ip6_output.c revision 1.179 1 /* $NetBSD: ip6_output.c,v 1.179 2016/12/08 05:16:34 ozaki-r Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.179 2016/12/08 05:16:34 ozaki-r Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_inet.h"
69 #include "opt_inet6.h"
70 #include "opt_ipsec.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/errno.h>
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/syslog.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/kauth.h>
84
85 #include <net/if.h>
86 #include <net/route.h>
87 #include <net/pfil.h>
88
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip6.h>
92 #include <netinet/ip_var.h>
93 #include <netinet/icmp6.h>
94 #include <netinet/in_offload.h>
95 #include <netinet/portalgo.h>
96 #include <netinet6/in6_offload.h>
97 #include <netinet6/ip6_var.h>
98 #include <netinet6/ip6_private.h>
99 #include <netinet6/in6_pcb.h>
100 #include <netinet6/nd6.h>
101 #include <netinet6/ip6protosw.h>
102 #include <netinet6/scope6_var.h>
103
104 #ifdef IPSEC
105 #include <netipsec/ipsec.h>
106 #include <netipsec/ipsec6.h>
107 #include <netipsec/key.h>
108 #include <netipsec/xform.h>
109 #endif
110
111
112 #include <net/net_osdep.h>
113
114 extern pfil_head_t *inet6_pfil_hook; /* XXX */
115
116 struct ip6_exthdrs {
117 struct mbuf *ip6e_ip6;
118 struct mbuf *ip6e_hbh;
119 struct mbuf *ip6e_dest1;
120 struct mbuf *ip6e_rthdr;
121 struct mbuf *ip6e_dest2;
122 };
123
124 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
125 kauth_cred_t, int);
126 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
127 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
128 int, int, int);
129 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *);
130 static int ip6_getmoptions(struct sockopt *, struct in6pcb *);
131 static int ip6_copyexthdr(struct mbuf **, void *, int);
132 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
133 struct ip6_frag **);
134 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
135 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
136 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
137 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
138 static int ip6_ifaddrvalid(const struct in6_addr *);
139 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
140
141 #ifdef RFC2292
142 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
143 #endif
144
145 static int
146 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
147 {
148 struct ip6_rthdr0 *rh0;
149 struct in6_addr *addr;
150 struct sockaddr_in6 sa;
151 int error = 0;
152
153 switch (rh->ip6r_type) {
154 case IPV6_RTHDR_TYPE_0:
155 rh0 = (struct ip6_rthdr0 *)rh;
156 addr = (struct in6_addr *)(rh0 + 1);
157
158 /*
159 * construct a sockaddr_in6 form of the first hop.
160 *
161 * XXX we may not have enough information about its scope zone;
162 * there is no standard API to pass the information from the
163 * application.
164 */
165 sockaddr_in6_init(&sa, addr, 0, 0, 0);
166 error = sa6_embedscope(&sa, ip6_use_defzone);
167 if (error != 0)
168 break;
169 (void)memmove(&addr[0], &addr[1],
170 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
171 addr[rh0->ip6r0_segleft - 1] = ip6->ip6_dst;
172 ip6->ip6_dst = sa.sin6_addr;
173 /* XXX */
174 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
175 break;
176 default: /* is it possible? */
177 error = EINVAL;
178 }
179
180 return error;
181 }
182
183 /*
184 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
185 * header (with pri, len, nxt, hlim, src, dst).
186 * This function may modify ver and hlim only.
187 * The mbuf chain containing the packet will be freed.
188 * The mbuf opt, if present, will not be freed.
189 *
190 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
191 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
192 * which is rt_rmx.rmx_mtu.
193 */
194 int
195 ip6_output(
196 struct mbuf *m0,
197 struct ip6_pktopts *opt,
198 struct route *ro,
199 int flags,
200 struct ip6_moptions *im6o,
201 struct socket *so,
202 struct ifnet **ifpp /* XXX: just for statistics */
203 )
204 {
205 struct ip6_hdr *ip6, *mhip6;
206 struct ifnet *ifp = NULL, *origifp = NULL;
207 struct mbuf *m = m0;
208 int hlen, tlen, len, off;
209 bool tso;
210 struct route ip6route;
211 struct rtentry *rt = NULL, *rt_pmtu;
212 const struct sockaddr_in6 *dst;
213 struct sockaddr_in6 src_sa, dst_sa;
214 int error = 0;
215 struct in6_ifaddr *ia = NULL;
216 u_long mtu;
217 int alwaysfrag, dontfrag;
218 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
219 struct ip6_exthdrs exthdrs;
220 struct in6_addr finaldst, src0, dst0;
221 u_int32_t zone;
222 struct route *ro_pmtu = NULL;
223 int hdrsplit = 0;
224 int needipsec = 0;
225 #ifdef IPSEC
226 struct secpolicy *sp = NULL;
227 #endif
228 struct psref psref, psref_ia;
229 int bound = curlwp_bind();
230 bool release_psref_ia = false;
231
232 #ifdef DIAGNOSTIC
233 if ((m->m_flags & M_PKTHDR) == 0)
234 panic("ip6_output: no HDR");
235
236 if ((m->m_pkthdr.csum_flags &
237 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
238 panic("ip6_output: IPv4 checksum offload flags: %d",
239 m->m_pkthdr.csum_flags);
240 }
241
242 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
243 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
244 panic("ip6_output: conflicting checksum offload flags: %d",
245 m->m_pkthdr.csum_flags);
246 }
247 #endif
248
249 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
250
251 #define MAKE_EXTHDR(hp, mp) \
252 do { \
253 if (hp) { \
254 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
255 error = ip6_copyexthdr((mp), (void *)(hp), \
256 ((eh)->ip6e_len + 1) << 3); \
257 if (error) \
258 goto freehdrs; \
259 } \
260 } while (/*CONSTCOND*/ 0)
261
262 memset(&exthdrs, 0, sizeof(exthdrs));
263 if (opt) {
264 /* Hop-by-Hop options header */
265 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
266 /* Destination options header(1st part) */
267 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
268 /* Routing header */
269 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
270 /* Destination options header(2nd part) */
271 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
272 }
273
274 /*
275 * Calculate the total length of the extension header chain.
276 * Keep the length of the unfragmentable part for fragmentation.
277 */
278 optlen = 0;
279 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
280 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
281 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
282 unfragpartlen = optlen + sizeof(struct ip6_hdr);
283 /* NOTE: we don't add AH/ESP length here. do that later. */
284 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
285
286 #ifdef IPSEC
287 if (ipsec_used) {
288 /* Check the security policy (SP) for the packet */
289
290 sp = ipsec6_check_policy(m, so, flags, &needipsec, &error);
291 if (error != 0) {
292 /*
293 * Hack: -EINVAL is used to signal that a packet
294 * should be silently discarded. This is typically
295 * because we asked key management for an SA and
296 * it was delayed (e.g. kicked up to IKE).
297 */
298 if (error == -EINVAL)
299 error = 0;
300 goto freehdrs;
301 }
302 }
303 #endif /* IPSEC */
304
305
306 if (needipsec &&
307 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
308 in6_delayed_cksum(m);
309 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
310 }
311
312
313 /*
314 * If we need IPsec, or there is at least one extension header,
315 * separate IP6 header from the payload.
316 */
317 if ((needipsec || optlen) && !hdrsplit) {
318 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
319 m = NULL;
320 goto freehdrs;
321 }
322 m = exthdrs.ip6e_ip6;
323 hdrsplit++;
324 }
325
326 /* adjust pointer */
327 ip6 = mtod(m, struct ip6_hdr *);
328
329 /* adjust mbuf packet header length */
330 m->m_pkthdr.len += optlen;
331 plen = m->m_pkthdr.len - sizeof(*ip6);
332
333 /* If this is a jumbo payload, insert a jumbo payload option. */
334 if (plen > IPV6_MAXPACKET) {
335 if (!hdrsplit) {
336 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
337 m = NULL;
338 goto freehdrs;
339 }
340 m = exthdrs.ip6e_ip6;
341 hdrsplit++;
342 }
343 /* adjust pointer */
344 ip6 = mtod(m, struct ip6_hdr *);
345 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
346 goto freehdrs;
347 optlen += 8; /* XXX JUMBOOPTLEN */
348 ip6->ip6_plen = 0;
349 } else
350 ip6->ip6_plen = htons(plen);
351
352 /*
353 * Concatenate headers and fill in next header fields.
354 * Here we have, on "m"
355 * IPv6 payload
356 * and we insert headers accordingly. Finally, we should be getting:
357 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
358 *
359 * during the header composing process, "m" points to IPv6 header.
360 * "mprev" points to an extension header prior to esp.
361 */
362 {
363 u_char *nexthdrp = &ip6->ip6_nxt;
364 struct mbuf *mprev = m;
365
366 /*
367 * we treat dest2 specially. this makes IPsec processing
368 * much easier. the goal here is to make mprev point the
369 * mbuf prior to dest2.
370 *
371 * result: IPv6 dest2 payload
372 * m and mprev will point to IPv6 header.
373 */
374 if (exthdrs.ip6e_dest2) {
375 if (!hdrsplit)
376 panic("assumption failed: hdr not split");
377 exthdrs.ip6e_dest2->m_next = m->m_next;
378 m->m_next = exthdrs.ip6e_dest2;
379 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
380 ip6->ip6_nxt = IPPROTO_DSTOPTS;
381 }
382
383 #define MAKE_CHAIN(m, mp, p, i)\
384 do {\
385 if (m) {\
386 if (!hdrsplit) \
387 panic("assumption failed: hdr not split"); \
388 *mtod((m), u_char *) = *(p);\
389 *(p) = (i);\
390 p = mtod((m), u_char *);\
391 (m)->m_next = (mp)->m_next;\
392 (mp)->m_next = (m);\
393 (mp) = (m);\
394 }\
395 } while (/*CONSTCOND*/ 0)
396 /*
397 * result: IPv6 hbh dest1 rthdr dest2 payload
398 * m will point to IPv6 header. mprev will point to the
399 * extension header prior to dest2 (rthdr in the above case).
400 */
401 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
402 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
403 IPPROTO_DSTOPTS);
404 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
405 IPPROTO_ROUTING);
406
407 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
408 sizeof(struct ip6_hdr) + optlen);
409 }
410
411 /* Need to save for pmtu */
412 finaldst = ip6->ip6_dst;
413
414 /*
415 * If there is a routing header, replace destination address field
416 * with the first hop of the routing header.
417 */
418 if (exthdrs.ip6e_rthdr) {
419 struct ip6_rthdr *rh;
420
421 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
422 struct ip6_rthdr *));
423
424 error = ip6_handle_rthdr(rh, ip6);
425 if (error != 0)
426 goto bad;
427 }
428
429 /* Source address validation */
430 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
431 (flags & IPV6_UNSPECSRC) == 0) {
432 error = EOPNOTSUPP;
433 IP6_STATINC(IP6_STAT_BADSCOPE);
434 goto bad;
435 }
436 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
437 error = EOPNOTSUPP;
438 IP6_STATINC(IP6_STAT_BADSCOPE);
439 goto bad;
440 }
441
442 IP6_STATINC(IP6_STAT_LOCALOUT);
443
444 /*
445 * Route packet.
446 */
447 /* initialize cached route */
448 if (ro == NULL) {
449 memset(&ip6route, 0, sizeof(ip6route));
450 ro = &ip6route;
451 }
452 ro_pmtu = ro;
453 if (opt && opt->ip6po_rthdr)
454 ro = &opt->ip6po_route;
455
456 /*
457 * if specified, try to fill in the traffic class field.
458 * do not override if a non-zero value is already set.
459 * we check the diffserv field and the ecn field separately.
460 */
461 if (opt && opt->ip6po_tclass >= 0) {
462 int mask = 0;
463
464 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
465 mask |= 0xfc;
466 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
467 mask |= 0x03;
468 if (mask != 0)
469 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
470 }
471
472 /* fill in or override the hop limit field, if necessary. */
473 if (opt && opt->ip6po_hlim != -1)
474 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
475 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
476 if (im6o != NULL)
477 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
478 else
479 ip6->ip6_hlim = ip6_defmcasthlim;
480 }
481
482 #ifdef IPSEC
483 if (needipsec) {
484 int s = splsoftnet();
485 error = ipsec6_process_packet(m, sp->req);
486
487 /*
488 * Preserve KAME behaviour: ENOENT can be returned
489 * when an SA acquire is in progress. Don't propagate
490 * this to user-level; it confuses applications.
