Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.171.2.1
      1 /*	$NetBSD: ip6_output.c,v 1.171.2.1 2016/08/06 00:19:10 pgoyette Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.171.2.1 2016/08/06 00:19:10 pgoyette Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_inet.h"
     69 #include "opt_inet6.h"
     70 #include "opt_ipsec.h"
     71 #endif
     72 
     73 #include <sys/param.h>
     74 #include <sys/malloc.h>
     75 #include <sys/mbuf.h>
     76 #include <sys/errno.h>
     77 #include <sys/protosw.h>
     78 #include <sys/socket.h>
     79 #include <sys/socketvar.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/kauth.h>
     83 
     84 #include <net/if.h>
     85 #include <net/route.h>
     86 #include <net/pfil.h>
     87 
     88 #include <netinet/in.h>
     89 #include <netinet/in_var.h>
     90 #include <netinet/ip6.h>
     91 #include <netinet/ip_var.h>
     92 #include <netinet/icmp6.h>
     93 #include <netinet/in_offload.h>
     94 #include <netinet/portalgo.h>
     95 #include <netinet6/in6_offload.h>
     96 #include <netinet6/ip6_var.h>
     97 #include <netinet6/ip6_private.h>
     98 #include <netinet6/in6_pcb.h>
     99 #include <netinet6/nd6.h>
    100 #include <netinet6/ip6protosw.h>
    101 #include <netinet6/scope6_var.h>
    102 
    103 #ifdef IPSEC
    104 #include <netipsec/ipsec.h>
    105 #include <netipsec/ipsec6.h>
    106 #include <netipsec/key.h>
    107 #include <netipsec/xform.h>
    108 #endif
    109 
    110 
    111 #include <net/net_osdep.h>
    112 
    113 extern pfil_head_t *inet6_pfil_hook;	/* XXX */
    114 
    115 struct ip6_exthdrs {
    116 	struct mbuf *ip6e_ip6;
    117 	struct mbuf *ip6e_hbh;
    118 	struct mbuf *ip6e_dest1;
    119 	struct mbuf *ip6e_rthdr;
    120 	struct mbuf *ip6e_dest2;
    121 };
    122 
    123 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
    124 	kauth_cred_t, int);
    125 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
    126 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
    127 	int, int, int);
    128 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *);
    129 static int ip6_getmoptions(struct sockopt *, struct in6pcb *);
    130 static int ip6_copyexthdr(struct mbuf **, void *, int);
    131 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
    132 	struct ip6_frag **);
    133 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
    134 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
    135 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *,
    136     const struct in6_addr *, u_long *, int *);
    137 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
    138 
    139 #ifdef RFC2292
    140 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
    141 #endif
    142 
    143 /*
    144  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    145  * header (with pri, len, nxt, hlim, src, dst).
    146  * This function may modify ver and hlim only.
    147  * The mbuf chain containing the packet will be freed.
    148  * The mbuf opt, if present, will not be freed.
    149  *
    150  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    151  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
    152  * which is rt_rmx.rmx_mtu.
    153  */
    154 int
    155 ip6_output(
    156     struct mbuf *m0,
    157     struct ip6_pktopts *opt,
    158     struct route *ro,
    159     int flags,
    160     struct ip6_moptions *im6o,
    161     struct socket *so,
    162     struct ifnet **ifpp		/* XXX: just for statistics */
    163 )
    164 {
    165 	struct ip6_hdr *ip6, *mhip6;
    166 	struct ifnet *ifp = NULL, *origifp = NULL;
    167 	struct mbuf *m = m0;
    168 	int hlen, tlen, len, off;
    169 	bool tso;
    170 	struct route ip6route;
    171 	struct rtentry *rt = NULL;
    172 	const struct sockaddr_in6 *dst;
    173 	struct sockaddr_in6 src_sa, dst_sa;
    174 	int error = 0;
    175 	struct in6_ifaddr *ia = NULL;
    176 	u_long mtu;
    177 	int alwaysfrag, dontfrag;
    178 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    179 	struct ip6_exthdrs exthdrs;
    180 	struct in6_addr finaldst, src0, dst0;
    181 	u_int32_t zone;
    182 	struct route *ro_pmtu = NULL;
    183 	int hdrsplit = 0;
    184 	int needipsec = 0;
    185 #ifdef IPSEC
    186 	struct secpolicy *sp = NULL;
    187 #endif
    188 	struct psref psref, psref_ia;
    189 	int bound = curlwp_bind();
    190 	bool release_psref_ia = false;
    191 
    192 #ifdef  DIAGNOSTIC
    193 	if ((m->m_flags & M_PKTHDR) == 0)
    194 		panic("ip6_output: no HDR");
    195 
    196 	if ((m->m_pkthdr.csum_flags &
    197 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
    198 		panic("ip6_output: IPv4 checksum offload flags: %d",
    199 		    m->m_pkthdr.csum_flags);
    200 	}
    201 
    202 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
    203 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
    204 		panic("ip6_output: conflicting checksum offload flags: %d",
    205 		    m->m_pkthdr.csum_flags);
    206 	}
    207 #endif
    208 
    209 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    210 
    211 #define MAKE_EXTHDR(hp, mp)						\
    212     do {								\
    213 	if (hp) {							\
    214 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    215 		error = ip6_copyexthdr((mp), (void *)(hp), 		\
    216 		    ((eh)->ip6e_len + 1) << 3);				\
    217 		if (error)						\
    218 			goto freehdrs;					\
    219 	}								\
    220     } while (/*CONSTCOND*/ 0)
    221 
    222 	memset(&exthdrs, 0, sizeof(exthdrs));
    223 	if (opt) {
    224 		/* Hop-by-Hop options header */
    225 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    226 		/* Destination options header(1st part) */
    227 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    228 		/* Routing header */
    229 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    230 		/* Destination options header(2nd part) */
    231 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    232 	}
    233 
    234 	/*
    235 	 * Calculate the total length of the extension header chain.
    236 	 * Keep the length of the unfragmentable part for fragmentation.
    237 	 */
    238 	optlen = 0;
    239 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    240 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    241 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    242 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    243 	/* NOTE: we don't add AH/ESP length here. do that later. */
    244 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    245 
    246 #ifdef IPSEC
    247 	if (ipsec_used) {
    248 		/* Check the security policy (SP) for the packet */
    249 
    250 		sp = ipsec6_check_policy(m, so, flags, &needipsec, &error);
    251 		if (error != 0) {
    252 			/*
    253 			 * Hack: -EINVAL is used to signal that a packet
    254 			 * should be silently discarded.  This is typically
    255 			 * because we asked key management for an SA and
    256 			 * it was delayed (e.g. kicked up to IKE).
    257 			 */
    258 			if (error == -EINVAL)
    259 				error = 0;
    260 			goto freehdrs;
    261 		}
    262 	}
    263 #endif /* IPSEC */
    264 
    265 
    266 	if (needipsec &&
    267 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    268 		in6_delayed_cksum(m);
    269 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    270 	}
    271 
    272 
    273 	/*
    274 	 * If we need IPsec, or there is at least one extension header,
    275 	 * separate IP6 header from the payload.
    276 	 */
    277 	if ((needipsec || optlen) && !hdrsplit) {
    278 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    279 			m = NULL;
    280 			goto freehdrs;
    281 		}
    282 		m = exthdrs.ip6e_ip6;
    283 		hdrsplit++;
    284 	}
    285 
    286 	/* adjust pointer */
    287 	ip6 = mtod(m, struct ip6_hdr *);
    288 
    289 	/* adjust mbuf packet header length */
    290 	m->m_pkthdr.len += optlen;
    291 	plen = m->m_pkthdr.len - sizeof(*ip6);
    292 
    293 	/* If this is a jumbo payload, insert a jumbo payload option. */
    294 	if (plen > IPV6_MAXPACKET) {
    295 		if (!hdrsplit) {
    296 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    297 				m = NULL;
    298 				goto freehdrs;
    299 			}
    300 			m = exthdrs.ip6e_ip6;
    301 			hdrsplit++;
    302 		}
    303 		/* adjust pointer */
    304 		ip6 = mtod(m, struct ip6_hdr *);
    305 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    306 			goto freehdrs;
    307 		optlen += 8; /* XXX JUMBOOPTLEN */
    308 		ip6->ip6_plen = 0;
    309 	} else
    310 		ip6->ip6_plen = htons(plen);
    311 
    312 	/*
    313 	 * Concatenate headers and fill in next header fields.
    314 	 * Here we have, on "m"
    315 	 *	IPv6 payload
    316 	 * and we insert headers accordingly.  Finally, we should be getting:
    317 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    318 	 *
    319 	 * during the header composing process, "m" points to IPv6 header.
    320 	 * "mprev" points to an extension header prior to esp.
    321 	 */
    322 	{
    323 		u_char *nexthdrp = &ip6->ip6_nxt;
    324 		struct mbuf *mprev = m;
    325 
    326 		/*
    327 		 * we treat dest2 specially.  this makes IPsec processing
    328 		 * much easier.  the goal here is to make mprev point the
    329 		 * mbuf prior to dest2.
    330 		 *
    331 		 * result: IPv6 dest2 payload
    332 		 * m and mprev will point to IPv6 header.
    333 		 */
    334 		if (exthdrs.ip6e_dest2) {
    335 			if (!hdrsplit)
    336 				panic("assumption failed: hdr not split");
    337 			exthdrs.ip6e_dest2->m_next = m->m_next;
    338 			m->m_next = exthdrs.ip6e_dest2;
    339 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    340 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    341 		}
    342 
    343 #define MAKE_CHAIN(m, mp, p, i)\
    344     do {\
    345 	if (m) {\
    346 		if (!hdrsplit) \
    347 			panic("assumption failed: hdr not split"); \
    348 		*mtod((m), u_char *) = *(p);\
    349 		*(p) = (i);\
    350 		p = mtod((m), u_char *);\
    351 		(m)->m_next = (mp)->m_next;\
    352 		(mp)->m_next = (m);\
    353 		(mp) = (m);\
    354 	}\
    355     } while (/*CONSTCOND*/ 0)
    356 		/*
    357 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    358 		 * m will point to IPv6 header.  mprev will point to the
    359 		 * extension header prior to dest2 (rthdr in the above case).
    360 		 */
    361 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    362 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    363 		    IPPROTO_DSTOPTS);
    364 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    365 		    IPPROTO_ROUTING);
    366 
    367 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
    368 		    sizeof(struct ip6_hdr) + optlen);
    369 	}
    370 
    371 	/*
    372 	 * If there is a routing header, replace destination address field
    373 	 * with the first hop of the routing header.
    374 	 */
    375 	if (exthdrs.ip6e_rthdr) {
    376 		struct ip6_rthdr *rh;
    377 		struct ip6_rthdr0 *rh0;
    378 		struct in6_addr *addr;
    379 		struct sockaddr_in6 sa;
    380 
    381 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    382 		    struct ip6_rthdr *));
    383 		finaldst = ip6->ip6_dst;
    384 		switch (rh->ip6r_type) {
    385 		case IPV6_RTHDR_TYPE_0:
    386 			 rh0 = (struct ip6_rthdr0 *)rh;
    387 			 addr = (struct in6_addr *)(rh0 + 1);
    388 
    389 			 /*
    390 			  * construct a sockaddr_in6 form of
    391 			  * the first hop.
    392 			  *
    393 			  * XXX: we may not have enough
    394 			  * information about its scope zone;
    395 			  * there is no standard API to pass
    396 			  * the information from the
    397 			  * application.
    398 			  */
    399 			 sockaddr_in6_init(&sa, addr, 0, 0, 0);
    400 			 if ((error = sa6_embedscope(&sa,
    401 			     ip6_use_defzone)) != 0) {
    402 				 goto bad;
    403 			 }
    404 			 ip6->ip6_dst = sa.sin6_addr;
    405 			 (void)memmove(&addr[0], &addr[1],
    406 			     sizeof(struct in6_addr) *
    407 			     (rh0->ip6r0_segleft - 1));
    408 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
    409 			 /* XXX */
    410 			 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
    411 			 break;
    412 		default:	/* is it possible? */
    413 			 error = EINVAL;
    414 			 goto bad;
    415 		}
    416 	}
    417 
    418 	/* Source address validation */
    419 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    420 	    (flags & IPV6_UNSPECSRC) == 0) {
    421 		error = EOPNOTSUPP;
    422 		IP6_STATINC(IP6_STAT_BADSCOPE);
    423 		goto bad;
    424 	}
    425 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    426 		error = EOPNOTSUPP;
    427 		IP6_STATINC(IP6_STAT_BADSCOPE);
    428 		goto bad;
    429 	}
    430 
    431 	IP6_STATINC(IP6_STAT_LOCALOUT);
    432 
    433 	/*
    434 	 * Route packet.
    435 	 */
    436 	/* initialize cached route */
    437 	if (ro == NULL) {
    438 		memset(&ip6route, 0, sizeof(ip6route));
    439 		ro = &ip6route;
    440 	}
    441 	ro_pmtu = ro;
    442 	if (opt && opt->ip6po_rthdr)
    443 		ro = &opt->ip6po_route;
    444 
    445  	/*
    446 	 * if specified, try to fill in the traffic class field.
    447 	 * do not override if a non-zero value is already set.
    448 	 * we check the diffserv field and the ecn field separately.
