Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.186
      1 /*	$NetBSD: ip6_output.c,v 1.186 2017/02/22 07:46:00 ozaki-r Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.186 2017/02/22 07:46:00 ozaki-r Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_inet.h"
     69 #include "opt_inet6.h"
     70 #include "opt_ipsec.h"
     71 #endif
     72 
     73 #include <sys/param.h>
     74 #include <sys/malloc.h>
     75 #include <sys/mbuf.h>
     76 #include <sys/errno.h>
     77 #include <sys/socket.h>
     78 #include <sys/socketvar.h>
     79 #include <sys/syslog.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/kauth.h>
     83 
     84 #include <net/if.h>
     85 #include <net/route.h>
     86 #include <net/pfil.h>
     87 
     88 #include <netinet/in.h>
     89 #include <netinet/in_var.h>
     90 #include <netinet/ip6.h>
     91 #include <netinet/ip_var.h>
     92 #include <netinet/icmp6.h>
     93 #include <netinet/in_offload.h>
     94 #include <netinet/portalgo.h>
     95 #include <netinet6/in6_offload.h>
     96 #include <netinet6/ip6_var.h>
     97 #include <netinet6/ip6_private.h>
     98 #include <netinet6/in6_pcb.h>
     99 #include <netinet6/nd6.h>
    100 #include <netinet6/ip6protosw.h>
    101 #include <netinet6/scope6_var.h>
    102 
    103 #ifdef IPSEC
    104 #include <netipsec/ipsec.h>
    105 #include <netipsec/ipsec6.h>
    106 #include <netipsec/key.h>
    107 #include <netipsec/xform.h>
    108 #endif
    109 
    110 
    111 #include <net/net_osdep.h>
    112 
    113 extern pfil_head_t *inet6_pfil_hook;	/* XXX */
    114 
    115 struct ip6_exthdrs {
    116 	struct mbuf *ip6e_ip6;
    117 	struct mbuf *ip6e_hbh;
    118 	struct mbuf *ip6e_dest1;
    119 	struct mbuf *ip6e_rthdr;
    120 	struct mbuf *ip6e_dest2;
    121 };
    122 
    123 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
    124 	kauth_cred_t, int);
    125 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
    126 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
    127 	int, int, int);
    128 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *);
    129 static int ip6_getmoptions(struct sockopt *, struct in6pcb *);
    130 static int ip6_copyexthdr(struct mbuf **, void *, int);
    131 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
    132 	struct ip6_frag **);
    133 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
    134 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
    135 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
    136 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
    137 static int ip6_ifaddrvalid(const struct in6_addr *);
    138 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
    139 
    140 #ifdef RFC2292
    141 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
    142 #endif
    143 
    144 static int
    145 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
    146 {
    147 	struct ip6_rthdr0 *rh0;
    148 	struct in6_addr *addr;
    149 	struct sockaddr_in6 sa;
    150 	int error = 0;
    151 
    152 	switch (rh->ip6r_type) {
    153 	case IPV6_RTHDR_TYPE_0:
    154 		 rh0 = (struct ip6_rthdr0 *)rh;
    155 		 addr = (struct in6_addr *)(rh0 + 1);
    156 
    157 		 /*
    158 		  * construct a sockaddr_in6 form of the first hop.
    159 		  *
    160 		  * XXX we may not have enough information about its scope zone;
    161 		  * there is no standard API to pass the information from the
    162 		  * application.
    163 		  */
    164 		 sockaddr_in6_init(&sa, addr, 0, 0, 0);
    165 		 error = sa6_embedscope(&sa, ip6_use_defzone);
    166 		 if (error != 0)
    167 			 break;
    168 		 (void)memmove(&addr[0], &addr[1],
    169 		     sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
    170 		 addr[rh0->ip6r0_segleft - 1] = ip6->ip6_dst;
    171 		 ip6->ip6_dst = sa.sin6_addr;
    172 		 /* XXX */
    173 		 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
    174 		 break;
    175 	default:	/* is it possible? */
    176 		 error = EINVAL;
    177 	}
    178 
    179 	return error;
    180 }
    181 
    182 /*
    183  * Send an IP packet to a host.
    184  */
    185 int
    186 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp,
    187     struct mbuf * const m,
    188     const struct sockaddr_in6 * const dst, const struct rtentry *rt)
    189 {
    190 	int error = 0;
    191 
    192 	if (rt != NULL) {
    193 		error = rt_check_reject_route(rt, ifp);
    194 		if (error != 0) {
    195 			m_freem(m);
    196 			return error;
    197 		}
    198 	}
    199 
    200 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
    201 		error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
    202 	else
    203 		error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
    204 	return error;
    205 }
    206 
    207 /*
    208  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    209  * header (with pri, len, nxt, hlim, src, dst).
    210  * This function may modify ver and hlim only.
    211  * The mbuf chain containing the packet will be freed.
    212  * The mbuf opt, if present, will not be freed.
    213  *
    214  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    215  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
    216  * which is rt_rmx.rmx_mtu.
    217  */
    218 int
    219 ip6_output(
    220     struct mbuf *m0,
    221     struct ip6_pktopts *opt,
    222     struct route *ro,
    223     int flags,
    224     struct ip6_moptions *im6o,
    225     struct socket *so,
    226     struct ifnet **ifpp		/* XXX: just for statistics */
    227 )
    228 {
    229 	struct ip6_hdr *ip6, *mhip6;
    230 	struct ifnet *ifp = NULL, *origifp = NULL;
    231 	struct mbuf *m = m0;
    232 	int hlen, tlen, len, off;
    233 	bool tso;
    234 	struct route ip6route;
    235 	struct rtentry *rt = NULL, *rt_pmtu;
    236 	const struct sockaddr_in6 *dst;
    237 	struct sockaddr_in6 src_sa, dst_sa;
    238 	int error = 0;
    239 	struct in6_ifaddr *ia = NULL;
    240 	u_long mtu;
    241 	int alwaysfrag, dontfrag;
    242 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    243 	struct ip6_exthdrs exthdrs;
    244 	struct in6_addr finaldst, src0, dst0;
    245 	u_int32_t zone;
    246 	struct route *ro_pmtu = NULL;
    247 	int hdrsplit = 0;
    248 	int needipsec = 0;
    249 #ifdef IPSEC
    250 	struct secpolicy *sp = NULL;
    251 #endif
    252 	struct psref psref, psref_ia;
    253 	int bound = curlwp_bind();
    254 	bool release_psref_ia = false;
    255 
    256 #ifdef  DIAGNOSTIC
    257 	if ((m->m_flags & M_PKTHDR) == 0)
    258 		panic("ip6_output: no HDR");
    259 
    260 	if ((m->m_pkthdr.csum_flags &
    261 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
    262 		panic("ip6_output: IPv4 checksum offload flags: %d",
    263 		    m->m_pkthdr.csum_flags);
    264 	}
    265 
    266 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
    267 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
    268 		panic("ip6_output: conflicting checksum offload flags: %d",
    269 		    m->m_pkthdr.csum_flags);
    270 	}
    271 #endif
    272 
    273 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    274 
    275 #define MAKE_EXTHDR(hp, mp)						\
    276     do {								\
    277 	if (hp) {							\
    278 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    279 		error = ip6_copyexthdr((mp), (void *)(hp), 		\
    280 		    ((eh)->ip6e_len + 1) << 3);				\
    281 		if (error)						\
    282 			goto freehdrs;					\
    283 	}								\
    284     } while (/*CONSTCOND*/ 0)
    285 
    286 	memset(&exthdrs, 0, sizeof(exthdrs));
    287 	if (opt) {
    288 		/* Hop-by-Hop options header */
    289 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    290 		/* Destination options header(1st part) */
    291 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    292 		/* Routing header */
    293 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    294 		/* Destination options header(2nd part) */
    295 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    296 	}
    297 
    298 	/*
    299 	 * Calculate the total length of the extension header chain.
    300 	 * Keep the length of the unfragmentable part for fragmentation.
    301 	 */
    302 	optlen = 0;
    303 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    304 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    305 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    306 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    307 	/* NOTE: we don't add AH/ESP length here. do that later. */
    308 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    309 
    310 #ifdef IPSEC
    311 	if (ipsec_used) {
    312 		/* Check the security policy (SP) for the packet */
    313 
    314 		sp = ipsec6_check_policy(m, so, flags, &needipsec, &error);
    315 		if (error != 0) {
    316 			/*
    317 			 * Hack: -EINVAL is used to signal that a packet
    318 			 * should be silently discarded.  This is typically
    319 			 * because we asked key management for an SA and
    320 			 * it was delayed (e.g. kicked up to IKE).
    321 			 */
    322 			if (error == -EINVAL)
    323 				error = 0;
    324 			goto freehdrs;
    325 		}
    326 	}
    327 #endif /* IPSEC */
    328 
    329 
    330 	if (needipsec &&
    331 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    332 		in6_delayed_cksum(m);
    333 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    334 	}
    335 
    336 
    337 	/*
    338 	 * If we need IPsec, or there is at least one extension header,
    339 	 * separate IP6 header from the payload.
    340 	 */
    341 	if ((needipsec || optlen) && !hdrsplit) {
    342 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    343 			m = NULL;
    344 			goto freehdrs;
    345 		}
    346 		m = exthdrs.ip6e_ip6;
    347 		hdrsplit++;
    348 	}
    349 
    350 	/* adjust pointer */
    351 	ip6 = mtod(m, struct ip6_hdr *);
    352 
    353 	/* adjust mbuf packet header length */
    354 	m->m_pkthdr.len += optlen;
    355 	plen = m->m_pkthdr.len - sizeof(*ip6);
    356 
    357 	/* If this is a jumbo payload, insert a jumbo payload option. */
    358 	if (plen > IPV6_MAXPACKET) {
    359 		if (!hdrsplit) {
    360 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    361 				m = NULL;
    362 				goto freehdrs;
    363 			}
    364 			m = exthdrs.ip6e_ip6;
    365 			hdrsplit++;
    366 		}
    367 		/* adjust pointer */
    368 		ip6 = mtod(m, struct ip6_hdr *);
    369 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    370 			goto freehdrs;
    371 		optlen += 8; /* XXX JUMBOOPTLEN */
    372 		ip6->ip6_plen = 0;
    373 	} else
    374 		ip6->ip6_plen = htons(plen);
    375 
    376 	/*
    377 	 * Concatenate headers and fill in next header fields.
    378 	 * Here we have, on "m"
    379 	 *	IPv6 payload
    380 	 * and we insert headers accordingly.  Finally, we should be getting:
    381 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    382 	 *
    383 	 * during the header composing process, "m" points to IPv6 header.
    384 	 * "mprev" points to an extension header prior to esp.
    385 	 */
    386 	{
    387 		u_char *nexthdrp = &ip6->ip6_nxt;
    388 		struct mbuf *mprev = m;
    389 
    390 		/*
    391 		 * we treat dest2 specially.  this makes IPsec processing
    392 		 * much easier.  the goal here is to make mprev point the
    393 		 * mbuf prior to dest2.
    394 		 *
    395 		 * result: IPv6 dest2 payload
    396 		 * m and mprev will point to IPv6 header.
    397 		 */
    398 		if (exthdrs.ip6e_dest2) {
    399 			if (!hdrsplit)
    400 				panic("assumption failed: hdr not split");
    401 			exthdrs.ip6e_dest2->m_next = m->m_next;
    402 			m->m_next = exthdrs.ip6e_dest2;
    403 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    404 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    405 		}
    406 
    407 #define MAKE_CHAIN(m, mp, p, i)\
    408     do {\
    409 	if (m) {\
    410 		if (!hdrsplit) \
    411 			panic("assumption failed: hdr not split"); \
    412 		*mtod((m), u_char *) = *(p);\
    413 		*(p) = (i);\
    414 		p = mtod((m), u_char *);\
    415 		(m)->m_next = (mp)->m_next;\
    416 		(mp)->m_next = (m);\
    417 		(mp) = (m);\
    418 	}\
    419     } while (/*CONSTCOND*/ 0)
    420 		/*
    421 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    422 		 * m will point to IPv6 header.  mprev will point to the
    423 		 * extension header prior to dest2 (rthdr in the above case).
    424 		 */
    425 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    426 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    427 		    IPPROTO_DSTOPTS);
    428 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    429 		    IPPROTO_ROUTING);
    430 
    431 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
    432 		    sizeof(struct ip6_hdr) + optlen);
    433 	}
    434 
    435 	/* Need to save for pmtu */
    436 	finaldst = ip6->ip6_dst;
    437 
    438 	/*
    439 	 * If there is a routing header, replace destination address field
    440 	 * with the first hop of the routing header.
    441 	 */
    442 	if (exthdrs.ip6e_rthdr) {
    443 		struct ip6_rthdr *rh;
    444 
    445 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    446 		    struct ip6_rthdr *));
    447 
    448 		error = ip6_handle_rthdr(rh, ip6);
    449 		if (error != 0)
    450 			goto bad;
    451 	}
    452 
    453 	/* Source address validation */
    454 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    455 	    (flags & IPV6_UNSPECSRC) == 0) {
    456 		error = EOPNOTSUPP;
    457 		IP6_STATINC(IP6_STAT_BADSCOPE);
    458 		goto bad;
    459 	}
    460 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    461 		error = EOPNOTSUPP;
    462 		IP6_STATINC(IP6_STAT_BADSCOPE);
    463 		goto bad;
    464 	}
    465 
    466 	IP6_STATINC(IP6_STAT_LOCALOUT);
    467 
    468 	/*
    469 	 * Route packet.
    470 	 */
    471 	/* initialize cached route */
    472 	if (ro == NULL) {
    473 		memset(&ip6route, 0, sizeof(ip6route));
    474 		ro = &ip6route;
    475 	}
    476 	ro_pmtu = ro;
    477 	if (opt && opt->ip6po_rthdr)
    478 		ro = &opt->ip6po_route;
    479 
    480  	/*
    481 	 * if specified, try to fill in the traffic class field.
    482 	 * do not override if a non-zero value is already set.
    483 	 * we check the diffserv field and the ecn field separately.