491 * XXX this will go away when the SADB is redone.
492 */
493 if (error == ENOENT)
494 error = 0;
495 splx(s);
496 goto done;
497 }
498 #endif /* IPSEC */
499
500 /* adjust pointer */
501 ip6 = mtod(m, struct ip6_hdr *);
502
503 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
504
505 /* We do not need a route for multicast */
506 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
507 struct in6_pktinfo *pi = NULL;
508
509 /*
510 * If the outgoing interface for the address is specified by
511 * the caller, use it.
512 */
513 if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
514 /* XXX boundary check is assumed to be already done. */
515 ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
516 } else if (im6o != NULL) {
517 ifp = if_get_byindex(im6o->im6o_multicast_if_index,
518 &psref);
519 }
520 }
521
522 if (ifp == NULL) {
523 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
524 if (error != 0)
525 goto bad;
526 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
527 }
528
529 if (rt == NULL) {
530 /*
531 * If in6_selectroute() does not return a route entry,
532 * dst may not have been updated.
533 */
534 error = rtcache_setdst(ro, sin6tosa(&dst_sa));
535 if (error) {
536 goto bad;
537 }
538 }
539
540 /*
541 * then rt (for unicast) and ifp must be non-NULL valid values.
542 */
543 if ((flags & IPV6_FORWARDING) == 0) {
544 /* XXX: the FORWARDING flag can be set for mrouting. */
545 in6_ifstat_inc(ifp, ifs6_out_request);
546 }
547 if (rt != NULL) {
548 ia = (struct in6_ifaddr *)(rt->rt_ifa);
549 rt->rt_use++;
550 }
551
552 /*
553 * The outgoing interface must be in the zone of source and
554 * destination addresses. We should use ia_ifp to support the
555 * case of sending packets to an address of our own.
556 */
557 if (ia != NULL && ia->ia_ifp) {
558 origifp = ia->ia_ifp;
559 if (if_is_deactivated(origifp))
560 goto bad;
561 if_acquire_NOMPSAFE(origifp, &psref_ia);
562 release_psref_ia = true;
563 } else
564 origifp = ifp;
565
566 src0 = ip6->ip6_src;
567 if (in6_setscope(&src0, origifp, &zone))
568 goto badscope;
569 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
570 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
571 goto badscope;
572
573 dst0 = ip6->ip6_dst;
574 if (in6_setscope(&dst0, origifp, &zone))
575 goto badscope;
576 /* re-initialize to be sure */
577 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
578 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
579 goto badscope;
580
581 /* scope check is done. */
582
583 /* Ensure we only send from a valid address. */
584 if ((error = ip6_ifaddrvalid(&src0)) != 0) {
585 nd6log(LOG_ERR,
586 "refusing to send from invalid address %s (pid %d)\n",
587 ip6_sprintf(&src0), curproc->p_pid);
588 IP6_STATINC(IP6_STAT_ODROPPED);
589 in6_ifstat_inc(origifp, ifs6_out_discard);
590 if (error == 1)
591 /*
592 * Address exists, but is tentative or detached.
593 * We can't send from it because it's invalid,
594 * so we drop the packet.
595 */
596 error = 0;
597 else
598 error = EADDRNOTAVAIL;
599 goto bad;
600 }
601
602 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
603 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
604 dst = satocsin6(rt->rt_gateway);
605 else
606 dst = satocsin6(rtcache_getdst(ro));
607
608 /*
609 * XXXXXX: original code follows:
610 */
611 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
612 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
613 else {
614 struct in6_multi *in6m;
615
616 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
617
618 in6_ifstat_inc(ifp, ifs6_out_mcast);
619
620 /*
621 * Confirm that the outgoing interface supports multicast.
622 */
623 if (!(ifp->if_flags & IFF_MULTICAST)) {
624 IP6_STATINC(IP6_STAT_NOROUTE);
625 in6_ifstat_inc(ifp, ifs6_out_discard);
626 error = ENETUNREACH;
627 goto bad;
628 }
629
630 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
631 if (in6m != NULL &&
632 (im6o == NULL || im6o->im6o_multicast_loop)) {
633 /*
634 * If we belong to the destination multicast group
635 * on the outgoing interface, and the caller did not
636 * forbid loopback, loop back a copy.
637 */
638 KASSERT(dst != NULL);
639 ip6_mloopback(ifp, m, dst);
640 } else {
641 /*
642 * If we are acting as a multicast router, perform
643 * multicast forwarding as if the packet had just
644 * arrived on the interface to which we are about
645 * to send. The multicast forwarding function
646 * recursively calls this function, using the
647 * IPV6_FORWARDING flag to prevent infinite recursion.
648 *
649 * Multicasts that are looped back by ip6_mloopback(),
650 * above, will be forwarded by the ip6_input() routine,
651 * if necessary.
652 */
653 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
654 if (ip6_mforward(ip6, ifp, m) != 0) {
655 m_freem(m);
656 goto done;
657 }
658 }
659 }
660 /*
661 * Multicasts with a hoplimit of zero may be looped back,
662 * above, but must not be transmitted on a network.
663 * Also, multicasts addressed to the loopback interface
664 * are not sent -- the above call to ip6_mloopback() will
665 * loop back a copy if this host actually belongs to the
666 * destination group on the loopback interface.
667 */
668 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
669 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
670 m_freem(m);
671 goto done;
672 }
673 }
674
675 /*
676 * Fill the outgoing inteface to tell the upper layer
677 * to increment per-interface statistics.
678 */
679 if (ifpp)
680 *ifpp = ifp;
681
682 /* Determine path MTU. */
683 /*
684 * ro_pmtu represent final destination while
685 * ro might represent immediate destination.
686 * Use ro_pmtu destination since MTU might differ.
687 */
688 if (ro_pmtu != ro) {
689 union {
690 struct sockaddr dst;
691 struct sockaddr_in6 dst6;
692 } u;
693
694 /* ro_pmtu may not have a cache */
695 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
696 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
697 } else
698 rt_pmtu = rt;
699 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
700 if (rt_pmtu != NULL && rt_pmtu != rt)
701 rtcache_unref(rt_pmtu, ro_pmtu);
702 if (error != 0)
703 goto bad;
704
705 /*
706 * The caller of this function may specify to use the minimum MTU
707 * in some cases.
708 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
709 * setting. The logic is a bit complicated; by default, unicast
710 * packets will follow path MTU while multicast packets will be sent at
711 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
712 * including unicast ones will be sent at the minimum MTU. Multicast
713 * packets will always be sent at the minimum MTU unless
714 * IP6PO_MINMTU_DISABLE is explicitly specified.
715 * See RFC 3542 for more details.
716 */
717 if (mtu > IPV6_MMTU) {
718 if ((flags & IPV6_MINMTU))
719 mtu = IPV6_MMTU;
720 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
721 mtu = IPV6_MMTU;
722 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
723 (opt == NULL ||
724 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
725 mtu = IPV6_MMTU;
726 }
727 }
728
729 /*
730 * clear embedded scope identifiers if necessary.
731 * in6_clearscope will touch the addresses only when necessary.
732 */
733 in6_clearscope(&ip6->ip6_src);
734 in6_clearscope(&ip6->ip6_dst);
735
736 /*
737 * If the outgoing packet contains a hop-by-hop options header,
738 * it must be examined and processed even by the source node.
739 * (RFC 2460, section 4.)
740 */
741 if (ip6->ip6_nxt == IPV6_HOPOPTS) {
742 u_int32_t dummy1; /* XXX unused */
743 u_int32_t dummy2; /* XXX unused */
744 int hoff = sizeof(struct ip6_hdr);
745
746 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
747 /* m was already freed at this point */
748 error = EINVAL;/* better error? */
749 goto done;
750 }
751
752 ip6 = mtod(m, struct ip6_hdr *);
753 }
754
755 /*
756 * Run through list of hooks for output packets.
757 */
758 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
759 goto done;
760 if (m == NULL)
761 goto done;
762 ip6 = mtod(m, struct ip6_hdr *);
763
764 /*
765 * Send the packet to the outgoing interface.
766 * If necessary, do IPv6 fragmentation before sending.
767 *
768 * the logic here is rather complex:
769 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
770 * 1-a: send as is if tlen <= path mtu
771 * 1-b: fragment if tlen > path mtu
772 *
773 * 2: if user asks us not to fragment (dontfrag == 1)
774 * 2-a: send as is if tlen <= interface mtu
775 * 2-b: error if tlen > interface mtu
776 *
777 * 3: if we always need to attach fragment header (alwaysfrag == 1)
778 * always fragment
779 *
780 * 4: if dontfrag == 1 && alwaysfrag == 1
781 * error, as we cannot handle this conflicting request
782 */
783 tlen = m->m_pkthdr.len;
784 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
785 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
786 dontfrag = 1;
787 else
788 dontfrag = 0;
789
790 if (dontfrag && alwaysfrag) { /* case 4 */
791 /* conflicting request - can't transmit */
792 error = EMSGSIZE;
793 goto bad;
794 }
795 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */
796 /*
797 * Even if the DONTFRAG option is specified, we cannot send the
798 * packet when the data length is larger than the MTU of the
799 * outgoing interface.
800 * Notify the error by sending IPV6_PATHMTU ancillary data as
801 * well as returning an error code (the latter is not described
802 * in the API spec.)
803 */
804 u_int32_t mtu32;
805 struct ip6ctlparam ip6cp;
806
807 mtu32 = (u_int32_t)mtu;
808 memset(&ip6cp, 0, sizeof(ip6cp));
809 ip6cp.ip6c_cmdarg = (void *)&mtu32;
810 pfctlinput2(PRC_MSGSIZE,
811 rtcache_getdst(ro_pmtu), &ip6cp);
812
813 error = EMSGSIZE;
814 goto bad;
815 }
816
817 /*
818 * transmit packet without fragmentation
819 */
820 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
821 /* case 1-a and 2-a */
822 struct in6_ifaddr *ia6;
823 int sw_csum;
824 int s;
825
826 ip6 = mtod(m, struct ip6_hdr *);
827 s = pserialize_read_enter();
828 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
829 if (ia6) {
830 /* Record statistics for this interface address. */
831 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
832 }
833 pserialize_read_exit(s);
834
835 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
836 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
837 if (IN6_NEED_CHECKSUM(ifp,
838 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
839 in6_delayed_cksum(m);
840 }
841 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
842 }
843
844 KASSERT(dst != NULL);
845 if (__predict_true(!tso ||
846 (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
847 error = nd6_output(ifp, origifp, m, dst, rt);
848 } else {
849 error = ip6_tso_output(ifp, origifp, m, dst, rt);
850 }
851 goto done;
852 }
853
854 if (tso) {
855 error = EINVAL; /* XXX */
856 goto bad;
857 }
858
859 /*
860 * try to fragment the packet. case 1-b and 3
861 */
862 if (mtu < IPV6_MMTU) {
863 /* path MTU cannot be less than IPV6_MMTU */
864 error = EMSGSIZE;
865 in6_ifstat_inc(ifp, ifs6_out_fragfail);
866 goto bad;
867 } else if (ip6->ip6_plen == 0) {
868 /* jumbo payload cannot be fragmented */
869 error = EMSGSIZE;
870 in6_ifstat_inc(ifp, ifs6_out_fragfail);
871 goto bad;
872 } else {
873 struct mbuf **mnext, *m_frgpart;
874 struct ip6_frag *ip6f;
875 u_int32_t id = htonl(ip6_randomid());
876 u_char nextproto;
877 #if 0 /* see below */
878 struct ip6ctlparam ip6cp;
879 u_int32_t mtu32;
880 #endif
881
882 /*
883 * Too large for the destination or interface;
884 * fragment if possible.
885 * Must be able to put at least 8 bytes per fragment.
886 */
887 hlen = unfragpartlen;
888 if (mtu > IPV6_MAXPACKET)
889 mtu = IPV6_MAXPACKET;
890
891 #if 0
892 /*
893 * It is believed this code is a leftover from the
894 * development of the IPV6_RECVPATHMTU sockopt and
895 * associated work to implement RFC3542.
896 * It's not entirely clear what the intent of the API
897 * is at this point, so disable this code for now.
898 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
899 * will send notifications if the application requests.
