ip6_output.c revision 1.189 1 /* $NetBSD: ip6_output.c,v 1.189 2017/03/02 05:24:23 ozaki-r Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.189 2017/03/02 05:24:23 ozaki-r Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_inet.h"
69 #include "opt_inet6.h"
70 #include "opt_ipsec.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/errno.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/syslog.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kauth.h>
83
84 #include <net/if.h>
85 #include <net/route.h>
86 #include <net/pfil.h>
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/ip_var.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet/portalgo.h>
95 #include <netinet6/in6_offload.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/ip6_private.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/nd6.h>
100 #include <netinet6/ip6protosw.h>
101 #include <netinet6/scope6_var.h>
102
103 #ifdef IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/ipsec6.h>
106 #include <netipsec/key.h>
107 #include <netipsec/xform.h>
108 #endif
109
110
111 #include <net/net_osdep.h>
112
113 extern pfil_head_t *inet6_pfil_hook; /* XXX */
114
115 struct ip6_exthdrs {
116 struct mbuf *ip6e_ip6;
117 struct mbuf *ip6e_hbh;
118 struct mbuf *ip6e_dest1;
119 struct mbuf *ip6e_rthdr;
120 struct mbuf *ip6e_dest2;
121 };
122
123 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
124 kauth_cred_t, int);
125 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
126 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
127 int, int, int);
128 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *);
129 static int ip6_getmoptions(struct sockopt *, struct in6pcb *);
130 static int ip6_copyexthdr(struct mbuf **, void *, int);
131 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
132 struct ip6_frag **);
133 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
134 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
135 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
136 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
137 static int ip6_ifaddrvalid(const struct in6_addr *);
138 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
139
140 #ifdef RFC2292
141 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
142 #endif
143
144 static int
145 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
146 {
147 struct ip6_rthdr0 *rh0;
148 struct in6_addr *addr;
149 struct sockaddr_in6 sa;
150 int error = 0;
151
152 switch (rh->ip6r_type) {
153 case IPV6_RTHDR_TYPE_0:
154 rh0 = (struct ip6_rthdr0 *)rh;
155 addr = (struct in6_addr *)(rh0 + 1);
156
157 /*
158 * construct a sockaddr_in6 form of the first hop.
159 *
160 * XXX we may not have enough information about its scope zone;
161 * there is no standard API to pass the information from the
162 * application.
163 */
164 sockaddr_in6_init(&sa, addr, 0, 0, 0);
165 error = sa6_embedscope(&sa, ip6_use_defzone);
166 if (error != 0)
167 break;
168 (void)memmove(&addr[0], &addr[1],
169 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
170 addr[rh0->ip6r0_segleft - 1] = ip6->ip6_dst;
171 ip6->ip6_dst = sa.sin6_addr;
172 /* XXX */
173 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
174 break;
175 default: /* is it possible? */
176 error = EINVAL;
177 }
178
179 return error;
180 }
181
182 /*
183 * Send an IP packet to a host.
184 */
185 int
186 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp,
187 struct mbuf * const m,
188 const struct sockaddr_in6 * const dst, const struct rtentry *rt)
189 {
190 int error = 0;
191
192 if (rt != NULL) {
193 error = rt_check_reject_route(rt, ifp);
194 if (error != 0) {
195 m_freem(m);
196 return error;
197 }
198 }
199
200 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
201 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
202 else
203 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
204 return error;
205 }
206
207 /*
208 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
209 * header (with pri, len, nxt, hlim, src, dst).
210 * This function may modify ver and hlim only.
211 * The mbuf chain containing the packet will be freed.
212 * The mbuf opt, if present, will not be freed.
213 *
214 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
215 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
216 * which is rt_rmx.rmx_mtu.
217 */
218 int
219 ip6_output(
220 struct mbuf *m0,
221 struct ip6_pktopts *opt,
222 struct route *ro,
223 int flags,
224 struct ip6_moptions *im6o,
225 struct socket *so,
226 struct ifnet **ifpp /* XXX: just for statistics */
227 )
228 {
229 struct ip6_hdr *ip6, *mhip6;
230 struct ifnet *ifp = NULL, *origifp = NULL;
231 struct mbuf *m = m0;
232 int hlen, tlen, len, off;
233 bool tso;
234 struct route ip6route;
235 struct rtentry *rt = NULL, *rt_pmtu;
236 const struct sockaddr_in6 *dst;
237 struct sockaddr_in6 src_sa, dst_sa;
238 int error = 0;
239 struct in6_ifaddr *ia = NULL;
240 u_long mtu;
241 int alwaysfrag, dontfrag;
242 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
243 struct ip6_exthdrs exthdrs;
244 struct in6_addr finaldst, src0, dst0;
245 u_int32_t zone;
246 struct route *ro_pmtu = NULL;
247 int hdrsplit = 0;
248 int needipsec = 0;
249 #ifdef IPSEC
250 struct secpolicy *sp = NULL;
251 #endif
252 struct psref psref, psref_ia;
253 int bound = curlwp_bind();
254 bool release_psref_ia = false;
255
256 #ifdef DIAGNOSTIC
257 if ((m->m_flags & M_PKTHDR) == 0)
258 panic("ip6_output: no HDR");
259
260 if ((m->m_pkthdr.csum_flags &
261 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
262 panic("ip6_output: IPv4 checksum offload flags: %d",
263 m->m_pkthdr.csum_flags);
264 }
265
266 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
267 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
268 panic("ip6_output: conflicting checksum offload flags: %d",
269 m->m_pkthdr.csum_flags);
270 }
271 #endif
272
273 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
274
275 #define MAKE_EXTHDR(hp, mp) \
276 do { \
277 if (hp) { \
278 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
279 error = ip6_copyexthdr((mp), (void *)(hp), \
280 ((eh)->ip6e_len + 1) << 3); \
281 if (error) \
282 goto freehdrs; \
283 } \
284 } while (/*CONSTCOND*/ 0)
285
286 memset(&exthdrs, 0, sizeof(exthdrs));
287 if (opt) {
288 /* Hop-by-Hop options header */
289 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
290 /* Destination options header(1st part) */
291 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
292 /* Routing header */
293 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
294 /* Destination options header(2nd part) */
295 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
296 }
297
298 /*
299 * Calculate the total length of the extension header chain.
300 * Keep the length of the unfragmentable part for fragmentation.
301 */
302 optlen = 0;
303 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
304 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
305 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
306 unfragpartlen = optlen + sizeof(struct ip6_hdr);
307 /* NOTE: we don't add AH/ESP length here. do that later. */
308 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
309
310 #ifdef IPSEC
311 if (ipsec_used) {
312 /* Check the security policy (SP) for the packet */
313
314 sp = ipsec6_check_policy(m, so, flags, &needipsec, &error);
315 if (error != 0) {
316 /*
317 * Hack: -EINVAL is used to signal that a packet
318 * should be silently discarded. This is typically
319 * because we asked key management for an SA and
320 * it was delayed (e.g. kicked up to IKE).
321 */
322 if (error == -EINVAL)
323 error = 0;
324 goto freehdrs;
325 }
326 }
327 #endif /* IPSEC */
328
329
330 if (needipsec &&
331 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
332 in6_delayed_cksum(m);
333 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
334 }
335
336
337 /*
338 * If we need IPsec, or there is at least one extension header,
339 * separate IP6 header from the payload.
340 */
341 if ((needipsec || optlen) && !hdrsplit) {
342 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
343 m = NULL;
344 goto freehdrs;
345 }
346 m = exthdrs.ip6e_ip6;
347 hdrsplit++;
348 }
349
350 /* adjust pointer */
351 ip6 = mtod(m, struct ip6_hdr *);
352
353 /* adjust mbuf packet header length */
354 m->m_pkthdr.len += optlen;
355 plen = m->m_pkthdr.len - sizeof(*ip6);
356
357 /* If this is a jumbo payload, insert a jumbo payload option. */
358 if (plen > IPV6_MAXPACKET) {
359 if (!hdrsplit) {
360 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
361 m = NULL;
362 goto freehdrs;
363 }
364 m = exthdrs.ip6e_ip6;
365 hdrsplit++;
366 }
367 /* adjust pointer */
368 ip6 = mtod(m, struct ip6_hdr *);
369 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
370 goto freehdrs;
371 optlen += 8; /* XXX JUMBOOPTLEN */
372 ip6->ip6_plen = 0;
373 } else
374 ip6->ip6_plen = htons(plen);
375
376 /*
377 * Concatenate headers and fill in next header fields.
378 * Here we have, on "m"
379 * IPv6 payload
380 * and we insert headers accordingly. Finally, we should be getting:
381 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
382 *
383 * during the header composing process, "m" points to IPv6 header.
384 * "mprev" points to an extension header prior to esp.
385 */
386 {
387 u_char *nexthdrp = &ip6->ip6_nxt;
388 struct mbuf *mprev = m;
389
390 /*
391 * we treat dest2 specially. this makes IPsec processing
392 * much easier. the goal here is to make mprev point the
393 * mbuf prior to dest2.
394 *
395 * result: IPv6 dest2 payload
396 * m and mprev will point to IPv6 header.
397 */
398 if (exthdrs.ip6e_dest2) {
399 if (!hdrsplit)
400 panic("assumption failed: hdr not split");
401 exthdrs.ip6e_dest2->m_next = m->m_next;
402 m->m_next = exthdrs.ip6e_dest2;
403 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
404 ip6->ip6_nxt = IPPROTO_DSTOPTS;
405 }
406
407 #define MAKE_CHAIN(m, mp, p, i)\
408 do {\
409 if (m) {\
410 if (!hdrsplit) \
411 panic("assumption failed: hdr not split"); \
412 *mtod((m), u_char *) = *(p);\
413 *(p) = (i);\
414 p = mtod((m), u_char *);\
415 (m)->m_next = (mp)->m_next;\
416 (mp)->m_next = (m);\
417 (mp) = (m);\
418 }\
419 } while (/*CONSTCOND*/ 0)
420 /*
421 * result: IPv6 hbh dest1 rthdr dest2 payload
422 * m will point to IPv6 header. mprev will point to the
423 * extension header prior to dest2 (rthdr in the above case).
424 */
425 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
426 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
427 IPPROTO_DSTOPTS);
428 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
429 IPPROTO_ROUTING);
430
431 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
432 sizeof(struct ip6_hdr) + optlen);
433 }
434
435 /* Need to save for pmtu */
436 finaldst = ip6->ip6_dst;
437
438 /*
439 * If there is a routing header, replace destination address field
440 * with the first hop of the routing header.
441 */
442 if (exthdrs.ip6e_rthdr) {
443 struct ip6_rthdr *rh;
444
445 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
446 struct ip6_rthdr *));
447
448 error = ip6_handle_rthdr(rh, ip6);
449 if (error != 0)
450 goto bad;
451 }
452
453 /* Source address validation */
454 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
455 (flags & IPV6_UNSPECSRC) == 0) {
456 error = EOPNOTSUPP;
457 IP6_STATINC(IP6_STAT_BADSCOPE);
458 goto bad;
459 }
460 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
461 error = EOPNOTSUPP;
462 IP6_STATINC(IP6_STAT_BADSCOPE);
463 goto bad;
464 }
465
466 IP6_STATINC(IP6_STAT_LOCALOUT);
467
468 /*
469 * Route packet.
470 */
471 /* initialize cached route */
472 if (ro == NULL) {
473 memset(&ip6route, 0, sizeof(ip6route));
474 ro = &ip6route;
475 }
476 ro_pmtu = ro;
477 if (opt && opt->ip6po_rthdr)
478 ro = &opt->ip6po_route;
479
480 /*
481 * if specified, try to fill in the traffic class field.
482 * do not override if a non-zero value is already set.
483 * we check the diffserv field and the ecn field separately.
484 */
485 if (opt && opt->ip6po_tclass >= 0) {
486 int mask = 0;
487
488 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
489 mask |= 0xfc;
490 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
491 mask |= 0x03;
492 if (mask != 0)
493 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
494 }
495
496 /* fill in or override the hop limit field, if necessary. */
497 if (opt && opt->ip6po_hlim != -1)
498 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
499 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
500 if (im6o != NULL)
501 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
502 else
503 ip6->ip6_hlim = ip6_defmcasthlim;
504 }
505
506 #ifdef IPSEC
507 if (needipsec) {
508 int s = splsoftnet();
509 error = ipsec6_process_packet(m, sp->req);
510
511 /*
512 * Preserve KAME behaviour: ENOENT can be returned
513 * when an SA acquire is in progress. Don't propagate
514 * this to user-level; it confuses applications.
