Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.190
      1 /*	$NetBSD: ip6_output.c,v 1.190 2017/03/02 05:26:24 ozaki-r Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.190 2017/03/02 05:26:24 ozaki-r Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_inet.h"
     69 #include "opt_inet6.h"
     70 #include "opt_ipsec.h"
     71 #endif
     72 
     73 #include <sys/param.h>
     74 #include <sys/malloc.h>
     75 #include <sys/mbuf.h>
     76 #include <sys/errno.h>
     77 #include <sys/socket.h>
     78 #include <sys/socketvar.h>
     79 #include <sys/syslog.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/kauth.h>
     83 
     84 #include <net/if.h>
     85 #include <net/route.h>
     86 #include <net/pfil.h>
     87 
     88 #include <netinet/in.h>
     89 #include <netinet/in_var.h>
     90 #include <netinet/ip6.h>
     91 #include <netinet/ip_var.h>
     92 #include <netinet/icmp6.h>
     93 #include <netinet/in_offload.h>
     94 #include <netinet/portalgo.h>
     95 #include <netinet6/in6_offload.h>
     96 #include <netinet6/ip6_var.h>
     97 #include <netinet6/ip6_private.h>
     98 #include <netinet6/in6_pcb.h>
     99 #include <netinet6/nd6.h>
    100 #include <netinet6/ip6protosw.h>
    101 #include <netinet6/scope6_var.h>
    102 
    103 #ifdef IPSEC
    104 #include <netipsec/ipsec.h>
    105 #include <netipsec/ipsec6.h>
    106 #include <netipsec/key.h>
    107 #include <netipsec/xform.h>
    108 #endif
    109 
    110 
    111 #include <net/net_osdep.h>
    112 
    113 extern pfil_head_t *inet6_pfil_hook;	/* XXX */
    114 
    115 struct ip6_exthdrs {
    116 	struct mbuf *ip6e_ip6;
    117 	struct mbuf *ip6e_hbh;
    118 	struct mbuf *ip6e_dest1;
    119 	struct mbuf *ip6e_rthdr;
    120 	struct mbuf *ip6e_dest2;
    121 };
    122 
    123 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
    124 	kauth_cred_t, int);
    125 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
    126 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
    127 	int, int, int);
    128 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *);
    129 static int ip6_getmoptions(struct sockopt *, struct in6pcb *);
    130 static int ip6_copyexthdr(struct mbuf **, void *, int);
    131 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
    132 	struct ip6_frag **);
    133 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
    134 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
    135 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
    136 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
    137 static int ip6_ifaddrvalid(const struct in6_addr *);
    138 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
    139 
    140 #ifdef RFC2292
    141 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
    142 #endif
    143 
    144 static int
    145 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
    146 {
    147 	struct ip6_rthdr0 *rh0;
    148 	struct in6_addr *addr;
    149 	struct sockaddr_in6 sa;
    150 	int error = 0;
    151 
    152 	switch (rh->ip6r_type) {
    153 	case IPV6_RTHDR_TYPE_0:
    154 		 rh0 = (struct ip6_rthdr0 *)rh;
    155 		 addr = (struct in6_addr *)(rh0 + 1);
    156 
    157 		 /*
    158 		  * construct a sockaddr_in6 form of the first hop.
    159 		  *
    160 		  * XXX we may not have enough information about its scope zone;
    161 		  * there is no standard API to pass the information from the
    162 		  * application.
    163 		  */
    164 		 sockaddr_in6_init(&sa, addr, 0, 0, 0);
    165 		 error = sa6_embedscope(&sa, ip6_use_defzone);
    166 		 if (error != 0)
    167 			 break;
    168 		 (void)memmove(&addr[0], &addr[1],
    169 		     sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
    170 		 addr[rh0->ip6r0_segleft - 1] = ip6->ip6_dst;
    171 		 ip6->ip6_dst = sa.sin6_addr;
    172 		 /* XXX */
    173 		 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
    174 		 break;
    175 	default:	/* is it possible? */
    176 		 error = EINVAL;
    177 	}
    178 
    179 	return error;
    180 }
    181 
    182 /*
    183  * Send an IP packet to a host.
    184  */
    185 int
    186 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp,
    187     struct mbuf * const m,
    188     const struct sockaddr_in6 * const dst, const struct rtentry *rt)
    189 {
    190 	int error = 0;
    191 
    192 	if (rt != NULL) {
    193 		error = rt_check_reject_route(rt, ifp);
    194 		if (error != 0) {
    195 			m_freem(m);
    196 			return error;
    197 		}
    198 	}
    199 
    200 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
    201 		error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
    202 	else
    203 		error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
    204 	return error;
    205 }
    206 
    207 /*
    208  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    209  * header (with pri, len, nxt, hlim, src, dst).
    210  * This function may modify ver and hlim only.
    211  * The mbuf chain containing the packet will be freed.
    212  * The mbuf opt, if present, will not be freed.
    213  *
    214  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    215  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
    216  * which is rt_rmx.rmx_mtu.
    217  */
    218 int
    219 ip6_output(
    220     struct mbuf *m0,
    221     struct ip6_pktopts *opt,
    222     struct route *ro,
    223     int flags,
    224     struct ip6_moptions *im6o,
    225     struct socket *so,
    226     struct ifnet **ifpp		/* XXX: just for statistics */
    227 )
    228 {
    229 	struct ip6_hdr *ip6, *mhip6;
    230 	struct ifnet *ifp = NULL, *origifp = NULL;
    231 	struct mbuf *m = m0;
    232 	int hlen, tlen, len, off;
    233 	bool tso;
    234 	struct route ip6route;
    235 	struct rtentry *rt = NULL, *rt_pmtu;
    236 	const struct sockaddr_in6 *dst;
    237 	struct sockaddr_in6 src_sa, dst_sa;
    238 	int error = 0;
    239 	struct in6_ifaddr *ia = NULL;
    240 	u_long mtu;
    241 	int alwaysfrag, dontfrag;
    242 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    243 	struct ip6_exthdrs exthdrs;
    244 	struct in6_addr finaldst, src0, dst0;
    245 	u_int32_t zone;
    246 	struct route *ro_pmtu = NULL;
    247 	int hdrsplit = 0;
    248 	int needipsec = 0;
    249 #ifdef IPSEC
    250 	struct secpolicy *sp = NULL;
    251 #endif
    252 	struct psref psref, psref_ia;
    253 	int bound = curlwp_bind();
    254 	bool release_psref_ia = false;
    255 
    256 #ifdef  DIAGNOSTIC
    257 	if ((m->m_flags & M_PKTHDR) == 0)
    258 		panic("ip6_output: no HDR");
    259 
    260 	if ((m->m_pkthdr.csum_flags &
    261 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
    262 		panic("ip6_output: IPv4 checksum offload flags: %d",
    263 		    m->m_pkthdr.csum_flags);
    264 	}
    265 
    266 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
    267 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
    268 		panic("ip6_output: conflicting checksum offload flags: %d",
    269 		    m->m_pkthdr.csum_flags);
    270 	}
    271 #endif
    272 
    273 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    274 
    275 #define MAKE_EXTHDR(hp, mp)						\
    276     do {								\
    277 	if (hp) {							\
    278 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    279 		error = ip6_copyexthdr((mp), (void *)(hp), 		\
    280 		    ((eh)->ip6e_len + 1) << 3);				\
    281 		if (error)						\
    282 			goto freehdrs;					\
    283 	}								\
    284     } while (/*CONSTCOND*/ 0)
    285 
    286 	memset(&exthdrs, 0, sizeof(exthdrs));
    287 	if (opt) {
    288 		/* Hop-by-Hop options header */
    289 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    290 		/* Destination options header(1st part) */
    291 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    292 		/* Routing header */
    293 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    294 		/* Destination options header(2nd part) */
    295 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    296 	}
    297 
    298 	/*
    299 	 * Calculate the total length of the extension header chain.
    300 	 * Keep the length of the unfragmentable part for fragmentation.
    301 	 */
    302 	optlen = 0;
    303 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    304 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    305 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    306 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    307 	/* NOTE: we don't add AH/ESP length here. do that later. */
    308 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    309 
    310 #ifdef IPSEC
    311 	if (ipsec_used) {
    312 		/* Check the security policy (SP) for the packet */
    313 
    314 		sp = ipsec6_check_policy(m, so, flags, &needipsec, &error);
    315 		if (error != 0) {
    316 			/*
    317 			 * Hack: -EINVAL is used to signal that a packet
    318 			 * should be silently discarded.  This is typically
    319 			 * because we asked key management for an SA and
    320 			 * it was delayed (e.g. kicked up to IKE).
    321 			 */
    322 			if (error == -EINVAL)
    323 				error = 0;
    324 			goto freehdrs;
    325 		}
    326 	}
    327 #endif /* IPSEC */
    328 
    329 
    330 	if (needipsec &&
    331 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    332 		in6_delayed_cksum(m);
    333 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    334 	}
    335 
    336 
    337 	/*
    338 	 * If we need IPsec, or there is at least one extension header,
    339 	 * separate IP6 header from the payload.
    340 	 */
    341 	if ((needipsec || optlen) && !hdrsplit) {
    342 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    343 			m = NULL;
    344 			goto freehdrs;
    345 		}
    346 		m = exthdrs.ip6e_ip6;
    347 		hdrsplit++;
    348 	}
    349 
    350 	/* adjust pointer */
    351 	ip6 = mtod(m, struct ip6_hdr *);
    352 
    353 	/* adjust mbuf packet header length */
    354 	m->m_pkthdr.len += optlen;
    355 	plen = m->m_pkthdr.len - sizeof(*ip6);
    356 
    357 	/* If this is a jumbo payload, insert a jumbo payload option. */
    358 	if (plen > IPV6_MAXPACKET) {
    359 		if (!hdrsplit) {
    360 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    361 				m = NULL;
    362 				goto freehdrs;
    363 			}
    364 			m = exthdrs.ip6e_ip6;
    365 			hdrsplit++;
    366 		}
    367 		/* adjust pointer */
    368 		ip6 = mtod(m, struct ip6_hdr *);
    369 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    370 			goto freehdrs;
    371 		optlen += 8; /* XXX JUMBOOPTLEN */
    372 		ip6->ip6_plen = 0;
    373 	} else
    374 		ip6->ip6_plen = htons(plen);
    375 
    376 	/*
    377 	 * Concatenate headers and fill in next header fields.
