Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.179
      1 /*	$NetBSD: ip6_output.c,v 1.179 2016/12/08 05:16:34 ozaki-r Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.179 2016/12/08 05:16:34 ozaki-r Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_inet.h"
     69 #include "opt_inet6.h"
     70 #include "opt_ipsec.h"
     71 #endif
     72 
     73 #include <sys/param.h>
     74 #include <sys/malloc.h>
     75 #include <sys/mbuf.h>
     76 #include <sys/errno.h>
     77 #include <sys/protosw.h>
     78 #include <sys/socket.h>
     79 #include <sys/socketvar.h>
     80 #include <sys/syslog.h>
     81 #include <sys/systm.h>
     82 #include <sys/proc.h>
     83 #include <sys/kauth.h>
     84 
     85 #include <net/if.h>
     86 #include <net/route.h>
     87 #include <net/pfil.h>
     88 
     89 #include <netinet/in.h>
     90 #include <netinet/in_var.h>
     91 #include <netinet/ip6.h>
     92 #include <netinet/ip_var.h>
     93 #include <netinet/icmp6.h>
     94 #include <netinet/in_offload.h>
     95 #include <netinet/portalgo.h>
     96 #include <netinet6/in6_offload.h>
     97 #include <netinet6/ip6_var.h>
     98 #include <netinet6/ip6_private.h>
     99 #include <netinet6/in6_pcb.h>
    100 #include <netinet6/nd6.h>
    101 #include <netinet6/ip6protosw.h>
    102 #include <netinet6/scope6_var.h>
    103 
    104 #ifdef IPSEC
    105 #include <netipsec/ipsec.h>
    106 #include <netipsec/ipsec6.h>
    107 #include <netipsec/key.h>
    108 #include <netipsec/xform.h>
    109 #endif
    110 
    111 
    112 #include <net/net_osdep.h>
    113 
    114 extern pfil_head_t *inet6_pfil_hook;	/* XXX */
    115 
    116 struct ip6_exthdrs {
    117 	struct mbuf *ip6e_ip6;
    118 	struct mbuf *ip6e_hbh;
    119 	struct mbuf *ip6e_dest1;
    120 	struct mbuf *ip6e_rthdr;
    121 	struct mbuf *ip6e_dest2;
    122 };
    123 
    124 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
    125 	kauth_cred_t, int);
    126 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
    127 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
    128 	int, int, int);
    129 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *);
    130 static int ip6_getmoptions(struct sockopt *, struct in6pcb *);
    131 static int ip6_copyexthdr(struct mbuf **, void *, int);
    132 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
    133 	struct ip6_frag **);
    134 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
    135 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
    136 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
    137 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
    138 static int ip6_ifaddrvalid(const struct in6_addr *);
    139 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
    140 
    141 #ifdef RFC2292
    142 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
    143 #endif
    144 
    145 static int
    146 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
    147 {
    148 	struct ip6_rthdr0 *rh0;
    149 	struct in6_addr *addr;
    150 	struct sockaddr_in6 sa;
    151 	int error = 0;
    152 
    153 	switch (rh->ip6r_type) {
    154 	case IPV6_RTHDR_TYPE_0:
    155 		 rh0 = (struct ip6_rthdr0 *)rh;
    156 		 addr = (struct in6_addr *)(rh0 + 1);
    157 
    158 		 /*
    159 		  * construct a sockaddr_in6 form of the first hop.
    160 		  *
    161 		  * XXX we may not have enough information about its scope zone;
    162 		  * there is no standard API to pass the information from the
    163 		  * application.
    164 		  */
    165 		 sockaddr_in6_init(&sa, addr, 0, 0, 0);
    166 		 error = sa6_embedscope(&sa, ip6_use_defzone);
    167 		 if (error != 0)
    168 			 break;
    169 		 (void)memmove(&addr[0], &addr[1],
    170 		     sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
    171 		 addr[rh0->ip6r0_segleft - 1] = ip6->ip6_dst;
    172 		 ip6->ip6_dst = sa.sin6_addr;
    173 		 /* XXX */
    174 		 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
    175 		 break;
    176 	default:	/* is it possible? */
    177 		 error = EINVAL;
    178 	}
    179 
    180 	return error;
    181 }
    182 
    183 /*
    184  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    185  * header (with pri, len, nxt, hlim, src, dst).
    186  * This function may modify ver and hlim only.
    187  * The mbuf chain containing the packet will be freed.
    188  * The mbuf opt, if present, will not be freed.
    189  *
    190  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    191  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
    192  * which is rt_rmx.rmx_mtu.
    193  */
    194 int
    195 ip6_output(
    196     struct mbuf *m0,
    197     struct ip6_pktopts *opt,
    198     struct route *ro,
    199     int flags,
    200     struct ip6_moptions *im6o,
    201     struct socket *so,
    202     struct ifnet **ifpp		/* XXX: just for statistics */
    203 )
    204 {
    205 	struct ip6_hdr *ip6, *mhip6;
    206 	struct ifnet *ifp = NULL, *origifp = NULL;
    207 	struct mbuf *m = m0;
    208 	int hlen, tlen, len, off;
    209 	bool tso;
    210 	struct route ip6route;
    211 	struct rtentry *rt = NULL, *rt_pmtu;
    212 	const struct sockaddr_in6 *dst;
    213 	struct sockaddr_in6 src_sa, dst_sa;
    214 	int error = 0;
    215 	struct in6_ifaddr *ia = NULL;
    216 	u_long mtu;
    217 	int alwaysfrag, dontfrag;
    218 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    219 	struct ip6_exthdrs exthdrs;
    220 	struct in6_addr finaldst, src0, dst0;
    221 	u_int32_t zone;
    222 	struct route *ro_pmtu = NULL;
    223 	int hdrsplit = 0;
    224 	int needipsec = 0;
    225 #ifdef IPSEC
    226 	struct secpolicy *sp = NULL;
    227 #endif
    228 	struct psref psref, psref_ia;
    229 	int bound = curlwp_bind();
    230 	bool release_psref_ia = false;
    231 
    232 #ifdef  DIAGNOSTIC
    233 	if ((m->m_flags & M_PKTHDR) == 0)
    234 		panic("ip6_output: no HDR");
    235 
    236 	if ((m->m_pkthdr.csum_flags &
    237 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
    238 		panic("ip6_output: IPv4 checksum offload flags: %d",
    239 		    m->m_pkthdr.csum_flags);
    240 	}
    241 
    242 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
    243 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
    244 		panic("ip6_output: conflicting checksum offload flags: %d",
    245 		    m->m_pkthdr.csum_flags);
    246 	}
    247 #endif
    248 
    249 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    250 
    251 #define MAKE_EXTHDR(hp, mp)						\
    252     do {								\
    253 	if (hp) {							\
    254 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    255 		error = ip6_copyexthdr((mp), (void *)(hp), 		\
    256 		    ((eh)->ip6e_len + 1) << 3);				\
    257 		if (error)						\
    258 			goto freehdrs;					\
    259 	}								\
    260     } while (/*CONSTCOND*/ 0)
    261 
    262 	memset(&exthdrs, 0, sizeof(exthdrs));
    263 	if (opt) {
    264 		/* Hop-by-Hop options header */
    265 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    266 		/* Destination options header(1st part) */
    267 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    268 		/* Routing header */
    269 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    270 		/* Destination options header(2nd part) */
    271 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    272 	}
    273 
    274 	/*
    275 	 * Calculate the total length of the extension header chain.
    276 	 * Keep the length of the unfragmentable part for fragmentation.
    277 	 */
    278 	optlen = 0;
    279 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    280 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    281 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    282 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    283 	/* NOTE: we don't add AH/ESP length here. do that later. */
    284 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    285 
    286 #ifdef IPSEC
    287 	if (ipsec_used) {
    288 		/* Check the security policy (SP) for the packet */
    289 
    290 		sp = ipsec6_check_policy(m, so, flags, &needipsec, &error);
    291 		if (error != 0) {
    292 			/*
    293 			 * Hack: -EINVAL is used to signal that a packet
    294 			 * should be silently discarded.  This is typically
    295 			 * because we asked key management for an SA and
    296 			 * it was delayed (e.g. kicked up to IKE).
    297 			 */
    298 			if (error == -EINVAL)
    299 				error = 0;
    300 			goto freehdrs;
    301 		}
    302 	}
    303 #endif /* IPSEC */
    304 
    305 
    306 	if (needipsec &&
    307 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    308 		in6_delayed_cksum(m);
    309 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    310 	}
    311 
    312 
    313 	/*
    314 	 * If we need IPsec, or there is at least one extension header,
    315 	 * separate IP6 header from the payload.
    316 	 */
    317 	if ((needipsec || optlen) && !hdrsplit) {
    318 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    319 			m = NULL;
    320 			goto freehdrs;
    321 		}
    322 		m = exthdrs.ip6e_ip6;
    323 		hdrsplit++;
    324 	}
    325 
    326 	/* adjust pointer */
    327 	ip6 = mtod(m, struct ip6_hdr *);
    328 
    329 	/* adjust mbuf packet header length */
    330 	m->m_pkthdr.len += optlen;
    331 	plen = m->m_pkthdr.len - sizeof(*ip6);
    332 
    333 	/* If this is a jumbo payload, insert a jumbo payload option. */
    334 	if (plen > IPV6_MAXPACKET) {
    335 		if (!hdrsplit) {
    336 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    337 				m = NULL;
    338 				goto freehdrs;
    339 			}
    340 			m = exthdrs.ip6e_ip6;
    341 			hdrsplit++;
    342 		}
    343 		/* adjust pointer */
    344 		ip6 = mtod(m, struct ip6_hdr *);
    345 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    346 			goto freehdrs;
    347 		optlen += 8; /* XXX JUMBOOPTLEN */
    348 		ip6->ip6_plen = 0;
    349 	} else
    350 		ip6->ip6_plen = htons(plen);
    351 
    352 	/*
    353 	 * Concatenate headers and fill in next header fields.
    354 	 * Here we have, on "m"
    355 	 *	IPv6 payload
    356 	 * and we insert headers accordingly.  Finally, we should be getting:
    357 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    358 	 *
    359 	 * during the header composing process, "m" points to IPv6 header.
    360 	 * "mprev" points to an extension header prior to esp.
    361 	 */
    362 	{
    363 		u_char *nexthdrp = &ip6->ip6_nxt;
    364 		struct mbuf *mprev = m;
    365 
    366 		/*
    367 		 * we treat dest2 specially.  this makes IPsec processing
    368 		 * much easier.  the goal here is to make mprev point the
    369 		 * mbuf prior to dest2.
    370 		 *
    371 		 * result: IPv6 dest2 payload
    372 		 * m and mprev will point to IPv6 header.
    373 		 */
    374 		if (exthdrs.ip6e_dest2) {
    375 			if (!hdrsplit)
    376 				panic("assumption failed: hdr not split");
    377 			exthdrs.ip6e_dest2->m_next = m->m_next;
    378 			m->m_next = exthdrs.ip6e_dest2;
    379 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    380 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    381 		}
    382 
    383 #define MAKE_CHAIN(m, mp, p, i)\
    384     do {\
    385 	if (m) {\
    386 		if (!hdrsplit) \
    387 			panic("assumption failed: hdr not split"); \
    388 		*mtod((m), u_char *) = *(p);\
    389 		*(p) = (i);\
    390 		p = mtod((m), u_char *);\
    391 		(m)->m_next = (mp)->m_next;\
    392 		(mp)->m_next = (m);\
    393 		(mp) = (m);\
    394 	}\
    395     } while (/*CONSTCOND*/ 0)
    396 		/*
    397 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    398 		 * m will point to IPv6 header.  mprev will point to the
    399 		 * extension header prior to dest2 (rthdr in the above case).
    400 		 */
    401 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    402 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    403 		    IPPROTO_DSTOPTS);
    404 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    405 		    IPPROTO_ROUTING);
    406 
    407 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
    408 		    sizeof(struct ip6_hdr) + optlen);
    409 	}
    410 
    411 	/* Need to save for pmtu */
    412 	finaldst = ip6->ip6_dst;
    413 
    414 	/*
    415 	 * If there is a routing header, replace destination address field
    416 	 * with the first hop of the routing header.
    417 	 */
    418 	if (exthdrs.ip6e_rthdr) {
    419 		struct ip6_rthdr *rh;
    420 
    421 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    422 		    struct ip6_rthdr *));
    423 
    424 		error = ip6_handle_rthdr(rh, ip6);
    425 		if (error != 0)
    426 			goto bad;
    427 	}
    428 
    429 	/* Source address validation */
    430 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    431 	    (flags & IPV6_UNSPECSRC) == 0) {
    432 		error = EOPNOTSUPP;
    433 		IP6_STATINC(IP6_STAT_BADSCOPE);
    434 		goto bad;
    435 	}
    436 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    437 		error = EOPNOTSUPP;
    438 		IP6_STATINC(IP6_STAT_BADSCOPE);
    439 		goto bad;
    440 	}
    441 
    442 	IP6_STATINC(IP6_STAT_LOCALOUT);
    443 
    444 	/*
    445 	 * Route packet.
    446 	 */
    447 	/* initialize cached route */
    448 	if (ro == NULL) {
    449 		memset(&ip6route, 0, sizeof(ip6route));
    450 		ro = &ip6route;
    451 	}
    452 	ro_pmtu = ro;
    453 	if (opt && opt->ip6po_rthdr)
    454 		ro = &opt->ip6po_route;
    455 
    456  	/*
    457 	 * if specified, try to fill in the traffic class field.
    458 	 * do not override if a non-zero value is already set.
    459 	 * we check the diffserv field and the ecn field separately.
    460 	 */
    461 	if (opt && opt->ip6po_tclass >= 0) {
    462 		int mask = 0;
    463 
    464 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    465 			mask |= 0xfc;
    466 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    467 			mask |= 0x03;
    468 		if (mask != 0)
    469 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    470 	}
    471 
    472 	/* fill in or override the hop limit field, if necessary. */
    473 	if (opt && opt->ip6po_hlim != -1)
    474 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    475 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    476 		if (im6o != NULL)
    477 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    478 		else
    479 			ip6->ip6_hlim = ip6_defmcasthlim;
    480 	}
    481 
    482 #ifdef IPSEC
    483 	if (needipsec) {
    484 		int s = splsoftnet();
    485 		error = ipsec6_process_packet(m, sp->req);
    486 
    487 		/*
    488 		 * Preserve KAME behaviour: ENOENT can be returned
    489 		 * when an SA acquire is in progress.  Don't propagate
    490 		 * this to user-level; it confuses applications.