    449 	 */
    450 	if (opt && opt->ip6po_tclass >= 0) {
    451 		int mask = 0;
    452 
    453 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    454 			mask |= 0xfc;
    455 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    456 			mask |= 0x03;
    457 		if (mask != 0)
    458 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    459 	}
    460 
    461 	/* fill in or override the hop limit field, if necessary. */
    462 	if (opt && opt->ip6po_hlim != -1)
    463 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    464 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    465 		if (im6o != NULL)
    466 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    467 		else
    468 			ip6->ip6_hlim = ip6_defmcasthlim;
    469 	}
    470 
    471 #ifdef IPSEC
    472 	if (needipsec) {
    473 		int s = splsoftnet();
    474 		error = ipsec6_process_packet(m, sp->req);
    475 
    476 		/*
    477 		 * Preserve KAME behaviour: ENOENT can be returned
    478 		 * when an SA acquire is in progress.  Don't propagate
    479 		 * this to user-level; it confuses applications.
    480 		 * XXX this will go away when the SADB is redone.
    481 		 */
    482 		if (error == ENOENT)
    483 			error = 0;
    484 		splx(s);
    485 		goto done;
    486 	}
    487 #endif /* IPSEC */
    488 
    489 	/* adjust pointer */
    490 	ip6 = mtod(m, struct ip6_hdr *);
    491 
    492 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    493 	if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
    494 	    &ifp, &psref, &rt, 0)) != 0) {
    495 		if (ifp != NULL)
    496 			in6_ifstat_inc(ifp, ifs6_out_discard);
    497 		goto bad;
    498 	}
    499 	if (rt == NULL) {
    500 		/*
    501 		 * If in6_selectroute() does not return a route entry,
    502 		 * dst may not have been updated.
    503 		 */
    504 		error = rtcache_setdst(ro, sin6tosa(&dst_sa));
    505 		if (error) {
    506 			goto bad;
    507 		}
    508 	}
    509 
    510 	/*
    511 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    512 	 */
    513 	if ((flags & IPV6_FORWARDING) == 0) {
    514 		/* XXX: the FORWARDING flag can be set for mrouting. */
    515 		in6_ifstat_inc(ifp, ifs6_out_request);
    516 	}
    517 	if (rt != NULL) {
    518 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    519 		rt->rt_use++;
    520 	}
    521 
    522 	/*
    523 	 * The outgoing interface must be in the zone of source and
    524 	 * destination addresses.  We should use ia_ifp to support the
    525 	 * case of sending packets to an address of our own.
    526 	 */
    527 	if (ia != NULL && ia->ia_ifp) {
    528 		origifp = ia->ia_ifp;
    529 		if (if_is_deactivated(origifp))
    530 			goto bad;
    531 		if_acquire_NOMPSAFE(origifp, &psref_ia);
    532 		release_psref_ia = true;
    533 	} else
    534 		origifp = ifp;
    535 
    536 	src0 = ip6->ip6_src;
    537 	if (in6_setscope(&src0, origifp, &zone))
    538 		goto badscope;
    539 	sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
    540 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    541 		goto badscope;
    542 
    543 	dst0 = ip6->ip6_dst;
    544 	if (in6_setscope(&dst0, origifp, &zone))
    545 		goto badscope;
    546 	/* re-initialize to be sure */
    547 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    548 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    549 		goto badscope;
    550 
    551 	/* scope check is done. */
    552 
    553 	if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    554 		dst = satocsin6(rtcache_getdst(ro));
    555 		KASSERT(dst != NULL);
    556 	} else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) {
    557 		/*
    558 		 * The nexthop is explicitly specified by the
    559 		 * application.  We assume the next hop is an IPv6
    560 		 * address.
    561 		 */
    562 		dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
    563 	} else if ((rt->rt_flags & RTF_GATEWAY))
    564 		dst = (struct sockaddr_in6 *)rt->rt_gateway;
    565 	else
    566 		dst = satocsin6(rtcache_getdst(ro));
    567 
    568 	/*
    569 	 * XXXXXX: original code follows:
    570 	 */
    571 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    572 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    573 	else {
    574 		struct	in6_multi *in6m;
    575 
    576 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    577 
    578 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    579 
    580 		/*
    581 		 * Confirm that the outgoing interface supports multicast.
    582 		 */
    583 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    584 			IP6_STATINC(IP6_STAT_NOROUTE);
    585 			in6_ifstat_inc(ifp, ifs6_out_discard);
    586 			error = ENETUNREACH;
    587 			goto bad;
    588 		}
    589 
    590 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
    591 		if (in6m != NULL &&
    592 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    593 			/*
    594 			 * If we belong to the destination multicast group
    595 			 * on the outgoing interface, and the caller did not
    596 			 * forbid loopback, loop back a copy.
    597 			 */
    598 			KASSERT(dst != NULL);
    599 			ip6_mloopback(ifp, m, dst);
    600 		} else {
    601 			/*
    602 			 * If we are acting as a multicast router, perform
    603 			 * multicast forwarding as if the packet had just
    604 			 * arrived on the interface to which we are about
    605 			 * to send.  The multicast forwarding function
    606 			 * recursively calls this function, using the
    607 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    608 			 *
    609 			 * Multicasts that are looped back by ip6_mloopback(),
    610 			 * above, will be forwarded by the ip6_input() routine,
    611 			 * if necessary.
    612 			 */
    613 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    614 				if (ip6_mforward(ip6, ifp, m) != 0) {
    615 					m_freem(m);
    616 					goto done;
    617 				}
    618 			}
    619 		}
    620 		/*
    621 		 * Multicasts with a hoplimit of zero may be looped back,
    622 		 * above, but must not be transmitted on a network.
    623 		 * Also, multicasts addressed to the loopback interface
    624 		 * are not sent -- the above call to ip6_mloopback() will
    625 		 * loop back a copy if this host actually belongs to the
    626 		 * destination group on the loopback interface.
    627 		 */
    628 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    629 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    630 			m_freem(m);
    631 			goto done;
    632 		}
    633 	}
    634 
    635 	/*
    636 	 * Fill the outgoing inteface to tell the upper layer
    637 	 * to increment per-interface statistics.
    638 	 */
    639 	if (ifpp)
    640 		*ifpp = ifp;
    641 
    642 	/* Determine path MTU. */
    643 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
    644 	    &alwaysfrag)) != 0)
    645 		goto bad;
    646 
    647 	/*
    648 	 * The caller of this function may specify to use the minimum MTU
    649 	 * in some cases.
    650 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
    651 	 * setting.  The logic is a bit complicated; by default, unicast
    652 	 * packets will follow path MTU while multicast packets will be sent at
    653 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
    654 	 * including unicast ones will be sent at the minimum MTU.  Multicast
    655 	 * packets will always be sent at the minimum MTU unless
    656 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
    657 	 * See RFC 3542 for more details.
    658 	 */
    659 	if (mtu > IPV6_MMTU) {
    660 		if ((flags & IPV6_MINMTU))
    661 			mtu = IPV6_MMTU;
    662 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
    663 			mtu = IPV6_MMTU;
    664 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
    665 			 (opt == NULL ||
    666 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
    667 			mtu = IPV6_MMTU;
    668 		}
    669 	}
    670 
    671 	/*
    672 	 * clear embedded scope identifiers if necessary.
    673 	 * in6_clearscope will touch the addresses only when necessary.
    674 	 */
    675 	in6_clearscope(&ip6->ip6_src);
    676 	in6_clearscope(&ip6->ip6_dst);
    677 
    678 	/*
    679 	 * If the outgoing packet contains a hop-by-hop options header,
    680 	 * it must be examined and processed even by the source node.
    681 	 * (RFC 2460, section 4.)
    682 	 */
    683 	if (ip6->ip6_nxt == IPV6_HOPOPTS) {
    684 		u_int32_t dummy1; /* XXX unused */
    685 		u_int32_t dummy2; /* XXX unused */
    686 		int hoff = sizeof(struct ip6_hdr);
    687 
    688 		if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
    689 			/* m was already freed at this point */
    690 			error = EINVAL;/* better error? */
    691 			goto done;
    692 		}
    693 
    694 		ip6 = mtod(m, struct ip6_hdr *);
    695 	}
    696 
    697 	/*
    698 	 * Run through list of hooks for output packets.
    699 	 */
    700 	if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    701 		goto done;
    702 	if (m == NULL)
    703 		goto done;
    704 	ip6 = mtod(m, struct ip6_hdr *);
    705 
    706 	/*
    707 	 * Send the packet to the outgoing interface.
    708 	 * If necessary, do IPv6 fragmentation before sending.
    709 	 *
    710 	 * the logic here is rather complex:
    711 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    712 	 * 1-a:	send as is if tlen <= path mtu
    713 	 * 1-b:	fragment if tlen > path mtu
    714 	 *
    715 	 * 2: if user asks us not to fragment (dontfrag == 1)
    716 	 * 2-a:	send as is if tlen <= interface mtu
    717 	 * 2-b:	error if tlen > interface mtu
    718 	 *
    719 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    720 	 *	always fragment
    721 	 *
    722 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    723 	 *	error, as we cannot handle this conflicting request
    724 	 */
    725 	tlen = m->m_pkthdr.len;
    726 	tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
    727 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
    728 		dontfrag = 1;
    729 	else
    730 		dontfrag = 0;
    731 
    732 	if (dontfrag && alwaysfrag) {	/* case 4 */
    733 		/* conflicting request - can't transmit */
    734 		error = EMSGSIZE;
    735 		goto bad;
    736 	}
    737 	if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) {	/* case 2-b */
    738 		/*
    739 		 * Even if the DONTFRAG option is specified, we cannot send the
    740 		 * packet when the data length is larger than the MTU of the
    741 		 * outgoing interface.
    742 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    743 		 * well as returning an error code (the latter is not described
    744 		 * in the API spec.)
    745 		 */
    746 		u_int32_t mtu32;
    747 		struct ip6ctlparam ip6cp;
    748 
    749 		mtu32 = (u_int32_t)mtu;
    750 		memset(&ip6cp, 0, sizeof(ip6cp));
    751 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    752 		pfctlinput2(PRC_MSGSIZE,
    753 		    rtcache_getdst(ro_pmtu), &ip6cp);
    754 
    755 		error = EMSGSIZE;
    756 		goto bad;
    757 	}
    758 
    759 	/*
    760 	 * transmit packet without fragmentation
    761 	 */
    762 	if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
    763 		/* case 1-a and 2-a */
    764 		struct in6_ifaddr *ia6;
    765 		int sw_csum;
    766 		int s;
    767 
    768 		ip6 = mtod(m, struct ip6_hdr *);
    769 		s = pserialize_read_enter();
    770 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    771 		if (ia6) {
    772 			/* Record statistics for this interface address. */
    773 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    774 		}
    775 		pserialize_read_exit(s);
    776 
    777 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    778 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    779 			if (IN6_NEED_CHECKSUM(ifp,
    780 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    781 				in6_delayed_cksum(m);
    782 			}
    783 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    784 		}
    785 
    786 		KASSERT(dst != NULL);
    787 		if (__predict_true(!tso ||
    788 		    (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
    789 			error = nd6_output(ifp, origifp, m, dst, rt);
    790 		} else {
    791 			error = ip6_tso_output(ifp, origifp, m, dst, rt);
    792 		}
    793 		goto done;
    794 	}
    795 
    796 	if (tso) {
    797 		error = EINVAL; /* XXX */
    798 		goto bad;
    799 	}
    800 
    801 	/*
    802 	 * try to fragment the packet.  case 1-b and 3
    803 	 */
    804 	if (mtu < IPV6_MMTU) {
    805 		/* path MTU cannot be less than IPV6_MMTU */
    806 		error = EMSGSIZE;
    807 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    808 		goto bad;
    809 	} else if (ip6->ip6_plen == 0) {
    810 		/* jumbo payload cannot be fragmented */
    811 		error = EMSGSIZE;
    812 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    813 		goto bad;
    814 	} else {
    815 		struct mbuf **mnext, *m_frgpart;
    816 		struct ip6_frag *ip6f;
    817 		u_int32_t id = htonl(ip6_randomid());
    818 		u_char nextproto;
    819 #if 0				/* see below */
    820 		struct ip6ctlparam ip6cp;
    821 		u_int32_t mtu32;
    822 #endif
    823 
    824 		/*
    825 		 * Too large for the destination or interface;
    826 		 * fragment if possible.
    827 		 * Must be able to put at least 8 bytes per fragment.
    828 		 */
    829 		hlen = unfragpartlen;
    830 		if (mtu > IPV6_MAXPACKET)
    831 			mtu = IPV6_MAXPACKET;
    832 
    833 #if 0
    834 		/*
    835 		 * It is believed this code is a leftover from the
    836 		 * development of the IPV6_RECVPATHMTU sockopt and
    837 		 * associated work to implement RFC3542.
    838 		 * It's not entirely clear what the intent of the API
    839 		 * is at this point, so disable this code for now.
    840 		 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
    841 		 * will send notifications if the application requests.
    842 		 */
    843 
    844 		/* Notify a proper path MTU to applications. */
    845 		mtu32 = (u_int32_t)mtu;
    846 		memset(&ip6cp, 0, sizeof(ip6cp));
    847 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    848 		pfctlinput2(PRC_MSGSIZE,
    849 		    rtcache_getdst(ro_pmtu), &ip6cp);
    850 #endif
    851 
    852 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    853 		if (len < 8) {
    854 			error = EMSGSIZE;
    855 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
    856 			goto bad;
    857 		}
    858 
    859 		mnext = &m->m_nextpkt;
    860 
    861 		/*
    862 		 * Change the next header field of the last header in the
    863 		 * unfragmentable part.
    864 		 */
    865 		if (exthdrs.ip6e_rthdr) {
    866 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    867 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    868 		} else if (exthdrs.ip6e_dest1) {
    869 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    870 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    871 		} else if (exthdrs.ip6e_hbh) {
    872 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    873 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    874 		} else {
    875 			nextproto = ip6->ip6_nxt;
    876 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    877 		}
    878 
    879 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
    880 		    != 0) {
    881 			if (IN6_NEED_CHECKSUM(ifp,
    882 			    m->m_pkthdr.csum_flags &
    883 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    884 				in6_delayed_cksum(m);
    885 			}
    886 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    887 		}
    888 
    889 		/*
    890 		 * Loop through length of segment after first fragment,
    891 		 * make new header and copy data of each part and link onto
    892 		 * chain.