    378 	 * Here we have, on "m"
    379 	 *	IPv6 payload
    380 	 * and we insert headers accordingly.  Finally, we should be getting:
    381 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    382 	 *
    383 	 * during the header composing process, "m" points to IPv6 header.
    384 	 * "mprev" points to an extension header prior to esp.
    385 	 */
    386 	{
    387 		u_char *nexthdrp = &ip6->ip6_nxt;
    388 		struct mbuf *mprev = m;
    389 
    390 		/*
    391 		 * we treat dest2 specially.  this makes IPsec processing
    392 		 * much easier.  the goal here is to make mprev point the
    393 		 * mbuf prior to dest2.
    394 		 *
    395 		 * result: IPv6 dest2 payload
    396 		 * m and mprev will point to IPv6 header.
    397 		 */
    398 		if (exthdrs.ip6e_dest2) {
    399 			if (!hdrsplit)
    400 				panic("assumption failed: hdr not split");
    401 			exthdrs.ip6e_dest2->m_next = m->m_next;
    402 			m->m_next = exthdrs.ip6e_dest2;
    403 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    404 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    405 		}
    406 
    407 #define MAKE_CHAIN(m, mp, p, i)\
    408     do {\
    409 	if (m) {\
    410 		if (!hdrsplit) \
    411 			panic("assumption failed: hdr not split"); \
    412 		*mtod((m), u_char *) = *(p);\
    413 		*(p) = (i);\
    414 		p = mtod((m), u_char *);\
    415 		(m)->m_next = (mp)->m_next;\
    416 		(mp)->m_next = (m);\
    417 		(mp) = (m);\
    418 	}\
    419     } while (/*CONSTCOND*/ 0)
    420 		/*
    421 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    422 		 * m will point to IPv6 header.  mprev will point to the
    423 		 * extension header prior to dest2 (rthdr in the above case).
    424 		 */
    425 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    426 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    427 		    IPPROTO_DSTOPTS);
    428 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    429 		    IPPROTO_ROUTING);
    430 
    431 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
    432 		    sizeof(struct ip6_hdr) + optlen);
    433 	}
    434 
    435 	/* Need to save for pmtu */
    436 	finaldst = ip6->ip6_dst;
    437 
    438 	/*
    439 	 * If there is a routing header, replace destination address field
    440 	 * with the first hop of the routing header.
    441 	 */
    442 	if (exthdrs.ip6e_rthdr) {
    443 		struct ip6_rthdr *rh;
    444 
    445 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    446 		    struct ip6_rthdr *));
    447 
    448 		error = ip6_handle_rthdr(rh, ip6);
    449 		if (error != 0)
    450 			goto bad;
    451 	}
    452 
    453 	/* Source address validation */
    454 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    455 	    (flags & IPV6_UNSPECSRC) == 0) {
    456 		error = EOPNOTSUPP;
    457 		IP6_STATINC(IP6_STAT_BADSCOPE);
    458 		goto bad;
    459 	}
    460 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    461 		error = EOPNOTSUPP;
    462 		IP6_STATINC(IP6_STAT_BADSCOPE);
    463 		goto bad;
    464 	}
    465 
    466 	IP6_STATINC(IP6_STAT_LOCALOUT);
    467 
    468 	/*
    469 	 * Route packet.
    470 	 */
    471 	/* initialize cached route */
    472 	if (ro == NULL) {
    473 		memset(&ip6route, 0, sizeof(ip6route));
    474 		ro = &ip6route;
    475 	}
    476 	ro_pmtu = ro;
    477 	if (opt && opt->ip6po_rthdr)
    478 		ro = &opt->ip6po_route;
    479 
    480  	/*
    481 	 * if specified, try to fill in the traffic class field.
    482 	 * do not override if a non-zero value is already set.
    483 	 * we check the diffserv field and the ecn field separately.
    484 	 */
    485 	if (opt && opt->ip6po_tclass >= 0) {
    486 		int mask = 0;
    487 
    488 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    489 			mask |= 0xfc;
    490 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    491 			mask |= 0x03;
    492 		if (mask != 0)
    493 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    494 	}
    495 
    496 	/* fill in or override the hop limit field, if necessary. */
    497 	if (opt && opt->ip6po_hlim != -1)
    498 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    499 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    500 		if (im6o != NULL)
    501 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    502 		else
    503 			ip6->ip6_hlim = ip6_defmcasthlim;
    504 	}
    505 
    506 #ifdef IPSEC
    507 	if (needipsec) {
    508 		int s = splsoftnet();
    509 		error = ipsec6_process_packet(m, sp->req);
    510 
    511 		/*
    512 		 * Preserve KAME behaviour: ENOENT can be returned
    513 		 * when an SA acquire is in progress.  Don't propagate
    514 		 * this to user-level; it confuses applications.
    515 		 * XXX this will go away when the SADB is redone.
    516 		 */
    517 		if (error == ENOENT)
    518 			error = 0;
    519 		splx(s);
    520 		goto done;
    521 	}
    522 #endif /* IPSEC */
    523 
    524 	/* adjust pointer */
    525 	ip6 = mtod(m, struct ip6_hdr *);
    526 
    527 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    528 
    529 	/* We do not need a route for multicast */
    530 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    531 		struct in6_pktinfo *pi = NULL;
    532 
    533 		/*
    534 		 * If the outgoing interface for the address is specified by
    535 		 * the caller, use it.
    536 		 */
    537 		if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
    538 			/* XXX boundary check is assumed to be already done. */
    539 			ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
    540 		} else if (im6o != NULL) {
    541 			ifp = if_get_byindex(im6o->im6o_multicast_if_index,
    542 			    &psref);
    543 		}
    544 	}
    545 
    546 	if (ifp == NULL) {
    547 		error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
    548 		if (error != 0)
    549 			goto bad;
    550 		ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
    551 	}
    552 
    553 	if (rt == NULL) {
    554 		/*
    555 		 * If in6_selectroute() does not return a route entry,
    556 		 * dst may not have been updated.
    557 		 */
    558 		error = rtcache_setdst(ro, sin6tosa(&dst_sa));
    559 		if (error) {
    560 			goto bad;
    561 		}
    562 	}
    563 
    564 	/*
    565 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    566 	 */
    567 	if ((flags & IPV6_FORWARDING) == 0) {
    568 		/* XXX: the FORWARDING flag can be set for mrouting. */
    569 		in6_ifstat_inc(ifp, ifs6_out_request);
    570 	}
    571 	if (rt != NULL) {
    572 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    573 		rt->rt_use++;
    574 	}
    575 
    576 	/*
    577 	 * The outgoing interface must be in the zone of source and
    578 	 * destination addresses.  We should use ia_ifp to support the
    579 	 * case of sending packets to an address of our own.
    580 	 */
    581 	if (ia != NULL && ia->ia_ifp) {
    582 		origifp = ia->ia_ifp;
    583 		if (if_is_deactivated(origifp))
    584 			goto bad;
    585 		if_acquire(origifp, &psref_ia);
    586 		release_psref_ia = true;
    587 	} else
    588 		origifp = ifp;
    589 
    590 	src0 = ip6->ip6_src;
    591 	if (in6_setscope(&src0, origifp, &zone))
    592 		goto badscope;
    593 	sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
    594 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    595 		goto badscope;
    596 
    597 	dst0 = ip6->ip6_dst;
    598 	if (in6_setscope(&dst0, origifp, &zone))
    599 		goto badscope;
    600 	/* re-initialize to be sure */
    601 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    602 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    603 		goto badscope;
    604 
    605 	/* scope check is done. */
    606 
    607 	/* Ensure we only send from a valid address. */
    608 	if ((error = ip6_ifaddrvalid(&src0)) != 0) {
    609 		char ip6buf[INET6_ADDRSTRLEN];
    610 		nd6log(LOG_ERR,
    611 		    "refusing to send from invalid address %s (pid %d)\n",
    612 		    IN6_PRINT(ip6buf, &src0), curproc->p_pid);
    613 		IP6_STATINC(IP6_STAT_ODROPPED);
    614 		in6_ifstat_inc(origifp, ifs6_out_discard);
    615 		if (error == 1)
    616 			/*
    617 			 * Address exists, but is tentative or detached.
    618 			 * We can't send from it because it's invalid,
    619 			 * so we drop the packet.
    620 			 */
    621 			error = 0;
    622 		else
    623 			error = EADDRNOTAVAIL;
    624 		goto bad;
    625 	}
    626 
    627 	if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
    628 	    !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    629 		dst = satocsin6(rt->rt_gateway);
    630 	else
    631 		dst = satocsin6(rtcache_getdst(ro));
    632 
    633 	/*
    634 	 * XXXXXX: original code follows:
    635 	 */
    636 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    637 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    638 	else {
    639 		bool ingroup;
    640 
    641 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    642 
    643 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    644 
    645 		/*
    646 		 * Confirm that the outgoing interface supports multicast.
    647 		 */
    648 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    649 			IP6_STATINC(IP6_STAT_NOROUTE);
    650 			in6_ifstat_inc(ifp, ifs6_out_discard);
    651 			error = ENETUNREACH;
    652 			goto bad;
    653 		}
    654 
    655 		ingroup = in6_multi_group(&ip6->ip6_dst, ifp);
    656 		if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) {
    657 			/*
    658 			 * If we belong to the destination multicast group
    659 			 * on the outgoing interface, and the caller did not
    660 			 * forbid loopback, loop back a copy.
    661 			 */
    662 			KASSERT(dst != NULL);
    663 			ip6_mloopback(ifp, m, dst);
    664 		} else {
    665 			/*
    666 			 * If we are acting as a multicast router, perform
    667 			 * multicast forwarding as if the packet had just
    668 			 * arrived on the interface to which we are about
    669 			 * to send.  The multicast forwarding function
    670 			 * recursively calls this function, using the
    671 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    672 			 *
    673 			 * Multicasts that are looped back by ip6_mloopback(),
    674 			 * above, will be forwarded by the ip6_input() routine,
    675 			 * if necessary.
