #include <sys/socket.h>
     79 #include <sys/socketvar.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/kauth.h>
     83 
     84 #include <net/if.h>
     85 #include <net/route.h>
     86 #include <net/pfil.h>
     87 
     88 #include <netinet/in.h>
     89 #include <netinet/in_var.h>
     90 #include <netinet/ip6.h>
     91 #include <netinet/ip_var.h>
     92 #include <netinet/icmp6.h>
     93 #include <netinet/in_offload.h>
     94 #include <netinet/portalgo.h>
     95 #include <netinet6/in6_offload.h>
     96 #include <netinet6/ip6_var.h>
     97 #include <netinet6/ip6_private.h>
     98 #include <netinet6/in6_pcb.h>
     99 #include <netinet6/nd6.h>
    100 #include <netinet6/ip6protosw.h>
    101 #include <netinet6/scope6_var.h>
    102 
    103 #ifdef IPSEC
    104 #include <netipsec/ipsec.h>
    105 #include <netipsec/ipsec6.h>
    106 #include <netipsec/key.h>
    107 #include <netipsec/xform.h>
    108 #endif
    109 
    110 
    111 #include <net/net_osdep.h>
    112 
    113 extern pfil_head_t *inet6_pfil_hook;	/* XXX */
    114 
    115 struct ip6_exthdrs {
    116 	struct mbuf *ip6e_ip6;
    117 	struct mbuf *ip6e_hbh;
    118 	struct mbuf *ip6e_dest1;
    119 	struct mbuf *ip6e_rthdr;
    120 	struct mbuf *ip6e_dest2;
    121 };
    122 
    123 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
    124 	kauth_cred_t, int);
    125 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
    126 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
    127 	int, int, int);
    128 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *);
    129 static int ip6_getmoptions(struct sockopt *, struct in6pcb *);
    130 static int ip6_copyexthdr(struct mbuf **, void *, int);
    131 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
    132 	struct ip6_frag **);
    133 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
    134 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
    135 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *,
    136     const struct in6_addr *, u_long *, int *);
    137 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
    138 
    139 #ifdef RFC2292
    140 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
    141 #endif
    142 
    143 /*
    144  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    145  * header (with pri, len, nxt, hlim, src, dst).
    146  * This function may modify ver and hlim only.
    147  * The mbuf chain containing the packet will be freed.
    148  * The mbuf opt, if present, will not be freed.
    149  *
    150  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    151  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
    152  * which is rt_rmx.rmx_mtu.
    153  */
    154 int
    155 ip6_output(
    156     struct mbuf *m0,
    157     struct ip6_pktopts *opt,
    158     struct route *ro,
    159     int flags,
    160     struct ip6_moptions *im6o,
    161     struct socket *so,
    162     struct ifnet **ifpp		/* XXX: just for statistics */
    163 )
    164 {
    165 	struct ip6_hdr *ip6, *mhip6;
    166 	struct ifnet *ifp, *origifp;
    167 	struct mbuf *m = m0;
    168 	int hlen, tlen, len, off;
    169 	bool tso;
    170 	struct route ip6route;
    171 	struct rtentry *rt = NULL;
    172 	const struct sockaddr_in6 *dst;
    173 	struct sockaddr_in6 src_sa, dst_sa;
    174 	int error = 0;
    175 	struct in6_ifaddr *ia = NULL;
    176 	u_long mtu;
    177 	int alwaysfrag, dontfrag;
    178 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    179 	struct ip6_exthdrs exthdrs;
    180 	struct in6_addr finaldst, src0, dst0;
    181 	u_int32_t zone;
    182 	struct route *ro_pmtu = NULL;
    183 	int hdrsplit = 0;
    184 	int needipsec = 0;
    185 #ifdef IPSEC
    186 	struct secpolicy *sp = NULL;
    187 #endif
    188 
    189 	memset(&ip6route, 0, sizeof(ip6route));
    190 
    191 #ifdef  DIAGNOSTIC
    192 	if ((m->m_flags & M_PKTHDR) == 0)
    193 		panic("ip6_output: no HDR");
    194 
    195 	if ((m->m_pkthdr.csum_flags &
    196 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
    197 		panic("ip6_output: IPv4 checksum offload flags: %d",
    198 		    m->m_pkthdr.csum_flags);
    199 	}
    200 
    201 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
    202 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
    203 		panic("ip6_output: conflicting checksum offload flags: %d",
    204 		    m->m_pkthdr.csum_flags);
    205 	}
    206 #endif
    207 
    208 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    209 
    210 #define MAKE_EXTHDR(hp, mp)						\
    211     do {								\
    212 	if (hp) {							\
    213 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    214 		error = ip6_copyexthdr((mp), (void *)(hp), 		\
    215 		    ((eh)->ip6e_len + 1) << 3);				\
    216 		if (error)						\
    217 			goto freehdrs;					\
    218 	}								\
    219     } while (/*CONSTCOND*/ 0)
    220 
    221 	memset(&exthdrs, 0, sizeof(exthdrs));
    222 	if (opt) {
    223 		/* Hop-by-Hop options header */
    224 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    225 		/* Destination options header(1st part) */
    226 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    227 		/* Routing header */
    228 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    229 		/* Destination options header(2nd part) */
    230 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    231 	}
    232 
    233 	/*
    234 	 * Calculate the total length of the extension header chain.
    235 	 * Keep the length of the unfragmentable part for fragmentation.
    236 	 */
    237 	optlen = 0;
    238 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    239 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    240 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    241 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    242 	/* NOTE: we don't add AH/ESP length here. do that later. */
    243 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    244 
    245 #ifdef IPSEC
    246 	if (ipsec_used) {
    247 		/* Check the security policy (SP) for the packet */
    248 
    249 		sp = ipsec6_check_policy(m, so, flags, &needipsec, &error);
    250 		if (error != 0) {
    251 			/*
    252 			 * Hack: -EINVAL is used to signal that a packet
    253 			 * should be silently discarded.  This is typically
    254 			 * because we asked key management for an SA and
    255 			 * it was delayed (e.g. kicked up to IKE).
    256 			 */
    257 			if (error == -EINVAL)
    258 				error = 0;
    259 			goto freehdrs;
    260 		}
    261 	}
    262 #endif /* IPSEC */
    263 
    264 
    265 	if (needipsec &&
    266 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    267 		in6_delayed_cksum(m);
    268 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    269 	}
    270 
    271 
    272 	/*
    273 	 * If we need IPsec, or there is at least one extension header,
    274 	 * separate IP6 header from the payload.
    275 	 */
    276 	if ((needipsec || optlen) && !hdrsplit) {
    277 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    278 			m = NULL;
    279 			goto freehdrs;
    280 		}
    281 		m = exthdrs.ip6e_ip6;
    282 		hdrsplit++;
    283 	}
    284 
    285 	/* adjust pointer */
    286 	ip6 = mtod(m, struct ip6_hdr *);
    287 
    288 	/* adjust mbuf packet header length */
    289 	m->m_pkthdr.len += optlen;
    290 	plen = m->m_pkthdr.len - sizeof(*ip6);
    291 
    292 	/* If this is a jumbo payload, insert a jumbo payload option. */
    293 	if (plen > IPV6_MAXPACKET) {
    294 		if (!hdrsplit) {
    295 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    296 				m = NULL;
    297 				goto freehdrs;
    298 			}
    299 			m = exthdrs.ip6e_ip6;
    300 			hdrsplit++;
    301 		}
    302 		/* adjust pointer */
    303 		ip6 = mtod(m, struct ip6_hdr *);
    304 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    305 			goto freehdrs;
    306 		optlen += 8; /* XXX JUMBOOPTLEN */
    307 		ip6->ip6_plen = 0;
    308 	} else
    309 		ip6->ip6_plen = htons(plen);
    310 
    311 	/*
    312 	 * Concatenate headers and fill in next header fields.
    313 	 * Here we have, on "m"
    314 	 *	IPv6 payload
    315 	 * and we insert headers accordingly.  Finally, we should be getting:
    316 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    317 	 *
    318 	 * during the header composing process, "m" points to IPv6 header.
    319 	 * "mprev" points to an extension header prior to esp.
    320 	 */
    321 	{
    322 		u_char *nexthdrp = &ip6->ip6_nxt;
    323 		struct mbuf *mprev = m;
    324 
    325 		/*
    326 		 * we treat dest2 specially.  this makes IPsec processing
    327 		 * much easier.  the goal here is to make mprev point the
    328 		 * mbuf prior to dest2.
    329 		 *
    330 		 * result: IPv6 dest2 payload
    331 		 * m and mprev will point to IPv6 header.
    332 		 */
    333 		if (exthdrs.ip6e_dest2) {
    334 			if (!hdrsplit)
    335 				panic("assumption failed: hdr not split");
    336 			exthdrs.ip6e_dest2->m_next = m->m_next;
    337 			m->m_next = exthdrs.ip6e_dest2;
    338 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    339 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    340 		}
    341 
    342 #define MAKE_CHAIN(m, mp, p, i)\
    343     do {\
    344 	if (m) {\
    345 		if (!hdrsplit) \
    346 			panic("assumption failed: hdr not split"); \
    347 		*mtod((m), u_char *) = *(p);\
    348 		*(p) = (i);\
    349 		p = mtod((m), u_char *);\
    350 		(m)->m_next = (mp)->m_next;\
    351 		(mp)->m_next = (m);\
    352 		(mp) = (m);\
    353 	}\
    354     } while (/*CONSTCOND*/ 0)
    355 		/*
    356 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    357 		 * m will point to IPv6 header.  mprev will point to the
    358 		 * extension header prior to dest2 (rthdr in the above case).
    359 		 */
    360 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    361 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    362 		    IPPROTO_DSTOPTS);
    363 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    364 		    IPPROTO_ROUTING);
    365 
    366 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
    367 		    sizeof(struct ip6_hdr) + optlen);
    368 	}
    369 
    370 	/*
    371 	 * If there is a routing header, replace destination address field
    372 	 * with the first hop of the routing header.
    373 	 */
    374 	if (exthdrs.ip6e_rthdr) {
    375 		struct ip6_rthdr *rh;
    376 		struct ip6_rthdr0 *rh0;
    377 		struct in6_addr *addr;
    378 		struct sockaddr_in6 sa;
    379 
    380 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    381 		    struct ip6_rthdr *));
    382 		finaldst = ip6->ip6_dst;
    383 		switch (rh->ip6r_type) {
    384 		case IPV6_RTHDR_TYPE_0:
    385 			 rh0 = (struct ip6_rthdr0 *)rh;
    386 			 addr = (struct in6_addr *)(rh0 + 1);
    387 
    388 			 /*
    389 			  * construct a sockaddr_in6 form of
    390 			  * the first hop.
    391 			  *
    392 			  * XXX: we may not have enough
    393 			  * information about its scope zone;
    394 			  * there is no standard API to pass
    395 			  * the information from the
    396 			  * application.
    397 			  */
    398 			 sockaddr_in6_init(&sa, addr, 0, 0, 0);
    399 			 if ((error = sa6_embedscope(&sa,
    400 			     ip6_use_defzone)) != 0) {
    401 				 goto bad;
    402 			 }
    403 			 ip6->ip6_dst = sa.sin6_addr;
    404 			 (void)memmove(&addr[0], &addr[1],
    405 			     sizeof(struct in6_addr) *
    406 			     (rh0->ip6r0_segleft - 1));
    407 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
    408 			 /* XXX */
    409 			 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
    410 			 break;
    411 		default:	/* is it possible? */
    412 			 error = EINVAL;
    413 			 goto bad;
    414 		}
    415 	}
    416 
    417 	/* Source address validation */
    418 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    419 	    (flags & IPV6_UNSPECSRC) == 0) {
    420 		error = EOPNOTSUPP;
    421 		IP6_STATINC(IP6_STAT_BADSCOPE);
    422 		goto bad;
    423 	}
    424 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    425 		error = EOPNOTSUPP;
    426 		IP6_STATINC(IP6_STAT_BADSCOPE);
    427 		goto bad;
    428 	}
    429 
    430 	IP6_STATINC(IP6_STAT_LOCALOUT);
    431 
    432 	/*
    433 	 * Route packet.
    434 	 */
    435 	/* initialize cached route */
    436 	if (ro == NULL) {
    437 		ro = &ip6route;
    438 	}
    439 	ro_pmtu = ro;
    440 	if (opt && opt->ip6po_rthdr)
    441 		ro = &opt->ip6po_route;
    442 
    443  	/*
    444 	 * if specified, try to fill in the traffic class field.
    445 	 * do not override if a non-zero value is already set.
    446 	 * we check the diffserv field and the ecn field separately.
    447 	 */
    448 	if (opt && opt->ip6po_tclass >= 0) {
    449 		int mask = 0;
    450 
    451 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    452 			mask |= 0xfc;
    453 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    454 			mask |= 0x03;
    455 		if (mask != 0)
    456 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    457 	}
    458 
    459 	/* fill in or override the hop limit field, if necessary. */
    460 	if (opt && opt->ip6po_hlim != -1)
    461 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    462 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    463 		if (im6o != NULL)
    464 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    465 		else
    466 			ip6->ip6_hlim = ip6_defmcasthlim;
    467 	}
    468 
    469 #ifdef IPSEC
    470 	if (needipsec) {
    471 		int s = splsoftnet();
    472 		error = ipsec6_process_packet(m, sp->req);
    473 
    474 		/*
    475 		 * Preserve KAME behaviour: ENOENT can be returned
    476 		 * when an SA acquire is in progress.  Don't propagate
    477 		 * this to user-level; it confuses applications.