515 * XXX this will go away when the SADB is redone.
516 */
517 if (error == ENOENT)
518 error = 0;
519 splx(s);
520 goto done;
521 }
522 #endif /* IPSEC */
523
524 /* adjust pointer */
525 ip6 = mtod(m, struct ip6_hdr *);
526
527 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
528
529 /* We do not need a route for multicast */
530 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
531 struct in6_pktinfo *pi = NULL;
532
533 /*
534 * If the outgoing interface for the address is specified by
535 * the caller, use it.
536 */
537 if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
538 /* XXX boundary check is assumed to be already done. */
539 ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
540 } else if (im6o != NULL) {
541 ifp = if_get_byindex(im6o->im6o_multicast_if_index,
542 &psref);
543 }
544 }
545
546 if (ifp == NULL) {
547 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
548 if (error != 0)
549 goto bad;
550 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
551 }
552
553 if (rt == NULL) {
554 /*
555 * If in6_selectroute() does not return a route entry,
556 * dst may not have been updated.
557 */
558 error = rtcache_setdst(ro, sin6tosa(&dst_sa));
559 if (error) {
560 goto bad;
561 }
562 }
563
564 /*
565 * then rt (for unicast) and ifp must be non-NULL valid values.
566 */
567 if ((flags & IPV6_FORWARDING) == 0) {
568 /* XXX: the FORWARDING flag can be set for mrouting. */
569 in6_ifstat_inc(ifp, ifs6_out_request);
570 }
571 if (rt != NULL) {
572 ia = (struct in6_ifaddr *)(rt->rt_ifa);
573 rt->rt_use++;
574 }
575
576 /*
577 * The outgoing interface must be in the zone of source and
578 * destination addresses. We should use ia_ifp to support the
579 * case of sending packets to an address of our own.
580 */
581 if (ia != NULL && ia->ia_ifp) {
582 origifp = ia->ia_ifp;
583 if (if_is_deactivated(origifp))
584 goto bad;
585 if_acquire(origifp, &psref_ia);
586 release_psref_ia = true;
587 } else
588 origifp = ifp;
589
590 src0 = ip6->ip6_src;
591 if (in6_setscope(&src0, origifp, &zone))
592 goto badscope;
593 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
594 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
595 goto badscope;
596
597 dst0 = ip6->ip6_dst;
598 if (in6_setscope(&dst0, origifp, &zone))
599 goto badscope;
600 /* re-initialize to be sure */
601 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
602 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
603 goto badscope;
604
605 /* scope check is done. */
606
607 /* Ensure we only send from a valid address. */
608 if ((error = ip6_ifaddrvalid(&src0)) != 0) {
609 char ip6buf[INET6_ADDRSTRLEN];
610 nd6log(LOG_ERR,
611 "refusing to send from invalid address %s (pid %d)\n",
612 IN6_PRINT(ip6buf, &src0), curproc->p_pid);
613 IP6_STATINC(IP6_STAT_ODROPPED);
614 in6_ifstat_inc(origifp, ifs6_out_discard);
615 if (error == 1)
616 /*
617 * Address exists, but is tentative or detached.
618 * We can't send from it because it's invalid,
619 * so we drop the packet.
620 */
621 error = 0;
622 else
623 error = EADDRNOTAVAIL;
624 goto bad;
625 }
626
627 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
628 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
629 dst = satocsin6(rt->rt_gateway);
630 else
631 dst = satocsin6(rtcache_getdst(ro));
632
633 /*
634 * XXXXXX: original code follows:
635 */
636 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
637 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
638 else {
639 bool ingroup;
640
641 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
642
643 in6_ifstat_inc(ifp, ifs6_out_mcast);
644
645 /*
646 * Confirm that the outgoing interface supports multicast.
647 */
648 if (!(ifp->if_flags & IFF_MULTICAST)) {
649 IP6_STATINC(IP6_STAT_NOROUTE);
650 in6_ifstat_inc(ifp, ifs6_out_discard);
651 error = ENETUNREACH;
652 goto bad;
653 }
654
655 ingroup = in6_multi_group(&ip6->ip6_dst, ifp);
656 if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) {
657 /*
658 * If we belong to the destination multicast group
659 * on the outgoing interface, and the caller did not
660 * forbid loopback, loop back a copy.
661 */
662 KASSERT(dst != NULL);
663 ip6_mloopback(ifp, m, dst);
664 } else {
665 /*
666 * If we are acting as a multicast router, perform
667 * multicast forwarding as if the packet had just
668 * arrived on the interface to which we are about
669 * to send. The multicast forwarding function
670 * recursively calls this function, using the
671 * IPV6_FORWARDING flag to prevent infinite recursion.
672 *
673 * Multicasts that are looped back by ip6_mloopback(),
674 * above, will be forwarded by the ip6_input() routine,
675 * if necessary.
676 */
677 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
678 if (ip6_mforward(ip6, ifp, m) != 0) {
679 m_freem(m);
680 goto done;
681 }
682 }
683 }
684 /*
685 * Multicasts with a hoplimit of zero may be looped back,
686 * above, but must not be transmitted on a network.
687 * Also, multicasts addressed to the loopback interface
688 * are not sent -- the above call to ip6_mloopback() will
689 * loop back a copy if this host actually belongs to the
690 * destination group on the loopback interface.
691 */
692 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
693 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
694 m_freem(m);
695 goto done;
696 }
697 }
698
699 /*
700 * Fill the outgoing inteface to tell the upper layer
701 * to increment per-interface statistics.
702 */
703 if (ifpp)
704 *ifpp = ifp;
705
706 /* Determine path MTU. */
707 /*
708 * ro_pmtu represent final destination while
709 * ro might represent immediate destination.
710 * Use ro_pmtu destination since MTU might differ.
711 */
712 if (ro_pmtu != ro) {
713 union {
714 struct sockaddr dst;
715 struct sockaddr_in6 dst6;
716 } u;
717
718 /* ro_pmtu may not have a cache */
719 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
720 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
721 } else
722 rt_pmtu = rt;
723 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
724 if (rt_pmtu != NULL && rt_pmtu != rt)
725 rtcache_unref(rt_pmtu, ro_pmtu);
726 if (error != 0)
727 goto bad;
728
729 /*
730 * The caller of this function may specify to use the minimum MTU
731 * in some cases.
732 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
733 * setting. The logic is a bit complicated; by default, unicast
734 * packets will follow path MTU while multicast packets will be sent at
735 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
736 * including unicast ones will be sent at the minimum MTU. Multicast
737 * packets will always be sent at the minimum MTU unless
738 * IP6PO_MINMTU_DISABLE is explicitly specified.
739 * See RFC 3542 for more details.
740 */
741 if (mtu > IPV6_MMTU) {
742 if ((flags & IPV6_MINMTU))
743 mtu = IPV6_MMTU;
744 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
745 mtu = IPV6_MMTU;
746 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
747 (opt == NULL ||
748 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
749 mtu = IPV6_MMTU;
750 }
751 }
752
753 /*
754 * clear embedded scope identifiers if necessary.
755 * in6_clearscope will touch the addresses only when necessary.
756 */
757 in6_clearscope(&ip6->ip6_src);
758 in6_clearscope(&ip6->ip6_dst);
759
760 /*
761 * If the outgoing packet contains a hop-by-hop options header,
762 * it must be examined and processed even by the source node.
763 * (RFC 2460, section 4.)
764 */
765 if (ip6->ip6_nxt == IPV6_HOPOPTS) {
766 u_int32_t dummy1; /* XXX unused */
767 u_int32_t dummy2; /* XXX unused */
768 int hoff = sizeof(struct ip6_hdr);
769
770 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
771 /* m was already freed at this point */
772 error = EINVAL;/* better error? */
773 goto done;
774 }
775
776 ip6 = mtod(m, struct ip6_hdr *);
777 }
778
779 /*
780 * Run through list of hooks for output packets.
781 */
782 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
783 goto done;
784 if (m == NULL)
785 goto done;
786 ip6 = mtod(m, struct ip6_hdr *);
787
788 /*
789 * Send the packet to the outgoing interface.
790 * If necessary, do IPv6 fragmentation before sending.
791 *
792 * the logic here is rather complex:
793 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
794 * 1-a: send as is if tlen <= path mtu
795 * 1-b: fragment if tlen > path mtu
796 *
797 * 2: if user asks us not to fragment (dontfrag == 1)
798 * 2-a: send as is if tlen <= interface mtu
799 * 2-b: error if tlen > interface mtu
800 *
801 * 3: if we always need to attach fragment header (alwaysfrag == 1)
802 * always fragment
803 *
804 * 4: if dontfrag == 1 && alwaysfrag == 1
805 * error, as we cannot handle this conflicting request
806 */
807 tlen = m->m_pkthdr.len;
808 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
809 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
810 dontfrag = 1;
811 else
812 dontfrag = 0;
813
814 if (dontfrag && alwaysfrag) { /* case 4 */
815 /* conflicting request - can't transmit */
816 error = EMSGSIZE;
817 goto bad;
818 }
819 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */
820 /*
821 * Even if the DONTFRAG option is specified, we cannot send the
822 * packet when the data length is larger than the MTU of the
823 * outgoing interface.
824 * Notify the error by sending IPV6_PATHMTU ancillary data as
825 * well as returning an error code (the latter is not described
826 * in the API spec.)
827 */
828 u_int32_t mtu32;
829 struct ip6ctlparam ip6cp;
830
831 mtu32 = (u_int32_t)mtu;
832 memset(&ip6cp, 0, sizeof(ip6cp));
833 ip6cp.ip6c_cmdarg = (void *)&mtu32;
834 pfctlinput2(PRC_MSGSIZE,
835 rtcache_getdst(ro_pmtu), &ip6cp);
836
837 error = EMSGSIZE;
838 goto bad;
839 }
840
841 /*
842 * transmit packet without fragmentation
843 */
844 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
845 /* case 1-a and 2-a */
846 struct in6_ifaddr *ia6;
847 int sw_csum;
848 int s;
849
850 ip6 = mtod(m, struct ip6_hdr *);
851 s = pserialize_read_enter();
852 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
853 if (ia6) {
854 /* Record statistics for this interface address. */
855 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
856 }
857 pserialize_read_exit(s);
858
859 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
860 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
861 if (IN6_NEED_CHECKSUM(ifp,
862 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
863 in6_delayed_cksum(m);
864 }
865 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
866 }
867
868 KASSERT(dst != NULL);
869 if (__predict_true(!tso ||
870 (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
871 error = ip6_if_output(ifp, origifp, m, dst, rt);
872 } else {
873 error = ip6_tso_output(ifp, origifp, m, dst, rt);
874 }
875 goto done;
876 }
877
878 if (tso) {
879 error = EINVAL; /* XXX */
880 goto bad;
881 }
882
883 /*
884 * try to fragment the packet. case 1-b and 3
885 */
886 if (mtu < IPV6_MMTU) {
887 /* path MTU cannot be less than IPV6_MMTU */
888 error = EMSGSIZE;
889 in6_ifstat_inc(ifp, ifs6_out_fragfail);
890 goto bad;
891 } else if (ip6->ip6_plen == 0) {
892 /* jumbo payload cannot be fragmented */
893 error = EMSGSIZE;
894 in6_ifstat_inc(ifp, ifs6_out_fragfail);
895 goto bad;
896 } else {
897 struct mbuf **mnext, *m_frgpart;
898 struct ip6_frag *ip6f;
899 u_int32_t id = htonl(ip6_randomid());
900 u_char nextproto;
901 #if 0 /* see below */
902 struct ip6ctlparam ip6cp;
903 u_int32_t mtu32;
904 #endif
905
906 /*
907 * Too large for the destination or interface;
908 * fragment if possible.
909 * Must be able to put at least 8 bytes per fragment.
910 */
911 hlen = unfragpartlen;
912 if (mtu > IPV6_MAXPACKET)
913 mtu = IPV6_MAXPACKET;
914
915 #if 0
916 /*
917 * It is believed this code is a leftover from the
918 * development of the IPV6_RECVPATHMTU sockopt and
919 * associated work to implement RFC3542.
920 * It's not entirely clear what the intent of the API
921 * is at this point, so disable this code for now.
922 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
923 * will send notifications if the application requests.