    484 	 */
    485 	if (opt && opt->ip6po_tclass >= 0) {
    486 		int mask = 0;
    487 
    488 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    489 			mask |= 0xfc;
    490 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    491 			mask |= 0x03;
    492 		if (mask != 0)
    493 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    494 	}
    495 
    496 	/* fill in or override the hop limit field, if necessary. */
    497 	if (opt && opt->ip6po_hlim != -1)
    498 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    499 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    500 		if (im6o != NULL)
    501 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    502 		else
    503 			ip6->ip6_hlim = ip6_defmcasthlim;
    504 	}
    505 
    506 #ifdef IPSEC
    507 	if (needipsec) {
    508 		int s = splsoftnet();
    509 		error = ipsec6_process_packet(m, sp->req);
    510 
    511 		/*
    512 		 * Preserve KAME behaviour: ENOENT can be returned
    513 		 * when an SA acquire is in progress.  Don't propagate
    514 		 * this to user-level; it confuses applications.
    515 		 * XXX this will go away when the SADB is redone.
    516 		 */
    517 		if (error == ENOENT)
    518 			error = 0;
    519 		splx(s);
    520 		goto done;
    521 	}
    522 #endif /* IPSEC */
    523 
    524 	/* adjust pointer */
    525 	ip6 = mtod(m, struct ip6_hdr *);
    526 
    527 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    528 
    529 	/* We do not need a route for multicast */
    530 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    531 		struct in6_pktinfo *pi = NULL;
    532 
    533 		/*
    534 		 * If the outgoing interface for the address is specified by
    535 		 * the caller, use it.
    536 		 */
    537 		if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
    538 			/* XXX boundary check is assumed to be already done. */
    539 			ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
    540 		} else if (im6o != NULL) {
    541 			ifp = if_get_byindex(im6o->im6o_multicast_if_index,
    542 			    &psref);
    543 		}
    544 	}
    545 
    546 	if (ifp == NULL) {
    547 		error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
    548 		if (error != 0)
    549 			goto bad;
    550 		ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
    551 	}
    552 
    553 	if (rt == NULL) {
    554 		/*
    555 		 * If in6_selectroute() does not return a route entry,
    556 		 * dst may not have been updated.
    557 		 */
    558 		error = rtcache_setdst(ro, sin6tosa(&dst_sa));
    559 		if (error) {
    560 			goto bad;
    561 		}
    562 	}
    563 
    564 	/*
    565 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    566 	 */
    567 	if ((flags & IPV6_FORWARDING) == 0) {
    568 		/* XXX: the FORWARDING flag can be set for mrouting. */
    569 		in6_ifstat_inc(ifp, ifs6_out_request);
    570 	}
    571 	if (rt != NULL) {
    572 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    573 		rt->rt_use++;
    574 	}
    575 
    576 	/*
    577 	 * The outgoing interface must be in the zone of source and
    578 	 * destination addresses.  We should use ia_ifp to support the
    579 	 * case of sending packets to an address of our own.
    580 	 */
    581 	if (ia != NULL && ia->ia_ifp) {
    582 		origifp = ia->ia_ifp;
    583 		if (if_is_deactivated(origifp))
    584 			goto bad;
    585 		if_acquire(origifp, &psref_ia);
    586 		release_psref_ia = true;
    587 	} else
    588 		origifp = ifp;
    589 
    590 	src0 = ip6->ip6_src;
    591 	if (in6_setscope(&src0, origifp, &zone))
    592 		goto badscope;
    593 	sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
    594 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    595 		goto badscope;
    596 
    597 	dst0 = ip6->ip6_dst;
    598 	if (in6_setscope(&dst0, origifp, &zone))
    599 		goto badscope;
    600 	/* re-initialize to be sure */
    601 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    602 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    603 		goto badscope;
    604 
    605 	/* scope check is done. */
    606 
    607 	/* Ensure we only send from a valid address. */
    608 	if ((error = ip6_ifaddrvalid(&src0)) != 0) {
    609 		char ip6buf[INET6_ADDRSTRLEN];
    610 		nd6log(LOG_ERR,
    611 		    "refusing to send from invalid address %s (pid %d)\n",
    612 		    IN6_PRINT(ip6buf, &src0), curproc->p_pid);
    613 		IP6_STATINC(IP6_STAT_ODROPPED);
    614 		in6_ifstat_inc(origifp, ifs6_out_discard);
    615 		if (error == 1)
    616 			/*
    617 			 * Address exists, but is tentative or detached.
    618 			 * We can't send from it because it's invalid,
    619 			 * so we drop the packet.
    620 			 */
    621 			error = 0;
    622 		else
    623 			error = EADDRNOTAVAIL;
    624 		goto bad;
    625 	}
    626 
    627 	if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
    628 	    !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    629 		dst = satocsin6(rt->rt_gateway);
    630 	else
    631 		dst = satocsin6(rtcache_getdst(ro));
    632 
    633 	/*
    634 	 * XXXXXX: original code follows:
    635 	 */
    636 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    637 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    638 	else {
    639 		struct	in6_multi *in6m;
    640 
    641 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    642 
    643 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    644 
    645 		/*
    646 		 * Confirm that the outgoing interface supports multicast.
    647 		 */
    648 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    649 			IP6_STATINC(IP6_STAT_NOROUTE);
    650 			in6_ifstat_inc(ifp, ifs6_out_discard);
    651 			error = ENETUNREACH;
    652 			goto bad;
    653 		}
    654 
    655 		in6m = in6_lookup_multi(&ip6->ip6_dst, ifp);
    656 		if (in6m != NULL &&
    657 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    658 			/*
    659 			 * If we belong to the destination multicast group
    660 			 * on the outgoing interface, and the caller did not
    661 			 * forbid loopback, loop back a copy.
    662 			 */
    663 			KASSERT(dst != NULL);
    664 			ip6_mloopback(ifp, m, dst);
    665 		} else {
    666 			/*
    667 			 * If we are acting as a multicast router, perform
    668 			 * multicast forwarding as if the packet had just
    669 			 * arrived on the interface to which we are about
    670 			 * to send.  The multicast forwarding function
    671 			 * recursively calls this function, using the
    672 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    673 			 *
    674 			 * Multicasts that are looped back by ip6_mloopback(),
    675 			 * above, will be forwarded by the ip6_input() routine,
    676 			 * if necessary.
    677 			 */
    678 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    679 				if (ip6_mforward(ip6, ifp, m) != 0) {
    680 					m_freem(m);
    681 					goto done;
    682 				}
    683 			}
    684 		}
    685 		/*
    686 		 * Multicasts with a hoplimit of zero may be looped back,
    687 		 * above, but must not be transmitted on a network.
    688 		 * Also, multicasts addressed to the loopback interface
    689 		 * are not sent -- the above call to ip6_mloopback() will
    690 		 * loop back a copy if this host actually belongs to the
    691 		 * destination group on the loopback interface.
    692 		 */
    693 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    694 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    695 			m_freem(m);
    696 			goto done;
    697 		}
    698 	}
    699 
    700 	/*
    701 	 * Fill the outgoing inteface to tell the upper layer
    702 	 * to increment per-interface statistics.
    703 	 */
    704 	if (ifpp)
    705 		*ifpp = ifp;
    706 
    707 	/* Determine path MTU. */
    708 	/*
    709 	 * ro_pmtu represent final destination while
    710 	 * ro might represent immediate destination.
    711 	 * Use ro_pmtu destination since MTU might differ.
    712 	 */
    713 	if (ro_pmtu != ro) {
    714 		union {
    715 			struct sockaddr		dst;
    716 			struct sockaddr_in6	dst6;
    717 		} u;
    718 
    719 		/* ro_pmtu may not have a cache */
    720 		sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
    721 		rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
    722 	} else
    723 		rt_pmtu = rt;
    724 	error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
    725 	if (rt_pmtu != NULL && rt_pmtu != rt)
    726 		rtcache_unref(rt_pmtu, ro_pmtu);
    727 	if (error != 0)
    728 		goto bad;
    729 
    730 	/*
    731 	 * The caller of this function may specify to use the minimum MTU
    732 	 * in some cases.
    733 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
    734 	 * setting.  The logic is a bit complicated; by default, unicast
    735 	 * packets will follow path MTU while multicast packets will be sent at
    736 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
    737 	 * including unicast ones will be sent at the minimum MTU.  Multicast
    738 	 * packets will always be sent at the minimum MTU unless
    739 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
    740 	 * See RFC 3542 for more details.
    741 	 */
    742 	if (mtu > IPV6_MMTU) {
    743 		if ((flags & IPV6_MINMTU))
    744 			mtu = IPV6_MMTU;
    745 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
    746 			mtu = IPV6_MMTU;
    747 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
    748 			 (opt == NULL ||
    749 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
    750 			mtu = IPV6_MMTU;
    751 		}
    752 	}
    753 
    754 	/*
    755 	 * clear embedded scope identifiers if necessary.
    756 	 * in6_clearscope will touch the addresses only when necessary.
    757 	 */
    758 	in6_clearscope(&ip6->ip6_src);
    759 	in6_clearscope(&ip6->ip6_dst);
    760 
    761 	/*
    762 	 * If the outgoing packet contains a hop-by-hop options header,
    763 	 * it must be examined and processed even by the source node.
    764 	 * (RFC 2460, section 4.)
    765 	 */
    766 	if (ip6->ip6_nxt == IPV6_HOPOPTS) {
    767 		u_int32_t dummy1; /* XXX unused */
    768 		u_int32_t dummy2; /* XXX unused */
    769 		int hoff = sizeof(struct ip6_hdr);
    770 
    771 		if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
    772 			/* m was already freed at this point */
    773 			error = EINVAL;/* better error? */
    774 			goto done;
    775 		}
    776 
    777 		ip6 = mtod(m, struct ip6_hdr *);
    778 	}
    779 
    780 	/*
    781 	 * Run through list of hooks for output packets.
    782 	 */
    783 	if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    784 		goto done;
    785 	if (m == NULL)
    786 		goto done;
    787 	ip6 = mtod(m, struct ip6_hdr *);
    788 
    789 	/*
    790 	 * Send the packet to the outgoing interface.
    791 	 * If necessary, do IPv6 fragmentation before sending.
    792 	 *
    793 	 * the logic here is rather complex:
    794 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    795 	 * 1-a:	send as is if tlen <= path mtu
    796 	 * 1-b:	fragment if tlen > path mtu
    797 	 *
    798 	 * 2: if user asks us not to fragment (dontfrag == 1)
    799 	 * 2-a:	send as is if tlen <= interface mtu
    800 	 * 2-b:	error if tlen > interface mtu
    801 	 *
    802 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    803 	 *	always fragment
    804 	 *
    805 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    806 	 *	error, as we cannot handle this conflicting request
    807 	 */
    808 	tlen = m->m_pkthdr.len;
    809 	tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
    810 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
    811 		dontfrag = 1;
    812 	else
    813 		dontfrag = 0;
    814 
    815 	if (dontfrag && alwaysfrag) {	/* case 4 */
    816 		/* conflicting request - can't transmit */
    817 		error = EMSGSIZE;
    818 		goto bad;
    819 	}
    820 	if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) {	/* case 2-b */
    821 		/*
    822 		 * Even if the DONTFRAG option is specified, we cannot send the
    823 		 * packet when the data length is larger than the MTU of the
    824 		 * outgoing interface.
    825 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    826 		 * well as returning an error code (the latter is not described
    827 		 * in the API spec.)
    828 		 */
    829 		u_int32_t mtu32;
    830 		struct ip6ctlparam ip6cp;
    831 
    832 		mtu32 = (u_int32_t)mtu;
    833 		memset(&ip6cp, 0, sizeof(ip6cp));
    834 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    835 		pfctlinput2(PRC_MSGSIZE,
    836 		    rtcache_getdst(ro_pmtu), &ip6cp);
    837 
    838 		error = EMSGSIZE;
    839 		goto bad;
    840 	}
    841 
    842 	/*
    843 	 * transmit packet without fragmentation
    844 	 */
    845 	if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
    846 		/* case 1-a and 2-a */
    847 		struct in6_ifaddr *ia6;
    848 		int sw_csum;
    849 		int s;
    850 
    851 		ip6 = mtod(m, struct ip6_hdr *);
    852 		s = pserialize_read_enter();
    853 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    854 		if (ia6) {
    855 			/* Record statistics for this interface address. */
    856 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    857 		}
    858 		pserialize_read_exit(s);
    859 
    860 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    861 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    862 			if (IN6_NEED_CHECKSUM(ifp,
    863 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    864 				in6_delayed_cksum(m);
    865 			}
    866 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    867 		}
    868 
    869 		KASSERT(dst != NULL);
    870 		if (__predict_true(!tso ||
    871 		    (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
    872 			error = ip6_if_output(ifp, origifp, m, dst, rt);
    873 		} else {
    874 			error = ip6_tso_output(ifp, origifp, m, dst, rt);
    875 		}
    876 		goto done;
    877 	}
    878 
    879 	if (tso) {
    880 		error = EINVAL; /* XXX */
    881 		goto bad;
    882 	}
    883 
    884 	/*
    885 	 * try to fragment the packet.  case 1-b and 3
    886 	 */
    887 	if (mtu < IPV6_MMTU) {
    888 		/* path MTU cannot be less than IPV6_MMTU */
    889 		error = EMSGSIZE;
    890 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    891 		goto bad;
    892 	} else if (ip6->ip6_plen == 0) {
    893 		/* jumbo payload cannot be fragmented */
    894 		error = EMSGSIZE;
    895 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    896 		goto bad;
    897 	} else {
    898 		struct mbuf **mnext, *m_frgpart;
    899 		struct ip6_frag *ip6f;
    900 		u_int32_t id = htonl(ip6_randomid());
    901 		u_char nextproto;
    902 #if 0				/* see below */
    903 		struct ip6ctlparam ip6cp;
    904 		u_int32_t mtu32;
    905 #endif
    906 
    907 		/*
    908 		 * Too large for the destination or interface;
    909 		 * fragment if possible.
    910 		 * Must be able to put at least 8 bytes per fragment.
    911 		 */
    912 		hlen = unfragpartlen;
    913 		if (mtu > IPV6_MAXPACKET)
    914 			mtu = IPV6_MAXPACKET;
    915 
    916 #if 0
    917 		/*
    918 		 * It is believed this code is a leftover from the
    919 		 * development of the IPV6_RECVPATHMTU sockopt and
    920 		 * associated work to implement RFC3542.