    491 		 * XXX this will go away when the SADB is redone.
    492 		 */
    493 		if (error == ENOENT)
    494 			error = 0;
    495 		splx(s);
    496 		goto done;
    497 	}
    498 #endif /* IPSEC */
    499 
    500 	/* adjust pointer */
    501 	ip6 = mtod(m, struct ip6_hdr *);
    502 
    503 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    504 
    505 	/* We do not need a route for multicast */
    506 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    507 		struct in6_pktinfo *pi = NULL;
    508 
    509 		/*
    510 		 * If the outgoing interface for the address is specified by
    511 		 * the caller, use it.
    512 		 */
    513 		if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
    514 			/* XXX boundary check is assumed to be already done. */
    515 			ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
    516 		} else if (im6o != NULL) {
    517 			ifp = if_get_byindex(im6o->im6o_multicast_if_index,
    518 			    &psref);
    519 		}
    520 	}
    521 
    522 	if (ifp == NULL) {
    523 		error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
    524 		if (error != 0)
    525 			goto bad;
    526 		ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
    527 	}
    528 
    529 	if (rt == NULL) {
    530 		/*
    531 		 * If in6_selectroute() does not return a route entry,
    532 		 * dst may not have been updated.
    533 		 */
    534 		error = rtcache_setdst(ro, sin6tosa(&dst_sa));
    535 		if (error) {
    536 			goto bad;
    537 		}
    538 	}
    539 
    540 	/*
    541 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    542 	 */
    543 	if ((flags & IPV6_FORWARDING) == 0) {
    544 		/* XXX: the FORWARDING flag can be set for mrouting. */
    545 		in6_ifstat_inc(ifp, ifs6_out_request);
    546 	}
    547 	if (rt != NULL) {
    548 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    549 		rt->rt_use++;
    550 	}
    551 
    552 	/*
    553 	 * The outgoing interface must be in the zone of source and
    554 	 * destination addresses.  We should use ia_ifp to support the
    555 	 * case of sending packets to an address of our own.
    556 	 */
    557 	if (ia != NULL && ia->ia_ifp) {
    558 		origifp = ia->ia_ifp;
    559 		if (if_is_deactivated(origifp))
    560 			goto bad;
    561 		if_acquire_NOMPSAFE(origifp, &psref_ia);
    562 		release_psref_ia = true;
    563 	} else
    564 		origifp = ifp;
    565 
    566 	src0 = ip6->ip6_src;
    567 	if (in6_setscope(&src0, origifp, &zone))
    568 		goto badscope;
    569 	sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
    570 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    571 		goto badscope;
    572 
    573 	dst0 = ip6->ip6_dst;
    574 	if (in6_setscope(&dst0, origifp, &zone))
    575 		goto badscope;
    576 	/* re-initialize to be sure */
    577 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    578 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    579 		goto badscope;
    580 
    581 	/* scope check is done. */
    582 
    583 	/* Ensure we only send from a valid address. */
    584 	if ((error = ip6_ifaddrvalid(&src0)) != 0) {
    585 		nd6log(LOG_ERR,
    586 		    "refusing to send from invalid address %s (pid %d)\n",
    587 		    ip6_sprintf(&src0), curproc->p_pid);
    588 		IP6_STATINC(IP6_STAT_ODROPPED);
    589 		in6_ifstat_inc(origifp, ifs6_out_discard);
    590 		if (error == 1)
    591 			/*
    592 			 * Address exists, but is tentative or detached.
    593 			 * We can't send from it because it's invalid,
    594 			 * so we drop the packet.
    595 			 */
    596 			error = 0;
    597 		else
    598 			error = EADDRNOTAVAIL;
    599 		goto bad;
    600 	}
    601 
    602 	if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
    603 	    !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    604 		dst = satocsin6(rt->rt_gateway);
    605 	else
    606 		dst = satocsin6(rtcache_getdst(ro));
    607 
    608 	/*
    609 	 * XXXXXX: original code follows:
    610 	 */
    611 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    612 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    613 	else {
    614 		struct	in6_multi *in6m;
    615 
    616 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    617 
    618 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    619 
    620 		/*
    621 		 * Confirm that the outgoing interface supports multicast.
    622 		 */
    623 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    624 			IP6_STATINC(IP6_STAT_NOROUTE);
    625 			in6_ifstat_inc(ifp, ifs6_out_discard);
    626 			error = ENETUNREACH;
    627 			goto bad;
    628 		}
    629 
    630 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
    631 		if (in6m != NULL &&
    632 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    633 			/*
    634 			 * If we belong to the destination multicast group
    635 			 * on the outgoing interface, and the caller did not
    636 			 * forbid loopback, loop back a copy.
    637 			 */
    638 			KASSERT(dst != NULL);
    639 			ip6_mloopback(ifp, m, dst);
    640 		} else {
    641 			/*
    642 			 * If we are acting as a multicast router, perform
    643 			 * multicast forwarding as if the packet had just
    644 			 * arrived on the interface to which we are about
    645 			 * to send.  The multicast forwarding function
    646 			 * recursively calls this function, using the
    647 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    648 			 *
    649 			 * Multicasts that are looped back by ip6_mloopback(),
    650 			 * above, will be forwarded by the ip6_input() routine,
    651 			 * if necessary.
    652 			 */
    653 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    654 				if (ip6_mforward(ip6, ifp, m) != 0) {
    655 					m_freem(m);
    656 					goto done;
    657 				}
    658 			}
    659 		}
    660 		/*
    661 		 * Multicasts with a hoplimit of zero may be looped back,
    662 		 * above, but must not be transmitted on a network.
    663 		 * Also, multicasts addressed to the loopback interface
    664 		 * are not sent -- the above call to ip6_mloopback() will
    665 		 * loop back a copy if this host actually belongs to the
    666 		 * destination group on the loopback interface.
    667 		 */
    668 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    669 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    670 			m_freem(m);
    671 			goto done;
    672 		}
    673 	}
    674 
    675 	/*
    676 	 * Fill the outgoing inteface to tell the upper layer
    677 	 * to increment per-interface statistics.
    678 	 */
    679 	if (ifpp)
    680 		*ifpp = ifp;
    681 
    682 	/* Determine path MTU. */
    683 	/*
    684 	 * ro_pmtu represent final destination while
    685 	 * ro might represent immediate destination.
    686 	 * Use ro_pmtu destination since MTU might differ.
    687 	 */
    688 	if (ro_pmtu != ro) {
    689 		union {
    690 			struct sockaddr		dst;
    691 			struct sockaddr_in6	dst6;
    692 		} u;
    693 
    694 		/* ro_pmtu may not have a cache */
    695 		sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
    696 		rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
    697 	} else
    698 		rt_pmtu = rt;
    699 	error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
    700 	if (rt_pmtu != NULL && rt_pmtu != rt)
    701 		rtcache_unref(rt_pmtu, ro_pmtu);
    702 	if (error != 0)
    703 		goto bad;
    704 
    705 	/*
    706 	 * The caller of this function may specify to use the minimum MTU
    707 	 * in some cases.
    708 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
    709 	 * setting.  The logic is a bit complicated; by default, unicast
    710 	 * packets will follow path MTU while multicast packets will be sent at
    711 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
    712 	 * including unicast ones will be sent at the minimum MTU.  Multicast
    713 	 * packets will always be sent at the minimum MTU unless
    714 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
    715 	 * See RFC 3542 for more details.
    716 	 */
    717 	if (mtu > IPV6_MMTU) {
    718 		if ((flags & IPV6_MINMTU))
    719 			mtu = IPV6_MMTU;
    720 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
    721 			mtu = IPV6_MMTU;
    722 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
    723 			 (opt == NULL ||
    724 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
    725 			mtu = IPV6_MMTU;
    726 		}
    727 	}
    728 
    729 	/*
    730 	 * clear embedded scope identifiers if necessary.
    731 	 * in6_clearscope will touch the addresses only when necessary.
    732 	 */
    733 	in6_clearscope(&ip6->ip6_src);
    734 	in6_clearscope(&ip6->ip6_dst);
    735 
    736 	/*
    737 	 * If the outgoing packet contains a hop-by-hop options header,
    738 	 * it must be examined and processed even by the source node.
    739 	 * (RFC 2460, section 4.)
    740 	 */
    741 	if (ip6->ip6_nxt == IPV6_HOPOPTS) {
    742 		u_int32_t dummy1; /* XXX unused */
    743 		u_int32_t dummy2; /* XXX unused */
    744 		int hoff = sizeof(struct ip6_hdr);
    745 
    746 		if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
    747 			/* m was already freed at this point */
    748 			error = EINVAL;/* better error? */
    749 			goto done;
    750 		}
    751 
    752 		ip6 = mtod(m, struct ip6_hdr *);
    753 	}
    754 
    755 	/*
    756 	 * Run through list of hooks for output packets.
    757 	 */
    758 	if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    759 		goto done;
    760 	if (m == NULL)
    761 		goto done;
    762 	ip6 = mtod(m, struct ip6_hdr *);
    763 
    764 	/*
    765 	 * Send the packet to the outgoing interface.
    766 	 * If necessary, do IPv6 fragmentation before sending.
    767 	 *
    768 	 * the logic here is rather complex:
    769 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    770 	 * 1-a:	send as is if tlen <= path mtu
    771 	 * 1-b:	fragment if tlen > path mtu
    772 	 *
    773 	 * 2: if user asks us not to fragment (dontfrag == 1)
    774 	 * 2-a:	send as is if tlen <= interface mtu
    775 	 * 2-b:	error if tlen > interface mtu
    776 	 *
    777 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    778 	 *	always fragment
    779 	 *
    780 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    781 	 *	error, as we cannot handle this conflicting request
    782 	 */
    783 	tlen = m->m_pkthdr.len;
    784 	tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
    785 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
    786 		dontfrag = 1;
    787 	else
    788 		dontfrag = 0;
    789 
    790 	if (dontfrag && alwaysfrag) {	/* case 4 */
    791 		/* conflicting request - can't transmit */
    792 		error = EMSGSIZE;
    793 		goto bad;
    794 	}
    795 	if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) {	/* case 2-b */
    796 		/*
    797 		 * Even if the DONTFRAG option is specified, we cannot send the
    798 		 * packet when the data length is larger than the MTU of the
    799 		 * outgoing interface.
    800 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    801 		 * well as returning an error code (the latter is not described
    802 		 * in the API spec.)
    803 		 */
    804 		u_int32_t mtu32;
    805 		struct ip6ctlparam ip6cp;
    806 
    807 		mtu32 = (u_int32_t)mtu;
    808 		memset(&ip6cp, 0, sizeof(ip6cp));
    809 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    810 		pfctlinput2(PRC_MSGSIZE,
    811 		    rtcache_getdst(ro_pmtu), &ip6cp);
    812 
    813 		error = EMSGSIZE;
    814 		goto bad;
    815 	}
    816 
    817 	/*
    818 	 * transmit packet without fragmentation
    819 	 */
    820 	if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
    821 		/* case 1-a and 2-a */
    822 		struct in6_ifaddr *ia6;
    823 		int sw_csum;
    824 		int s;
    825 
    826 		ip6 = mtod(m, struct ip6_hdr *);
    827 		s = pserialize_read_enter();
    828 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    829 		if (ia6) {
    830 			/* Record statistics for this interface address. */
    831 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    832 		}
    833 		pserialize_read_exit(s);
    834 
    835 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    836 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    837 			if (IN6_NEED_CHECKSUM(ifp,
    838 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    839 				in6_delayed_cksum(m);
    840 			}
    841 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    842 		}
    843 
    844 		KASSERT(dst != NULL);
    845 		if (__predict_true(!tso ||
    846 		    (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
    847 			error = nd6_output(ifp, origifp, m, dst, rt);
    848 		} else {
    849 			error = ip6_tso_output(ifp, origifp, m, dst, rt);
    850 		}
    851 		goto done;
    852 	}
    853 
    854 	if (tso) {
    855 		error = EINVAL; /* XXX */
    856 		goto bad;
    857 	}
    858 
    859 	/*
    860 	 * try to fragment the packet.  case 1-b and 3
    861 	 */
    862 	if (mtu < IPV6_MMTU) {
    863 		/* path MTU cannot be less than IPV6_MMTU */
    864 		error = EMSGSIZE;
    865 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    866 		goto bad;
    867 	} else if (ip6->ip6_plen == 0) {
    868 		/* jumbo payload cannot be fragmented */
    869 		error = EMSGSIZE;
    870 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    871 		goto bad;
    872 	} else {
    873 		struct mbuf **mnext, *m_frgpart;
    874 		struct ip6_frag *ip6f;
    875 		u_int32_t id = htonl(ip6_randomid());
    876 		u_char nextproto;
    877 #if 0				/* see below */
    878 		struct ip6ctlparam ip6cp;
    879 		u_int32_t mtu32;
    880 #endif
    881 
    882 		/*
    883 		 * Too large for the destination or interface;
    884 		 * fragment if possible.
    885 		 * Must be able to put at least 8 bytes per fragment.
    886 		 */
    887 		hlen = unfragpartlen;
    888 		if (mtu > IPV6_MAXPACKET)
    889 			mtu = IPV6_MAXPACKET;
    890 
    891 #if 0
    892 		/*
    893 		 * It is believed this code is a leftover from the
    894 		 * development of the IPV6_RECVPATHMTU sockopt and
    895 		 * associated work to implement RFC3542.
    896 		 * It's not entirely clear what the intent of the API
    897 		 * is at this point, so disable this code for now.
    898 		 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
    899 		 * will send notifications if the application requests.