924 */
925
926 /* Notify a proper path MTU to applications. */
927 mtu32 = (u_int32_t)mtu;
928 memset(&ip6cp, 0, sizeof(ip6cp));
929 ip6cp.ip6c_cmdarg = (void *)&mtu32;
930 pfctlinput2(PRC_MSGSIZE,
931 rtcache_getdst(ro_pmtu), &ip6cp);
932 #endif
933
934 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
935 if (len < 8) {
936 error = EMSGSIZE;
937 in6_ifstat_inc(ifp, ifs6_out_fragfail);
938 goto bad;
939 }
940
941 mnext = &m->m_nextpkt;
942
943 /*
944 * Change the next header field of the last header in the
945 * unfragmentable part.
946 */
947 if (exthdrs.ip6e_rthdr) {
948 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
949 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
950 } else if (exthdrs.ip6e_dest1) {
951 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
952 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
953 } else if (exthdrs.ip6e_hbh) {
954 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
955 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
956 } else {
957 nextproto = ip6->ip6_nxt;
958 ip6->ip6_nxt = IPPROTO_FRAGMENT;
959 }
960
961 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
962 != 0) {
963 if (IN6_NEED_CHECKSUM(ifp,
964 m->m_pkthdr.csum_flags &
965 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
966 in6_delayed_cksum(m);
967 }
968 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
969 }
970
971 /*
972 * Loop through length of segment after first fragment,
973 * make new header and copy data of each part and link onto
974 * chain.
975 */
976 m0 = m;
977 for (off = hlen; off < tlen; off += len) {
978 struct mbuf *mlast;
979
980 MGETHDR(m, M_DONTWAIT, MT_HEADER);
981 if (!m) {
982 error = ENOBUFS;
983 IP6_STATINC(IP6_STAT_ODROPPED);
984 goto sendorfree;
985 }
986 m_reset_rcvif(m);
987 m->m_flags = m0->m_flags & M_COPYFLAGS;
988 *mnext = m;
989 mnext = &m->m_nextpkt;
990 m->m_data += max_linkhdr;
991 mhip6 = mtod(m, struct ip6_hdr *);
992 *mhip6 = *ip6;
993 m->m_len = sizeof(*mhip6);
994 /*
995 * ip6f must be valid if error is 0. But how
996 * can a compiler be expected to infer this?
997 */
998 ip6f = NULL;
999 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1000 if (error) {
1001 IP6_STATINC(IP6_STAT_ODROPPED);
1002 goto sendorfree;
1003 }
1004 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
1005 if (off + len >= tlen)
1006 len = tlen - off;
1007 else
1008 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1009 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
1010 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1011 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1012 error = ENOBUFS;
1013 IP6_STATINC(IP6_STAT_ODROPPED);
1014 goto sendorfree;
1015 }
1016 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
1017 ;
1018 mlast->m_next = m_frgpart;
1019 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1020 m_reset_rcvif(m);
1021 ip6f->ip6f_reserved = 0;
1022 ip6f->ip6f_ident = id;
1023 ip6f->ip6f_nxt = nextproto;
1024 IP6_STATINC(IP6_STAT_OFRAGMENTS);
1025 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1026 }
1027
1028 in6_ifstat_inc(ifp, ifs6_out_fragok);
1029 }
1030
1031 /*
1032 * Remove leading garbages.
1033 */
1034 sendorfree:
1035 m = m0->m_nextpkt;
1036 m0->m_nextpkt = 0;
1037 m_freem(m0);
1038 for (m0 = m; m; m = m0) {
1039 m0 = m->m_nextpkt;
1040 m->m_nextpkt = 0;
1041 if (error == 0) {
1042 struct in6_ifaddr *ia6;
1043 int s;
1044 ip6 = mtod(m, struct ip6_hdr *);
1045 s = pserialize_read_enter();
1046 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1047 if (ia6) {
1048 /*
1049 * Record statistics for this interface
1050 * address.
1051 */
1052 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1053 m->m_pkthdr.len;
1054 }
1055 pserialize_read_exit(s);
1056 KASSERT(dst != NULL);
1057 error = ip6_if_output(ifp, origifp, m, dst, rt);
1058 } else
1059 m_freem(m);
1060 }
1061
1062 if (error == 0)
1063 IP6_STATINC(IP6_STAT_FRAGMENTED);
1064
1065 done:
1066 rtcache_unref(rt, ro);
1067 if (ro == &ip6route)
1068 rtcache_free(&ip6route);
1069
1070 #ifdef IPSEC
1071 if (sp != NULL)
1072 KEY_FREESP(&sp);
1073 #endif /* IPSEC */
1074
1075 if_put(ifp, &psref);
1076 if (release_psref_ia)
1077 if_put(origifp, &psref_ia);
1078 curlwp_bindx(bound);
1079
1080 return (error);
1081
1082 freehdrs:
1083 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1084 m_freem(exthdrs.ip6e_dest1);
1085 m_freem(exthdrs.ip6e_rthdr);
1086 m_freem(exthdrs.ip6e_dest2);
1087 /* FALLTHROUGH */
1088 bad:
1089 m_freem(m);
1090 goto done;
1091 badscope:
1092 IP6_STATINC(IP6_STAT_BADSCOPE);
1093 in6_ifstat_inc(origifp, ifs6_out_discard);
1094 if (error == 0)
1095 error = EHOSTUNREACH; /* XXX */
1096 goto bad;
1097 }
1098
1099 static int
1100 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1101 {
1102 struct mbuf *m;
1103
1104 if (hlen > MCLBYTES)
1105 return (ENOBUFS); /* XXX */
1106
1107 MGET(m, M_DONTWAIT, MT_DATA);
1108 if (!m)
1109 return (ENOBUFS);
1110
1111 if (hlen > MLEN) {
1112 MCLGET(m, M_DONTWAIT);
1113 if ((m->m_flags & M_EXT) == 0) {
1114 m_free(m);
1115 return (ENOBUFS);
1116 }
1117 }
1118 m->m_len = hlen;
1119 if (hdr)
1120 bcopy(hdr, mtod(m, void *), hlen);
1121
1122 *mp = m;
1123 return (0);
1124 }
1125
1126 /*
1127 * Process a delayed payload checksum calculation.
1128 */
1129 void
1130 in6_delayed_cksum(struct mbuf *m)
1131 {
1132 uint16_t csum, offset;
1133
1134 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1135 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1136 KASSERT((m->m_pkthdr.csum_flags
1137 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1138
1139 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1140 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1141 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1142 csum = 0xffff;
1143 }
1144
1145 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1146 if ((offset + sizeof(csum)) > m->m_len) {
1147 m_copyback(m, offset, sizeof(csum), &csum);
1148 } else {
1149 *(uint16_t *)(mtod(m, char *) + offset) = csum;
1150 }
1151 }
1152
1153 /*
1154 * Insert jumbo payload option.
1155 */
1156 static int
1157 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1158 {
1159 struct mbuf *mopt;
1160 u_int8_t *optbuf;
1161 u_int32_t v;
1162
1163 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1164
1165 /*
1166 * If there is no hop-by-hop options header, allocate new one.
1167 * If there is one but it doesn't have enough space to store the
1168 * jumbo payload option, allocate a cluster to store the whole options.
1169 * Otherwise, use it to store the options.
1170 */
1171 if (exthdrs->ip6e_hbh == 0) {
1172 MGET(mopt, M_DONTWAIT, MT_DATA);
1173 if (mopt == 0)
1174 return (ENOBUFS);
1175 mopt->m_len = JUMBOOPTLEN;
1176 optbuf = mtod(mopt, u_int8_t *);
1177 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1178 exthdrs->ip6e_hbh = mopt;
1179 } else {
1180 struct ip6_hbh *hbh;
1181
1182 mopt = exthdrs->ip6e_hbh;
1183 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1184 /*
1185 * XXX assumption:
1186 * - exthdrs->ip6e_hbh is not referenced from places
1187 * other than exthdrs.
1188 * - exthdrs->ip6e_hbh is not an mbuf chain.
1189 */
1190 int oldoptlen = mopt->m_len;
1191 struct mbuf *n;
1192
1193 /*
1194 * XXX: give up if the whole (new) hbh header does
1195 * not fit even in an mbuf cluster.
1196 */
1197 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1198 return (ENOBUFS);
1199
1200 /*
1201 * As a consequence, we must always prepare a cluster
1202 * at this point.
1203 */
1204 MGET(n, M_DONTWAIT, MT_DATA);
1205 if (n) {
1206 MCLGET(n, M_DONTWAIT);
1207 if ((n->m_flags & M_EXT) == 0) {
1208 m_freem(n);
1209 n = NULL;
1210 }
1211 }
1212 if (!n)
1213 return (ENOBUFS);
1214 n->m_len = oldoptlen + JUMBOOPTLEN;
1215 bcopy(mtod(mopt, void *), mtod(n, void *),
1216 oldoptlen);
1217 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1218 m_freem(mopt);
1219 mopt = exthdrs->ip6e_hbh = n;
1220 } else {
1221 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1222 mopt->m_len += JUMBOOPTLEN;
1223 }
1224 optbuf[0] = IP6OPT_PADN;
1225 optbuf[1] = 0;
1226
1227 /*
1228 * Adjust the header length according to the pad and
1229 * the jumbo payload option.
1230 */
1231 hbh = mtod(mopt, struct ip6_hbh *);
1232 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1233 }
1234
1235 /* fill in the option. */
1236 optbuf[2] = IP6OPT_JUMBO;
1237 optbuf[3] = 4;
1238 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1239 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1240
1241 /* finally, adjust the packet header length */
1242 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1243
1244 return (0);
1245 #undef JUMBOOPTLEN
1246 }
1247
1248 /*
1249 * Insert fragment header and copy unfragmentable header portions.
1250 *
1251 * *frghdrp will not be read, and it is guaranteed that either an
1252 * error is returned or that *frghdrp will point to space allocated
1253 * for the fragment header.
1254 */
1255 static int
1256 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1257 struct ip6_frag **frghdrp)
1258 {
1259 struct mbuf *n, *mlast;
1260
1261 if (hlen > sizeof(struct ip6_hdr)) {
1262 n = m_copym(m0, sizeof(struct ip6_hdr),
1263 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1264 if (n == 0)
1265 return (ENOBUFS);
1266 m->m_next = n;
1267 } else
1268 n = m;
1269
1270 /* Search for the last mbuf of unfragmentable part. */
1271 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1272 ;
1273
1274 if ((mlast->m_flags & M_EXT) == 0 &&
1275 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1276 /* use the trailing space of the last mbuf for the fragment hdr */
1277 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1278 mlast->m_len);
1279 mlast->m_len += sizeof(struct ip6_frag);
1280 m->m_pkthdr.len += sizeof(struct ip6_frag);
1281 } else {
1282 /* allocate a new mbuf for the fragment header */
1283 struct mbuf *mfrg;
1284
1285 MGET(mfrg, M_DONTWAIT, MT_DATA);
1286 if (mfrg == 0)
1287 return (ENOBUFS);
1288 mfrg->m_len = sizeof(struct ip6_frag);
1289 *frghdrp = mtod(mfrg, struct ip6_frag *);
1290 mlast->m_next = mfrg;
1291 }
1292
1293 return (0);
1294 }
1295
1296 static int
1297 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
1298 int *alwaysfragp)
1299 {
1300 u_int32_t mtu = 0;
1301 int alwaysfrag = 0;
1302 int error = 0;
1303
1304 if (rt != NULL) {
1305 u_int32_t ifmtu;
1306
1307 if (ifp == NULL)
1308 ifp = rt->rt_ifp;
1309 ifmtu = IN6_LINKMTU(ifp);
1310 mtu = rt->rt_rmx.rmx_mtu;
1311 if (mtu == 0)
1312 mtu = ifmtu;
1313 else if (mtu < IPV6_MMTU) {
1314 /*
1315 * RFC2460 section 5, last paragraph:
1316 * if we record ICMPv6 too big message with
1317 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1318 * or smaller, with fragment header attached.
1319 * (fragment header is needed regardless from the
1320 * packet size, for translators to identify packets)
1321 */
1322 alwaysfrag = 1;
1323 mtu = IPV6_MMTU;
1324 } else if (mtu > ifmtu) {
1325 /*
1326 * The MTU on the route is larger than the MTU on
1327 * the interface! This shouldn't happen, unless the
1328 * MTU of the interface has been changed after the
1329 * interface was brought up. Change the MTU in the
1330 * route to match the interface MTU (as long as the
1331 * field isn't locked).