    893 		 */
    894 		m0 = m;
    895 		for (off = hlen; off < tlen; off += len) {
    896 			struct mbuf *mlast;
    897 
    898 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
    899 			if (!m) {
    900 				error = ENOBUFS;
    901 				IP6_STATINC(IP6_STAT_ODROPPED);
    902 				goto sendorfree;
    903 			}
    904 			m_reset_rcvif(m);
    905 			m->m_flags = m0->m_flags & M_COPYFLAGS;
    906 			*mnext = m;
    907 			mnext = &m->m_nextpkt;
    908 			m->m_data += max_linkhdr;
    909 			mhip6 = mtod(m, struct ip6_hdr *);
    910 			*mhip6 = *ip6;
    911 			m->m_len = sizeof(*mhip6);
    912 			/*
    913 			 * ip6f must be valid if error is 0.  But how
    914 			 * can a compiler be expected to infer this?
    915 			 */
    916 			ip6f = NULL;
    917 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
    918 			if (error) {
    919 				IP6_STATINC(IP6_STAT_ODROPPED);
    920 				goto sendorfree;
    921 			}
    922 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
    923 			if (off + len >= tlen)
    924 				len = tlen - off;
    925 			else
    926 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
    927 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
    928 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
    929 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
    930 				error = ENOBUFS;
    931 				IP6_STATINC(IP6_STAT_ODROPPED);
    932 				goto sendorfree;
    933 			}
    934 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
    935 				;
    936 			mlast->m_next = m_frgpart;
    937 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
    938 			m_reset_rcvif(m);
    939 			ip6f->ip6f_reserved = 0;
    940 			ip6f->ip6f_ident = id;
    941 			ip6f->ip6f_nxt = nextproto;
    942 			IP6_STATINC(IP6_STAT_OFRAGMENTS);
    943 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
    944 		}
    945 
    946 		in6_ifstat_inc(ifp, ifs6_out_fragok);
    947 	}
    948 
    949 	/*
    950 	 * Remove leading garbages.
    951 	 */
    952 sendorfree:
    953 	m = m0->m_nextpkt;
    954 	m0->m_nextpkt = 0;
    955 	m_freem(m0);
    956 	for (m0 = m; m; m = m0) {
    957 		m0 = m->m_nextpkt;
    958 		m->m_nextpkt = 0;
    959 		if (error == 0) {
    960 			struct in6_ifaddr *ia6;
    961 			int s;
    962 			ip6 = mtod(m, struct ip6_hdr *);
    963 			s = pserialize_read_enter();
    964 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    965 			if (ia6) {
    966 				/*
    967 				 * Record statistics for this interface
    968 				 * address.
    969 				 */
    970 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
    971 				    m->m_pkthdr.len;
    972 			}
    973 			pserialize_read_exit(s);
    974 			KASSERT(dst != NULL);
    975 			error = nd6_output(ifp, origifp, m, dst, rt);
    976 		} else
    977 			m_freem(m);
    978 	}
    979 
    980 	if (error == 0)
    981 		IP6_STATINC(IP6_STAT_FRAGMENTED);
    982 
    983 done:
    984 	if (ro == &ip6route)
    985 		rtcache_free(&ip6route);
    986 
    987 #ifdef IPSEC
    988 	if (sp != NULL)
    989 		KEY_FREESP(&sp);
    990 #endif /* IPSEC */
    991 
    992 	if_put(ifp, &psref);
    993 	if (release_psref_ia)
    994 		if_put(origifp, &psref_ia);
    995 	curlwp_bindx(bound);
    996 
    997 	return (error);
    998 
    999 freehdrs:
   1000 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
   1001 	m_freem(exthdrs.ip6e_dest1);
   1002 	m_freem(exthdrs.ip6e_rthdr);
   1003 	m_freem(exthdrs.ip6e_dest2);
   1004 	/* FALLTHROUGH */
   1005 bad:
   1006 	m_freem(m);
   1007 	goto done;
   1008 badscope:
   1009 	IP6_STATINC(IP6_STAT_BADSCOPE);
   1010 	in6_ifstat_inc(origifp, ifs6_out_discard);
   1011 	if (error == 0)
   1012 		error = EHOSTUNREACH; /* XXX */
   1013 	goto bad;
   1014 }
   1015 
   1016 static int
   1017 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
   1018 {
   1019 	struct mbuf *m;
   1020 
   1021 	if (hlen > MCLBYTES)
   1022 		return (ENOBUFS); /* XXX */
   1023 
   1024 	MGET(m, M_DONTWAIT, MT_DATA);
   1025 	if (!m)
   1026 		return (ENOBUFS);
   1027 
   1028 	if (hlen > MLEN) {
   1029 		MCLGET(m, M_DONTWAIT);
   1030 		if ((m->m_flags & M_EXT) == 0) {
   1031 			m_free(m);
   1032 			return (ENOBUFS);
   1033 		}
   1034 	}
   1035 	m->m_len = hlen;
   1036 	if (hdr)
   1037 		bcopy(hdr, mtod(m, void *), hlen);
   1038 
   1039 	*mp = m;
   1040 	return (0);
   1041 }
   1042 
   1043 /*
   1044  * Process a delayed payload checksum calculation.
   1045  */
   1046 void
   1047 in6_delayed_cksum(struct mbuf *m)
   1048 {
   1049 	uint16_t csum, offset;
   1050 
   1051 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1052 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1053 	KASSERT((m->m_pkthdr.csum_flags
   1054 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
   1055 
   1056 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
   1057 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
   1058 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
   1059 		csum = 0xffff;
   1060 	}
   1061 
   1062 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
   1063 	if ((offset + sizeof(csum)) > m->m_len) {
   1064 		m_copyback(m, offset, sizeof(csum), &csum);
   1065 	} else {
   1066 		*(uint16_t *)(mtod(m, char *) + offset) = csum;
   1067 	}
   1068 }
   1069 
   1070 /*
   1071  * Insert jumbo payload option.
   1072  */
   1073 static int
   1074 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
   1075 {
   1076 	struct mbuf *mopt;
   1077 	u_int8_t *optbuf;
   1078 	u_int32_t v;
   1079 
   1080 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1081 
   1082 	/*
   1083 	 * If there is no hop-by-hop options header, allocate new one.
   1084 	 * If there is one but it doesn't have enough space to store the
   1085 	 * jumbo payload option, allocate a cluster to store the whole options.
   1086 	 * Otherwise, use it to store the options.
   1087 	 */
   1088 	if (exthdrs->ip6e_hbh == 0) {
   1089 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1090 		if (mopt == 0)
   1091 			return (ENOBUFS);
   1092 		mopt->m_len = JUMBOOPTLEN;
   1093 		optbuf = mtod(mopt, u_int8_t *);
   1094 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1095 		exthdrs->ip6e_hbh = mopt;
   1096 	} else {
   1097 		struct ip6_hbh *hbh;
   1098 
   1099 		mopt = exthdrs->ip6e_hbh;
   1100 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1101 			/*
   1102 			 * XXX assumption:
   1103 			 * - exthdrs->ip6e_hbh is not referenced from places
   1104 			 *   other than exthdrs.
   1105 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1106 			 */
   1107 			int oldoptlen = mopt->m_len;
   1108 			struct mbuf *n;
   1109 
   1110 			/*
   1111 			 * XXX: give up if the whole (new) hbh header does
   1112 			 * not fit even in an mbuf cluster.
   1113 			 */
   1114 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1115 				return (ENOBUFS);
   1116 
   1117 			/*
   1118 			 * As a consequence, we must always prepare a cluster
   1119 			 * at this point.
   1120 			 */
   1121 			MGET(n, M_DONTWAIT, MT_DATA);
   1122 			if (n) {
   1123 				MCLGET(n, M_DONTWAIT);
   1124 				if ((n->m_flags & M_EXT) == 0) {
   1125 					m_freem(n);
   1126 					n = NULL;
   1127 				}
   1128 			}
   1129 			if (!n)
   1130 				return (ENOBUFS);
   1131 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1132 			bcopy(mtod(mopt, void *), mtod(n, void *),
   1133 			    oldoptlen);
   1134 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1135 			m_freem(mopt);
   1136 			mopt = exthdrs->ip6e_hbh = n;
   1137 		} else {
   1138 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1139 			mopt->m_len += JUMBOOPTLEN;
   1140 		}
   1141 		optbuf[0] = IP6OPT_PADN;
   1142 		optbuf[1] = 0;
   1143 
   1144 		/*
   1145 		 * Adjust the header length according to the pad and
   1146 		 * the jumbo payload option.
   1147 		 */
   1148 		hbh = mtod(mopt, struct ip6_hbh *);
   1149 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1150 	}
   1151 
   1152 	/* fill in the option. */
   1153 	optbuf[2] = IP6OPT_JUMBO;
   1154 	optbuf[3] = 4;
   1155 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1156 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
   1157 
   1158 	/* finally, adjust the packet header length */
   1159 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1160 
   1161 	return (0);
   1162 #undef JUMBOOPTLEN
   1163 }
   1164 
   1165 /*
   1166  * Insert fragment header and copy unfragmentable header portions.
   1167  *
   1168  * *frghdrp will not be read, and it is guaranteed that either an
   1169  * error is returned or that *frghdrp will point to space allocated
   1170  * for the fragment header.
   1171  */
   1172 static int
   1173 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
   1174 	struct ip6_frag **frghdrp)
   1175 {
   1176 	struct mbuf *n, *mlast;
   1177 
   1178 	if (hlen > sizeof(struct ip6_hdr)) {
   1179 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1180 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1181 		if (n == 0)
   1182 			return (ENOBUFS);
   1183 		m->m_next = n;
   1184 	} else
   1185 		n = m;
   1186 
   1187 	/* Search for the last mbuf of unfragmentable part. */
   1188 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1189 		;
   1190 
   1191 	if ((mlast->m_flags & M_EXT) == 0 &&
   1192 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1193 		/* use the trailing space of the last mbuf for the fragment hdr */
   1194 		*frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
   1195 		    mlast->m_len);
   1196 		mlast->m_len += sizeof(struct ip6_frag);
   1197 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1198 	} else {
   1199 		/* allocate a new mbuf for the fragment header */
   1200 		struct mbuf *mfrg;
   1201 
   1202 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1203 		if (mfrg == 0)
   1204 			return (ENOBUFS);
   1205 		mfrg->m_len = sizeof(struct ip6_frag);
   1206 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1207 		mlast->m_next = mfrg;
   1208 	}
   1209 
   1210 	return (0);
   1211 }
   1212 
   1213 static int
   1214 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp,
   1215     const struct in6_addr *dst, u_long *mtup, int *alwaysfragp)
   1216 {
   1217 	struct rtentry *rt;
   1218 	u_int32_t mtu = 0;
   1219 	int alwaysfrag = 0;
   1220 	int error = 0;
   1221 
   1222 	if (ro_pmtu != ro) {
   1223 		union {
   1224 			struct sockaddr		dst;
   1225 			struct sockaddr_in6	dst6;
   1226 		} u;
   1227 
   1228 		/* The first hop and the final destination may differ. */
   1229 		sockaddr_in6_init(&u.dst6, dst, 0, 0, 0);
   1230 		rt = rtcache_lookup(ro_pmtu, &u.dst);
   1231 	} else
   1232 		rt = rtcache_validate(ro_pmtu);
   1233 	if (rt != NULL) {
   1234 		u_int32_t ifmtu;
   1235 
   1236 		if (ifp == NULL)
   1237 			ifp = rt->rt_ifp;
   1238 		ifmtu = IN6_LINKMTU(ifp);
   1239 		mtu = rt->rt_rmx.rmx_mtu;
   1240 		if (mtu == 0)
   1241 			mtu = ifmtu;
   1242 		else if (mtu < IPV6_MMTU) {
   1243 			/*
   1244 			 * RFC2460 section 5, last paragraph:
   1245 			 * if we record ICMPv6 too big message with
   1246 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1247 			 * or smaller, with fragment header attached.
   1248 			 * (fragment header is needed regardless from the
   1249 			 * packet size, for translators to identify packets)
   1250 			 */
   1251 			alwaysfrag = 1;
   1252 			mtu = IPV6_MMTU;
   1253 		} else if (mtu > ifmtu) {
   1254 			/*
   1255 			 * The MTU on the route is larger than the MTU on
   1256 			 * the interface!  This shouldn't happen, unless the
   1257 			 * MTU of the interface has been changed after the
   1258 			 * interface was brought up.  Change the MTU in the
   1259 			 * route to match the interface MTU (as long as the
   1260 			 * field isn't locked).
   1261 			 */
   1262 			mtu = ifmtu;
   1263 			if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
   1264 				rt->rt_rmx.rmx_mtu = mtu;
   1265 		}
   1266 	} else if (ifp) {
   1267 		mtu = IN6_LINKMTU(ifp);
   1268 	} else
   1269 		error = EHOSTUNREACH; /* XXX */
   1270 
   1271 	*mtup = mtu;
   1272 	if (alwaysfragp)
   1273 		*alwaysfragp = alwaysfrag;
   1274 	return (error);
   1275 }
   1276 
   1277 /*
   1278  * IP6 socket option processing.