    900 		 */
    901 
    902 		/* Notify a proper path MTU to applications. */
    903 		mtu32 = (u_int32_t)mtu;
    904 		memset(&ip6cp, 0, sizeof(ip6cp));
    905 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    906 		pfctlinput2(PRC_MSGSIZE,
    907 		    rtcache_getdst(ro_pmtu), &ip6cp);
    908 #endif
    909 
    910 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    911 		if (len < 8) {
    912 			error = EMSGSIZE;
    913 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
    914 			goto bad;
    915 		}
    916 
    917 		mnext = &m->m_nextpkt;
    918 
    919 		/*
    920 		 * Change the next header field of the last header in the
    921 		 * unfragmentable part.
    922 		 */
    923 		if (exthdrs.ip6e_rthdr) {
    924 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    925 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    926 		} else if (exthdrs.ip6e_dest1) {
    927 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    928 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    929 		} else if (exthdrs.ip6e_hbh) {
    930 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    931 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    932 		} else {
    933 			nextproto = ip6->ip6_nxt;
    934 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    935 		}
    936 
    937 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
    938 		    != 0) {
    939 			if (IN6_NEED_CHECKSUM(ifp,
    940 			    m->m_pkthdr.csum_flags &
    941 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    942 				in6_delayed_cksum(m);
    943 			}
    944 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    945 		}
    946 
    947 		/*
    948 		 * Loop through length of segment after first fragment,
    949 		 * make new header and copy data of each part and link onto
    950 		 * chain.
    951 		 */
    952 		m0 = m;
    953 		for (off = hlen; off < tlen; off += len) {
    954 			struct mbuf *mlast;
    955 
    956 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
    957 			if (!m) {
    958 				error = ENOBUFS;
    959 				IP6_STATINC(IP6_STAT_ODROPPED);
    960 				goto sendorfree;
    961 			}
    962 			m_reset_rcvif(m);
    963 			m->m_flags = m0->m_flags & M_COPYFLAGS;
    964 			*mnext = m;
    965 			mnext = &m->m_nextpkt;
    966 			m->m_data += max_linkhdr;
    967 			mhip6 = mtod(m, struct ip6_hdr *);
    968 			*mhip6 = *ip6;
    969 			m->m_len = sizeof(*mhip6);
    970 			/*
    971 			 * ip6f must be valid if error is 0.  But how
    972 			 * can a compiler be expected to infer this?
    973 			 */
    974 			ip6f = NULL;
    975 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
    976 			if (error) {
    977 				IP6_STATINC(IP6_STAT_ODROPPED);
    978 				goto sendorfree;
    979 			}
    980 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
    981 			if (off + len >= tlen)
    982 				len = tlen - off;
    983 			else
    984 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
    985 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
    986 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
    987 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
    988 				error = ENOBUFS;
    989 				IP6_STATINC(IP6_STAT_ODROPPED);
    990 				goto sendorfree;
    991 			}
    992 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
    993 				;
    994 			mlast->m_next = m_frgpart;
    995 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
    996 			m_reset_rcvif(m);
    997 			ip6f->ip6f_reserved = 0;
    998 			ip6f->ip6f_ident = id;
    999 			ip6f->ip6f_nxt = nextproto;
   1000 			IP6_STATINC(IP6_STAT_OFRAGMENTS);
   1001 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
   1002 		}
   1003 
   1004 		in6_ifstat_inc(ifp, ifs6_out_fragok);
   1005 	}
   1006 
   1007 	/*
   1008 	 * Remove leading garbages.
   1009 	 */
   1010 sendorfree:
   1011 	m = m0->m_nextpkt;
   1012 	m0->m_nextpkt = 0;
   1013 	m_freem(m0);
   1014 	for (m0 = m; m; m = m0) {
   1015 		m0 = m->m_nextpkt;
   1016 		m->m_nextpkt = 0;
   1017 		if (error == 0) {
   1018 			struct in6_ifaddr *ia6;
   1019 			int s;
   1020 			ip6 = mtod(m, struct ip6_hdr *);
   1021 			s = pserialize_read_enter();
   1022 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
   1023 			if (ia6) {
   1024 				/*
   1025 				 * Record statistics for this interface
   1026 				 * address.
   1027 				 */
   1028 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
   1029 				    m->m_pkthdr.len;
   1030 			}
   1031 			pserialize_read_exit(s);
   1032 			KASSERT(dst != NULL);
   1033 			error = nd6_output(ifp, origifp, m, dst, rt);
   1034 		} else
   1035 			m_freem(m);
   1036 	}
   1037 
   1038 	if (error == 0)
   1039 		IP6_STATINC(IP6_STAT_FRAGMENTED);
   1040 
   1041 done:
   1042 	rtcache_unref(rt, ro);
   1043 	if (ro == &ip6route)
   1044 		rtcache_free(&ip6route);
   1045 
   1046 #ifdef IPSEC
   1047 	if (sp != NULL)
   1048 		KEY_FREESP(&sp);
   1049 #endif /* IPSEC */
   1050 
   1051 	if_put(ifp, &psref);
   1052 	if (release_psref_ia)
   1053 		if_put(origifp, &psref_ia);
   1054 	curlwp_bindx(bound);
   1055 
   1056 	return (error);
   1057 
   1058 freehdrs:
   1059 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
   1060 	m_freem(exthdrs.ip6e_dest1);
   1061 	m_freem(exthdrs.ip6e_rthdr);
   1062 	m_freem(exthdrs.ip6e_dest2);
   1063 	/* FALLTHROUGH */
   1064 bad:
   1065 	m_freem(m);
   1066 	goto done;
   1067 badscope:
   1068 	IP6_STATINC(IP6_STAT_BADSCOPE);
   1069 	in6_ifstat_inc(origifp, ifs6_out_discard);
   1070 	if (error == 0)
   1071 		error = EHOSTUNREACH; /* XXX */
   1072 	goto bad;
   1073 }
   1074 
   1075 static int
   1076 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
   1077 {
   1078 	struct mbuf *m;
   1079 
   1080 	if (hlen > MCLBYTES)
   1081 		return (ENOBUFS); /* XXX */
   1082 
   1083 	MGET(m, M_DONTWAIT, MT_DATA);
   1084 	if (!m)
   1085 		return (ENOBUFS);
   1086 
   1087 	if (hlen > MLEN) {
   1088 		MCLGET(m, M_DONTWAIT);
   1089 		if ((m->m_flags & M_EXT) == 0) {
   1090 			m_free(m);
   1091 			return (ENOBUFS);
   1092 		}
   1093 	}
   1094 	m->m_len = hlen;
   1095 	if (hdr)
   1096 		bcopy(hdr, mtod(m, void *), hlen);
   1097 
   1098 	*mp = m;
   1099 	return (0);
   1100 }
   1101 
   1102 /*
   1103  * Process a delayed payload checksum calculation.
   1104  */
   1105 void
   1106 in6_delayed_cksum(struct mbuf *m)
   1107 {
   1108 	uint16_t csum, offset;
   1109 
   1110 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1111 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1112 	KASSERT((m->m_pkthdr.csum_flags
   1113 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
   1114 
   1115 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
   1116 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
   1117 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
   1118 		csum = 0xffff;
   1119 	}
   1120 
   1121 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
   1122 	if ((offset + sizeof(csum)) > m->m_len) {
   1123 		m_copyback(m, offset, sizeof(csum), &csum);
   1124 	} else {
   1125 		*(uint16_t *)(mtod(m, char *) + offset) = csum;
   1126 	}
   1127 }
   1128 
   1129 /*
   1130  * Insert jumbo payload option.
   1131  */
   1132 static int
   1133 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
   1134 {
   1135 	struct mbuf *mopt;
   1136 	u_int8_t *optbuf;
   1137 	u_int32_t v;
   1138 
   1139 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1140 
   1141 	/*
   1142 	 * If there is no hop-by-hop options header, allocate new one.
   1143 	 * If there is one but it doesn't have enough space to store the
   1144 	 * jumbo payload option, allocate a cluster to store the whole options.
   1145 	 * Otherwise, use it to store the options.
   1146 	 */
   1147 	if (exthdrs->ip6e_hbh == 0) {
   1148 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1149 		if (mopt == 0)
   1150 			return (ENOBUFS);
   1151 		mopt->m_len = JUMBOOPTLEN;
   1152 		optbuf = mtod(mopt, u_int8_t *);
   1153 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1154 		exthdrs->ip6e_hbh = mopt;
   1155 	} else {
   1156 		struct ip6_hbh *hbh;
   1157 
   1158 		mopt = exthdrs->ip6e_hbh;
   1159 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1160 			/*
   1161 			 * XXX assumption:
   1162 			 * - exthdrs->ip6e_hbh is not referenced from places
   1163 			 *   other than exthdrs.
   1164 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1165 			 */
   1166 			int oldoptlen = mopt->m_len;
   1167 			struct mbuf *n;
   1168 
   1169 			/*
   1170 			 * XXX: give up if the whole (new) hbh header does
   1171 			 * not fit even in an mbuf cluster.
   1172 			 */
   1173 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1174 				return (ENOBUFS);
   1175 
   1176 			/*
   1177 			 * As a consequence, we must always prepare a cluster
   1178 			 * at this point.
   1179 			 */
   1180 			MGET(n, M_DONTWAIT, MT_DATA);
   1181 			if (n) {
   1182 				MCLGET(n, M_DONTWAIT);
   1183 				if ((n->m_flags & M_EXT) == 0) {
   1184 					m_freem(n);
   1185 					n = NULL;
   1186 				}
   1187 			}
   1188 			if (!n)
   1189 				return (ENOBUFS);
   1190 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1191 			bcopy(mtod(mopt, void *), mtod(n, void *),
   1192 			    oldoptlen);
   1193 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1194 			m_freem(mopt);
   1195 			mopt = exthdrs->ip6e_hbh = n;
   1196 		} else {
   1197 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1198 			mopt->m_len += JUMBOOPTLEN;
   1199 		}
   1200 		optbuf[0] = IP6OPT_PADN;
   1201 		optbuf[1] = 0;
   1202 
   1203 		/*
   1204 		 * Adjust the header length according to the pad and
   1205 		 * the jumbo payload option.
   1206 		 */
   1207 		hbh = mtod(mopt, struct ip6_hbh *);
   1208 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1209 	}
   1210 
   1211 	/* fill in the option. */
   1212 	optbuf[2] = IP6OPT_JUMBO;
   1213 	optbuf[3] = 4;
   1214 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1215 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
   1216 
   1217 	/* finally, adjust the packet header length */
   1218 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1219 
   1220 	return (0);
   1221 #undef JUMBOOPTLEN
   1222 }
   1223 
   1224 /*
   1225  * Insert fragment header and copy unfragmentable header portions.
   1226  *
   1227  * *frghdrp will not be read, and it is guaranteed that either an
   1228  * error is returned or that *frghdrp will point to space allocated
   1229  * for the fragment header.
   1230  */
   1231 static int
   1232 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
   1233 	struct ip6_frag **frghdrp)
   1234 {
   1235 	struct mbuf *n, *mlast;
   1236 
   1237 	if (hlen > sizeof(struct ip6_hdr)) {
   1238 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1239 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1240 		if (n == 0)
   1241 			return (ENOBUFS);
   1242 		m->m_next = n;
   1243 	} else
   1244 		n = m;
   1245 
   1246 	/* Search for the last mbuf of unfragmentable part. */
   1247 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1248 		;
   1249 
   1250 	if ((mlast->m_flags & M_EXT) == 0 &&
   1251 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1252 		/* use the trailing space of the last mbuf for the fragment hdr */
   1253 		*frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
   1254 		    mlast->m_len);
   1255 		mlast->m_len += sizeof(struct ip6_frag);
   1256 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1257 	} else {
   1258 		/* allocate a new mbuf for the fragment header */
   1259 		struct mbuf *mfrg;
   1260 
   1261 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1262 		if (mfrg == 0)
   1263 			return (ENOBUFS);
   1264 		mfrg->m_len = sizeof(struct ip6_frag);
   1265 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1266 		mlast->m_next = mfrg;
   1267 	}
   1268 
   1269 	return (0);
   1270 }
   1271 
   1272 static int
   1273 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
   1274     int *alwaysfragp)
   1275 {
   1276 	u_int32_t mtu = 0;
   1277 	int alwaysfrag = 0;
   1278 	int error = 0;
   1279 
   1280 	if (rt != NULL) {
   1281 		u_int32_t ifmtu;
   1282 
   1283 		if (ifp == NULL)
   1284 			ifp = rt->rt_ifp;
   1285 		ifmtu = IN6_LINKMTU(ifp);
   1286 		mtu = rt->rt_rmx.rmx_mtu;
   1287 		if (mtu == 0)
   1288 			mtu = ifmtu;
   1289 		else if (mtu < IPV6_MMTU) {
   1290 			/*
   1291 			 * RFC2460 section 5, last paragraph:
   1292 			 * if we record ICMPv6 too big message with
   1293 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1294 			 * or smaller, with fragment header attached.
   1295 			 * (fragment header is needed regardless from the
   1296 			 * packet size, for translators to identify packets)
   1297 			 */
   1298 			alwaysfrag = 1;
   1299 			mtu = IPV6_MMTU;
   1300 		} else if (mtu > ifmtu) {
   1301 			/*
   1302 			 * The MTU on the route is larger than the MTU on
   1303 			 * the interface!  This shouldn't happen, unless the
   1304 			 * MTU of the interface has been changed after the
   1305 			 * interface was brought up.  Change the MTU in the
   1306 			 * route to match the interface MTU (as long as the
   1307 			 * field isn't locked).
   1308 			 */
   1309 			mtu = ifmtu;
   1310 			if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
   1311 				rt->rt_rmx.rmx_mtu = mtu;
   1312 		}
   1313 	} else if (ifp) {
   1314 		mtu = IN6_LINKMTU(ifp);
   1315 	} else
   1316 		error = EHOSTUNREACH; /* XXX */
   1317 
   1318 	*mtup = mtu;
   1319 	if (alwaysfragp)
   1320 		*alwaysfragp = alwaysfrag;
   1321 	return (error);
   1322 }
   1323 
   1324 /*
   1325  * IP6 socket option processing.