    478 		 * XXX this will go away when the SADB is redone.
    479 		 */
    480 		if (error == ENOENT)
    481 			error = 0;
    482 		splx(s);
    483 		goto done;
    484 	}
    485 #endif /* IPSEC */
    486 
    487 	/* adjust pointer */
    488 	ip6 = mtod(m, struct ip6_hdr *);
    489 
    490 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    491 	if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
    492 	    &ifp, &rt, 0)) != 0) {
    493 		if (ifp != NULL)
    494 			in6_ifstat_inc(ifp, ifs6_out_discard);
    495 		goto bad;
    496 	}
    497 	if (rt == NULL) {
    498 		/*
    499 		 * If in6_selectroute() does not return a route entry,
    500 		 * dst may not have been updated.
    501 		 */
    502 		error = rtcache_setdst(ro, sin6tosa(&dst_sa));
    503 		if (error) {
    504 			goto bad;
    505 		}
    506 	}
    507 
    508 	/*
    509 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    510 	 */
    511 	if ((flags & IPV6_FORWARDING) == 0) {
    512 		/* XXX: the FORWARDING flag can be set for mrouting. */
    513 		in6_ifstat_inc(ifp, ifs6_out_request);
    514 	}
    515 	if (rt != NULL) {
    516 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    517 		rt->rt_use++;
    518 	}
    519 
    520 	/*
    521 	 * The outgoing interface must be in the zone of source and
    522 	 * destination addresses.  We should use ia_ifp to support the
    523 	 * case of sending packets to an address of our own.
    524 	 */
    525 	if (ia != NULL && ia->ia_ifp)
    526 		origifp = ia->ia_ifp;
    527 	else
    528 		origifp = ifp;
    529 
    530 	src0 = ip6->ip6_src;
    531 	if (in6_setscope(&src0, origifp, &zone))
    532 		goto badscope;
    533 	sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
    534 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    535 		goto badscope;
    536 
    537 	dst0 = ip6->ip6_dst;
    538 	if (in6_setscope(&dst0, origifp, &zone))
    539 		goto badscope;
    540 	/* re-initialize to be sure */
    541 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    542 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    543 		goto badscope;
    544 
    545 	/* scope check is done. */
    546 
    547 	if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    548 		dst = satocsin6(rtcache_getdst(ro));
    549 		KASSERT(dst != NULL);
    550 	} else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) {
    551 		/*
    552 		 * The nexthop is explicitly specified by the
    553 		 * application.  We assume the next hop is an IPv6
    554 		 * address.
    555 		 */
    556 		dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
    557 	} else if ((rt->rt_flags & RTF_GATEWAY))
    558 		dst = (struct sockaddr_in6 *)rt->rt_gateway;
    559 	else
    560 		dst = satocsin6(rtcache_getdst(ro));
    561 
    562 	/*
    563 	 * XXXXXX: original code follows:
    564 	 */
    565 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    566 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    567 	else {
    568 		struct	in6_multi *in6m;
    569 
    570 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    571 
    572 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    573 
    574 		/*
    575 		 * Confirm that the outgoing interface supports multicast.
    576 		 */
    577 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    578 			IP6_STATINC(IP6_STAT_NOROUTE);
    579 			in6_ifstat_inc(ifp, ifs6_out_discard);
    580 			error = ENETUNREACH;
    581 			goto bad;
    582 		}
    583 
    584 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
    585 		if (in6m != NULL &&
    586 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    587 			/*
    588 			 * If we belong to the destination multicast group
    589 			 * on the outgoing interface, and the caller did not
    590 			 * forbid loopback, loop back a copy.
    591 			 */
    592 			KASSERT(dst != NULL);
    593 			ip6_mloopback(ifp, m, dst);
    594 		} else {
    595 			/*
    596 			 * If we are acting as a multicast router, perform
    597 			 * multicast forwarding as if the packet had just
    598 			 * arrived on the interface to which we are about
    599 			 * to send.  The multicast forwarding function
    600 			 * recursively calls this function, using the
    601 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    602 			 *
    603 			 * Multicasts that are looped back by ip6_mloopback(),
    604 			 * above, will be forwarded by the ip6_input() routine,
    605 			 * if necessary.
    606 			 */
    607 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    608 				if (ip6_mforward(ip6, ifp, m) != 0) {
    609 					m_freem(m);
    610 					goto done;
    611 				}
    612 			}
    613 		}
    614 		/*
    615 		 * Multicasts with a hoplimit of zero may be looped back,
    616 		 * above, but must not be transmitted on a network.
    617 		 * Also, multicasts addressed to the loopback interface
    618 		 * are not sent -- the above call to ip6_mloopback() will
    619 		 * loop back a copy if this host actually belongs to the
    620 		 * destination group on the loopback interface.
    621 		 */
    622 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    623 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    624 			m_freem(m);
    625 			goto done;
    626 		}
    627 	}
    628 
    629 	/*
    630 	 * Fill the outgoing inteface to tell the upper layer
    631 	 * to increment per-interface statistics.
    632 	 */
    633 	if (ifpp)
    634 		*ifpp = ifp;
    635 
    636 	/* Determine path MTU. */
    637 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
    638 	    &alwaysfrag)) != 0)
    639 		goto bad;
    640 
    641 	/*
    642 	 * The caller of this function may specify to use the minimum MTU
    643 	 * in some cases.
    644 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
    645 	 * setting.  The logic is a bit complicated; by default, unicast
    646 	 * packets will follow path MTU while multicast packets will be sent at
    647 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
    648 	 * including unicast ones will be sent at the minimum MTU.  Multicast
    649 	 * packets will always be sent at the minimum MTU unless
    650 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
    651 	 * See RFC 3542 for more details.
    652 	 */
    653 	if (mtu > IPV6_MMTU) {
    654 		if ((flags & IPV6_MINMTU))
    655 			mtu = IPV6_MMTU;
    656 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
    657 			mtu = IPV6_MMTU;
    658 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
    659 			 (opt == NULL ||
    660 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
    661 			mtu = IPV6_MMTU;
    662 		}
    663 	}
    664 
    665 	/*
    666 	 * clear embedded scope identifiers if necessary.
    667 	 * in6_clearscope will touch the addresses only when necessary.
    668 	 */
    669 	in6_clearscope(&ip6->ip6_src);
    670 	in6_clearscope(&ip6->ip6_dst);
    671 
    672 	/*
    673 	 * If the outgoing packet contains a hop-by-hop options header,
    674 	 * it must be examined and processed even by the source node.
    675 	 * (RFC 2460, section 4.)
    676 	 */
    677 	if (ip6->ip6_nxt == IPV6_HOPOPTS) {
    678 		u_int32_t dummy1; /* XXX unused */
    679 		u_int32_t dummy2; /* XXX unused */
    680 		int hoff = sizeof(struct ip6_hdr);
    681 
    682 		if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
    683 			/* m was already freed at this point */
    684 			error = EINVAL;/* better error? */
    685 			goto done;
    686 		}
    687 
    688 		ip6 = mtod(m, struct ip6_hdr *);
    689 	}
    690 
    691 	/*
    692 	 * Run through list of hooks for output packets.
    693 	 */
    694 	if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    695 		goto done;
    696 	if (m == NULL)
    697 		goto done;
    698 	ip6 = mtod(m, struct ip6_hdr *);
    699 
    700 	/*
    701 	 * Send the packet to the outgoing interface.
    702 	 * If necessary, do IPv6 fragmentation before sending.
    703 	 *
    704 	 * the logic here is rather complex:
    705 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    706 	 * 1-a:	send as is if tlen <= path mtu
    707 	 * 1-b:	fragment if tlen > path mtu
    708 	 *
    709 	 * 2: if user asks us not to fragment (dontfrag == 1)
    710 	 * 2-a:	send as is if tlen <= interface mtu
    711 	 * 2-b:	error if tlen > interface mtu
    712 	 *
    713 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    714 	 *	always fragment
    715 	 *
    716 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    717 	 *	error, as we cannot handle this conflicting request
    718 	 */
    719 	tlen = m->m_pkthdr.len;
    720 	tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
    721 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
    722 		dontfrag = 1;
    723 	else
    724 		dontfrag = 0;
    725 
    726 	if (dontfrag && alwaysfrag) {	/* case 4 */
    727 		/* conflicting request - can't transmit */
    728 		error = EMSGSIZE;
    729 		goto bad;
    730 	}
    731 	if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) {	/* case 2-b */
    732 		/*
    733 		 * Even if the DONTFRAG option is specified, we cannot send the
    734 		 * packet when the data length is larger than the MTU of the
    735 		 * outgoing interface.
    736 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    737 		 * well as returning an error code (the latter is not described
    738 		 * in the API spec.)
    739 		 */
    740 		u_int32_t mtu32;
    741 		struct ip6ctlparam ip6cp;
    742 
    743 		mtu32 = (u_int32_t)mtu;
    744 		memset(&ip6cp, 0, sizeof(ip6cp));
    745 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    746 		pfctlinput2(PRC_MSGSIZE,
    747 		    rtcache_getdst(ro_pmtu), &ip6cp);
    748 
    749 		error = EMSGSIZE;
    750 		goto bad;
    751 	}
    752 
    753 	/*
    754 	 * transmit packet without fragmentation
    755 	 */
    756 	if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
    757 		/* case 1-a and 2-a */
    758 		struct in6_ifaddr *ia6;
    759 		int sw_csum;
    760 
    761 		ip6 = mtod(m, struct ip6_hdr *);
    762 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    763 		if (ia6) {
    764 			/* Record statistics for this interface address. */
    765 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    766 		}
    767 
    768 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    769 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    770 			if (IN6_NEED_CHECKSUM(ifp,
    771 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    772 				in6_delayed_cksum(m);
    773 			}
    774 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    775 		}
    776 
    777 		KASSERT(dst != NULL);
    778 		if (__predict_true(!tso ||
    779 		    (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
    780 			error = nd6_output(ifp, origifp, m, dst, rt);
    781 		} else {
    782 			error = ip6_tso_output(ifp, origifp, m, dst, rt);
    783 		}
    784 		goto done;
    785 	}
    786 
    787 	if (tso) {
    788 		error = EINVAL; /* XXX */
    789 		goto bad;
    790 	}
    791 
    792 	/*
    793 	 * try to fragment the packet.  case 1-b and 3
    794 	 */
    795 	if (mtu < IPV6_MMTU) {
    796 		/* path MTU cannot be less than IPV6_MMTU */
    797 		error = EMSGSIZE;
    798 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    799 		goto bad;
    800 	} else if (ip6->ip6_plen == 0) {
    801 		/* jumbo payload cannot be fragmented */
    802 		error = EMSGSIZE;
    803 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    804 		goto bad;
    805 	} else {
    806 		struct mbuf **mnext, *m_frgpart;
    807 		struct ip6_frag *ip6f;
    808 		u_int32_t id = htonl(ip6_randomid());
    809 		u_char nextproto;
    810 #if 0				/* see below */
    811 		struct ip6ctlparam ip6cp;
    812 		u_int32_t mtu32;
    813 #endif
    814 
    815 		/*
    816 		 * Too large for the destination or interface;
    817 		 * fragment if possible.
    818 		 * Must be able to put at least 8 bytes per fragment.
    819 		 */
    820 		hlen = unfragpartlen;
    821 		if (mtu > IPV6_MAXPACKET)
    822 			mtu = IPV6_MAXPACKET;
    823 
    824 #if 0
    825 		/*
    826 		 * It is believed this code is a leftover from the
    827 		 * development of the IPV6_RECVPATHMTU sockopt and
    828 		 * associated work to implement RFC3542.
    829 		 * It's not entirely clear what the intent of the API
    830 		 * is at this point, so disable this code for now.
    831 		 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
    832 		 * will send notifications if the application requests.
    833 		 */
    834 
    835 		/* Notify a proper path MTU to applications. */
    836 		mtu32 = (u_int32_t)mtu;
    837 		memset(&ip6cp, 0, sizeof(ip6cp));
    838 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    839 		pfctlinput2(PRC_MSGSIZE,
    840 		    rtcache_getdst(ro_pmtu), &ip6cp);
    841 #endif
    842 
    843 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    844 		if (len < 8) {
    845 			error = EMSGSIZE;
    846 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
    847 			goto bad;
    848 		}
    849 
    850 		mnext = &m->m_nextpkt;
    851 
    852 		/*
    853 		 * Change the next header field of the last header in the
    854 		 * unfragmentable part.
    855 		 */
    856 		if (exthdrs.ip6e_rthdr) {
    857 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    858 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    859 		} else if (exthdrs.ip6e_dest1) {
    860 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    861 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    862 		} else if (exthdrs.ip6e_hbh) {
    863 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    864 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    865 		} else {
    866 			nextproto = ip6->ip6_nxt;
    867 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    868 		}
    869 
    870 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
    871 		    != 0) {
    872 			if (IN6_NEED_CHECKSUM(ifp,
    873 			    m->m_pkthdr.csum_flags &
    874 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    875 				in6_delayed_cksum(m);
    876 			}
    877 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    878 		}
    879 
    880 		/*
    881 		 * Loop through length of segment after first fragment,
    882 		 * make new header and copy data of each part and link onto
    883 		 * chain.