    676 			 */
    677 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    678 				if (ip6_mforward(ip6, ifp, m) != 0) {
    679 					m_freem(m);
    680 					goto done;
    681 				}
    682 			}
    683 		}
    684 		/*
    685 		 * Multicasts with a hoplimit of zero may be looped back,
    686 		 * above, but must not be transmitted on a network.
    687 		 * Also, multicasts addressed to the loopback interface
    688 		 * are not sent -- the above call to ip6_mloopback() will
    689 		 * loop back a copy if this host actually belongs to the
    690 		 * destination group on the loopback interface.
    691 		 */
    692 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    693 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    694 			m_freem(m);
    695 			goto done;
    696 		}
    697 	}
    698 
    699 	/*
    700 	 * Fill the outgoing inteface to tell the upper layer
    701 	 * to increment per-interface statistics.
    702 	 */
    703 	if (ifpp)
    704 		*ifpp = ifp;
    705 
    706 	/* Determine path MTU. */
    707 	/*
    708 	 * ro_pmtu represent final destination while
    709 	 * ro might represent immediate destination.
    710 	 * Use ro_pmtu destination since MTU might differ.
    711 	 */
    712 	if (ro_pmtu != ro) {
    713 		union {
    714 			struct sockaddr		dst;
    715 			struct sockaddr_in6	dst6;
    716 		} u;
    717 
    718 		/* ro_pmtu may not have a cache */
    719 		sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
    720 		rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
    721 	} else
    722 		rt_pmtu = rt;
    723 	error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
    724 	if (rt_pmtu != NULL && rt_pmtu != rt)
    725 		rtcache_unref(rt_pmtu, ro_pmtu);
    726 	if (error != 0)
    727 		goto bad;
    728 
    729 	/*
    730 	 * The caller of this function may specify to use the minimum MTU
    731 	 * in some cases.
    732 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
    733 	 * setting.  The logic is a bit complicated; by default, unicast
    734 	 * packets will follow path MTU while multicast packets will be sent at
    735 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
    736 	 * including unicast ones will be sent at the minimum MTU.  Multicast
    737 	 * packets will always be sent at the minimum MTU unless
    738 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
    739 	 * See RFC 3542 for more details.
    740 	 */
    741 	if (mtu > IPV6_MMTU) {
    742 		if ((flags & IPV6_MINMTU))
    743 			mtu = IPV6_MMTU;
    744 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
    745 			mtu = IPV6_MMTU;
    746 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
    747 			 (opt == NULL ||
    748 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
    749 			mtu = IPV6_MMTU;
    750 		}
    751 	}
    752 
    753 	/*
    754 	 * clear embedded scope identifiers if necessary.
    755 	 * in6_clearscope will touch the addresses only when necessary.
    756 	 */
    757 	in6_clearscope(&ip6->ip6_src);
    758 	in6_clearscope(&ip6->ip6_dst);
    759 
    760 	/*
    761 	 * If the outgoing packet contains a hop-by-hop options header,
    762 	 * it must be examined and processed even by the source node.
    763 	 * (RFC 2460, section 4.)
    764 	 */
    765 	if (ip6->ip6_nxt == IPV6_HOPOPTS) {
    766 		u_int32_t dummy1; /* XXX unused */
    767 		u_int32_t dummy2; /* XXX unused */
    768 		int hoff = sizeof(struct ip6_hdr);
    769 
    770 		if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
    771 			/* m was already freed at this point */
    772 			error = EINVAL;/* better error? */
    773 			goto done;
    774 		}
    775 
    776 		ip6 = mtod(m, struct ip6_hdr *);
    777 	}
    778 
    779 	/*
    780 	 * Run through list of hooks for output packets.
    781 	 */
    782 	if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    783 		goto done;
    784 	if (m == NULL)
    785 		goto done;
    786 	ip6 = mtod(m, struct ip6_hdr *);
    787 
    788 	/*
    789 	 * Send the packet to the outgoing interface.
    790 	 * If necessary, do IPv6 fragmentation before sending.
    791 	 *
    792 	 * the logic here is rather complex:
    793 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    794 	 * 1-a:	send as is if tlen <= path mtu
    795 	 * 1-b:	fragment if tlen > path mtu
    796 	 *
    797 	 * 2: if user asks us not to fragment (dontfrag == 1)
    798 	 * 2-a:	send as is if tlen <= interface mtu
    799 	 * 2-b:	error if tlen > interface mtu
    800 	 *
    801 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    802 	 *	always fragment
    803 	 *
    804 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    805 	 *	error, as we cannot handle this conflicting request
    806 	 */
    807 	tlen = m->m_pkthdr.len;
    808 	tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
    809 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
    810 		dontfrag = 1;
    811 	else
    812 		dontfrag = 0;
    813 
    814 	if (dontfrag && alwaysfrag) {	/* case 4 */
    815 		/* conflicting request - can't transmit */
    816 		error = EMSGSIZE;
    817 		goto bad;
    818 	}
    819 	if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) {	/* case 2-b */
    820 		/*
    821 		 * Even if the DONTFRAG option is specified, we cannot send the
    822 		 * packet when the data length is larger than the MTU of the
    823 		 * outgoing interface.
    824 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    825 		 * well as returning an error code (the latter is not described
    826 		 * in the API spec.)
    827 		 */
    828 		u_int32_t mtu32;
    829 		struct ip6ctlparam ip6cp;
    830 
    831 		mtu32 = (u_int32_t)mtu;
    832 		memset(&ip6cp, 0, sizeof(ip6cp));
    833 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    834 		pfctlinput2(PRC_MSGSIZE,
    835 		    rtcache_getdst(ro_pmtu), &ip6cp);
    836 
    837 		error = EMSGSIZE;
    838 		goto bad;
    839 	}
    840 
    841 	/*
    842 	 * transmit packet without fragmentation
    843 	 */
    844 	if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
    845 		/* case 1-a and 2-a */
    846 		struct in6_ifaddr *ia6;
    847 		int sw_csum;
    848 		int s;
    849 
    850 		ip6 = mtod(m, struct ip6_hdr *);
    851 		s = pserialize_read_enter();
    852 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    853 		if (ia6) {
    854 			/* Record statistics for this interface address. */
    855 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    856 		}
    857 		pserialize_read_exit(s);
    858 
    859 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    860 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    861 			if (IN6_NEED_CHECKSUM(ifp,
    862 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    863 				in6_delayed_cksum(m);
    864 			}
    865 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    866 		}
    867 
    868 		KASSERT(dst != NULL);
    869 		if (__predict_true(!tso ||
    870 		    (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
    871 			error = ip6_if_output(ifp, origifp, m, dst, rt);
    872 		} else {
    873 			error = ip6_tso_output(ifp, origifp, m, dst, rt);
    874 		}
    875 		goto done;
    876 	}
    877 
    878 	if (tso) {
    879 		error = EINVAL; /* XXX */
    880 		goto bad;
    881 	}
    882 
    883 	/*
    884 	 * try to fragment the packet.  case 1-b and 3
    885 	 */
    886 	if (mtu < IPV6_MMTU) {
    887 		/* path MTU cannot be less than IPV6_MMTU */
    888 		error = EMSGSIZE;
    889 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    890 		goto bad;
    891 	} else if (ip6->ip6_plen == 0) {
    892 		/* jumbo payload cannot be fragmented */
    893 		error = EMSGSIZE;
    894 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    895 		goto bad;
    896 	} else {
    897 		struct mbuf **mnext, *m_frgpart;
    898 		struct ip6_frag *ip6f;
    899 		u_int32_t id = htonl(ip6_randomid());
    900 		u_char nextproto;
    901 #if 0				/* see below */
    902 		struct ip6ctlparam ip6cp;
    903 		u_int32_t mtu32;
    904 #endif
    905 
    906 		/*
    907 		 * Too large for the destination or interface;
    908 		 * fragment if possible.
    909 		 * Must be able to put at least 8 bytes per fragment.
    910 		 */
    911 		hlen = unfragpartlen;
    912 		if (mtu > IPV6_MAXPACKET)
    913 			mtu = IPV6_MAXPACKET;
    914 
    915 #if 0
    916 		/*
    917 		 * It is believed this code is a leftover from the
    918 		 * development of the IPV6_RECVPATHMTU sockopt and
    919 		 * associated work to implement RFC3542.
    920 		 * It's not entirely clear what the intent of the API
    921 		 * is at this point, so disable this code for now.
    922 		 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
    923 		 * will send notifications if the application requests.
    924 		 */
    925 
    926 		/* Notify a proper path MTU to applications. */
    927 		mtu32 = (u_int32_t)mtu;
    928 		memset(&ip6cp, 0, sizeof(ip6cp));
    929 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    930 		pfctlinput2(PRC_MSGSIZE,
    931 		    rtcache_getdst(ro_pmtu), &ip6cp);
    932 #endif
    933 
    934 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    935 		if (len < 8) {
    936 			error = EMSGSIZE;
    937 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
    938 			goto bad;
    939 		}
    940 
    941 		mnext = &m->m_nextpkt;
    942 
    943 		/*
    944 		 * Change the next header field of the last header in the
    945 		 * unfragmentable part.
    946 		 */
    947 		if (exthdrs.ip6e_rthdr) {
    948 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    949 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    950 		} else if (exthdrs.ip6e_dest1) {
    951 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    952 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    953 		} else if (exthdrs.ip6e_hbh) {
    954 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    955 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    956 		} else {
    957 			nextproto = ip6->ip6_nxt;
    958 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    959 		}
    960 
    961 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
    962 		    != 0) {
    963 			if (IN6_NEED_CHECKSUM(ifp,
    964 			    m->m_pkthdr.csum_flags &
    965 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    966 				in6_delayed_cksum(m);
    967 			}
    968 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    969 		}
    970 
    971 		/*
    972 		 * Loop through length of segment after first fragment,
    973 		 * make new header and copy data of each part and link onto
    974 		 * chain.