1332 */
1333 mtu = ifmtu;
1334 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1335 rt->rt_rmx.rmx_mtu = mtu;
1336 }
1337 } else if (ifp) {
1338 mtu = IN6_LINKMTU(ifp);
1339 } else
1340 error = EHOSTUNREACH; /* XXX */
1341
1342 *mtup = mtu;
1343 if (alwaysfragp)
1344 *alwaysfragp = alwaysfrag;
1345 return (error);
1346 }
1347
1348 /*
1349 * IP6 socket option processing.
1350 */
1351 int
1352 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1353 {
1354 int optdatalen, uproto;
1355 void *optdata;
1356 struct in6pcb *in6p = sotoin6pcb(so);
1357 struct ip_moptions **mopts;
1358 int error, optval;
1359 int level, optname;
1360
1361 KASSERT(solocked(so));
1362 KASSERT(sopt != NULL);
1363
1364 level = sopt->sopt_level;
1365 optname = sopt->sopt_name;
1366
1367 error = optval = 0;
1368 uproto = (int)so->so_proto->pr_protocol;
1369
1370 switch (level) {
1371 case IPPROTO_IP:
1372 switch (optname) {
1373 case IP_ADD_MEMBERSHIP:
1374 case IP_DROP_MEMBERSHIP:
1375 case IP_MULTICAST_IF:
1376 case IP_MULTICAST_LOOP:
1377 case IP_MULTICAST_TTL:
1378 mopts = &in6p->in6p_v4moptions;
1379 switch (op) {
1380 case PRCO_GETOPT:
1381 return ip_getmoptions(*mopts, sopt);
1382 case PRCO_SETOPT:
1383 return ip_setmoptions(mopts, sopt);
1384 default:
1385 return EINVAL;
1386 }
1387 default:
1388 return ENOPROTOOPT;
1389 }
1390 case IPPROTO_IPV6:
1391 break;
1392 default:
1393 return ENOPROTOOPT;
1394 }
1395 switch (op) {
1396 case PRCO_SETOPT:
1397 switch (optname) {
1398 #ifdef RFC2292
1399 case IPV6_2292PKTOPTIONS:
1400 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
1401 break;
1402 #endif
1403
1404 /*
1405 * Use of some Hop-by-Hop options or some
1406 * Destination options, might require special
1407 * privilege. That is, normal applications
1408 * (without special privilege) might be forbidden
1409 * from setting certain options in outgoing packets,
1410 * and might never see certain options in received
1411 * packets. [RFC 2292 Section 6]
1412 * KAME specific note:
1413 * KAME prevents non-privileged users from sending or
1414 * receiving ANY hbh/dst options in order to avoid
1415 * overhead of parsing options in the kernel.
1416 */
1417 case IPV6_RECVHOPOPTS:
1418 case IPV6_RECVDSTOPTS:
1419 case IPV6_RECVRTHDRDSTOPTS:
1420 error = kauth_authorize_network(kauth_cred_get(),
1421 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
1422 NULL, NULL, NULL);
1423 if (error)
1424 break;
1425 /* FALLTHROUGH */
1426 case IPV6_UNICAST_HOPS:
1427 case IPV6_HOPLIMIT:
1428 case IPV6_FAITH:
1429
1430 case IPV6_RECVPKTINFO:
1431 case IPV6_RECVHOPLIMIT:
1432 case IPV6_RECVRTHDR:
1433 case IPV6_RECVPATHMTU:
1434 case IPV6_RECVTCLASS:
1435 case IPV6_V6ONLY:
1436 error = sockopt_getint(sopt, &optval);
1437 if (error)
1438 break;
1439 switch (optname) {
1440 case IPV6_UNICAST_HOPS:
1441 if (optval < -1 || optval >= 256)
1442 error = EINVAL;
1443 else {
1444 /* -1 = kernel default */
1445 in6p->in6p_hops = optval;
1446 }
1447 break;
1448 #define OPTSET(bit) \
1449 do { \
1450 if (optval) \
1451 in6p->in6p_flags |= (bit); \
1452 else \
1453 in6p->in6p_flags &= ~(bit); \
1454 } while (/*CONSTCOND*/ 0)
1455
1456 #ifdef RFC2292
1457 #define OPTSET2292(bit) \
1458 do { \
1459 in6p->in6p_flags |= IN6P_RFC2292; \
1460 if (optval) \
1461 in6p->in6p_flags |= (bit); \
1462 else \
1463 in6p->in6p_flags &= ~(bit); \
1464 } while (/*CONSTCOND*/ 0)
1465 #endif
1466
1467 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1468
1469 case IPV6_RECVPKTINFO:
1470 #ifdef RFC2292
1471 /* cannot mix with RFC2292 */
1472 if (OPTBIT(IN6P_RFC2292)) {
1473 error = EINVAL;
1474 break;
1475 }
1476 #endif
1477 OPTSET(IN6P_PKTINFO);
1478 break;
1479
1480 case IPV6_HOPLIMIT:
1481 {
1482 struct ip6_pktopts **optp;
1483
1484 #ifdef RFC2292
1485 /* cannot mix with RFC2292 */
1486 if (OPTBIT(IN6P_RFC2292)) {
1487 error = EINVAL;
1488 break;
1489 }
1490 #endif
1491 optp = &in6p->in6p_outputopts;
1492 error = ip6_pcbopt(IPV6_HOPLIMIT,
1493 (u_char *)&optval,
1494 sizeof(optval),
1495 optp,
1496 kauth_cred_get(), uproto);
1497 break;
1498 }
1499
1500 case IPV6_RECVHOPLIMIT:
1501 #ifdef RFC2292
1502 /* cannot mix with RFC2292 */
1503 if (OPTBIT(IN6P_RFC2292)) {
1504 error = EINVAL;
1505 break;
1506 }
1507 #endif
1508 OPTSET(IN6P_HOPLIMIT);
1509 break;
1510
1511 case IPV6_RECVHOPOPTS:
1512 #ifdef RFC2292
1513 /* cannot mix with RFC2292 */
1514 if (OPTBIT(IN6P_RFC2292)) {
1515 error = EINVAL;
1516 break;
1517 }
1518 #endif
1519 OPTSET(IN6P_HOPOPTS);
1520 break;
1521
1522 case IPV6_RECVDSTOPTS:
1523 #ifdef RFC2292
1524 /* cannot mix with RFC2292 */
1525 if (OPTBIT(IN6P_RFC2292)) {
1526 error = EINVAL;
1527 break;
1528 }
1529 #endif
1530 OPTSET(IN6P_DSTOPTS);
1531 break;
1532
1533 case IPV6_RECVRTHDRDSTOPTS:
1534 #ifdef RFC2292
1535 /* cannot mix with RFC2292 */
1536 if (OPTBIT(IN6P_RFC2292)) {
1537 error = EINVAL;
1538 break;
1539 }
1540 #endif
1541 OPTSET(IN6P_RTHDRDSTOPTS);
1542 break;
1543
1544 case IPV6_RECVRTHDR:
1545 #ifdef RFC2292
1546 /* cannot mix with RFC2292 */
1547 if (OPTBIT(IN6P_RFC2292)) {
1548 error = EINVAL;
1549 break;
1550 }
1551 #endif
1552 OPTSET(IN6P_RTHDR);
1553 break;
1554
1555 case IPV6_FAITH:
1556 OPTSET(IN6P_FAITH);
1557 break;
1558
1559 case IPV6_RECVPATHMTU:
1560 /*
1561 * We ignore this option for TCP
1562 * sockets.
1563 * (RFC3542 leaves this case
1564 * unspecified.)
1565 */
1566 if (uproto != IPPROTO_TCP)
1567 OPTSET(IN6P_MTU);
1568 break;
1569
1570 case IPV6_V6ONLY:
1571 /*
1572 * make setsockopt(IPV6_V6ONLY)
1573 * available only prior to bind(2).
1574 * see ipng mailing list, Jun 22 2001.
1575 */
1576 if (in6p->in6p_lport ||
1577 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1578 error = EINVAL;
1579 break;
1580 }
1581 #ifdef INET6_BINDV6ONLY
1582 if (!optval)
1583 error = EINVAL;
1584 #else
1585 OPTSET(IN6P_IPV6_V6ONLY);
1586 #endif
1587 break;
1588 case IPV6_RECVTCLASS:
1589 #ifdef RFC2292
1590 /* cannot mix with RFC2292 XXX */
1591 if (OPTBIT(IN6P_RFC2292)) {
1592 error = EINVAL;
1593 break;
1594 }
1595 #endif
1596 OPTSET(IN6P_TCLASS);
1597 break;
1598
1599 }
1600 break;
1601
1602 case IPV6_OTCLASS:
1603 {
1604 struct ip6_pktopts **optp;
1605 u_int8_t tclass;
1606
1607 error = sockopt_get(sopt, &tclass, sizeof(tclass));
1608 if (error)
1609 break;
1610 optp = &in6p->in6p_outputopts;
1611 error = ip6_pcbopt(optname,
1612 (u_char *)&tclass,
1613 sizeof(tclass),
1614 optp,
1615 kauth_cred_get(), uproto);
1616 break;
1617 }
1618
1619 case IPV6_TCLASS:
1620 case IPV6_DONTFRAG:
1621 case IPV6_USE_MIN_MTU:
1622 case IPV6_PREFER_TEMPADDR:
1623 error = sockopt_getint(sopt, &optval);
1624 if (error)
1625 break;
1626 {
1627 struct ip6_pktopts **optp;
1628 optp = &in6p->in6p_outputopts;
1629 error = ip6_pcbopt(optname,
1630 (u_char *)&optval,
1631 sizeof(optval),
1632 optp,
1633 kauth_cred_get(), uproto);
1634 break;
1635 }
1636
1637 #ifdef RFC2292
1638 case IPV6_2292PKTINFO:
1639 case IPV6_2292HOPLIMIT:
1640 case IPV6_2292HOPOPTS:
1641 case IPV6_2292DSTOPTS:
1642 case IPV6_2292RTHDR:
1643 /* RFC 2292 */
1644 error = sockopt_getint(sopt, &optval);
1645 if (error)
1646 break;
1647
1648 switch (optname) {
1649 case IPV6_2292PKTINFO:
1650 OPTSET2292(IN6P_PKTINFO);
1651 break;
1652 case IPV6_2292HOPLIMIT:
1653 OPTSET2292(IN6P_HOPLIMIT);
1654 break;
1655 case IPV6_2292HOPOPTS:
1656 /*
1657 * Check super-user privilege.
1658 * See comments for IPV6_RECVHOPOPTS.
1659 */
1660 error =
1661 kauth_authorize_network(kauth_cred_get(),
1662 KAUTH_NETWORK_IPV6,
1663 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1664 NULL, NULL);
1665 if (error)
1666 return (error);
1667 OPTSET2292(IN6P_HOPOPTS);
1668 break;
1669 case IPV6_2292DSTOPTS:
1670 error =
1671 kauth_authorize_network(kauth_cred_get(),
1672 KAUTH_NETWORK_IPV6,
1673 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1674 NULL, NULL);
1675 if (error)
1676 return (error);
1677 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1678 break;
1679 case IPV6_2292RTHDR:
1680 OPTSET2292(IN6P_RTHDR);
1681 break;
1682 }
1683 break;
1684 #endif
1685 case IPV6_PKTINFO:
1686 case IPV6_HOPOPTS:
1687 case IPV6_RTHDR:
1688 case IPV6_DSTOPTS:
1689 case IPV6_RTHDRDSTOPTS:
1690 case IPV6_NEXTHOP: {
1691 /* new advanced API (RFC3542) */
1692 void *optbuf;
1693 int optbuflen;
1694 struct ip6_pktopts **optp;
1695
1696 #ifdef RFC2292
1697 /* cannot mix with RFC2292 */
1698 if (OPTBIT(IN6P_RFC2292)) {
1699 error = EINVAL;
1700 break;
1701 }
1702 #endif
1703
1704 optbuflen = sopt->sopt_size;
1705 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1706 if (optbuf == NULL) {
1707 error = ENOBUFS;
1708 break;
1709 }
1710
1711 error = sockopt_get(sopt, optbuf, optbuflen);
1712 if (error) {
1713 free(optbuf, M_IP6OPT);
1714 break;
1715 }
1716 optp = &in6p->in6p_outputopts;
1717 error = ip6_pcbopt(optname, optbuf, optbuflen,
1718 optp, kauth_cred_get(), uproto);
1719
1720 free(optbuf, M_IP6OPT);
1721 break;
1722 }
1723 #undef OPTSET
1724
1725 case IPV6_MULTICAST_IF:
1726 case IPV6_MULTICAST_HOPS:
1727 case IPV6_MULTICAST_LOOP:
1728 case IPV6_JOIN_GROUP:
1729 case IPV6_LEAVE_GROUP:
1730 error = ip6_setmoptions(sopt, in6p);
1731 break;
1732
1733 case IPV6_PORTRANGE:
1734 error = sockopt_getint(sopt, &optval);
1735 if (error)
1736 break;
1737
1738 switch (optval) {
1739 case IPV6_PORTRANGE_DEFAULT:
1740 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1741 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1742 break;
1743
1744 case IPV6_PORTRANGE_HIGH:
1745 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1746 in6p->in6p_flags |= IN6P_HIGHPORT;
1747 break;
1748
1749 case IPV6_PORTRANGE_LOW:
1750 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1751 in6p->in6p_flags |= IN6P_LOWPORT;
1752 break;
1753
1754 default:
1755 error = EINVAL;
1756 break;
1757 }
1758 break;
1759
1760 case IPV6_PORTALGO:
1761 error = sockopt_getint(sopt, &optval);
1762 if (error)
1763 break;
1764
1765 error = portalgo_algo_index_select(
1766 (struct inpcb_hdr *)in6p, optval);
1767 break;
1768
1769 #if defined(IPSEC)
1770 case IPV6_IPSEC_POLICY:
1771 if (ipsec_enabled) {
1772 error = ipsec6_set_policy(in6p, optname,
1773 sopt->sopt_data, sopt->sopt_size,
1774 kauth_cred_get());
1775 break;
1776 }
1777 /*FALLTHROUGH*/
1778 #endif /* IPSEC */
1779
1780 default:
1781 error = ENOPROTOOPT;
1782 break;
1783 }
1784 break;
1785
1786 case PRCO_GETOPT:
1787 switch (optname) {
1788 #ifdef RFC2292
1789 case IPV6_2292PKTOPTIONS:
1790 /*
1791 * RFC3542 (effectively) deprecated the
1792 * semantics of the 2292-style pktoptions.