900 */
901
902 /* Notify a proper path MTU to applications. */
903 mtu32 = (u_int32_t)mtu;
904 memset(&ip6cp, 0, sizeof(ip6cp));
905 ip6cp.ip6c_cmdarg = (void *)&mtu32;
906 pfctlinput2(PRC_MSGSIZE,
907 rtcache_getdst(ro_pmtu), &ip6cp);
908 #endif
909
910 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
911 if (len < 8) {
912 error = EMSGSIZE;
913 in6_ifstat_inc(ifp, ifs6_out_fragfail);
914 goto bad;
915 }
916
917 mnext = &m->m_nextpkt;
918
919 /*
920 * Change the next header field of the last header in the
921 * unfragmentable part.
922 */
923 if (exthdrs.ip6e_rthdr) {
924 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
925 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
926 } else if (exthdrs.ip6e_dest1) {
927 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
928 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
929 } else if (exthdrs.ip6e_hbh) {
930 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
931 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
932 } else {
933 nextproto = ip6->ip6_nxt;
934 ip6->ip6_nxt = IPPROTO_FRAGMENT;
935 }
936
937 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
938 != 0) {
939 if (IN6_NEED_CHECKSUM(ifp,
940 m->m_pkthdr.csum_flags &
941 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
942 in6_delayed_cksum(m);
943 }
944 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
945 }
946
947 /*
948 * Loop through length of segment after first fragment,
949 * make new header and copy data of each part and link onto
950 * chain.
951 */
952 m0 = m;
953 for (off = hlen; off < tlen; off += len) {
954 struct mbuf *mlast;
955
956 MGETHDR(m, M_DONTWAIT, MT_HEADER);
957 if (!m) {
958 error = ENOBUFS;
959 IP6_STATINC(IP6_STAT_ODROPPED);
960 goto sendorfree;
961 }
962 m_reset_rcvif(m);
963 m->m_flags = m0->m_flags & M_COPYFLAGS;
964 *mnext = m;
965 mnext = &m->m_nextpkt;
966 m->m_data += max_linkhdr;
967 mhip6 = mtod(m, struct ip6_hdr *);
968 *mhip6 = *ip6;
969 m->m_len = sizeof(*mhip6);
970 /*
971 * ip6f must be valid if error is 0. But how
972 * can a compiler be expected to infer this?
973 */
974 ip6f = NULL;
975 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
976 if (error) {
977 IP6_STATINC(IP6_STAT_ODROPPED);
978 goto sendorfree;
979 }
980 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
981 if (off + len >= tlen)
982 len = tlen - off;
983 else
984 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
985 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
986 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
987 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
988 error = ENOBUFS;
989 IP6_STATINC(IP6_STAT_ODROPPED);
990 goto sendorfree;
991 }
992 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
993 ;
994 mlast->m_next = m_frgpart;
995 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
996 m_reset_rcvif(m);
997 ip6f->ip6f_reserved = 0;
998 ip6f->ip6f_ident = id;
999 ip6f->ip6f_nxt = nextproto;
1000 IP6_STATINC(IP6_STAT_OFRAGMENTS);
1001 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1002 }
1003
1004 in6_ifstat_inc(ifp, ifs6_out_fragok);
1005 }
1006
1007 /*
1008 * Remove leading garbages.
1009 */
1010 sendorfree:
1011 m = m0->m_nextpkt;
1012 m0->m_nextpkt = 0;
1013 m_freem(m0);
1014 for (m0 = m; m; m = m0) {
1015 m0 = m->m_nextpkt;
1016 m->m_nextpkt = 0;
1017 if (error == 0) {
1018 struct in6_ifaddr *ia6;
1019 int s;
1020 ip6 = mtod(m, struct ip6_hdr *);
1021 s = pserialize_read_enter();
1022 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1023 if (ia6) {
1024 /*
1025 * Record statistics for this interface
1026 * address.
1027 */
1028 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1029 m->m_pkthdr.len;
1030 }
1031 pserialize_read_exit(s);
1032 KASSERT(dst != NULL);
1033 error = nd6_output(ifp, origifp, m, dst, rt);
1034 } else
1035 m_freem(m);
1036 }
1037
1038 if (error == 0)
1039 IP6_STATINC(IP6_STAT_FRAGMENTED);
1040
1041 done:
1042 rtcache_unref(rt, ro);
1043 if (ro == &ip6route)
1044 rtcache_free(&ip6route);
1045
1046 #ifdef IPSEC
1047 if (sp != NULL)
1048 KEY_FREESP(&sp);
1049 #endif /* IPSEC */
1050
1051 if_put(ifp, &psref);
1052 if (release_psref_ia)
1053 if_put(origifp, &psref_ia);
1054 curlwp_bindx(bound);
1055
1056 return (error);
1057
1058 freehdrs:
1059 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1060 m_freem(exthdrs.ip6e_dest1);
1061 m_freem(exthdrs.ip6e_rthdr);
1062 m_freem(exthdrs.ip6e_dest2);
1063 /* FALLTHROUGH */
1064 bad:
1065 m_freem(m);
1066 goto done;
1067 badscope:
1068 IP6_STATINC(IP6_STAT_BADSCOPE);
1069 in6_ifstat_inc(origifp, ifs6_out_discard);
1070 if (error == 0)
1071 error = EHOSTUNREACH; /* XXX */
1072 goto bad;
1073 }
1074
1075 static int
1076 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1077 {
1078 struct mbuf *m;
1079
1080 if (hlen > MCLBYTES)
1081 return (ENOBUFS); /* XXX */
1082
1083 MGET(m, M_DONTWAIT, MT_DATA);
1084 if (!m)
1085 return (ENOBUFS);
1086
1087 if (hlen > MLEN) {
1088 MCLGET(m, M_DONTWAIT);
1089 if ((m->m_flags & M_EXT) == 0) {
1090 m_free(m);
1091 return (ENOBUFS);
1092 }
1093 }
1094 m->m_len = hlen;
1095 if (hdr)
1096 bcopy(hdr, mtod(m, void *), hlen);
1097
1098 *mp = m;
1099 return (0);
1100 }
1101
1102 /*
1103 * Process a delayed payload checksum calculation.
1104 */
1105 void
1106 in6_delayed_cksum(struct mbuf *m)
1107 {
1108 uint16_t csum, offset;
1109
1110 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1111 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1112 KASSERT((m->m_pkthdr.csum_flags
1113 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1114
1115 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1116 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1117 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1118 csum = 0xffff;
1119 }
1120
1121 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1122 if ((offset + sizeof(csum)) > m->m_len) {
1123 m_copyback(m, offset, sizeof(csum), &csum);
1124 } else {
1125 *(uint16_t *)(mtod(m, char *) + offset) = csum;
1126 }
1127 }
1128
1129 /*
1130 * Insert jumbo payload option.
1131 */
1132 static int
1133 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1134 {
1135 struct mbuf *mopt;
1136 u_int8_t *optbuf;
1137 u_int32_t v;
1138
1139 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1140
1141 /*
1142 * If there is no hop-by-hop options header, allocate new one.
1143 * If there is one but it doesn't have enough space to store the
1144 * jumbo payload option, allocate a cluster to store the whole options.
1145 * Otherwise, use it to store the options.
1146 */
1147 if (exthdrs->ip6e_hbh == 0) {
1148 MGET(mopt, M_DONTWAIT, MT_DATA);
1149 if (mopt == 0)
1150 return (ENOBUFS);
1151 mopt->m_len = JUMBOOPTLEN;
1152 optbuf = mtod(mopt, u_int8_t *);
1153 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1154 exthdrs->ip6e_hbh = mopt;
1155 } else {
1156 struct ip6_hbh *hbh;
1157
1158 mopt = exthdrs->ip6e_hbh;
1159 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1160 /*
1161 * XXX assumption:
1162 * - exthdrs->ip6e_hbh is not referenced from places
1163 * other than exthdrs.
1164 * - exthdrs->ip6e_hbh is not an mbuf chain.
1165 */
1166 int oldoptlen = mopt->m_len;
1167 struct mbuf *n;
1168
1169 /*
1170 * XXX: give up if the whole (new) hbh header does
1171 * not fit even in an mbuf cluster.
1172 */
1173 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1174 return (ENOBUFS);
1175
1176 /*
1177 * As a consequence, we must always prepare a cluster
1178 * at this point.
1179 */
1180 MGET(n, M_DONTWAIT, MT_DATA);
1181 if (n) {
1182 MCLGET(n, M_DONTWAIT);
1183 if ((n->m_flags & M_EXT) == 0) {
1184 m_freem(n);
1185 n = NULL;
1186 }
1187 }
1188 if (!n)
1189 return (ENOBUFS);
1190 n->m_len = oldoptlen + JUMBOOPTLEN;
1191 bcopy(mtod(mopt, void *), mtod(n, void *),
1192 oldoptlen);
1193 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1194 m_freem(mopt);
1195 mopt = exthdrs->ip6e_hbh = n;
1196 } else {
1197 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1198 mopt->m_len += JUMBOOPTLEN;
1199 }
1200 optbuf[0] = IP6OPT_PADN;
1201 optbuf[1] = 0;
1202
1203 /*
1204 * Adjust the header length according to the pad and
1205 * the jumbo payload option.
1206 */
1207 hbh = mtod(mopt, struct ip6_hbh *);
1208 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1209 }
1210
1211 /* fill in the option. */
1212 optbuf[2] = IP6OPT_JUMBO;
1213 optbuf[3] = 4;
1214 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1215 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1216
1217 /* finally, adjust the packet header length */
1218 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1219
1220 return (0);
1221 #undef JUMBOOPTLEN
1222 }
1223
1224 /*
1225 * Insert fragment header and copy unfragmentable header portions.
1226 *
1227 * *frghdrp will not be read, and it is guaranteed that either an
1228 * error is returned or that *frghdrp will point to space allocated
1229 * for the fragment header.
1230 */
1231 static int
1232 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1233 struct ip6_frag **frghdrp)
1234 {
1235 struct mbuf *n, *mlast;
1236
1237 if (hlen > sizeof(struct ip6_hdr)) {
1238 n = m_copym(m0, sizeof(struct ip6_hdr),
1239 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1240 if (n == 0)
1241 return (ENOBUFS);
1242 m->m_next = n;
1243 } else
1244 n = m;
1245
1246 /* Search for the last mbuf of unfragmentable part. */
1247 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1248 ;
1249
1250 if ((mlast->m_flags & M_EXT) == 0 &&
1251 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1252 /* use the trailing space of the last mbuf for the fragment hdr */
1253 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1254 mlast->m_len);
1255 mlast->m_len += sizeof(struct ip6_frag);
1256 m->m_pkthdr.len += sizeof(struct ip6_frag);
1257 } else {
1258 /* allocate a new mbuf for the fragment header */
1259 struct mbuf *mfrg;
1260
1261 MGET(mfrg, M_DONTWAIT, MT_DATA);
1262 if (mfrg == 0)
1263 return (ENOBUFS);
1264 mfrg->m_len = sizeof(struct ip6_frag);
1265 *frghdrp = mtod(mfrg, struct ip6_frag *);
1266 mlast->m_next = mfrg;
1267 }
1268
1269 return (0);
1270 }
1271
1272 static int
1273 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
1274 int *alwaysfragp)
1275 {
1276 u_int32_t mtu = 0;
1277 int alwaysfrag = 0;
1278 int error = 0;
1279
1280 if (rt != NULL) {
1281 u_int32_t ifmtu;
1282
1283 if (ifp == NULL)
1284 ifp = rt->rt_ifp;
1285 ifmtu = IN6_LINKMTU(ifp);
1286 mtu = rt->rt_rmx.rmx_mtu;
1287 if (mtu == 0)
1288 mtu = ifmtu;
1289 else if (mtu < IPV6_MMTU) {
1290 /*
1291 * RFC2460 section 5, last paragraph:
1292 * if we record ICMPv6 too big message with
1293 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1294 * or smaller, with fragment header attached.
1295 * (fragment header is needed regardless from the
1296 * packet size, for translators to identify packets)
1297 */
1298 alwaysfrag = 1;
1299 mtu = IPV6_MMTU;
1300 } else if (mtu > ifmtu) {
1301 /*
1302 * The MTU on the route is larger than the MTU on
1303 * the interface! This shouldn't happen, unless the
1304 * MTU of the interface has been changed after the
1305 * interface was brought up. Change the MTU in the
1306 * route to match the interface MTU (as long as the
1307 * field isn't locked).