   1326  */
   1327 int
   1328 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1329 {
   1330 	int optdatalen, uproto;
   1331 	void *optdata;
   1332 	struct in6pcb *in6p = sotoin6pcb(so);
   1333 	struct ip_moptions **mopts;
   1334 	int error, optval;
   1335 	int level, optname;
   1336 
   1337 	KASSERT(sopt != NULL);
   1338 
   1339 	level = sopt->sopt_level;
   1340 	optname = sopt->sopt_name;
   1341 
   1342 	error = optval = 0;
   1343 	uproto = (int)so->so_proto->pr_protocol;
   1344 
   1345 	switch (level) {
   1346 	case IPPROTO_IP:
   1347 		switch (optname) {
   1348 		case IP_ADD_MEMBERSHIP:
   1349 		case IP_DROP_MEMBERSHIP:
   1350 		case IP_MULTICAST_IF:
   1351 		case IP_MULTICAST_LOOP:
   1352 		case IP_MULTICAST_TTL:
   1353 			mopts = &in6p->in6p_v4moptions;
   1354 			switch (op) {
   1355 			case PRCO_GETOPT:
   1356 				return ip_getmoptions(*mopts, sopt);
   1357 			case PRCO_SETOPT:
   1358 				return ip_setmoptions(mopts, sopt);
   1359 			default:
   1360 				return EINVAL;
   1361 			}
   1362 		default:
   1363 			return ENOPROTOOPT;
   1364 		}
   1365 	case IPPROTO_IPV6:
   1366 		break;
   1367 	default:
   1368 		return ENOPROTOOPT;
   1369 	}
   1370 	switch (op) {
   1371 	case PRCO_SETOPT:
   1372 		switch (optname) {
   1373 #ifdef RFC2292
   1374 		case IPV6_2292PKTOPTIONS:
   1375 			error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
   1376 			break;
   1377 #endif
   1378 
   1379 		/*
   1380 		 * Use of some Hop-by-Hop options or some
   1381 		 * Destination options, might require special
   1382 		 * privilege.  That is, normal applications
   1383 		 * (without special privilege) might be forbidden
   1384 		 * from setting certain options in outgoing packets,
   1385 		 * and might never see certain options in received
   1386 		 * packets. [RFC 2292 Section 6]
   1387 		 * KAME specific note:
   1388 		 *  KAME prevents non-privileged users from sending or
   1389 		 *  receiving ANY hbh/dst options in order to avoid
   1390 		 *  overhead of parsing options in the kernel.
   1391 		 */
   1392 		case IPV6_RECVHOPOPTS:
   1393 		case IPV6_RECVDSTOPTS:
   1394 		case IPV6_RECVRTHDRDSTOPTS:
   1395 			error = kauth_authorize_network(kauth_cred_get(),
   1396 			    KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
   1397 			    NULL, NULL, NULL);
   1398 			if (error)
   1399 				break;
   1400 			/* FALLTHROUGH */
   1401 		case IPV6_UNICAST_HOPS:
   1402 		case IPV6_HOPLIMIT:
   1403 		case IPV6_FAITH:
   1404 
   1405 		case IPV6_RECVPKTINFO:
   1406 		case IPV6_RECVHOPLIMIT:
   1407 		case IPV6_RECVRTHDR:
   1408 		case IPV6_RECVPATHMTU:
   1409 		case IPV6_RECVTCLASS:
   1410 		case IPV6_V6ONLY:
   1411 			error = sockopt_getint(sopt, &optval);
   1412 			if (error)
   1413 				break;
   1414 			switch (optname) {
   1415 			case IPV6_UNICAST_HOPS:
   1416 				if (optval < -1 || optval >= 256)
   1417 					error = EINVAL;
   1418 				else {
   1419 					/* -1 = kernel default */
   1420 					in6p->in6p_hops = optval;
   1421 				}
   1422 				break;
   1423 #define OPTSET(bit) \
   1424 do { \
   1425 if (optval) \
   1426 	in6p->in6p_flags |= (bit); \
   1427 else \
   1428 	in6p->in6p_flags &= ~(bit); \
   1429 } while (/*CONSTCOND*/ 0)
   1430 
   1431 #ifdef RFC2292
   1432 #define OPTSET2292(bit) 			\
   1433 do { 						\
   1434 in6p->in6p_flags |= IN6P_RFC2292; 	\
   1435 if (optval) 				\
   1436 	in6p->in6p_flags |= (bit); 	\
   1437 else 					\
   1438 	in6p->in6p_flags &= ~(bit); 	\
   1439 } while (/*CONSTCOND*/ 0)
   1440 #endif
   1441 
   1442 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
   1443 
   1444 			case IPV6_RECVPKTINFO:
   1445 #ifdef RFC2292
   1446 				/* cannot mix with RFC2292 */
   1447 				if (OPTBIT(IN6P_RFC2292)) {
   1448 					error = EINVAL;
   1449 					break;
   1450 				}
   1451 #endif
   1452 				OPTSET(IN6P_PKTINFO);
   1453 				break;
   1454 
   1455 			case IPV6_HOPLIMIT:
   1456 			{
   1457 				struct ip6_pktopts **optp;
   1458 
   1459 #ifdef RFC2292
   1460 				/* cannot mix with RFC2292 */
   1461 				if (OPTBIT(IN6P_RFC2292)) {
   1462 					error = EINVAL;
   1463 					break;
   1464 				}
   1465 #endif
   1466 				optp = &in6p->in6p_outputopts;
   1467 				error = ip6_pcbopt(IPV6_HOPLIMIT,
   1468 						   (u_char *)&optval,
   1469 						   sizeof(optval),
   1470 						   optp,
   1471 						   kauth_cred_get(), uproto);
   1472 				break;
   1473 			}
   1474 
   1475 			case IPV6_RECVHOPLIMIT:
   1476 #ifdef RFC2292
   1477 				/* cannot mix with RFC2292 */
   1478 				if (OPTBIT(IN6P_RFC2292)) {
   1479 					error = EINVAL;
   1480 					break;
   1481 				}
   1482 #endif
   1483 				OPTSET(IN6P_HOPLIMIT);
   1484 				break;
   1485 
   1486 			case IPV6_RECVHOPOPTS:
   1487 #ifdef RFC2292
   1488 				/* cannot mix with RFC2292 */
   1489 				if (OPTBIT(IN6P_RFC2292)) {
   1490 					error = EINVAL;
   1491 					break;
   1492 				}
   1493 #endif
   1494 				OPTSET(IN6P_HOPOPTS);
   1495 				break;
   1496 
   1497 			case IPV6_RECVDSTOPTS:
   1498 #ifdef RFC2292
   1499 				/* cannot mix with RFC2292 */
   1500 				if (OPTBIT(IN6P_RFC2292)) {
   1501 					error = EINVAL;
   1502 					break;
   1503 				}
   1504 #endif
   1505 				OPTSET(IN6P_DSTOPTS);
   1506 				break;
   1507 
   1508 			case IPV6_RECVRTHDRDSTOPTS:
   1509 #ifdef RFC2292
   1510 				/* cannot mix with RFC2292 */
   1511 				if (OPTBIT(IN6P_RFC2292)) {
   1512 					error = EINVAL;
   1513 					break;
   1514 				}
   1515 #endif
   1516 				OPTSET(IN6P_RTHDRDSTOPTS);
   1517 				break;
   1518 
   1519 			case IPV6_RECVRTHDR:
   1520 #ifdef RFC2292
   1521 				/* cannot mix with RFC2292 */
   1522 				if (OPTBIT(IN6P_RFC2292)) {
   1523 					error = EINVAL;
   1524 					break;
   1525 				}
   1526 #endif
   1527 				OPTSET(IN6P_RTHDR);
   1528 				break;
   1529 
   1530 			case IPV6_FAITH:
   1531 				OPTSET(IN6P_FAITH);
   1532 				break;
   1533 
   1534 			case IPV6_RECVPATHMTU:
   1535 				/*
   1536 				 * We ignore this option for TCP
   1537 				 * sockets.
   1538 				 * (RFC3542 leaves this case
   1539 				 * unspecified.)
   1540 				 */
   1541 				if (uproto != IPPROTO_TCP)
   1542 					OPTSET(IN6P_MTU);
   1543 				break;
   1544 
   1545 			case IPV6_V6ONLY:
   1546 				/*
   1547 				 * make setsockopt(IPV6_V6ONLY)
   1548 				 * available only prior to bind(2).
   1549 				 * see ipng mailing list, Jun 22 2001.
   1550 				 */
   1551 				if (in6p->in6p_lport ||
   1552 				    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
   1553 					error = EINVAL;
   1554 					break;
   1555 				}
   1556 #ifdef INET6_BINDV6ONLY
   1557 				if (!optval)
   1558 					error = EINVAL;
   1559 #else
   1560 				OPTSET(IN6P_IPV6_V6ONLY);
   1561 #endif
   1562 				break;
   1563 			case IPV6_RECVTCLASS:
   1564 #ifdef RFC2292
   1565 				/* cannot mix with RFC2292 XXX */
   1566 				if (OPTBIT(IN6P_RFC2292)) {
   1567 					error = EINVAL;
   1568 					break;
   1569 				}
   1570 #endif
   1571 				OPTSET(IN6P_TCLASS);
   1572 				break;
   1573 
   1574 			}
   1575 			break;
   1576 
   1577 		case IPV6_OTCLASS:
   1578 		{
   1579 			struct ip6_pktopts **optp;
   1580 			u_int8_t tclass;
   1581 
   1582 			error = sockopt_get(sopt, &tclass, sizeof(tclass));
   1583 			if (error)
   1584 				break;
   1585 			optp = &in6p->in6p_outputopts;
   1586 			error = ip6_pcbopt(optname,
   1587 					   (u_char *)&tclass,
   1588 					   sizeof(tclass),
   1589 					   optp,
   1590 					   kauth_cred_get(), uproto);
   1591 			break;
   1592 		}
   1593 
   1594 		case IPV6_TCLASS:
   1595 		case IPV6_DONTFRAG:
   1596 		case IPV6_USE_MIN_MTU:
   1597 		case IPV6_PREFER_TEMPADDR:
   1598 			error = sockopt_getint(sopt, &optval);
   1599 			if (error)
   1600 				break;
   1601 			{
   1602 				struct ip6_pktopts **optp;
   1603 				optp = &in6p->in6p_outputopts;
   1604 				error = ip6_pcbopt(optname,
   1605 						   (u_char *)&optval,
   1606 						   sizeof(optval),
   1607 						   optp,
   1608 						   kauth_cred_get(), uproto);
   1609 				break;
   1610 			}
   1611 
   1612 #ifdef RFC2292
   1613 		case IPV6_2292PKTINFO:
   1614 		case IPV6_2292HOPLIMIT:
   1615 		case IPV6_2292HOPOPTS:
   1616 		case IPV6_2292DSTOPTS:
   1617 		case IPV6_2292RTHDR:
   1618 			/* RFC 2292 */
   1619 			error = sockopt_getint(sopt, &optval);
   1620 			if (error)
   1621 				break;
   1622 
   1623 			switch (optname) {
   1624 			case IPV6_2292PKTINFO:
   1625 				OPTSET2292(IN6P_PKTINFO);
   1626 				break;
   1627 			case IPV6_2292HOPLIMIT:
   1628 				OPTSET2292(IN6P_HOPLIMIT);
   1629 				break;
   1630 			case IPV6_2292HOPOPTS:
   1631 				/*
   1632 				 * Check super-user privilege.
   1633 				 * See comments for IPV6_RECVHOPOPTS.
   1634 				 */
   1635 				error =
   1636 				    kauth_authorize_network(kauth_cred_get(),
   1637 				    KAUTH_NETWORK_IPV6,
   1638 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1639 				    NULL, NULL);
   1640 				if (error)
   1641 					return (error);
   1642 				OPTSET2292(IN6P_HOPOPTS);
   1643 				break;
   1644 			case IPV6_2292DSTOPTS:
   1645 				error =
   1646 				    kauth_authorize_network(kauth_cred_get(),
   1647 				    KAUTH_NETWORK_IPV6,
   1648 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1649 				    NULL, NULL);
   1650 				if (error)
   1651 					return (error);
   1652 				OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
   1653 				break;
   1654 			case IPV6_2292RTHDR:
   1655 				OPTSET2292(IN6P_RTHDR);
   1656 				break;
   1657 			}
   1658 			break;
   1659 #endif
   1660 		case IPV6_PKTINFO:
   1661 		case IPV6_HOPOPTS:
   1662 		case IPV6_RTHDR:
   1663 		case IPV6_DSTOPTS:
   1664 		case IPV6_RTHDRDSTOPTS:
   1665 		case IPV6_NEXTHOP: {
   1666 			/* new advanced API (RFC3542) */
   1667 			void *optbuf;
   1668 			int optbuflen;
   1669 			struct ip6_pktopts **optp;
   1670 
   1671 #ifdef RFC2292
   1672 			/* cannot mix with RFC2292 */
   1673 			if (OPTBIT(IN6P_RFC2292)) {
   1674 				error = EINVAL;
   1675 				break;
   1676 			}
   1677 #endif
   1678 
   1679 			optbuflen = sopt->sopt_size;
   1680 			optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
   1681 			if (optbuf == NULL) {
   1682 				error = ENOBUFS;
   1683 				break;
   1684 			}
   1685 
   1686 			error = sockopt_get(sopt, optbuf, optbuflen);
   1687 			if (error) {
   1688 				free(optbuf, M_IP6OPT);
   1689 				break;
   1690 			}
   1691 			optp = &in6p->in6p_outputopts;
   1692 			error = ip6_pcbopt(optname, optbuf, optbuflen,
   1693 			    optp, kauth_cred_get(), uproto);
   1694 
   1695 			free(optbuf, M_IP6OPT);
   1696 			break;
   1697 			}
   1698 #undef OPTSET
   1699 
   1700 		case IPV6_MULTICAST_IF:
   1701 		case IPV6_MULTICAST_HOPS:
   1702 		case IPV6_MULTICAST_LOOP:
   1703 		case IPV6_JOIN_GROUP:
   1704 		case IPV6_LEAVE_GROUP:
   1705 			error = ip6_setmoptions(sopt, in6p);
   1706 			break;
   1707 
   1708 		case IPV6_PORTRANGE:
   1709 			error = sockopt_getint(sopt, &optval);
   1710 			if (error)
   1711 				break;
   1712 
   1713 			switch (optval) {
   1714 			case IPV6_PORTRANGE_DEFAULT:
   1715 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1716 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1717 				break;
   1718 
   1719 			case IPV6_PORTRANGE_HIGH:
   1720 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1721 				in6p->in6p_flags |= IN6P_HIGHPORT;
   1722 				break;
   1723 
   1724 			case IPV6_PORTRANGE_LOW:
   1725 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1726 				in6p->in6p_flags |= IN6P_LOWPORT;
   1727 				break;
   1728 
   1729 			default:
   1730 				error = EINVAL;
   1731 				break;
   1732 			}
   1733 			break;
   1734 
   1735 		case IPV6_PORTALGO:
   1736 			error = sockopt_getint(sopt, &optval);
   1737 			if (error)
   1738 				break;
   1739 
   1740 			error = portalgo_algo_index_select(
   1741 			    (struct inpcb_hdr *)in6p, optval);
   1742 			break;
   1743 
   1744 #if defined(IPSEC)
   1745 		case IPV6_IPSEC_POLICY:
   1746 			if (ipsec_enabled) {
   1747 				error = ipsec6_set_policy(in6p, optname,
   1748 				    sopt->sopt_data, sopt->sopt_size,
   1749 				    kauth_cred_get());
   1750 				break;
   1751 			}
   1752 			/*FALLTHROUGH*/
   1753 #endif /* IPSEC */
   1754 
   1755 		default:
   1756 			error = ENOPROTOOPT;
   1757 			break;
   1758 		}
   1759 		break;
   1760 
   1761 	case PRCO_GETOPT:
   1762 		switch (optname) {
   1763 #ifdef RFC2292
   1764 		case IPV6_2292PKTOPTIONS:
   1765 			/*
   1766 			 * RFC3542 (effectively) deprecated the
   1767 			 * semantics of the 2292-style pktoptions.