   1279  */
   1280 int
   1281 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1282 {
   1283 	int optdatalen, uproto;
   1284 	void *optdata;
   1285 	struct in6pcb *in6p = sotoin6pcb(so);
   1286 	struct ip_moptions **mopts;
   1287 	int error, optval;
   1288 	int level, optname;
   1289 
   1290 	KASSERT(sopt != NULL);
   1291 
   1292 	level = sopt->sopt_level;
   1293 	optname = sopt->sopt_name;
   1294 
   1295 	error = optval = 0;
   1296 	uproto = (int)so->so_proto->pr_protocol;
   1297 
   1298 	switch (level) {
   1299 	case IPPROTO_IP:
   1300 		switch (optname) {
   1301 		case IP_ADD_MEMBERSHIP:
   1302 		case IP_DROP_MEMBERSHIP:
   1303 		case IP_MULTICAST_IF:
   1304 		case IP_MULTICAST_LOOP:
   1305 		case IP_MULTICAST_TTL:
   1306 			mopts = &in6p->in6p_v4moptions;
   1307 			switch (op) {
   1308 			case PRCO_GETOPT:
   1309 				return ip_getmoptions(*mopts, sopt);
   1310 			case PRCO_SETOPT:
   1311 				return ip_setmoptions(mopts, sopt);
   1312 			default:
   1313 				return EINVAL;
   1314 			}
   1315 		default:
   1316 			return ENOPROTOOPT;
   1317 		}
   1318 	case IPPROTO_IPV6:
   1319 		break;
   1320 	default:
   1321 		return ENOPROTOOPT;
   1322 	}
   1323 	switch (op) {
   1324 	case PRCO_SETOPT:
   1325 		switch (optname) {
   1326 #ifdef RFC2292
   1327 		case IPV6_2292PKTOPTIONS:
   1328 			error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
   1329 			break;
   1330 #endif
   1331 
   1332 		/*
   1333 		 * Use of some Hop-by-Hop options or some
   1334 		 * Destination options, might require special
   1335 		 * privilege.  That is, normal applications
   1336 		 * (without special privilege) might be forbidden
   1337 		 * from setting certain options in outgoing packets,
   1338 		 * and might never see certain options in received
   1339 		 * packets. [RFC 2292 Section 6]
   1340 		 * KAME specific note:
   1341 		 *  KAME prevents non-privileged users from sending or
   1342 		 *  receiving ANY hbh/dst options in order to avoid
   1343 		 *  overhead of parsing options in the kernel.
   1344 		 */
   1345 		case IPV6_RECVHOPOPTS:
   1346 		case IPV6_RECVDSTOPTS:
   1347 		case IPV6_RECVRTHDRDSTOPTS:
   1348 			error = kauth_authorize_network(kauth_cred_get(),
   1349 			    KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
   1350 			    NULL, NULL, NULL);
   1351 			if (error)
   1352 				break;
   1353 			/* FALLTHROUGH */
   1354 		case IPV6_UNICAST_HOPS:
   1355 		case IPV6_HOPLIMIT:
   1356 		case IPV6_FAITH:
   1357 
   1358 		case IPV6_RECVPKTINFO:
   1359 		case IPV6_RECVHOPLIMIT:
   1360 		case IPV6_RECVRTHDR:
   1361 		case IPV6_RECVPATHMTU:
   1362 		case IPV6_RECVTCLASS:
   1363 		case IPV6_V6ONLY:
   1364 			error = sockopt_getint(sopt, &optval);
   1365 			if (error)
   1366 				break;
   1367 			switch (optname) {
   1368 			case IPV6_UNICAST_HOPS:
   1369 				if (optval < -1 || optval >= 256)
   1370 					error = EINVAL;
   1371 				else {
   1372 					/* -1 = kernel default */
   1373 					in6p->in6p_hops = optval;
   1374 				}
   1375 				break;
   1376 #define OPTSET(bit) \
   1377 do { \
   1378 if (optval) \
   1379 	in6p->in6p_flags |= (bit); \
   1380 else \
   1381 	in6p->in6p_flags &= ~(bit); \
   1382 } while (/*CONSTCOND*/ 0)
   1383 
   1384 #ifdef RFC2292
   1385 #define OPTSET2292(bit) 			\
   1386 do { 						\
   1387 in6p->in6p_flags |= IN6P_RFC2292; 	\
   1388 if (optval) 				\
   1389 	in6p->in6p_flags |= (bit); 	\
   1390 else 					\
   1391 	in6p->in6p_flags &= ~(bit); 	\
   1392 } while (/*CONSTCOND*/ 0)
   1393 #endif
   1394 
   1395 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
   1396 
   1397 			case IPV6_RECVPKTINFO:
   1398 #ifdef RFC2292
   1399 				/* cannot mix with RFC2292 */
   1400 				if (OPTBIT(IN6P_RFC2292)) {
   1401 					error = EINVAL;
   1402 					break;
   1403 				}
   1404 #endif
   1405 				OPTSET(IN6P_PKTINFO);
   1406 				break;
   1407 
   1408 			case IPV6_HOPLIMIT:
   1409 			{
   1410 				struct ip6_pktopts **optp;
   1411 
   1412 #ifdef RFC2292
   1413 				/* cannot mix with RFC2292 */
   1414 				if (OPTBIT(IN6P_RFC2292)) {
   1415 					error = EINVAL;
   1416 					break;
   1417 				}
   1418 #endif
   1419 				optp = &in6p->in6p_outputopts;
   1420 				error = ip6_pcbopt(IPV6_HOPLIMIT,
   1421 						   (u_char *)&optval,
   1422 						   sizeof(optval),
   1423 						   optp,
   1424 						   kauth_cred_get(), uproto);
   1425 				break;
   1426 			}
   1427 
   1428 			case IPV6_RECVHOPLIMIT:
   1429 #ifdef RFC2292
   1430 				/* cannot mix with RFC2292 */
   1431 				if (OPTBIT(IN6P_RFC2292)) {
   1432 					error = EINVAL;
   1433 					break;
   1434 				}
   1435 #endif
   1436 				OPTSET(IN6P_HOPLIMIT);
   1437 				break;
   1438 
   1439 			case IPV6_RECVHOPOPTS:
   1440 #ifdef RFC2292
   1441 				/* cannot mix with RFC2292 */
   1442 				if (OPTBIT(IN6P_RFC2292)) {
   1443 					error = EINVAL;
   1444 					break;
   1445 				}
   1446 #endif
   1447 				OPTSET(IN6P_HOPOPTS);
   1448 				break;
   1449 
   1450 			case IPV6_RECVDSTOPTS:
   1451 #ifdef RFC2292
   1452 				/* cannot mix with RFC2292 */
   1453 				if (OPTBIT(IN6P_RFC2292)) {
   1454 					error = EINVAL;
   1455 					break;
   1456 				}
   1457 #endif
   1458 				OPTSET(IN6P_DSTOPTS);
   1459 				break;
   1460 
   1461 			case IPV6_RECVRTHDRDSTOPTS:
   1462 #ifdef RFC2292
   1463 				/* cannot mix with RFC2292 */
   1464 				if (OPTBIT(IN6P_RFC2292)) {
   1465 					error = EINVAL;
   1466 					break;
   1467 				}
   1468 #endif
   1469 				OPTSET(IN6P_RTHDRDSTOPTS);
   1470 				break;
   1471 
   1472 			case IPV6_RECVRTHDR:
   1473 #ifdef RFC2292
   1474 				/* cannot mix with RFC2292 */
   1475 				if (OPTBIT(IN6P_RFC2292)) {
   1476 					error = EINVAL;
   1477 					break;
   1478 				}
   1479 #endif
   1480 				OPTSET(IN6P_RTHDR);
   1481 				break;
   1482 
   1483 			case IPV6_FAITH:
   1484 				OPTSET(IN6P_FAITH);
   1485 				break;
   1486 
   1487 			case IPV6_RECVPATHMTU:
   1488 				/*
   1489 				 * We ignore this option for TCP
   1490 				 * sockets.
   1491 				 * (RFC3542 leaves this case
   1492 				 * unspecified.)
   1493 				 */
   1494 				if (uproto != IPPROTO_TCP)
   1495 					OPTSET(IN6P_MTU);
   1496 				break;
   1497 
   1498 			case IPV6_V6ONLY:
   1499 				/*
   1500 				 * make setsockopt(IPV6_V6ONLY)
   1501 				 * available only prior to bind(2).
   1502 				 * see ipng mailing list, Jun 22 2001.
   1503 				 */
   1504 				if (in6p->in6p_lport ||
   1505 				    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
   1506 					error = EINVAL;
   1507 					break;
   1508 				}
   1509 #ifdef INET6_BINDV6ONLY
   1510 				if (!optval)
   1511 					error = EINVAL;
   1512 #else
   1513 				OPTSET(IN6P_IPV6_V6ONLY);
   1514 #endif
   1515 				break;
   1516 			case IPV6_RECVTCLASS:
   1517 #ifdef RFC2292
   1518 				/* cannot mix with RFC2292 XXX */
   1519 				if (OPTBIT(IN6P_RFC2292)) {
   1520 					error = EINVAL;
   1521 					break;
   1522 				}
   1523 #endif
   1524 				OPTSET(IN6P_TCLASS);
   1525 				break;
   1526 
   1527 			}
   1528 			break;
   1529 
   1530 		case IPV6_OTCLASS:
   1531 		{
   1532 			struct ip6_pktopts **optp;
   1533 			u_int8_t tclass;
   1534 
   1535 			error = sockopt_get(sopt, &tclass, sizeof(tclass));
   1536 			if (error)
   1537 				break;
   1538 			optp = &in6p->in6p_outputopts;
   1539 			error = ip6_pcbopt(optname,
   1540 					   (u_char *)&tclass,
   1541 					   sizeof(tclass),
   1542 					   optp,
   1543 					   kauth_cred_get(), uproto);
   1544 			break;
   1545 		}
   1546 
   1547 		case IPV6_TCLASS:
   1548 		case IPV6_DONTFRAG:
   1549 		case IPV6_USE_MIN_MTU:
   1550 		case IPV6_PREFER_TEMPADDR:
   1551 			error = sockopt_getint(sopt, &optval);
   1552 			if (error)
   1553 				break;
   1554 			{
   1555 				struct ip6_pktopts **optp;
   1556 				optp = &in6p->in6p_outputopts;
   1557 				error = ip6_pcbopt(optname,
   1558 						   (u_char *)&optval,
   1559 						   sizeof(optval),
   1560 						   optp,
   1561 						   kauth_cred_get(), uproto);
   1562 				break;
   1563 			}
   1564 
   1565 #ifdef RFC2292
   1566 		case IPV6_2292PKTINFO:
   1567 		case IPV6_2292HOPLIMIT:
   1568 		case IPV6_2292HOPOPTS:
   1569 		case IPV6_2292DSTOPTS:
   1570 		case IPV6_2292RTHDR:
   1571 			/* RFC 2292 */
   1572 			error = sockopt_getint(sopt, &optval);
   1573 			if (error)
   1574 				break;
   1575 
   1576 			switch (optname) {
   1577 			case IPV6_2292PKTINFO:
   1578 				OPTSET2292(IN6P_PKTINFO);
   1579 				break;
   1580 			case IPV6_2292HOPLIMIT:
   1581 				OPTSET2292(IN6P_HOPLIMIT);
   1582 				break;
   1583 			case IPV6_2292HOPOPTS:
   1584 				/*
   1585 				 * Check super-user privilege.
   1586 				 * See comments for IPV6_RECVHOPOPTS.
   1587 				 */
   1588 				error =
   1589 				    kauth_authorize_network(kauth_cred_get(),
   1590 				    KAUTH_NETWORK_IPV6,
   1591 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1592 				    NULL, NULL);
   1593 				if (error)
   1594 					return (error);
   1595 				OPTSET2292(IN6P_HOPOPTS);
   1596 				break;
   1597 			case IPV6_2292DSTOPTS:
   1598 				error =
   1599 				    kauth_authorize_network(kauth_cred_get(),
   1600 				    KAUTH_NETWORK_IPV6,
   1601 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1602 				    NULL, NULL);
   1603 				if (error)
   1604 					return (error);
   1605 				OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
   1606 				break;
   1607 			case IPV6_2292RTHDR:
   1608 				OPTSET2292(IN6P_RTHDR);
   1609 				break;
   1610 			}
   1611 			break;
   1612 #endif
   1613 		case IPV6_PKTINFO:
   1614 		case IPV6_HOPOPTS:
   1615 		case IPV6_RTHDR:
   1616 		case IPV6_DSTOPTS:
   1617 		case IPV6_RTHDRDSTOPTS:
   1618 		case IPV6_NEXTHOP: {
   1619 			/* new advanced API (RFC3542) */
   1620 			void *optbuf;
   1621 			int optbuflen;
   1622 			struct ip6_pktopts **optp;
   1623 
   1624 #ifdef RFC2292
   1625 			/* cannot mix with RFC2292 */
   1626 			if (OPTBIT(IN6P_RFC2292)) {
   1627 				error = EINVAL;
   1628 				break;
   1629 			}
   1630 #endif
   1631 
   1632 			optbuflen = sopt->sopt_size;
   1633 			optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
   1634 			if (optbuf == NULL) {
   1635 				error = ENOBUFS;
   1636 				break;
   1637 			}
   1638 
   1639 			error = sockopt_get(sopt, optbuf, optbuflen);
   1640 			if (error) {
   1641 				free(optbuf, M_IP6OPT);
   1642 				break;
   1643 			}
   1644 			optp = &in6p->in6p_outputopts;
   1645 			error = ip6_pcbopt(optname, optbuf, optbuflen,
   1646 			    optp, kauth_cred_get(), uproto);
   1647 
   1648 			free(optbuf, M_IP6OPT);
   1649 			break;
   1650 			}
   1651 #undef OPTSET
   1652 
   1653 		case IPV6_MULTICAST_IF:
   1654 		case IPV6_MULTICAST_HOPS:
   1655 		case IPV6_MULTICAST_LOOP:
   1656 		case IPV6_JOIN_GROUP:
   1657 		case IPV6_LEAVE_GROUP:
   1658 			error = ip6_setmoptions(sopt, in6p);
   1659 			break;
   1660 
   1661 		case IPV6_PORTRANGE:
   1662 			error = sockopt_getint(sopt, &optval);
   1663 			if (error)
   1664 				break;
   1665 
   1666 			switch (optval) {
   1667 			case IPV6_PORTRANGE_DEFAULT:
   1668 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1669 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1670 				break;
   1671 
   1672 			case IPV6_PORTRANGE_HIGH:
   1673 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1674 				in6p->in6p_flags |= IN6P_HIGHPORT;
   1675 				break;
   1676 
   1677 			case IPV6_PORTRANGE_LOW:
   1678 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1679 				in6p->in6p_flags |= IN6P_LOWPORT;
   1680 				break;
   1681 
   1682 			default:
   1683 				error = EINVAL;
   1684 				break;
   1685 			}
   1686 			break;
   1687 
   1688 		case IPV6_PORTALGO:
   1689 			error = sockopt_getint(sopt, &optval);
   1690 			if (error)
   1691 				break;
   1692 
   1693 			error = portalgo_algo_index_select(
   1694 			    (struct inpcb_hdr *)in6p, optval);
   1695 			break;
   1696 
   1697 #if defined(IPSEC)
   1698 		case IPV6_IPSEC_POLICY:
   1699 			if (ipsec_enabled) {
   1700 				error = ipsec6_set_policy(in6p, optname,
   1701 				    sopt->sopt_data, sopt->sopt_size,
   1702 				    kauth_cred_get());
   1703 				break;
   1704 			}
   1705 			/*FALLTHROUGH*/
   1706 #endif /* IPSEC */
   1707 
   1708 		default:
   1709 			error = ENOPROTOOPT;
   1710 			break;
   1711 		}
   1712 		break;
   1713 
   1714 	case PRCO_GETOPT:
   1715 		switch (optname) {
   1716 #ifdef RFC2292
   1717 		case IPV6_2292PKTOPTIONS:
   1718 			/*
   1719 			 * RFC3542 (effectively) deprecated the
   1720 			 * semantics of the 2292-style pktoptions.