1308 */
1309 mtu = ifmtu;
1310 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1311 rt->rt_rmx.rmx_mtu = mtu;
1312 }
1313 } else if (ifp) {
1314 mtu = IN6_LINKMTU(ifp);
1315 } else
1316 error = EHOSTUNREACH; /* XXX */
1317
1318 *mtup = mtu;
1319 if (alwaysfragp)
1320 *alwaysfragp = alwaysfrag;
1321 return (error);
1322 }
1323
1324 /*
1325 * IP6 socket option processing.
1326 */
1327 int
1328 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1329 {
1330 int optdatalen, uproto;
1331 void *optdata;
1332 struct in6pcb *in6p = sotoin6pcb(so);
1333 struct ip_moptions **mopts;
1334 int error, optval;
1335 int level, optname;
1336
1337 KASSERT(sopt != NULL);
1338
1339 level = sopt->sopt_level;
1340 optname = sopt->sopt_name;
1341
1342 error = optval = 0;
1343 uproto = (int)so->so_proto->pr_protocol;
1344
1345 switch (level) {
1346 case IPPROTO_IP:
1347 switch (optname) {
1348 case IP_ADD_MEMBERSHIP:
1349 case IP_DROP_MEMBERSHIP:
1350 case IP_MULTICAST_IF:
1351 case IP_MULTICAST_LOOP:
1352 case IP_MULTICAST_TTL:
1353 mopts = &in6p->in6p_v4moptions;
1354 switch (op) {
1355 case PRCO_GETOPT:
1356 return ip_getmoptions(*mopts, sopt);
1357 case PRCO_SETOPT:
1358 return ip_setmoptions(mopts, sopt);
1359 default:
1360 return EINVAL;
1361 }
1362 default:
1363 return ENOPROTOOPT;
1364 }
1365 case IPPROTO_IPV6:
1366 break;
1367 default:
1368 return ENOPROTOOPT;
1369 }
1370 switch (op) {
1371 case PRCO_SETOPT:
1372 switch (optname) {
1373 #ifdef RFC2292
1374 case IPV6_2292PKTOPTIONS:
1375 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
1376 break;
1377 #endif
1378
1379 /*
1380 * Use of some Hop-by-Hop options or some
1381 * Destination options, might require special
1382 * privilege. That is, normal applications
1383 * (without special privilege) might be forbidden
1384 * from setting certain options in outgoing packets,
1385 * and might never see certain options in received
1386 * packets. [RFC 2292 Section 6]
1387 * KAME specific note:
1388 * KAME prevents non-privileged users from sending or
1389 * receiving ANY hbh/dst options in order to avoid
1390 * overhead of parsing options in the kernel.
1391 */
1392 case IPV6_RECVHOPOPTS:
1393 case IPV6_RECVDSTOPTS:
1394 case IPV6_RECVRTHDRDSTOPTS:
1395 error = kauth_authorize_network(kauth_cred_get(),
1396 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
1397 NULL, NULL, NULL);
1398 if (error)
1399 break;
1400 /* FALLTHROUGH */
1401 case IPV6_UNICAST_HOPS:
1402 case IPV6_HOPLIMIT:
1403 case IPV6_FAITH:
1404
1405 case IPV6_RECVPKTINFO:
1406 case IPV6_RECVHOPLIMIT:
1407 case IPV6_RECVRTHDR:
1408 case IPV6_RECVPATHMTU:
1409 case IPV6_RECVTCLASS:
1410 case IPV6_V6ONLY:
1411 error = sockopt_getint(sopt, &optval);
1412 if (error)
1413 break;
1414 switch (optname) {
1415 case IPV6_UNICAST_HOPS:
1416 if (optval < -1 || optval >= 256)
1417 error = EINVAL;
1418 else {
1419 /* -1 = kernel default */
1420 in6p->in6p_hops = optval;
1421 }
1422 break;
1423 #define OPTSET(bit) \
1424 do { \
1425 if (optval) \
1426 in6p->in6p_flags |= (bit); \
1427 else \
1428 in6p->in6p_flags &= ~(bit); \
1429 } while (/*CONSTCOND*/ 0)
1430
1431 #ifdef RFC2292
1432 #define OPTSET2292(bit) \
1433 do { \
1434 in6p->in6p_flags |= IN6P_RFC2292; \
1435 if (optval) \
1436 in6p->in6p_flags |= (bit); \
1437 else \
1438 in6p->in6p_flags &= ~(bit); \
1439 } while (/*CONSTCOND*/ 0)
1440 #endif
1441
1442 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1443
1444 case IPV6_RECVPKTINFO:
1445 #ifdef RFC2292
1446 /* cannot mix with RFC2292 */
1447 if (OPTBIT(IN6P_RFC2292)) {
1448 error = EINVAL;
1449 break;
1450 }
1451 #endif
1452 OPTSET(IN6P_PKTINFO);
1453 break;
1454
1455 case IPV6_HOPLIMIT:
1456 {
1457 struct ip6_pktopts **optp;
1458
1459 #ifdef RFC2292
1460 /* cannot mix with RFC2292 */
1461 if (OPTBIT(IN6P_RFC2292)) {
1462 error = EINVAL;
1463 break;
1464 }
1465 #endif
1466 optp = &in6p->in6p_outputopts;
1467 error = ip6_pcbopt(IPV6_HOPLIMIT,
1468 (u_char *)&optval,
1469 sizeof(optval),
1470 optp,
1471 kauth_cred_get(), uproto);
1472 break;
1473 }
1474
1475 case IPV6_RECVHOPLIMIT:
1476 #ifdef RFC2292
1477 /* cannot mix with RFC2292 */
1478 if (OPTBIT(IN6P_RFC2292)) {
1479 error = EINVAL;
1480 break;
1481 }
1482 #endif
1483 OPTSET(IN6P_HOPLIMIT);
1484 break;
1485
1486 case IPV6_RECVHOPOPTS:
1487 #ifdef RFC2292
1488 /* cannot mix with RFC2292 */
1489 if (OPTBIT(IN6P_RFC2292)) {
1490 error = EINVAL;
1491 break;
1492 }
1493 #endif
1494 OPTSET(IN6P_HOPOPTS);
1495 break;
1496
1497 case IPV6_RECVDSTOPTS:
1498 #ifdef RFC2292
1499 /* cannot mix with RFC2292 */
1500 if (OPTBIT(IN6P_RFC2292)) {
1501 error = EINVAL;
1502 break;
1503 }
1504 #endif
1505 OPTSET(IN6P_DSTOPTS);
1506 break;
1507
1508 case IPV6_RECVRTHDRDSTOPTS:
1509 #ifdef RFC2292
1510 /* cannot mix with RFC2292 */
1511 if (OPTBIT(IN6P_RFC2292)) {
1512 error = EINVAL;
1513 break;
1514 }
1515 #endif
1516 OPTSET(IN6P_RTHDRDSTOPTS);
1517 break;
1518
1519 case IPV6_RECVRTHDR:
1520 #ifdef RFC2292
1521 /* cannot mix with RFC2292 */
1522 if (OPTBIT(IN6P_RFC2292)) {
1523 error = EINVAL;
1524 break;
1525 }
1526 #endif
1527 OPTSET(IN6P_RTHDR);
1528 break;
1529
1530 case IPV6_FAITH:
1531 OPTSET(IN6P_FAITH);
1532 break;
1533
1534 case IPV6_RECVPATHMTU:
1535 /*
1536 * We ignore this option for TCP
1537 * sockets.
1538 * (RFC3542 leaves this case
1539 * unspecified.)
1540 */
1541 if (uproto != IPPROTO_TCP)
1542 OPTSET(IN6P_MTU);
1543 break;
1544
1545 case IPV6_V6ONLY:
1546 /*
1547 * make setsockopt(IPV6_V6ONLY)
1548 * available only prior to bind(2).
1549 * see ipng mailing list, Jun 22 2001.
1550 */
1551 if (in6p->in6p_lport ||
1552 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1553 error = EINVAL;
1554 break;
1555 }
1556 #ifdef INET6_BINDV6ONLY
1557 if (!optval)
1558 error = EINVAL;
1559 #else
1560 OPTSET(IN6P_IPV6_V6ONLY);
1561 #endif
1562 break;
1563 case IPV6_RECVTCLASS:
1564 #ifdef RFC2292
1565 /* cannot mix with RFC2292 XXX */
1566 if (OPTBIT(IN6P_RFC2292)) {
1567 error = EINVAL;
1568 break;
1569 }
1570 #endif
1571 OPTSET(IN6P_TCLASS);
1572 break;
1573
1574 }
1575 break;
1576
1577 case IPV6_OTCLASS:
1578 {
1579 struct ip6_pktopts **optp;
1580 u_int8_t tclass;
1581
1582 error = sockopt_get(sopt, &tclass, sizeof(tclass));
1583 if (error)
1584 break;
1585 optp = &in6p->in6p_outputopts;
1586 error = ip6_pcbopt(optname,
1587 (u_char *)&tclass,
1588 sizeof(tclass),
1589 optp,
1590 kauth_cred_get(), uproto);
1591 break;
1592 }
1593
1594 case IPV6_TCLASS:
1595 case IPV6_DONTFRAG:
1596 case IPV6_USE_MIN_MTU:
1597 case IPV6_PREFER_TEMPADDR:
1598 error = sockopt_getint(sopt, &optval);
1599 if (error)
1600 break;
1601 {
1602 struct ip6_pktopts **optp;
1603 optp = &in6p->in6p_outputopts;
1604 error = ip6_pcbopt(optname,
1605 (u_char *)&optval,
1606 sizeof(optval),
1607 optp,
1608 kauth_cred_get(), uproto);
1609 break;
1610 }
1611
1612 #ifdef RFC2292
1613 case IPV6_2292PKTINFO:
1614 case IPV6_2292HOPLIMIT:
1615 case IPV6_2292HOPOPTS:
1616 case IPV6_2292DSTOPTS:
1617 case IPV6_2292RTHDR:
1618 /* RFC 2292 */
1619 error = sockopt_getint(sopt, &optval);
1620 if (error)
1621 break;
1622
1623 switch (optname) {
1624 case IPV6_2292PKTINFO:
1625 OPTSET2292(IN6P_PKTINFO);
1626 break;
1627 case IPV6_2292HOPLIMIT:
1628 OPTSET2292(IN6P_HOPLIMIT);
1629 break;
1630 case IPV6_2292HOPOPTS:
1631 /*
1632 * Check super-user privilege.
1633 * See comments for IPV6_RECVHOPOPTS.