    884 		 */
    885 		m0 = m;
    886 		for (off = hlen; off < tlen; off += len) {
    887 			struct mbuf *mlast;
    888 
    889 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
    890 			if (!m) {
    891 				error = ENOBUFS;
    892 				IP6_STATINC(IP6_STAT_ODROPPED);
    893 				goto sendorfree;
    894 			}
    895 			m->m_pkthdr.rcvif = NULL;
    896 			m->m_flags = m0->m_flags & M_COPYFLAGS;
    897 			*mnext = m;
    898 			mnext = &m->m_nextpkt;
    899 			m->m_data += max_linkhdr;
    900 			mhip6 = mtod(m, struct ip6_hdr *);
    901 			*mhip6 = *ip6;
    902 			m->m_len = sizeof(*mhip6);
    903 			/*
    904 			 * ip6f must be valid if error is 0.  But how
    905 			 * can a compiler be expected to infer this?
    906 			 */
    907 			ip6f = NULL;
    908 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
    909 			if (error) {
    910 				IP6_STATINC(IP6_STAT_ODROPPED);
    911 				goto sendorfree;
    912 			}
    913 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
    914 			if (off + len >= tlen)
    915 				len = tlen - off;
    916 			else
    917 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
    918 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
    919 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
    920 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
    921 				error = ENOBUFS;
    922 				IP6_STATINC(IP6_STAT_ODROPPED);
    923 				goto sendorfree;
    924 			}
    925 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
    926 				;
    927 			mlast->m_next = m_frgpart;
    928 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
    929 			m->m_pkthdr.rcvif = NULL;
    930 			ip6f->ip6f_reserved = 0;
    931 			ip6f->ip6f_ident = id;
    932 			ip6f->ip6f_nxt = nextproto;
    933 			IP6_STATINC(IP6_STAT_OFRAGMENTS);
    934 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
    935 		}
    936 
    937 		in6_ifstat_inc(ifp, ifs6_out_fragok);
    938 	}
    939 
    940 	/*
    941 	 * Remove leading garbages.
    942 	 */
    943 sendorfree:
    944 	m = m0->m_nextpkt;
    945 	m0->m_nextpkt = 0;
    946 	m_freem(m0);
    947 	for (m0 = m; m; m = m0) {
    948 		m0 = m->m_nextpkt;
    949 		m->m_nextpkt = 0;
    950 		if (error == 0) {
    951 			struct in6_ifaddr *ia6;
    952 			ip6 = mtod(m, struct ip6_hdr *);
    953 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    954 			if (ia6) {
    955 				/*
    956 				 * Record statistics for this interface
    957 				 * address.
    958 				 */
    959 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
    960 				    m->m_pkthdr.len;
    961 			}
    962 			KASSERT(dst != NULL);
    963 			error = nd6_output(ifp, origifp, m, dst, rt);
    964 		} else
    965 			m_freem(m);
    966 	}
    967 
    968 	if (error == 0)
    969 		IP6_STATINC(IP6_STAT_FRAGMENTED);
    970 
    971 done:
    972 	rtcache_free(&ip6route);
    973 
    974 #ifdef IPSEC
    975 	if (sp != NULL)
    976 		KEY_FREESP(&sp);
    977 #endif /* IPSEC */
    978 
    979 
    980 	return (error);
    981 
    982 freehdrs:
    983 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
    984 	m_freem(exthdrs.ip6e_dest1);
    985 	m_freem(exthdrs.ip6e_rthdr);
    986 	m_freem(exthdrs.ip6e_dest2);
    987 	/* FALLTHROUGH */
    988 bad:
    989 	m_freem(m);
    990 	goto done;
    991 badscope:
    992 	IP6_STATINC(IP6_STAT_BADSCOPE);
    993 	in6_ifstat_inc(origifp, ifs6_out_discard);
    994 	if (error == 0)
    995 		error = EHOSTUNREACH; /* XXX */
    996 	goto bad;
    997 }
    998 
    999 static int
   1000 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
   1001 {
   1002 	struct mbuf *m;
   1003 
   1004 	if (hlen > MCLBYTES)
   1005 		return (ENOBUFS); /* XXX */
   1006 
   1007 	MGET(m, M_DONTWAIT, MT_DATA);
   1008 	if (!m)
   1009 		return (ENOBUFS);
   1010 
   1011 	if (hlen > MLEN) {
   1012 		MCLGET(m, M_DONTWAIT);
   1013 		if ((m->m_flags & M_EXT) == 0) {
   1014 			m_free(m);
   1015 			return (ENOBUFS);
   1016 		}
   1017 	}
   1018 	m->m_len = hlen;
   1019 	if (hdr)
   1020 		bcopy(hdr, mtod(m, void *), hlen);
   1021 
   1022 	*mp = m;
   1023 	return (0);
   1024 }
   1025 
   1026 /*
   1027  * Process a delayed payload checksum calculation.
   1028  */
   1029 void
   1030 in6_delayed_cksum(struct mbuf *m)
   1031 {
   1032 	uint16_t csum, offset;
   1033 
   1034 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1035 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1036 	KASSERT((m->m_pkthdr.csum_flags
   1037 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
   1038 
   1039 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
   1040 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
   1041 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
   1042 		csum = 0xffff;
   1043 	}
   1044 
   1045 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
   1046 	if ((offset + sizeof(csum)) > m->m_len) {
   1047 		m_copyback(m, offset, sizeof(csum), &csum);
   1048 	} else {
   1049 		*(uint16_t *)(mtod(m, char *) + offset) = csum;
   1050 	}
   1051 }
   1052 
   1053 /*
   1054  * Insert jumbo payload option.
   1055  */
   1056 static int
   1057 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
   1058 {
   1059 	struct mbuf *mopt;
   1060 	u_int8_t *optbuf;
   1061 	u_int32_t v;
   1062 
   1063 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1064 
   1065 	/*
   1066 	 * If there is no hop-by-hop options header, allocate new one.
   1067 	 * If there is one but it doesn't have enough space to store the
   1068 	 * jumbo payload option, allocate a cluster to store the whole options.
   1069 	 * Otherwise, use it to store the options.
   1070 	 */
   1071 	if (exthdrs->ip6e_hbh == 0) {
   1072 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1073 		if (mopt == 0)
   1074 			return (ENOBUFS);
   1075 		mopt->m_len = JUMBOOPTLEN;
   1076 		optbuf = mtod(mopt, u_int8_t *);
   1077 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1078 		exthdrs->ip6e_hbh = mopt;
   1079 	} else {
   1080 		struct ip6_hbh *hbh;
   1081 
   1082 		mopt = exthdrs->ip6e_hbh;
   1083 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1084 			/*
   1085 			 * XXX assumption:
   1086 			 * - exthdrs->ip6e_hbh is not referenced from places
   1087 			 *   other than exthdrs.
   1088 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1089 			 */
   1090 			int oldoptlen = mopt->m_len;
   1091 			struct mbuf *n;
   1092 
   1093 			/*
   1094 			 * XXX: give up if the whole (new) hbh header does
   1095 			 * not fit even in an mbuf cluster.
   1096 			 */
   1097 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1098 				return (ENOBUFS);
   1099 
   1100 			/*
   1101 			 * As a consequence, we must always prepare a cluster
   1102 			 * at this point.
   1103 			 */
   1104 			MGET(n, M_DONTWAIT, MT_DATA);
   1105 			if (n) {
   1106 				MCLGET(n, M_DONTWAIT);
   1107 				if ((n->m_flags & M_EXT) == 0) {
   1108 					m_freem(n);
   1109 					n = NULL;
   1110 				}
   1111 			}
   1112 			if (!n)
   1113 				return (ENOBUFS);
   1114 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1115 			bcopy(mtod(mopt, void *), mtod(n, void *),
   1116 			    oldoptlen);
   1117 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1118 			m_freem(mopt);
   1119 			mopt = exthdrs->ip6e_hbh = n;
   1120 		} else {
   1121 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1122 			mopt->m_len += JUMBOOPTLEN;
   1123 		}
   1124 		optbuf[0] = IP6OPT_PADN;
   1125 		optbuf[1] = 0;
   1126 
   1127 		/*
   1128 		 * Adjust the header length according to the pad and
   1129 		 * the jumbo payload option.
   1130 		 */
   1131 		hbh = mtod(mopt, struct ip6_hbh *);
   1132 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1133 	}
   1134 
   1135 	/* fill in the option. */
   1136 	optbuf[2] = IP6OPT_JUMBO;
   1137 	optbuf[3] = 4;
   1138 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1139 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
   1140 
   1141 	/* finally, adjust the packet header length */
   1142 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1143 
   1144 	return (0);
   1145 #undef JUMBOOPTLEN
   1146 }
   1147 
   1148 /*
   1149  * Insert fragment header and copy unfragmentable header portions.
   1150  *
   1151  * *frghdrp will not be read, and it is guaranteed that either an
   1152  * error is returned or that *frghdrp will point to space allocated
   1153  * for the fragment header.
   1154  */
   1155 static int
   1156 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
   1157 	struct ip6_frag **frghdrp)
   1158 {
   1159 	struct mbuf *n, *mlast;
   1160 
   1161 	if (hlen > sizeof(struct ip6_hdr)) {
   1162 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1163 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1164 		if (n == 0)
   1165 			return (ENOBUFS);
   1166 		m->m_next = n;
   1167 	} else
   1168 		n = m;
   1169 
   1170 	/* Search for the last mbuf of unfragmentable part. */
   1171 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1172 		;
   1173 
   1174 	if ((mlast->m_flags & M_EXT) == 0 &&
   1175 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1176 		/* use the trailing space of the last mbuf for the fragment hdr */
   1177 		*frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
   1178 		    mlast->m_len);
   1179 		mlast->m_len += sizeof(struct ip6_frag);
   1180 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1181 	} else {
   1182 		/* allocate a new mbuf for the fragment header */
   1183 		struct mbuf *mfrg;
   1184 
   1185 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1186 		if (mfrg == 0)
   1187 			return (ENOBUFS);
   1188 		mfrg->m_len = sizeof(struct ip6_frag);
   1189 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1190 		mlast->m_next = mfrg;
   1191 	}
   1192 
   1193 	return (0);
   1194 }
   1195 
   1196 static int
   1197 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp,
   1198     const struct in6_addr *dst, u_long *mtup, int *alwaysfragp)
   1199 {
   1200 	struct rtentry *rt;
   1201 	u_int32_t mtu = 0;
   1202 	int alwaysfrag = 0;
   1203 	int error = 0;
   1204 
   1205 	if (ro_pmtu != ro) {
   1206 		union {
   1207 			struct sockaddr		dst;
   1208 			struct sockaddr_in6	dst6;
   1209 		} u;
   1210 
   1211 		/* The first hop and the final destination may differ. */
   1212 		sockaddr_in6_init(&u.dst6, dst, 0, 0, 0);
   1213 		rt = rtcache_lookup(ro_pmtu, &u.dst);
   1214 	} else
   1215 		rt = rtcache_validate(ro_pmtu);
   1216 	if (rt != NULL) {
   1217 		u_int32_t ifmtu;
   1218 
   1219 		if (ifp == NULL)
   1220 			ifp = rt->rt_ifp;
   1221 		ifmtu = IN6_LINKMTU(ifp);
   1222 		mtu = rt->rt_rmx.rmx_mtu;
   1223 		if (mtu == 0)
   1224 			mtu = ifmtu;
   1225 		else if (mtu < IPV6_MMTU) {
   1226 			/*
   1227 			 * RFC2460 section 5, last paragraph:
   1228 			 * if we record ICMPv6 too big message with
   1229 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1230 			 * or smaller, with fragment header attached.
   1231 			 * (fragment header is needed regardless from the
   1232 			 * packet size, for translators to identify packets)
   1233 			 */
   1234 			alwaysfrag = 1;
   1235 			mtu = IPV6_MMTU;
   1236 		} else if (mtu > ifmtu) {
   1237 			/*
   1238 			 * The MTU on the route is larger than the MTU on
   1239 			 * the interface!  This shouldn't happen, unless the
   1240 			 * MTU of the interface has been changed after the
   1241 			 * interface was brought up.  Change the MTU in the
   1242 			 * route to match the interface MTU (as long as the
   1243 			 * field isn't locked).
   1244 			 */
   1245 			mtu = ifmtu;
   1246 			if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
   1247 				rt->rt_rmx.rmx_mtu = mtu;
   1248 		}
   1249 	} else if (ifp) {
   1250 		mtu = IN6_LINKMTU(ifp);
   1251 	} else
   1252 		error = EHOSTUNREACH; /* XXX */
   1253 
   1254 	*mtup = mtu;
   1255 	if (alwaysfragp)
   1256 		*alwaysfragp = alwaysfrag;
   1257 	return (error);
   1258 }
   1259 
   1260 /*
   1261  * IP6 socket option processing.