   1768 			 * Since it was not reliable in nature (i.e.,
   1769 			 * applications had to expect the lack of some
   1770 			 * information after all), it would make sense
   1771 			 * to simplify this part by always returning
   1772 			 * empty data.
   1773 			 */
   1774 			break;
   1775 #endif
   1776 
   1777 		case IPV6_RECVHOPOPTS:
   1778 		case IPV6_RECVDSTOPTS:
   1779 		case IPV6_RECVRTHDRDSTOPTS:
   1780 		case IPV6_UNICAST_HOPS:
   1781 		case IPV6_RECVPKTINFO:
   1782 		case IPV6_RECVHOPLIMIT:
   1783 		case IPV6_RECVRTHDR:
   1784 		case IPV6_RECVPATHMTU:
   1785 
   1786 		case IPV6_FAITH:
   1787 		case IPV6_V6ONLY:
   1788 		case IPV6_PORTRANGE:
   1789 		case IPV6_RECVTCLASS:
   1790 			switch (optname) {
   1791 
   1792 			case IPV6_RECVHOPOPTS:
   1793 				optval = OPTBIT(IN6P_HOPOPTS);
   1794 				break;
   1795 
   1796 			case IPV6_RECVDSTOPTS:
   1797 				optval = OPTBIT(IN6P_DSTOPTS);
   1798 				break;
   1799 
   1800 			case IPV6_RECVRTHDRDSTOPTS:
   1801 				optval = OPTBIT(IN6P_RTHDRDSTOPTS);
   1802 				break;
   1803 
   1804 			case IPV6_UNICAST_HOPS:
   1805 				optval = in6p->in6p_hops;
   1806 				break;
   1807 
   1808 			case IPV6_RECVPKTINFO:
   1809 				optval = OPTBIT(IN6P_PKTINFO);
   1810 				break;
   1811 
   1812 			case IPV6_RECVHOPLIMIT:
   1813 				optval = OPTBIT(IN6P_HOPLIMIT);
   1814 				break;
   1815 
   1816 			case IPV6_RECVRTHDR:
   1817 				optval = OPTBIT(IN6P_RTHDR);
   1818 				break;
   1819 
   1820 			case IPV6_RECVPATHMTU:
   1821 				optval = OPTBIT(IN6P_MTU);
   1822 				break;
   1823 
   1824 			case IPV6_FAITH:
   1825 				optval = OPTBIT(IN6P_FAITH);
   1826 				break;
   1827 
   1828 			case IPV6_V6ONLY:
   1829 				optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1830 				break;
   1831 
   1832 			case IPV6_PORTRANGE:
   1833 			    {
   1834 				int flags;
   1835 				flags = in6p->in6p_flags;
   1836 				if (flags & IN6P_HIGHPORT)
   1837 					optval = IPV6_PORTRANGE_HIGH;
   1838 				else if (flags & IN6P_LOWPORT)
   1839 					optval = IPV6_PORTRANGE_LOW;
   1840 				else
   1841 					optval = 0;
   1842 				break;
   1843 			    }
   1844 			case IPV6_RECVTCLASS:
   1845 				optval = OPTBIT(IN6P_TCLASS);
   1846 				break;
   1847 
   1848 			}
   1849 			if (error)
   1850 				break;
   1851 			error = sockopt_setint(sopt, optval);
   1852 			break;
   1853 
   1854 		case IPV6_PATHMTU:
   1855 		    {
   1856 			u_long pmtu = 0;
   1857 			struct ip6_mtuinfo mtuinfo;
   1858 			struct route *ro = &in6p->in6p_route;
   1859 			struct rtentry *rt;
   1860 			union {
   1861 				struct sockaddr		dst;
   1862 				struct sockaddr_in6	dst6;
   1863 			} u;
   1864 
   1865 			if (!(so->so_state & SS_ISCONNECTED))
   1866 				return (ENOTCONN);
   1867 			/*
   1868 			 * XXX: we dot not consider the case of source
   1869 			 * routing, or optional information to specify
   1870 			 * the outgoing interface.
   1871 			 */
   1872 			sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0);
   1873 			rt = rtcache_lookup(ro, &u.dst);
   1874 			error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
   1875 			rtcache_unref(rt, ro);
   1876 			if (error)
   1877 				break;
   1878 			if (pmtu > IPV6_MAXPACKET)
   1879 				pmtu = IPV6_MAXPACKET;
   1880 
   1881 			memset(&mtuinfo, 0, sizeof(mtuinfo));
   1882 			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
   1883 			optdata = (void *)&mtuinfo;
   1884 			optdatalen = sizeof(mtuinfo);
   1885 			if (optdatalen > MCLBYTES)
   1886 				return (EMSGSIZE); /* XXX */
   1887 			error = sockopt_set(sopt, optdata, optdatalen);
   1888 			break;
   1889 		    }
   1890 
   1891 #ifdef RFC2292
   1892 		case IPV6_2292PKTINFO:
   1893 		case IPV6_2292HOPLIMIT:
   1894 		case IPV6_2292HOPOPTS:
   1895 		case IPV6_2292RTHDR:
   1896 		case IPV6_2292DSTOPTS:
   1897 			switch (optname) {
   1898 			case IPV6_2292PKTINFO:
   1899 				optval = OPTBIT(IN6P_PKTINFO);
   1900 				break;
   1901 			case IPV6_2292HOPLIMIT:
   1902 				optval = OPTBIT(IN6P_HOPLIMIT);
   1903 				break;
   1904 			case IPV6_2292HOPOPTS:
   1905 				optval = OPTBIT(IN6P_HOPOPTS);
   1906 				break;
   1907 			case IPV6_2292RTHDR:
   1908 				optval = OPTBIT(IN6P_RTHDR);
   1909 				break;
   1910 			case IPV6_2292DSTOPTS:
   1911 				optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
   1912 				break;
   1913 			}
   1914 			error = sockopt_setint(sopt, optval);
   1915 			break;
   1916 #endif
   1917 		case IPV6_PKTINFO:
   1918 		case IPV6_HOPOPTS:
   1919 		case IPV6_RTHDR:
   1920 		case IPV6_DSTOPTS:
   1921 		case IPV6_RTHDRDSTOPTS:
   1922 		case IPV6_NEXTHOP:
   1923 		case IPV6_OTCLASS:
   1924 		case IPV6_TCLASS:
   1925 		case IPV6_DONTFRAG:
   1926 		case IPV6_USE_MIN_MTU:
   1927 		case IPV6_PREFER_TEMPADDR:
   1928 			error = ip6_getpcbopt(in6p->in6p_outputopts,
   1929 			    optname, sopt);
   1930 			break;
   1931 
   1932 		case IPV6_MULTICAST_IF:
   1933 		case IPV6_MULTICAST_HOPS:
   1934 		case IPV6_MULTICAST_LOOP:
   1935 		case IPV6_JOIN_GROUP:
   1936 		case IPV6_LEAVE_GROUP:
   1937 			error = ip6_getmoptions(sopt, in6p);
   1938 			break;
   1939 
   1940 		case IPV6_PORTALGO:
   1941 			optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
   1942 			error = sockopt_setint(sopt, optval);
   1943 			break;
   1944 
   1945 #if defined(IPSEC)
   1946 		case IPV6_IPSEC_POLICY:
   1947 			if (ipsec_used) {
   1948 				struct mbuf *m = NULL;
   1949 
   1950 				/*
   1951 				 * XXX: this will return EINVAL as sopt is
   1952 				 * empty
   1953 				 */
   1954 				error = ipsec6_get_policy(in6p, sopt->sopt_data,
   1955 				    sopt->sopt_size, &m);
   1956 				if (!error)
   1957 					error = sockopt_setmbuf(sopt, m);
   1958 				break;
   1959 			}
   1960 			/*FALLTHROUGH*/
   1961 #endif /* IPSEC */
   1962 
   1963 		default:
   1964 			error = ENOPROTOOPT;
   1965 			break;
   1966 		}
   1967 		break;
   1968 	}
   1969 	return (error);
   1970 }
   1971 
   1972 int
   1973 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1974 {
   1975 	int error = 0, optval;
   1976 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   1977 	struct in6pcb *in6p = sotoin6pcb(so);
   1978 	int level, optname;
   1979 
   1980 	KASSERT(sopt != NULL);
   1981 
   1982 	level = sopt->sopt_level;
   1983 	optname = sopt->sopt_name;
   1984 
   1985 	if (level != IPPROTO_IPV6) {
   1986 		return ENOPROTOOPT;
   1987 	}
   1988 
   1989 	switch (optname) {
   1990 	case IPV6_CHECKSUM:
   1991 		/*
   1992 		 * For ICMPv6 sockets, no modification allowed for checksum
   1993 		 * offset, permit "no change" values to help existing apps.
   1994 		 *
   1995 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
   1996 		 * for an ICMPv6 socket will fail."  The current
   1997 		 * behavior does not meet RFC3542.
   1998 		 */
   1999 		switch (op) {
   2000 		case PRCO_SETOPT:
   2001 			error = sockopt_getint(sopt, &optval);
   2002 			if (error)
   2003 				break;
   2004 			if ((optval % 2) != 0) {
   2005 				/* the API assumes even offset values */
   2006 				error = EINVAL;
   2007 			} else if (so->so_proto->pr_protocol ==
   2008 			    IPPROTO_ICMPV6) {
   2009 				if (optval != icmp6off)
   2010 					error = EINVAL;
   2011 			} else
   2012 				in6p->in6p_cksum = optval;
   2013 			break;
   2014 
   2015 		case PRCO_GETOPT:
   2016 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   2017 				optval = icmp6off;
   2018 			else
   2019 				optval = in6p->in6p_cksum;
   2020 
   2021 			error = sockopt_setint(sopt, optval);
   2022 			break;
   2023 
   2024 		default:
   2025 			error = EINVAL;
   2026 			break;
   2027 		}
   2028 		break;
   2029 
   2030 	default:
   2031 		error = ENOPROTOOPT;
   2032 		break;
   2033 	}
   2034 
   2035 	return (error);
   2036 }
   2037 
   2038 #ifdef RFC2292
   2039 /*
   2040  * Set up IP6 options in pcb for insertion in output packets or
   2041  * specifying behavior of outgoing packets.
   2042  */
   2043 static int
   2044 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
   2045     struct sockopt *sopt)
   2046 {
   2047 	struct ip6_pktopts *opt = *pktopt;
   2048 	struct mbuf *m;
   2049 	int error = 0;
   2050 
   2051 	/* turn off any old options. */
   2052 	if (opt) {
   2053 #ifdef DIAGNOSTIC
   2054 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
   2055 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
   2056 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2057 		    printf("ip6_pcbopts: all specified options are cleared.\n");
   2058 #endif
   2059 		ip6_clearpktopts(opt, -1);
   2060 	} else {
   2061 		opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
   2062 		if (opt == NULL)
   2063 			return (ENOBUFS);
   2064 	}
   2065 	*pktopt = NULL;
   2066 
   2067 	if (sopt == NULL || sopt->sopt_size == 0) {
   2068 		/*
   2069 		 * Only turning off any previous options, regardless of
   2070 		 * whether the opt is just created or given.
   2071 		 */
   2072 		free(opt, M_IP6OPT);
   2073 		return (0);
   2074 	}
   2075 
   2076 	/*  set options specified by user. */
   2077 	m = sockopt_getmbuf(sopt);
   2078 	if (m == NULL) {
   2079 		free(opt, M_IP6OPT);
   2080 		return (ENOBUFS);
   2081 	}
   2082 
   2083 	error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
   2084 	    so->so_proto->pr_protocol);
   2085 	m_freem(m);
   2086 	if (error != 0) {
   2087 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
   2088 		free(opt, M_IP6OPT);
   2089 		return (error);
   2090 	}
   2091 	*pktopt = opt;
   2092 	return (0);
   2093 }
   2094 #endif
   2095 
   2096 /*
   2097  * initialize ip6_pktopts.  beware that there are non-zero default values in
   2098  * the struct.