1634 */
1635 error =
1636 kauth_authorize_network(kauth_cred_get(),
1637 KAUTH_NETWORK_IPV6,
1638 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1639 NULL, NULL);
1640 if (error)
1641 return (error);
1642 OPTSET2292(IN6P_HOPOPTS);
1643 break;
1644 case IPV6_2292DSTOPTS:
1645 error =
1646 kauth_authorize_network(kauth_cred_get(),
1647 KAUTH_NETWORK_IPV6,
1648 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1649 NULL, NULL);
1650 if (error)
1651 return (error);
1652 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1653 break;
1654 case IPV6_2292RTHDR:
1655 OPTSET2292(IN6P_RTHDR);
1656 break;
1657 }
1658 break;
1659 #endif
1660 case IPV6_PKTINFO:
1661 case IPV6_HOPOPTS:
1662 case IPV6_RTHDR:
1663 case IPV6_DSTOPTS:
1664 case IPV6_RTHDRDSTOPTS:
1665 case IPV6_NEXTHOP: {
1666 /* new advanced API (RFC3542) */
1667 void *optbuf;
1668 int optbuflen;
1669 struct ip6_pktopts **optp;
1670
1671 #ifdef RFC2292
1672 /* cannot mix with RFC2292 */
1673 if (OPTBIT(IN6P_RFC2292)) {
1674 error = EINVAL;
1675 break;
1676 }
1677 #endif
1678
1679 optbuflen = sopt->sopt_size;
1680 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1681 if (optbuf == NULL) {
1682 error = ENOBUFS;
1683 break;
1684 }
1685
1686 error = sockopt_get(sopt, optbuf, optbuflen);
1687 if (error) {
1688 free(optbuf, M_IP6OPT);
1689 break;
1690 }
1691 optp = &in6p->in6p_outputopts;
1692 error = ip6_pcbopt(optname, optbuf, optbuflen,
1693 optp, kauth_cred_get(), uproto);
1694
1695 free(optbuf, M_IP6OPT);
1696 break;
1697 }
1698 #undef OPTSET
1699
1700 case IPV6_MULTICAST_IF:
1701 case IPV6_MULTICAST_HOPS:
1702 case IPV6_MULTICAST_LOOP:
1703 case IPV6_JOIN_GROUP:
1704 case IPV6_LEAVE_GROUP:
1705 error = ip6_setmoptions(sopt, in6p);
1706 break;
1707
1708 case IPV6_PORTRANGE:
1709 error = sockopt_getint(sopt, &optval);
1710 if (error)
1711 break;
1712
1713 switch (optval) {
1714 case IPV6_PORTRANGE_DEFAULT:
1715 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1716 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1717 break;
1718
1719 case IPV6_PORTRANGE_HIGH:
1720 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1721 in6p->in6p_flags |= IN6P_HIGHPORT;
1722 break;
1723
1724 case IPV6_PORTRANGE_LOW:
1725 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1726 in6p->in6p_flags |= IN6P_LOWPORT;
1727 break;
1728
1729 default:
1730 error = EINVAL;
1731 break;
1732 }
1733 break;
1734
1735 case IPV6_PORTALGO:
1736 error = sockopt_getint(sopt, &optval);
1737 if (error)
1738 break;
1739
1740 error = portalgo_algo_index_select(
1741 (struct inpcb_hdr *)in6p, optval);
1742 break;
1743
1744 #if defined(IPSEC)
1745 case IPV6_IPSEC_POLICY:
1746 if (ipsec_enabled) {
1747 error = ipsec6_set_policy(in6p, optname,
1748 sopt->sopt_data, sopt->sopt_size,
1749 kauth_cred_get());
1750 break;
1751 }
1752 /*FALLTHROUGH*/
1753 #endif /* IPSEC */
1754
1755 default:
1756 error = ENOPROTOOPT;
1757 break;
1758 }
1759 break;
1760
1761 case PRCO_GETOPT:
1762 switch (optname) {
1763 #ifdef RFC2292
1764 case IPV6_2292PKTOPTIONS:
1765 /*
1766 * RFC3542 (effectively) deprecated the
1767 * semantics of the 2292-style pktoptions.
1768 * Since it was not reliable in nature (i.e.,
1769 * applications had to expect the lack of some
1770 * information after all), it would make sense
1771 * to simplify this part by always returning
1772 * empty data.
1773 */
1774 break;
1775 #endif
1776
1777 case IPV6_RECVHOPOPTS:
1778 case IPV6_RECVDSTOPTS:
1779 case IPV6_RECVRTHDRDSTOPTS:
1780 case IPV6_UNICAST_HOPS:
1781 case IPV6_RECVPKTINFO:
1782 case IPV6_RECVHOPLIMIT:
1783 case IPV6_RECVRTHDR:
1784 case IPV6_RECVPATHMTU:
1785
1786 case IPV6_FAITH:
1787 case IPV6_V6ONLY:
1788 case IPV6_PORTRANGE:
1789 case IPV6_RECVTCLASS:
1790 switch (optname) {
1791
1792 case IPV6_RECVHOPOPTS:
1793 optval = OPTBIT(IN6P_HOPOPTS);
1794 break;
1795
1796 case IPV6_RECVDSTOPTS:
1797 optval = OPTBIT(IN6P_DSTOPTS);
1798 break;
1799
1800 case IPV6_RECVRTHDRDSTOPTS:
1801 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1802 break;
1803
1804 case IPV6_UNICAST_HOPS:
1805 optval = in6p->in6p_hops;
1806 break;
1807
1808 case IPV6_RECVPKTINFO:
1809 optval = OPTBIT(IN6P_PKTINFO);
1810 break;
1811
1812 case IPV6_RECVHOPLIMIT:
1813 optval = OPTBIT(IN6P_HOPLIMIT);
1814 break;
1815
1816 case IPV6_RECVRTHDR:
1817 optval = OPTBIT(IN6P_RTHDR);
1818 break;
1819
1820 case IPV6_RECVPATHMTU:
1821 optval = OPTBIT(IN6P_MTU);
1822 break;
1823
1824 case IPV6_FAITH:
1825 optval = OPTBIT(IN6P_FAITH);
1826 break;
1827
1828 case IPV6_V6ONLY:
1829 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1830 break;
1831
1832 case IPV6_PORTRANGE:
1833 {
1834 int flags;
1835 flags = in6p->in6p_flags;
1836 if (flags & IN6P_HIGHPORT)
1837 optval = IPV6_PORTRANGE_HIGH;
1838 else if (flags & IN6P_LOWPORT)
1839 optval = IPV6_PORTRANGE_LOW;
1840 else
1841 optval = 0;
1842 break;
1843 }
1844 case IPV6_RECVTCLASS:
1845 optval = OPTBIT(IN6P_TCLASS);
1846 break;
1847
1848 }
1849 if (error)
1850 break;
1851 error = sockopt_setint(sopt, optval);
1852 break;
1853
1854 case IPV6_PATHMTU:
1855 {
1856 u_long pmtu = 0;
1857 struct ip6_mtuinfo mtuinfo;
1858 struct route *ro = &in6p->in6p_route;
1859 struct rtentry *rt;
1860 union {
1861 struct sockaddr dst;
1862 struct sockaddr_in6 dst6;
1863 } u;
1864
1865 if (!(so->so_state & SS_ISCONNECTED))
1866 return (ENOTCONN);
1867 /*
1868 * XXX: we dot not consider the case of source
1869 * routing, or optional information to specify
1870 * the outgoing interface.
1871 */
1872 sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0);
1873 rt = rtcache_lookup(ro, &u.dst);
1874 error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
1875 rtcache_unref(rt, ro);
1876 if (error)
1877 break;
1878 if (pmtu > IPV6_MAXPACKET)
1879 pmtu = IPV6_MAXPACKET;
1880
1881 memset(&mtuinfo, 0, sizeof(mtuinfo));
1882 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1883 optdata = (void *)&mtuinfo;
1884 optdatalen = sizeof(mtuinfo);
1885 if (optdatalen > MCLBYTES)
1886 return (EMSGSIZE); /* XXX */
1887 error = sockopt_set(sopt, optdata, optdatalen);
1888 break;
1889 }
1890
1891 #ifdef RFC2292
1892 case IPV6_2292PKTINFO:
1893 case IPV6_2292HOPLIMIT:
1894 case IPV6_2292HOPOPTS:
1895 case IPV6_2292RTHDR:
1896 case IPV6_2292DSTOPTS:
1897 switch (optname) {
1898 case IPV6_2292PKTINFO:
1899 optval = OPTBIT(IN6P_PKTINFO);
1900 break;
1901 case IPV6_2292HOPLIMIT:
1902 optval = OPTBIT(IN6P_HOPLIMIT);
1903 break;
1904 case IPV6_2292HOPOPTS:
1905 optval = OPTBIT(IN6P_HOPOPTS);
1906 break;
1907 case IPV6_2292RTHDR:
1908 optval = OPTBIT(IN6P_RTHDR);
1909 break;
1910 case IPV6_2292DSTOPTS:
1911 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1912 break;
1913 }
1914 error = sockopt_setint(sopt, optval);
1915 break;
1916 #endif
1917 case IPV6_PKTINFO:
1918 case IPV6_HOPOPTS:
1919 case IPV6_RTHDR:
1920 case IPV6_DSTOPTS:
1921 case IPV6_RTHDRDSTOPTS:
1922 case IPV6_NEXTHOP:
1923 case IPV6_OTCLASS:
1924 case IPV6_TCLASS:
1925 case IPV6_DONTFRAG:
1926 case IPV6_USE_MIN_MTU:
1927 case IPV6_PREFER_TEMPADDR:
1928 error = ip6_getpcbopt(in6p->in6p_outputopts,
1929 optname, sopt);
1930 break;
1931
1932 case IPV6_MULTICAST_IF:
1933 case IPV6_MULTICAST_HOPS:
1934 case IPV6_MULTICAST_LOOP:
1935 case IPV6_JOIN_GROUP:
1936 case IPV6_LEAVE_GROUP:
1937 error = ip6_getmoptions(sopt, in6p);
1938 break;
1939
1940 case IPV6_PORTALGO:
1941 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
1942 error = sockopt_setint(sopt, optval);
1943 break;
1944
1945 #if defined(IPSEC)
1946 case IPV6_IPSEC_POLICY:
1947 if (ipsec_used) {
1948 struct mbuf *m = NULL;
1949
1950 /*
1951 * XXX: this will return EINVAL as sopt is
1952 * empty
1953 */
1954 error = ipsec6_get_policy(in6p, sopt->sopt_data,
1955 sopt->sopt_size, &m);
1956 if (!error)
1957 error = sockopt_setmbuf(sopt, m);
1958 break;
1959 }
1960 /*FALLTHROUGH*/
1961 #endif /* IPSEC */
1962
1963 default:
1964 error = ENOPROTOOPT;
1965 break;
1966 }
1967 break;
1968 }
1969 return (error);
1970 }
1971
1972 int
1973 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1974 {
1975 int error = 0, optval;
1976 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1977 struct in6pcb *in6p = sotoin6pcb(so);
1978 int level, optname;
1979
1980 KASSERT(sopt != NULL);
1981
1982 level = sopt->sopt_level;
1983 optname = sopt->sopt_name;
1984
1985 if (level != IPPROTO_IPV6) {
1986 return ENOPROTOOPT;
1987 }
1988
1989 switch (optname) {
1990 case IPV6_CHECKSUM:
1991 /*
1992 * For ICMPv6 sockets, no modification allowed for checksum
1993 * offset, permit "no change" values to help existing apps.
1994 *
1995 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
1996 * for an ICMPv6 socket will fail." The current
1997 * behavior does not meet RFC3542.
1998 */
1999 switch (op) {
2000 case PRCO_SETOPT:
2001 error = sockopt_getint(sopt, &optval);
2002 if (error)
2003 break;
2004 if ((optval % 2) != 0) {
2005 /* the API assumes even offset values */
2006 error = EINVAL;
2007 } else if (so->so_proto->pr_protocol ==
2008 IPPROTO_ICMPV6) {
2009 if (optval != icmp6off)
2010 error = EINVAL;
2011 } else
2012 in6p->in6p_cksum = optval;
2013 break;
2014
2015 case PRCO_GETOPT:
2016 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2017 optval = icmp6off;
2018 else
2019 optval = in6p->in6p_cksum;
2020
2021 error = sockopt_setint(sopt, optval);
2022 break;
2023
2024 default:
2025 error = EINVAL;
2026 break;
2027 }
2028 break;
2029
2030 default:
2031 error = ENOPROTOOPT;
2032 break;
2033 }
2034
2035 return (error);
2036 }
2037
2038 #ifdef RFC2292
2039 /*
2040 * Set up IP6 options in pcb for insertion in output packets or
2041 * specifying behavior of outgoing packets.
2042 */
2043 static int
2044 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
2045 struct sockopt *sopt)
2046 {
2047 struct ip6_pktopts *opt = *pktopt;
2048 struct mbuf *m;
2049 int error = 0;
2050
2051 /* turn off any old options. */
2052 if (opt) {
2053 #ifdef DIAGNOSTIC
2054 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2055 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2056 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2057 printf("ip6_pcbopts: all specified options are cleared.\n");
2058 #endif
2059 ip6_clearpktopts(opt, -1);
2060 } else {
2061 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2062 if (opt == NULL)
2063 return (ENOBUFS);
2064 }
2065 *pktopt = NULL;
2066
2067 if (sopt == NULL || sopt->sopt_size == 0) {
2068 /*
2069 * Only turning off any previous options, regardless of
2070 * whether the opt is just created or given.
2071 */
2072 free(opt, M_IP6OPT);
2073 return (0);
2074 }
2075
2076 /* set options specified by user. */
2077 m = sockopt_getmbuf(sopt);
2078 if (m == NULL) {
2079 free(opt, M_IP6OPT);
2080 return (ENOBUFS);
2081 }
2082
2083 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
2084 so->so_proto->pr_protocol);
2085 m_freem(m);
2086 if (error != 0) {
2087 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2088 free(opt, M_IP6OPT);
2089 return (error);
2090 }
2091 *pktopt = opt;
2092 return (0);
2093 }
2094 #endif
2095
2096 /*
2097 * initialize ip6_pktopts. beware that there are non-zero default values in
2098 * the struct.