1793 * Since it was not reliable in nature (i.e.,
1794 * applications had to expect the lack of some
1795 * information after all), it would make sense
1796 * to simplify this part by always returning
1797 * empty data.
1798 */
1799 break;
1800 #endif
1801
1802 case IPV6_RECVHOPOPTS:
1803 case IPV6_RECVDSTOPTS:
1804 case IPV6_RECVRTHDRDSTOPTS:
1805 case IPV6_UNICAST_HOPS:
1806 case IPV6_RECVPKTINFO:
1807 case IPV6_RECVHOPLIMIT:
1808 case IPV6_RECVRTHDR:
1809 case IPV6_RECVPATHMTU:
1810
1811 case IPV6_FAITH:
1812 case IPV6_V6ONLY:
1813 case IPV6_PORTRANGE:
1814 case IPV6_RECVTCLASS:
1815 switch (optname) {
1816
1817 case IPV6_RECVHOPOPTS:
1818 optval = OPTBIT(IN6P_HOPOPTS);
1819 break;
1820
1821 case IPV6_RECVDSTOPTS:
1822 optval = OPTBIT(IN6P_DSTOPTS);
1823 break;
1824
1825 case IPV6_RECVRTHDRDSTOPTS:
1826 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1827 break;
1828
1829 case IPV6_UNICAST_HOPS:
1830 optval = in6p->in6p_hops;
1831 break;
1832
1833 case IPV6_RECVPKTINFO:
1834 optval = OPTBIT(IN6P_PKTINFO);
1835 break;
1836
1837 case IPV6_RECVHOPLIMIT:
1838 optval = OPTBIT(IN6P_HOPLIMIT);
1839 break;
1840
1841 case IPV6_RECVRTHDR:
1842 optval = OPTBIT(IN6P_RTHDR);
1843 break;
1844
1845 case IPV6_RECVPATHMTU:
1846 optval = OPTBIT(IN6P_MTU);
1847 break;
1848
1849 case IPV6_FAITH:
1850 optval = OPTBIT(IN6P_FAITH);
1851 break;
1852
1853 case IPV6_V6ONLY:
1854 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1855 break;
1856
1857 case IPV6_PORTRANGE:
1858 {
1859 int flags;
1860 flags = in6p->in6p_flags;
1861 if (flags & IN6P_HIGHPORT)
1862 optval = IPV6_PORTRANGE_HIGH;
1863 else if (flags & IN6P_LOWPORT)
1864 optval = IPV6_PORTRANGE_LOW;
1865 else
1866 optval = 0;
1867 break;
1868 }
1869 case IPV6_RECVTCLASS:
1870 optval = OPTBIT(IN6P_TCLASS);
1871 break;
1872
1873 }
1874 if (error)
1875 break;
1876 error = sockopt_setint(sopt, optval);
1877 break;
1878
1879 case IPV6_PATHMTU:
1880 {
1881 u_long pmtu = 0;
1882 struct ip6_mtuinfo mtuinfo;
1883 struct route *ro = &in6p->in6p_route;
1884 struct rtentry *rt;
1885 union {
1886 struct sockaddr dst;
1887 struct sockaddr_in6 dst6;
1888 } u;
1889
1890 if (!(so->so_state & SS_ISCONNECTED))
1891 return (ENOTCONN);
1892 /*
1893 * XXX: we dot not consider the case of source
1894 * routing, or optional information to specify
1895 * the outgoing interface.
1896 */
1897 sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0);
1898 rt = rtcache_lookup(ro, &u.dst);
1899 error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
1900 rtcache_unref(rt, ro);
1901 if (error)
1902 break;
1903 if (pmtu > IPV6_MAXPACKET)
1904 pmtu = IPV6_MAXPACKET;
1905
1906 memset(&mtuinfo, 0, sizeof(mtuinfo));
1907 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1908 optdata = (void *)&mtuinfo;
1909 optdatalen = sizeof(mtuinfo);
1910 if (optdatalen > MCLBYTES)
1911 return (EMSGSIZE); /* XXX */
1912 error = sockopt_set(sopt, optdata, optdatalen);
1913 break;
1914 }
1915
1916 #ifdef RFC2292
1917 case IPV6_2292PKTINFO:
1918 case IPV6_2292HOPLIMIT:
1919 case IPV6_2292HOPOPTS:
1920 case IPV6_2292RTHDR:
1921 case IPV6_2292DSTOPTS:
1922 switch (optname) {
1923 case IPV6_2292PKTINFO:
1924 optval = OPTBIT(IN6P_PKTINFO);
1925 break;
1926 case IPV6_2292HOPLIMIT:
1927 optval = OPTBIT(IN6P_HOPLIMIT);
1928 break;
1929 case IPV6_2292HOPOPTS:
1930 optval = OPTBIT(IN6P_HOPOPTS);
1931 break;
1932 case IPV6_2292RTHDR:
1933 optval = OPTBIT(IN6P_RTHDR);
1934 break;
1935 case IPV6_2292DSTOPTS:
1936 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1937 break;
1938 }
1939 error = sockopt_setint(sopt, optval);
1940 break;
1941 #endif
1942 case IPV6_PKTINFO:
1943 case IPV6_HOPOPTS:
1944 case IPV6_RTHDR:
1945 case IPV6_DSTOPTS:
1946 case IPV6_RTHDRDSTOPTS:
1947 case IPV6_NEXTHOP:
1948 case IPV6_OTCLASS:
1949 case IPV6_TCLASS:
1950 case IPV6_DONTFRAG:
1951 case IPV6_USE_MIN_MTU:
1952 case IPV6_PREFER_TEMPADDR:
1953 error = ip6_getpcbopt(in6p->in6p_outputopts,
1954 optname, sopt);
1955 break;
1956
1957 case IPV6_MULTICAST_IF:
1958 case IPV6_MULTICAST_HOPS:
1959 case IPV6_MULTICAST_LOOP:
1960 case IPV6_JOIN_GROUP:
1961 case IPV6_LEAVE_GROUP:
1962 error = ip6_getmoptions(sopt, in6p);
1963 break;
1964
1965 case IPV6_PORTALGO:
1966 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
1967 error = sockopt_setint(sopt, optval);
1968 break;
1969
1970 #if defined(IPSEC)
1971 case IPV6_IPSEC_POLICY:
1972 if (ipsec_used) {
1973 struct mbuf *m = NULL;
1974
1975 /*
1976 * XXX: this will return EINVAL as sopt is
1977 * empty
1978 */
1979 error = ipsec6_get_policy(in6p, sopt->sopt_data,
1980 sopt->sopt_size, &m);
1981 if (!error)
1982 error = sockopt_setmbuf(sopt, m);
1983 break;
1984 }
1985 /*FALLTHROUGH*/
1986 #endif /* IPSEC */
1987
1988 default:
1989 error = ENOPROTOOPT;
1990 break;
1991 }
1992 break;
1993 }
1994 return (error);
1995 }
1996
1997 int
1998 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1999 {
2000 int error = 0, optval;
2001 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2002 struct in6pcb *in6p = sotoin6pcb(so);
2003 int level, optname;
2004
2005 KASSERT(sopt != NULL);
2006
2007 level = sopt->sopt_level;
2008 optname = sopt->sopt_name;
2009
2010 if (level != IPPROTO_IPV6) {
2011 return ENOPROTOOPT;
2012 }
2013
2014 switch (optname) {
2015 case IPV6_CHECKSUM:
2016 /*
2017 * For ICMPv6 sockets, no modification allowed for checksum
2018 * offset, permit "no change" values to help existing apps.
2019 *
2020 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
2021 * for an ICMPv6 socket will fail." The current
2022 * behavior does not meet RFC3542.
2023 */
2024 switch (op) {
2025 case PRCO_SETOPT:
2026 error = sockopt_getint(sopt, &optval);
2027 if (error)
2028 break;
2029 if ((optval % 2) != 0) {
2030 /* the API assumes even offset values */
2031 error = EINVAL;
2032 } else if (so->so_proto->pr_protocol ==
2033 IPPROTO_ICMPV6) {
2034 if (optval != icmp6off)
2035 error = EINVAL;
2036 } else
2037 in6p->in6p_cksum = optval;
2038 break;
2039
2040 case PRCO_GETOPT:
2041 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2042 optval = icmp6off;
2043 else
2044 optval = in6p->in6p_cksum;
2045
2046 error = sockopt_setint(sopt, optval);
2047 break;
2048
2049 default:
2050 error = EINVAL;
2051 break;
2052 }
2053 break;
2054
2055 default:
2056 error = ENOPROTOOPT;
2057 break;
2058 }
2059
2060 return (error);
2061 }
2062
2063 #ifdef RFC2292
2064 /*
2065 * Set up IP6 options in pcb for insertion in output packets or
2066 * specifying behavior of outgoing packets.
2067 */
2068 static int
2069 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
2070 struct sockopt *sopt)
2071 {
2072 struct ip6_pktopts *opt = *pktopt;
2073 struct mbuf *m;
2074 int error = 0;
2075
2076 KASSERT(solocked(so));
2077
2078 /* turn off any old options. */
2079 if (opt) {
2080 #ifdef DIAGNOSTIC
2081 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2082 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2083 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2084 printf("ip6_pcbopts: all specified options are cleared.\n");
2085 #endif
2086 ip6_clearpktopts(opt, -1);
2087 } else {
2088 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2089 if (opt == NULL)
2090 return (ENOBUFS);
2091 }
2092 *pktopt = NULL;
2093
2094 if (sopt == NULL || sopt->sopt_size == 0) {
2095 /*
2096 * Only turning off any previous options, regardless of
2097 * whether the opt is just created or given.
2098 */
2099 free(opt, M_IP6OPT);
2100 return (0);
2101 }
2102
2103 /* set options specified by user. */
2104 m = sockopt_getmbuf(sopt);
2105 if (m == NULL) {
2106 free(opt, M_IP6OPT);
2107 return (ENOBUFS);
2108 }
2109
2110 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
2111 so->so_proto->pr_protocol);
2112 m_freem(m);
2113 if (error != 0) {
2114 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2115 free(opt, M_IP6OPT);
2116 return (error);
2117 }
2118 *pktopt = opt;
2119 return (0);
2120 }
2121 #endif
2122
2123 /*
2124 * initialize ip6_pktopts. beware that there are non-zero default values in
2125 * the struct.