    975 		 */
    976 		m0 = m;
    977 		for (off = hlen; off < tlen; off += len) {
    978 			struct mbuf *mlast;
    979 
    980 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
    981 			if (!m) {
    982 				error = ENOBUFS;
    983 				IP6_STATINC(IP6_STAT_ODROPPED);
    984 				goto sendorfree;
    985 			}
    986 			m_reset_rcvif(m);
    987 			m->m_flags = m0->m_flags & M_COPYFLAGS;
    988 			*mnext = m;
    989 			mnext = &m->m_nextpkt;
    990 			m->m_data += max_linkhdr;
    991 			mhip6 = mtod(m, struct ip6_hdr *);
    992 			*mhip6 = *ip6;
    993 			m->m_len = sizeof(*mhip6);
    994 			/*
    995 			 * ip6f must be valid if error is 0.  But how
    996 			 * can a compiler be expected to infer this?
    997 			 */
    998 			ip6f = NULL;
    999 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
   1000 			if (error) {
   1001 				IP6_STATINC(IP6_STAT_ODROPPED);
   1002 				goto sendorfree;
   1003 			}
   1004 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
   1005 			if (off + len >= tlen)
   1006 				len = tlen - off;
   1007 			else
   1008 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
   1009 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
   1010 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
   1011 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
   1012 				error = ENOBUFS;
   1013 				IP6_STATINC(IP6_STAT_ODROPPED);
   1014 				goto sendorfree;
   1015 			}
   1016 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
   1017 				;
   1018 			mlast->m_next = m_frgpart;
   1019 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
   1020 			m_reset_rcvif(m);
   1021 			ip6f->ip6f_reserved = 0;
   1022 			ip6f->ip6f_ident = id;
   1023 			ip6f->ip6f_nxt = nextproto;
   1024 			IP6_STATINC(IP6_STAT_OFRAGMENTS);
   1025 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
   1026 		}
   1027 
   1028 		in6_ifstat_inc(ifp, ifs6_out_fragok);
   1029 	}
   1030 
   1031 	/*
   1032 	 * Remove leading garbages.
   1033 	 */
   1034 sendorfree:
   1035 	m = m0->m_nextpkt;
   1036 	m0->m_nextpkt = 0;
   1037 	m_freem(m0);
   1038 	for (m0 = m; m; m = m0) {
   1039 		m0 = m->m_nextpkt;
   1040 		m->m_nextpkt = 0;
   1041 		if (error == 0) {
   1042 			struct in6_ifaddr *ia6;
   1043 			int s;
   1044 			ip6 = mtod(m, struct ip6_hdr *);
   1045 			s = pserialize_read_enter();
   1046 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
   1047 			if (ia6) {
   1048 				/*
   1049 				 * Record statistics for this interface
   1050 				 * address.
   1051 				 */
   1052 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
   1053 				    m->m_pkthdr.len;
   1054 			}
   1055 			pserialize_read_exit(s);
   1056 			KASSERT(dst != NULL);
   1057 			error = ip6_if_output(ifp, origifp, m, dst, rt);
   1058 		} else
   1059 			m_freem(m);
   1060 	}
   1061 
   1062 	if (error == 0)
   1063 		IP6_STATINC(IP6_STAT_FRAGMENTED);
   1064 
   1065 done:
   1066 	rtcache_unref(rt, ro);
   1067 	if (ro == &ip6route)
   1068 		rtcache_free(&ip6route);
   1069 
   1070 #ifdef IPSEC
   1071 	if (sp != NULL)
   1072 		KEY_FREESP(&sp);
   1073 #endif /* IPSEC */
   1074 
   1075 	if_put(ifp, &psref);
   1076 	if (release_psref_ia)
   1077 		if_put(origifp, &psref_ia);
   1078 	curlwp_bindx(bound);
   1079 
   1080 	return (error);
   1081 
   1082 freehdrs:
   1083 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
   1084 	m_freem(exthdrs.ip6e_dest1);
   1085 	m_freem(exthdrs.ip6e_rthdr);
   1086 	m_freem(exthdrs.ip6e_dest2);
   1087 	/* FALLTHROUGH */
   1088 bad:
   1089 	m_freem(m);
   1090 	goto done;
   1091 badscope:
   1092 	IP6_STATINC(IP6_STAT_BADSCOPE);
   1093 	in6_ifstat_inc(origifp, ifs6_out_discard);
   1094 	if (error == 0)
   1095 		error = EHOSTUNREACH; /* XXX */
   1096 	goto bad;
   1097 }
   1098 
   1099 static int
   1100 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
   1101 {
   1102 	struct mbuf *m;
   1103 
   1104 	if (hlen > MCLBYTES)
   1105 		return (ENOBUFS); /* XXX */
   1106 
   1107 	MGET(m, M_DONTWAIT, MT_DATA);
   1108 	if (!m)
   1109 		return (ENOBUFS);
   1110 
   1111 	if (hlen > MLEN) {
   1112 		MCLGET(m, M_DONTWAIT);
   1113 		if ((m->m_flags & M_EXT) == 0) {
   1114 			m_free(m);
   1115 			return (ENOBUFS);
   1116 		}
   1117 	}
   1118 	m->m_len = hlen;
   1119 	if (hdr)
   1120 		bcopy(hdr, mtod(m, void *), hlen);
   1121 
   1122 	*mp = m;
   1123 	return (0);
   1124 }
   1125 
   1126 /*
   1127  * Process a delayed payload checksum calculation.
   1128  */
   1129 void
   1130 in6_delayed_cksum(struct mbuf *m)
   1131 {
   1132 	uint16_t csum, offset;
   1133 
   1134 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1135 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1136 	KASSERT((m->m_pkthdr.csum_flags
   1137 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
   1138 
   1139 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
   1140 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
   1141 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
   1142 		csum = 0xffff;
   1143 	}
   1144 
   1145 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
   1146 	if ((offset + sizeof(csum)) > m->m_len) {
   1147 		m_copyback(m, offset, sizeof(csum), &csum);
   1148 	} else {
   1149 		*(uint16_t *)(mtod(m, char *) + offset) = csum;
   1150 	}
   1151 }
   1152 
   1153 /*
   1154  * Insert jumbo payload option.
   1155  */
   1156 static int
   1157 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
   1158 {
   1159 	struct mbuf *mopt;
   1160 	u_int8_t *optbuf;
   1161 	u_int32_t v;
   1162 
   1163 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1164 
   1165 	/*
   1166 	 * If there is no hop-by-hop options header, allocate new one.
   1167 	 * If there is one but it doesn't have enough space to store the
   1168 	 * jumbo payload option, allocate a cluster to store the whole options.
   1169 	 * Otherwise, use it to store the options.
   1170 	 */
   1171 	if (exthdrs->ip6e_hbh == 0) {
   1172 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1173 		if (mopt == 0)
   1174 			return (ENOBUFS);
   1175 		mopt->m_len = JUMBOOPTLEN;
   1176 		optbuf = mtod(mopt, u_int8_t *);
   1177 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1178 		exthdrs->ip6e_hbh = mopt;
   1179 	} else {
   1180 		struct ip6_hbh *hbh;
   1181 
   1182 		mopt = exthdrs->ip6e_hbh;
   1183 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1184 			/*
   1185 			 * XXX assumption:
   1186 			 * - exthdrs->ip6e_hbh is not referenced from places
   1187 			 *   other than exthdrs.
   1188 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1189 			 */
   1190 			int oldoptlen = mopt->m_len;
   1191 			struct mbuf *n;
   1192 
   1193 			/*
   1194 			 * XXX: give up if the whole (new) hbh header does
   1195 			 * not fit even in an mbuf cluster.
   1196 			 */
   1197 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1198 				return (ENOBUFS);
   1199 
   1200 			/*
   1201 			 * As a consequence, we must always prepare a cluster
   1202 			 * at this point.
   1203 			 */
   1204 			MGET(n, M_DONTWAIT, MT_DATA);
   1205 			if (n) {
   1206 				MCLGET(n, M_DONTWAIT);
   1207 				if ((n->m_flags & M_EXT) == 0) {
   1208 					m_freem(n);
   1209 					n = NULL;
   1210 				}
   1211 			}
   1212 			if (!n)
   1213 				return (ENOBUFS);
   1214 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1215 			bcopy(mtod(mopt, void *), mtod(n, void *),
   1216 			    oldoptlen);
   1217 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1218 			m_freem(mopt);
   1219 			mopt = exthdrs->ip6e_hbh = n;
   1220 		} else {
   1221 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1222 			mopt->m_len += JUMBOOPTLEN;
   1223 		}
   1224 		optbuf[0] = IP6OPT_PADN;
   1225 		optbuf[1] = 0;
   1226 
   1227 		/*
   1228 		 * Adjust the header length according to the pad and
   1229 		 * the jumbo payload option.
   1230 		 */
   1231 		hbh = mtod(mopt, struct ip6_hbh *);
   1232 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1233 	}
   1234 
   1235 	/* fill in the option. */
   1236 	optbuf[2] = IP6OPT_JUMBO;
   1237 	optbuf[3] = 4;
   1238 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1239 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
   1240 
   1241 	/* finally, adjust the packet header length */
   1242 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1243 
   1244 	return (0);
   1245 #undef JUMBOOPTLEN
   1246 }
   1247 
   1248 /*
   1249  * Insert fragment header and copy unfragmentable header portions.
   1250  *
   1251  * *frghdrp will not be read, and it is guaranteed that either an
   1252  * error is returned or that *frghdrp will point to space allocated
   1253  * for the fragment header.
   1254  */
   1255 static int
   1256 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
   1257 	struct ip6_frag **frghdrp)
   1258 {
   1259 	struct mbuf *n, *mlast;
   1260 
   1261 	if (hlen > sizeof(struct ip6_hdr)) {
   1262 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1263 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1264 		if (n == 0)
   1265 			return (ENOBUFS);
   1266 		m->m_next = n;
   1267 	} else
   1268 		n = m;
   1269 
   1270 	/* Search for the last mbuf of unfragmentable part. */
   1271 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1272 		;
   1273 
   1274 	if ((mlast->m_flags & M_EXT) == 0 &&
   1275 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1276 		/* use the trailing space of the last mbuf for the fragment hdr */
   1277 		*frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
   1278 		    mlast->m_len);
   1279 		mlast->m_len += sizeof(struct ip6_frag);
   1280 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1281 	} else {
   1282 		/* allocate a new mbuf for the fragment header */
   1283 		struct mbuf *mfrg;
   1284 
   1285 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1286 		if (mfrg == 0)
   1287 			return (ENOBUFS);
   1288 		mfrg->m_len = sizeof(struct ip6_frag);
   1289 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1290 		mlast->m_next = mfrg;
   1291 	}
   1292 
   1293 	return (0);
   1294 }
   1295 
   1296 static int
   1297 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
   1298     int *alwaysfragp)
   1299 {
   1300 	u_int32_t mtu = 0;
   1301 	int alwaysfrag = 0;
   1302 	int error = 0;
   1303 
   1304 	if (rt != NULL) {
   1305 		u_int32_t ifmtu;
   1306 
   1307 		if (ifp == NULL)
   1308 			ifp = rt->rt_ifp;
   1309 		ifmtu = IN6_LINKMTU(ifp);
   1310 		mtu = rt->rt_rmx.rmx_mtu;
   1311 		if (mtu == 0)
   1312 			mtu = ifmtu;
   1313 		else if (mtu < IPV6_MMTU) {
   1314 			/*
   1315 			 * RFC2460 section 5, last paragraph:
   1316 			 * if we record ICMPv6 too big message with
   1317 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1318 			 * or smaller, with fragment header attached.