2099 */
2100 void
2101 ip6_initpktopts(struct ip6_pktopts *opt)
2102 {
2103
2104 memset(opt, 0, sizeof(*opt));
2105 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2106 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2107 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2108 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2109 }
2110
2111 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2112 static int
2113 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2114 kauth_cred_t cred, int uproto)
2115 {
2116 struct ip6_pktopts *opt;
2117
2118 if (*pktopt == NULL) {
2119 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2120 M_NOWAIT);
2121 if (*pktopt == NULL)
2122 return (ENOBUFS);
2123
2124 ip6_initpktopts(*pktopt);
2125 }
2126 opt = *pktopt;
2127
2128 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2129 }
2130
2131 static int
2132 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2133 {
2134 void *optdata = NULL;
2135 int optdatalen = 0;
2136 struct ip6_ext *ip6e;
2137 int error = 0;
2138 struct in6_pktinfo null_pktinfo;
2139 int deftclass = 0, on;
2140 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2141 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2142
2143 switch (optname) {
2144 case IPV6_PKTINFO:
2145 if (pktopt && pktopt->ip6po_pktinfo)
2146 optdata = (void *)pktopt->ip6po_pktinfo;
2147 else {
2148 /* XXX: we don't have to do this every time... */
2149 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2150 optdata = (void *)&null_pktinfo;
2151 }
2152 optdatalen = sizeof(struct in6_pktinfo);
2153 break;
2154 case IPV6_OTCLASS:
2155 /* XXX */
2156 return (EINVAL);
2157 case IPV6_TCLASS:
2158 if (pktopt && pktopt->ip6po_tclass >= 0)
2159 optdata = (void *)&pktopt->ip6po_tclass;
2160 else
2161 optdata = (void *)&deftclass;
2162 optdatalen = sizeof(int);
2163 break;
2164 case IPV6_HOPOPTS:
2165 if (pktopt && pktopt->ip6po_hbh) {
2166 optdata = (void *)pktopt->ip6po_hbh;
2167 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2168 optdatalen = (ip6e->ip6e_len + 1) << 3;
2169 }
2170 break;
2171 case IPV6_RTHDR:
2172 if (pktopt && pktopt->ip6po_rthdr) {
2173 optdata = (void *)pktopt->ip6po_rthdr;
2174 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2175 optdatalen = (ip6e->ip6e_len + 1) << 3;
2176 }
2177 break;
2178 case IPV6_RTHDRDSTOPTS:
2179 if (pktopt && pktopt->ip6po_dest1) {
2180 optdata = (void *)pktopt->ip6po_dest1;
2181 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2182 optdatalen = (ip6e->ip6e_len + 1) << 3;
2183 }
2184 break;
2185 case IPV6_DSTOPTS:
2186 if (pktopt && pktopt->ip6po_dest2) {
2187 optdata = (void *)pktopt->ip6po_dest2;
2188 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2189 optdatalen = (ip6e->ip6e_len + 1) << 3;
2190 }
2191 break;
2192 case IPV6_NEXTHOP:
2193 if (pktopt && pktopt->ip6po_nexthop) {
2194 optdata = (void *)pktopt->ip6po_nexthop;
2195 optdatalen = pktopt->ip6po_nexthop->sa_len;
2196 }
2197 break;
2198 case IPV6_USE_MIN_MTU:
2199 if (pktopt)
2200 optdata = (void *)&pktopt->ip6po_minmtu;
2201 else
2202 optdata = (void *)&defminmtu;
2203 optdatalen = sizeof(int);
2204 break;
2205 case IPV6_DONTFRAG:
2206 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2207 on = 1;
2208 else
2209 on = 0;
2210 optdata = (void *)&on;
2211 optdatalen = sizeof(on);
2212 break;
2213 case IPV6_PREFER_TEMPADDR:
2214 if (pktopt)
2215 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2216 else
2217 optdata = (void *)&defpreftemp;
2218 optdatalen = sizeof(int);
2219 break;
2220 default: /* should not happen */
2221 #ifdef DIAGNOSTIC
2222 panic("ip6_getpcbopt: unexpected option\n");
2223 #endif
2224 return (ENOPROTOOPT);
2225 }
2226
2227 error = sockopt_set(sopt, optdata, optdatalen);
2228
2229 return (error);
2230 }
2231
2232 void
2233 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2234 {
2235 if (optname == -1 || optname == IPV6_PKTINFO) {
2236 if (pktopt->ip6po_pktinfo)
2237 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2238 pktopt->ip6po_pktinfo = NULL;
2239 }
2240 if (optname == -1 || optname == IPV6_HOPLIMIT)
2241 pktopt->ip6po_hlim = -1;
2242 if (optname == -1 || optname == IPV6_TCLASS)
2243 pktopt->ip6po_tclass = -1;
2244 if (optname == -1 || optname == IPV6_NEXTHOP) {
2245 rtcache_free(&pktopt->ip6po_nextroute);
2246 if (pktopt->ip6po_nexthop)
2247 free(pktopt->ip6po_nexthop, M_IP6OPT);
2248 pktopt->ip6po_nexthop = NULL;
2249 }
2250 if (optname == -1 || optname == IPV6_HOPOPTS) {
2251 if (pktopt->ip6po_hbh)
2252 free(pktopt->ip6po_hbh, M_IP6OPT);
2253 pktopt->ip6po_hbh = NULL;
2254 }
2255 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2256 if (pktopt->ip6po_dest1)
2257 free(pktopt->ip6po_dest1, M_IP6OPT);
2258 pktopt->ip6po_dest1 = NULL;
2259 }
2260 if (optname == -1 || optname == IPV6_RTHDR) {
2261 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2262 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2263 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2264 rtcache_free(&pktopt->ip6po_route);
2265 }
2266 if (optname == -1 || optname == IPV6_DSTOPTS) {
2267 if (pktopt->ip6po_dest2)
2268 free(pktopt->ip6po_dest2, M_IP6OPT);
2269 pktopt->ip6po_dest2 = NULL;
2270 }
2271 }
2272
2273 #define PKTOPT_EXTHDRCPY(type) \
2274 do { \
2275 if (src->type) { \
2276 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2277 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2278 if (dst->type == NULL) \
2279 goto bad; \
2280 memcpy(dst->type, src->type, hlen); \
2281 } \
2282 } while (/*CONSTCOND*/ 0)
2283
2284 static int
2285 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2286 {
2287 dst->ip6po_hlim = src->ip6po_hlim;
2288 dst->ip6po_tclass = src->ip6po_tclass;
2289 dst->ip6po_flags = src->ip6po_flags;
2290 dst->ip6po_minmtu = src->ip6po_minmtu;
2291 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2292 if (src->ip6po_pktinfo) {
2293 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2294 M_IP6OPT, canwait);
2295 if (dst->ip6po_pktinfo == NULL)
2296 goto bad;
2297 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2298 }
2299 if (src->ip6po_nexthop) {
2300 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2301 M_IP6OPT, canwait);
2302 if (dst->ip6po_nexthop == NULL)
2303 goto bad;
2304 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2305 src->ip6po_nexthop->sa_len);
2306 }
2307 PKTOPT_EXTHDRCPY(ip6po_hbh);
2308 PKTOPT_EXTHDRCPY(ip6po_dest1);
2309 PKTOPT_EXTHDRCPY(ip6po_dest2);
2310 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2311 return (0);
2312
2313 bad:
2314 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2315 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2316 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2317 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2318 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2319 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2320
2321 return (ENOBUFS);
2322 }
2323 #undef PKTOPT_EXTHDRCPY
2324
2325 struct ip6_pktopts *
2326 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2327 {
2328 int error;
2329 struct ip6_pktopts *dst;
2330
2331 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2332 if (dst == NULL)
2333 return (NULL);
2334 ip6_initpktopts(dst);
2335
2336 if ((error = copypktopts(dst, src, canwait)) != 0) {
2337 free(dst, M_IP6OPT);
2338 return (NULL);
2339 }
2340
2341 return (dst);
2342 }
2343
2344 void
2345 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2346 {
2347 if (pktopt == NULL)
2348 return;
2349
2350 ip6_clearpktopts(pktopt, -1);
2351
2352 free(pktopt, M_IP6OPT);
2353 }
2354
2355 int
2356 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp, void *v,
2357 size_t l)
2358 {
2359 struct ipv6_mreq mreq;
2360 int error;
2361 struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
2362 struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
2363 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2364 if (error != 0)
2365 return error;
2366
2367 if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
2368 /*
2369 * We use the unspecified address to specify to accept
2370 * all multicast addresses. Only super user is allowed
2371 * to do this.
2372 */
2373 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6,
2374 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
2375 return EACCES;
2376 } else if (IN6_IS_ADDR_V4MAPPED(ia)) {
2377 // Don't bother if we are not going to use ifp.
2378 if (l == sizeof(*ia)) {
2379 memcpy(v, ia, l);
2380 return 0;
2381 }
2382 } else if (!IN6_IS_ADDR_MULTICAST(ia)) {
2383 return EINVAL;
2384 }
2385
2386 /*
2387 * If no interface was explicitly specified, choose an
2388 * appropriate one according to the given multicast address.
2389 */
2390 if (mreq.ipv6mr_interface == 0) {
2391 struct rtentry *rt;
2392 union {
2393 struct sockaddr dst;
2394 struct sockaddr_in dst4;
2395 struct sockaddr_in6 dst6;
2396 } u;
2397 struct route ro;
2398
2399 /*
2400 * Look up the routing table for the
2401 * address, and choose the outgoing interface.
2402 * XXX: is it a good approach?
2403 */
2404 memset(&ro, 0, sizeof(ro));
2405 if (IN6_IS_ADDR_V4MAPPED(ia))
2406 sockaddr_in_init(&u.dst4, ia4, 0);
2407 else
2408 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
2409 error = rtcache_setdst(&ro, &u.dst);
2410 if (error != 0)
2411 return error;
2412 rt = rtcache_init(&ro);
2413 *ifp = rt != NULL ? rt->rt_ifp : NULL;
2414 /* FIXME *ifp is NOMPSAFE */
2415 rtcache_unref(rt, &ro);
2416 rtcache_free(&ro);
2417 } else {
2418 /*
2419 * If the interface is specified, validate it.
2420 */
2421 if ((*ifp = if_byindex(mreq.ipv6mr_interface)) == NULL)
2422 return ENXIO; /* XXX EINVAL? */
2423 }
2424 if (sizeof(*ia) == l)
2425 memcpy(v, ia, l);
2426 else
2427 memcpy(v, ia4, l);
2428 return 0;
2429 }
2430
2431 /*
2432 * Set the IP6 multicast options in response to user setsockopt().
2433 */
2434 static int
2435 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p)
2436 {
2437 int error = 0;
2438 u_int loop, ifindex;
2439 struct ipv6_mreq mreq;
2440 struct in6_addr ia;
2441 struct ifnet *ifp;
2442 struct ip6_moptions *im6o = in6p->in6p_moptions;
2443 struct in6_multi_mship *imm;
2444
2445 if (im6o == NULL) {
2446 /*
2447 * No multicast option buffer attached to the pcb;
2448 * allocate one and initialize to default values.
2449 */
2450 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2451 if (im6o == NULL)
2452 return (ENOBUFS);
2453 in6p->in6p_moptions = im6o;
2454 im6o->im6o_multicast_if_index = 0;
2455 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2456 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2457 LIST_INIT(&im6o->im6o_memberships);
2458 }
2459
2460 switch (sopt->sopt_name) {
2461
2462 case IPV6_MULTICAST_IF:
2463 /*
2464 * Select the interface for outgoing multicast packets.
2465 */
2466 error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2467 if (error != 0)
2468 break;
2469
2470 if (ifindex != 0) {
2471 if ((ifp = if_byindex(ifindex)) == NULL) {
2472 error = ENXIO; /* XXX EINVAL? */
2473 break;
2474 }
2475 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2476 error = EADDRNOTAVAIL;
2477 break;
2478 }
2479 } else
2480 ifp = NULL;
2481 im6o->im6o_multicast_if_index = if_get_index(ifp);
2482 break;
2483
2484 case IPV6_MULTICAST_HOPS:
2485 {
2486 /*
2487 * Set the IP6 hoplimit for outgoing multicast packets.
2488 */
2489 int optval;
2490
2491 error = sockopt_getint(sopt, &optval);
2492 if (error != 0)
2493 break;
2494
2495 if (optval < -1 || optval >= 256)
2496 error = EINVAL;
2497 else if (optval == -1)
2498 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2499 else
2500 im6o->im6o_multicast_hlim = optval;
2501 break;
2502 }
2503
2504 case IPV6_MULTICAST_LOOP:
2505 /*
2506 * Set the loopback flag for outgoing multicast packets.