2126 */
2127 void
2128 ip6_initpktopts(struct ip6_pktopts *opt)
2129 {
2130
2131 memset(opt, 0, sizeof(*opt));
2132 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2133 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2134 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2135 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2136 }
2137
2138 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2139 static int
2140 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2141 kauth_cred_t cred, int uproto)
2142 {
2143 struct ip6_pktopts *opt;
2144
2145 if (*pktopt == NULL) {
2146 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2147 M_NOWAIT);
2148 if (*pktopt == NULL)
2149 return (ENOBUFS);
2150
2151 ip6_initpktopts(*pktopt);
2152 }
2153 opt = *pktopt;
2154
2155 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2156 }
2157
2158 static int
2159 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2160 {
2161 void *optdata = NULL;
2162 int optdatalen = 0;
2163 struct ip6_ext *ip6e;
2164 int error = 0;
2165 struct in6_pktinfo null_pktinfo;
2166 int deftclass = 0, on;
2167 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2168 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2169
2170 switch (optname) {
2171 case IPV6_PKTINFO:
2172 if (pktopt && pktopt->ip6po_pktinfo)
2173 optdata = (void *)pktopt->ip6po_pktinfo;
2174 else {
2175 /* XXX: we don't have to do this every time... */
2176 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2177 optdata = (void *)&null_pktinfo;
2178 }
2179 optdatalen = sizeof(struct in6_pktinfo);
2180 break;
2181 case IPV6_OTCLASS:
2182 /* XXX */
2183 return (EINVAL);
2184 case IPV6_TCLASS:
2185 if (pktopt && pktopt->ip6po_tclass >= 0)
2186 optdata = (void *)&pktopt->ip6po_tclass;
2187 else
2188 optdata = (void *)&deftclass;
2189 optdatalen = sizeof(int);
2190 break;
2191 case IPV6_HOPOPTS:
2192 if (pktopt && pktopt->ip6po_hbh) {
2193 optdata = (void *)pktopt->ip6po_hbh;
2194 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2195 optdatalen = (ip6e->ip6e_len + 1) << 3;
2196 }
2197 break;
2198 case IPV6_RTHDR:
2199 if (pktopt && pktopt->ip6po_rthdr) {
2200 optdata = (void *)pktopt->ip6po_rthdr;
2201 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2202 optdatalen = (ip6e->ip6e_len + 1) << 3;
2203 }
2204 break;
2205 case IPV6_RTHDRDSTOPTS:
2206 if (pktopt && pktopt->ip6po_dest1) {
2207 optdata = (void *)pktopt->ip6po_dest1;
2208 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2209 optdatalen = (ip6e->ip6e_len + 1) << 3;
2210 }
2211 break;
2212 case IPV6_DSTOPTS:
2213 if (pktopt && pktopt->ip6po_dest2) {
2214 optdata = (void *)pktopt->ip6po_dest2;
2215 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2216 optdatalen = (ip6e->ip6e_len + 1) << 3;
2217 }
2218 break;
2219 case IPV6_NEXTHOP:
2220 if (pktopt && pktopt->ip6po_nexthop) {
2221 optdata = (void *)pktopt->ip6po_nexthop;
2222 optdatalen = pktopt->ip6po_nexthop->sa_len;
2223 }
2224 break;
2225 case IPV6_USE_MIN_MTU:
2226 if (pktopt)
2227 optdata = (void *)&pktopt->ip6po_minmtu;
2228 else
2229 optdata = (void *)&defminmtu;
2230 optdatalen = sizeof(int);
2231 break;
2232 case IPV6_DONTFRAG:
2233 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2234 on = 1;
2235 else
2236 on = 0;
2237 optdata = (void *)&on;
2238 optdatalen = sizeof(on);
2239 break;
2240 case IPV6_PREFER_TEMPADDR:
2241 if (pktopt)
2242 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2243 else
2244 optdata = (void *)&defpreftemp;
2245 optdatalen = sizeof(int);
2246 break;
2247 default: /* should not happen */
2248 #ifdef DIAGNOSTIC
2249 panic("ip6_getpcbopt: unexpected option\n");
2250 #endif
2251 return (ENOPROTOOPT);
2252 }
2253
2254 error = sockopt_set(sopt, optdata, optdatalen);
2255
2256 return (error);
2257 }
2258
2259 void
2260 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2261 {
2262 if (optname == -1 || optname == IPV6_PKTINFO) {
2263 if (pktopt->ip6po_pktinfo)
2264 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2265 pktopt->ip6po_pktinfo = NULL;
2266 }
2267 if (optname == -1 || optname == IPV6_HOPLIMIT)
2268 pktopt->ip6po_hlim = -1;
2269 if (optname == -1 || optname == IPV6_TCLASS)
2270 pktopt->ip6po_tclass = -1;
2271 if (optname == -1 || optname == IPV6_NEXTHOP) {
2272 rtcache_free(&pktopt->ip6po_nextroute);
2273 if (pktopt->ip6po_nexthop)
2274 free(pktopt->ip6po_nexthop, M_IP6OPT);
2275 pktopt->ip6po_nexthop = NULL;
2276 }
2277 if (optname == -1 || optname == IPV6_HOPOPTS) {
2278 if (pktopt->ip6po_hbh)
2279 free(pktopt->ip6po_hbh, M_IP6OPT);
2280 pktopt->ip6po_hbh = NULL;
2281 }
2282 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2283 if (pktopt->ip6po_dest1)
2284 free(pktopt->ip6po_dest1, M_IP6OPT);
2285 pktopt->ip6po_dest1 = NULL;
2286 }
2287 if (optname == -1 || optname == IPV6_RTHDR) {
2288 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2289 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2290 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2291 rtcache_free(&pktopt->ip6po_route);
2292 }
2293 if (optname == -1 || optname == IPV6_DSTOPTS) {
2294 if (pktopt->ip6po_dest2)
2295 free(pktopt->ip6po_dest2, M_IP6OPT);
2296 pktopt->ip6po_dest2 = NULL;
2297 }
2298 }
2299
2300 #define PKTOPT_EXTHDRCPY(type) \
2301 do { \
2302 if (src->type) { \
2303 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2304 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2305 if (dst->type == NULL) \
2306 goto bad; \
2307 memcpy(dst->type, src->type, hlen); \
2308 } \
2309 } while (/*CONSTCOND*/ 0)
2310
2311 static int
2312 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2313 {
2314 dst->ip6po_hlim = src->ip6po_hlim;
2315 dst->ip6po_tclass = src->ip6po_tclass;
2316 dst->ip6po_flags = src->ip6po_flags;
2317 dst->ip6po_minmtu = src->ip6po_minmtu;
2318 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2319 if (src->ip6po_pktinfo) {
2320 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2321 M_IP6OPT, canwait);
2322 if (dst->ip6po_pktinfo == NULL)
2323 goto bad;
2324 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2325 }
2326 if (src->ip6po_nexthop) {
2327 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2328 M_IP6OPT, canwait);
2329 if (dst->ip6po_nexthop == NULL)
2330 goto bad;
2331 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2332 src->ip6po_nexthop->sa_len);
2333 }
2334 PKTOPT_EXTHDRCPY(ip6po_hbh);
2335 PKTOPT_EXTHDRCPY(ip6po_dest1);
2336 PKTOPT_EXTHDRCPY(ip6po_dest2);
2337 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2338 return (0);
2339
2340 bad:
2341 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2342 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2343 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2344 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2345 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2346 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2347
2348 return (ENOBUFS);
2349 }
2350 #undef PKTOPT_EXTHDRCPY
2351
2352 struct ip6_pktopts *
2353 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2354 {
2355 int error;
2356 struct ip6_pktopts *dst;
2357
2358 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2359 if (dst == NULL)
2360 return (NULL);
2361 ip6_initpktopts(dst);
2362
2363 if ((error = copypktopts(dst, src, canwait)) != 0) {
2364 free(dst, M_IP6OPT);
2365 return (NULL);
2366 }
2367
2368 return (dst);
2369 }
2370
2371 void
2372 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2373 {
2374 if (pktopt == NULL)
2375 return;
2376
2377 ip6_clearpktopts(pktopt, -1);
2378
2379 free(pktopt, M_IP6OPT);
2380 }
2381
2382 int
2383 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
2384 struct psref *psref, void *v, size_t l)
2385 {
2386 struct ipv6_mreq mreq;
2387 int error;
2388 struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
2389 struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
2390
2391 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2392 if (error != 0)
2393 return error;
2394
2395 if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
2396 /*
2397 * We use the unspecified address to specify to accept
2398 * all multicast addresses. Only super user is allowed
2399 * to do this.
2400 */
2401 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6,
2402 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
2403 return EACCES;
2404 } else if (IN6_IS_ADDR_V4MAPPED(ia)) {
2405 // Don't bother if we are not going to use ifp.
2406 if (l == sizeof(*ia)) {
2407 memcpy(v, ia, l);
2408 return 0;
2409 }
2410 } else if (!IN6_IS_ADDR_MULTICAST(ia)) {
2411 return EINVAL;
2412 }
2413
2414 /*
2415 * If no interface was explicitly specified, choose an
2416 * appropriate one according to the given multicast address.
2417 */
2418 if (mreq.ipv6mr_interface == 0) {
2419 struct rtentry *rt;
2420 union {
2421 struct sockaddr dst;
2422 struct sockaddr_in dst4;
2423 struct sockaddr_in6 dst6;
2424 } u;
2425 struct route ro;
2426
2427 /*
2428 * Look up the routing table for the
2429 * address, and choose the outgoing interface.
2430 * XXX: is it a good approach?
2431 */
2432 memset(&ro, 0, sizeof(ro));
2433 if (IN6_IS_ADDR_V4MAPPED(ia))
2434 sockaddr_in_init(&u.dst4, ia4, 0);
2435 else
2436 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
2437 error = rtcache_setdst(&ro, &u.dst);
2438 if (error != 0)
2439 return error;
2440 rt = rtcache_init(&ro);
2441 *ifp = rt != NULL ?
2442 if_get_byindex(rt->rt_ifp->if_index, psref) : NULL;
2443 rtcache_unref(rt, &ro);
2444 rtcache_free(&ro);
2445 } else {
2446 /*
2447 * If the interface is specified, validate it.
2448 */
2449 *ifp = if_get_byindex(mreq.ipv6mr_interface, psref);
2450 if (*ifp == NULL)
2451 return ENXIO; /* XXX EINVAL? */
2452 }
2453 if (sizeof(*ia) == l)
2454 memcpy(v, ia, l);
2455 else
2456 memcpy(v, ia4, l);
2457 return 0;
2458 }
2459
2460 /*
2461 * Set the IP6 multicast options in response to user setsockopt().
2462 */
2463 static int
2464 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p)
2465 {
2466 int error = 0;
2467 u_int loop, ifindex;
2468 struct ipv6_mreq mreq;
2469 struct in6_addr ia;
2470 struct ifnet *ifp;
2471 struct ip6_moptions *im6o = in6p->in6p_moptions;
2472 struct in6_multi_mship *imm;
2473
2474 KASSERT(in6plocked(in6p));
2475
2476 if (im6o == NULL) {
2477 /*
2478 * No multicast option buffer attached to the pcb;
2479 * allocate one and initialize to default values.
2480 */
2481 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2482 if (im6o == NULL)
2483 return (ENOBUFS);
2484 in6p->in6p_moptions = im6o;
2485 im6o->im6o_multicast_if_index = 0;
2486 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2487 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2488 LIST_INIT(&im6o->im6o_memberships);
2489 }
2490
2491 switch (sopt->sopt_name) {
2492
2493 case IPV6_MULTICAST_IF: {
2494 int s;
2495 /*
2496 * Select the interface for outgoing multicast packets.
2497 */
2498 error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2499 if (error != 0)
2500 break;
2501
2502 s = pserialize_read_enter();
2503 if (ifindex != 0) {
2504 if ((ifp = if_byindex(ifindex)) == NULL) {
2505 pserialize_read_exit(s);
2506 error = ENXIO; /* XXX EINVAL? */
2507 break;
2508 }
2509 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2510 pserialize_read_exit(s);
2511 error = EADDRNOTAVAIL;
2512 break;
2513 }
2514 } else
2515 ifp = NULL;
2516 im6o->im6o_multicast_if_index = if_get_index(ifp);
2517 pserialize_read_exit(s);
2518 break;
2519 }
2520
2521 case IPV6_MULTICAST_HOPS:
2522 {
2523 /*
2524 * Set the IP6 hoplimit for outgoing multicast packets.