   2099  */
   2100 void
   2101 ip6_initpktopts(struct ip6_pktopts *opt)
   2102 {
   2103 
   2104 	memset(opt, 0, sizeof(*opt));
   2105 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
   2106 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
   2107 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
   2108 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
   2109 }
   2110 
   2111 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
   2112 static int
   2113 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
   2114     kauth_cred_t cred, int uproto)
   2115 {
   2116 	struct ip6_pktopts *opt;
   2117 
   2118 	if (*pktopt == NULL) {
   2119 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
   2120 		    M_NOWAIT);
   2121 		if (*pktopt == NULL)
   2122 			return (ENOBUFS);
   2123 
   2124 		ip6_initpktopts(*pktopt);
   2125 	}
   2126 	opt = *pktopt;
   2127 
   2128 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
   2129 }
   2130 
   2131 static int
   2132 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
   2133 {
   2134 	void *optdata = NULL;
   2135 	int optdatalen = 0;
   2136 	struct ip6_ext *ip6e;
   2137 	int error = 0;
   2138 	struct in6_pktinfo null_pktinfo;
   2139 	int deftclass = 0, on;
   2140 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
   2141 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
   2142 
   2143 	switch (optname) {
   2144 	case IPV6_PKTINFO:
   2145 		if (pktopt && pktopt->ip6po_pktinfo)
   2146 			optdata = (void *)pktopt->ip6po_pktinfo;
   2147 		else {
   2148 			/* XXX: we don't have to do this every time... */
   2149 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
   2150 			optdata = (void *)&null_pktinfo;
   2151 		}
   2152 		optdatalen = sizeof(struct in6_pktinfo);
   2153 		break;
   2154 	case IPV6_OTCLASS:
   2155 		/* XXX */
   2156 		return (EINVAL);
   2157 	case IPV6_TCLASS:
   2158 		if (pktopt && pktopt->ip6po_tclass >= 0)
   2159 			optdata = (void *)&pktopt->ip6po_tclass;
   2160 		else
   2161 			optdata = (void *)&deftclass;
   2162 		optdatalen = sizeof(int);
   2163 		break;
   2164 	case IPV6_HOPOPTS:
   2165 		if (pktopt && pktopt->ip6po_hbh) {
   2166 			optdata = (void *)pktopt->ip6po_hbh;
   2167 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
   2168 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2169 		}
   2170 		break;
   2171 	case IPV6_RTHDR:
   2172 		if (pktopt && pktopt->ip6po_rthdr) {
   2173 			optdata = (void *)pktopt->ip6po_rthdr;
   2174 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
   2175 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2176 		}
   2177 		break;
   2178 	case IPV6_RTHDRDSTOPTS:
   2179 		if (pktopt && pktopt->ip6po_dest1) {
   2180 			optdata = (void *)pktopt->ip6po_dest1;
   2181 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
   2182 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2183 		}
   2184 		break;
   2185 	case IPV6_DSTOPTS:
   2186 		if (pktopt && pktopt->ip6po_dest2) {
   2187 			optdata = (void *)pktopt->ip6po_dest2;
   2188 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
   2189 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2190 		}
   2191 		break;
   2192 	case IPV6_NEXTHOP:
   2193 		if (pktopt && pktopt->ip6po_nexthop) {
   2194 			optdata = (void *)pktopt->ip6po_nexthop;
   2195 			optdatalen = pktopt->ip6po_nexthop->sa_len;
   2196 		}
   2197 		break;
   2198 	case IPV6_USE_MIN_MTU:
   2199 		if (pktopt)
   2200 			optdata = (void *)&pktopt->ip6po_minmtu;
   2201 		else
   2202 			optdata = (void *)&defminmtu;
   2203 		optdatalen = sizeof(int);
   2204 		break;
   2205 	case IPV6_DONTFRAG:
   2206 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
   2207 			on = 1;
   2208 		else
   2209 			on = 0;
   2210 		optdata = (void *)&on;
   2211 		optdatalen = sizeof(on);
   2212 		break;
   2213 	case IPV6_PREFER_TEMPADDR:
   2214 		if (pktopt)
   2215 			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
   2216 		else
   2217 			optdata = (void *)&defpreftemp;
   2218 		optdatalen = sizeof(int);
   2219 		break;
   2220 	default:		/* should not happen */
   2221 #ifdef DIAGNOSTIC
   2222 		panic("ip6_getpcbopt: unexpected option\n");
   2223 #endif
   2224 		return (ENOPROTOOPT);
   2225 	}
   2226 
   2227 	error = sockopt_set(sopt, optdata, optdatalen);
   2228 
   2229 	return (error);
   2230 }
   2231 
   2232 void
   2233 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
   2234 {
   2235 	if (optname == -1 || optname == IPV6_PKTINFO) {
   2236 		if (pktopt->ip6po_pktinfo)
   2237 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
   2238 		pktopt->ip6po_pktinfo = NULL;
   2239 	}
   2240 	if (optname == -1 || optname == IPV6_HOPLIMIT)
   2241 		pktopt->ip6po_hlim = -1;
   2242 	if (optname == -1 || optname == IPV6_TCLASS)
   2243 		pktopt->ip6po_tclass = -1;
   2244 	if (optname == -1 || optname == IPV6_NEXTHOP) {
   2245 		rtcache_free(&pktopt->ip6po_nextroute);
   2246 		if (pktopt->ip6po_nexthop)
   2247 			free(pktopt->ip6po_nexthop, M_IP6OPT);
   2248 		pktopt->ip6po_nexthop = NULL;
   2249 	}
   2250 	if (optname == -1 || optname == IPV6_HOPOPTS) {
   2251 		if (pktopt->ip6po_hbh)
   2252 			free(pktopt->ip6po_hbh, M_IP6OPT);
   2253 		pktopt->ip6po_hbh = NULL;
   2254 	}
   2255 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
   2256 		if (pktopt->ip6po_dest1)
   2257 			free(pktopt->ip6po_dest1, M_IP6OPT);
   2258 		pktopt->ip6po_dest1 = NULL;
   2259 	}
   2260 	if (optname == -1 || optname == IPV6_RTHDR) {
   2261 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2262 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
   2263 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
   2264 		rtcache_free(&pktopt->ip6po_route);
   2265 	}
   2266 	if (optname == -1 || optname == IPV6_DSTOPTS) {
   2267 		if (pktopt->ip6po_dest2)
   2268 			free(pktopt->ip6po_dest2, M_IP6OPT);
   2269 		pktopt->ip6po_dest2 = NULL;
   2270 	}
   2271 }
   2272 
   2273 #define PKTOPT_EXTHDRCPY(type) 					\
   2274 do {								\
   2275 	if (src->type) {					\
   2276 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
   2277 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
   2278 		if (dst->type == NULL)				\
   2279 			goto bad;				\
   2280 		memcpy(dst->type, src->type, hlen);		\
   2281 	}							\
   2282 } while (/*CONSTCOND*/ 0)
   2283 
   2284 static int
   2285 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
   2286 {
   2287 	dst->ip6po_hlim = src->ip6po_hlim;
   2288 	dst->ip6po_tclass = src->ip6po_tclass;
   2289 	dst->ip6po_flags = src->ip6po_flags;
   2290 	dst->ip6po_minmtu = src->ip6po_minmtu;
   2291 	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
   2292 	if (src->ip6po_pktinfo) {
   2293 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
   2294 		    M_IP6OPT, canwait);
   2295 		if (dst->ip6po_pktinfo == NULL)
   2296 			goto bad;
   2297 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
   2298 	}
   2299 	if (src->ip6po_nexthop) {
   2300 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
   2301 		    M_IP6OPT, canwait);
   2302 		if (dst->ip6po_nexthop == NULL)
   2303 			goto bad;
   2304 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
   2305 		    src->ip6po_nexthop->sa_len);
   2306 	}
   2307 	PKTOPT_EXTHDRCPY(ip6po_hbh);
   2308 	PKTOPT_EXTHDRCPY(ip6po_dest1);
   2309 	PKTOPT_EXTHDRCPY(ip6po_dest2);
   2310 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
   2311 	return (0);
   2312 
   2313   bad:
   2314 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
   2315 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
   2316 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
   2317 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
   2318 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
   2319 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
   2320 
   2321 	return (ENOBUFS);
   2322 }
   2323 #undef PKTOPT_EXTHDRCPY
   2324 
   2325 struct ip6_pktopts *
   2326 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
   2327 {
   2328 	int error;
   2329 	struct ip6_pktopts *dst;
   2330 
   2331 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
   2332 	if (dst == NULL)
   2333 		return (NULL);
   2334 	ip6_initpktopts(dst);
   2335 
   2336 	if ((error = copypktopts(dst, src, canwait)) != 0) {
   2337 		free(dst, M_IP6OPT);
   2338 		return (NULL);
   2339 	}
   2340 
   2341 	return (dst);
   2342 }
   2343 
   2344 void
   2345 ip6_freepcbopts(struct ip6_pktopts *pktopt)
   2346 {
   2347 	if (pktopt == NULL)
   2348 		return;
   2349 
   2350 	ip6_clearpktopts(pktopt, -1);
   2351 
   2352 	free(pktopt, M_IP6OPT);
   2353 }
   2354 
   2355 int
   2356 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp, void *v,
   2357     size_t l)
   2358 {
   2359 	struct ipv6_mreq mreq;
   2360 	int error;
   2361 	struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
   2362 	struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
   2363 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2364 	if (error != 0)
   2365 		return error;
   2366 
   2367 	if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
   2368 		/*
   2369 		 * We use the unspecified address to specify to accept
   2370 		 * all multicast addresses. Only super user is allowed
   2371 		 * to do this.
   2372 		 */
   2373 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6,
   2374 		    KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
   2375 			return EACCES;
   2376 	} else if (IN6_IS_ADDR_V4MAPPED(ia)) {
   2377 		// Don't bother if we are not going to use ifp.
   2378 		if (l == sizeof(*ia)) {
   2379 			memcpy(v, ia, l);
   2380 			return 0;
   2381 		}
   2382 	} else if (!IN6_IS_ADDR_MULTICAST(ia)) {
   2383 		return EINVAL;
   2384 	}
   2385 
   2386 	/*
   2387 	 * If no interface was explicitly specified, choose an
   2388 	 * appropriate one according to the given multicast address.
   2389 	 */
   2390 	if (mreq.ipv6mr_interface == 0) {
   2391 		struct rtentry *rt;
   2392 		union {
   2393 			struct sockaddr		dst;
   2394 			struct sockaddr_in	dst4;
   2395 			struct sockaddr_in6	dst6;
   2396 		} u;
   2397 		struct route ro;
   2398 
   2399 		/*
   2400 		 * Look up the routing table for the
   2401 		 * address, and choose the outgoing interface.
   2402 		 *   XXX: is it a good approach?
   2403 		 */
   2404 		memset(&ro, 0, sizeof(ro));
   2405 		if (IN6_IS_ADDR_V4MAPPED(ia))
   2406 			sockaddr_in_init(&u.dst4, ia4, 0);
   2407 		else
   2408 			sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
   2409 		error = rtcache_setdst(&ro, &u.dst);
   2410 		if (error != 0)
   2411 			return error;
   2412 		rt = rtcache_init(&ro);
   2413 		*ifp = rt != NULL ? rt->rt_ifp : NULL;
   2414 		/* FIXME *ifp is NOMPSAFE */
   2415 		rtcache_unref(rt, &ro);
   2416 		rtcache_free(&ro);
   2417 	} else {
   2418 		/*
   2419 		 * If the interface is specified, validate it.
   2420 		 */
   2421 		if ((*ifp = if_byindex(mreq.ipv6mr_interface)) == NULL)
   2422 			return ENXIO;	/* XXX EINVAL? */
   2423 	}
   2424 	if (sizeof(*ia) == l)
   2425 		memcpy(v, ia, l);
   2426 	else
   2427 		memcpy(v, ia4, l);
   2428 	return 0;
   2429 }
   2430 
   2431 /*
   2432  * Set the IP6 multicast options in response to user setsockopt().
   2433  */
   2434 static int
   2435 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p)
   2436 {
   2437 	int error = 0;
   2438 	u_int loop, ifindex;
   2439 	struct ipv6_mreq mreq;
   2440 	struct in6_addr ia;
   2441 	struct ifnet *ifp;
   2442 	struct ip6_moptions *im6o = in6p->in6p_moptions;
   2443 	struct in6_multi_mship *imm;
   2444 
   2445 	if (im6o == NULL) {
   2446 		/*
   2447 		 * No multicast option buffer attached to the pcb;
   2448 		 * allocate one and initialize to default values.
   2449 		 */
   2450 		im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
   2451 		if (im6o == NULL)
   2452 			return (ENOBUFS);
   2453 		in6p->in6p_moptions = im6o;
   2454 		im6o->im6o_multicast_if_index = 0;
   2455 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2456 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   2457 		LIST_INIT(&im6o->im6o_memberships);
   2458 	}
   2459 
   2460 	switch (sopt->sopt_name) {
   2461 
   2462 	case IPV6_MULTICAST_IF:
   2463 		/*
   2464 		 * Select the interface for outgoing multicast packets.
   2465 		 */
   2466 		error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
   2467 		if (error != 0)
   2468 			break;
   2469 
   2470 		if (ifindex != 0) {
   2471 			if ((ifp = if_byindex(ifindex)) == NULL) {
   2472 				error = ENXIO;	/* XXX EINVAL? */
   2473 				break;
   2474 			}
   2475 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   2476 				error = EADDRNOTAVAIL;
   2477 				break;
   2478 			}
   2479 		} else
   2480 			ifp = NULL;
   2481 		im6o->im6o_multicast_if_index = if_get_index(ifp);
   2482 		break;
   2483 
   2484 	case IPV6_MULTICAST_HOPS:
   2485 	    {
   2486 		/*
   2487 		 * Set the IP6 hoplimit for outgoing multicast packets.
   2488 		 */
   2489 		int optval;
   2490 
   2491 		error = sockopt_getint(sopt, &optval);
   2492 		if (error != 0)
   2493 			break;
   2494 
   2495 		if (optval < -1 || optval >= 256)
   2496 			error = EINVAL;
   2497 		else if (optval == -1)
   2498 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2499 		else
   2500 			im6o->im6o_multicast_hlim = optval;
   2501 		break;
   2502 	    }
   2503 
   2504 	case IPV6_MULTICAST_LOOP:
   2505 		/*
   2506 		 * Set the loopback flag for outgoing multicast packets.