2507 * Must be zero or one.
2508 */
2509 error = sockopt_get(sopt, &loop, sizeof(loop));
2510 if (error != 0)
2511 break;
2512 if (loop > 1) {
2513 error = EINVAL;
2514 break;
2515 }
2516 im6o->im6o_multicast_loop = loop;
2517 break;
2518
2519 case IPV6_JOIN_GROUP:
2520 /*
2521 * Add a multicast group membership.
2522 * Group must be a valid IP6 multicast address.
2523 */
2524 if ((error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia))))
2525 return error;
2526
2527 if (IN6_IS_ADDR_V4MAPPED(&ia)) {
2528 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2529 break;
2530 }
2531 /*
2532 * See if we found an interface, and confirm that it
2533 * supports multicast
2534 */
2535 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2536 error = EADDRNOTAVAIL;
2537 break;
2538 }
2539
2540 if (in6_setscope(&ia, ifp, NULL)) {
2541 error = EADDRNOTAVAIL; /* XXX: should not happen */
2542 break;
2543 }
2544
2545 /*
2546 * See if the membership already exists.
2547 */
2548 for (imm = im6o->im6o_memberships.lh_first;
2549 imm != NULL; imm = imm->i6mm_chain.le_next)
2550 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2551 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2552 &ia))
2553 break;
2554 if (imm != NULL) {
2555 error = EADDRINUSE;
2556 break;
2557 }
2558 /*
2559 * Everything looks good; add a new record to the multicast
2560 * address list for the given interface.
2561 */
2562 imm = in6_joingroup(ifp, &ia, &error, 0);
2563 if (imm == NULL)
2564 break;
2565 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2566 break;
2567
2568 case IPV6_LEAVE_GROUP:
2569 /*
2570 * Drop a multicast group membership.
2571 * Group must be a valid IP6 multicast address.
2572 */
2573 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2574 if (error != 0)
2575 break;
2576
2577 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
2578 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2579 break;
2580 }
2581 /*
2582 * If an interface address was specified, get a pointer
2583 * to its ifnet structure.
2584 */
2585 if (mreq.ipv6mr_interface != 0) {
2586 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
2587 error = ENXIO; /* XXX EINVAL? */
2588 break;
2589 }
2590 } else
2591 ifp = NULL;
2592
2593 /* Fill in the scope zone ID */
2594 if (ifp) {
2595 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2596 /* XXX: should not happen */
2597 error = EADDRNOTAVAIL;
2598 break;
2599 }
2600 } else if (mreq.ipv6mr_interface != 0) {
2601 /*
2602 * XXX: This case would happens when the (positive)
2603 * index is in the valid range, but the corresponding
2604 * interface has been detached dynamically. The above
2605 * check probably avoids such case to happen here, but
2606 * we check it explicitly for safety.
2607 */
2608 error = EADDRNOTAVAIL;
2609 break;
2610 } else { /* ipv6mr_interface == 0 */
2611 struct sockaddr_in6 sa6_mc;
2612
2613 /*
2614 * The API spec says as follows:
2615 * If the interface index is specified as 0, the
2616 * system may choose a multicast group membership to
2617 * drop by matching the multicast address only.
2618 * On the other hand, we cannot disambiguate the scope
2619 * zone unless an interface is provided. Thus, we
2620 * check if there's ambiguity with the default scope
2621 * zone as the last resort.
2622 */
2623 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2624 0, 0, 0);
2625 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2626 if (error != 0)
2627 break;
2628 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2629 }
2630
2631 /*
2632 * Find the membership in the membership list.
2633 */
2634 for (imm = im6o->im6o_memberships.lh_first;
2635 imm != NULL; imm = imm->i6mm_chain.le_next) {
2636 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2637 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2638 &mreq.ipv6mr_multiaddr))
2639 break;
2640 }
2641 if (imm == NULL) {
2642 /* Unable to resolve interface */
2643 error = EADDRNOTAVAIL;
2644 break;
2645 }
2646 /*
2647 * Give up the multicast address record to which the
2648 * membership points.
2649 */
2650 LIST_REMOVE(imm, i6mm_chain);
2651 in6_leavegroup(imm);
2652 break;
2653
2654 default:
2655 error = EOPNOTSUPP;
2656 break;
2657 }
2658
2659 /*
2660 * If all options have default values, no need to keep the mbuf.
2661 */
2662 if (im6o->im6o_multicast_if_index == 0 &&
2663 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2664 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2665 im6o->im6o_memberships.lh_first == NULL) {
2666 free(in6p->in6p_moptions, M_IPMOPTS);
2667 in6p->in6p_moptions = NULL;
2668 }
2669
2670 return (error);
2671 }
2672
2673 /*
2674 * Return the IP6 multicast options in response to user getsockopt().
2675 */
2676 static int
2677 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p)
2678 {
2679 u_int optval;
2680 int error;
2681 struct ip6_moptions *im6o = in6p->in6p_moptions;
2682
2683 switch (sopt->sopt_name) {
2684 case IPV6_MULTICAST_IF:
2685 if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
2686 optval = 0;
2687 else
2688 optval = im6o->im6o_multicast_if_index;
2689
2690 error = sockopt_set(sopt, &optval, sizeof(optval));
2691 break;
2692
2693 case IPV6_MULTICAST_HOPS:
2694 if (im6o == NULL)
2695 optval = ip6_defmcasthlim;
2696 else
2697 optval = im6o->im6o_multicast_hlim;
2698
2699 error = sockopt_set(sopt, &optval, sizeof(optval));
2700 break;
2701
2702 case IPV6_MULTICAST_LOOP:
2703 if (im6o == NULL)
2704 optval = IPV6_DEFAULT_MULTICAST_LOOP;
2705 else
2706 optval = im6o->im6o_multicast_loop;
2707
2708 error = sockopt_set(sopt, &optval, sizeof(optval));
2709 break;
2710
2711 default:
2712 error = EOPNOTSUPP;
2713 }
2714
2715 return (error);
2716 }
2717
2718 /*
2719 * Discard the IP6 multicast options.
2720 */
2721 void
2722 ip6_freemoptions(struct ip6_moptions *im6o)
2723 {
2724 struct in6_multi_mship *imm;
2725
2726 if (im6o == NULL)
2727 return;
2728
2729 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2730 LIST_REMOVE(imm, i6mm_chain);
2731 in6_leavegroup(imm);
2732 }
2733 free(im6o, M_IPMOPTS);
2734 }
2735
2736 /*
2737 * Set IPv6 outgoing packet options based on advanced API.
2738 */
2739 int
2740 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2741 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2742 {
2743 struct cmsghdr *cm = 0;
2744
2745 if (control == NULL || opt == NULL)
2746 return (EINVAL);
2747
2748 ip6_initpktopts(opt);
2749 if (stickyopt) {
2750 int error;
2751
2752 /*
2753 * If stickyopt is provided, make a local copy of the options
2754 * for this particular packet, then override them by ancillary
2755 * objects.
2756 * XXX: copypktopts() does not copy the cached route to a next
2757 * hop (if any). This is not very good in terms of efficiency,
2758 * but we can allow this since this option should be rarely
2759 * used.
2760 */
2761 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2762 return (error);
2763 }
2764
2765 /*
2766 * XXX: Currently, we assume all the optional information is stored
2767 * in a single mbuf.
2768 */
2769 if (control->m_next)
2770 return (EINVAL);
2771
2772 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2773 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2774 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2775 int error;
2776
2777 if (control->m_len < CMSG_LEN(0))
2778 return (EINVAL);
2779
2780 cm = mtod(control, struct cmsghdr *);
2781 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2782 return (EINVAL);
2783 if (cm->cmsg_level != IPPROTO_IPV6)
2784 continue;
2785
2786 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2787 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2788 if (error)
2789 return (error);
2790 }
2791
2792 return (0);
2793 }
2794
2795 /*
2796 * Set a particular packet option, as a sticky option or an ancillary data
2797 * item. "len" can be 0 only when it's a sticky option.
2798 * We have 4 cases of combination of "sticky" and "cmsg":
2799 * "sticky=0, cmsg=0": impossible
2800 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2801 * "sticky=1, cmsg=0": RFC3542 socket option
2802 * "sticky=1, cmsg=1": RFC2292 socket option
2803 */
2804 static int
2805 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2806 kauth_cred_t cred, int sticky, int cmsg, int uproto)
2807 {
2808 int minmtupolicy;
2809 int error;
2810
2811 if (!sticky && !cmsg) {
2812 #ifdef DIAGNOSTIC
2813 printf("ip6_setpktopt: impossible case\n");
2814 #endif
2815 return (EINVAL);
2816 }
2817
2818 /*
2819 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2820 * not be specified in the context of RFC3542. Conversely,
2821 * RFC3542 types should not be specified in the context of RFC2292.
2822 */
2823 if (!cmsg) {
2824 switch (optname) {
2825 case IPV6_2292PKTINFO:
2826 case IPV6_2292HOPLIMIT:
2827 case IPV6_2292NEXTHOP:
2828 case IPV6_2292HOPOPTS:
2829 case IPV6_2292DSTOPTS:
2830 case IPV6_2292RTHDR:
2831 case IPV6_2292PKTOPTIONS:
2832 return (ENOPROTOOPT);
2833 }
2834 }
2835 if (sticky && cmsg) {
2836 switch (optname) {
2837 case IPV6_PKTINFO:
2838 case IPV6_HOPLIMIT:
2839 case IPV6_NEXTHOP:
2840 case IPV6_HOPOPTS:
2841 case IPV6_DSTOPTS:
2842 case IPV6_RTHDRDSTOPTS:
2843 case IPV6_RTHDR:
2844 case IPV6_USE_MIN_MTU:
2845 case IPV6_DONTFRAG:
2846 case IPV6_OTCLASS:
2847 case IPV6_TCLASS:
2848 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
2849 return (ENOPROTOOPT);
2850 }
2851 }
2852
2853 switch (optname) {
2854 #ifdef RFC2292
2855 case IPV6_2292PKTINFO:
2856 #endif
2857 case IPV6_PKTINFO:
2858 {
2859 struct in6_pktinfo *pktinfo;
2860
2861 if (len != sizeof(struct in6_pktinfo))
2862 return (EINVAL);
2863
2864 pktinfo = (struct in6_pktinfo *)buf;
2865
2866 /*
2867 * An application can clear any sticky IPV6_PKTINFO option by
2868 * doing a "regular" setsockopt with ipi6_addr being
2869 * in6addr_any and ipi6_ifindex being zero.
2870 * [RFC 3542, Section 6]
2871 */
2872 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2873 pktinfo->ipi6_ifindex == 0 &&
2874 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2875 ip6_clearpktopts(opt, optname);
2876 break;
2877 }
2878
2879 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2880 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2881 return (EINVAL);
2882 }
2883
2884 /* Validate the interface index if specified. */
2885 if (pktinfo->ipi6_ifindex) {
2886 struct ifnet *ifp;
2887 int s = pserialize_read_enter();
2888 ifp = if_byindex(pktinfo->ipi6_ifindex);
2889 if (ifp == NULL) {
2890 pserialize_read_exit(s);
2891 return ENXIO;
2892 }
2893 pserialize_read_exit(s);
2894 }
2895
2896 /*
2897 * We store the address anyway, and let in6_selectsrc()
2898 * validate the specified address. This is because ipi6_addr
2899 * may not have enough information about its scope zone, and
2900 * we may need additional information (such as outgoing
2901 * interface or the scope zone of a destination address) to
2902 * disambiguate the scope.
2903 * XXX: the delay of the validation may confuse the
2904 * application when it is used as a sticky option.
2905 */
2906 if (opt->ip6po_pktinfo == NULL) {
2907 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2908 M_IP6OPT, M_NOWAIT);
2909 if (opt->ip6po_pktinfo == NULL)
2910 return (ENOBUFS);
2911 }
2912 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2913 break;
2914 }
2915
2916 #ifdef RFC2292
2917 case IPV6_2292HOPLIMIT:
2918 #endif
2919 case IPV6_HOPLIMIT:
2920 {
2921 int *hlimp;
2922
2923 /*
2924 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2925 * to simplify the ordering among hoplimit options.