   1262  */
   1263 int
   1264 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1265 {
   1266 	int optdatalen, uproto;
   1267 	void *optdata;
   1268 	struct in6pcb *in6p = sotoin6pcb(so);
   1269 	struct ip_moptions **mopts;
   1270 	int error, optval;
   1271 	int level, optname;
   1272 
   1273 	KASSERT(sopt != NULL);
   1274 
   1275 	level = sopt->sopt_level;
   1276 	optname = sopt->sopt_name;
   1277 
   1278 	error = optval = 0;
   1279 	uproto = (int)so->so_proto->pr_protocol;
   1280 
   1281 	switch (level) {
   1282 	case IPPROTO_IP:
   1283 		switch (optname) {
   1284 		case IP_ADD_MEMBERSHIP:
   1285 		case IP_DROP_MEMBERSHIP:
   1286 		case IP_MULTICAST_IF:
   1287 		case IP_MULTICAST_LOOP:
   1288 		case IP_MULTICAST_TTL:
   1289 			mopts = &in6p->in6p_v4moptions;
   1290 			switch (op) {
   1291 			case PRCO_GETOPT:
   1292 				return ip_getmoptions(*mopts, sopt);
   1293 			case PRCO_SETOPT:
   1294 				return ip_setmoptions(mopts, sopt);
   1295 			default:
   1296 				return EINVAL;
   1297 			}
   1298 		default:
   1299 			return ENOPROTOOPT;
   1300 		}
   1301 	case IPPROTO_IPV6:
   1302 		break;
   1303 	default:
   1304 		return ENOPROTOOPT;
   1305 	}
   1306 	switch (op) {
   1307 	case PRCO_SETOPT:
   1308 		switch (optname) {
   1309 #ifdef RFC2292
   1310 		case IPV6_2292PKTOPTIONS:
   1311 			error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
   1312 			break;
   1313 #endif
   1314 
   1315 		/*
   1316 		 * Use of some Hop-by-Hop options or some
   1317 		 * Destination options, might require special
   1318 		 * privilege.  That is, normal applications
   1319 		 * (without special privilege) might be forbidden
   1320 		 * from setting certain options in outgoing packets,
   1321 		 * and might never see certain options in received
   1322 		 * packets. [RFC 2292 Section 6]
   1323 		 * KAME specific note:
   1324 		 *  KAME prevents non-privileged users from sending or
   1325 		 *  receiving ANY hbh/dst options in order to avoid
   1326 		 *  overhead of parsing options in the kernel.
   1327 		 */
   1328 		case IPV6_RECVHOPOPTS:
   1329 		case IPV6_RECVDSTOPTS:
   1330 		case IPV6_RECVRTHDRDSTOPTS:
   1331 			error = kauth_authorize_network(kauth_cred_get(),
   1332 			    KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
   1333 			    NULL, NULL, NULL);
   1334 			if (error)
   1335 				break;
   1336 			/* FALLTHROUGH */
   1337 		case IPV6_UNICAST_HOPS:
   1338 		case IPV6_HOPLIMIT:
   1339 		case IPV6_FAITH:
   1340 
   1341 		case IPV6_RECVPKTINFO:
   1342 		case IPV6_RECVHOPLIMIT:
   1343 		case IPV6_RECVRTHDR:
   1344 		case IPV6_RECVPATHMTU:
   1345 		case IPV6_RECVTCLASS:
   1346 		case IPV6_V6ONLY:
   1347 			error = sockopt_getint(sopt, &optval);
   1348 			if (error)
   1349 				break;
   1350 			switch (optname) {
   1351 			case IPV6_UNICAST_HOPS:
   1352 				if (optval < -1 || optval >= 256)
   1353 					error = EINVAL;
   1354 				else {
   1355 					/* -1 = kernel default */
   1356 					in6p->in6p_hops = optval;
   1357 				}
   1358 				break;
   1359 #define OPTSET(bit) \
   1360 do { \
   1361 if (optval) \
   1362 	in6p->in6p_flags |= (bit); \
   1363 else \
   1364 	in6p->in6p_flags &= ~(bit); \
   1365 } while (/*CONSTCOND*/ 0)
   1366 
   1367 #ifdef RFC2292
   1368 #define OPTSET2292(bit) 			\
   1369 do { 						\
   1370 in6p->in6p_flags |= IN6P_RFC2292; 	\
   1371 if (optval) 				\
   1372 	in6p->in6p_flags |= (bit); 	\
   1373 else 					\
   1374 	in6p->in6p_flags &= ~(bit); 	\
   1375 } while (/*CONSTCOND*/ 0)
   1376 #endif
   1377 
   1378 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
   1379 
   1380 			case IPV6_RECVPKTINFO:
   1381 #ifdef RFC2292
   1382 				/* cannot mix with RFC2292 */
   1383 				if (OPTBIT(IN6P_RFC2292)) {
   1384 					error = EINVAL;
   1385 					break;
   1386 				}
   1387 #endif
   1388 				OPTSET(IN6P_PKTINFO);
   1389 				break;
   1390 
   1391 			case IPV6_HOPLIMIT:
   1392 			{
   1393 				struct ip6_pktopts **optp;
   1394 
   1395 #ifdef RFC2292
   1396 				/* cannot mix with RFC2292 */
   1397 				if (OPTBIT(IN6P_RFC2292)) {
   1398 					error = EINVAL;
   1399 					break;
   1400 				}
   1401 #endif
   1402 				optp = &in6p->in6p_outputopts;
   1403 				error = ip6_pcbopt(IPV6_HOPLIMIT,
   1404 						   (u_char *)&optval,
   1405 						   sizeof(optval),
   1406 						   optp,
   1407 						   kauth_cred_get(), uproto);
   1408 				break;
   1409 			}
   1410 
   1411 			case IPV6_RECVHOPLIMIT:
   1412 #ifdef RFC2292
   1413 				/* cannot mix with RFC2292 */
   1414 				if (OPTBIT(IN6P_RFC2292)) {
   1415 					error = EINVAL;
   1416 					break;
   1417 				}
   1418 #endif
   1419 				OPTSET(IN6P_HOPLIMIT);
   1420 				break;
   1421 
   1422 			case IPV6_RECVHOPOPTS:
   1423 #ifdef RFC2292
   1424 				/* cannot mix with RFC2292 */
   1425 				if (OPTBIT(IN6P_RFC2292)) {
   1426 					error = EINVAL;
   1427 					break;
   1428 				}
   1429 #endif
   1430 				OPTSET(IN6P_HOPOPTS);
   1431 				break;
   1432 
   1433 			case IPV6_RECVDSTOPTS:
   1434 #ifdef RFC2292
   1435 				/* cannot mix with RFC2292 */
   1436 				if (OPTBIT(IN6P_RFC2292)) {
   1437 					error = EINVAL;
   1438 					break;
   1439 				}
   1440 #endif
   1441 				OPTSET(IN6P_DSTOPTS);
   1442 				break;
   1443 
   1444 			case IPV6_RECVRTHDRDSTOPTS:
   1445 #ifdef RFC2292
   1446 				/* cannot mix with RFC2292 */
   1447 				if (OPTBIT(IN6P_RFC2292)) {
   1448 					error = EINVAL;
   1449 					break;
   1450 				}
   1451 #endif
   1452 				OPTSET(IN6P_RTHDRDSTOPTS);
   1453 				break;
   1454 
   1455 			case IPV6_RECVRTHDR:
   1456 #ifdef RFC2292
   1457 				/* cannot mix with RFC2292 */
   1458 				if (OPTBIT(IN6P_RFC2292)) {
   1459 					error = EINVAL;
   1460 					break;
   1461 				}
   1462 #endif
   1463 				OPTSET(IN6P_RTHDR);
   1464 				break;
   1465 
   1466 			case IPV6_FAITH:
   1467 				OPTSET(IN6P_FAITH);
   1468 				break;
   1469 
   1470 			case IPV6_RECVPATHMTU:
   1471 				/*
   1472 				 * We ignore this option for TCP
   1473 				 * sockets.
   1474 				 * (RFC3542 leaves this case
   1475 				 * unspecified.)
   1476 				 */
   1477 				if (uproto != IPPROTO_TCP)
   1478 					OPTSET(IN6P_MTU);
   1479 				break;
   1480 
   1481 			case IPV6_V6ONLY:
   1482 				/*
   1483 				 * make setsockopt(IPV6_V6ONLY)
   1484 				 * available only prior to bind(2).
   1485 				 * see ipng mailing list, Jun 22 2001.
   1486 				 */
   1487 				if (in6p->in6p_lport ||
   1488 				    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
   1489 					error = EINVAL;
   1490 					break;
   1491 				}
   1492 #ifdef INET6_BINDV6ONLY
   1493 				if (!optval)
   1494 					error = EINVAL;
   1495 #else
   1496 				OPTSET(IN6P_IPV6_V6ONLY);
   1497 #endif
   1498 				break;
   1499 			case IPV6_RECVTCLASS:
   1500 #ifdef RFC2292
   1501 				/* cannot mix with RFC2292 XXX */
   1502 				if (OPTBIT(IN6P_RFC2292)) {
   1503 					error = EINVAL;
   1504 					break;
   1505 				}
   1506 #endif
   1507 				OPTSET(IN6P_TCLASS);
   1508 				break;
   1509 
   1510 			}
   1511 			break;
   1512 
   1513 		case IPV6_OTCLASS:
   1514 		{
   1515 			struct ip6_pktopts **optp;
   1516 			u_int8_t tclass;
   1517 
   1518 			error = sockopt_get(sopt, &tclass, sizeof(tclass));
   1519 			if (error)
   1520 				break;
   1521 			optp = &in6p->in6p_outputopts;
   1522 			error = ip6_pcbopt(optname,
   1523 					   (u_char *)&tclass,
   1524 					   sizeof(tclass),
   1525 					   optp,
   1526 					   kauth_cred_get(), uproto);
   1527 			break;
   1528 		}
   1529 
   1530 		case IPV6_TCLASS:
   1531 		case IPV6_DONTFRAG:
   1532 		case IPV6_USE_MIN_MTU:
   1533 		case IPV6_PREFER_TEMPADDR:
   1534 			error = sockopt_getint(sopt, &optval);
   1535 			if (error)
   1536 				break;
   1537 			{
   1538 				struct ip6_pktopts **optp;
   1539 				optp = &in6p->in6p_outputopts;
   1540 				error = ip6_pcbopt(optname,
   1541 						   (u_char *)&optval,
   1542 						   sizeof(optval),
   1543 						   optp,
   1544 						   kauth_cred_get(), uproto);
   1545 				break;
   1546 			}
   1547 
   1548 #ifdef RFC2292
   1549 		case IPV6_2292PKTINFO:
   1550 		case IPV6_2292HOPLIMIT:
   1551 		case IPV6_2292HOPOPTS:
   1552 		case IPV6_2292DSTOPTS:
   1553 		case IPV6_2292RTHDR:
   1554 			/* RFC 2292 */
   1555 			error = sockopt_getint(sopt, &optval);
   1556 			if (error)
   1557 				break;
   1558 
   1559 			switch (optname) {
   1560 			case IPV6_2292PKTINFO:
   1561 				OPTSET2292(IN6P_PKTINFO);
   1562 				break;
   1563 			case IPV6_2292HOPLIMIT:
   1564 				OPTSET2292(IN6P_HOPLIMIT);
   1565 				break;
   1566 			case IPV6_2292HOPOPTS:
   1567 				/*
   1568 				 * Check super-user privilege.
   1569 				 * See comments for IPV6_RECVHOPOPTS.
   1570 				 */
   1571 				error =
   1572 				    kauth_authorize_network(kauth_cred_get(),
   1573 				    KAUTH_NETWORK_IPV6,
   1574 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1575 				    NULL, NULL);
   1576 				if (error)
   1577 					return (error);
   1578 				OPTSET2292(IN6P_HOPOPTS);
   1579 				break;
   1580 			case IPV6_2292DSTOPTS:
   1581 				error =
   1582 				    kauth_authorize_network(kauth_cred_get(),
   1583 				    KAUTH_NETWORK_IPV6,
   1584 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1585 				    NULL, NULL);
   1586 				if (error)
   1587 					return (error);
   1588 				OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
   1589 				break;
   1590 			case IPV6_2292RTHDR:
   1591 				OPTSET2292(IN6P_RTHDR);
   1592 				break;
   1593 			}
   1594 			break;
   1595 #endif
   1596 		case IPV6_PKTINFO:
   1597 		case IPV6_HOPOPTS:
   1598 		case IPV6_RTHDR:
   1599 		case IPV6_DSTOPTS:
   1600 		case IPV6_RTHDRDSTOPTS:
   1601 		case IPV6_NEXTHOP: {
   1602 			/* new advanced API (RFC3542) */
   1603 			void *optbuf;
   1604 			int optbuflen;
   1605 			struct ip6_pktopts **optp;
   1606 
   1607 #ifdef RFC2292
   1608 			/* cannot mix with RFC2292 */
   1609 			if (OPTBIT(IN6P_RFC2292)) {
   1610 				error = EINVAL;
   1611 				break;
   1612 			}
   1613 #endif
   1614 
   1615 			optbuflen = sopt->sopt_size;
   1616 			optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
   1617 			if (optbuf == NULL) {
   1618 				error = ENOBUFS;
   1619 				break;
   1620 			}
   1621 
   1622 			error = sockopt_get(sopt, optbuf, optbuflen);
   1623 			if (error) {
   1624 				free(optbuf, M_IP6OPT);
   1625 				break;
   1626 			}
   1627 			optp = &in6p->in6p_outputopts;
   1628 			error = ip6_pcbopt(optname, optbuf, optbuflen,
   1629 			    optp, kauth_cred_get(), uproto);
   1630 
   1631 			free(optbuf, M_IP6OPT);
   1632 			break;
   1633 			}
   1634 #undef OPTSET
   1635 
   1636 		case IPV6_MULTICAST_IF:
   1637 		case IPV6_MULTICAST_HOPS:
   1638 		case IPV6_MULTICAST_LOOP:
   1639 		case IPV6_JOIN_GROUP:
   1640 		case IPV6_LEAVE_GROUP:
   1641 			error = ip6_setmoptions(sopt, in6p);
   1642 			break;
   1643 
   1644 		case IPV6_PORTRANGE:
   1645 			error = sockopt_getint(sopt, &optval);
   1646 			if (error)
   1647 				break;
   1648 
   1649 			switch (optval) {
   1650 			case IPV6_PORTRANGE_DEFAULT:
   1651 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1652 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1653 				break;
   1654 
   1655 			case IPV6_PORTRANGE_HIGH:
   1656 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1657 				in6p->in6p_flags |= IN6P_HIGHPORT;
   1658 				break;
   1659 
   1660 			case IPV6_PORTRANGE_LOW:
   1661 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1662 				in6p->in6p_flags |= IN6P_LOWPORT;
   1663 				break;
   1664 
   1665 			default:
   1666 				error = EINVAL;
   1667 				break;
   1668 			}
   1669 			break;
   1670 
   1671 		case IPV6_PORTALGO:
   1672 			error = sockopt_getint(sopt, &optval);
   1673 			if (error)
   1674 				break;
   1675 
   1676 			error = portalgo_algo_index_select(
   1677 			    (struct inpcb_hdr *)in6p, optval);
   1678 			break;
   1679 
   1680 #if defined(IPSEC)
   1681 		case IPV6_IPSEC_POLICY:
   1682 			if (ipsec_enabled) {
   1683 				error = ipsec6_set_policy(in6p, optname,
   1684 				    sopt->sopt_data, sopt->sopt_size,
   1685 				    kauth_cred_get());
   1686 				break;
   1687 			}
   1688 			/*FALLTHROUGH*/
   1689 #endif /* IPSEC */
   1690 
   1691 		default:
   1692 			error = ENOPROTOOPT;
   1693 			break;
   1694 		}
   1695 		break;
   1696 
   1697 	case PRCO_GETOPT:
   1698 		switch (optname) {
   1699 #ifdef RFC2292
   1700 		case IPV6_2292PKTOPTIONS:
   1701 			/*
   1702 			 * RFC3542 (effectively) deprecated the
   1703 			 * semantics of the 2292-style pktoptions.