   2507 		 * Must be zero or one.
   2508 		 */
   2509 		error = sockopt_get(sopt, &loop, sizeof(loop));
   2510 		if (error != 0)
   2511 			break;
   2512 		if (loop > 1) {
   2513 			error = EINVAL;
   2514 			break;
   2515 		}
   2516 		im6o->im6o_multicast_loop = loop;
   2517 		break;
   2518 
   2519 	case IPV6_JOIN_GROUP:
   2520 		/*
   2521 		 * Add a multicast group membership.
   2522 		 * Group must be a valid IP6 multicast address.
   2523 		 */
   2524 		if ((error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia))))
   2525 			return error;
   2526 
   2527 		if (IN6_IS_ADDR_V4MAPPED(&ia)) {
   2528 			error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
   2529 			break;
   2530 		}
   2531 		/*
   2532 		 * See if we found an interface, and confirm that it
   2533 		 * supports multicast
   2534 		 */
   2535 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   2536 			error = EADDRNOTAVAIL;
   2537 			break;
   2538 		}
   2539 
   2540 		if (in6_setscope(&ia, ifp, NULL)) {
   2541 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   2542 			break;
   2543 		}
   2544 
   2545 		/*
   2546 		 * See if the membership already exists.
   2547 		 */
   2548 		for (imm = im6o->im6o_memberships.lh_first;
   2549 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   2550 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2551 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2552 			    &ia))
   2553 				break;
   2554 		if (imm != NULL) {
   2555 			error = EADDRINUSE;
   2556 			break;
   2557 		}
   2558 		/*
   2559 		 * Everything looks good; add a new record to the multicast
   2560 		 * address list for the given interface.
   2561 		 */
   2562 		imm = in6_joingroup(ifp, &ia, &error, 0);
   2563 		if (imm == NULL)
   2564 			break;
   2565 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2566 		break;
   2567 
   2568 	case IPV6_LEAVE_GROUP:
   2569 		/*
   2570 		 * Drop a multicast group membership.
   2571 		 * Group must be a valid IP6 multicast address.
   2572 		 */
   2573 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2574 		if (error != 0)
   2575 			break;
   2576 
   2577 		if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
   2578 			error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
   2579 			break;
   2580 		}
   2581 		/*
   2582 		 * If an interface address was specified, get a pointer
   2583 		 * to its ifnet structure.
   2584 		 */
   2585 		if (mreq.ipv6mr_interface != 0) {
   2586 			if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
   2587 				error = ENXIO;	/* XXX EINVAL? */
   2588 				break;
   2589 			}
   2590 		} else
   2591 			ifp = NULL;
   2592 
   2593 		/* Fill in the scope zone ID */
   2594 		if (ifp) {
   2595 			if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
   2596 				/* XXX: should not happen */
   2597 				error = EADDRNOTAVAIL;
   2598 				break;
   2599 			}
   2600 		} else if (mreq.ipv6mr_interface != 0) {
   2601 			/*
   2602 			 * XXX: This case would happens when the (positive)
   2603 			 * index is in the valid range, but the corresponding
   2604 			 * interface has been detached dynamically.  The above
   2605 			 * check probably avoids such case to happen here, but
   2606 			 * we check it explicitly for safety.
   2607 			 */
   2608 			error = EADDRNOTAVAIL;
   2609 			break;
   2610 		} else {	/* ipv6mr_interface == 0 */
   2611 			struct sockaddr_in6 sa6_mc;
   2612 
   2613 			/*
   2614 			 * The API spec says as follows:
   2615 			 *  If the interface index is specified as 0, the
   2616 			 *  system may choose a multicast group membership to
   2617 			 *  drop by matching the multicast address only.
   2618 			 * On the other hand, we cannot disambiguate the scope
   2619 			 * zone unless an interface is provided.  Thus, we
   2620 			 * check if there's ambiguity with the default scope
   2621 			 * zone as the last resort.
   2622 			 */
   2623 			sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
   2624 			    0, 0, 0);
   2625 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2626 			if (error != 0)
   2627 				break;
   2628 			mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2629 		}
   2630 
   2631 		/*
   2632 		 * Find the membership in the membership list.
   2633 		 */
   2634 		for (imm = im6o->im6o_memberships.lh_first;
   2635 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   2636 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2637 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2638 			    &mreq.ipv6mr_multiaddr))
   2639 				break;
   2640 		}
   2641 		if (imm == NULL) {
   2642 			/* Unable to resolve interface */
   2643 			error = EADDRNOTAVAIL;
   2644 			break;
   2645 		}
   2646 		/*
   2647 		 * Give up the multicast address record to which the
   2648 		 * membership points.
   2649 		 */
   2650 		LIST_REMOVE(imm, i6mm_chain);
   2651 		in6_leavegroup(imm);
   2652 		break;
   2653 
   2654 	default:
   2655 		error = EOPNOTSUPP;
   2656 		break;
   2657 	}
   2658 
   2659 	/*
   2660 	 * If all options have default values, no need to keep the mbuf.
   2661 	 */
   2662 	if (im6o->im6o_multicast_if_index == 0 &&
   2663 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2664 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2665 	    im6o->im6o_memberships.lh_first == NULL) {
   2666 		free(in6p->in6p_moptions, M_IPMOPTS);
   2667 		in6p->in6p_moptions = NULL;
   2668 	}
   2669 
   2670 	return (error);
   2671 }
   2672 
   2673 /*
   2674  * Return the IP6 multicast options in response to user getsockopt().
   2675  */
   2676 static int
   2677 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p)
   2678 {
   2679 	u_int optval;
   2680 	int error;
   2681 	struct ip6_moptions *im6o = in6p->in6p_moptions;
   2682 
   2683 	switch (sopt->sopt_name) {
   2684 	case IPV6_MULTICAST_IF:
   2685 		if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
   2686 			optval = 0;
   2687 		else
   2688 			optval = im6o->im6o_multicast_if_index;
   2689 
   2690 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2691 		break;
   2692 
   2693 	case IPV6_MULTICAST_HOPS:
   2694 		if (im6o == NULL)
   2695 			optval = ip6_defmcasthlim;
   2696 		else
   2697 			optval = im6o->im6o_multicast_hlim;
   2698 
   2699 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2700 		break;
   2701 
   2702 	case IPV6_MULTICAST_LOOP:
   2703 		if (im6o == NULL)
   2704 			optval = IPV6_DEFAULT_MULTICAST_LOOP;
   2705 		else
   2706 			optval = im6o->im6o_multicast_loop;
   2707 
   2708 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2709 		break;
   2710 
   2711 	default:
   2712 		error = EOPNOTSUPP;
   2713 	}
   2714 
   2715 	return (error);
   2716 }
   2717 
   2718 /*
   2719  * Discard the IP6 multicast options.
   2720  */
   2721 void
   2722 ip6_freemoptions(struct ip6_moptions *im6o)
   2723 {
   2724 	struct in6_multi_mship *imm;
   2725 
   2726 	if (im6o == NULL)
   2727 		return;
   2728 
   2729 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   2730 		LIST_REMOVE(imm, i6mm_chain);
   2731 		in6_leavegroup(imm);
   2732 	}
   2733 	free(im6o, M_IPMOPTS);
   2734 }
   2735 
   2736 /*
   2737  * Set IPv6 outgoing packet options based on advanced API.
   2738  */
   2739 int
   2740 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
   2741 	struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
   2742 {
   2743 	struct cmsghdr *cm = 0;
   2744 
   2745 	if (control == NULL || opt == NULL)
   2746 		return (EINVAL);
   2747 
   2748 	ip6_initpktopts(opt);
   2749 	if (stickyopt) {
   2750 		int error;
   2751 
   2752 		/*
   2753 		 * If stickyopt is provided, make a local copy of the options
   2754 		 * for this particular packet, then override them by ancillary
   2755 		 * objects.
   2756 		 * XXX: copypktopts() does not copy the cached route to a next
   2757 		 * hop (if any).  This is not very good in terms of efficiency,
   2758 		 * but we can allow this since this option should be rarely
   2759 		 * used.
   2760 		 */
   2761 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
   2762 			return (error);
   2763 	}
   2764 
   2765 	/*
   2766 	 * XXX: Currently, we assume all the optional information is stored
   2767 	 * in a single mbuf.
   2768 	 */
   2769 	if (control->m_next)
   2770 		return (EINVAL);
   2771 
   2772 	/* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
   2773 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2774 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2775 		int error;
   2776 
   2777 		if (control->m_len < CMSG_LEN(0))
   2778 			return (EINVAL);
   2779 
   2780 		cm = mtod(control, struct cmsghdr *);
   2781 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   2782 			return (EINVAL);
   2783 		if (cm->cmsg_level != IPPROTO_IPV6)
   2784 			continue;
   2785 
   2786 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
   2787 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
   2788 		if (error)
   2789 			return (error);
   2790 	}
   2791 
   2792 	return (0);
   2793 }
   2794 
   2795 /*
   2796  * Set a particular packet option, as a sticky option or an ancillary data
   2797  * item.  "len" can be 0 only when it's a sticky option.
   2798  * We have 4 cases of combination of "sticky" and "cmsg":
   2799  * "sticky=0, cmsg=0": impossible
   2800  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
   2801  * "sticky=1, cmsg=0": RFC3542 socket option
   2802  * "sticky=1, cmsg=1": RFC2292 socket option
   2803  */
   2804 static int
   2805 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
   2806     kauth_cred_t cred, int sticky, int cmsg, int uproto)
   2807 {
   2808 	int minmtupolicy;
   2809 	int error;
   2810 
   2811 	if (!sticky && !cmsg) {
   2812 #ifdef DIAGNOSTIC
   2813 		printf("ip6_setpktopt: impossible case\n");
   2814 #endif
   2815 		return (EINVAL);
   2816 	}
   2817 
   2818 	/*
   2819 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
   2820 	 * not be specified in the context of RFC3542.  Conversely,
   2821 	 * RFC3542 types should not be specified in the context of RFC2292.
   2822 	 */
   2823 	if (!cmsg) {
   2824 		switch (optname) {
   2825 		case IPV6_2292PKTINFO:
   2826 		case IPV6_2292HOPLIMIT:
   2827 		case IPV6_2292NEXTHOP:
   2828 		case IPV6_2292HOPOPTS:
   2829 		case IPV6_2292DSTOPTS:
   2830 		case IPV6_2292RTHDR:
   2831 		case IPV6_2292PKTOPTIONS:
   2832 			return (ENOPROTOOPT);
   2833 		}
   2834 	}
   2835 	if (sticky && cmsg) {
   2836 		switch (optname) {
   2837 		case IPV6_PKTINFO:
   2838 		case IPV6_HOPLIMIT:
   2839 		case IPV6_NEXTHOP:
   2840 		case IPV6_HOPOPTS:
   2841 		case IPV6_DSTOPTS:
   2842 		case IPV6_RTHDRDSTOPTS:
   2843 		case IPV6_RTHDR:
   2844 		case IPV6_USE_MIN_MTU:
   2845 		case IPV6_DONTFRAG:
   2846 		case IPV6_OTCLASS:
   2847 		case IPV6_TCLASS:
   2848 		case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
   2849 			return (ENOPROTOOPT);
   2850 		}
   2851 	}
   2852 
   2853 	switch (optname) {
   2854 #ifdef RFC2292
   2855 	case IPV6_2292PKTINFO:
   2856 #endif
   2857 	case IPV6_PKTINFO:
   2858 	{
   2859 		struct in6_pktinfo *pktinfo;
   2860 
   2861 		if (len != sizeof(struct in6_pktinfo))
   2862 			return (EINVAL);
   2863 
   2864 		pktinfo = (struct in6_pktinfo *)buf;
   2865 
   2866 		/*
   2867 		 * An application can clear any sticky IPV6_PKTINFO option by
   2868 		 * doing a "regular" setsockopt with ipi6_addr being
   2869 		 * in6addr_any and ipi6_ifindex being zero.
   2870 		 * [RFC 3542, Section 6]
   2871 		 */
   2872 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
   2873 		    pktinfo->ipi6_ifindex == 0 &&
   2874 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2875 			ip6_clearpktopts(opt, optname);
   2876 			break;
   2877 		}
   2878 
   2879 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
   2880 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2881 			return (EINVAL);
   2882 		}
   2883 
   2884 		/* Validate the interface index if specified. */
   2885 		if (pktinfo->ipi6_ifindex) {
   2886 			struct ifnet *ifp;
   2887 			int s = pserialize_read_enter();
   2888 			ifp = if_byindex(pktinfo->ipi6_ifindex);
   2889 			if (ifp == NULL) {
   2890 				pserialize_read_exit(s);
   2891 				return ENXIO;
   2892 			}
   2893 			pserialize_read_exit(s);
   2894 		}
   2895 
   2896 		/*
   2897 		 * We store the address anyway, and let in6_selectsrc()
   2898 		 * validate the specified address.  This is because ipi6_addr
   2899 		 * may not have enough information about its scope zone, and
   2900 		 * we may need additional information (such as outgoing
   2901 		 * interface or the scope zone of a destination address) to
   2902 		 * disambiguate the scope.
   2903 		 * XXX: the delay of the validation may confuse the
   2904 		 * application when it is used as a sticky option.
   2905 		 */
   2906 		if (opt->ip6po_pktinfo == NULL) {
   2907 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
   2908 			    M_IP6OPT, M_NOWAIT);
   2909 			if (opt->ip6po_pktinfo == NULL)
   2910 				return (ENOBUFS);
   2911 		}
   2912 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
   2913 		break;
   2914 	}
   2915 
   2916 #ifdef RFC2292
   2917 	case IPV6_2292HOPLIMIT:
   2918 #endif
   2919 	case IPV6_HOPLIMIT:
   2920 	{
   2921 		int *hlimp;
   2922 
   2923 		/*
   2924 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
   2925 		 * to simplify the ordering among hoplimit options.