    921 		 * It's not entirely clear what the intent of the API
    922 		 * is at this point, so disable this code for now.
    923 		 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
    924 		 * will send notifications if the application requests.
    925 		 */
    926 
    927 		/* Notify a proper path MTU to applications. */
    928 		mtu32 = (u_int32_t)mtu;
    929 		memset(&ip6cp, 0, sizeof(ip6cp));
    930 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    931 		pfctlinput2(PRC_MSGSIZE,
    932 		    rtcache_getdst(ro_pmtu), &ip6cp);
    933 #endif
    934 
    935 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    936 		if (len < 8) {
    937 			error = EMSGSIZE;
    938 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
    939 			goto bad;
    940 		}
    941 
    942 		mnext = &m->m_nextpkt;
    943 
    944 		/*
    945 		 * Change the next header field of the last header in the
    946 		 * unfragmentable part.
    947 		 */
    948 		if (exthdrs.ip6e_rthdr) {
    949 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    950 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    951 		} else if (exthdrs.ip6e_dest1) {
    952 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    953 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    954 		} else if (exthdrs.ip6e_hbh) {
    955 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    956 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    957 		} else {
    958 			nextproto = ip6->ip6_nxt;
    959 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    960 		}
    961 
    962 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
    963 		    != 0) {
    964 			if (IN6_NEED_CHECKSUM(ifp,
    965 			    m->m_pkthdr.csum_flags &
    966 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    967 				in6_delayed_cksum(m);
    968 			}
    969 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    970 		}
    971 
    972 		/*
    973 		 * Loop through length of segment after first fragment,
    974 		 * make new header and copy data of each part and link onto
    975 		 * chain.
    976 		 */
    977 		m0 = m;
    978 		for (off = hlen; off < tlen; off += len) {
    979 			struct mbuf *mlast;
    980 
    981 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
    982 			if (!m) {
    983 				error = ENOBUFS;
    984 				IP6_STATINC(IP6_STAT_ODROPPED);
    985 				goto sendorfree;
    986 			}
    987 			m_reset_rcvif(m);
    988 			m->m_flags = m0->m_flags & M_COPYFLAGS;
    989 			*mnext = m;
    990 			mnext = &m->m_nextpkt;
    991 			m->m_data += max_linkhdr;
    992 			mhip6 = mtod(m, struct ip6_hdr *);
    993 			*mhip6 = *ip6;
    994 			m->m_len = sizeof(*mhip6);
    995 			/*
    996 			 * ip6f must be valid if error is 0.  But how
    997 			 * can a compiler be expected to infer this?
    998 			 */
    999 			ip6f = NULL;
   1000 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
   1001 			if (error) {
   1002 				IP6_STATINC(IP6_STAT_ODROPPED);
   1003 				goto sendorfree;
   1004 			}
   1005 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
   1006 			if (off + len >= tlen)
   1007 				len = tlen - off;
   1008 			else
   1009 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
   1010 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
   1011 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
   1012 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
   1013 				error = ENOBUFS;
   1014 				IP6_STATINC(IP6_STAT_ODROPPED);
   1015 				goto sendorfree;
   1016 			}
   1017 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
   1018 				;
   1019 			mlast->m_next = m_frgpart;
   1020 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
   1021 			m_reset_rcvif(m);
   1022 			ip6f->ip6f_reserved = 0;
   1023 			ip6f->ip6f_ident = id;
   1024 			ip6f->ip6f_nxt = nextproto;
   1025 			IP6_STATINC(IP6_STAT_OFRAGMENTS);
   1026 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
   1027 		}
   1028 
   1029 		in6_ifstat_inc(ifp, ifs6_out_fragok);
   1030 	}
   1031 
   1032 	/*
   1033 	 * Remove leading garbages.
   1034 	 */
   1035 sendorfree:
   1036 	m = m0->m_nextpkt;
   1037 	m0->m_nextpkt = 0;
   1038 	m_freem(m0);
   1039 	for (m0 = m; m; m = m0) {
   1040 		m0 = m->m_nextpkt;
   1041 		m->m_nextpkt = 0;
   1042 		if (error == 0) {
   1043 			struct in6_ifaddr *ia6;
   1044 			int s;
   1045 			ip6 = mtod(m, struct ip6_hdr *);
   1046 			s = pserialize_read_enter();
   1047 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
   1048 			if (ia6) {
   1049 				/*
   1050 				 * Record statistics for this interface
   1051 				 * address.
   1052 				 */
   1053 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
   1054 				    m->m_pkthdr.len;
   1055 			}
   1056 			pserialize_read_exit(s);
   1057 			KASSERT(dst != NULL);
   1058 			error = ip6_if_output(ifp, origifp, m, dst, rt);
   1059 		} else
   1060 			m_freem(m);
   1061 	}
   1062 
   1063 	if (error == 0)
   1064 		IP6_STATINC(IP6_STAT_FRAGMENTED);
   1065 
   1066 done:
   1067 	rtcache_unref(rt, ro);
   1068 	if (ro == &ip6route)
   1069 		rtcache_free(&ip6route);
   1070 
   1071 #ifdef IPSEC
   1072 	if (sp != NULL)
   1073 		KEY_FREESP(&sp);
   1074 #endif /* IPSEC */
   1075 
   1076 	if_put(ifp, &psref);
   1077 	if (release_psref_ia)
   1078 		if_put(origifp, &psref_ia);
   1079 	curlwp_bindx(bound);
   1080 
   1081 	return (error);
   1082 
   1083 freehdrs:
   1084 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
   1085 	m_freem(exthdrs.ip6e_dest1);
   1086 	m_freem(exthdrs.ip6e_rthdr);
   1087 	m_freem(exthdrs.ip6e_dest2);
   1088 	/* FALLTHROUGH */
   1089 bad:
   1090 	m_freem(m);
   1091 	goto done;
   1092 badscope:
   1093 	IP6_STATINC(IP6_STAT_BADSCOPE);
   1094 	in6_ifstat_inc(origifp, ifs6_out_discard);
   1095 	if (error == 0)
   1096 		error = EHOSTUNREACH; /* XXX */
   1097 	goto bad;
   1098 }
   1099 
   1100 static int
   1101 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
   1102 {
   1103 	struct mbuf *m;
   1104 
   1105 	if (hlen > MCLBYTES)
   1106 		return (ENOBUFS); /* XXX */
   1107 
   1108 	MGET(m, M_DONTWAIT, MT_DATA);
   1109 	if (!m)
   1110 		return (ENOBUFS);
   1111 
   1112 	if (hlen > MLEN) {
   1113 		MCLGET(m, M_DONTWAIT);
   1114 		if ((m->m_flags & M_EXT) == 0) {
   1115 			m_free(m);
   1116 			return (ENOBUFS);
   1117 		}
   1118 	}
   1119 	m->m_len = hlen;
   1120 	if (hdr)
   1121 		bcopy(hdr, mtod(m, void *), hlen);
   1122 
   1123 	*mp = m;
   1124 	return (0);
   1125 }
   1126 
   1127 /*
   1128  * Process a delayed payload checksum calculation.
   1129  */
   1130 void
   1131 in6_delayed_cksum(struct mbuf *m)
   1132 {
   1133 	uint16_t csum, offset;
   1134 
   1135 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1136 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1137 	KASSERT((m->m_pkthdr.csum_flags
   1138 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
   1139 
   1140 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
   1141 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
   1142 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
   1143 		csum = 0xffff;
   1144 	}
   1145 
   1146 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
   1147 	if ((offset + sizeof(csum)) > m->m_len) {
   1148 		m_copyback(m, offset, sizeof(csum), &csum);
   1149 	} else {
   1150 		*(uint16_t *)(mtod(m, char *) + offset) = csum;
   1151 	}
   1152 }
   1153 
   1154 /*
   1155  * Insert jumbo payload option.
   1156  */
   1157 static int
   1158 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
   1159 {
   1160 	struct mbuf *mopt;
   1161 	u_int8_t *optbuf;
   1162 	u_int32_t v;
   1163 
   1164 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1165 
   1166 	/*
   1167 	 * If there is no hop-by-hop options header, allocate new one.
   1168 	 * If there is one but it doesn't have enough space to store the
   1169 	 * jumbo payload option, allocate a cluster to store the whole options.
   1170 	 * Otherwise, use it to store the options.
   1171 	 */
   1172 	if (exthdrs->ip6e_hbh == 0) {
   1173 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1174 		if (mopt == 0)
   1175 			return (ENOBUFS);
   1176 		mopt->m_len = JUMBOOPTLEN;
   1177 		optbuf = mtod(mopt, u_int8_t *);
   1178 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1179 		exthdrs->ip6e_hbh = mopt;
   1180 	} else {
   1181 		struct ip6_hbh *hbh;
   1182 
   1183 		mopt = exthdrs->ip6e_hbh;
   1184 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1185 			/*
   1186 			 * XXX assumption:
   1187 			 * - exthdrs->ip6e_hbh is not referenced from places
   1188 			 *   other than exthdrs.
   1189 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1190 			 */
   1191 			int oldoptlen = mopt->m_len;
   1192 			struct mbuf *n;
   1193 
   1194 			/*
   1195 			 * XXX: give up if the whole (new) hbh header does
   1196 			 * not fit even in an mbuf cluster.
   1197 			 */
   1198 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1199 				return (ENOBUFS);
   1200 
   1201 			/*
   1202 			 * As a consequence, we must always prepare a cluster
   1203 			 * at this point.
   1204 			 */
   1205 			MGET(n, M_DONTWAIT, MT_DATA);
   1206 			if (n) {
   1207 				MCLGET(n, M_DONTWAIT);
   1208 				if ((n->m_flags & M_EXT) == 0) {
   1209 					m_freem(n);
   1210 					n = NULL;
   1211 				}
   1212 			}
   1213 			if (!n)
   1214 				return (ENOBUFS);
   1215 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1216 			bcopy(mtod(mopt, void *), mtod(n, void *),
   1217 			    oldoptlen);
   1218 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1219 			m_freem(mopt);
   1220 			mopt = exthdrs->ip6e_hbh = n;
   1221 		} else {
   1222 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1223 			mopt->m_len += JUMBOOPTLEN;
   1224 		}
   1225 		optbuf[0] = IP6OPT_PADN;
   1226 		optbuf[1] = 0;
   1227 
   1228 		/*
   1229 		 * Adjust the header length according to the pad and
   1230 		 * the jumbo payload option.
   1231 		 */
   1232 		hbh = mtod(mopt, struct ip6_hbh *);
   1233 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1234 	}
   1235 
   1236 	/* fill in the option. */
   1237 	optbuf[2] = IP6OPT_JUMBO;
   1238 	optbuf[3] = 4;
   1239 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1240 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
   1241 
   1242 	/* finally, adjust the packet header length */
   1243 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1244 
   1245 	return (0);
   1246 #undef JUMBOOPTLEN
   1247 }
   1248 
   1249 /*
   1250  * Insert fragment header and copy unfragmentable header portions.
   1251  *
   1252  * *frghdrp will not be read, and it is guaranteed that either an
   1253  * error is returned or that *frghdrp will point to space allocated
   1254  * for the fragment header.
   1255  */
   1256 static int
   1257 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
   1258 	struct ip6_frag **frghdrp)
   1259 {
   1260 	struct mbuf *n, *mlast;
   1261 
   1262 	if (hlen > sizeof(struct ip6_hdr)) {
   1263 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1264 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1265 		if (n == 0)
   1266 			return (ENOBUFS);
   1267 		m->m_next = n;
   1268 	} else
   1269 		n = m;
   1270 
   1271 	/* Search for the last mbuf of unfragmentable part. */
   1272 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1273 		;
   1274 
   1275 	if ((mlast->m_flags & M_EXT) == 0 &&
   1276 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1277 		/* use the trailing space of the last mbuf for the fragment hdr */
   1278 		*frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
   1279 		    mlast->m_len);
   1280 		mlast->m_len += sizeof(struct ip6_frag);
   1281 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1282 	} else {
   1283 		/* allocate a new mbuf for the fragment header */
   1284 		struct mbuf *mfrg;
   1285 
   1286 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1287 		if (mfrg == 0)
   1288 			return (ENOBUFS);
   1289 		mfrg->m_len = sizeof(struct ip6_frag);
   1290 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1291 		mlast->m_next = mfrg;
   1292 	}
   1293 
   1294 	return (0);
   1295 }
   1296 
   1297 static int
   1298 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
   1299     int *alwaysfragp)
   1300 {
   1301 	u_int32_t mtu = 0;
   1302 	int alwaysfrag = 0;
   1303 	int error = 0;
   1304 
   1305 	if (rt != NULL) {
   1306 		u_int32_t ifmtu;
   1307 
   1308 		if (ifp == NULL)
   1309 			ifp = rt->rt_ifp;
   1310 		ifmtu = IN6_LINKMTU(ifp);
   1311 		mtu = rt->rt_rmx.rmx_mtu;
   1312 		if (mtu == 0)
   1313 			mtu = ifmtu;
   1314 		else if (mtu < IPV6_MMTU) {
   1315 			/*
   1316 			 * RFC2460 section 5, last paragraph:
   1317 			 * if we record ICMPv6 too big message with
   1318 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1319 			 * or smaller, with fragment header attached.
   1320 			 * (fragment header is needed regardless from the
   1321 			 * packet size, for translators to identify packets)
   1322 			 */
   1323 			alwaysfrag = 1;
   1324 			mtu = IPV6_MMTU;
   1325 		} else if (mtu > ifmtu) {
   1326 			/*
   1327 			 * The MTU on the route is larger than the MTU on
   1328 			 * the interface!  This shouldn't happen, unless the
   1329 			 * MTU of the interface has been changed after the
   1330 			 * interface was brought up.  Change the MTU in the
   1331 			 * route to match the interface MTU (as long as the
   1332 			 * field isn't locked).
   1333 			 */
   1334 			mtu = ifmtu;
   1335 			if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
   1336 				rt->rt_rmx.rmx_mtu = mtu;
   1337 		}
   1338 	} else if (ifp) {
   1339 		mtu = IN6_LINKMTU(ifp);
   1340 	} else
   1341 		error = EHOSTUNREACH; /* XXX */
   1342 
   1343 	*mtup = mtu;
   1344 	if (alwaysfragp)
   1345 		*alwaysfragp = alwaysfrag;
   1346 	return (error);
   1347 }
   1348 
   1349 /*
   1350  * IP6 socket option processing.