   1721 			 * Since it was not reliable in nature (i.e.,
   1722 			 * applications had to expect the lack of some
   1723 			 * information after all), it would make sense
   1724 			 * to simplify this part by always returning
   1725 			 * empty data.
   1726 			 */
   1727 			break;
   1728 #endif
   1729 
   1730 		case IPV6_RECVHOPOPTS:
   1731 		case IPV6_RECVDSTOPTS:
   1732 		case IPV6_RECVRTHDRDSTOPTS:
   1733 		case IPV6_UNICAST_HOPS:
   1734 		case IPV6_RECVPKTINFO:
   1735 		case IPV6_RECVHOPLIMIT:
   1736 		case IPV6_RECVRTHDR:
   1737 		case IPV6_RECVPATHMTU:
   1738 
   1739 		case IPV6_FAITH:
   1740 		case IPV6_V6ONLY:
   1741 		case IPV6_PORTRANGE:
   1742 		case IPV6_RECVTCLASS:
   1743 			switch (optname) {
   1744 
   1745 			case IPV6_RECVHOPOPTS:
   1746 				optval = OPTBIT(IN6P_HOPOPTS);
   1747 				break;
   1748 
   1749 			case IPV6_RECVDSTOPTS:
   1750 				optval = OPTBIT(IN6P_DSTOPTS);
   1751 				break;
   1752 
   1753 			case IPV6_RECVRTHDRDSTOPTS:
   1754 				optval = OPTBIT(IN6P_RTHDRDSTOPTS);
   1755 				break;
   1756 
   1757 			case IPV6_UNICAST_HOPS:
   1758 				optval = in6p->in6p_hops;
   1759 				break;
   1760 
   1761 			case IPV6_RECVPKTINFO:
   1762 				optval = OPTBIT(IN6P_PKTINFO);
   1763 				break;
   1764 
   1765 			case IPV6_RECVHOPLIMIT:
   1766 				optval = OPTBIT(IN6P_HOPLIMIT);
   1767 				break;
   1768 
   1769 			case IPV6_RECVRTHDR:
   1770 				optval = OPTBIT(IN6P_RTHDR);
   1771 				break;
   1772 
   1773 			case IPV6_RECVPATHMTU:
   1774 				optval = OPTBIT(IN6P_MTU);
   1775 				break;
   1776 
   1777 			case IPV6_FAITH:
   1778 				optval = OPTBIT(IN6P_FAITH);
   1779 				break;
   1780 
   1781 			case IPV6_V6ONLY:
   1782 				optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1783 				break;
   1784 
   1785 			case IPV6_PORTRANGE:
   1786 			    {
   1787 				int flags;
   1788 				flags = in6p->in6p_flags;
   1789 				if (flags & IN6P_HIGHPORT)
   1790 					optval = IPV6_PORTRANGE_HIGH;
   1791 				else if (flags & IN6P_LOWPORT)
   1792 					optval = IPV6_PORTRANGE_LOW;
   1793 				else
   1794 					optval = 0;
   1795 				break;
   1796 			    }
   1797 			case IPV6_RECVTCLASS:
   1798 				optval = OPTBIT(IN6P_TCLASS);
   1799 				break;
   1800 
   1801 			}
   1802 			if (error)
   1803 				break;
   1804 			error = sockopt_setint(sopt, optval);
   1805 			break;
   1806 
   1807 		case IPV6_PATHMTU:
   1808 		    {
   1809 			u_long pmtu = 0;
   1810 			struct ip6_mtuinfo mtuinfo;
   1811 			struct route *ro = &in6p->in6p_route;
   1812 
   1813 			if (!(so->so_state & SS_ISCONNECTED))
   1814 				return (ENOTCONN);
   1815 			/*
   1816 			 * XXX: we dot not consider the case of source
   1817 			 * routing, or optional information to specify
   1818 			 * the outgoing interface.
   1819 			 */
   1820 			error = ip6_getpmtu(ro, NULL, NULL,
   1821 			    &in6p->in6p_faddr, &pmtu, NULL);
   1822 			if (error)
   1823 				break;
   1824 			if (pmtu > IPV6_MAXPACKET)
   1825 				pmtu = IPV6_MAXPACKET;
   1826 
   1827 			memset(&mtuinfo, 0, sizeof(mtuinfo));
   1828 			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
   1829 			optdata = (void *)&mtuinfo;
   1830 			optdatalen = sizeof(mtuinfo);
   1831 			if (optdatalen > MCLBYTES)
   1832 				return (EMSGSIZE); /* XXX */
   1833 			error = sockopt_set(sopt, optdata, optdatalen);
   1834 			break;
   1835 		    }
   1836 
   1837 #ifdef RFC2292
   1838 		case IPV6_2292PKTINFO:
   1839 		case IPV6_2292HOPLIMIT:
   1840 		case IPV6_2292HOPOPTS:
   1841 		case IPV6_2292RTHDR:
   1842 		case IPV6_2292DSTOPTS:
   1843 			switch (optname) {
   1844 			case IPV6_2292PKTINFO:
   1845 				optval = OPTBIT(IN6P_PKTINFO);
   1846 				break;
   1847 			case IPV6_2292HOPLIMIT:
   1848 				optval = OPTBIT(IN6P_HOPLIMIT);
   1849 				break;
   1850 			case IPV6_2292HOPOPTS:
   1851 				optval = OPTBIT(IN6P_HOPOPTS);
   1852 				break;
   1853 			case IPV6_2292RTHDR:
   1854 				optval = OPTBIT(IN6P_RTHDR);
   1855 				break;
   1856 			case IPV6_2292DSTOPTS:
   1857 				optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
   1858 				break;
   1859 			}
   1860 			error = sockopt_setint(sopt, optval);
   1861 			break;
   1862 #endif
   1863 		case IPV6_PKTINFO:
   1864 		case IPV6_HOPOPTS:
   1865 		case IPV6_RTHDR:
   1866 		case IPV6_DSTOPTS:
   1867 		case IPV6_RTHDRDSTOPTS:
   1868 		case IPV6_NEXTHOP:
   1869 		case IPV6_OTCLASS:
   1870 		case IPV6_TCLASS:
   1871 		case IPV6_DONTFRAG:
   1872 		case IPV6_USE_MIN_MTU:
   1873 		case IPV6_PREFER_TEMPADDR:
   1874 			error = ip6_getpcbopt(in6p->in6p_outputopts,
   1875 			    optname, sopt);
   1876 			break;
   1877 
   1878 		case IPV6_MULTICAST_IF:
   1879 		case IPV6_MULTICAST_HOPS:
   1880 		case IPV6_MULTICAST_LOOP:
   1881 		case IPV6_JOIN_GROUP:
   1882 		case IPV6_LEAVE_GROUP:
   1883 			error = ip6_getmoptions(sopt, in6p);
   1884 			break;
   1885 
   1886 		case IPV6_PORTALGO:
   1887 			optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
   1888 			error = sockopt_setint(sopt, optval);
   1889 			break;
   1890 
   1891 #if defined(IPSEC)
   1892 		case IPV6_IPSEC_POLICY:
   1893 			if (ipsec_used) {
   1894 				struct mbuf *m = NULL;
   1895 
   1896 				/*
   1897 				 * XXX: this will return EINVAL as sopt is
   1898 				 * empty
   1899 				 */
   1900 				error = ipsec6_get_policy(in6p, sopt->sopt_data,
   1901 				    sopt->sopt_size, &m);
   1902 				if (!error)
   1903 					error = sockopt_setmbuf(sopt, m);
   1904 				break;
   1905 			}
   1906 			/*FALLTHROUGH*/
   1907 #endif /* IPSEC */
   1908 
   1909 		default:
   1910 			error = ENOPROTOOPT;
   1911 			break;
   1912 		}
   1913 		break;
   1914 	}
   1915 	return (error);
   1916 }
   1917 
   1918 int
   1919 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1920 {
   1921 	int error = 0, optval;
   1922 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   1923 	struct in6pcb *in6p = sotoin6pcb(so);
   1924 	int level, optname;
   1925 
   1926 	KASSERT(sopt != NULL);
   1927 
   1928 	level = sopt->sopt_level;
   1929 	optname = sopt->sopt_name;
   1930 
   1931 	if (level != IPPROTO_IPV6) {
   1932 		return ENOPROTOOPT;
   1933 	}
   1934 
   1935 	switch (optname) {
   1936 	case IPV6_CHECKSUM:
   1937 		/*
   1938 		 * For ICMPv6 sockets, no modification allowed for checksum
   1939 		 * offset, permit "no change" values to help existing apps.
   1940 		 *
   1941 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
   1942 		 * for an ICMPv6 socket will fail."  The current
   1943 		 * behavior does not meet RFC3542.
   1944 		 */
   1945 		switch (op) {
   1946 		case PRCO_SETOPT:
   1947 			error = sockopt_getint(sopt, &optval);
   1948 			if (error)
   1949 				break;
   1950 			if ((optval % 2) != 0) {
   1951 				/* the API assumes even offset values */
   1952 				error = EINVAL;
   1953 			} else if (so->so_proto->pr_protocol ==
   1954 			    IPPROTO_ICMPV6) {
   1955 				if (optval != icmp6off)
   1956 					error = EINVAL;
   1957 			} else
   1958 				in6p->in6p_cksum = optval;
   1959 			break;
   1960 
   1961 		case PRCO_GETOPT:
   1962 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   1963 				optval = icmp6off;
   1964 			else
   1965 				optval = in6p->in6p_cksum;
   1966 
   1967 			error = sockopt_setint(sopt, optval);
   1968 			break;
   1969 
   1970 		default:
   1971 			error = EINVAL;
   1972 			break;
   1973 		}
   1974 		break;
   1975 
   1976 	default:
   1977 		error = ENOPROTOOPT;
   1978 		break;
   1979 	}
   1980 
   1981 	return (error);
   1982 }
   1983 
   1984 #ifdef RFC2292
   1985 /*
   1986  * Set up IP6 options in pcb for insertion in output packets or
   1987  * specifying behavior of outgoing packets.
   1988  */
   1989 static int
   1990 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
   1991     struct sockopt *sopt)
   1992 {
   1993 	struct ip6_pktopts *opt = *pktopt;
   1994 	struct mbuf *m;
   1995 	int error = 0;
   1996 
   1997 	/* turn off any old options. */
   1998 	if (opt) {
   1999 #ifdef DIAGNOSTIC
   2000 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
   2001 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
   2002 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2003 		    printf("ip6_pcbopts: all specified options are cleared.\n");
   2004 #endif
   2005 		ip6_clearpktopts(opt, -1);
   2006 	} else {
   2007 		opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
   2008 		if (opt == NULL)
   2009 			return (ENOBUFS);
   2010 	}
   2011 	*pktopt = NULL;
   2012 
   2013 	if (sopt == NULL || sopt->sopt_size == 0) {
   2014 		/*
   2015 		 * Only turning off any previous options, regardless of
   2016 		 * whether the opt is just created or given.
   2017 		 */
   2018 		free(opt, M_IP6OPT);
   2019 		return (0);
   2020 	}
   2021 
   2022 	/*  set options specified by user. */
   2023 	m = sockopt_getmbuf(sopt);
   2024 	if (m == NULL) {
   2025 		free(opt, M_IP6OPT);
   2026 		return (ENOBUFS);
   2027 	}
   2028 
   2029 	error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
   2030 	    so->so_proto->pr_protocol);
   2031 	m_freem(m);
   2032 	if (error != 0) {
   2033 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
   2034 		free(opt, M_IP6OPT);
   2035 		return (error);
   2036 	}
   2037 	*pktopt = opt;
   2038 	return (0);
   2039 }
   2040 #endif
   2041 
   2042 /*
   2043  * initialize ip6_pktopts.  beware that there are non-zero default values in
   2044  * the struct.