2525 */
2526 int optval;
2527
2528 error = sockopt_getint(sopt, &optval);
2529 if (error != 0)
2530 break;
2531
2532 if (optval < -1 || optval >= 256)
2533 error = EINVAL;
2534 else if (optval == -1)
2535 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2536 else
2537 im6o->im6o_multicast_hlim = optval;
2538 break;
2539 }
2540
2541 case IPV6_MULTICAST_LOOP:
2542 /*
2543 * Set the loopback flag for outgoing multicast packets.
2544 * Must be zero or one.
2545 */
2546 error = sockopt_get(sopt, &loop, sizeof(loop));
2547 if (error != 0)
2548 break;
2549 if (loop > 1) {
2550 error = EINVAL;
2551 break;
2552 }
2553 im6o->im6o_multicast_loop = loop;
2554 break;
2555
2556 case IPV6_JOIN_GROUP: {
2557 int bound;
2558 struct psref psref;
2559 /*
2560 * Add a multicast group membership.
2561 * Group must be a valid IP6 multicast address.
2562 */
2563 bound = curlwp_bind();
2564 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
2565 if (error != 0) {
2566 curlwp_bindx(bound);
2567 return error;
2568 }
2569
2570 if (IN6_IS_ADDR_V4MAPPED(&ia)) {
2571 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2572 goto put_break;
2573 }
2574 /*
2575 * See if we found an interface, and confirm that it
2576 * supports multicast
2577 */
2578 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2579 error = EADDRNOTAVAIL;
2580 goto put_break;
2581 }
2582
2583 if (in6_setscope(&ia, ifp, NULL)) {
2584 error = EADDRNOTAVAIL; /* XXX: should not happen */
2585 goto put_break;
2586 }
2587
2588 /*
2589 * See if the membership already exists.
2590 */
2591 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2592 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2593 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2594 &ia))
2595 goto put_break;
2596 }
2597 if (imm != NULL) {
2598 error = EADDRINUSE;
2599 goto put_break;
2600 }
2601 /*
2602 * Everything looks good; add a new record to the multicast
2603 * address list for the given interface.
2604 */
2605 imm = in6_joingroup(ifp, &ia, &error, 0);
2606 if (imm == NULL)
2607 goto put_break;
2608 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2609 put_break:
2610 if_put(ifp, &psref);
2611 curlwp_bindx(bound);
2612 break;
2613 }
2614
2615 case IPV6_LEAVE_GROUP:
2616 /*
2617 * Drop a multicast group membership.
2618 * Group must be a valid IP6 multicast address.
2619 */
2620 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2621 if (error != 0)
2622 break;
2623
2624 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
2625 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2626 break;
2627 }
2628 /*
2629 * If an interface address was specified, get a pointer
2630 * to its ifnet structure.
2631 */
2632 if (mreq.ipv6mr_interface != 0) {
2633 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
2634 error = ENXIO; /* XXX EINVAL? */
2635 break;
2636 }
2637 } else
2638 ifp = NULL;
2639
2640 /* Fill in the scope zone ID */
2641 if (ifp) {
2642 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2643 /* XXX: should not happen */
2644 error = EADDRNOTAVAIL;
2645 break;
2646 }
2647 } else if (mreq.ipv6mr_interface != 0) {
2648 /*
2649 * XXX: This case would happens when the (positive)
2650 * index is in the valid range, but the corresponding
2651 * interface has been detached dynamically. The above
2652 * check probably avoids such case to happen here, but
2653 * we check it explicitly for safety.
2654 */
2655 error = EADDRNOTAVAIL;
2656 break;
2657 } else { /* ipv6mr_interface == 0 */
2658 struct sockaddr_in6 sa6_mc;
2659
2660 /*
2661 * The API spec says as follows:
2662 * If the interface index is specified as 0, the
2663 * system may choose a multicast group membership to
2664 * drop by matching the multicast address only.
2665 * On the other hand, we cannot disambiguate the scope
2666 * zone unless an interface is provided. Thus, we
2667 * check if there's ambiguity with the default scope
2668 * zone as the last resort.
2669 */
2670 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2671 0, 0, 0);
2672 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2673 if (error != 0)
2674 break;
2675 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2676 }
2677
2678 /*
2679 * Find the membership in the membership list.
2680 */
2681 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2682 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2683 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2684 &mreq.ipv6mr_multiaddr))
2685 break;
2686 }
2687 if (imm == NULL) {
2688 /* Unable to resolve interface */
2689 error = EADDRNOTAVAIL;
2690 break;
2691 }
2692 /*
2693 * Give up the multicast address record to which the
2694 * membership points.
2695 */
2696 LIST_REMOVE(imm, i6mm_chain);
2697 in6_leavegroup(imm);
2698 break;
2699
2700 default:
2701 error = EOPNOTSUPP;
2702 break;
2703 }
2704
2705 /*
2706 * If all options have default values, no need to keep the mbuf.
2707 */
2708 if (im6o->im6o_multicast_if_index == 0 &&
2709 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2710 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2711 LIST_EMPTY(&im6o->im6o_memberships)) {
2712 free(in6p->in6p_moptions, M_IPMOPTS);
2713 in6p->in6p_moptions = NULL;
2714 }
2715
2716 return (error);
2717 }
2718
2719 /*
2720 * Return the IP6 multicast options in response to user getsockopt().
2721 */
2722 static int
2723 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p)
2724 {
2725 u_int optval;
2726 int error;
2727 struct ip6_moptions *im6o = in6p->in6p_moptions;
2728
2729 switch (sopt->sopt_name) {
2730 case IPV6_MULTICAST_IF:
2731 if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
2732 optval = 0;
2733 else
2734 optval = im6o->im6o_multicast_if_index;
2735
2736 error = sockopt_set(sopt, &optval, sizeof(optval));
2737 break;
2738
2739 case IPV6_MULTICAST_HOPS:
2740 if (im6o == NULL)
2741 optval = ip6_defmcasthlim;
2742 else
2743 optval = im6o->im6o_multicast_hlim;
2744
2745 error = sockopt_set(sopt, &optval, sizeof(optval));
2746 break;
2747
2748 case IPV6_MULTICAST_LOOP:
2749 if (im6o == NULL)
2750 optval = IPV6_DEFAULT_MULTICAST_LOOP;
2751 else
2752 optval = im6o->im6o_multicast_loop;
2753
2754 error = sockopt_set(sopt, &optval, sizeof(optval));
2755 break;
2756
2757 default:
2758 error = EOPNOTSUPP;
2759 }
2760
2761 return (error);
2762 }
2763
2764 /*
2765 * Discard the IP6 multicast options.
2766 */
2767 void
2768 ip6_freemoptions(struct ip6_moptions *im6o)
2769 {
2770 struct in6_multi_mship *imm, *nimm;
2771
2772 if (im6o == NULL)
2773 return;
2774
2775 LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) {
2776 LIST_REMOVE(imm, i6mm_chain);
2777 in6_leavegroup(imm);
2778 }
2779 free(im6o, M_IPMOPTS);
2780 }
2781
2782 /*
2783 * Set IPv6 outgoing packet options based on advanced API.
2784 */
2785 int
2786 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2787 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2788 {
2789 struct cmsghdr *cm = 0;
2790
2791 if (control == NULL || opt == NULL)
2792 return (EINVAL);
2793
2794 ip6_initpktopts(opt);
2795 if (stickyopt) {
2796 int error;
2797
2798 /*
2799 * If stickyopt is provided, make a local copy of the options
2800 * for this particular packet, then override them by ancillary
2801 * objects.
2802 * XXX: copypktopts() does not copy the cached route to a next
2803 * hop (if any). This is not very good in terms of efficiency,
2804 * but we can allow this since this option should be rarely
2805 * used.
2806 */
2807 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2808 return (error);
2809 }
2810
2811 /*
2812 * XXX: Currently, we assume all the optional information is stored
2813 * in a single mbuf.
2814 */
2815 if (control->m_next)
2816 return (EINVAL);
2817
2818 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2819 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2820 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2821 int error;
2822
2823 if (control->m_len < CMSG_LEN(0))
2824 return (EINVAL);
2825
2826 cm = mtod(control, struct cmsghdr *);
2827 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2828 return (EINVAL);
2829 if (cm->cmsg_level != IPPROTO_IPV6)
2830 continue;
2831
2832 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2833 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2834 if (error)
2835 return (error);
2836 }
2837
2838 return (0);
2839 }
2840
2841 /*
2842 * Set a particular packet option, as a sticky option or an ancillary data
2843 * item. "len" can be 0 only when it's a sticky option.
2844 * We have 4 cases of combination of "sticky" and "cmsg":
2845 * "sticky=0, cmsg=0": impossible
2846 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2847 * "sticky=1, cmsg=0": RFC3542 socket option
2848 * "sticky=1, cmsg=1": RFC2292 socket option
2849 */
2850 static int
2851 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2852 kauth_cred_t cred, int sticky, int cmsg, int uproto)
2853 {
2854 int minmtupolicy;
2855 int error;
2856
2857 if (!sticky && !cmsg) {
2858 #ifdef DIAGNOSTIC
2859 printf("ip6_setpktopt: impossible case\n");
2860 #endif
2861 return (EINVAL);
2862 }
2863
2864 /*
2865 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2866 * not be specified in the context of RFC3542. Conversely,
2867 * RFC3542 types should not be specified in the context of RFC2292.
2868 */
2869 if (!cmsg) {
2870 switch (optname) {
2871 case IPV6_2292PKTINFO:
2872 case IPV6_2292HOPLIMIT:
2873 case IPV6_2292NEXTHOP:
2874 case IPV6_2292HOPOPTS:
2875 case IPV6_2292DSTOPTS:
2876 case IPV6_2292RTHDR:
2877 case IPV6_2292PKTOPTIONS:
2878 return (ENOPROTOOPT);
2879 }
2880 }
2881 if (sticky && cmsg) {
2882 switch (optname) {
2883 case IPV6_PKTINFO:
2884 case IPV6_HOPLIMIT:
2885 case IPV6_NEXTHOP:
2886 case IPV6_HOPOPTS:
2887 case IPV6_DSTOPTS:
2888 case IPV6_RTHDRDSTOPTS:
2889 case IPV6_RTHDR:
2890 case IPV6_USE_MIN_MTU:
2891 case IPV6_DONTFRAG:
2892 case IPV6_OTCLASS:
2893 case IPV6_TCLASS:
2894 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
2895 return (ENOPROTOOPT);
2896 }
2897 }
2898
2899 switch (optname) {
2900 #ifdef RFC2292
2901 case IPV6_2292PKTINFO:
2902 #endif
2903 case IPV6_PKTINFO:
2904 {
2905 struct in6_pktinfo *pktinfo;
2906
2907 if (len != sizeof(struct in6_pktinfo))
2908 return (EINVAL);
2909
2910 pktinfo = (struct in6_pktinfo *)buf;
2911
2912 /*
2913 * An application can clear any sticky IPV6_PKTINFO option by
2914 * doing a "regular" setsockopt with ipi6_addr being
2915 * in6addr_any and ipi6_ifindex being zero.
2916 * [RFC 3542, Section 6]
2917 */
2918 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2919 pktinfo->ipi6_ifindex == 0 &&
2920 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2921 ip6_clearpktopts(opt, optname);
2922 break;
2923 }
2924
2925 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2926 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2927 return (EINVAL);
2928 }
2929
2930 /* Validate the interface index if specified. */
2931 if (pktinfo->ipi6_ifindex) {
2932 struct ifnet *ifp;
2933 int s = pserialize_read_enter();
2934 ifp = if_byindex(pktinfo->ipi6_ifindex);
2935 if (ifp == NULL) {
2936 pserialize_read_exit(s);
2937 return ENXIO;
2938 }
2939 pserialize_read_exit(s);
2940 }
2941
2942 /*
2943 * We store the address anyway, and let in6_selectsrc()
2944 * validate the specified address. This is because ipi6_addr
2945 * may not have enough information about its scope zone, and
2946 * we may need additional information (such as outgoing
2947 * interface or the scope zone of a destination address) to
2948 * disambiguate the scope.
2949 * XXX: the delay of the validation may confuse the
2950 * application when it is used as a sticky option.
2951 */
2952 if (opt->ip6po_pktinfo == NULL) {
2953 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2954 M_IP6OPT, M_NOWAIT);
2955 if (opt->ip6po_pktinfo == NULL)
2956 return (ENOBUFS);
2957 }
2958 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2959 break;
2960 }
2961
2962 #ifdef RFC2292
2963 case IPV6_2292HOPLIMIT:
2964 #endif
2965 case IPV6_HOPLIMIT:
2966 {
2967 int *hlimp;
2968
2969 /*
2970 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2971 * to simplify the ordering among hoplimit options.