   1351  */
   1352 int
   1353 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1354 {
   1355 	int optdatalen, uproto;
   1356 	void *optdata;
   1357 	struct in6pcb *in6p = sotoin6pcb(so);
   1358 	struct ip_moptions **mopts;
   1359 	int error, optval;
   1360 	int level, optname;
   1361 
   1362 	KASSERT(solocked(so));
   1363 	KASSERT(sopt != NULL);
   1364 
   1365 	level = sopt->sopt_level;
   1366 	optname = sopt->sopt_name;
   1367 
   1368 	error = optval = 0;
   1369 	uproto = (int)so->so_proto->pr_protocol;
   1370 
   1371 	switch (level) {
   1372 	case IPPROTO_IP:
   1373 		switch (optname) {
   1374 		case IP_ADD_MEMBERSHIP:
   1375 		case IP_DROP_MEMBERSHIP:
   1376 		case IP_MULTICAST_IF:
   1377 		case IP_MULTICAST_LOOP:
   1378 		case IP_MULTICAST_TTL:
   1379 			mopts = &in6p->in6p_v4moptions;
   1380 			switch (op) {
   1381 			case PRCO_GETOPT:
   1382 				return ip_getmoptions(*mopts, sopt);
   1383 			case PRCO_SETOPT:
   1384 				return ip_setmoptions(mopts, sopt);
   1385 			default:
   1386 				return EINVAL;
   1387 			}
   1388 		default:
   1389 			return ENOPROTOOPT;
   1390 		}
   1391 	case IPPROTO_IPV6:
   1392 		break;
   1393 	default:
   1394 		return ENOPROTOOPT;
   1395 	}
   1396 	switch (op) {
   1397 	case PRCO_SETOPT:
   1398 		switch (optname) {
   1399 #ifdef RFC2292
   1400 		case IPV6_2292PKTOPTIONS:
   1401 			error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
   1402 			break;
   1403 #endif
   1404 
   1405 		/*
   1406 		 * Use of some Hop-by-Hop options or some
   1407 		 * Destination options, might require special
   1408 		 * privilege.  That is, normal applications
   1409 		 * (without special privilege) might be forbidden
   1410 		 * from setting certain options in outgoing packets,
   1411 		 * and might never see certain options in received
   1412 		 * packets. [RFC 2292 Section 6]
   1413 		 * KAME specific note:
   1414 		 *  KAME prevents non-privileged users from sending or
   1415 		 *  receiving ANY hbh/dst options in order to avoid
   1416 		 *  overhead of parsing options in the kernel.
   1417 		 */
   1418 		case IPV6_RECVHOPOPTS:
   1419 		case IPV6_RECVDSTOPTS:
   1420 		case IPV6_RECVRTHDRDSTOPTS:
   1421 			error = kauth_authorize_network(kauth_cred_get(),
   1422 			    KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
   1423 			    NULL, NULL, NULL);
   1424 			if (error)
   1425 				break;
   1426 			/* FALLTHROUGH */
   1427 		case IPV6_UNICAST_HOPS:
   1428 		case IPV6_HOPLIMIT:
   1429 		case IPV6_FAITH:
   1430 
   1431 		case IPV6_RECVPKTINFO:
   1432 		case IPV6_RECVHOPLIMIT:
   1433 		case IPV6_RECVRTHDR:
   1434 		case IPV6_RECVPATHMTU:
   1435 		case IPV6_RECVTCLASS:
   1436 		case IPV6_V6ONLY:
   1437 			error = sockopt_getint(sopt, &optval);
   1438 			if (error)
   1439 				break;
   1440 			switch (optname) {
   1441 			case IPV6_UNICAST_HOPS:
   1442 				if (optval < -1 || optval >= 256)
   1443 					error = EINVAL;
   1444 				else {
   1445 					/* -1 = kernel default */
   1446 					in6p->in6p_hops = optval;
   1447 				}
   1448 				break;
   1449 #define OPTSET(bit) \
   1450 do { \
   1451 if (optval) \
   1452 	in6p->in6p_flags |= (bit); \
   1453 else \
   1454 	in6p->in6p_flags &= ~(bit); \
   1455 } while (/*CONSTCOND*/ 0)
   1456 
   1457 #ifdef RFC2292
   1458 #define OPTSET2292(bit) 			\
   1459 do { 						\
   1460 in6p->in6p_flags |= IN6P_RFC2292; 	\
   1461 if (optval) 				\
   1462 	in6p->in6p_flags |= (bit); 	\
   1463 else 					\
   1464 	in6p->in6p_flags &= ~(bit); 	\
   1465 } while (/*CONSTCOND*/ 0)
   1466 #endif
   1467 
   1468 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
   1469 
   1470 			case IPV6_RECVPKTINFO:
   1471 #ifdef RFC2292
   1472 				/* cannot mix with RFC2292 */
   1473 				if (OPTBIT(IN6P_RFC2292)) {
   1474 					error = EINVAL;
   1475 					break;
   1476 				}
   1477 #endif
   1478 				OPTSET(IN6P_PKTINFO);
   1479 				break;
   1480 
   1481 			case IPV6_HOPLIMIT:
   1482 			{
   1483 				struct ip6_pktopts **optp;
   1484 
   1485 #ifdef RFC2292
   1486 				/* cannot mix with RFC2292 */
   1487 				if (OPTBIT(IN6P_RFC2292)) {
   1488 					error = EINVAL;
   1489 					break;
   1490 				}
   1491 #endif
   1492 				optp = &in6p->in6p_outputopts;
   1493 				error = ip6_pcbopt(IPV6_HOPLIMIT,
   1494 						   (u_char *)&optval,
   1495 						   sizeof(optval),
   1496 						   optp,
   1497 						   kauth_cred_get(), uproto);
   1498 				break;
   1499 			}
   1500 
   1501 			case IPV6_RECVHOPLIMIT:
   1502 #ifdef RFC2292
   1503 				/* cannot mix with RFC2292 */
   1504 				if (OPTBIT(IN6P_RFC2292)) {
   1505 					error = EINVAL;
   1506 					break;
   1507 				}
   1508 #endif
   1509 				OPTSET(IN6P_HOPLIMIT);
   1510 				break;
   1511 
   1512 			case IPV6_RECVHOPOPTS:
   1513 #ifdef RFC2292
   1514 				/* cannot mix with RFC2292 */
   1515 				if (OPTBIT(IN6P_RFC2292)) {
   1516 					error = EINVAL;
   1517 					break;
   1518 				}
   1519 #endif
   1520 				OPTSET(IN6P_HOPOPTS);
   1521 				break;
   1522 
   1523 			case IPV6_RECVDSTOPTS:
   1524 #ifdef RFC2292
   1525 				/* cannot mix with RFC2292 */
   1526 				if (OPTBIT(IN6P_RFC2292)) {
   1527 					error = EINVAL;
   1528 					break;
   1529 				}
   1530 #endif
   1531 				OPTSET(IN6P_DSTOPTS);
   1532 				break;
   1533 
   1534 			case IPV6_RECVRTHDRDSTOPTS:
   1535 #ifdef RFC2292
   1536 				/* cannot mix with RFC2292 */
   1537 				if (OPTBIT(IN6P_RFC2292)) {
   1538 					error = EINVAL;
   1539 					break;
   1540 				}
   1541 #endif
   1542 				OPTSET(IN6P_RTHDRDSTOPTS);
   1543 				break;
   1544 
   1545 			case IPV6_RECVRTHDR:
   1546 #ifdef RFC2292
   1547 				/* cannot mix with RFC2292 */
   1548 				if (OPTBIT(IN6P_RFC2292)) {
   1549 					error = EINVAL;
   1550 					break;
   1551 				}
   1552 #endif
   1553 				OPTSET(IN6P_RTHDR);
   1554 				break;
   1555 
   1556 			case IPV6_FAITH:
   1557 				OPTSET(IN6P_FAITH);
   1558 				break;
   1559 
   1560 			case IPV6_RECVPATHMTU:
   1561 				/*
   1562 				 * We ignore this option for TCP
   1563 				 * sockets.
   1564 				 * (RFC3542 leaves this case
   1565 				 * unspecified.)
   1566 				 */
   1567 				if (uproto != IPPROTO_TCP)
   1568 					OPTSET(IN6P_MTU);
   1569 				break;
   1570 
   1571 			case IPV6_V6ONLY:
   1572 				/*
   1573 				 * make setsockopt(IPV6_V6ONLY)
   1574 				 * available only prior to bind(2).
   1575 				 * see ipng mailing list, Jun 22 2001.
   1576 				 */
   1577 				if (in6p->in6p_lport ||
   1578 				    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
   1579 					error = EINVAL;
   1580 					break;
   1581 				}
   1582 #ifdef INET6_BINDV6ONLY
   1583 				if (!optval)
   1584 					error = EINVAL;
   1585 #else
   1586 				OPTSET(IN6P_IPV6_V6ONLY);
   1587 #endif
   1588 				break;
   1589 			case IPV6_RECVTCLASS:
   1590 #ifdef RFC2292
   1591 				/* cannot mix with RFC2292 XXX */
   1592 				if (OPTBIT(IN6P_RFC2292)) {
   1593 					error = EINVAL;
   1594 					break;
   1595 				}
   1596 #endif
   1597 				OPTSET(IN6P_TCLASS);
   1598 				break;
   1599 
   1600 			}
   1601 			break;
   1602 
   1603 		case IPV6_OTCLASS:
   1604 		{
   1605 			struct ip6_pktopts **optp;
   1606 			u_int8_t tclass;
   1607 
   1608 			error = sockopt_get(sopt, &tclass, sizeof(tclass));
   1609 			if (error)
   1610 				break;
   1611 			optp = &in6p->in6p_outputopts;
   1612 			error = ip6_pcbopt(optname,
   1613 					   (u_char *)&tclass,
   1614 					   sizeof(tclass),
   1615 					   optp,
   1616 					   kauth_cred_get(), uproto);
   1617 			break;
   1618 		}
   1619 
   1620 		case IPV6_TCLASS:
   1621 		case IPV6_DONTFRAG:
   1622 		case IPV6_USE_MIN_MTU:
   1623 		case IPV6_PREFER_TEMPADDR:
   1624 			error = sockopt_getint(sopt, &optval);
   1625 			if (error)
   1626 				break;
   1627 			{
   1628 				struct ip6_pktopts **optp;
   1629 				optp = &in6p->in6p_outputopts;
   1630 				error = ip6_pcbopt(optname,
   1631 						   (u_char *)&optval,
   1632 						   sizeof(optval),
   1633 						   optp,
   1634 						   kauth_cred_get(), uproto);
   1635 				break;
   1636 			}
   1637 
   1638 #ifdef RFC2292
   1639 		case IPV6_2292PKTINFO:
   1640 		case IPV6_2292HOPLIMIT:
   1641 		case IPV6_2292HOPOPTS:
   1642 		case IPV6_2292DSTOPTS:
   1643 		case IPV6_2292RTHDR:
   1644 			/* RFC 2292 */
   1645 			error = sockopt_getint(sopt, &optval);
   1646 			if (error)
   1647 				break;
   1648 
   1649 			switch (optname) {
   1650 			case IPV6_2292PKTINFO:
   1651 				OPTSET2292(IN6P_PKTINFO);
   1652 				break;
   1653 			case IPV6_2292HOPLIMIT:
   1654 				OPTSET2292(IN6P_HOPLIMIT);
   1655 				break;
   1656 			case IPV6_2292HOPOPTS:
   1657 				/*
   1658 				 * Check super-user privilege.
   1659 				 * See comments for IPV6_RECVHOPOPTS.
   1660 				 */
   1661 				error =
   1662 				    kauth_authorize_network(kauth_cred_get(),
   1663 				    KAUTH_NETWORK_IPV6,
   1664 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1665 				    NULL, NULL);
   1666 				if (error)
   1667 					return (error);
   1668 				OPTSET2292(IN6P_HOPOPTS);
   1669 				break;
   1670 			case IPV6_2292DSTOPTS:
   1671 				error =
   1672 				    kauth_authorize_network(kauth_cred_get(),
   1673 				    KAUTH_NETWORK_IPV6,
   1674 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1675 				    NULL, NULL);
   1676 				if (error)
   1677 					return (error);
   1678 				OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
   1679 				break;
   1680 			case IPV6_2292RTHDR:
   1681 				OPTSET2292(IN6P_RTHDR);
   1682 				break;
   1683 			}
   1684 			break;
   1685 #endif
   1686 		case IPV6_PKTINFO:
   1687 		case IPV6_HOPOPTS:
   1688 		case IPV6_RTHDR:
   1689 		case IPV6_DSTOPTS:
   1690 		case IPV6_RTHDRDSTOPTS:
   1691 		case IPV6_NEXTHOP: {
   1692 			/* new advanced API (RFC3542) */
   1693 			void *optbuf;
   1694 			int optbuflen;
   1695 			struct ip6_pktopts **optp;
   1696 
   1697 #ifdef RFC2292
   1698 			/* cannot mix with RFC2292 */
   1699 			if (OPTBIT(IN6P_RFC2292)) {
   1700 				error = EINVAL;
   1701 				break;
   1702 			}
   1703 #endif
   1704 
   1705 			optbuflen = sopt->sopt_size;
   1706 			optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
   1707 			if (optbuf == NULL) {
   1708 				error = ENOBUFS;
   1709 				break;
   1710 			}
   1711 
   1712 			error = sockopt_get(sopt, optbuf, optbuflen);
   1713 			if (error) {
   1714 				free(optbuf, M_IP6OPT);
   1715 				break;
   1716 			}
   1717 			optp = &in6p->in6p_outputopts;
   1718 			error = ip6_pcbopt(optname, optbuf, optbuflen,
   1719 			    optp, kauth_cred_get(), uproto);
   1720 
   1721 			free(optbuf, M_IP6OPT);
   1722 			break;
   1723 			}
   1724 #undef OPTSET
   1725 
   1726 		case IPV6_MULTICAST_IF:
   1727 		case IPV6_MULTICAST_HOPS:
   1728 		case IPV6_MULTICAST_LOOP:
   1729 		case IPV6_JOIN_GROUP:
   1730 		case IPV6_LEAVE_GROUP:
   1731 			error = ip6_setmoptions(sopt, in6p);
   1732 			break;
   1733 
   1734 		case IPV6_PORTRANGE:
   1735 			error = sockopt_getint(sopt, &optval);
   1736 			if (error)
   1737 				break;
   1738 
   1739 			switch (optval) {
   1740 			case IPV6_PORTRANGE_DEFAULT:
   1741 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1742 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1743 				break;
   1744 
   1745 			case IPV6_PORTRANGE_HIGH:
   1746 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1747 				in6p->in6p_flags |= IN6P_HIGHPORT;
   1748 				break;
   1749 
   1750 			case IPV6_PORTRANGE_LOW:
   1751 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1752 				in6p->in6p_flags |= IN6P_LOWPORT;
   1753 				break;
   1754 
   1755 			default:
   1756 				error = EINVAL;
   1757 				break;
   1758 			}
   1759 			break;
   1760 
   1761 		case IPV6_PORTALGO:
   1762 			error = sockopt_getint(sopt, &optval);
   1763 			if (error)
   1764 				break;
   1765 
   1766 			error = portalgo_algo_index_select(
   1767 			    (struct inpcb_hdr *)in6p, optval);
   1768 			break;
   1769 
   1770 #if defined(IPSEC)
   1771 		case IPV6_IPSEC_POLICY:
   1772 			if (ipsec_enabled) {
   1773 				error = ipsec6_set_policy(in6p, optname,
   1774 				    sopt->sopt_data, sopt->sopt_size,
   1775 				    kauth_cred_get());
   1776 				break;
   1777 			}
   1778 			/*FALLTHROUGH*/
   1779 #endif /* IPSEC */
   1780 
   1781 		default:
   1782 			error = ENOPROTOOPT;
   1783 			break;
   1784 		}
   1785 		break;
   1786 
   1787 	case PRCO_GETOPT:
   1788 		switch (optname) {
   1789 #ifdef RFC2292
   1790 		case IPV6_2292PKTOPTIONS:
   1791 			/*
   1792 			 * RFC3542 (effectively) deprecated the
   1793 			 * semantics of the 2292-style pktoptions.