   2045  */
   2046 void
   2047 ip6_initpktopts(struct ip6_pktopts *opt)
   2048 {
   2049 
   2050 	memset(opt, 0, sizeof(*opt));
   2051 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
   2052 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
   2053 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
   2054 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
   2055 }
   2056 
   2057 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
   2058 static int
   2059 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
   2060     kauth_cred_t cred, int uproto)
   2061 {
   2062 	struct ip6_pktopts *opt;
   2063 
   2064 	if (*pktopt == NULL) {
   2065 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
   2066 		    M_NOWAIT);
   2067 		if (*pktopt == NULL)
   2068 			return (ENOBUFS);
   2069 
   2070 		ip6_initpktopts(*pktopt);
   2071 	}
   2072 	opt = *pktopt;
   2073 
   2074 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
   2075 }
   2076 
   2077 static int
   2078 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
   2079 {
   2080 	void *optdata = NULL;
   2081 	int optdatalen = 0;
   2082 	struct ip6_ext *ip6e;
   2083 	int error = 0;
   2084 	struct in6_pktinfo null_pktinfo;
   2085 	int deftclass = 0, on;
   2086 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
   2087 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
   2088 
   2089 	switch (optname) {
   2090 	case IPV6_PKTINFO:
   2091 		if (pktopt && pktopt->ip6po_pktinfo)
   2092 			optdata = (void *)pktopt->ip6po_pktinfo;
   2093 		else {
   2094 			/* XXX: we don't have to do this every time... */
   2095 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
   2096 			optdata = (void *)&null_pktinfo;
   2097 		}
   2098 		optdatalen = sizeof(struct in6_pktinfo);
   2099 		break;
   2100 	case IPV6_OTCLASS:
   2101 		/* XXX */
   2102 		return (EINVAL);
   2103 	case IPV6_TCLASS:
   2104 		if (pktopt && pktopt->ip6po_tclass >= 0)
   2105 			optdata = (void *)&pktopt->ip6po_tclass;
   2106 		else
   2107 			optdata = (void *)&deftclass;
   2108 		optdatalen = sizeof(int);
   2109 		break;
   2110 	case IPV6_HOPOPTS:
   2111 		if (pktopt && pktopt->ip6po_hbh) {
   2112 			optdata = (void *)pktopt->ip6po_hbh;
   2113 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
   2114 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2115 		}
   2116 		break;
   2117 	case IPV6_RTHDR:
   2118 		if (pktopt && pktopt->ip6po_rthdr) {
   2119 			optdata = (void *)pktopt->ip6po_rthdr;
   2120 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
   2121 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2122 		}
   2123 		break;
   2124 	case IPV6_RTHDRDSTOPTS:
   2125 		if (pktopt && pktopt->ip6po_dest1) {
   2126 			optdata = (void *)pktopt->ip6po_dest1;
   2127 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
   2128 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2129 		}
   2130 		break;
   2131 	case IPV6_DSTOPTS:
   2132 		if (pktopt && pktopt->ip6po_dest2) {
   2133 			optdata = (void *)pktopt->ip6po_dest2;
   2134 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
   2135 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2136 		}
   2137 		break;
   2138 	case IPV6_NEXTHOP:
   2139 		if (pktopt && pktopt->ip6po_nexthop) {
   2140 			optdata = (void *)pktopt->ip6po_nexthop;
   2141 			optdatalen = pktopt->ip6po_nexthop->sa_len;
   2142 		}
   2143 		break;
   2144 	case IPV6_USE_MIN_MTU:
   2145 		if (pktopt)
   2146 			optdata = (void *)&pktopt->ip6po_minmtu;
   2147 		else
   2148 			optdata = (void *)&defminmtu;
   2149 		optdatalen = sizeof(int);
   2150 		break;
   2151 	case IPV6_DONTFRAG:
   2152 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
   2153 			on = 1;
   2154 		else
   2155 			on = 0;
   2156 		optdata = (void *)&on;
   2157 		optdatalen = sizeof(on);
   2158 		break;
   2159 	case IPV6_PREFER_TEMPADDR:
   2160 		if (pktopt)
   2161 			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
   2162 		else
   2163 			optdata = (void *)&defpreftemp;
   2164 		optdatalen = sizeof(int);
   2165 		break;
   2166 	default:		/* should not happen */
   2167 #ifdef DIAGNOSTIC
   2168 		panic("ip6_getpcbopt: unexpected option\n");
   2169 #endif
   2170 		return (ENOPROTOOPT);
   2171 	}
   2172 
   2173 	error = sockopt_set(sopt, optdata, optdatalen);
   2174 
   2175 	return (error);
   2176 }
   2177 
   2178 void
   2179 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
   2180 {
   2181 	if (optname == -1 || optname == IPV6_PKTINFO) {
   2182 		if (pktopt->ip6po_pktinfo)
   2183 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
   2184 		pktopt->ip6po_pktinfo = NULL;
   2185 	}
   2186 	if (optname == -1 || optname == IPV6_HOPLIMIT)
   2187 		pktopt->ip6po_hlim = -1;
   2188 	if (optname == -1 || optname == IPV6_TCLASS)
   2189 		pktopt->ip6po_tclass = -1;
   2190 	if (optname == -1 || optname == IPV6_NEXTHOP) {
   2191 		rtcache_free(&pktopt->ip6po_nextroute);
   2192 		if (pktopt->ip6po_nexthop)
   2193 			free(pktopt->ip6po_nexthop, M_IP6OPT);
   2194 		pktopt->ip6po_nexthop = NULL;
   2195 	}
   2196 	if (optname == -1 || optname == IPV6_HOPOPTS) {
   2197 		if (pktopt->ip6po_hbh)
   2198 			free(pktopt->ip6po_hbh, M_IP6OPT);
   2199 		pktopt->ip6po_hbh = NULL;
   2200 	}
   2201 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
   2202 		if (pktopt->ip6po_dest1)
   2203 			free(pktopt->ip6po_dest1, M_IP6OPT);
   2204 		pktopt->ip6po_dest1 = NULL;
   2205 	}
   2206 	if (optname == -1 || optname == IPV6_RTHDR) {
   2207 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2208 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
   2209 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
   2210 		rtcache_free(&pktopt->ip6po_route);
   2211 	}
   2212 	if (optname == -1 || optname == IPV6_DSTOPTS) {
   2213 		if (pktopt->ip6po_dest2)
   2214 			free(pktopt->ip6po_dest2, M_IP6OPT);
   2215 		pktopt->ip6po_dest2 = NULL;
   2216 	}
   2217 }
   2218 
   2219 #define PKTOPT_EXTHDRCPY(type) 					\
   2220 do {								\
   2221 	if (src->type) {					\
   2222 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
   2223 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
   2224 		if (dst->type == NULL)				\
   2225 			goto bad;				\
   2226 		memcpy(dst->type, src->type, hlen);		\
   2227 	}							\
   2228 } while (/*CONSTCOND*/ 0)
   2229 
   2230 static int
   2231 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
   2232 {
   2233 	dst->ip6po_hlim = src->ip6po_hlim;
   2234 	dst->ip6po_tclass = src->ip6po_tclass;
   2235 	dst->ip6po_flags = src->ip6po_flags;
   2236 	dst->ip6po_minmtu = src->ip6po_minmtu;
   2237 	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
   2238 	if (src->ip6po_pktinfo) {
   2239 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
   2240 		    M_IP6OPT, canwait);
   2241 		if (dst->ip6po_pktinfo == NULL)
   2242 			goto bad;
   2243 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
   2244 	}
   2245 	if (src->ip6po_nexthop) {
   2246 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
   2247 		    M_IP6OPT, canwait);
   2248 		if (dst->ip6po_nexthop == NULL)
   2249 			goto bad;
   2250 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
   2251 		    src->ip6po_nexthop->sa_len);
   2252 	}
   2253 	PKTOPT_EXTHDRCPY(ip6po_hbh);
   2254 	PKTOPT_EXTHDRCPY(ip6po_dest1);
   2255 	PKTOPT_EXTHDRCPY(ip6po_dest2);
   2256 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
   2257 	return (0);
   2258 
   2259   bad:
   2260 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
   2261 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
   2262 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
   2263 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
   2264 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
   2265 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
   2266 
   2267 	return (ENOBUFS);
   2268 }
   2269 #undef PKTOPT_EXTHDRCPY
   2270 
   2271 struct ip6_pktopts *
   2272 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
   2273 {
   2274 	int error;
   2275 	struct ip6_pktopts *dst;
   2276 
   2277 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
   2278 	if (dst == NULL)
   2279 		return (NULL);
   2280 	ip6_initpktopts(dst);
   2281 
   2282 	if ((error = copypktopts(dst, src, canwait)) != 0) {
   2283 		free(dst, M_IP6OPT);
   2284 		return (NULL);
   2285 	}
   2286 
   2287 	return (dst);
   2288 }
   2289 
   2290 void
   2291 ip6_freepcbopts(struct ip6_pktopts *pktopt)
   2292 {
   2293 	if (pktopt == NULL)
   2294 		return;
   2295 
   2296 	ip6_clearpktopts(pktopt, -1);
   2297 
   2298 	free(pktopt, M_IP6OPT);
   2299 }
   2300 
   2301 int
   2302 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp, void *v,
   2303     size_t l)
   2304 {
   2305 	struct ipv6_mreq mreq;
   2306 	int error;
   2307 	struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
   2308 	struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
   2309 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2310 	if (error != 0)
   2311 		return error;
   2312 
   2313 	if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
   2314 		/*
   2315 		 * We use the unspecified address to specify to accept
   2316 		 * all multicast addresses. Only super user is allowed
   2317 		 * to do this.
   2318 		 */
   2319 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6,
   2320 		    KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
   2321 			return EACCES;
   2322 	} else if (IN6_IS_ADDR_V4MAPPED(ia)) {
   2323 		// Don't bother if we are not going to use ifp.
   2324 		if (l == sizeof(*ia)) {
   2325 			memcpy(v, ia, l);
   2326 			return 0;
   2327 		}
   2328 	} else if (!IN6_IS_ADDR_MULTICAST(ia)) {
   2329 		return EINVAL;
   2330 	}
   2331 
   2332 	/*
   2333 	 * If no interface was explicitly specified, choose an
   2334 	 * appropriate one according to the given multicast address.
   2335 	 */
   2336 	if (mreq.ipv6mr_interface == 0) {
   2337 		struct rtentry *rt;
   2338 		union {
   2339 			struct sockaddr		dst;
   2340 			struct sockaddr_in	dst4;
   2341 			struct sockaddr_in6	dst6;
   2342 		} u;
   2343 		struct route ro;
   2344 
   2345 		/*
   2346 		 * Look up the routing table for the
   2347 		 * address, and choose the outgoing interface.
   2348 		 *   XXX: is it a good approach?
   2349 		 */
   2350 		memset(&ro, 0, sizeof(ro));
   2351 		if (IN6_IS_ADDR_V4MAPPED(ia))
   2352 			sockaddr_in_init(&u.dst4, ia4, 0);
   2353 		else
   2354 			sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
   2355 		error = rtcache_setdst(&ro, &u.dst);
   2356 		if (error != 0)
   2357 			return error;
   2358 		*ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
   2359 		rtcache_free(&ro);
   2360 	} else {
   2361 		/*
   2362 		 * If the interface is specified, validate it.
   2363 		 */
   2364 		if ((*ifp = if_byindex(mreq.ipv6mr_interface)) == NULL)
   2365 			return ENXIO;	/* XXX EINVAL? */
   2366 	}
   2367 	if (sizeof(*ia) == l)
   2368 		memcpy(v, ia, l);
   2369 	else
   2370 		memcpy(v, ia4, l);
   2371 	return 0;
   2372 }
   2373 
   2374 /*
   2375  * Set the IP6 multicast options in response to user setsockopt().
   2376  */
   2377 static int
   2378 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p)
   2379 {
   2380 	int error = 0;
   2381 	u_int loop, ifindex;
   2382 	struct ipv6_mreq mreq;
   2383 	struct in6_addr ia;
   2384 	struct ifnet *ifp;
   2385 	struct ip6_moptions *im6o = in6p->in6p_moptions;
   2386 	struct in6_multi_mship *imm;
   2387 
   2388 	if (im6o == NULL) {
   2389 		/*
   2390 		 * No multicast option buffer attached to the pcb;
   2391 		 * allocate one and initialize to default values.
   2392 		 */
   2393 		im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
   2394 		if (im6o == NULL)
   2395 			return (ENOBUFS);
   2396 		in6p->in6p_moptions = im6o;
   2397 		im6o->im6o_multicast_if_index = 0;
   2398 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2399 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   2400 		LIST_INIT(&im6o->im6o_memberships);
   2401 	}
   2402 
   2403 	switch (sopt->sopt_name) {
   2404 
   2405 	case IPV6_MULTICAST_IF:
   2406 		/*
   2407 		 * Select the interface for outgoing multicast packets.
   2408 		 */
   2409 		error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
   2410 		if (error != 0)
   2411 			break;
   2412 
   2413 		if (ifindex != 0) {
   2414 			if ((ifp = if_byindex(ifindex)) == NULL) {
   2415 				error = ENXIO;	/* XXX EINVAL? */
   2416 				break;
   2417 			}
   2418 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   2419 				error = EADDRNOTAVAIL;
   2420 				break;
   2421 			}
   2422 		} else
   2423 			ifp = NULL;
   2424 		im6o->im6o_multicast_if_index = if_get_index(ifp);
   2425 		break;
   2426 
   2427 	case IPV6_MULTICAST_HOPS:
   2428 	    {
   2429 		/*
   2430 		 * Set the IP6 hoplimit for outgoing multicast packets.