   2926 		 */
   2927 		if (optname == IPV6_HOPLIMIT && sticky)
   2928 			return (ENOPROTOOPT);
   2929 
   2930 		if (len != sizeof(int))
   2931 			return (EINVAL);
   2932 		hlimp = (int *)buf;
   2933 		if (*hlimp < -1 || *hlimp > 255)
   2934 			return (EINVAL);
   2935 
   2936 		opt->ip6po_hlim = *hlimp;
   2937 		break;
   2938 	}
   2939 
   2940 	case IPV6_OTCLASS:
   2941 		if (len != sizeof(u_int8_t))
   2942 			return (EINVAL);
   2943 
   2944 		opt->ip6po_tclass = *(u_int8_t *)buf;
   2945 		break;
   2946 
   2947 	case IPV6_TCLASS:
   2948 	{
   2949 		int tclass;
   2950 
   2951 		if (len != sizeof(int))
   2952 			return (EINVAL);
   2953 		tclass = *(int *)buf;
   2954 		if (tclass < -1 || tclass > 255)
   2955 			return (EINVAL);
   2956 
   2957 		opt->ip6po_tclass = tclass;
   2958 		break;
   2959 	}
   2960 
   2961 #ifdef RFC2292
   2962 	case IPV6_2292NEXTHOP:
   2963 #endif
   2964 	case IPV6_NEXTHOP:
   2965 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   2966 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2967 		if (error)
   2968 			return (error);
   2969 
   2970 		if (len == 0) {	/* just remove the option */
   2971 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
   2972 			break;
   2973 		}
   2974 
   2975 		/* check if cmsg_len is large enough for sa_len */
   2976 		if (len < sizeof(struct sockaddr) || len < *buf)
   2977 			return (EINVAL);
   2978 
   2979 		switch (((struct sockaddr *)buf)->sa_family) {
   2980 		case AF_INET6:
   2981 		{
   2982 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
   2983 
   2984 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
   2985 				return (EINVAL);
   2986 
   2987 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
   2988 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
   2989 				return (EINVAL);
   2990 			}
   2991 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
   2992 			    != 0) {
   2993 				return (error);
   2994 			}
   2995 			break;
   2996 		}
   2997 		case AF_LINK:	/* eventually be supported? */
   2998 		default:
   2999 			return (EAFNOSUPPORT);
   3000 		}
   3001 
   3002 		/* turn off the previous option, then set the new option. */
   3003 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
   3004 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
   3005 		if (opt->ip6po_nexthop == NULL)
   3006 			return (ENOBUFS);
   3007 		memcpy(opt->ip6po_nexthop, buf, *buf);
   3008 		break;
   3009 
   3010 #ifdef RFC2292
   3011 	case IPV6_2292HOPOPTS:
   3012 #endif
   3013 	case IPV6_HOPOPTS:
   3014 	{
   3015 		struct ip6_hbh *hbh;
   3016 		int hbhlen;
   3017 
   3018 		/*
   3019 		 * XXX: We don't allow a non-privileged user to set ANY HbH
   3020 		 * options, since per-option restriction has too much
   3021 		 * overhead.
   3022 		 */
   3023 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   3024 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   3025 		if (error)
   3026 			return (error);
   3027 
   3028 		if (len == 0) {
   3029 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3030 			break;	/* just remove the option */
   3031 		}
   3032 
   3033 		/* message length validation */
   3034 		if (len < sizeof(struct ip6_hbh))
   3035 			return (EINVAL);
   3036 		hbh = (struct ip6_hbh *)buf;
   3037 		hbhlen = (hbh->ip6h_len + 1) << 3;
   3038 		if (len != hbhlen)
   3039 			return (EINVAL);
   3040 
   3041 		/* turn off the previous option, then set the new option. */
   3042 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3043 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
   3044 		if (opt->ip6po_hbh == NULL)
   3045 			return (ENOBUFS);
   3046 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
   3047 
   3048 		break;
   3049 	}
   3050 
   3051 #ifdef RFC2292
   3052 	case IPV6_2292DSTOPTS:
   3053 #endif
   3054 	case IPV6_DSTOPTS:
   3055 	case IPV6_RTHDRDSTOPTS:
   3056 	{
   3057 		struct ip6_dest *dest, **newdest = NULL;
   3058 		int destlen;
   3059 
   3060 		/* XXX: see the comment for IPV6_HOPOPTS */
   3061 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   3062 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   3063 		if (error)
   3064 			return (error);
   3065 
   3066 		if (len == 0) {
   3067 			ip6_clearpktopts(opt, optname);
   3068 			break;	/* just remove the option */
   3069 		}
   3070 
   3071 		/* message length validation */
   3072 		if (len < sizeof(struct ip6_dest))
   3073 			return (EINVAL);
   3074 		dest = (struct ip6_dest *)buf;
   3075 		destlen = (dest->ip6d_len + 1) << 3;
   3076 		if (len != destlen)
   3077 			return (EINVAL);
   3078 		/*
   3079 		 * Determine the position that the destination options header
   3080 		 * should be inserted; before or after the routing header.
   3081 		 */
   3082 		switch (optname) {
   3083 		case IPV6_2292DSTOPTS:
   3084 			/*
   3085 			 * The old advanced API is ambiguous on this point.
   3086 			 * Our approach is to determine the position based
   3087 			 * according to the existence of a routing header.
   3088 			 * Note, however, that this depends on the order of the
   3089 			 * extension headers in the ancillary data; the 1st
   3090 			 * part of the destination options header must appear
   3091 			 * before the routing header in the ancillary data,
   3092 			 * too.
   3093 			 * RFC3542 solved the ambiguity by introducing
   3094 			 * separate ancillary data or option types.
   3095 			 */
   3096 			if (opt->ip6po_rthdr == NULL)
   3097 				newdest = &opt->ip6po_dest1;
   3098 			else
   3099 				newdest = &opt->ip6po_dest2;
   3100 			break;
   3101 		case IPV6_RTHDRDSTOPTS:
   3102 			newdest = &opt->ip6po_dest1;
   3103 			break;
   3104 		case IPV6_DSTOPTS:
   3105 			newdest = &opt->ip6po_dest2;
   3106 			break;
   3107 		}
   3108 
   3109 		/* turn off the previous option, then set the new option. */
   3110 		ip6_clearpktopts(opt, optname);
   3111 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
   3112 		if (*newdest == NULL)
   3113 			return (ENOBUFS);
   3114 		memcpy(*newdest, dest, destlen);
   3115 
   3116 		break;
   3117 	}
   3118 
   3119 #ifdef RFC2292
   3120 	case IPV6_2292RTHDR:
   3121 #endif
   3122 	case IPV6_RTHDR:
   3123 	{
   3124 		struct ip6_rthdr *rth;
   3125 		int rthlen;
   3126 
   3127 		if (len == 0) {
   3128 			ip6_clearpktopts(opt, IPV6_RTHDR);
   3129 			break;	/* just remove the option */
   3130 		}
   3131 
   3132 		/* message length validation */
   3133 		if (len < sizeof(struct ip6_rthdr))
   3134 			return (EINVAL);
   3135 		rth = (struct ip6_rthdr *)buf;
   3136 		rthlen = (rth->ip6r_len + 1) << 3;
   3137 		if (len != rthlen)
   3138 			return (EINVAL);
   3139 		switch (rth->ip6r_type) {
   3140 		case IPV6_RTHDR_TYPE_0:
   3141 			if (rth->ip6r_len == 0)	/* must contain one addr */
   3142 				return (EINVAL);
   3143 			if (rth->ip6r_len % 2) /* length must be even */
   3144 				return (EINVAL);
   3145 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
   3146 				return (EINVAL);
   3147 			break;
   3148 		default:
   3149 			return (EINVAL);	/* not supported */
   3150 		}
   3151 		/* turn off the previous option */
   3152 		ip6_clearpktopts(opt, IPV6_RTHDR);
   3153 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
   3154 		if (opt->ip6po_rthdr == NULL)
   3155 			return (ENOBUFS);
   3156 		memcpy(opt->ip6po_rthdr, rth, rthlen);
   3157 		break;
   3158 	}
   3159 
   3160 	case IPV6_USE_MIN_MTU:
   3161 		if (len != sizeof(int))
   3162 			return (EINVAL);
   3163 		minmtupolicy = *(int *)buf;
   3164 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
   3165 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
   3166 		    minmtupolicy != IP6PO_MINMTU_ALL) {
   3167 			return (EINVAL);
   3168 		}
   3169 		opt->ip6po_minmtu = minmtupolicy;
   3170 		break;
   3171 
   3172 	case IPV6_DONTFRAG:
   3173 		if (len != sizeof(int))
   3174 			return (EINVAL);
   3175 
   3176 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
   3177 			/*
   3178 			 * we ignore this option for TCP sockets.
   3179 			 * (RFC3542 leaves this case unspecified.)
   3180 			 */
   3181 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
   3182 		} else
   3183 			opt->ip6po_flags |= IP6PO_DONTFRAG;
   3184 		break;
   3185 
   3186 	case IPV6_PREFER_TEMPADDR:
   3187 	{
   3188 		int preftemp;
   3189 
   3190 		if (len != sizeof(int))
   3191 			return (EINVAL);
   3192 		preftemp = *(int *)buf;
   3193 		switch (preftemp) {
   3194 		case IP6PO_TEMPADDR_SYSTEM:
   3195 		case IP6PO_TEMPADDR_NOTPREFER:
   3196 		case IP6PO_TEMPADDR_PREFER:
   3197 			break;
   3198 		default:
   3199 			return (EINVAL);
   3200 		}
   3201 		opt->ip6po_prefer_tempaddr = preftemp;
   3202 		break;
   3203 	}
   3204 
   3205 	default:
   3206 		return (ENOPROTOOPT);
   3207 	} /* end of switch */
   3208 
   3209 	return (0);
   3210 }
   3211 
   3212 /*
   3213  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   3214  * packet to the input queue of a specified interface.  Note that this
   3215  * calls the output routine of the loopback "driver", but with an interface
   3216  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   3217  */
   3218 void
   3219 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
   3220 	const struct sockaddr_in6 *dst)
   3221 {
   3222 	struct mbuf *copym;
   3223 	struct ip6_hdr *ip6;
   3224 
   3225 	copym = m_copy(m, 0, M_COPYALL);
   3226 	if (copym == NULL)
   3227 		return;
   3228 
   3229 	/*
   3230 	 * Make sure to deep-copy IPv6 header portion in case the data
   3231 	 * is in an mbuf cluster, so that we can safely override the IPv6
   3232 	 * header portion later.
   3233 	 */
   3234 	if ((copym->m_flags & M_EXT) != 0 ||
   3235 	    copym->m_len < sizeof(struct ip6_hdr)) {
   3236 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   3237 		if (copym == NULL)
   3238 			return;
   3239 	}
   3240 
   3241 #ifdef DIAGNOSTIC
   3242 	if (copym->m_len < sizeof(*ip6)) {
   3243 		m_freem(copym);
   3244 		return;
   3245 	}
   3246 #endif
   3247 
   3248 	ip6 = mtod(copym, struct ip6_hdr *);
   3249 	/*
   3250 	 * clear embedded scope identifiers if necessary.
   3251 	 * in6_clearscope will touch the addresses only when necessary.
   3252 	 */
   3253 	in6_clearscope(&ip6->ip6_src);
   3254 	in6_clearscope(&ip6->ip6_dst);
   3255 
   3256 	(void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
   3257 }
   3258 
   3259 /*
   3260  * Chop IPv6 header off from the payload.
   3261  */
   3262 static int
   3263 ip6_splithdr(struct mbuf *m,  struct ip6_exthdrs *exthdrs)
   3264 {
   3265 	struct mbuf *mh;
   3266 	struct ip6_hdr *ip6;
   3267 
   3268 	ip6 = mtod(m, struct ip6_hdr *);
   3269 	if (m->m_len > sizeof(*ip6)) {
   3270 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   3271 		if (mh == 0) {
   3272 			m_freem(m);
   3273 			return ENOBUFS;
   3274 		}
   3275 		M_MOVE_PKTHDR(mh, m);
   3276 		MH_ALIGN(mh, sizeof(*ip6));
   3277 		m->m_len -= sizeof(*ip6);
   3278 		m->m_data += sizeof(*ip6);
   3279 		mh->m_next = m;
   3280 		m = mh;
   3281 		m->m_len = sizeof(*ip6);
   3282 		bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
   3283 	}
   3284 	exthdrs->ip6e_ip6 = m;
   3285 	return 0;
   3286 }
   3287 
   3288 /*
   3289  * Compute IPv6 extension header length.
   3290  */
   3291 int
   3292 ip6_optlen(struct in6pcb *in6p)
   3293 {
   3294 	int len;
   3295 
   3296 	if (!in6p->in6p_outputopts)
   3297 		return 0;
   3298 
   3299 	len = 0;
   3300 #define elen(x) \
   3301     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   3302 
   3303 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   3304 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   3305 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   3306 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   3307 	return len;
   3308 #undef elen
   3309 }
   3310 
   3311 /*
   3312  * Ensure sending address is valid.
   3313  * Returns 0 on success, -1 if an error should be sent back or 1
   3314  * if the packet could be dropped without error (protocol dependent).
   3315  */
   3316 static int
   3317 ip6_ifaddrvalid(const struct in6_addr *addr)
   3318 {
   3319 	struct sockaddr_in6 sin6;
   3320 	int s, error;
   3321 	struct ifaddr *ifa;
   3322 	struct in6_ifaddr *ia6;
   3323 
   3324 	if (IN6_IS_ADDR_UNSPECIFIED(addr))
   3325 		return 0;
   3326 
   3327 	memset(&sin6, 0, sizeof(sin6));
   3328 	sin6.sin6_family = AF_INET6;
   3329 	sin6.sin6_len = sizeof(sin6);
   3330 	sin6.sin6_addr = *addr;
   3331 
   3332 	s = pserialize_read_enter();
   3333 	ifa = ifa_ifwithaddr(sin6tosa(&sin6));
   3334 	if ((ia6 = ifatoia6(ifa)) == NULL ||
   3335 	    ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
   3336 		error = -1;
   3337 	else if (ia6->ia6_flags & (IN6_IFF_TENTATIVE | IN6_IFF_DETACHED))
   3338 		error = 1;
   3339 	else
   3340 		error = 0;
   3341 	pserialize_read_exit(s);
   3342 
   3343 	return error;
   3344 }
   3345