2972 */
2973 if (optname == IPV6_HOPLIMIT && sticky)
2974 return (ENOPROTOOPT);
2975
2976 if (len != sizeof(int))
2977 return (EINVAL);
2978 hlimp = (int *)buf;
2979 if (*hlimp < -1 || *hlimp > 255)
2980 return (EINVAL);
2981
2982 opt->ip6po_hlim = *hlimp;
2983 break;
2984 }
2985
2986 case IPV6_OTCLASS:
2987 if (len != sizeof(u_int8_t))
2988 return (EINVAL);
2989
2990 opt->ip6po_tclass = *(u_int8_t *)buf;
2991 break;
2992
2993 case IPV6_TCLASS:
2994 {
2995 int tclass;
2996
2997 if (len != sizeof(int))
2998 return (EINVAL);
2999 tclass = *(int *)buf;
3000 if (tclass < -1 || tclass > 255)
3001 return (EINVAL);
3002
3003 opt->ip6po_tclass = tclass;
3004 break;
3005 }
3006
3007 #ifdef RFC2292
3008 case IPV6_2292NEXTHOP:
3009 #endif
3010 case IPV6_NEXTHOP:
3011 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3012 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3013 if (error)
3014 return (error);
3015
3016 if (len == 0) { /* just remove the option */
3017 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3018 break;
3019 }
3020
3021 /* check if cmsg_len is large enough for sa_len */
3022 if (len < sizeof(struct sockaddr) || len < *buf)
3023 return (EINVAL);
3024
3025 switch (((struct sockaddr *)buf)->sa_family) {
3026 case AF_INET6:
3027 {
3028 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3029
3030 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3031 return (EINVAL);
3032
3033 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3034 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3035 return (EINVAL);
3036 }
3037 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
3038 != 0) {
3039 return (error);
3040 }
3041 break;
3042 }
3043 case AF_LINK: /* eventually be supported? */
3044 default:
3045 return (EAFNOSUPPORT);
3046 }
3047
3048 /* turn off the previous option, then set the new option. */
3049 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3050 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3051 if (opt->ip6po_nexthop == NULL)
3052 return (ENOBUFS);
3053 memcpy(opt->ip6po_nexthop, buf, *buf);
3054 break;
3055
3056 #ifdef RFC2292
3057 case IPV6_2292HOPOPTS:
3058 #endif
3059 case IPV6_HOPOPTS:
3060 {
3061 struct ip6_hbh *hbh;
3062 int hbhlen;
3063
3064 /*
3065 * XXX: We don't allow a non-privileged user to set ANY HbH
3066 * options, since per-option restriction has too much
3067 * overhead.
3068 */
3069 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3070 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3071 if (error)
3072 return (error);
3073
3074 if (len == 0) {
3075 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3076 break; /* just remove the option */
3077 }
3078
3079 /* message length validation */
3080 if (len < sizeof(struct ip6_hbh))
3081 return (EINVAL);
3082 hbh = (struct ip6_hbh *)buf;
3083 hbhlen = (hbh->ip6h_len + 1) << 3;
3084 if (len != hbhlen)
3085 return (EINVAL);
3086
3087 /* turn off the previous option, then set the new option. */
3088 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3089 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3090 if (opt->ip6po_hbh == NULL)
3091 return (ENOBUFS);
3092 memcpy(opt->ip6po_hbh, hbh, hbhlen);
3093
3094 break;
3095 }
3096
3097 #ifdef RFC2292
3098 case IPV6_2292DSTOPTS:
3099 #endif
3100 case IPV6_DSTOPTS:
3101 case IPV6_RTHDRDSTOPTS:
3102 {
3103 struct ip6_dest *dest, **newdest = NULL;
3104 int destlen;
3105
3106 /* XXX: see the comment for IPV6_HOPOPTS */
3107 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3108 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3109 if (error)
3110 return (error);
3111
3112 if (len == 0) {
3113 ip6_clearpktopts(opt, optname);
3114 break; /* just remove the option */
3115 }
3116
3117 /* message length validation */
3118 if (len < sizeof(struct ip6_dest))
3119 return (EINVAL);
3120 dest = (struct ip6_dest *)buf;
3121 destlen = (dest->ip6d_len + 1) << 3;
3122 if (len != destlen)
3123 return (EINVAL);
3124 /*
3125 * Determine the position that the destination options header
3126 * should be inserted; before or after the routing header.
3127 */
3128 switch (optname) {
3129 case IPV6_2292DSTOPTS:
3130 /*
3131 * The old advanced API is ambiguous on this point.
3132 * Our approach is to determine the position based
3133 * according to the existence of a routing header.
3134 * Note, however, that this depends on the order of the
3135 * extension headers in the ancillary data; the 1st
3136 * part of the destination options header must appear
3137 * before the routing header in the ancillary data,
3138 * too.
3139 * RFC3542 solved the ambiguity by introducing
3140 * separate ancillary data or option types.
3141 */
3142 if (opt->ip6po_rthdr == NULL)
3143 newdest = &opt->ip6po_dest1;
3144 else
3145 newdest = &opt->ip6po_dest2;
3146 break;
3147 case IPV6_RTHDRDSTOPTS:
3148 newdest = &opt->ip6po_dest1;
3149 break;
3150 case IPV6_DSTOPTS:
3151 newdest = &opt->ip6po_dest2;
3152 break;
3153 }
3154
3155 /* turn off the previous option, then set the new option. */
3156 ip6_clearpktopts(opt, optname);
3157 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3158 if (*newdest == NULL)
3159 return (ENOBUFS);
3160 memcpy(*newdest, dest, destlen);
3161
3162 break;
3163 }
3164
3165 #ifdef RFC2292
3166 case IPV6_2292RTHDR:
3167 #endif
3168 case IPV6_RTHDR:
3169 {
3170 struct ip6_rthdr *rth;
3171 int rthlen;
3172
3173 if (len == 0) {
3174 ip6_clearpktopts(opt, IPV6_RTHDR);
3175 break; /* just remove the option */
3176 }
3177
3178 /* message length validation */
3179 if (len < sizeof(struct ip6_rthdr))
3180 return (EINVAL);
3181 rth = (struct ip6_rthdr *)buf;
3182 rthlen = (rth->ip6r_len + 1) << 3;
3183 if (len != rthlen)
3184 return (EINVAL);
3185 switch (rth->ip6r_type) {
3186 case IPV6_RTHDR_TYPE_0:
3187 if (rth->ip6r_len == 0) /* must contain one addr */
3188 return (EINVAL);
3189 if (rth->ip6r_len % 2) /* length must be even */
3190 return (EINVAL);
3191 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3192 return (EINVAL);
3193 break;
3194 default:
3195 return (EINVAL); /* not supported */
3196 }
3197 /* turn off the previous option */
3198 ip6_clearpktopts(opt, IPV6_RTHDR);
3199 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3200 if (opt->ip6po_rthdr == NULL)
3201 return (ENOBUFS);
3202 memcpy(opt->ip6po_rthdr, rth, rthlen);
3203 break;
3204 }
3205
3206 case IPV6_USE_MIN_MTU:
3207 if (len != sizeof(int))
3208 return (EINVAL);
3209 minmtupolicy = *(int *)buf;
3210 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3211 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3212 minmtupolicy != IP6PO_MINMTU_ALL) {
3213 return (EINVAL);
3214 }
3215 opt->ip6po_minmtu = minmtupolicy;
3216 break;
3217
3218 case IPV6_DONTFRAG:
3219 if (len != sizeof(int))
3220 return (EINVAL);
3221
3222 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3223 /*
3224 * we ignore this option for TCP sockets.
3225 * (RFC3542 leaves this case unspecified.)
3226 */
3227 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3228 } else
3229 opt->ip6po_flags |= IP6PO_DONTFRAG;
3230 break;
3231
3232 case IPV6_PREFER_TEMPADDR:
3233 {
3234 int preftemp;
3235
3236 if (len != sizeof(int))
3237 return (EINVAL);
3238 preftemp = *(int *)buf;
3239 switch (preftemp) {
3240 case IP6PO_TEMPADDR_SYSTEM:
3241 case IP6PO_TEMPADDR_NOTPREFER:
3242 case IP6PO_TEMPADDR_PREFER:
3243 break;
3244 default:
3245 return (EINVAL);
3246 }
3247 opt->ip6po_prefer_tempaddr = preftemp;
3248 break;
3249 }
3250
3251 default:
3252 return (ENOPROTOOPT);
3253 } /* end of switch */
3254
3255 return (0);
3256 }
3257
3258 /*
3259 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3260 * packet to the input queue of a specified interface. Note that this
3261 * calls the output routine of the loopback "driver", but with an interface
3262 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3263 */
3264 void
3265 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3266 const struct sockaddr_in6 *dst)
3267 {
3268 struct mbuf *copym;
3269 struct ip6_hdr *ip6;
3270
3271 copym = m_copy(m, 0, M_COPYALL);
3272 if (copym == NULL)
3273 return;
3274
3275 /*
3276 * Make sure to deep-copy IPv6 header portion in case the data
3277 * is in an mbuf cluster, so that we can safely override the IPv6
3278 * header portion later.
3279 */
3280 if ((copym->m_flags & M_EXT) != 0 ||
3281 copym->m_len < sizeof(struct ip6_hdr)) {
3282 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3283 if (copym == NULL)
3284 return;
3285 }
3286
3287 #ifdef DIAGNOSTIC
3288 if (copym->m_len < sizeof(*ip6)) {
3289 m_freem(copym);
3290 return;
3291 }
3292 #endif
3293
3294 ip6 = mtod(copym, struct ip6_hdr *);
3295 /*
3296 * clear embedded scope identifiers if necessary.
3297 * in6_clearscope will touch the addresses only when necessary.
3298 */
3299 in6_clearscope(&ip6->ip6_src);
3300 in6_clearscope(&ip6->ip6_dst);
3301
3302 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3303 }
3304
3305 /*
3306 * Chop IPv6 header off from the payload.
3307 */
3308 static int
3309 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3310 {
3311 struct mbuf *mh;
3312 struct ip6_hdr *ip6;
3313
3314 ip6 = mtod(m, struct ip6_hdr *);
3315 if (m->m_len > sizeof(*ip6)) {
3316 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3317 if (mh == 0) {
3318 m_freem(m);
3319 return ENOBUFS;
3320 }
3321 M_MOVE_PKTHDR(mh, m);
3322 MH_ALIGN(mh, sizeof(*ip6));
3323 m->m_len -= sizeof(*ip6);
3324 m->m_data += sizeof(*ip6);
3325 mh->m_next = m;
3326 m = mh;
3327 m->m_len = sizeof(*ip6);
3328 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
3329 }
3330 exthdrs->ip6e_ip6 = m;
3331 return 0;
3332 }
3333
3334 /*
3335 * Compute IPv6 extension header length.
3336 */
3337 int
3338 ip6_optlen(struct in6pcb *in6p)
3339 {
3340 int len;
3341
3342 if (!in6p->in6p_outputopts)
3343 return 0;
3344
3345 len = 0;
3346 #define elen(x) \
3347 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3348
3349 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3350 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3351 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3352 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3353 return len;
3354 #undef elen
3355 }
3356
3357 /*
3358 * Ensure sending address is valid.
3359 * Returns 0 on success, -1 if an error should be sent back or 1
3360 * if the packet could be dropped without error (protocol dependent).
3361 */
3362 static int
3363 ip6_ifaddrvalid(const struct in6_addr *addr)
3364 {
3365 struct sockaddr_in6 sin6;
3366 int s, error;
3367 struct ifaddr *ifa;
3368 struct in6_ifaddr *ia6;
3369
3370 if (IN6_IS_ADDR_UNSPECIFIED(addr))
3371 return 0;
3372
3373 memset(&sin6, 0, sizeof(sin6));
3374 sin6.sin6_family = AF_INET6;
3375 sin6.sin6_len = sizeof(sin6);
3376 sin6.sin6_addr = *addr;
3377
3378 s = pserialize_read_enter();
3379 ifa = ifa_ifwithaddr(sin6tosa(&sin6));
3380 if ((ia6 = ifatoia6(ifa)) == NULL ||
3381 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
3382 error = -1;
3383 else if (ia6->ia6_flags & (IN6_IFF_TENTATIVE | IN6_IFF_DETACHED))
3384 error = 1;
3385 else
3386 error = 0;
3387 pserialize_read_exit(s);
3388
3389 return error;
3390 }
3391