   2431 		 */
   2432 		int optval;
   2433 
   2434 		error = sockopt_getint(sopt, &optval);
   2435 		if (error != 0)
   2436 			break;
   2437 
   2438 		if (optval < -1 || optval >= 256)
   2439 			error = EINVAL;
   2440 		else if (optval == -1)
   2441 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2442 		else
   2443 			im6o->im6o_multicast_hlim = optval;
   2444 		break;
   2445 	    }
   2446 
   2447 	case IPV6_MULTICAST_LOOP:
   2448 		/*
   2449 		 * Set the loopback flag for outgoing multicast packets.
   2450 		 * Must be zero or one.
   2451 		 */
   2452 		error = sockopt_get(sopt, &loop, sizeof(loop));
   2453 		if (error != 0)
   2454 			break;
   2455 		if (loop > 1) {
   2456 			error = EINVAL;
   2457 			break;
   2458 		}
   2459 		im6o->im6o_multicast_loop = loop;
   2460 		break;
   2461 
   2462 	case IPV6_JOIN_GROUP:
   2463 		/*
   2464 		 * Add a multicast group membership.
   2465 		 * Group must be a valid IP6 multicast address.
   2466 		 */
   2467 		if ((error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia))))
   2468 			return error;
   2469 
   2470 		if (IN6_IS_ADDR_V4MAPPED(&ia)) {
   2471 			error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
   2472 			break;
   2473 		}
   2474 		/*
   2475 		 * See if we found an interface, and confirm that it
   2476 		 * supports multicast
   2477 		 */
   2478 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   2479 			error = EADDRNOTAVAIL;
   2480 			break;
   2481 		}
   2482 
   2483 		if (in6_setscope(&ia, ifp, NULL)) {
   2484 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   2485 			break;
   2486 		}
   2487 
   2488 		/*
   2489 		 * See if the membership already exists.
   2490 		 */
   2491 		for (imm = im6o->im6o_memberships.lh_first;
   2492 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   2493 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2494 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2495 			    &ia))
   2496 				break;
   2497 		if (imm != NULL) {
   2498 			error = EADDRINUSE;
   2499 			break;
   2500 		}
   2501 		/*
   2502 		 * Everything looks good; add a new record to the multicast
   2503 		 * address list for the given interface.
   2504 		 */
   2505 		imm = in6_joingroup(ifp, &ia, &error, 0);
   2506 		if (imm == NULL)
   2507 			break;
   2508 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2509 		break;
   2510 
   2511 	case IPV6_LEAVE_GROUP:
   2512 		/*
   2513 		 * Drop a multicast group membership.
   2514 		 * Group must be a valid IP6 multicast address.
   2515 		 */
   2516 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2517 		if (error != 0)
   2518 			break;
   2519 
   2520 		if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
   2521 			error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
   2522 			break;
   2523 		}
   2524 		/*
   2525 		 * If an interface address was specified, get a pointer
   2526 		 * to its ifnet structure.
   2527 		 */
   2528 		if (mreq.ipv6mr_interface != 0) {
   2529 			if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
   2530 				error = ENXIO;	/* XXX EINVAL? */
   2531 				break;
   2532 			}
   2533 		} else
   2534 			ifp = NULL;
   2535 
   2536 		/* Fill in the scope zone ID */
   2537 		if (ifp) {
   2538 			if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
   2539 				/* XXX: should not happen */
   2540 				error = EADDRNOTAVAIL;
   2541 				break;
   2542 			}
   2543 		} else if (mreq.ipv6mr_interface != 0) {
   2544 			/*
   2545 			 * XXX: This case would happens when the (positive)
   2546 			 * index is in the valid range, but the corresponding
   2547 			 * interface has been detached dynamically.  The above
   2548 			 * check probably avoids such case to happen here, but
   2549 			 * we check it explicitly for safety.
   2550 			 */
   2551 			error = EADDRNOTAVAIL;
   2552 			break;
   2553 		} else {	/* ipv6mr_interface == 0 */
   2554 			struct sockaddr_in6 sa6_mc;
   2555 
   2556 			/*
   2557 			 * The API spec says as follows:
   2558 			 *  If the interface index is specified as 0, the
   2559 			 *  system may choose a multicast group membership to
   2560 			 *  drop by matching the multicast address only.
   2561 			 * On the other hand, we cannot disambiguate the scope
   2562 			 * zone unless an interface is provided.  Thus, we
   2563 			 * check if there's ambiguity with the default scope
   2564 			 * zone as the last resort.
   2565 			 */
   2566 			sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
   2567 			    0, 0, 0);
   2568 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2569 			if (error != 0)
   2570 				break;
   2571 			mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2572 		}
   2573 
   2574 		/*
   2575 		 * Find the membership in the membership list.
   2576 		 */
   2577 		for (imm = im6o->im6o_memberships.lh_first;
   2578 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   2579 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2580 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2581 			    &mreq.ipv6mr_multiaddr))
   2582 				break;
   2583 		}
   2584 		if (imm == NULL) {
   2585 			/* Unable to resolve interface */
   2586 			error = EADDRNOTAVAIL;
   2587 			break;
   2588 		}
   2589 		/*
   2590 		 * Give up the multicast address record to which the
   2591 		 * membership points.
   2592 		 */
   2593 		LIST_REMOVE(imm, i6mm_chain);
   2594 		in6_leavegroup(imm);
   2595 		break;
   2596 
   2597 	default:
   2598 		error = EOPNOTSUPP;
   2599 		break;
   2600 	}
   2601 
   2602 	/*
   2603 	 * If all options have default values, no need to keep the mbuf.
   2604 	 */
   2605 	if (im6o->im6o_multicast_if_index == 0 &&
   2606 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2607 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2608 	    im6o->im6o_memberships.lh_first == NULL) {
   2609 		free(in6p->in6p_moptions, M_IPMOPTS);
   2610 		in6p->in6p_moptions = NULL;
   2611 	}
   2612 
   2613 	return (error);
   2614 }
   2615 
   2616 /*
   2617  * Return the IP6 multicast options in response to user getsockopt().
   2618  */
   2619 static int
   2620 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p)
   2621 {
   2622 	u_int optval;
   2623 	int error;
   2624 	struct ip6_moptions *im6o = in6p->in6p_moptions;
   2625 
   2626 	switch (sopt->sopt_name) {
   2627 	case IPV6_MULTICAST_IF:
   2628 		if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
   2629 			optval = 0;
   2630 		else
   2631 			optval = im6o->im6o_multicast_if_index;
   2632 
   2633 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2634 		break;
   2635 
   2636 	case IPV6_MULTICAST_HOPS:
   2637 		if (im6o == NULL)
   2638 			optval = ip6_defmcasthlim;
   2639 		else
   2640 			optval = im6o->im6o_multicast_hlim;
   2641 
   2642 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2643 		break;
   2644 
   2645 	case IPV6_MULTICAST_LOOP:
   2646 		if (im6o == NULL)
   2647 			optval = IPV6_DEFAULT_MULTICAST_LOOP;
   2648 		else
   2649 			optval = im6o->im6o_multicast_loop;
   2650 
   2651 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2652 		break;
   2653 
   2654 	default:
   2655 		error = EOPNOTSUPP;
   2656 	}
   2657 
   2658 	return (error);
   2659 }
   2660 
   2661 /*
   2662  * Discard the IP6 multicast options.
   2663  */
   2664 void
   2665 ip6_freemoptions(struct ip6_moptions *im6o)
   2666 {
   2667 	struct in6_multi_mship *imm;
   2668 
   2669 	if (im6o == NULL)
   2670 		return;
   2671 
   2672 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   2673 		LIST_REMOVE(imm, i6mm_chain);
   2674 		in6_leavegroup(imm);
   2675 	}
   2676 	free(im6o, M_IPMOPTS);
   2677 }
   2678 
   2679 /*
   2680  * Set IPv6 outgoing packet options based on advanced API.
   2681  */
   2682 int
   2683 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
   2684 	struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
   2685 {
   2686 	struct cmsghdr *cm = 0;
   2687 
   2688 	if (control == NULL || opt == NULL)
   2689 		return (EINVAL);
   2690 
   2691 	ip6_initpktopts(opt);
   2692 	if (stickyopt) {
   2693 		int error;
   2694 
   2695 		/*
   2696 		 * If stickyopt is provided, make a local copy of the options
   2697 		 * for this particular packet, then override them by ancillary
   2698 		 * objects.
   2699 		 * XXX: copypktopts() does not copy the cached route to a next
   2700 		 * hop (if any).  This is not very good in terms of efficiency,
   2701 		 * but we can allow this since this option should be rarely
   2702 		 * used.
   2703 		 */
   2704 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
   2705 			return (error);
   2706 	}
   2707 
   2708 	/*
   2709 	 * XXX: Currently, we assume all the optional information is stored
   2710 	 * in a single mbuf.
   2711 	 */
   2712 	if (control->m_next)
   2713 		return (EINVAL);
   2714 
   2715 	/* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
   2716 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2717 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2718 		int error;
   2719 
   2720 		if (control->m_len < CMSG_LEN(0))
   2721 			return (EINVAL);
   2722 
   2723 		cm = mtod(control, struct cmsghdr *);
   2724 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   2725 			return (EINVAL);
   2726 		if (cm->cmsg_level != IPPROTO_IPV6)
   2727 			continue;
   2728 
   2729 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
   2730 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
   2731 		if (error)
   2732 			return (error);
   2733 	}
   2734 
   2735 	return (0);
   2736 }
   2737 
   2738 /*
   2739  * Set a particular packet option, as a sticky option or an ancillary data
   2740  * item.  "len" can be 0 only when it's a sticky option.
   2741  * We have 4 cases of combination of "sticky" and "cmsg":
   2742  * "sticky=0, cmsg=0": impossible
   2743  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
   2744  * "sticky=1, cmsg=0": RFC3542 socket option
   2745  * "sticky=1, cmsg=1": RFC2292 socket option
   2746  */
   2747 static int
   2748 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
   2749     kauth_cred_t cred, int sticky, int cmsg, int uproto)
   2750 {
   2751 	int minmtupolicy;
   2752 	int error;
   2753 
   2754 	if (!sticky && !cmsg) {
   2755 #ifdef DIAGNOSTIC
   2756 		printf("ip6_setpktopt: impossible case\n");
   2757 #endif
   2758 		return (EINVAL);
   2759 	}
   2760 
   2761 	/*
   2762 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
   2763 	 * not be specified in the context of RFC3542.  Conversely,
   2764 	 * RFC3542 types should not be specified in the context of RFC2292.
   2765 	 */
   2766 	if (!cmsg) {
   2767 		switch (optname) {
   2768 		case IPV6_2292PKTINFO:
   2769 		case IPV6_2292HOPLIMIT:
   2770 		case IPV6_2292NEXTHOP:
   2771 		case IPV6_2292HOPOPTS:
   2772 		case IPV6_2292DSTOPTS:
   2773 		case IPV6_2292RTHDR:
   2774 		case IPV6_2292PKTOPTIONS:
   2775 			return (ENOPROTOOPT);
   2776 		}
   2777 	}
   2778 	if (sticky && cmsg) {
   2779 		switch (optname) {
   2780 		case IPV6_PKTINFO:
   2781 		case IPV6_HOPLIMIT:
   2782 		case IPV6_NEXTHOP:
   2783 		case IPV6_HOPOPTS:
   2784 		case IPV6_DSTOPTS:
   2785 		case IPV6_RTHDRDSTOPTS:
   2786 		case IPV6_RTHDR:
   2787 		case IPV6_USE_MIN_MTU:
   2788 		case IPV6_DONTFRAG:
   2789 		case IPV6_OTCLASS:
   2790 		case IPV6_TCLASS:
   2791 		case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
   2792 			return (ENOPROTOOPT);
   2793 		}
   2794 	}
   2795 
   2796 	switch (optname) {
   2797 #ifdef RFC2292
   2798 	case IPV6_2292PKTINFO:
   2799 #endif
   2800 	case IPV6_PKTINFO:
   2801 	{
   2802 		struct in6_pktinfo *pktinfo;
   2803 
   2804 		if (len != sizeof(struct in6_pktinfo))
   2805 			return (EINVAL);
   2806 
   2807 		pktinfo = (struct in6_pktinfo *)buf;
   2808 
   2809 		/*
   2810 		 * An application can clear any sticky IPV6_PKTINFO option by
   2811 		 * doing a "regular" setsockopt with ipi6_addr being
   2812 		 * in6addr_any and ipi6_ifindex being zero.
   2813 		 * [RFC 3542, Section 6]
   2814 		 */
   2815 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
   2816 		    pktinfo->ipi6_ifindex == 0 &&
   2817 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2818 			ip6_clearpktopts(opt, optname);
   2819 			break;
   2820 		}
   2821 
   2822 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
   2823 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2824 			return (EINVAL);
   2825 		}
   2826 
   2827 		/* Validate the interface index if specified. */
   2828 		if (pktinfo->ipi6_ifindex) {
   2829 			struct ifnet *ifp;
   2830 			int s = pserialize_read_enter();
   2831 			ifp = if_byindex(pktinfo->ipi6_ifindex);
   2832 			if (ifp == NULL) {
   2833 				pserialize_read_exit(s);
   2834 				return ENXIO;
   2835 			}
   2836 			pserialize_read_exit(s);
   2837 		}
   2838 
   2839 		/*
   2840 		 * We store the address anyway, and let in6_selectsrc()
   2841 		 * validate the specified address.  This is because ipi6_addr
   2842 		 * may not have enough information about its scope zone, and
   2843 		 * we may need additional information (such as outgoing
   2844 		 * interface or the scope zone of a destination address) to
   2845 		 * disambiguate the scope.