   1794 			 * Since it was not reliable in nature (i.e.,
   1795 			 * applications had to expect the lack of some
   1796 			 * information after all), it would make sense
   1797 			 * to simplify this part by always returning
   1798 			 * empty data.
   1799 			 */
   1800 			break;
   1801 #endif
   1802 
   1803 		case IPV6_RECVHOPOPTS:
   1804 		case IPV6_RECVDSTOPTS:
   1805 		case IPV6_RECVRTHDRDSTOPTS:
   1806 		case IPV6_UNICAST_HOPS:
   1807 		case IPV6_RECVPKTINFO:
   1808 		case IPV6_RECVHOPLIMIT:
   1809 		case IPV6_RECVRTHDR:
   1810 		case IPV6_RECVPATHMTU:
   1811 
   1812 		case IPV6_FAITH:
   1813 		case IPV6_V6ONLY:
   1814 		case IPV6_PORTRANGE:
   1815 		case IPV6_RECVTCLASS:
   1816 			switch (optname) {
   1817 
   1818 			case IPV6_RECVHOPOPTS:
   1819 				optval = OPTBIT(IN6P_HOPOPTS);
   1820 				break;
   1821 
   1822 			case IPV6_RECVDSTOPTS:
   1823 				optval = OPTBIT(IN6P_DSTOPTS);
   1824 				break;
   1825 
   1826 			case IPV6_RECVRTHDRDSTOPTS:
   1827 				optval = OPTBIT(IN6P_RTHDRDSTOPTS);
   1828 				break;
   1829 
   1830 			case IPV6_UNICAST_HOPS:
   1831 				optval = in6p->in6p_hops;
   1832 				break;
   1833 
   1834 			case IPV6_RECVPKTINFO:
   1835 				optval = OPTBIT(IN6P_PKTINFO);
   1836 				break;
   1837 
   1838 			case IPV6_RECVHOPLIMIT:
   1839 				optval = OPTBIT(IN6P_HOPLIMIT);
   1840 				break;
   1841 
   1842 			case IPV6_RECVRTHDR:
   1843 				optval = OPTBIT(IN6P_RTHDR);
   1844 				break;
   1845 
   1846 			case IPV6_RECVPATHMTU:
   1847 				optval = OPTBIT(IN6P_MTU);
   1848 				break;
   1849 
   1850 			case IPV6_FAITH:
   1851 				optval = OPTBIT(IN6P_FAITH);
   1852 				break;
   1853 
   1854 			case IPV6_V6ONLY:
   1855 				optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1856 				break;
   1857 
   1858 			case IPV6_PORTRANGE:
   1859 			    {
   1860 				int flags;
   1861 				flags = in6p->in6p_flags;
   1862 				if (flags & IN6P_HIGHPORT)
   1863 					optval = IPV6_PORTRANGE_HIGH;
   1864 				else if (flags & IN6P_LOWPORT)
   1865 					optval = IPV6_PORTRANGE_LOW;
   1866 				else
   1867 					optval = 0;
   1868 				break;
   1869 			    }
   1870 			case IPV6_RECVTCLASS:
   1871 				optval = OPTBIT(IN6P_TCLASS);
   1872 				break;
   1873 
   1874 			}
   1875 			if (error)
   1876 				break;
   1877 			error = sockopt_setint(sopt, optval);
   1878 			break;
   1879 
   1880 		case IPV6_PATHMTU:
   1881 		    {
   1882 			u_long pmtu = 0;
   1883 			struct ip6_mtuinfo mtuinfo;
   1884 			struct route *ro = &in6p->in6p_route;
   1885 			struct rtentry *rt;
   1886 			union {
   1887 				struct sockaddr		dst;
   1888 				struct sockaddr_in6	dst6;
   1889 			} u;
   1890 
   1891 			if (!(so->so_state & SS_ISCONNECTED))
   1892 				return (ENOTCONN);
   1893 			/*
   1894 			 * XXX: we dot not consider the case of source
   1895 			 * routing, or optional information to specify
   1896 			 * the outgoing interface.
   1897 			 */
   1898 			sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0);
   1899 			rt = rtcache_lookup(ro, &u.dst);
   1900 			error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
   1901 			rtcache_unref(rt, ro);
   1902 			if (error)
   1903 				break;
   1904 			if (pmtu > IPV6_MAXPACKET)
   1905 				pmtu = IPV6_MAXPACKET;
   1906 
   1907 			memset(&mtuinfo, 0, sizeof(mtuinfo));
   1908 			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
   1909 			optdata = (void *)&mtuinfo;
   1910 			optdatalen = sizeof(mtuinfo);
   1911 			if (optdatalen > MCLBYTES)
   1912 				return (EMSGSIZE); /* XXX */
   1913 			error = sockopt_set(sopt, optdata, optdatalen);
   1914 			break;
   1915 		    }
   1916 
   1917 #ifdef RFC2292
   1918 		case IPV6_2292PKTINFO:
   1919 		case IPV6_2292HOPLIMIT:
   1920 		case IPV6_2292HOPOPTS:
   1921 		case IPV6_2292RTHDR:
   1922 		case IPV6_2292DSTOPTS:
   1923 			switch (optname) {
   1924 			case IPV6_2292PKTINFO:
   1925 				optval = OPTBIT(IN6P_PKTINFO);
   1926 				break;
   1927 			case IPV6_2292HOPLIMIT:
   1928 				optval = OPTBIT(IN6P_HOPLIMIT);
   1929 				break;
   1930 			case IPV6_2292HOPOPTS:
   1931 				optval = OPTBIT(IN6P_HOPOPTS);
   1932 				break;
   1933 			case IPV6_2292RTHDR:
   1934 				optval = OPTBIT(IN6P_RTHDR);
   1935 				break;
   1936 			case IPV6_2292DSTOPTS:
   1937 				optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
   1938 				break;
   1939 			}
   1940 			error = sockopt_setint(sopt, optval);
   1941 			break;
   1942 #endif
   1943 		case IPV6_PKTINFO:
   1944 		case IPV6_HOPOPTS:
   1945 		case IPV6_RTHDR:
   1946 		case IPV6_DSTOPTS:
   1947 		case IPV6_RTHDRDSTOPTS:
   1948 		case IPV6_NEXTHOP:
   1949 		case IPV6_OTCLASS:
   1950 		case IPV6_TCLASS:
   1951 		case IPV6_DONTFRAG:
   1952 		case IPV6_USE_MIN_MTU:
   1953 		case IPV6_PREFER_TEMPADDR:
   1954 			error = ip6_getpcbopt(in6p->in6p_outputopts,
   1955 			    optname, sopt);
   1956 			break;
   1957 
   1958 		case IPV6_MULTICAST_IF:
   1959 		case IPV6_MULTICAST_HOPS:
   1960 		case IPV6_MULTICAST_LOOP:
   1961 		case IPV6_JOIN_GROUP:
   1962 		case IPV6_LEAVE_GROUP:
   1963 			error = ip6_getmoptions(sopt, in6p);
   1964 			break;
   1965 
   1966 		case IPV6_PORTALGO:
   1967 			optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
   1968 			error = sockopt_setint(sopt, optval);
   1969 			break;
   1970 
   1971 #if defined(IPSEC)
   1972 		case IPV6_IPSEC_POLICY:
   1973 			if (ipsec_used) {
   1974 				struct mbuf *m = NULL;
   1975 
   1976 				/*
   1977 				 * XXX: this will return EINVAL as sopt is
   1978 				 * empty
   1979 				 */
   1980 				error = ipsec6_get_policy(in6p, sopt->sopt_data,
   1981 				    sopt->sopt_size, &m);
   1982 				if (!error)
   1983 					error = sockopt_setmbuf(sopt, m);
   1984 				break;
   1985 			}
   1986 			/*FALLTHROUGH*/
   1987 #endif /* IPSEC */
   1988 
   1989 		default:
   1990 			error = ENOPROTOOPT;
   1991 			break;
   1992 		}
   1993 		break;
   1994 	}
   1995 	return (error);
   1996 }
   1997 
   1998 int
   1999 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   2000 {
   2001 	int error = 0, optval;
   2002 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   2003 	struct in6pcb *in6p = sotoin6pcb(so);
   2004 	int level, optname;
   2005 
   2006 	KASSERT(sopt != NULL);
   2007 
   2008 	level = sopt->sopt_level;
   2009 	optname = sopt->sopt_name;
   2010 
   2011 	if (level != IPPROTO_IPV6) {
   2012 		return ENOPROTOOPT;
   2013 	}
   2014 
   2015 	switch (optname) {
   2016 	case IPV6_CHECKSUM:
   2017 		/*
   2018 		 * For ICMPv6 sockets, no modification allowed for checksum
   2019 		 * offset, permit "no change" values to help existing apps.
   2020 		 *
   2021 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
   2022 		 * for an ICMPv6 socket will fail."  The current
   2023 		 * behavior does not meet RFC3542.
   2024 		 */
   2025 		switch (op) {
   2026 		case PRCO_SETOPT:
   2027 			error = sockopt_getint(sopt, &optval);
   2028 			if (error)
   2029 				break;
   2030 			if ((optval % 2) != 0) {
   2031 				/* the API assumes even offset values */
   2032 				error = EINVAL;
   2033 			} else if (so->so_proto->pr_protocol ==
   2034 			    IPPROTO_ICMPV6) {
   2035 				if (optval != icmp6off)
   2036 					error = EINVAL;
   2037 			} else
   2038 				in6p->in6p_cksum = optval;
   2039 			break;
   2040 
   2041 		case PRCO_GETOPT:
   2042 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   2043 				optval = icmp6off;
   2044 			else
   2045 				optval = in6p->in6p_cksum;
   2046 
   2047 			error = sockopt_setint(sopt, optval);
   2048 			break;
   2049 
   2050 		default:
   2051 			error = EINVAL;
   2052 			break;
   2053 		}
   2054 		break;
   2055 
   2056 	default:
   2057 		error = ENOPROTOOPT;
   2058 		break;
   2059 	}
   2060 
   2061 	return (error);
   2062 }
   2063 
   2064 #ifdef RFC2292
   2065 /*
   2066  * Set up IP6 options in pcb for insertion in output packets or
   2067  * specifying behavior of outgoing packets.
   2068  */
   2069 static int
   2070 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
   2071     struct sockopt *sopt)
   2072 {
   2073 	struct ip6_pktopts *opt = *pktopt;
   2074 	struct mbuf *m;
   2075 	int error = 0;
   2076 
   2077 	KASSERT(solocked(so));
   2078 
   2079 	/* turn off any old options. */
   2080 	if (opt) {
   2081 #ifdef DIAGNOSTIC
   2082 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
   2083 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
   2084 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2085 		    printf("ip6_pcbopts: all specified options are cleared.\n");
   2086 #endif
   2087 		ip6_clearpktopts(opt, -1);
   2088 	} else {
   2089 		opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
   2090 		if (opt == NULL)
   2091 			return (ENOBUFS);
   2092 	}
   2093 	*pktopt = NULL;
   2094 
   2095 	if (sopt == NULL || sopt->sopt_size == 0) {
   2096 		/*
   2097 		 * Only turning off any previous options, regardless of
   2098 		 * whether the opt is just created or given.
   2099 		 */
   2100 		free(opt, M_IP6OPT);
   2101 		return (0);
   2102 	}
   2103 
   2104 	/*  set options specified by user. */
   2105 	m = sockopt_getmbuf(sopt);
   2106 	if (m == NULL) {
   2107 		free(opt, M_IP6OPT);
   2108 		return (ENOBUFS);
   2109 	}
   2110 
   2111 	error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
   2112 	    so->so_proto->pr_protocol);
   2113 	m_freem(m);
   2114 	if (error != 0) {
   2115 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
   2116 		free(opt, M_IP6OPT);
   2117 		return (error);
   2118 	}
   2119 	*pktopt = opt;
   2120 	return (0);
   2121 }
   2122 #endif
   2123 
   2124 /*
   2125  * initialize ip6_pktopts.  beware that there are non-zero default values in
   2126  * the struct.