2926 */
2927 if (optname == IPV6_HOPLIMIT && sticky)
2928 return (ENOPROTOOPT);
2929
2930 if (len != sizeof(int))
2931 return (EINVAL);
2932 hlimp = (int *)buf;
2933 if (*hlimp < -1 || *hlimp > 255)
2934 return (EINVAL);
2935
2936 opt->ip6po_hlim = *hlimp;
2937 break;
2938 }
2939
2940 case IPV6_OTCLASS:
2941 if (len != sizeof(u_int8_t))
2942 return (EINVAL);
2943
2944 opt->ip6po_tclass = *(u_int8_t *)buf;
2945 break;
2946
2947 case IPV6_TCLASS:
2948 {
2949 int tclass;
2950
2951 if (len != sizeof(int))
2952 return (EINVAL);
2953 tclass = *(int *)buf;
2954 if (tclass < -1 || tclass > 255)
2955 return (EINVAL);
2956
2957 opt->ip6po_tclass = tclass;
2958 break;
2959 }
2960
2961 #ifdef RFC2292
2962 case IPV6_2292NEXTHOP:
2963 #endif
2964 case IPV6_NEXTHOP:
2965 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2966 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2967 if (error)
2968 return (error);
2969
2970 if (len == 0) { /* just remove the option */
2971 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2972 break;
2973 }
2974
2975 /* check if cmsg_len is large enough for sa_len */
2976 if (len < sizeof(struct sockaddr) || len < *buf)
2977 return (EINVAL);
2978
2979 switch (((struct sockaddr *)buf)->sa_family) {
2980 case AF_INET6:
2981 {
2982 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2983
2984 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2985 return (EINVAL);
2986
2987 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2988 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2989 return (EINVAL);
2990 }
2991 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
2992 != 0) {
2993 return (error);
2994 }
2995 break;
2996 }
2997 case AF_LINK: /* eventually be supported? */
2998 default:
2999 return (EAFNOSUPPORT);
3000 }
3001
3002 /* turn off the previous option, then set the new option. */
3003 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3004 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3005 if (opt->ip6po_nexthop == NULL)
3006 return (ENOBUFS);
3007 memcpy(opt->ip6po_nexthop, buf, *buf);
3008 break;
3009
3010 #ifdef RFC2292
3011 case IPV6_2292HOPOPTS:
3012 #endif
3013 case IPV6_HOPOPTS:
3014 {
3015 struct ip6_hbh *hbh;
3016 int hbhlen;
3017
3018 /*
3019 * XXX: We don't allow a non-privileged user to set ANY HbH
3020 * options, since per-option restriction has too much
3021 * overhead.
3022 */
3023 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3024 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3025 if (error)
3026 return (error);
3027
3028 if (len == 0) {
3029 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3030 break; /* just remove the option */
3031 }
3032
3033 /* message length validation */
3034 if (len < sizeof(struct ip6_hbh))
3035 return (EINVAL);
3036 hbh = (struct ip6_hbh *)buf;
3037 hbhlen = (hbh->ip6h_len + 1) << 3;
3038 if (len != hbhlen)
3039 return (EINVAL);
3040
3041 /* turn off the previous option, then set the new option. */
3042 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3043 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3044 if (opt->ip6po_hbh == NULL)
3045 return (ENOBUFS);
3046 memcpy(opt->ip6po_hbh, hbh, hbhlen);
3047
3048 break;
3049 }
3050
3051 #ifdef RFC2292
3052 case IPV6_2292DSTOPTS:
3053 #endif
3054 case IPV6_DSTOPTS:
3055 case IPV6_RTHDRDSTOPTS:
3056 {
3057 struct ip6_dest *dest, **newdest = NULL;
3058 int destlen;
3059
3060 /* XXX: see the comment for IPV6_HOPOPTS */
3061 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3062 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3063 if (error)
3064 return (error);
3065
3066 if (len == 0) {
3067 ip6_clearpktopts(opt, optname);
3068 break; /* just remove the option */
3069 }
3070
3071 /* message length validation */
3072 if (len < sizeof(struct ip6_dest))
3073 return (EINVAL);
3074 dest = (struct ip6_dest *)buf;
3075 destlen = (dest->ip6d_len + 1) << 3;
3076 if (len != destlen)
3077 return (EINVAL);
3078 /*
3079 * Determine the position that the destination options header
3080 * should be inserted; before or after the routing header.
3081 */
3082 switch (optname) {
3083 case IPV6_2292DSTOPTS:
3084 /*
3085 * The old advanced API is ambiguous on this point.
3086 * Our approach is to determine the position based
3087 * according to the existence of a routing header.
3088 * Note, however, that this depends on the order of the
3089 * extension headers in the ancillary data; the 1st
3090 * part of the destination options header must appear
3091 * before the routing header in the ancillary data,
3092 * too.
3093 * RFC3542 solved the ambiguity by introducing
3094 * separate ancillary data or option types.
3095 */
3096 if (opt->ip6po_rthdr == NULL)
3097 newdest = &opt->ip6po_dest1;
3098 else
3099 newdest = &opt->ip6po_dest2;
3100 break;
3101 case IPV6_RTHDRDSTOPTS:
3102 newdest = &opt->ip6po_dest1;
3103 break;
3104 case IPV6_DSTOPTS:
3105 newdest = &opt->ip6po_dest2;
3106 break;
3107 }
3108
3109 /* turn off the previous option, then set the new option. */
3110 ip6_clearpktopts(opt, optname);
3111 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3112 if (*newdest == NULL)
3113 return (ENOBUFS);
3114 memcpy(*newdest, dest, destlen);
3115
3116 break;
3117 }
3118
3119 #ifdef RFC2292
3120 case IPV6_2292RTHDR:
3121 #endif
3122 case IPV6_RTHDR:
3123 {
3124 struct ip6_rthdr *rth;
3125 int rthlen;
3126
3127 if (len == 0) {
3128 ip6_clearpktopts(opt, IPV6_RTHDR);
3129 break; /* just remove the option */
3130 }
3131
3132 /* message length validation */
3133 if (len < sizeof(struct ip6_rthdr))
3134 return (EINVAL);
3135 rth = (struct ip6_rthdr *)buf;
3136 rthlen = (rth->ip6r_len + 1) << 3;
3137 if (len != rthlen)
3138 return (EINVAL);
3139 switch (rth->ip6r_type) {
3140 case IPV6_RTHDR_TYPE_0:
3141 if (rth->ip6r_len == 0) /* must contain one addr */
3142 return (EINVAL);
3143 if (rth->ip6r_len % 2) /* length must be even */
3144 return (EINVAL);
3145 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3146 return (EINVAL);
3147 break;
3148 default:
3149 return (EINVAL); /* not supported */
3150 }
3151 /* turn off the previous option */
3152 ip6_clearpktopts(opt, IPV6_RTHDR);
3153 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3154 if (opt->ip6po_rthdr == NULL)
3155 return (ENOBUFS);
3156 memcpy(opt->ip6po_rthdr, rth, rthlen);
3157 break;
3158 }
3159
3160 case IPV6_USE_MIN_MTU:
3161 if (len != sizeof(int))
3162 return (EINVAL);
3163 minmtupolicy = *(int *)buf;
3164 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3165 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3166 minmtupolicy != IP6PO_MINMTU_ALL) {
3167 return (EINVAL);
3168 }
3169 opt->ip6po_minmtu = minmtupolicy;
3170 break;
3171
3172 case IPV6_DONTFRAG:
3173 if (len != sizeof(int))
3174 return (EINVAL);
3175
3176 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3177 /*
3178 * we ignore this option for TCP sockets.
3179 * (RFC3542 leaves this case unspecified.)
3180 */
3181 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3182 } else
3183 opt->ip6po_flags |= IP6PO_DONTFRAG;
3184 break;
3185
3186 case IPV6_PREFER_TEMPADDR:
3187 {
3188 int preftemp;
3189
3190 if (len != sizeof(int))
3191 return (EINVAL);
3192 preftemp = *(int *)buf;
3193 switch (preftemp) {
3194 case IP6PO_TEMPADDR_SYSTEM:
3195 case IP6PO_TEMPADDR_NOTPREFER:
3196 case IP6PO_TEMPADDR_PREFER:
3197 break;
3198 default:
3199 return (EINVAL);
3200 }
3201 opt->ip6po_prefer_tempaddr = preftemp;
3202 break;
3203 }
3204
3205 default:
3206 return (ENOPROTOOPT);
3207 } /* end of switch */
3208
3209 return (0);
3210 }
3211
3212 /*
3213 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3214 * packet to the input queue of a specified interface. Note that this
3215 * calls the output routine of the loopback "driver", but with an interface
3216 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3217 */
3218 void
3219 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3220 const struct sockaddr_in6 *dst)
3221 {
3222 struct mbuf *copym;
3223 struct ip6_hdr *ip6;
3224
3225 copym = m_copy(m, 0, M_COPYALL);
3226 if (copym == NULL)
3227 return;
3228
3229 /*
3230 * Make sure to deep-copy IPv6 header portion in case the data
3231 * is in an mbuf cluster, so that we can safely override the IPv6
3232 * header portion later.
3233 */
3234 if ((copym->m_flags & M_EXT) != 0 ||
3235 copym->m_len < sizeof(struct ip6_hdr)) {
3236 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3237 if (copym == NULL)
3238 return;
3239 }
3240
3241 #ifdef DIAGNOSTIC
3242 if (copym->m_len < sizeof(*ip6)) {
3243 m_freem(copym);
3244 return;
3245 }
3246 #endif
3247
3248 ip6 = mtod(copym, struct ip6_hdr *);
3249 /*
3250 * clear embedded scope identifiers if necessary.
3251 * in6_clearscope will touch the addresses only when necessary.
3252 */
3253 in6_clearscope(&ip6->ip6_src);
3254 in6_clearscope(&ip6->ip6_dst);
3255
3256 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3257 }
3258
3259 /*
3260 * Chop IPv6 header off from the payload.
3261 */
3262 static int
3263 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3264 {
3265 struct mbuf *mh;
3266 struct ip6_hdr *ip6;
3267
3268 ip6 = mtod(m, struct ip6_hdr *);
3269 if (m->m_len > sizeof(*ip6)) {
3270 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3271 if (mh == 0) {
3272 m_freem(m);
3273 return ENOBUFS;
3274 }
3275 M_MOVE_PKTHDR(mh, m);
3276 MH_ALIGN(mh, sizeof(*ip6));
3277 m->m_len -= sizeof(*ip6);
3278 m->m_data += sizeof(*ip6);
3279 mh->m_next = m;
3280 m = mh;
3281 m->m_len = sizeof(*ip6);
3282 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
3283 }
3284 exthdrs->ip6e_ip6 = m;
3285 return 0;
3286 }
3287
3288 /*
3289 * Compute IPv6 extension header length.
3290 */
3291 int
3292 ip6_optlen(struct in6pcb *in6p)
3293 {
3294 int len;
3295
3296 if (!in6p->in6p_outputopts)
3297 return 0;
3298
3299 len = 0;
3300 #define elen(x) \
3301 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3302
3303 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3304 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3305 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3306 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3307 return len;
3308 #undef elen
3309 }
3310
3311 /*
3312 * Ensure sending address is valid.
3313 * Returns 0 on success, -1 if an error should be sent back or 1
3314 * if the packet could be dropped without error (protocol dependent).
3315 */
3316 static int
3317 ip6_ifaddrvalid(const struct in6_addr *addr)
3318 {
3319 struct sockaddr_in6 sin6;
3320 int s, error;
3321 struct ifaddr *ifa;
3322 struct in6_ifaddr *ia6;
3323
3324 if (IN6_IS_ADDR_UNSPECIFIED(addr))
3325 return 0;
3326
3327 memset(&sin6, 0, sizeof(sin6));
3328 sin6.sin6_family = AF_INET6;
3329 sin6.sin6_len = sizeof(sin6);
3330 sin6.sin6_addr = *addr;
3331
3332 s = pserialize_read_enter();
3333 ifa = ifa_ifwithaddr(sin6tosa(&sin6));
3334 if ((ia6 = ifatoia6(ifa)) == NULL ||
3335 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
3336 error = -1;
3337 else if (ia6->ia6_flags & (IN6_IFF_TENTATIVE | IN6_IFF_DETACHED))
3338 error = 1;
3339 else
3340 error = 0;
3341 pserialize_read_exit(s);
3342
3343 return error;
3344 }
3345