   1704 			 * Since it was not reliable in nature (i.e.,
   1705 			 * applications had to expect the lack of some
   1706 			 * information after all), it would make sense
   1707 			 * to simplify this part by always returning
   1708 			 * empty data.
   1709 			 */
   1710 			break;
   1711 #endif
   1712 
   1713 		case IPV6_RECVHOPOPTS:
   1714 		case IPV6_RECVDSTOPTS:
   1715 		case IPV6_RECVRTHDRDSTOPTS:
   1716 		case IPV6_UNICAST_HOPS:
   1717 		case IPV6_RECVPKTINFO:
   1718 		case IPV6_RECVHOPLIMIT:
   1719 		case IPV6_RECVRTHDR:
   1720 		case IPV6_RECVPATHMTU:
   1721 
   1722 		case IPV6_FAITH:
   1723 		case IPV6_V6ONLY:
   1724 		case IPV6_PORTRANGE:
   1725 		case IPV6_RECVTCLASS:
   1726 			switch (optname) {
   1727 
   1728 			case IPV6_RECVHOPOPTS:
   1729 				optval = OPTBIT(IN6P_HOPOPTS);
   1730 				break;
   1731 
   1732 			case IPV6_RECVDSTOPTS:
   1733 				optval = OPTBIT(IN6P_DSTOPTS);
   1734 				break;
   1735 
   1736 			case IPV6_RECVRTHDRDSTOPTS:
   1737 				optval = OPTBIT(IN6P_RTHDRDSTOPTS);
   1738 				break;
   1739 
   1740 			case IPV6_UNICAST_HOPS:
   1741 				optval = in6p->in6p_hops;
   1742 				break;
   1743 
   1744 			case IPV6_RECVPKTINFO:
   1745 				optval = OPTBIT(IN6P_PKTINFO);
   1746 				break;
   1747 
   1748 			case IPV6_RECVHOPLIMIT:
   1749 				optval = OPTBIT(IN6P_HOPLIMIT);
   1750 				break;
   1751 
   1752 			case IPV6_RECVRTHDR:
   1753 				optval = OPTBIT(IN6P_RTHDR);
   1754 				break;
   1755 
   1756 			case IPV6_RECVPATHMTU:
   1757 				optval = OPTBIT(IN6P_MTU);
   1758 				break;
   1759 
   1760 			case IPV6_FAITH:
   1761 				optval = OPTBIT(IN6P_FAITH);
   1762 				break;
   1763 
   1764 			case IPV6_V6ONLY:
   1765 				optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1766 				break;
   1767 
   1768 			case IPV6_PORTRANGE:
   1769 			    {
   1770 				int flags;
   1771 				flags = in6p->in6p_flags;
   1772 				if (flags & IN6P_HIGHPORT)
   1773 					optval = IPV6_PORTRANGE_HIGH;
   1774 				else if (flags & IN6P_LOWPORT)
   1775 					optval = IPV6_PORTRANGE_LOW;
   1776 				else
   1777 					optval = 0;
   1778 				break;
   1779 			    }
   1780 			case IPV6_RECVTCLASS:
   1781 				optval = OPTBIT(IN6P_TCLASS);
   1782 				break;
   1783 
   1784 			}
   1785 			if (error)
   1786 				break;
   1787 			error = sockopt_setint(sopt, optval);
   1788 			break;
   1789 
   1790 		case IPV6_PATHMTU:
   1791 		    {
   1792 			u_long pmtu = 0;
   1793 			struct ip6_mtuinfo mtuinfo;
   1794 			struct route *ro = &in6p->in6p_route;
   1795 
   1796 			if (!(so->so_state & SS_ISCONNECTED))
   1797 				return (ENOTCONN);
   1798 			/*
   1799 			 * XXX: we dot not consider the case of source
   1800 			 * routing, or optional information to specify
   1801 			 * the outgoing interface.
   1802 			 */
   1803 			error = ip6_getpmtu(ro, NULL, NULL,
   1804 			    &in6p->in6p_faddr, &pmtu, NULL);
   1805 			if (error)
   1806 				break;
   1807 			if (pmtu > IPV6_MAXPACKET)
   1808 				pmtu = IPV6_MAXPACKET;
   1809 
   1810 			memset(&mtuinfo, 0, sizeof(mtuinfo));
   1811 			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
   1812 			optdata = (void *)&mtuinfo;
   1813 			optdatalen = sizeof(mtuinfo);
   1814 			if (optdatalen > MCLBYTES)
   1815 				return (EMSGSIZE); /* XXX */
   1816 			error = sockopt_set(sopt, optdata, optdatalen);
   1817 			break;
   1818 		    }
   1819 
   1820 #ifdef RFC2292
   1821 		case IPV6_2292PKTINFO:
   1822 		case IPV6_2292HOPLIMIT:
   1823 		case IPV6_2292HOPOPTS:
   1824 		case IPV6_2292RTHDR:
   1825 		case IPV6_2292DSTOPTS:
   1826 			switch (optname) {
   1827 			case IPV6_2292PKTINFO:
   1828 				optval = OPTBIT(IN6P_PKTINFO);
   1829 				break;
   1830 			case IPV6_2292HOPLIMIT:
   1831 				optval = OPTBIT(IN6P_HOPLIMIT);
   1832 				break;
   1833 			case IPV6_2292HOPOPTS:
   1834 				optval = OPTBIT(IN6P_HOPOPTS);
   1835 				break;
   1836 			case IPV6_2292RTHDR:
   1837 				optval = OPTBIT(IN6P_RTHDR);
   1838 				break;
   1839 			case IPV6_2292DSTOPTS:
   1840 				optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
   1841 				break;
   1842 			}
   1843 			error = sockopt_setint(sopt, optval);
   1844 			break;
   1845 #endif
   1846 		case IPV6_PKTINFO:
   1847 		case IPV6_HOPOPTS:
   1848 		case IPV6_RTHDR:
   1849 		case IPV6_DSTOPTS:
   1850 		case IPV6_RTHDRDSTOPTS:
   1851 		case IPV6_NEXTHOP:
   1852 		case IPV6_OTCLASS:
   1853 		case IPV6_TCLASS:
   1854 		case IPV6_DONTFRAG:
   1855 		case IPV6_USE_MIN_MTU:
   1856 		case IPV6_PREFER_TEMPADDR:
   1857 			error = ip6_getpcbopt(in6p->in6p_outputopts,
   1858 			    optname, sopt);
   1859 			break;
   1860 
   1861 		case IPV6_MULTICAST_IF:
   1862 		case IPV6_MULTICAST_HOPS:
   1863 		case IPV6_MULTICAST_LOOP:
   1864 		case IPV6_JOIN_GROUP:
   1865 		case IPV6_LEAVE_GROUP:
   1866 			error = ip6_getmoptions(sopt, in6p);
   1867 			break;
   1868 
   1869 		case IPV6_PORTALGO:
   1870 			optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
   1871 			error = sockopt_setint(sopt, optval);
   1872 			break;
   1873 
   1874 #if defined(IPSEC)
   1875 		case IPV6_IPSEC_POLICY:
   1876 			if (ipsec_used) {
   1877 				struct mbuf *m = NULL;
   1878 
   1879 				/*
   1880 				 * XXX: this will return EINVAL as sopt is
   1881 				 * empty
   1882 				 */
   1883 				error = ipsec6_get_policy(in6p, sopt->sopt_data,
   1884 				    sopt->sopt_size, &m);
   1885 				if (!error)
   1886 					error = sockopt_setmbuf(sopt, m);
   1887 				break;
   1888 			}
   1889 			/*FALLTHROUGH*/
   1890 #endif /* IPSEC */
   1891 
   1892 		default:
   1893 			error = ENOPROTOOPT;
   1894 			break;
   1895 		}
   1896 		break;
   1897 	}
   1898 	return (error);
   1899 }
   1900 
   1901 int
   1902 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1903 {
   1904 	int error = 0, optval;
   1905 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   1906 	struct in6pcb *in6p = sotoin6pcb(so);
   1907 	int level, optname;
   1908 
   1909 	KASSERT(sopt != NULL);
   1910 
   1911 	level = sopt->sopt_level;
   1912 	optname = sopt->sopt_name;
   1913 
   1914 	if (level != IPPROTO_IPV6) {
   1915 		return ENOPROTOOPT;
   1916 	}
   1917 
   1918 	switch (optname) {
   1919 	case IPV6_CHECKSUM:
   1920 		/*
   1921 		 * For ICMPv6 sockets, no modification allowed for checksum
   1922 		 * offset, permit "no change" values to help existing apps.
   1923 		 *
   1924 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
   1925 		 * for an ICMPv6 socket will fail."  The current
   1926 		 * behavior does not meet RFC3542.
   1927 		 */
   1928 		switch (op) {
   1929 		case PRCO_SETOPT:
   1930 			error = sockopt_getint(sopt, &optval);
   1931 			if (error)
   1932 				break;
   1933 			if ((optval % 2) != 0) {
   1934 				/* the API assumes even offset values */
   1935 				error = EINVAL;
   1936 			} else if (so->so_proto->pr_protocol ==
   1937 			    IPPROTO_ICMPV6) {
   1938 				if (optval != icmp6off)
   1939 					error = EINVAL;
   1940 			} else
   1941 				in6p->in6p_cksum = optval;
   1942 			break;
   1943 
   1944 		case PRCO_GETOPT:
   1945 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   1946 				optval = icmp6off;
   1947 			else
   1948 				optval = in6p->in6p_cksum;
   1949 
   1950 			error = sockopt_setint(sopt, optval);
   1951 			break;
   1952 
   1953 		default:
   1954 			error = EINVAL;
   1955 			break;
   1956 		}
   1957 		break;
   1958 
   1959 	default:
   1960 		error = ENOPROTOOPT;
   1961 		break;
   1962 	}
   1963 
   1964 	return (error);
   1965 }
   1966 
   1967 #ifdef RFC2292
   1968 /*
   1969  * Set up IP6 options in pcb for insertion in output packets or
   1970  * specifying behavior of outgoing packets.
   1971  */
   1972 static int
   1973 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
   1974     struct sockopt *sopt)
   1975 {
   1976 	struct ip6_pktopts *opt = *pktopt;
   1977 	struct mbuf *m;
   1978 	int error = 0;
   1979 
   1980 	/* turn off any old options. */
   1981 	if (opt) {
   1982 #ifdef DIAGNOSTIC
   1983 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
   1984 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
   1985 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
   1986 		    printf("ip6_pcbopts: all specified options are cleared.\n");
   1987 #endif
   1988 		ip6_clearpktopts(opt, -1);
   1989 	} else {
   1990 		opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
   1991 		if (opt == NULL)
   1992 			return (ENOBUFS);
   1993 	}
   1994 	*pktopt = NULL;
   1995 
   1996 	if (sopt == NULL || sopt->sopt_size == 0) {
   1997 		/*
   1998 		 * Only turning off any previous options, regardless of
   1999 		 * whether the opt is just created or given.
   2000 		 */
   2001 		free(opt, M_IP6OPT);
   2002 		return (0);
   2003 	}
   2004 
   2005 	/*  set options specified by user. */
   2006 	m = sockopt_getmbuf(sopt);
   2007 	if (m == NULL) {
   2008 		free(opt, M_IP6OPT);
   2009 		return (ENOBUFS);
   2010 	}
   2011 
   2012 	error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
   2013 	    so->so_proto->pr_protocol);
   2014 	m_freem(m);
   2015 	if (error != 0) {
   2016 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
   2017 		free(opt, M_IP6OPT);
   2018 		return (error);
   2019 	}
   2020 	*pktopt = opt;
   2021 	return (0);
   2022 }
   2023 #endif
   2024 
   2025 /*
   2026  * initialize ip6_pktopts.  beware that there are non-zero default values in
   2027  * the struct.