   2127  */
   2128 void
   2129 ip6_initpktopts(struct ip6_pktopts *opt)
   2130 {
   2131 
   2132 	memset(opt, 0, sizeof(*opt));
   2133 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
   2134 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
   2135 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
   2136 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
   2137 }
   2138 
   2139 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
   2140 static int
   2141 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
   2142     kauth_cred_t cred, int uproto)
   2143 {
   2144 	struct ip6_pktopts *opt;
   2145 
   2146 	if (*pktopt == NULL) {
   2147 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
   2148 		    M_NOWAIT);
   2149 		if (*pktopt == NULL)
   2150 			return (ENOBUFS);
   2151 
   2152 		ip6_initpktopts(*pktopt);
   2153 	}
   2154 	opt = *pktopt;
   2155 
   2156 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
   2157 }
   2158 
   2159 static int
   2160 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
   2161 {
   2162 	void *optdata = NULL;
   2163 	int optdatalen = 0;
   2164 	struct ip6_ext *ip6e;
   2165 	int error = 0;
   2166 	struct in6_pktinfo null_pktinfo;
   2167 	int deftclass = 0, on;
   2168 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
   2169 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
   2170 
   2171 	switch (optname) {
   2172 	case IPV6_PKTINFO:
   2173 		if (pktopt && pktopt->ip6po_pktinfo)
   2174 			optdata = (void *)pktopt->ip6po_pktinfo;
   2175 		else {
   2176 			/* XXX: we don't have to do this every time... */
   2177 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
   2178 			optdata = (void *)&null_pktinfo;
   2179 		}
   2180 		optdatalen = sizeof(struct in6_pktinfo);
   2181 		break;
   2182 	case IPV6_OTCLASS:
   2183 		/* XXX */
   2184 		return (EINVAL);
   2185 	case IPV6_TCLASS:
   2186 		if (pktopt && pktopt->ip6po_tclass >= 0)
   2187 			optdata = (void *)&pktopt->ip6po_tclass;
   2188 		else
   2189 			optdata = (void *)&deftclass;
   2190 		optdatalen = sizeof(int);
   2191 		break;
   2192 	case IPV6_HOPOPTS:
   2193 		if (pktopt && pktopt->ip6po_hbh) {
   2194 			optdata = (void *)pktopt->ip6po_hbh;
   2195 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
   2196 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2197 		}
   2198 		break;
   2199 	case IPV6_RTHDR:
   2200 		if (pktopt && pktopt->ip6po_rthdr) {
   2201 			optdata = (void *)pktopt->ip6po_rthdr;
   2202 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
   2203 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2204 		}
   2205 		break;
   2206 	case IPV6_RTHDRDSTOPTS:
   2207 		if (pktopt && pktopt->ip6po_dest1) {
   2208 			optdata = (void *)pktopt->ip6po_dest1;
   2209 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
   2210 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2211 		}
   2212 		break;
   2213 	case IPV6_DSTOPTS:
   2214 		if (pktopt && pktopt->ip6po_dest2) {
   2215 			optdata = (void *)pktopt->ip6po_dest2;
   2216 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
   2217 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2218 		}
   2219 		break;
   2220 	case IPV6_NEXTHOP:
   2221 		if (pktopt && pktopt->ip6po_nexthop) {
   2222 			optdata = (void *)pktopt->ip6po_nexthop;
   2223 			optdatalen = pktopt->ip6po_nexthop->sa_len;
   2224 		}
   2225 		break;
   2226 	case IPV6_USE_MIN_MTU:
   2227 		if (pktopt)
   2228 			optdata = (void *)&pktopt->ip6po_minmtu;
   2229 		else
   2230 			optdata = (void *)&defminmtu;
   2231 		optdatalen = sizeof(int);
   2232 		break;
   2233 	case IPV6_DONTFRAG:
   2234 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
   2235 			on = 1;
   2236 		else
   2237 			on = 0;
   2238 		optdata = (void *)&on;
   2239 		optdatalen = sizeof(on);
   2240 		break;
   2241 	case IPV6_PREFER_TEMPADDR:
   2242 		if (pktopt)
   2243 			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
   2244 		else
   2245 			optdata = (void *)&defpreftemp;
   2246 		optdatalen = sizeof(int);
   2247 		break;
   2248 	default:		/* should not happen */
   2249 #ifdef DIAGNOSTIC
   2250 		panic("ip6_getpcbopt: unexpected option\n");
   2251 #endif
   2252 		return (ENOPROTOOPT);
   2253 	}
   2254 
   2255 	error = sockopt_set(sopt, optdata, optdatalen);
   2256 
   2257 	return (error);
   2258 }
   2259 
   2260 void
   2261 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
   2262 {
   2263 	if (optname == -1 || optname == IPV6_PKTINFO) {
   2264 		if (pktopt->ip6po_pktinfo)
   2265 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
   2266 		pktopt->ip6po_pktinfo = NULL;
   2267 	}
   2268 	if (optname == -1 || optname == IPV6_HOPLIMIT)
   2269 		pktopt->ip6po_hlim = -1;
   2270 	if (optname == -1 || optname == IPV6_TCLASS)
   2271 		pktopt->ip6po_tclass = -1;
   2272 	if (optname == -1 || optname == IPV6_NEXTHOP) {
   2273 		rtcache_free(&pktopt->ip6po_nextroute);
   2274 		if (pktopt->ip6po_nexthop)
   2275 			free(pktopt->ip6po_nexthop, M_IP6OPT);
   2276 		pktopt->ip6po_nexthop = NULL;
   2277 	}
   2278 	if (optname == -1 || optname == IPV6_HOPOPTS) {
   2279 		if (pktopt->ip6po_hbh)
   2280 			free(pktopt->ip6po_hbh, M_IP6OPT);
   2281 		pktopt->ip6po_hbh = NULL;
   2282 	}
   2283 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
   2284 		if (pktopt->ip6po_dest1)
   2285 			free(pktopt->ip6po_dest1, M_IP6OPT);
   2286 		pktopt->ip6po_dest1 = NULL;
   2287 	}
   2288 	if (optname == -1 || optname == IPV6_RTHDR) {
   2289 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2290 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
   2291 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
   2292 		rtcache_free(&pktopt->ip6po_route);
   2293 	}
   2294 	if (optname == -1 || optname == IPV6_DSTOPTS) {
   2295 		if (pktopt->ip6po_dest2)
   2296 			free(pktopt->ip6po_dest2, M_IP6OPT);
   2297 		pktopt->ip6po_dest2 = NULL;
   2298 	}
   2299 }
   2300 
   2301 #define PKTOPT_EXTHDRCPY(type) 					\
   2302 do {								\
   2303 	if (src->type) {					\
   2304 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
   2305 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
   2306 		if (dst->type == NULL)				\
   2307 			goto bad;				\
   2308 		memcpy(dst->type, src->type, hlen);		\
   2309 	}							\
   2310 } while (/*CONSTCOND*/ 0)
   2311 
   2312 static int
   2313 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
   2314 {
   2315 	dst->ip6po_hlim = src->ip6po_hlim;
   2316 	dst->ip6po_tclass = src->ip6po_tclass;
   2317 	dst->ip6po_flags = src->ip6po_flags;
   2318 	dst->ip6po_minmtu = src->ip6po_minmtu;
   2319 	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
   2320 	if (src->ip6po_pktinfo) {
   2321 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
   2322 		    M_IP6OPT, canwait);
   2323 		if (dst->ip6po_pktinfo == NULL)
   2324 			goto bad;
   2325 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
   2326 	}
   2327 	if (src->ip6po_nexthop) {
   2328 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
   2329 		    M_IP6OPT, canwait);
   2330 		if (dst->ip6po_nexthop == NULL)
   2331 			goto bad;
   2332 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
   2333 		    src->ip6po_nexthop->sa_len);
   2334 	}
   2335 	PKTOPT_EXTHDRCPY(ip6po_hbh);
   2336 	PKTOPT_EXTHDRCPY(ip6po_dest1);
   2337 	PKTOPT_EXTHDRCPY(ip6po_dest2);
   2338 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
   2339 	return (0);
   2340 
   2341   bad:
   2342 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
   2343 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
   2344 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
   2345 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
   2346 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
   2347 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
   2348 
   2349 	return (ENOBUFS);
   2350 }
   2351 #undef PKTOPT_EXTHDRCPY
   2352 
   2353 struct ip6_pktopts *
   2354 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
   2355 {
   2356 	int error;
   2357 	struct ip6_pktopts *dst;
   2358 
   2359 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
   2360 	if (dst == NULL)
   2361 		return (NULL);
   2362 	ip6_initpktopts(dst);
   2363 
   2364 	if ((error = copypktopts(dst, src, canwait)) != 0) {
   2365 		free(dst, M_IP6OPT);
   2366 		return (NULL);
   2367 	}
   2368 
   2369 	return (dst);
   2370 }
   2371 
   2372 void
   2373 ip6_freepcbopts(struct ip6_pktopts *pktopt)
   2374 {
   2375 	if (pktopt == NULL)
   2376 		return;
   2377 
   2378 	ip6_clearpktopts(pktopt, -1);
   2379 
   2380 	free(pktopt, M_IP6OPT);
   2381 }
   2382 
   2383 int
   2384 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp, void *v,
   2385     size_t l)
   2386 {
   2387 	struct ipv6_mreq mreq;
   2388 	int error;
   2389 	struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
   2390 	struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
   2391 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2392 	if (error != 0)
   2393 		return error;
   2394 
   2395 	if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
   2396 		/*
   2397 		 * We use the unspecified address to specify to accept
   2398 		 * all multicast addresses. Only super user is allowed
   2399 		 * to do this.
   2400 		 */
   2401 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6,
   2402 		    KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
   2403 			return EACCES;
   2404 	} else if (IN6_IS_ADDR_V4MAPPED(ia)) {
   2405 		// Don't bother if we are not going to use ifp.
   2406 		if (l == sizeof(*ia)) {
   2407 			memcpy(v, ia, l);
   2408 			return 0;
   2409 		}
   2410 	} else if (!IN6_IS_ADDR_MULTICAST(ia)) {
   2411 		return EINVAL;
   2412 	}
   2413 
   2414 	/*
   2415 	 * If no interface was explicitly specified, choose an
   2416 	 * appropriate one according to the given multicast address.
   2417 	 */
   2418 	if (mreq.ipv6mr_interface == 0) {
   2419 		struct rtentry *rt;
   2420 		union {
   2421 			struct sockaddr		dst;
   2422 			struct sockaddr_in	dst4;
   2423 			struct sockaddr_in6	dst6;
   2424 		} u;
   2425 		struct route ro;
   2426 
   2427 		/*
   2428 		 * Look up the routing table for the
   2429 		 * address, and choose the outgoing interface.
   2430 		 *   XXX: is it a good approach?
   2431 		 */
   2432 		memset(&ro, 0, sizeof(ro));
   2433 		if (IN6_IS_ADDR_V4MAPPED(ia))
   2434 			sockaddr_in_init(&u.dst4, ia4, 0);
   2435 		else
   2436 			sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
   2437 		error = rtcache_setdst(&ro, &u.dst);
   2438 		if (error != 0)
   2439 			return error;
   2440 		rt = rtcache_init(&ro);
   2441 		*ifp = rt != NULL ? rt->rt_ifp : NULL;
   2442 		/* FIXME *ifp is NOMPSAFE */
   2443 		rtcache_unref(rt, &ro);
   2444 		rtcache_free(&ro);
   2445 	} else {
   2446 		/*
   2447 		 * If the interface is specified, validate it.
   2448 		 */
   2449 		if ((*ifp = if_byindex(mreq.ipv6mr_interface)) == NULL)
   2450 			return ENXIO;	/* XXX EINVAL? */
   2451 	}
   2452 	if (sizeof(*ia) == l)
   2453 		memcpy(v, ia, l);
   2454 	else
   2455 		memcpy(v, ia4, l);
   2456 	return 0;
   2457 }
   2458 
   2459 /*
   2460  * Set the IP6 multicast options in response to user setsockopt().
   2461  */
   2462 static int
   2463 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p)
   2464 {
   2465 	int error = 0;
   2466 	u_int loop, ifindex;
   2467 	struct ipv6_mreq mreq;
   2468 	struct in6_addr ia;
   2469 	struct ifnet *ifp;
   2470 	struct ip6_moptions *im6o = in6p->in6p_moptions;
   2471 	struct in6_multi_mship *imm;
   2472 
   2473 	KASSERT(in6plocked(in6p));
   2474 
   2475 	if (im6o == NULL) {
   2476 		/*
   2477 		 * No multicast option buffer attached to the pcb;
   2478 		 * allocate one and initialize to default values.
   2479 		 */
   2480 		im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
   2481 		if (im6o == NULL)
   2482 			return (ENOBUFS);
   2483 		in6p->in6p_moptions = im6o;
   2484 		im6o->im6o_multicast_if_index = 0;
   2485 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2486 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   2487 		LIST_INIT(&im6o->im6o_memberships);
   2488 	}
   2489 
   2490 	switch (sopt->sopt_name) {
   2491 
   2492 	case IPV6_MULTICAST_IF:
   2493 		/*
   2494 		 * Select the interface for outgoing multicast packets.
   2495 		 */
   2496 		error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
   2497 		if (error != 0)
   2498 			break;
   2499 
   2500 		if (ifindex != 0) {
   2501 			if ((ifp = if_byindex(ifindex)) == NULL) {
   2502 				error = ENXIO;	/* XXX EINVAL? */
   2503 				break;
   2504 			}
   2505 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   2506 				error = EADDRNOTAVAIL;
   2507 				break;
   2508 			}
   2509 		} else
   2510 			ifp = NULL;
   2511 		im6o->im6o_multicast_if_index = if_get_index(ifp);
   2512 		break;
   2513 
   2514 	case IPV6_MULTICAST_HOPS:
   2515 	    {
   2516 		/*
   2517 		 * Set the IP6 hoplimit for outgoing multicast packets.
   2518 		 */
   2519 		int optval;
   2520 
   2521 		error = sockopt_getint(sopt, &optval);
   2522 		if (error != 0)
   2523 			break;
   2524 
   2525 		if (optval < -1 || optval >= 256)
   2526 			error = EINVAL;
   2527 		else if (optval == -1)
   2528 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2529 		else
   2530 			im6o->im6o_multicast_hlim = optval;
   2531 		break;
   2532 	    }
   2533 
   2534 	case IPV6_MULTICAST_LOOP:
   2535 		/*
   2536 		 * Set the loopback flag for outgoing multicast packets.