   2846 		 * XXX: the delay of the validation may confuse the
   2847 		 * application when it is used as a sticky option.
   2848 		 */
   2849 		if (opt->ip6po_pktinfo == NULL) {
   2850 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
   2851 			    M_IP6OPT, M_NOWAIT);
   2852 			if (opt->ip6po_pktinfo == NULL)
   2853 				return (ENOBUFS);
   2854 		}
   2855 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
   2856 		break;
   2857 	}
   2858 
   2859 #ifdef RFC2292
   2860 	case IPV6_2292HOPLIMIT:
   2861 #endif
   2862 	case IPV6_HOPLIMIT:
   2863 	{
   2864 		int *hlimp;
   2865 
   2866 		/*
   2867 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
   2868 		 * to simplify the ordering among hoplimit options.
   2869 		 */
   2870 		if (optname == IPV6_HOPLIMIT && sticky)
   2871 			return (ENOPROTOOPT);
   2872 
   2873 		if (len != sizeof(int))
   2874 			return (EINVAL);
   2875 		hlimp = (int *)buf;
   2876 		if (*hlimp < -1 || *hlimp > 255)
   2877 			return (EINVAL);
   2878 
   2879 		opt->ip6po_hlim = *hlimp;
   2880 		break;
   2881 	}
   2882 
   2883 	case IPV6_OTCLASS:
   2884 		if (len != sizeof(u_int8_t))
   2885 			return (EINVAL);
   2886 
   2887 		opt->ip6po_tclass = *(u_int8_t *)buf;
   2888 		break;
   2889 
   2890 	case IPV6_TCLASS:
   2891 	{
   2892 		int tclass;
   2893 
   2894 		if (len != sizeof(int))
   2895 			return (EINVAL);
   2896 		tclass = *(int *)buf;
   2897 		if (tclass < -1 || tclass > 255)
   2898 			return (EINVAL);
   2899 
   2900 		opt->ip6po_tclass = tclass;
   2901 		break;
   2902 	}
   2903 
   2904 #ifdef RFC2292
   2905 	case IPV6_2292NEXTHOP:
   2906 #endif
   2907 	case IPV6_NEXTHOP:
   2908 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   2909 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2910 		if (error)
   2911 			return (error);
   2912 
   2913 		if (len == 0) {	/* just remove the option */
   2914 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
   2915 			break;
   2916 		}
   2917 
   2918 		/* check if cmsg_len is large enough for sa_len */
   2919 		if (len < sizeof(struct sockaddr) || len < *buf)
   2920 			return (EINVAL);
   2921 
   2922 		switch (((struct sockaddr *)buf)->sa_family) {
   2923 		case AF_INET6:
   2924 		{
   2925 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
   2926 
   2927 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
   2928 				return (EINVAL);
   2929 
   2930 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
   2931 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
   2932 				return (EINVAL);
   2933 			}
   2934 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
   2935 			    != 0) {
   2936 				return (error);
   2937 			}
   2938 			break;
   2939 		}
   2940 		case AF_LINK:	/* eventually be supported? */
   2941 		default:
   2942 			return (EAFNOSUPPORT);
   2943 		}
   2944 
   2945 		/* turn off the previous option, then set the new option. */
   2946 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
   2947 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
   2948 		if (opt->ip6po_nexthop == NULL)
   2949 			return (ENOBUFS);
   2950 		memcpy(opt->ip6po_nexthop, buf, *buf);
   2951 		break;
   2952 
   2953 #ifdef RFC2292
   2954 	case IPV6_2292HOPOPTS:
   2955 #endif
   2956 	case IPV6_HOPOPTS:
   2957 	{
   2958 		struct ip6_hbh *hbh;
   2959 		int hbhlen;
   2960 
   2961 		/*
   2962 		 * XXX: We don't allow a non-privileged user to set ANY HbH
   2963 		 * options, since per-option restriction has too much
   2964 		 * overhead.
   2965 		 */
   2966 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   2967 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2968 		if (error)
   2969 			return (error);
   2970 
   2971 		if (len == 0) {
   2972 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
   2973 			break;	/* just remove the option */
   2974 		}
   2975 
   2976 		/* message length validation */
   2977 		if (len < sizeof(struct ip6_hbh))
   2978 			return (EINVAL);
   2979 		hbh = (struct ip6_hbh *)buf;
   2980 		hbhlen = (hbh->ip6h_len + 1) << 3;
   2981 		if (len != hbhlen)
   2982 			return (EINVAL);
   2983 
   2984 		/* turn off the previous option, then set the new option. */
   2985 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
   2986 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
   2987 		if (opt->ip6po_hbh == NULL)
   2988 			return (ENOBUFS);
   2989 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
   2990 
   2991 		break;
   2992 	}
   2993 
   2994 #ifdef RFC2292
   2995 	case IPV6_2292DSTOPTS:
   2996 #endif
   2997 	case IPV6_DSTOPTS:
   2998 	case IPV6_RTHDRDSTOPTS:
   2999 	{
   3000 		struct ip6_dest *dest, **newdest = NULL;
   3001 		int destlen;
   3002 
   3003 		/* XXX: see the comment for IPV6_HOPOPTS */
   3004 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   3005 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   3006 		if (error)
   3007 			return (error);
   3008 
   3009 		if (len == 0) {
   3010 			ip6_clearpktopts(opt, optname);
   3011 			break;	/* just remove the option */
   3012 		}
   3013 
   3014 		/* message length validation */
   3015 		if (len < sizeof(struct ip6_dest))
   3016 			return (EINVAL);
   3017 		dest = (struct ip6_dest *)buf;
   3018 		destlen = (dest->ip6d_len + 1) << 3;
   3019 		if (len != destlen)
   3020 			return (EINVAL);
   3021 		/*
   3022 		 * Determine the position that the destination options header
   3023 		 * should be inserted; before or after the routing header.
   3024 		 */
   3025 		switch (optname) {
   3026 		case IPV6_2292DSTOPTS:
   3027 			/*
   3028 			 * The old advanced API is ambiguous on this point.
   3029 			 * Our approach is to determine the position based
   3030 			 * according to the existence of a routing header.
   3031 			 * Note, however, that this depends on the order of the
   3032 			 * extension headers in the ancillary data; the 1st
   3033 			 * part of the destination options header must appear
   3034 			 * before the routing header in the ancillary data,
   3035 			 * too.
   3036 			 * RFC3542 solved the ambiguity by introducing
   3037 			 * separate ancillary data or option types.
   3038 			 */
   3039 			if (opt->ip6po_rthdr == NULL)
   3040 				newdest = &opt->ip6po_dest1;
   3041 			else
   3042 				newdest = &opt->ip6po_dest2;
   3043 			break;
   3044 		case IPV6_RTHDRDSTOPTS:
   3045 			newdest = &opt->ip6po_dest1;
   3046 			break;
   3047 		case IPV6_DSTOPTS:
   3048 			newdest = &opt->ip6po_dest2;
   3049 			break;
   3050 		}
   3051 
   3052 		/* turn off the previous option, then set the new option. */
   3053 		ip6_clearpktopts(opt, optname);
   3054 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
   3055 		if (*newdest == NULL)
   3056 			return (ENOBUFS);
   3057 		memcpy(*newdest, dest, destlen);
   3058 
   3059 		break;
   3060 	}
   3061 
   3062 #ifdef RFC2292
   3063 	case IPV6_2292RTHDR:
   3064 #endif
   3065 	case IPV6_RTHDR:
   3066 	{
   3067 		struct ip6_rthdr *rth;
   3068 		int rthlen;
   3069 
   3070 		if (len == 0) {
   3071 			ip6_clearpktopts(opt, IPV6_RTHDR);
   3072 			break;	/* just remove the option */
   3073 		}
   3074 
   3075 		/* message length validation */
   3076 		if (len < sizeof(struct ip6_rthdr))
   3077 			return (EINVAL);
   3078 		rth = (struct ip6_rthdr *)buf;
   3079 		rthlen = (rth->ip6r_len + 1) << 3;
   3080 		if (len != rthlen)
   3081 			return (EINVAL);
   3082 		switch (rth->ip6r_type) {
   3083 		case IPV6_RTHDR_TYPE_0:
   3084 			if (rth->ip6r_len == 0)	/* must contain one addr */
   3085 				return (EINVAL);
   3086 			if (rth->ip6r_len % 2) /* length must be even */
   3087 				return (EINVAL);
   3088 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
   3089 				return (EINVAL);
   3090 			break;
   3091 		default:
   3092 			return (EINVAL);	/* not supported */
   3093 		}
   3094 		/* turn off the previous option */
   3095 		ip6_clearpktopts(opt, IPV6_RTHDR);
   3096 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
   3097 		if (opt->ip6po_rthdr == NULL)
   3098 			return (ENOBUFS);
   3099 		memcpy(opt->ip6po_rthdr, rth, rthlen);
   3100 		break;
   3101 	}
   3102 
   3103 	case IPV6_USE_MIN_MTU:
   3104 		if (len != sizeof(int))
   3105 			return (EINVAL);
   3106 		minmtupolicy = *(int *)buf;
   3107 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
   3108 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
   3109 		    minmtupolicy != IP6PO_MINMTU_ALL) {
   3110 			return (EINVAL);
   3111 		}
   3112 		opt->ip6po_minmtu = minmtupolicy;
   3113 		break;
   3114 
   3115 	case IPV6_DONTFRAG:
   3116 		if (len != sizeof(int))
   3117 			return (EINVAL);
   3118 
   3119 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
   3120 			/*
   3121 			 * we ignore this option for TCP sockets.
   3122 			 * (RFC3542 leaves this case unspecified.)
   3123 			 */
   3124 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
   3125 		} else
   3126 			opt->ip6po_flags |= IP6PO_DONTFRAG;
   3127 		break;
   3128 
   3129 	case IPV6_PREFER_TEMPADDR:
   3130 	{
   3131 		int preftemp;
   3132 
   3133 		if (len != sizeof(int))
   3134 			return (EINVAL);
   3135 		preftemp = *(int *)buf;
   3136 		switch (preftemp) {
   3137 		case IP6PO_TEMPADDR_SYSTEM:
   3138 		case IP6PO_TEMPADDR_NOTPREFER:
   3139 		case IP6PO_TEMPADDR_PREFER:
   3140 			break;
   3141 		default:
   3142 			return (EINVAL);
   3143 		}
   3144 		opt->ip6po_prefer_tempaddr = preftemp;
   3145 		break;
   3146 	}
   3147 
   3148 	default:
   3149 		return (ENOPROTOOPT);
   3150 	} /* end of switch */
   3151 
   3152 	return (0);
   3153 }
   3154 
   3155 /*
   3156  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   3157  * packet to the input queue of a specified interface.  Note that this
   3158  * calls the output routine of the loopback "driver", but with an interface
   3159  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   3160  */
   3161 void
   3162 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
   3163 	const struct sockaddr_in6 *dst)
   3164 {
   3165 	struct mbuf *copym;
   3166 	struct ip6_hdr *ip6;
   3167 
   3168 	copym = m_copy(m, 0, M_COPYALL);
   3169 	if (copym == NULL)
   3170 		return;
   3171 
   3172 	/*
   3173 	 * Make sure to deep-copy IPv6 header portion in case the data
   3174 	 * is in an mbuf cluster, so that we can safely override the IPv6
   3175 	 * header portion later.
   3176 	 */
   3177 	if ((copym->m_flags & M_EXT) != 0 ||
   3178 	    copym->m_len < sizeof(struct ip6_hdr)) {
   3179 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   3180 		if (copym == NULL)
   3181 			return;
   3182 	}
   3183 
   3184 #ifdef DIAGNOSTIC
   3185 	if (copym->m_len < sizeof(*ip6)) {
   3186 		m_freem(copym);
   3187 		return;
   3188 	}
   3189 #endif
   3190 
   3191 	ip6 = mtod(copym, struct ip6_hdr *);
   3192 	/*
   3193 	 * clear embedded scope identifiers if necessary.
   3194 	 * in6_clearscope will touch the addresses only when necessary.
   3195 	 */
   3196 	in6_clearscope(&ip6->ip6_src);
   3197 	in6_clearscope(&ip6->ip6_dst);
   3198 
   3199 	(void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
   3200 }
   3201 
   3202 /*
   3203  * Chop IPv6 header off from the payload.
   3204  */
   3205 static int
   3206 ip6_splithdr(struct mbuf *m,  struct ip6_exthdrs *exthdrs)
   3207 {
   3208 	struct mbuf *mh;
   3209 	struct ip6_hdr *ip6;
   3210 
   3211 	ip6 = mtod(m, struct ip6_hdr *);
   3212 	if (m->m_len > sizeof(*ip6)) {
   3213 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   3214 		if (mh == 0) {
   3215 			m_freem(m);
   3216 			return ENOBUFS;
   3217 		}
   3218 		M_MOVE_PKTHDR(mh, m);
   3219 		MH_ALIGN(mh, sizeof(*ip6));
   3220 		m->m_len -= sizeof(*ip6);
   3221 		m->m_data += sizeof(*ip6);
   3222 		mh->m_next = m;
   3223 		m = mh;
   3224 		m->m_len = sizeof(*ip6);
   3225 		bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
   3226 	}
   3227 	exthdrs->ip6e_ip6 = m;
   3228 	return 0;
   3229 }
   3230 
   3231 /*
   3232  * Compute IPv6 extension header length.
   3233  */
   3234 int
   3235 ip6_optlen(struct in6pcb *in6p)
   3236 {
   3237 	int len;
   3238 
   3239 	if (!in6p->in6p_outputopts)
   3240 		return 0;
   3241 
   3242 	len = 0;
   3243 #define elen(x) \
   3244     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   3245 
   3246 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   3247 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   3248 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   3249 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   3250 	return len;
   3251 #undef elen
   3252 }
   3253