   2028  */
   2029 void
   2030 ip6_initpktopts(struct ip6_pktopts *opt)
   2031 {
   2032 
   2033 	memset(opt, 0, sizeof(*opt));
   2034 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
   2035 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
   2036 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
   2037 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
   2038 }
   2039 
   2040 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
   2041 static int
   2042 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
   2043     kauth_cred_t cred, int uproto)
   2044 {
   2045 	struct ip6_pktopts *opt;
   2046 
   2047 	if (*pktopt == NULL) {
   2048 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
   2049 		    M_NOWAIT);
   2050 		if (*pktopt == NULL)
   2051 			return (ENOBUFS);
   2052 
   2053 		ip6_initpktopts(*pktopt);
   2054 	}
   2055 	opt = *pktopt;
   2056 
   2057 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
   2058 }
   2059 
   2060 static int
   2061 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
   2062 {
   2063 	void *optdata = NULL;
   2064 	int optdatalen = 0;
   2065 	struct ip6_ext *ip6e;
   2066 	int error = 0;
   2067 	struct in6_pktinfo null_pktinfo;
   2068 	int deftclass = 0, on;
   2069 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
   2070 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
   2071 
   2072 	switch (optname) {
   2073 	case IPV6_PKTINFO:
   2074 		if (pktopt && pktopt->ip6po_pktinfo)
   2075 			optdata = (void *)pktopt->ip6po_pktinfo;
   2076 		else {
   2077 			/* XXX: we don't have to do this every time... */
   2078 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
   2079 			optdata = (void *)&null_pktinfo;
   2080 		}
   2081 		optdatalen = sizeof(struct in6_pktinfo);
   2082 		break;
   2083 	case IPV6_OTCLASS:
   2084 		/* XXX */
   2085 		return (EINVAL);
   2086 	case IPV6_TCLASS:
   2087 		if (pktopt && pktopt->ip6po_tclass >= 0)
   2088 			optdata = (void *)&pktopt->ip6po_tclass;
   2089 		else
   2090 			optdata = (void *)&deftclass;
   2091 		optdatalen = sizeof(int);
   2092 		break;
   2093 	case IPV6_HOPOPTS:
   2094 		if (pktopt && pktopt->ip6po_hbh) {
   2095 			optdata = (void *)pktopt->ip6po_hbh;
   2096 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
   2097 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2098 		}
   2099 		break;
   2100 	case IPV6_RTHDR:
   2101 		if (pktopt && pktopt->ip6po_rthdr) {
   2102 			optdata = (void *)pktopt->ip6po_rthdr;
   2103 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
   2104 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2105 		}
   2106 		break;
   2107 	case IPV6_RTHDRDSTOPTS:
   2108 		if (pktopt && pktopt->ip6po_dest1) {
   2109 			optdata = (void *)pktopt->ip6po_dest1;
   2110 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
   2111 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2112 		}
   2113 		break;
   2114 	case IPV6_DSTOPTS:
   2115 		if (pktopt && pktopt->ip6po_dest2) {
   2116 			optdata = (void *)pktopt->ip6po_dest2;
   2117 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
   2118 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2119 		}
   2120 		break;
   2121 	case IPV6_NEXTHOP:
   2122 		if (pktopt && pktopt->ip6po_nexthop) {
   2123 			optdata = (void *)pktopt->ip6po_nexthop;
   2124 			optdatalen = pktopt->ip6po_nexthop->sa_len;
   2125 		}
   2126 		break;
   2127 	case IPV6_USE_MIN_MTU:
   2128 		if (pktopt)
   2129 			optdata = (void *)&pktopt->ip6po_minmtu;
   2130 		else
   2131 			optdata = (void *)&defminmtu;
   2132 		optdatalen = sizeof(int);
   2133 		break;
   2134 	case IPV6_DONTFRAG:
   2135 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
   2136 			on = 1;
   2137 		else
   2138 			on = 0;
   2139 		optdata = (void *)&on;
   2140 		optdatalen = sizeof(on);
   2141 		break;
   2142 	case IPV6_PREFER_TEMPADDR:
   2143 		if (pktopt)
   2144 			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
   2145 		else
   2146 			optdata = (void *)&defpreftemp;
   2147 		optdatalen = sizeof(int);
   2148 		break;
   2149 	default:		/* should not happen */
   2150 #ifdef DIAGNOSTIC
   2151 		panic("ip6_getpcbopt: unexpected option\n");
   2152 #endif
   2153 		return (ENOPROTOOPT);
   2154 	}
   2155 
   2156 	error = sockopt_set(sopt, optdata, optdatalen);
   2157 
   2158 	return (error);
   2159 }
   2160 
   2161 void
   2162 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
   2163 {
   2164 	if (optname == -1 || optname == IPV6_PKTINFO) {
   2165 		if (pktopt->ip6po_pktinfo)
   2166 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
   2167 		pktopt->ip6po_pktinfo = NULL;
   2168 	}
   2169 	if (optname == -1 || optname == IPV6_HOPLIMIT)
   2170 		pktopt->ip6po_hlim = -1;
   2171 	if (optname == -1 || optname == IPV6_TCLASS)
   2172 		pktopt->ip6po_tclass = -1;
   2173 	if (optname == -1 || optname == IPV6_NEXTHOP) {
   2174 		rtcache_free(&pktopt->ip6po_nextroute);
   2175 		if (pktopt->ip6po_nexthop)
   2176 			free(pktopt->ip6po_nexthop, M_IP6OPT);
   2177 		pktopt->ip6po_nexthop = NULL;
   2178 	}
   2179 	if (optname == -1 || optname == IPV6_HOPOPTS) {
   2180 		if (pktopt->ip6po_hbh)
   2181 			free(pktopt->ip6po_hbh, M_IP6OPT);
   2182 		pktopt->ip6po_hbh = NULL;
   2183 	}
   2184 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
   2185 		if (pktopt->ip6po_dest1)
   2186 			free(pktopt->ip6po_dest1, M_IP6OPT);
   2187 		pktopt->ip6po_dest1 = NULL;
   2188 	}
   2189 	if (optname == -1 || optname == IPV6_RTHDR) {
   2190 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2191 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
   2192 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
   2193 		rtcache_free(&pktopt->ip6po_route);
   2194 	}
   2195 	if (optname == -1 || optname == IPV6_DSTOPTS) {
   2196 		if (pktopt->ip6po_dest2)
   2197 			free(pktopt->ip6po_dest2, M_IP6OPT);
   2198 		pktopt->ip6po_dest2 = NULL;
   2199 	}
   2200 }
   2201 
   2202 #define PKTOPT_EXTHDRCPY(type) 					\
   2203 do {								\
   2204 	if (src->type) {					\
   2205 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
   2206 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
   2207 		if (dst->type == NULL)				\
   2208 			goto bad;				\
   2209 		memcpy(dst->type, src->type, hlen);		\
   2210 	}							\
   2211 } while (/*CONSTCOND*/ 0)
   2212 
   2213 static int
   2214 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
   2215 {
   2216 	dst->ip6po_hlim = src->ip6po_hlim;
   2217 	dst->ip6po_tclass = src->ip6po_tclass;
   2218 	dst->ip6po_flags = src->ip6po_flags;
   2219 	dst->ip6po_minmtu = src->ip6po_minmtu;
   2220 	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
   2221 	if (src->ip6po_pktinfo) {
   2222 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
   2223 		    M_IP6OPT, canwait);
   2224 		if (dst->ip6po_pktinfo == NULL)
   2225 			goto bad;
   2226 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
   2227 	}
   2228 	if (src->ip6po_nexthop) {
   2229 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
   2230 		    M_IP6OPT, canwait);
   2231 		if (dst->ip6po_nexthop == NULL)
   2232 			goto bad;
   2233 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
   2234 		    src->ip6po_nexthop->sa_len);
   2235 	}
   2236 	PKTOPT_EXTHDRCPY(ip6po_hbh);
   2237 	PKTOPT_EXTHDRCPY(ip6po_dest1);
   2238 	PKTOPT_EXTHDRCPY(ip6po_dest2);
   2239 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
   2240 	return (0);
   2241 
   2242   bad:
   2243 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
   2244 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
   2245 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
   2246 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
   2247 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
   2248 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
   2249 
   2250 	return (ENOBUFS);
   2251 }
   2252 #undef PKTOPT_EXTHDRCPY
   2253 
   2254 struct ip6_pktopts *
   2255 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
   2256 {
   2257 	int error;
   2258 	struct ip6_pktopts *dst;
   2259 
   2260 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
   2261 	if (dst == NULL)
   2262 		return (NULL);
   2263 	ip6_initpktopts(dst);
   2264 
   2265 	if ((error = copypktopts(dst, src, canwait)) != 0) {
   2266 		free(dst, M_IP6OPT);
   2267 		return (NULL);
   2268 	}
   2269 
   2270 	return (dst);
   2271 }
   2272 
   2273 void
   2274 ip6_freepcbopts(struct ip6_pktopts *pktopt)
   2275 {
   2276 	if (pktopt == NULL)
   2277 		return;
   2278 
   2279 	ip6_clearpktopts(pktopt, -1);
   2280 
   2281 	free(pktopt, M_IP6OPT);
   2282 }
   2283 
   2284 int
   2285 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp, void *v,
   2286     size_t l)
   2287 {
   2288 	struct ipv6_mreq mreq;
   2289 	int error;
   2290 	struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
   2291 	struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
   2292 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2293 	if (error != 0)
   2294 		return error;
   2295 
   2296 	if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
   2297 		/*
   2298 		 * We use the unspecified address to specify to accept
   2299 		 * all multicast addresses. Only super user is allowed
   2300 		 * to do this.
   2301 		 */
   2302 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6,
   2303 		    KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
   2304 			return EACCES;
   2305 	} else if (IN6_IS_ADDR_V4MAPPED(ia)) {
   2306 		// Don't bother if we are not going to use ifp.
   2307 		if (l == sizeof(*ia)) {
   2308 			memcpy(v, ia, l);
   2309 			return 0;
   2310 		}
   2311 	} else if (!IN6_IS_ADDR_MULTICAST(ia)) {
   2312 		return EINVAL;
   2313 	}
   2314 
   2315 	/*
   2316 	 * If no interface was explicitly specified, choose an
   2317 	 * appropriate one according to the given multicast address.
   2318 	 */
   2319 	if (mreq.ipv6mr_interface == 0) {
   2320 		struct rtentry *rt;
   2321 		union {
   2322 			struct sockaddr		dst;
   2323 			struct sockaddr_in	dst4;
   2324 			struct sockaddr_in6	dst6;
   2325 		} u;
   2326 		struct route ro;
   2327 
   2328 		/*
   2329 		 * Look up the routing table for the
   2330 		 * address, and choose the outgoing interface.
   2331 		 *   XXX: is it a good approach?
   2332 		 */
   2333 		memset(&ro, 0, sizeof(ro));
   2334 		if (IN6_IS_ADDR_V4MAPPED(ia))
   2335 			sockaddr_in_init(&u.dst4, ia4, 0);
   2336 		else
   2337 			sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
   2338 		error = rtcache_setdst(&ro, &u.dst);
   2339 		if (error != 0)
   2340 			return error;
   2341 		*ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
   2342 		rtcache_free(&ro);
   2343 	} else {
   2344 		/*
   2345 		 * If the interface is specified, validate it.
   2346 		 */
   2347 		if ((*ifp = if_byindex(mreq.ipv6mr_interface)) == NULL)
   2348 			return ENXIO;	/* XXX EINVAL? */
   2349 	}
   2350 	if (sizeof(*ia) == l)
   2351 		memcpy(v, ia, l);
   2352 	else
   2353 		memcpy(v, ia4, l);
   2354 	return 0;
   2355 }
   2356 
   2357 /*
   2358  * Set the IP6 multicast options in response to user setsockopt().
   2359  */
   2360 static int
   2361 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p)
   2362 {
   2363 	int error = 0;
   2364 	u_int loop, ifindex;
   2365 	struct ipv6_mreq mreq;
   2366 	struct in6_addr ia;
   2367 	struct ifnet *ifp;
   2368 	struct ip6_moptions *im6o = in6p->in6p_moptions;
   2369 	struct in6_multi_mship *imm;
   2370 
   2371 	if (im6o == NULL) {
   2372 		/*
   2373 		 * No multicast option buffer attached to the pcb;
   2374 		 * allocate one and initialize to default values.
   2375 		 */
   2376 		im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
   2377 		if (im6o == NULL)
   2378 			return (ENOBUFS);
   2379 		in6p->in6p_moptions = im6o;
   2380 		im6o->im6o_multicast_ifp = NULL;
   2381 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2382 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   2383 		LIST_INIT(&im6o->im6o_memberships);
   2384 	}
   2385 
   2386 	switch (sopt->sopt_name) {
   2387 
   2388 	case IPV6_MULTICAST_IF:
   2389 		/*
   2390 		 * Select the interface for outgoing multicast packets.
   2391 		 */
   2392 		error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
   2393 		if (error != 0)
   2394 			break;
   2395 
   2396 		if (ifindex != 0) {
   2397 			if ((ifp = if_byindex(ifindex)) == NULL) {
   2398 				error = ENXIO;	/* XXX EINVAL? */
   2399 				break;
   2400 			}
   2401 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   2402 				error = EADDRNOTAVAIL;
   2403 				break;
   2404 			}
   2405 		} else
   2406 			ifp = NULL;
   2407 		im6o->im6o_multicast_ifp = ifp;
   2408 		break;
   2409 
   2410 	case IPV6_MULTICAST_HOPS:
   2411 	    {
   2412 		/*
   2413 		 * Set the IP6 hoplimit for outgoing multicast packets.