   2537 		 * Must be zero or one.
   2538 		 */
   2539 		error = sockopt_get(sopt, &loop, sizeof(loop));
   2540 		if (error != 0)
   2541 			break;
   2542 		if (loop > 1) {
   2543 			error = EINVAL;
   2544 			break;
   2545 		}
   2546 		im6o->im6o_multicast_loop = loop;
   2547 		break;
   2548 
   2549 	case IPV6_JOIN_GROUP:
   2550 		/*
   2551 		 * Add a multicast group membership.
   2552 		 * Group must be a valid IP6 multicast address.
   2553 		 */
   2554 		if ((error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia))))
   2555 			return error;
   2556 
   2557 		if (IN6_IS_ADDR_V4MAPPED(&ia)) {
   2558 			error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
   2559 			break;
   2560 		}
   2561 		/*
   2562 		 * See if we found an interface, and confirm that it
   2563 		 * supports multicast
   2564 		 */
   2565 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   2566 			error = EADDRNOTAVAIL;
   2567 			break;
   2568 		}
   2569 
   2570 		if (in6_setscope(&ia, ifp, NULL)) {
   2571 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   2572 			break;
   2573 		}
   2574 
   2575 		/*
   2576 		 * See if the membership already exists.
   2577 		 */
   2578 		for (imm = im6o->im6o_memberships.lh_first;
   2579 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   2580 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2581 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2582 			    &ia))
   2583 				break;
   2584 		if (imm != NULL) {
   2585 			error = EADDRINUSE;
   2586 			break;
   2587 		}
   2588 		/*
   2589 		 * Everything looks good; add a new record to the multicast
   2590 		 * address list for the given interface.
   2591 		 */
   2592 		imm = in6_joingroup(ifp, &ia, &error, 0);
   2593 		if (imm == NULL)
   2594 			break;
   2595 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2596 		break;
   2597 
   2598 	case IPV6_LEAVE_GROUP:
   2599 		/*
   2600 		 * Drop a multicast group membership.
   2601 		 * Group must be a valid IP6 multicast address.
   2602 		 */
   2603 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2604 		if (error != 0)
   2605 			break;
   2606 
   2607 		if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
   2608 			error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
   2609 			break;
   2610 		}
   2611 		/*
   2612 		 * If an interface address was specified, get a pointer
   2613 		 * to its ifnet structure.
   2614 		 */
   2615 		if (mreq.ipv6mr_interface != 0) {
   2616 			if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
   2617 				error = ENXIO;	/* XXX EINVAL? */
   2618 				break;
   2619 			}
   2620 		} else
   2621 			ifp = NULL;
   2622 
   2623 		/* Fill in the scope zone ID */
   2624 		if (ifp) {
   2625 			if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
   2626 				/* XXX: should not happen */
   2627 				error = EADDRNOTAVAIL;
   2628 				break;
   2629 			}
   2630 		} else if (mreq.ipv6mr_interface != 0) {
   2631 			/*
   2632 			 * XXX: This case would happens when the (positive)
   2633 			 * index is in the valid range, but the corresponding
   2634 			 * interface has been detached dynamically.  The above
   2635 			 * check probably avoids such case to happen here, but
   2636 			 * we check it explicitly for safety.
   2637 			 */
   2638 			error = EADDRNOTAVAIL;
   2639 			break;
   2640 		} else {	/* ipv6mr_interface == 0 */
   2641 			struct sockaddr_in6 sa6_mc;
   2642 
   2643 			/*
   2644 			 * The API spec says as follows:
   2645 			 *  If the interface index is specified as 0, the
   2646 			 *  system may choose a multicast group membership to
   2647 			 *  drop by matching the multicast address only.
   2648 			 * On the other hand, we cannot disambiguate the scope
   2649 			 * zone unless an interface is provided.  Thus, we
   2650 			 * check if there's ambiguity with the default scope
   2651 			 * zone as the last resort.
   2652 			 */
   2653 			sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
   2654 			    0, 0, 0);
   2655 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2656 			if (error != 0)
   2657 				break;
   2658 			mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2659 		}
   2660 
   2661 		/*
   2662 		 * Find the membership in the membership list.
   2663 		 */
   2664 		for (imm = im6o->im6o_memberships.lh_first;
   2665 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   2666 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2667 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2668 			    &mreq.ipv6mr_multiaddr))
   2669 				break;
   2670 		}
   2671 		if (imm == NULL) {
   2672 			/* Unable to resolve interface */
   2673 			error = EADDRNOTAVAIL;
   2674 			break;
   2675 		}
   2676 		/*
   2677 		 * Give up the multicast address record to which the
   2678 		 * membership points.
   2679 		 */
   2680 		LIST_REMOVE(imm, i6mm_chain);
   2681 		in6_leavegroup(imm);
   2682 		break;
   2683 
   2684 	default:
   2685 		error = EOPNOTSUPP;
   2686 		break;
   2687 	}
   2688 
   2689 	/*
   2690 	 * If all options have default values, no need to keep the mbuf.
   2691 	 */
   2692 	if (im6o->im6o_multicast_if_index == 0 &&
   2693 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2694 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2695 	    im6o->im6o_memberships.lh_first == NULL) {
   2696 		free(in6p->in6p_moptions, M_IPMOPTS);
   2697 		in6p->in6p_moptions = NULL;
   2698 	}
   2699 
   2700 	return (error);
   2701 }
   2702 
   2703 /*
   2704  * Return the IP6 multicast options in response to user getsockopt().
   2705  */
   2706 static int
   2707 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p)
   2708 {
   2709 	u_int optval;
   2710 	int error;
   2711 	struct ip6_moptions *im6o = in6p->in6p_moptions;
   2712 
   2713 	switch (sopt->sopt_name) {
   2714 	case IPV6_MULTICAST_IF:
   2715 		if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
   2716 			optval = 0;
   2717 		else
   2718 			optval = im6o->im6o_multicast_if_index;
   2719 
   2720 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2721 		break;
   2722 
   2723 	case IPV6_MULTICAST_HOPS:
   2724 		if (im6o == NULL)
   2725 			optval = ip6_defmcasthlim;
   2726 		else
   2727 			optval = im6o->im6o_multicast_hlim;
   2728 
   2729 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2730 		break;
   2731 
   2732 	case IPV6_MULTICAST_LOOP:
   2733 		if (im6o == NULL)
   2734 			optval = IPV6_DEFAULT_MULTICAST_LOOP;
   2735 		else
   2736 			optval = im6o->im6o_multicast_loop;
   2737 
   2738 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2739 		break;
   2740 
   2741 	default:
   2742 		error = EOPNOTSUPP;
   2743 	}
   2744 
   2745 	return (error);
   2746 }
   2747 
   2748 /*
   2749  * Discard the IP6 multicast options.
   2750  */
   2751 void
   2752 ip6_freemoptions(struct ip6_moptions *im6o)
   2753 {
   2754 	struct in6_multi_mship *imm;
   2755 
   2756 	if (im6o == NULL)
   2757 		return;
   2758 
   2759 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   2760 		LIST_REMOVE(imm, i6mm_chain);
   2761 		in6_leavegroup(imm);
   2762 	}
   2763 	free(im6o, M_IPMOPTS);
   2764 }
   2765 
   2766 /*
   2767  * Set IPv6 outgoing packet options based on advanced API.
   2768  */
   2769 int
   2770 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
   2771 	struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
   2772 {
   2773 	struct cmsghdr *cm = 0;
   2774 
   2775 	if (control == NULL || opt == NULL)
   2776 		return (EINVAL);
   2777 
   2778 	ip6_initpktopts(opt);
   2779 	if (stickyopt) {
   2780 		int error;
   2781 
   2782 		/*
   2783 		 * If stickyopt is provided, make a local copy of the options
   2784 		 * for this particular packet, then override them by ancillary
   2785 		 * objects.
   2786 		 * XXX: copypktopts() does not copy the cached route to a next
   2787 		 * hop (if any).  This is not very good in terms of efficiency,
   2788 		 * but we can allow this since this option should be rarely
   2789 		 * used.
   2790 		 */
   2791 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
   2792 			return (error);
   2793 	}
   2794 
   2795 	/*
   2796 	 * XXX: Currently, we assume all the optional information is stored
   2797 	 * in a single mbuf.
   2798 	 */
   2799 	if (control->m_next)
   2800 		return (EINVAL);
   2801 
   2802 	/* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
   2803 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2804 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2805 		int error;
   2806 
   2807 		if (control->m_len < CMSG_LEN(0))
   2808 			return (EINVAL);
   2809 
   2810 		cm = mtod(control, struct cmsghdr *);
   2811 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   2812 			return (EINVAL);
   2813 		if (cm->cmsg_level != IPPROTO_IPV6)
   2814 			continue;
   2815 
   2816 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
   2817 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
   2818 		if (error)
   2819 			return (error);
   2820 	}
   2821 
   2822 	return (0);
   2823 }
   2824 
   2825 /*
   2826  * Set a particular packet option, as a sticky option or an ancillary data
   2827  * item.  "len" can be 0 only when it's a sticky option.
   2828  * We have 4 cases of combination of "sticky" and "cmsg":
   2829  * "sticky=0, cmsg=0": impossible
   2830  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
   2831  * "sticky=1, cmsg=0": RFC3542 socket option
   2832  * "sticky=1, cmsg=1": RFC2292 socket option
   2833  */
   2834 static int
   2835 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
   2836     kauth_cred_t cred, int sticky, int cmsg, int uproto)
   2837 {
   2838 	int minmtupolicy;
   2839 	int error;
   2840 
   2841 	if (!sticky && !cmsg) {
   2842 #ifdef DIAGNOSTIC
   2843 		printf("ip6_setpktopt: impossible case\n");
   2844 #endif
   2845 		return (EINVAL);
   2846 	}
   2847 
   2848 	/*
   2849 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
   2850 	 * not be specified in the context of RFC3542.  Conversely,
   2851 	 * RFC3542 types should not be specified in the context of RFC2292.
   2852 	 */
   2853 	if (!cmsg) {
   2854 		switch (optname) {
   2855 		case IPV6_2292PKTINFO:
   2856 		case IPV6_2292HOPLIMIT:
   2857 		case IPV6_2292NEXTHOP:
   2858 		case IPV6_2292HOPOPTS:
   2859 		case IPV6_2292DSTOPTS:
   2860 		case IPV6_2292RTHDR:
   2861 		case IPV6_2292PKTOPTIONS:
   2862 			return (ENOPROTOOPT);
   2863 		}
   2864 	}
   2865 	if (sticky && cmsg) {
   2866 		switch (optname) {
   2867 		case IPV6_PKTINFO:
   2868 		case IPV6_HOPLIMIT:
   2869 		case IPV6_NEXTHOP:
   2870 		case IPV6_HOPOPTS:
   2871 		case IPV6_DSTOPTS:
   2872 		case IPV6_RTHDRDSTOPTS:
   2873 		case IPV6_RTHDR:
   2874 		case IPV6_USE_MIN_MTU:
   2875 		case IPV6_DONTFRAG:
   2876 		case IPV6_OTCLASS:
   2877 		case IPV6_TCLASS:
   2878 		case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
   2879 			return (ENOPROTOOPT);
   2880 		}
   2881 	}
   2882 
   2883 	switch (optname) {
   2884 #ifdef RFC2292
   2885 	case IPV6_2292PKTINFO:
   2886 #endif
   2887 	case IPV6_PKTINFO:
   2888 	{
   2889 		struct in6_pktinfo *pktinfo;
   2890 
   2891 		if (len != sizeof(struct in6_pktinfo))
   2892 			return (EINVAL);
   2893 
   2894 		pktinfo = (struct in6_pktinfo *)buf;
   2895 
   2896 		/*
   2897 		 * An application can clear any sticky IPV6_PKTINFO option by
   2898 		 * doing a "regular" setsockopt with ipi6_addr being
   2899 		 * in6addr_any and ipi6_ifindex being zero.
   2900 		 * [RFC 3542, Section 6]
   2901 		 */
   2902 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
   2903 		    pktinfo->ipi6_ifindex == 0 &&
   2904 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2905 			ip6_clearpktopts(opt, optname);
   2906 			break;
   2907 		}
   2908 
   2909 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
   2910 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2911 			return (EINVAL);
   2912 		}
   2913 
   2914 		/* Validate the interface index if specified. */
   2915 		if (pktinfo->ipi6_ifindex) {
   2916 			struct ifnet *ifp;
   2917 			int s = pserialize_read_enter();
   2918 			ifp = if_byindex(pktinfo->ipi6_ifindex);
   2919 			if (ifp == NULL) {
   2920 				pserialize_read_exit(s);
   2921 				return ENXIO;
   2922 			}
   2923 			pserialize_read_exit(s);
   2924 		}
   2925 
   2926 		/*
   2927 		 * We store the address anyway, and let in6_selectsrc()
   2928 		 * validate the specified address.  This is because ipi6_addr
   2929 		 * may not have enough information about its scope zone, and
   2930 		 * we may need additional information (such as outgoing
   2931 		 * interface or the scope zone of a destination address) to
   2932 		 * disambiguate the scope.
   2933 		 * XXX: the delay of the validation may confuse the
   2934 		 * application when it is used as a sticky option.
   2935 		 */
   2936 		if (opt->ip6po_pktinfo == NULL) {
   2937 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
   2938 			    M_IP6OPT, M_NOWAIT);
   2939 			if (opt->ip6po_pktinfo == NULL)
   2940 				return (ENOBUFS);
   2941 		}
   2942 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
   2943 		break;
   2944 	}
   2945 
   2946 #ifdef RFC2292
   2947 	case IPV6_2292HOPLIMIT:
   2948 #endif
   2949 	case IPV6_HOPLIMIT:
   2950 	{
   2951 		int *hlimp;
   2952 
   2953 		/*
   2954 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
   2955 		 * to simplify the ordering among hoplimit options.