   1319 			 * (fragment header is needed regardless from the
   1320 			 * packet size, for translators to identify packets)
   1321 			 */
   1322 			alwaysfrag = 1;
   1323 			mtu = IPV6_MMTU;
   1324 		} else if (mtu > ifmtu) {
   1325 			/*
   1326 			 * The MTU on the route is larger than the MTU on
   1327 			 * the interface!  This shouldn't happen, unless the
   1328 			 * MTU of the interface has been changed after the
   1329 			 * interface was brought up.  Change the MTU in the
   1330 			 * route to match the interface MTU (as long as the
   1331 			 * field isn't locked).
   1332 			 */
   1333 			mtu = ifmtu;
   1334 			if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
   1335 				rt->rt_rmx.rmx_mtu = mtu;
   1336 		}
   1337 	} else if (ifp) {
   1338 		mtu = IN6_LINKMTU(ifp);
   1339 	} else
   1340 		error = EHOSTUNREACH; /* XXX */
   1341 
   1342 	*mtup = mtu;
   1343 	if (alwaysfragp)
   1344 		*alwaysfragp = alwaysfrag;
   1345 	return (error);
   1346 }
   1347 
   1348 /*
   1349  * IP6 socket option processing.
   1350  */
   1351 int
   1352 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1353 {
   1354 	int optdatalen, uproto;
   1355 	void *optdata;
   1356 	struct in6pcb *in6p = sotoin6pcb(so);
   1357 	struct ip_moptions **mopts;
   1358 	int error, optval;
   1359 	int level, optname;
   1360 
   1361 	KASSERT(solocked(so));
   1362 	KASSERT(sopt != NULL);
   1363 
   1364 	level = sopt->sopt_level;
   1365 	optname = sopt->sopt_name;
   1366 
   1367 	error = optval = 0;
   1368 	uproto = (int)so->so_proto->pr_protocol;
   1369 
   1370 	switch (level) {
   1371 	case IPPROTO_IP:
   1372 		switch (optname) {
   1373 		case IP_ADD_MEMBERSHIP:
   1374 		case IP_DROP_MEMBERSHIP:
   1375 		case IP_MULTICAST_IF:
   1376 		case IP_MULTICAST_LOOP:
   1377 		case IP_MULTICAST_TTL:
   1378 			mopts = &in6p->in6p_v4moptions;
   1379 			switch (op) {
   1380 			case PRCO_GETOPT:
   1381 				return ip_getmoptions(*mopts, sopt);
   1382 			case PRCO_SETOPT:
   1383 				return ip_setmoptions(mopts, sopt);
   1384 			default:
   1385 				return EINVAL;
   1386 			}
   1387 		default:
   1388 			return ENOPROTOOPT;
   1389 		}
   1390 	case IPPROTO_IPV6:
   1391 		break;
   1392 	default:
   1393 		return ENOPROTOOPT;
   1394 	}
   1395 	switch (op) {
   1396 	case PRCO_SETOPT:
   1397 		switch (optname) {
   1398 #ifdef RFC2292
   1399 		case IPV6_2292PKTOPTIONS:
   1400 			error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
   1401 			break;
   1402 #endif
   1403 
   1404 		/*
   1405 		 * Use of some Hop-by-Hop options or some
   1406 		 * Destination options, might require special
   1407 		 * privilege.  That is, normal applications
   1408 		 * (without special privilege) might be forbidden
   1409 		 * from setting certain options in outgoing packets,
   1410 		 * and might never see certain options in received
   1411 		 * packets. [RFC 2292 Section 6]
   1412 		 * KAME specific note:
   1413 		 *  KAME prevents non-privileged users from sending or
   1414 		 *  receiving ANY hbh/dst options in order to avoid
   1415 		 *  overhead of parsing options in the kernel.
   1416 		 */
   1417 		case IPV6_RECVHOPOPTS:
   1418 		case IPV6_RECVDSTOPTS:
   1419 		case IPV6_RECVRTHDRDSTOPTS:
   1420 			error = kauth_authorize_network(kauth_cred_get(),
   1421 			    KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
   1422 			    NULL, NULL, NULL);
   1423 			if (error)
   1424 				break;
   1425 			/* FALLTHROUGH */
   1426 		case IPV6_UNICAST_HOPS:
   1427 		case IPV6_HOPLIMIT:
   1428 		case IPV6_FAITH:
   1429 
   1430 		case IPV6_RECVPKTINFO:
   1431 		case IPV6_RECVHOPLIMIT:
   1432 		case IPV6_RECVRTHDR:
   1433 		case IPV6_RECVPATHMTU:
   1434 		case IPV6_RECVTCLASS:
   1435 		case IPV6_V6ONLY:
   1436 			error = sockopt_getint(sopt, &optval);
   1437 			if (error)
   1438 				break;
   1439 			switch (optname) {
   1440 			case IPV6_UNICAST_HOPS:
   1441 				if (optval < -1 || optval >= 256)
   1442 					error = EINVAL;
   1443 				else {
   1444 					/* -1 = kernel default */
   1445 					in6p->in6p_hops = optval;
   1446 				}
   1447 				break;
   1448 #define OPTSET(bit) \
   1449 do { \
   1450 if (optval) \
   1451 	in6p->in6p_flags |= (bit); \
   1452 else \
   1453 	in6p->in6p_flags &= ~(bit); \
   1454 } while (/*CONSTCOND*/ 0)
   1455 
   1456 #ifdef RFC2292
   1457 #define OPTSET2292(bit) 			\
   1458 do { 						\
   1459 in6p->in6p_flags |= IN6P_RFC2292; 	\
   1460 if (optval) 				\
   1461 	in6p->in6p_flags |= (bit); 	\
   1462 else 					\
   1463 	in6p->in6p_flags &= ~(bit); 	\
   1464 } while (/*CONSTCOND*/ 0)
   1465 #endif
   1466 
   1467 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
   1468 
   1469 			case IPV6_RECVPKTINFO:
   1470 #ifdef RFC2292
   1471 				/* cannot mix with RFC2292 */
   1472 				if (OPTBIT(IN6P_RFC2292)) {
   1473 					error = EINVAL;
   1474 					break;
   1475 				}
   1476 #endif
   1477 				OPTSET(IN6P_PKTINFO);
   1478 				break;
   1479 
   1480 			case IPV6_HOPLIMIT:
   1481 			{
   1482 				struct ip6_pktopts **optp;
   1483 
   1484 #ifdef RFC2292
   1485 				/* cannot mix with RFC2292 */
   1486 				if (OPTBIT(IN6P_RFC2292)) {
   1487 					error = EINVAL;
   1488 					break;
   1489 				}
   1490 #endif
   1491 				optp = &in6p->in6p_outputopts;
   1492 				error = ip6_pcbopt(IPV6_HOPLIMIT,
   1493 						   (u_char *)&optval,
   1494 						   sizeof(optval),
   1495 						   optp,
   1496 						   kauth_cred_get(), uproto);
   1497 				break;
   1498 			}
   1499 
   1500 			case IPV6_RECVHOPLIMIT:
   1501 #ifdef RFC2292
   1502 				/* cannot mix with RFC2292 */
   1503 				if (OPTBIT(IN6P_RFC2292)) {
   1504 					error = EINVAL;
   1505 					break;
   1506 				}
   1507 #endif
   1508 				OPTSET(IN6P_HOPLIMIT);
   1509 				break;
   1510 
   1511 			case IPV6_RECVHOPOPTS:
   1512 #ifdef RFC2292
   1513 				/* cannot mix with RFC2292 */
   1514 				if (OPTBIT(IN6P_RFC2292)) {
   1515 					error = EINVAL;
   1516 					break;
   1517 				}
   1518 #endif
   1519 				OPTSET(IN6P_HOPOPTS);
   1520 				break;
   1521 
   1522 			case IPV6_RECVDSTOPTS:
   1523 #ifdef RFC2292
   1524 				/* cannot mix with RFC2292 */
   1525 				if (OPTBIT(IN6P_RFC2292)) {
   1526 					error = EINVAL;
   1527 					break;
   1528 				}
   1529 #endif
   1530 				OPTSET(IN6P_DSTOPTS);
   1531 				break;
   1532 
   1533 			case IPV6_RECVRTHDRDSTOPTS:
   1534 #ifdef RFC2292
   1535 				/* cannot mix with RFC2292 */
   1536 				if (OPTBIT(IN6P_RFC2292)) {
   1537 					error = EINVAL;
   1538 					break;
   1539 				}
   1540 #endif
   1541 				OPTSET(IN6P_RTHDRDSTOPTS);
   1542 				break;
   1543 
   1544 			case IPV6_RECVRTHDR:
   1545 #ifdef RFC2292
   1546 				/* cannot mix with RFC2292 */
   1547 				if (OPTBIT(IN6P_RFC2292)) {
   1548 					error = EINVAL;
   1549 					break;
   1550 				}
   1551 #endif
   1552 				OPTSET(IN6P_RTHDR);
   1553 				break;
   1554 
   1555 			case IPV6_FAITH:
   1556 				OPTSET(IN6P_FAITH);
   1557 				break;
   1558 
   1559 			case IPV6_RECVPATHMTU:
   1560 				/*
   1561 				 * We ignore this option for TCP
   1562 				 * sockets.