   2414 		 */
   2415 		int optval;
   2416 
   2417 		error = sockopt_getint(sopt, &optval);
   2418 		if (error != 0)
   2419 			break;
   2420 
   2421 		if (optval < -1 || optval >= 256)
   2422 			error = EINVAL;
   2423 		else if (optval == -1)
   2424 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2425 		else
   2426 			im6o->im6o_multicast_hlim = optval;
   2427 		break;
   2428 	    }
   2429 
   2430 	case IPV6_MULTICAST_LOOP:
   2431 		/*
   2432 		 * Set the loopback flag for outgoing multicast packets.
   2433 		 * Must be zero or one.
   2434 		 */
   2435 		error = sockopt_get(sopt, &loop, sizeof(loop));
   2436 		if (error != 0)
   2437 			break;
   2438 		if (loop > 1) {
   2439 			error = EINVAL;
   2440 			break;
   2441 		}
   2442 		im6o->im6o_multicast_loop = loop;
   2443 		break;
   2444 
   2445 	case IPV6_JOIN_GROUP:
   2446 		/*
   2447 		 * Add a multicast group membership.
   2448 		 * Group must be a valid IP6 multicast address.
   2449 		 */
   2450 		if ((error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia))))
   2451 			return error;
   2452 
   2453 		if (IN6_IS_ADDR_V4MAPPED(&ia)) {
   2454 			error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
   2455 			break;
   2456 		}
   2457 		/*
   2458 		 * See if we found an interface, and confirm that it
   2459 		 * supports multicast
   2460 		 */
   2461 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   2462 			error = EADDRNOTAVAIL;
   2463 			break;
   2464 		}
   2465 
   2466 		if (in6_setscope(&ia, ifp, NULL)) {
   2467 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   2468 			break;
   2469 		}
   2470 
   2471 		/*
   2472 		 * See if the membership already exists.
   2473 		 */
   2474 		for (imm = im6o->im6o_memberships.lh_first;
   2475 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   2476 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2477 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2478 			    &ia))
   2479 				break;
   2480 		if (imm != NULL) {
   2481 			error = EADDRINUSE;
   2482 			break;
   2483 		}
   2484 		/*
   2485 		 * Everything looks good; add a new record to the multicast
   2486 		 * address list for the given interface.
   2487 		 */
   2488 		imm = in6_joingroup(ifp, &ia, &error, 0);
   2489 		if (imm == NULL)
   2490 			break;
   2491 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2492 		break;
   2493 
   2494 	case IPV6_LEAVE_GROUP:
   2495 		/*
   2496 		 * Drop a multicast group membership.
   2497 		 * Group must be a valid IP6 multicast address.
   2498 		 */
   2499 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2500 		if (error != 0)
   2501 			break;
   2502 
   2503 		if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
   2504 			error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
   2505 			break;
   2506 		}
   2507 		/*
   2508 		 * If an interface address was specified, get a pointer
   2509 		 * to its ifnet structure.
   2510 		 */
   2511 		if (mreq.ipv6mr_interface != 0) {
   2512 			if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
   2513 				error = ENXIO;	/* XXX EINVAL? */
   2514 				break;
   2515 			}
   2516 		} else
   2517 			ifp = NULL;
   2518 
   2519 		/* Fill in the scope zone ID */
   2520 		if (ifp) {
   2521 			if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
   2522 				/* XXX: should not happen */
   2523 				error = EADDRNOTAVAIL;
   2524 				break;
   2525 			}
   2526 		} else if (mreq.ipv6mr_interface != 0) {
   2527 			/*
   2528 			 * XXX: This case would happens when the (positive)
   2529 			 * index is in the valid range, but the corresponding
   2530 			 * interface has been detached dynamically.  The above
   2531 			 * check probably avoids such case to happen here, but
   2532 			 * we check it explicitly for safety.
   2533 			 */
   2534 			error = EADDRNOTAVAIL;
   2535 			break;
   2536 		} else {	/* ipv6mr_interface == 0 */
   2537 			struct sockaddr_in6 sa6_mc;
   2538 
   2539 			/*
   2540 			 * The API spec says as follows:
   2541 			 *  If the interface index is specified as 0, the
   2542 			 *  system may choose a multicast group membership to
   2543 			 *  drop by matching the multicast address only.
   2544 			 * On the other hand, we cannot disambiguate the scope
   2545 			 * zone unless an interface is provided.  Thus, we
   2546 			 * check if there's ambiguity with the default scope
   2547 			 * zone as the last resort.
   2548 			 */
   2549 			sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
   2550 			    0, 0, 0);
   2551 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2552 			if (error != 0)
   2553 				break;
   2554 			mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2555 		}
   2556 
   2557 		/*
   2558 		 * Find the membership in the membership list.
   2559 		 */
   2560 		for (imm = im6o->im6o_memberships.lh_first;
   2561 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   2562 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2563 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2564 			    &mreq.ipv6mr_multiaddr))
   2565 				break;
   2566 		}
   2567 		if (imm == NULL) {
   2568 			/* Unable to resolve interface */
   2569 			error = EADDRNOTAVAIL;
   2570 			break;
   2571 		}
   2572 		/*
   2573 		 * Give up the multicast address record to which the
   2574 		 * membership points.
   2575 		 */
   2576 		LIST_REMOVE(imm, i6mm_chain);
   2577 		in6_leavegroup(imm);
   2578 		break;
   2579 
   2580 	default:
   2581 		error = EOPNOTSUPP;
   2582 		break;
   2583 	}
   2584 
   2585 	/*
   2586 	 * If all options have default values, no need to keep the mbuf.
   2587 	 */
   2588 	if (im6o->im6o_multicast_ifp == NULL &&
   2589 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2590 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2591 	    im6o->im6o_memberships.lh_first == NULL) {
   2592 		free(in6p->in6p_moptions, M_IPMOPTS);
   2593 		in6p->in6p_moptions = NULL;
   2594 	}
   2595 
   2596 	return (error);
   2597 }
   2598 
   2599 /*
   2600  * Return the IP6 multicast options in response to user getsockopt().
   2601  */
   2602 static int
   2603 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p)
   2604 {
   2605 	u_int optval;
   2606 	int error;
   2607 	struct ip6_moptions *im6o = in6p->in6p_moptions;
   2608 
   2609 	switch (sopt->sopt_name) {
   2610 	case IPV6_MULTICAST_IF:
   2611 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
   2612 			optval = 0;
   2613 		else
   2614 			optval = im6o->im6o_multicast_ifp->if_index;
   2615 
   2616 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2617 		break;
   2618 
   2619 	case IPV6_MULTICAST_HOPS:
   2620 		if (im6o == NULL)
   2621 			optval = ip6_defmcasthlim;
   2622 		else
   2623 			optval = im6o->im6o_multicast_hlim;
   2624 
   2625 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2626 		break;
   2627 
   2628 	case IPV6_MULTICAST_LOOP:
   2629 		if (im6o == NULL)
   2630 			optval = IPV6_DEFAULT_MULTICAST_LOOP;
   2631 		else
   2632 			optval = im6o->im6o_multicast_loop;
   2633 
   2634 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2635 		break;
   2636 
   2637 	default:
   2638 		error = EOPNOTSUPP;
   2639 	}
   2640 
   2641 	return (error);
   2642 }
   2643 
   2644 /*
   2645  * Discard the IP6 multicast options.
   2646  */
   2647 void
   2648 ip6_freemoptions(struct ip6_moptions *im6o)
   2649 {
   2650 	struct in6_multi_mship *imm;
   2651 
   2652 	if (im6o == NULL)
   2653 		return;
   2654 
   2655 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   2656 		LIST_REMOVE(imm, i6mm_chain);
   2657 		in6_leavegroup(imm);
   2658 	}
   2659 	free(im6o, M_IPMOPTS);
   2660 }
   2661 
   2662 /*
   2663  * Set IPv6 outgoing packet options based on advanced API.
   2664  */
   2665 int
   2666 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
   2667 	struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
   2668 {
   2669 	struct cmsghdr *cm = 0;
   2670 
   2671 	if (control == NULL || opt == NULL)
   2672 		return (EINVAL);
   2673 
   2674 	ip6_initpktopts(opt);
   2675 	if (stickyopt) {
   2676 		int error;
   2677 
   2678 		/*
   2679 		 * If stickyopt is provided, make a local copy of the options
   2680 		 * for this particular packet, then override them by ancillary
   2681 		 * objects.
   2682 		 * XXX: copypktopts() does not copy the cached route to a next
   2683 		 * hop (if any).  This is not very good in terms of efficiency,
   2684 		 * but we can allow this since this option should be rarely
   2685 		 * used.
   2686 		 */
   2687 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
   2688 			return (error);
   2689 	}
   2690 
   2691 	/*
   2692 	 * XXX: Currently, we assume all the optional information is stored
   2693 	 * in a single mbuf.
   2694 	 */
   2695 	if (control->m_next)
   2696 		return (EINVAL);
   2697 
   2698 	/* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
   2699 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2700 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2701 		int error;
   2702 
   2703 		if (control->m_len < CMSG_LEN(0))
   2704 			return (EINVAL);
   2705 
   2706 		cm = mtod(control, struct cmsghdr *);
   2707 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   2708 			return (EINVAL);
   2709 		if (cm->cmsg_level != IPPROTO_IPV6)
   2710 			continue;
   2711 
   2712 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
   2713 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
   2714 		if (error)
   2715 			return (error);
   2716 	}
   2717 
   2718 	return (0);
   2719 }
   2720 
   2721 /*
   2722  * Set a particular packet option, as a sticky option or an ancillary data
   2723  * item.  "len" can be 0 only when it's a sticky option.
   2724  * We have 4 cases of combination of "sticky" and "cmsg":
   2725  * "sticky=0, cmsg=0": impossible
   2726  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
   2727  * "sticky=1, cmsg=0": RFC3542 socket option
   2728  * "sticky=1, cmsg=1": RFC2292 socket option
   2729  */
   2730 static int
   2731 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
   2732     kauth_cred_t cred, int sticky, int cmsg, int uproto)
   2733 {
   2734 	int minmtupolicy;
   2735 	int error;
   2736 
   2737 	if (!sticky && !cmsg) {
   2738 #ifdef DIAGNOSTIC
   2739 		printf("ip6_setpktopt: impossible case\n");
   2740 #endif
   2741 		return (EINVAL);
   2742 	}
   2743 
   2744 	/*
   2745 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
   2746 	 * not be specified in the context of RFC3542.  Conversely,
   2747 	 * RFC3542 types should not be specified in the context of RFC2292.
   2748 	 */
   2749 	if (!cmsg) {
   2750 		switch (optname) {
   2751 		case IPV6_2292PKTINFO:
   2752 		case IPV6_2292HOPLIMIT:
   2753 		case IPV6_2292NEXTHOP:
   2754 		case IPV6_2292HOPOPTS:
   2755 		case IPV6_2292DSTOPTS:
   2756 		case IPV6_2292RTHDR:
   2757 		case IPV6_2292PKTOPTIONS:
   2758 			return (ENOPROTOOPT);
   2759 		}
   2760 	}
   2761 	if (sticky && cmsg) {
   2762 		switch (optname) {
   2763 		case IPV6_PKTINFO:
   2764 		case IPV6_HOPLIMIT:
   2765 		case IPV6_NEXTHOP:
   2766 		case IPV6_HOPOPTS:
   2767 		case IPV6_DSTOPTS:
   2768 		case IPV6_RTHDRDSTOPTS:
   2769 		case IPV6_RTHDR:
   2770 		case IPV6_USE_MIN_MTU:
   2771 		case IPV6_DONTFRAG:
   2772 		case IPV6_OTCLASS:
   2773 		case IPV6_TCLASS:
   2774 		case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
   2775 			return (ENOPROTOOPT);
   2776 		}
   2777 	}
   2778 
   2779 	switch (optname) {
   2780 #ifdef RFC2292
   2781 	case IPV6_2292PKTINFO:
   2782 #endif
   2783 	case IPV6_PKTINFO:
   2784 	{
   2785 		struct ifnet *ifp = NULL;
   2786 		struct in6_pktinfo *pktinfo;
   2787 
   2788 		if (len != sizeof(struct in6_pktinfo))
   2789 			return (EINVAL);
   2790 
   2791 		pktinfo = (struct in6_pktinfo *)buf;
   2792 
   2793 		/*
   2794 		 * An application can clear any sticky IPV6_PKTINFO option by
   2795 		 * doing a "regular" setsockopt with ipi6_addr being
   2796 		 * in6addr_any and ipi6_ifindex being zero.
   2797 		 * [RFC 3542, Section 6]
   2798 		 */
   2799 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
   2800 		    pktinfo->ipi6_ifindex == 0 &&
   2801 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2802 			ip6_clearpktopts(opt, optname);
   2803 			break;
   2804 		}
   2805 
   2806 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
   2807 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2808 			return (EINVAL);
   2809 		}
   2810 
   2811 		/* Validate the interface index if specified. */
   2812 		if (pktinfo->ipi6_ifindex) {
   2813 			ifp = if_byindex(pktinfo->ipi6_ifindex);
   2814 			if (ifp == NULL)
   2815 				return (ENXIO);
   2816 		}
   2817 
   2818 		/*
   2819 		 * We store the address anyway, and let in6_selectsrc()
   2820 		 * validate the specified address.  This is because ipi6_addr
   2821 		 * may not have enough information about its scope zone, and
   2822 		 * we may need additional information (such as outgoing
   2823 		 * interface or the scope zone of a destination address) to
   2824 		 * disambiguate the scope.
   2825 		 * XXX: the delay of the validation may confuse the
   2826 		 * application when it is used as a sticky option.