   2956 		 */
   2957 		if (optname == IPV6_HOPLIMIT && sticky)
   2958 			return (ENOPROTOOPT);
   2959 
   2960 		if (len != sizeof(int))
   2961 			return (EINVAL);
   2962 		hlimp = (int *)buf;
   2963 		if (*hlimp < -1 || *hlimp > 255)
   2964 			return (EINVAL);
   2965 
   2966 		opt->ip6po_hlim = *hlimp;
   2967 		break;
   2968 	}
   2969 
   2970 	case IPV6_OTCLASS:
   2971 		if (len != sizeof(u_int8_t))
   2972 			return (EINVAL);
   2973 
   2974 		opt->ip6po_tclass = *(u_int8_t *)buf;
   2975 		break;
   2976 
   2977 	case IPV6_TCLASS:
   2978 	{
   2979 		int tclass;
   2980 
   2981 		if (len != sizeof(int))
   2982 			return (EINVAL);
   2983 		tclass = *(int *)buf;
   2984 		if (tclass < -1 || tclass > 255)
   2985 			return (EINVAL);
   2986 
   2987 		opt->ip6po_tclass = tclass;
   2988 		break;
   2989 	}
   2990 
   2991 #ifdef RFC2292
   2992 	case IPV6_2292NEXTHOP:
   2993 #endif
   2994 	case IPV6_NEXTHOP:
   2995 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   2996 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2997 		if (error)
   2998 			return (error);
   2999 
   3000 		if (len == 0) {	/* just remove the option */
   3001 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
   3002 			break;
   3003 		}
   3004 
   3005 		/* check if cmsg_len is large enough for sa_len */
   3006 		if (len < sizeof(struct sockaddr) || len < *buf)
   3007 			return (EINVAL);
   3008 
   3009 		switch (((struct sockaddr *)buf)->sa_family) {
   3010 		case AF_INET6:
   3011 		{
   3012 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
   3013 
   3014 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
   3015 				return (EINVAL);
   3016 
   3017 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
   3018 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
   3019 				return (EINVAL);
   3020 			}
   3021 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
   3022 			    != 0) {
   3023 				return (error);
   3024 			}
   3025 			break;
   3026 		}
   3027 		case AF_LINK:	/* eventually be supported? */
   3028 		default:
   3029 			return (EAFNOSUPPORT);
   3030 		}
   3031 
   3032 		/* turn off the previous option, then set the new option. */
   3033 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
   3034 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
   3035 		if (opt->ip6po_nexthop == NULL)
   3036 			return (ENOBUFS);
   3037 		memcpy(opt->ip6po_nexthop, buf, *buf);
   3038 		break;
   3039 
   3040 #ifdef RFC2292
   3041 	case IPV6_2292HOPOPTS:
   3042 #endif
   3043 	case IPV6_HOPOPTS:
   3044 	{
   3045 		struct ip6_hbh *hbh;
   3046 		int hbhlen;
   3047 
   3048 		/*
   3049 		 * XXX: We don't allow a non-privileged user to set ANY HbH
   3050 		 * options, since per-option restriction has too much
   3051 		 * overhead.
   3052 		 */
   3053 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   3054 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   3055 		if (error)
   3056 			return (error);
   3057 
   3058 		if (len == 0) {
   3059 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3060 			break;	/* just remove the option */
   3061 		}
   3062 
   3063 		/* message length validation */
   3064 		if (len < sizeof(struct ip6_hbh))
   3065 			return (EINVAL);
   3066 		hbh = (struct ip6_hbh *)buf;
   3067 		hbhlen = (hbh->ip6h_len + 1) << 3;
   3068 		if (len != hbhlen)
   3069 			return (EINVAL);
   3070 
   3071 		/* turn off the previous option, then set the new option. */
   3072 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3073 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
   3074 		if (opt->ip6po_hbh == NULL)
   3075 			return (ENOBUFS);
   3076 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
   3077 
   3078 		break;
   3079 	}
   3080 
   3081 #ifdef RFC2292
   3082 	case IPV6_2292DSTOPTS:
   3083 #endif
   3084 	case IPV6_DSTOPTS:
   3085 	case IPV6_RTHDRDSTOPTS:
   3086 	{
   3087 		struct ip6_dest *dest, **newdest = NULL;
   3088 		int destlen;
   3089 
   3090 		/* XXX: see the comment for IPV6_HOPOPTS */
   3091 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   3092 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   3093 		if (error)
   3094 			return (error);
   3095 
   3096 		if (len == 0) {
   3097 			ip6_clearpktopts(opt, optname);
   3098 			break;	/* just remove the option */
   3099 		}
   3100 
   3101 		/* message length validation */
   3102 		if (len < sizeof(struct ip6_dest))
   3103 			return (EINVAL);
   3104 		dest = (struct ip6_dest *)buf;
   3105 		destlen = (dest->ip6d_len + 1) << 3;
   3106 		if (len != destlen)
   3107 			return (EINVAL);
   3108 		/*
   3109 		 * Determine the position that the destination options header
   3110 		 * should be inserted; before or after the routing header.
   3111 		 */
   3112 		switch (optname) {
   3113 		case IPV6_2292DSTOPTS:
   3114 			/*
   3115 			 * The old advanced API is ambiguous on this point.
   3116 			 * Our approach is to determine the position based
   3117 			 * according to the existence of a routing header.
   3118 			 * Note, however, that this depends on the order of the
   3119 			 * extension headers in the ancillary data; the 1st
   3120 			 * part of the destination options header must appear
   3121 			 * before the routing header in the ancillary data,
   3122 			 * too.
   3123 			 * RFC3542 solved the ambiguity by introducing
   3124 			 * separate ancillary data or option types.
   3125 			 */
   3126 			if (opt->ip6po_rthdr == NULL)
   3127 				newdest = &opt->ip6po_dest1;
   3128 			else
   3129 				newdest = &opt->ip6po_dest2;
   3130 			break;
   3131 		case IPV6_RTHDRDSTOPTS:
   3132 			newdest = &opt->ip6po_dest1;
   3133 			break;
   3134 		case IPV6_DSTOPTS:
   3135 			newdest = &opt->ip6po_dest2;
   3136 			break;
   3137 		}
   3138 
   3139 		/* turn off the previous option, then set the new option. */
   3140 		ip6_clearpktopts(opt, optname);
   3141 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
   3142 		if (*newdest == NULL)
   3143 			return (ENOBUFS);
   3144 		memcpy(*newdest, dest, destlen);
   3145 
   3146 		break;
   3147 	}
   3148 
   3149 #ifdef RFC2292
   3150 	case IPV6_2292RTHDR:
   3151 #endif
   3152 	case IPV6_RTHDR:
   3153 	{
   3154 		struct ip6_rthdr *rth;
   3155 		int rthlen;
   3156 
   3157 		if (len == 0) {
   3158 			ip6_clearpktopts(opt, IPV6_RTHDR);
   3159 			break;	/* just remove the option */
   3160 		}
   3161 
   3162 		/* message length validation */
   3163 		if (len < sizeof(struct ip6_rthdr))
   3164 			return (EINVAL);
   3165 		rth = (struct ip6_rthdr *)buf;
   3166 		rthlen = (rth->ip6r_len + 1) << 3;
   3167 		if (len != rthlen)
   3168 			return (EINVAL);
   3169 		switch (rth->ip6r_type) {
   3170 		case IPV6_RTHDR_TYPE_0:
   3171 			if (rth->ip6r_len == 0)	/* must contain one addr */
   3172 				return (EINVAL);
   3173 			if (rth->ip6r_len % 2) /* length must be even */
   3174 				return (EINVAL);
   3175 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
   3176 				return (EINVAL);
   3177 			break;
   3178 		default:
   3179 			return (EINVAL);	/* not supported */
   3180 		}
   3181 		/* turn off the previous option */
   3182 		ip6_clearpktopts(opt, IPV6_RTHDR);
   3183 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
   3184 		if (opt->ip6po_rthdr == NULL)
   3185 			return (ENOBUFS);
   3186 		memcpy(opt->ip6po_rthdr, rth, rthlen);
   3187 		break;
   3188 	}
   3189 
   3190 	case IPV6_USE_MIN_MTU:
   3191 		if (len != sizeof(int))
   3192 			return (EINVAL);
   3193 		minmtupolicy = *(int *)buf;
   3194 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
   3195 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
   3196 		    minmtupolicy != IP6PO_MINMTU_ALL) {
   3197 			return (EINVAL);
   3198 		}
   3199 		opt->ip6po_minmtu = minmtupolicy;
   3200 		break;
   3201 
   3202 	case IPV6_DONTFRAG:
   3203 		if (len != sizeof(int))
   3204 			return (EINVAL);
   3205 
   3206 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
   3207 			/*
   3208 			 * we ignore this option for TCP sockets.
   3209 			 * (RFC3542 leaves this case unspecified.)
   3210 			 */
   3211 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
   3212 		} else
   3213 			opt->ip6po_flags |= IP6PO_DONTFRAG;
   3214 		break;
   3215 
   3216 	case IPV6_PREFER_TEMPADDR:
   3217 	{
   3218 		int preftemp;
   3219 
   3220 		if (len != sizeof(int))
   3221 			return (EINVAL);
   3222 		preftemp = *(int *)buf;
   3223 		switch (preftemp) {
   3224 		case IP6PO_TEMPADDR_SYSTEM:
   3225 		case IP6PO_TEMPADDR_NOTPREFER:
   3226 		case IP6PO_TEMPADDR_PREFER:
   3227 			break;
   3228 		default:
   3229 			return (EINVAL);
   3230 		}
   3231 		opt->ip6po_prefer_tempaddr = preftemp;
   3232 		break;
   3233 	}
   3234 
   3235 	default:
   3236 		return (ENOPROTOOPT);
   3237 	} /* end of switch */
   3238 
   3239 	return (0);
   3240 }
   3241 
   3242 /*
   3243  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   3244  * packet to the input queue of a specified interface.  Note that this
   3245  * calls the output routine of the loopback "driver", but with an interface
   3246  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   3247  */
   3248 void
   3249 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
   3250 	const struct sockaddr_in6 *dst)
   3251 {
   3252 	struct mbuf *copym;
   3253 	struct ip6_hdr *ip6;
   3254 
   3255 	copym = m_copy(m, 0, M_COPYALL);
   3256 	if (copym == NULL)
   3257 		return;
   3258 
   3259 	/*
   3260 	 * Make sure to deep-copy IPv6 header portion in case the data
   3261 	 * is in an mbuf cluster, so that we can safely override the IPv6
   3262 	 * header portion later.
   3263 	 */
   3264 	if ((copym->m_flags & M_EXT) != 0 ||
   3265 	    copym->m_len < sizeof(struct ip6_hdr)) {
   3266 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   3267 		if (copym == NULL)
   3268 			return;
   3269 	}
   3270 
   3271 #ifdef DIAGNOSTIC
   3272 	if (copym->m_len < sizeof(*ip6)) {
   3273 		m_freem(copym);
   3274 		return;
   3275 	}
   3276 #endif
   3277 
   3278 	ip6 = mtod(copym, struct ip6_hdr *);
   3279 	/*
   3280 	 * clear embedded scope identifiers if necessary.
   3281 	 * in6_clearscope will touch the addresses only when necessary.
   3282 	 */
   3283 	in6_clearscope(&ip6->ip6_src);
   3284 	in6_clearscope(&ip6->ip6_dst);
   3285 
   3286 	(void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
   3287 }
   3288 
   3289 /*
   3290  * Chop IPv6 header off from the payload.
   3291  */
   3292 static int
   3293 ip6_splithdr(struct mbuf *m,  struct ip6_exthdrs *exthdrs)
   3294 {
   3295 	struct mbuf *mh;
   3296 	struct ip6_hdr *ip6;
   3297 
   3298 	ip6 = mtod(m, struct ip6_hdr *);
   3299 	if (m->m_len > sizeof(*ip6)) {
   3300 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   3301 		if (mh == 0) {
   3302 			m_freem(m);
   3303 			return ENOBUFS;
   3304 		}
   3305 		M_MOVE_PKTHDR(mh, m);
   3306 		MH_ALIGN(mh, sizeof(*ip6));
   3307 		m->m_len -= sizeof(*ip6);
   3308 		m->m_data += sizeof(*ip6);
   3309 		mh->m_next = m;
   3310 		m = mh;
   3311 		m->m_len = sizeof(*ip6);
   3312 		bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
   3313 	}
   3314 	exthdrs->ip6e_ip6 = m;
   3315 	return 0;
   3316 }
   3317 
   3318 /*
   3319  * Compute IPv6 extension header length.
   3320  */
   3321 int
   3322 ip6_optlen(struct in6pcb *in6p)
   3323 {
   3324 	int len;
   3325 
   3326 	if (!in6p->in6p_outputopts)
   3327 		return 0;
   3328 
   3329 	len = 0;
   3330 #define elen(x) \
   3331     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   3332 
   3333 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   3334 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   3335 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   3336 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   3337 	return len;
   3338 #undef elen
   3339 }
   3340 
   3341 /*
   3342  * Ensure sending address is valid.
   3343  * Returns 0 on success, -1 if an error should be sent back or 1
   3344  * if the packet could be dropped without error (protocol dependent).
   3345  */
   3346 static int
   3347 ip6_ifaddrvalid(const struct in6_addr *addr)
   3348 {
   3349 	struct sockaddr_in6 sin6;
   3350 	int s, error;
   3351 	struct ifaddr *ifa;
   3352 	struct in6_ifaddr *ia6;
   3353 
   3354 	if (IN6_IS_ADDR_UNSPECIFIED(addr))
   3355 		return 0;
   3356 
   3357 	memset(&sin6, 0, sizeof(sin6));
   3358 	sin6.sin6_family = AF_INET6;
   3359 	sin6.sin6_len = sizeof(sin6);
   3360 	sin6.sin6_addr = *addr;
   3361 
   3362 	s = pserialize_read_enter();
   3363 	ifa = ifa_ifwithaddr(sin6tosa(&sin6));
   3364 	if ((ia6 = ifatoia6(ifa)) == NULL ||
   3365 	    ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
   3366 		error = -1;
   3367 	else if (ia6->ia6_flags & (IN6_IFF_TENTATIVE | IN6_IFF_DETACHED))
   3368 		error = 1;
   3369 	else
   3370 		error = 0;
   3371 	pserialize_read_exit(s);
   3372 
   3373 	return error;
   3374 }
   3375