   1563 				 * (RFC3542 leaves this case
   1564 				 * unspecified.)
   1565 				 */
   1566 				if (uproto != IPPROTO_TCP)
   1567 					OPTSET(IN6P_MTU);
   1568 				break;
   1569 
   1570 			case IPV6_V6ONLY:
   1571 				/*
   1572 				 * make setsockopt(IPV6_V6ONLY)
   1573 				 * available only prior to bind(2).
   1574 				 * see ipng mailing list, Jun 22 2001.
   1575 				 */
   1576 				if (in6p->in6p_lport ||
   1577 				    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
   1578 					error = EINVAL;
   1579 					break;
   1580 				}
   1581 #ifdef INET6_BINDV6ONLY
   1582 				if (!optval)
   1583 					error = EINVAL;
   1584 #else
   1585 				OPTSET(IN6P_IPV6_V6ONLY);
   1586 #endif
   1587 				break;
   1588 			case IPV6_RECVTCLASS:
   1589 #ifdef RFC2292
   1590 				/* cannot mix with RFC2292 XXX */
   1591 				if (OPTBIT(IN6P_RFC2292)) {
   1592 					error = EINVAL;
   1593 					break;
   1594 				}
   1595 #endif
   1596 				OPTSET(IN6P_TCLASS);
   1597 				break;
   1598 
   1599 			}
   1600 			break;
   1601 
   1602 		case IPV6_OTCLASS:
   1603 		{
   1604 			struct ip6_pktopts **optp;
   1605 			u_int8_t tclass;
   1606 
   1607 			error = sockopt_get(sopt, &tclass, sizeof(tclass));
   1608 			if (error)
   1609 				break;
   1610 			optp = &in6p->in6p_outputopts;
   1611 			error = ip6_pcbopt(optname,
   1612 					   (u_char *)&tclass,
   1613 					   sizeof(tclass),
   1614 					   optp,
   1615 					   kauth_cred_get(), uproto);
   1616 			break;
   1617 		}
   1618 
   1619 		case IPV6_TCLASS:
   1620 		case IPV6_DONTFRAG:
   1621 		case IPV6_USE_MIN_MTU:
   1622 		case IPV6_PREFER_TEMPADDR:
   1623 			error = sockopt_getint(sopt, &optval);
   1624 			if (error)
   1625 				break;
   1626 			{
   1627 				struct ip6_pktopts **optp;
   1628 				optp = &in6p->in6p_outputopts;
   1629 				error = ip6_pcbopt(optname,
   1630 						   (u_char *)&optval,
   1631 						   sizeof(optval),
   1632 						   optp,
   1633 						   kauth_cred_get(), uproto);
   1634 				break;
   1635 			}
   1636 
   1637 #ifdef RFC2292
   1638 		case IPV6_2292PKTINFO:
   1639 		case IPV6_2292HOPLIMIT:
   1640 		case IPV6_2292HOPOPTS:
   1641 		case IPV6_2292DSTOPTS:
   1642 		case IPV6_2292RTHDR:
   1643 			/* RFC 2292 */
   1644 			error = sockopt_getint(sopt, &optval);
   1645 			if (error)
   1646 				break;
   1647 
   1648 			switch (optname) {
   1649 			case IPV6_2292PKTINFO:
   1650 				OPTSET2292(IN6P_PKTINFO);
   1651 				break;
   1652 			case IPV6_2292HOPLIMIT:
   1653 				OPTSET2292(IN6P_HOPLIMIT);
   1654 				break;
   1655 			case IPV6_2292HOPOPTS:
   1656 				/*
   1657 				 * Check super-user privilege.
   1658 				 * See comments for IPV6_RECVHOPOPTS.
   1659 				 */
   1660 				error =
   1661 				    kauth_authorize_network(kauth_cred_get(),
   1662 				    KAUTH_NETWORK_IPV6,
   1663 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1664 				    NULL, NULL);
   1665 				if (error)
   1666 					return (error);
   1667 				OPTSET2292(IN6P_HOPOPTS);
   1668 				break;
   1669 			case IPV6_2292DSTOPTS:
   1670 				error =
   1671 				    kauth_authorize_network(kauth_cred_get(),
   1672 				    KAUTH_NETWORK_IPV6,
   1673 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1674 				    NULL, NULL);
   1675 				if (error)
   1676 					return (error);
   1677 				OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
   1678 				break;
   1679 			case IPV6_2292RTHDR:
   1680 				OPTSET2292(IN6P_RTHDR);
   1681 				break;
   1682 			}
   1683 			break;
   1684 #endif
   1685 		case IPV6_PKTINFO:
   1686 		case IPV6_HOPOPTS:
   1687 		case IPV6_RTHDR:
   1688 		case IPV6_DSTOPTS:
   1689 		case IPV6_RTHDRDSTOPTS:
   1690 		case IPV6_NEXTHOP: {
   1691 			/* new advanced API (RFC3542) */
   1692 			void *optbuf;
   1693 			int optbuflen;
   1694 			struct ip6_pktopts **optp;
   1695 
   1696 #ifdef RFC2292
   1697 			/* cannot mix with RFC2292 */
   1698 			if (OPTBIT(IN6P_RFC2292)) {
   1699 				error = EINVAL;
   1700 				break;
   1701 			}
   1702 #endif
   1703 
   1704 			optbuflen = sopt->sopt_size;
   1705 			optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
   1706 			if (optbuf == NULL) {
   1707 				error = ENOBUFS;
   1708 				break;
   1709 			}
   1710 
   1711 			error = sockopt_get(sopt, optbuf, optbuflen);
   1712 			if (error) {
   1713 				free(optbuf, M_IP6OPT);
   1714 				break;
   1715 			}
   1716 			optp = &in6p->in6p_outputopts;
   1717 			error = ip6_pcbopt(optname, optbuf, optbuflen,
   1718 			    optp, kauth_cred_get(), uproto);
   1719 
   1720 			free(optbuf, M_IP6OPT);
   1721 			break;
   1722 			}
   1723 #undef OPTSET
   1724 
   1725 		case IPV6_MULTICAST_IF:
   1726 		case IPV6_MULTICAST_HOPS:
   1727 		case IPV6_MULTICAST_LOOP:
   1728 		case IPV6_JOIN_GROUP:
   1729 		case IPV6_LEAVE_GROUP:
   1730 			error = ip6_setmoptions(sopt, in6p);
   1731 			break;
   1732 
   1733 		case IPV6_PORTRANGE:
   1734 			error = sockopt_getint(sopt, &optval);
   1735 			if (error)
   1736 				break;
   1737 
   1738 			switch (optval) {
   1739 			case IPV6_PORTRANGE_DEFAULT:
   1740 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1741 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1742 				break;
   1743 
   1744 			case IPV6_PORTRANGE_HIGH:
   1745 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1746 				in6p->in6p_flags |= IN6P_HIGHPORT;
   1747 				break;
   1748 
   1749 			case IPV6_PORTRANGE_LOW:
   1750 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1751 				in6p->in6p_flags |= IN6P_LOWPORT;
   1752 				break;
   1753 
   1754 			default:
   1755 				error = EINVAL;
   1756 				break;
   1757 			}
   1758 			break;
   1759 
   1760 		case IPV6_PORTALGO:
   1761 			error = sockopt_getint(sopt, &optval);
   1762 			if (error)
   1763 				break;
   1764 
   1765 			error = portalgo_algo_index_select(
   1766 			    (struct inpcb_hdr *)in6p, optval);
   1767 			break;
   1768 
   1769 #if defined(IPSEC)
   1770 		case IPV6_IPSEC_POLICY:
   1771 			if (ipsec_enabled) {
   1772 				error = ipsec6_set_policy(in6p, optname,
   1773 				    sopt->sopt_data, sopt->sopt_size,
   1774 				    kauth_cred_get());
   1775 				break;
   1776 			}
   1777 			/*FALLTHROUGH*/
   1778 #endif /* IPSEC */
   1779 
   1780 		default:
   1781 			error = ENOPROTOOPT;
   1782 			break;
   1783 		}
   1784 		break;
   1785 
   1786 	case PRCO_GETOPT:
   1787 		switch (optname) {
   1788 #ifdef RFC2292
   1789 		case IPV6_2292PKTOPTIONS:
   1790 			/*
   1791 			 * RFC3542 (effectively) deprecated the
   1792 			 * semantics of the 2292-style pktoptions.
   1793 			 * Since it was not reliable in nature (i.e.,
   1794 			 * applications had to expect the lack of some
   1795 			 * information after all), it would make sense
   1796 			 * to simplify this part by always returning
   1797 			 * empty data.