   2827 		 */
   2828 		if (opt->ip6po_pktinfo == NULL) {
   2829 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
   2830 			    M_IP6OPT, M_NOWAIT);
   2831 			if (opt->ip6po_pktinfo == NULL)
   2832 				return (ENOBUFS);
   2833 		}
   2834 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
   2835 		break;
   2836 	}
   2837 
   2838 #ifdef RFC2292
   2839 	case IPV6_2292HOPLIMIT:
   2840 #endif
   2841 	case IPV6_HOPLIMIT:
   2842 	{
   2843 		int *hlimp;
   2844 
   2845 		/*
   2846 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
   2847 		 * to simplify the ordering among hoplimit options.
   2848 		 */
   2849 		if (optname == IPV6_HOPLIMIT && sticky)
   2850 			return (ENOPROTOOPT);
   2851 
   2852 		if (len != sizeof(int))
   2853 			return (EINVAL);
   2854 		hlimp = (int *)buf;
   2855 		if (*hlimp < -1 || *hlimp > 255)
   2856 			return (EINVAL);
   2857 
   2858 		opt->ip6po_hlim = *hlimp;
   2859 		break;
   2860 	}
   2861 
   2862 	case IPV6_OTCLASS:
   2863 		if (len != sizeof(u_int8_t))
   2864 			return (EINVAL);
   2865 
   2866 		opt->ip6po_tclass = *(u_int8_t *)buf;
   2867 		break;
   2868 
   2869 	case IPV6_TCLASS:
   2870 	{
   2871 		int tclass;
   2872 
   2873 		if (len != sizeof(int))
   2874 			return (EINVAL);
   2875 		tclass = *(int *)buf;
   2876 		if (tclass < -1 || tclass > 255)
   2877 			return (EINVAL);
   2878 
   2879 		opt->ip6po_tclass = tclass;
   2880 		break;
   2881 	}
   2882 
   2883 #ifdef RFC2292
   2884 	case IPV6_2292NEXTHOP:
   2885 #endif
   2886 	case IPV6_NEXTHOP:
   2887 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   2888 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2889 		if (error)
   2890 			return (error);
   2891 
   2892 		if (len == 0) {	/* just remove the option */
   2893 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
   2894 			break;
   2895 		}
   2896 
   2897 		/* check if cmsg_len is large enough for sa_len */
   2898 		if (len < sizeof(struct sockaddr) || len < *buf)
   2899 			return (EINVAL);
   2900 
   2901 		switch (((struct sockaddr *)buf)->sa_family) {
   2902 		case AF_INET6:
   2903 		{
   2904 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
   2905 
   2906 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
   2907 				return (EINVAL);
   2908 
   2909 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
   2910 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
   2911 				return (EINVAL);
   2912 			}
   2913 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
   2914 			    != 0) {
   2915 				return (error);
   2916 			}
   2917 			break;
   2918 		}
   2919 		case AF_LINK:	/* eventually be supported? */
   2920 		default:
   2921 			return (EAFNOSUPPORT);
   2922 		}
   2923 
   2924 		/* turn off the previous option, then set the new option. */
   2925 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
   2926 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
   2927 		if (opt->ip6po_nexthop == NULL)
   2928 			return (ENOBUFS);
   2929 		memcpy(opt->ip6po_nexthop, buf, *buf);
   2930 		break;
   2931 
   2932 #ifdef RFC2292
   2933 	case IPV6_2292HOPOPTS:
   2934 #endif
   2935 	case IPV6_HOPOPTS:
   2936 	{
   2937 		struct ip6_hbh *hbh;
   2938 		int hbhlen;
   2939 
   2940 		/*
   2941 		 * XXX: We don't allow a non-privileged user to set ANY HbH
   2942 		 * options, since per-option restriction has too much
   2943 		 * overhead.
   2944 		 */
   2945 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   2946 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2947 		if (error)
   2948 			return (error);
   2949 
   2950 		if (len == 0) {
   2951 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
   2952 			break;	/* just remove the option */
   2953 		}
   2954 
   2955 		/* message length validation */
   2956 		if (len < sizeof(struct ip6_hbh))
   2957 			return (EINVAL);
   2958 		hbh = (struct ip6_hbh *)buf;
   2959 		hbhlen = (hbh->ip6h_len + 1) << 3;
   2960 		if (len != hbhlen)
   2961 			return (EINVAL);
   2962 
   2963 		/* turn off the previous option, then set the new option. */
   2964 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
   2965 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
   2966 		if (opt->ip6po_hbh == NULL)
   2967 			return (ENOBUFS);
   2968 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
   2969 
   2970 		break;
   2971 	}
   2972 
   2973 #ifdef RFC2292
   2974 	case IPV6_2292DSTOPTS:
   2975 #endif
   2976 	case IPV6_DSTOPTS:
   2977 	case IPV6_RTHDRDSTOPTS:
   2978 	{
   2979 		struct ip6_dest *dest, **newdest = NULL;
   2980 		int destlen;
   2981 
   2982 		/* XXX: see the comment for IPV6_HOPOPTS */
   2983 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   2984 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2985 		if (error)
   2986 			return (error);
   2987 
   2988 		if (len == 0) {
   2989 			ip6_clearpktopts(opt, optname);
   2990 			break;	/* just remove the option */
   2991 		}
   2992 
   2993 		/* message length validation */
   2994 		if (len < sizeof(struct ip6_dest))
   2995 			return (EINVAL);
   2996 		dest = (struct ip6_dest *)buf;
   2997 		destlen = (dest->ip6d_len + 1) << 3;
   2998 		if (len != destlen)
   2999 			return (EINVAL);
   3000 		/*
   3001 		 * Determine the position that the destination options header
   3002 		 * should be inserted; before or after the routing header.
   3003 		 */
   3004 		switch (optname) {
   3005 		case IPV6_2292DSTOPTS:
   3006 			/*
   3007 			 * The old advanced API is ambiguous on this point.
   3008 			 * Our approach is to determine the position based
   3009 			 * according to the existence of a routing header.
   3010 			 * Note, however, that this depends on the order of the
   3011 			 * extension headers in the ancillary data; the 1st
   3012 			 * part of the destination options header must appear
   3013 			 * before the routing header in the ancillary data,
   3014 			 * too.
   3015 			 * RFC3542 solved the ambiguity by introducing
   3016 			 * separate ancillary data or option types.
   3017 			 */
   3018 			if (opt->ip6po_rthdr == NULL)
   3019 				newdest = &opt->ip6po_dest1;
   3020 			else
   3021 				newdest = &opt->ip6po_dest2;
   3022 			break;
   3023 		case IPV6_RTHDRDSTOPTS:
   3024 			newdest = &opt->ip6po_dest1;
   3025 			break;
   3026 		case IPV6_DSTOPTS:
   3027 			newdest = &opt->ip6po_dest2;
   3028 			break;
   3029 		}
   3030 
   3031 		/* turn off the previous option, then set the new option. */
   3032 		ip6_clearpktopts(opt, optname);
   3033 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
   3034 		if (*newdest == NULL)
   3035 			return (ENOBUFS);
   3036 		memcpy(*newdest, dest, destlen);
   3037 
   3038 		break;
   3039 	}
   3040 
   3041 #ifdef RFC2292
   3042 	case IPV6_2292RTHDR:
   3043 #endif
   3044 	case IPV6_RTHDR:
   3045 	{
   3046 		struct ip6_rthdr *rth;
   3047 		int rthlen;
   3048 
   3049 		if (len == 0) {
   3050 			ip6_clearpktopts(opt, IPV6_RTHDR);
   3051 			break;	/* just remove the option */
   3052 		}
   3053 
   3054 		/* message length validation */
   3055 		if (len < sizeof(struct ip6_rthdr))
   3056 			return (EINVAL);
   3057 		rth = (struct ip6_rthdr *)buf;
   3058 		rthlen = (rth->ip6r_len + 1) << 3;
   3059 		if (len != rthlen)
   3060 			return (EINVAL);
   3061 		switch (rth->ip6r_type) {
   3062 		case IPV6_RTHDR_TYPE_0:
   3063 			if (rth->ip6r_len == 0)	/* must contain one addr */
   3064 				return (EINVAL);
   3065 			if (rth->ip6r_len % 2) /* length must be even */
   3066 				return (EINVAL);
   3067 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
   3068 				return (EINVAL);
   3069 			break;
   3070 		default:
   3071 			return (EINVAL);	/* not supported */
   3072 		}
   3073 		/* turn off the previous option */
   3074 		ip6_clearpktopts(opt, IPV6_RTHDR);
   3075 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
   3076 		if (opt->ip6po_rthdr == NULL)
   3077 			return (ENOBUFS);
   3078 		memcpy(opt->ip6po_rthdr, rth, rthlen);
   3079 		break;
   3080 	}
   3081 
   3082 	case IPV6_USE_MIN_MTU:
   3083 		if (len != sizeof(int))
   3084 			return (EINVAL);
   3085 		minmtupolicy = *(int *)buf;
   3086 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
   3087 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
   3088 		    minmtupolicy != IP6PO_MINMTU_ALL) {
   3089 			return (EINVAL);
   3090 		}
   3091 		opt->ip6po_minmtu = minmtupolicy;
   3092 		break;
   3093 
   3094 	case IPV6_DONTFRAG:
   3095 		if (len != sizeof(int))
   3096 			return (EINVAL);
   3097 
   3098 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
   3099 			/*
   3100 			 * we ignore this option for TCP sockets.
   3101 			 * (RFC3542 leaves this case unspecified.)
   3102 			 */
   3103 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
   3104 		} else
   3105 			opt->ip6po_flags |= IP6PO_DONTFRAG;
   3106 		break;
   3107 
   3108 	case IPV6_PREFER_TEMPADDR:
   3109 	{
   3110 		int preftemp;
   3111 
   3112 		if (len != sizeof(int))
   3113 			return (EINVAL);
   3114 		preftemp = *(int *)buf;
   3115 		switch (preftemp) {
   3116 		case IP6PO_TEMPADDR_SYSTEM:
   3117 		case IP6PO_TEMPADDR_NOTPREFER:
   3118 		case IP6PO_TEMPADDR_PREFER:
   3119 			break;
   3120 		default:
   3121 			return (EINVAL);
   3122 		}
   3123 		opt->ip6po_prefer_tempaddr = preftemp;
   3124 		break;
   3125 	}
   3126 
   3127 	default:
   3128 		return (ENOPROTOOPT);
   3129 	} /* end of switch */
   3130 
   3131 	return (0);
   3132 }
   3133 
   3134 /*
   3135  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   3136  * packet to the input queue of a specified interface.  Note that this
   3137  * calls the output routine of the loopback "driver", but with an interface
   3138  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   3139  */
   3140 void
   3141 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
   3142 	const struct sockaddr_in6 *dst)
   3143 {
   3144 	struct mbuf *copym;
   3145 	struct ip6_hdr *ip6;
   3146 
   3147 	copym = m_copy(m, 0, M_COPYALL);
   3148 	if (copym == NULL)
   3149 		return;
   3150 
   3151 	/*
   3152 	 * Make sure to deep-copy IPv6 header portion in case the data
   3153 	 * is in an mbuf cluster, so that we can safely override the IPv6
   3154 	 * header portion later.
   3155 	 */
   3156 	if ((copym->m_flags & M_EXT) != 0 ||
   3157 	    copym->m_len < sizeof(struct ip6_hdr)) {
   3158 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   3159 		if (copym == NULL)
   3160 			return;
   3161 	}
   3162 
   3163 #ifdef DIAGNOSTIC
   3164 	if (copym->m_len < sizeof(*ip6)) {
   3165 		m_freem(copym);
   3166 		return;
   3167 	}
   3168 #endif
   3169 
   3170 	ip6 = mtod(copym, struct ip6_hdr *);
   3171 	/*
   3172 	 * clear embedded scope identifiers if necessary.
   3173 	 * in6_clearscope will touch the addresses only when necessary.
   3174 	 */
   3175 	in6_clearscope(&ip6->ip6_src);
   3176 	in6_clearscope(&ip6->ip6_dst);
   3177 
   3178 	(void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
   3179 }
   3180 
   3181 /*
   3182  * Chop IPv6 header off from the payload.
   3183  */
   3184 static int
   3185 ip6_splithdr(struct mbuf *m,  struct ip6_exthdrs *exthdrs)
   3186 {
   3187 	struct mbuf *mh;
   3188 	struct ip6_hdr *ip6;
   3189 
   3190 	ip6 = mtod(m, struct ip6_hdr *);
   3191 	if (m->m_len > sizeof(*ip6)) {
   3192 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   3193 		if (mh == 0) {
   3194 			m_freem(m);
   3195 			return ENOBUFS;
   3196 		}
   3197 		M_MOVE_PKTHDR(mh, m);
   3198 		MH_ALIGN(mh, sizeof(*ip6));
   3199 		m->m_len -= sizeof(*ip6);
   3200 		m->m_data += sizeof(*ip6);
   3201 		mh->m_next = m;
   3202 		m = mh;
   3203 		m->m_len = sizeof(*ip6);
   3204 		bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
   3205 	}
   3206 	exthdrs->ip6e_ip6 = m;
   3207 	return 0;
   3208 }
   3209 
   3210 /*
   3211  * Compute IPv6 extension header length.
   3212  */
   3213 int
   3214 ip6_optlen(struct in6pcb *in6p)
   3215 {
   3216 	int len;
   3217 
   3218 	if (!in6p->in6p_outputopts)
   3219 		return 0;
   3220 
   3221 	len = 0;
   3222 #define elen(x) \
   3223     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   3224 
   3225 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   3226 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   3227 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   3228 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   3229 	return len;
   3230 #undef elen
   3231 }
   3232