   1798 			 */
   1799 			break;
   1800 #endif
   1801 
   1802 		case IPV6_RECVHOPOPTS:
   1803 		case IPV6_RECVDSTOPTS:
   1804 		case IPV6_RECVRTHDRDSTOPTS:
   1805 		case IPV6_UNICAST_HOPS:
   1806 		case IPV6_RECVPKTINFO:
   1807 		case IPV6_RECVHOPLIMIT:
   1808 		case IPV6_RECVRTHDR:
   1809 		case IPV6_RECVPATHMTU:
   1810 
   1811 		case IPV6_FAITH:
   1812 		case IPV6_V6ONLY:
   1813 		case IPV6_PORTRANGE:
   1814 		case IPV6_RECVTCLASS:
   1815 			switch (optname) {
   1816 
   1817 			case IPV6_RECVHOPOPTS:
   1818 				optval = OPTBIT(IN6P_HOPOPTS);
   1819 				break;
   1820 
   1821 			case IPV6_RECVDSTOPTS:
   1822 				optval = OPTBIT(IN6P_DSTOPTS);
   1823 				break;
   1824 
   1825 			case IPV6_RECVRTHDRDSTOPTS:
   1826 				optval = OPTBIT(IN6P_RTHDRDSTOPTS);
   1827 				break;
   1828 
   1829 			case IPV6_UNICAST_HOPS:
   1830 				optval = in6p->in6p_hops;
   1831 				break;
   1832 
   1833 			case IPV6_RECVPKTINFO:
   1834 				optval = OPTBIT(IN6P_PKTINFO);
   1835 				break;
   1836 
   1837 			case IPV6_RECVHOPLIMIT:
   1838 				optval = OPTBIT(IN6P_HOPLIMIT);
   1839 				break;
   1840 
   1841 			case IPV6_RECVRTHDR:
   1842 				optval = OPTBIT(IN6P_RTHDR);
   1843 				break;
   1844 
   1845 			case IPV6_RECVPATHMTU:
   1846 				optval = OPTBIT(IN6P_MTU);
   1847 				break;
   1848 
   1849 			case IPV6_FAITH:
   1850 				optval = OPTBIT(IN6P_FAITH);
   1851 				break;
   1852 
   1853 			case IPV6_V6ONLY:
   1854 				optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1855 				break;
   1856 
   1857 			case IPV6_PORTRANGE:
   1858 			    {
   1859 				int flags;
   1860 				flags = in6p->in6p_flags;
   1861 				if (flags & IN6P_HIGHPORT)
   1862 					optval = IPV6_PORTRANGE_HIGH;
   1863 				else if (flags & IN6P_LOWPORT)
   1864 					optval = IPV6_PORTRANGE_LOW;
   1865 				else
   1866 					optval = 0;
   1867 				break;
   1868 			    }
   1869 			case IPV6_RECVTCLASS:
   1870 				optval = OPTBIT(IN6P_TCLASS);
   1871 				break;
   1872 
   1873 			}
   1874 			if (error)
   1875 				break;
   1876 			error = sockopt_setint(sopt, optval);
   1877 			break;
   1878 
   1879 		case IPV6_PATHMTU:
   1880 		    {
   1881 			u_long pmtu = 0;
   1882 			struct ip6_mtuinfo mtuinfo;
   1883 			struct route *ro = &in6p->in6p_route;
   1884 			struct rtentry *rt;
   1885 			union {
   1886 				struct sockaddr		dst;
   1887 				struct sockaddr_in6	dst6;
   1888 			} u;
   1889 
   1890 			if (!(so->so_state & SS_ISCONNECTED))
   1891 				return (ENOTCONN);
   1892 			/*
   1893 			 * XXX: we dot not consider the case of source
   1894 			 * routing, or optional information to specify
   1895 			 * the outgoing interface.
   1896 			 */
   1897 			sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0);
   1898 			rt = rtcache_lookup(ro, &u.dst);
   1899 			error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
   1900 			rtcache_unref(rt, ro);
   1901 			if (error)
   1902 				break;
   1903 			if (pmtu > IPV6_MAXPACKET)
   1904 				pmtu = IPV6_MAXPACKET;
   1905 
   1906 			memset(&mtuinfo, 0, sizeof(mtuinfo));
   1907 			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
   1908 			optdata = (void *)&mtuinfo;
   1909 			optdatalen = sizeof(mtuinfo);
   1910 			if (optdatalen > MCLBYTES)
   1911 				return (EMSGSIZE); /* XXX */
   1912 			error = sockopt_set(sopt, optdata, optdatalen);
   1913 			break;
   1914 		    }
   1915 
   1916 #ifdef RFC2292
   1917 		case IPV6_2292PKTINFO:
   1918 		case IPV6_2292HOPLIMIT:
   1919 		case IPV6_2292HOPOPTS:
   1920 		case IPV6_2292RTHDR:
   1921 		case IPV6_2292DSTOPTS:
   1922 			switch (optname) {
   1923 			case IPV6_2292PKTINFO:
   1924 				optval = OPTBIT(IN6P_PKTINFO);
   1925 				break;
   1926 			case IPV6_2292HOPLIMIT:
   1927 				optval = OPTBIT(IN6P_HOPLIMIT);
   1928 				break;
   1929 			case IPV6_2292HOPOPTS:
   1930 				optval = OPTBIT(IN6P_HOPOPTS);
   1931 				break;
   1932 			case IPV6_2292RTHDR:
   1933 				optval = OPTBIT(IN6P_RTHDR);
   1934 				break;
   1935 			case IPV6_2292DSTOPTS:
   1936 				optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
   1937 				break;
   1938 			}
   1939 			error = sockopt_setint(sopt, optval);
   1940 			break;
   1941 #endif
   1942 		case IPV6_PKTINFO:
   1943 		case IPV6_HOPOPTS:
   1944 		case IPV6_RTHDR:
   1945 		case IPV6_DSTOPTS:
   1946 		case IPV6_RTHDRDSTOPTS:
   1947 		case IPV6_NEXTHOP:
   1948 		case IPV6_OTCLASS:
   1949 		case IPV6_TCLASS:
   1950 		case IPV6_DONTFRAG:
   1951 		case IPV6_USE_MIN_MTU:
   1952 		case IPV6_PREFER_TEMPADDR:
   1953 			error = ip6_getpcbopt(in6p->in6p_outputopts,
   1954 			    optname, sopt);
   1955 			break;
   1956 
   1957 		case IPV6_MULTICAST_IF:
   1958 		case IPV6_MULTICAST_HOPS:
   1959 		case IPV6_MULTICAST_LOOP:
   1960 		case IPV6_JOIN_GROUP:
   1961 		case IPV6_LEAVE_GROUP:
   1962 			error = ip6_getmoptions(sopt, in6p);
   1963 			break;
   1964 
   1965 		case IPV6_PORTALGO:
   1966 			optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
   1967 			error = sockopt_setint(sopt, optval);
   1968 			break;
   1969 
   1970 #if defined(IPSEC)
   1971 		case IPV6_IPSEC_POLICY:
   1972 			if (ipsec_used) {
   1973 				struct mbuf *m = NULL;
   1974 
   1975 				/*
   1976 				 * XXX: this will return EINVAL as sopt is
   1977 				 * empty
   1978 				 */
   1979 				error = ipsec6_get_policy(in6p, sopt->sopt_data,
   1980 				    sopt->sopt_size, &m);
   1981 				if (!error)
   1982 					error = sockopt_setmbuf(sopt, m);
   1983 				break;
   1984 			}
   1985 			/*FALLTHROUGH*/
   1986 #endif /* IPSEC */
   1987 
   1988 		default:
   1989 			error = ENOPROTOOPT;
   1990 			break;
   1991 		}
   1992 		break;
   1993 	}
   1994 	return (error);
   1995 }
   1996 
   1997 int
   1998 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1999 {
   2000 	int error = 0, optval;
   2001 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   2002 	struct in6pcb *in6p = sotoin6pcb(so);
   2003 	int level, optname;
   2004 
   2005 	KASSERT(sopt != NULL);
   2006 
   2007 	level = sopt->sopt_level;
   2008 	optname = sopt->sopt_name;
   2009 
   2010 	if (level != IPPROTO_IPV6) {
   2011 		return ENOPROTOOPT;
   2012 	}
   2013 
   2014 	switch (optname) {
   2015 	case IPV6_CHECKSUM:
   2016 		/*
   2017 		 * For ICMPv6 sockets, no modification allowed for checksum
   2018 		 * offset, permit "no change" values to help existing apps.
   2019 		 *
   2020 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
   2021 		 * for an ICMPv6 socket will fail."  The current
   2022 		 * behavior does not meet RFC3542.
   2023 		 */
   2024 		switch (op) {
   2025 		case PRCO_SETOPT:
   2026 			error = sockopt_getint(sopt, &optval);
   2027 			if (error)
   2028 				break;
   2029 			if ((optval % 2) != 0) {
   2030 				/* the API assumes even offset values */
   2031 				error = EINVAL;
   2032 			} else if (so->so_proto->pr_protocol ==
   2033 			    IPPROTO_ICMPV6) {
   2034 				if (optval != icmp6off)
   2035 					error = EINVAL;
   2036 			} else
   2037 				in6p->in6p_cksum = optval;
   2038 			break;
   2039 
   2040 		case PRCO_GETOPT:
   2041 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   2042 				optval = icmp6off;
   2043 			else
   2044 				optval = in6p->in6p_cksum;
   2045 
   2046 			error = sockopt_setint(sopt, optval);
   2047 			break;
   2048 
   2049 		default:
   2050 			error = EINVAL;
   2051 			break;
   2052 		}
   2053 		break;
   2054 
   2055 	default:
   2056 		error = ENOPROTOOPT;
   2057 		break;
   2058 	}
   2059 
   2060 	return (error);
   2061 }
   2062 
   2063 #ifdef RFC2292
   2064 /*
   2065  * Set up IP6 options in pcb for insertion in output packets or
   2066  * specifying behavior of outgoing packets.
   2067  */
   2068 static int
   2069 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
   2070     struct sockopt *sopt)
   2071 {
   2072 	struct ip6_pktopts *opt = *pktopt;
   2073 	struct mbuf *m;
   2074 	int error = 0;
   2075 
   2076 	KASSERT(solocked(so));
   2077 
   2078 	/* turn off any old options. */
   2079 	if (opt) {
   2080 #ifdef DIAGNOSTIC
   2081 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
   2082 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
   2083 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2084 		    printf("ip6_pcbopts: all specified options are cleared.\n");
   2085 #endif
   2086 		ip6_clearpktopts(opt, -1);
   2087 	} else {
   2088 		opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
   2089 		if (opt == NULL)
   2090 			return (ENOBUFS);
   2091 	}
   2092 	*pktopt = NULL;
   2093 
   2094 	if (sopt == NULL || sopt->sopt_size == 0) {
   2095 		/*
   2096 		 * Only turning off any previous options, regardless of
   2097 		 * whether the opt is just created or given.
   2098 		 */
   2099 		free(opt, M_IP6OPT);
   2100 		return (0);
   2101 	}
   2102 
   2103 	/*  set options specified by user. */
   2104 	m = sockopt_getmbuf(sopt);
   2105 	if (m == NULL) {
   2106 		free(opt, M_IP6OPT);
   2107 		return (ENOBUFS);
   2108 	}
   2109 
   2110 	error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
   2111 	    so->so_proto->pr_protocol);
   2112 	m_freem(m);
   2113 	if (error != 0) {
   2114 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
   2115 		free(opt, M_IP6OPT);
   2116 		return (error);
   2117 	}
   2118 	*pktopt = opt;
   2119 	return (0);
   2120 }
   2121 #endif
   2122 
   2123 /*
   2124  * initialize ip6_pktopts.  beware that there are non-zero default values in
   2125  * the struct.
   2126  */
   2127 void
   2128 ip6_initpktopts(struct ip6_pktopts *opt)
   2129 {
   2130 
   2131 	memset(opt, 0, sizeof(*opt));
   2132 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
   2133 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
   2134 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
   2135 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
   2136 }
   2137 
   2138 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
   2139 static int
   2140 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
   2141     kauth_cred_t cred, int uproto)
   2142 {
   2143 	struct ip6_pktopts *opt;
   2144 
   2145 	if (*pktopt == NULL) {
   2146 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
   2147 		    M_NOWAIT);
   2148 		if (*pktopt == NULL)
   2149 			return (ENOBUFS);
   2150 
   2151 		ip6_initpktopts(*pktopt);
   2152 	}
   2153 	opt = *pktopt;
   2154 
   2155 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
   2156 }
   2157 
   2158 static int
   2159 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
   2160 {
   2161 	void *optdata = NULL;
   2162 	int optdatalen = 0;
   2163 	struct ip6_ext *ip6e;
   2164 	int error = 0;
   2165 	struct in6_pktinfo null_pktinfo;
   2166 	int deftclass = 0, on;
   2167 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
   2168 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
   2169 
   2170 	switch (optname) {
   2171 	case IPV6_PKTINFO:
   2172 		if (pktopt && pktopt->ip6po_pktinfo)
   2173 			optdata = (void *)pktopt->ip6po_pktinfo;
   2174 		else {
   2175 			/* XXX: we don't have to do this every time... */
   2176 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
   2177 			optdata = (void *)&null_pktinfo;
   2178 		}
   2179 		optdatalen = sizeof(struct in6_pktinfo);
   2180 		break;
   2181 	case IPV6_OTCLASS:
   2182 		/* XXX */
   2183 		return (EINVAL);
   2184 	case IPV6_TCLASS:
   2185 		if (pktopt && pktopt->ip6po_tclass >= 0)
   2186 			optdata = (void *)&pktopt->ip6po_tclass;
   2187 		else
   2188 			optdata = (void *)&deftclass;
   2189 		optdatalen = sizeof(int);
   2190 		break;
   2191 	case IPV6_HOPOPTS:
   2192 		if (pktopt && pktopt->ip6po_hbh) {
   2193 			optdata = (void *)pktopt->ip6po_hbh;
   2194 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
   2195 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2196 		}
   2197 		break;
   2198 	case IPV6_RTHDR:
   2199 		if (pktopt && pktopt->ip6po_rthdr) {
   2200 			optdata = (void *)pktopt->ip6po_rthdr;
   2201 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
   2202 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2203 		}
   2204 		break;
   2205 	case IPV6_RTHDRDSTOPTS:
   2206 		if (pktopt && pktopt->ip6po_dest1) {
   2207 			optdata = (void *)pktopt->ip6po_dest1;
   2208 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
   2209 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2210 		}
   2211 		break;
   2212 	case IPV6_DSTOPTS:
   2213 		if (pktopt && pktopt->ip6po_dest2) {
   2214 			optdata = (void *)pktopt->ip6po_dest2;
   2215 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
   2216 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2217 		}
   2218 		break;
   2219 	case IPV6_NEXTHOP:
   2220 		if (pktopt && pktopt->ip6po_nexthop) {
   2221 			optdata = (void *)pktopt->ip6po_nexthop;
   2222 			optdatalen = pktopt->ip6po_nexthop->sa_len;
   2223 		}
   2224 		break;
   2225 	case IPV6_USE_MIN_MTU:
   2226 		if (pktopt)
   2227 			optdata = (void *)&pktopt->ip6po_minmtu;
   2228 		else
   2229 			optdata = (void *)&defminmtu;
   2230 		optdatalen = sizeof(int);
   2231 		break;
   2232 	case IPV6_DONTFRAG:
   2233 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
   2234 			on = 1;
   2235 		else
   2236 			on = 0;
   2237 		optdata = (void *)&on;
   2238 		optdatalen = sizeof(on);
   2239 		break;
   2240 	case IPV6_PREFER_TEMPADDR:
   2241 		if (pktopt)
   2242 			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
   2243 		else
   2244 			optdata = (void *)&defpreftemp;
   2245 		optdatalen = sizeof(int);
   2246 		break;
   2247 	default:		/* should not happen */
   2248 #ifdef DIAGNOSTIC
   2249 		panic("ip6_getpcbopt: unexpected option\n");
   2250 #endif
   2251 		return (ENOPROTOOPT);
   2252 	}
   2253 
   2254 	error = sockopt_set(sopt, optdata, optdatalen);
   2255 
   2256 	return (error);
   2257 }
   2258 
   2259 void
   2260 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
   2261 {
   2262 	if (optname == -1 || optname == IPV6_PKTINFO) {
   2263 		if (pktopt->ip6po_pktinfo)
   2264 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
   2265 		pktopt->ip6po_pktinfo = NULL;
   2266 	}
   2267 	if (optname == -1 || optname == IPV6_HOPLIMIT)
   2268 		pktopt->ip6po_hlim = -1;
   2269 	if (optname == -1 || optname == IPV6_TCLASS)
   2270 		pktopt->ip6po_tclass = -1;
   2271 	if (optname == -1 || optname == IPV6_NEXTHOP) {
   2272 		rtcache_free(&pktopt->ip6po_nextroute);
   2273 		if (pktopt->ip6po_nexthop)
   2274 			free(pktopt->ip6po_nexthop, M_IP6OPT);
   2275 		pktopt->ip6po_nexthop = NULL;
   2276 	}
   2277 	if (optname == -1 || optname == IPV6_HOPOPTS) {
   2278 		if (pktopt->ip6po_hbh)
   2279 			free(pktopt->ip6po_hbh, M_IP6OPT);
   2280 		pktopt->ip6po_hbh = NULL;
   2281 	}
   2282 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
   2283 		if (pktopt->ip6po_dest1)
   2284 			free(pktopt->ip6po_dest1, M_IP6OPT);
   2285 		pktopt->ip6po_dest1 = NULL;
   2286 	}
   2287 	if (optname == -1 || optname == IPV6_RTHDR) {
   2288 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2289 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
   2290 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
   2291 		rtcache_free(&pktopt->ip6po_route);
   2292 	}
   2293 	if (optname == -1 || optname == IPV6_DSTOPTS) {
   2294 		if (pktopt->ip6po_dest2)
   2295 			free(pktopt->ip6po_dest2, M_IP6OPT);
   2296 		pktopt->ip6po_dest2 = NULL;
   2297 	}
   2298 }
   2299 
   2300 #define PKTOPT_EXTHDRCPY(type) 					\
   2301 do {								\
   2302 	if (src->type) {					\
   2303 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
   2304 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
   2305 		if (dst->type == NULL)				\
   2306 			goto bad;				\
   2307 		memcpy(dst->type, src->type, hlen);		\
   2308 	}							\
   2309 } while (/*CONSTCOND*/ 0)
   2310 
   2311 static int
   2312 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
   2313 {
   2314 	dst->ip6po_hlim = src->ip6po_hlim;
   2315 	dst->ip6po_tclass = src->ip6po_tclass;
   2316 	dst->ip6po_flags = src->ip6po_flags;
   2317 	dst->ip6po_minmtu = src->ip6po_minmtu;
   2318 	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
   2319 	if (src->ip6po_pktinfo) {
   2320 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
   2321 		    M_IP6OPT, canwait);
   2322 		if (dst->ip6po_pktinfo == NULL)
   2323 			goto bad;
   2324 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
   2325 	}
   2326 	if (src->ip6po_nexthop) {
   2327 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
   2328 		    M_IP6OPT, canwait);
   2329 		if (dst->ip6po_nexthop == NULL)
   2330 			goto bad;
   2331 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
   2332 		    src->ip6po_nexthop->sa_len);
   2333 	}
   2334 	PKTOPT_EXTHDRCPY(ip6po_hbh);
   2335 	PKTOPT_EXTHDRCPY(ip6po_dest1);
   2336 	PKTOPT_EXTHDRCPY(ip6po_dest2);
   2337 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
   2338 	return (0);
   2339 
   2340   bad:
   2341 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
   2342 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
   2343 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
   2344 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
   2345 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
   2346 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
   2347 
   2348 	return (ENOBUFS);
   2349 }
   2350 #undef PKTOPT_EXTHDRCPY
   2351 
   2352 struct ip6_pktopts *
   2353 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
   2354 {
   2355 	int error;
   2356 	struct ip6_pktopts *dst;
   2357 
   2358 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
   2359 	if (dst == NULL)
   2360 		return (NULL);
   2361 	ip6_initpktopts(dst);
   2362 
   2363 	if ((error = copypktopts(dst, src, canwait)) != 0) {
   2364 		free(dst, M_IP6OPT);
   2365 		return (NULL);
   2366 	}
   2367 
   2368 	return (dst);
   2369 }
   2370 
   2371 void
   2372 ip6_freepcbopts(struct ip6_pktopts *pktopt)
   2373 {
   2374 	if (pktopt == NULL)
   2375 		return;
   2376 
   2377 	ip6_clearpktopts(pktopt, -1);
   2378 
   2379 	free(pktopt, M_IP6OPT);
   2380 }
   2381 
   2382 int
   2383 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
   2384     struct psref *psref, void *v, size_t l)
   2385 {
   2386 	struct ipv6_mreq mreq;
   2387 	int error;
   2388 	struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
   2389 	struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
   2390 
   2391 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2392 	if (error != 0)
   2393 		return error;
   2394 
   2395 	if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
   2396 		/*
   2397 		 * We use the unspecified address to specify to accept
   2398 		 * all multicast addresses. Only super user is allowed
   2399 		 * to do this.
   2400 		 */
   2401 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6,
   2402 		    KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
   2403 			return EACCES;
   2404 	} else if (IN6_IS_ADDR_V4MAPPED(ia)) {
   2405 		// Don't bother if we are not going to use ifp.
   2406 		if (l == sizeof(*ia)) {
   2407 			memcpy(v, ia, l);
   2408 			return 0;
   2409 		}
   2410 	} else if (!IN6_IS_ADDR_MULTICAST(ia)) {
   2411 		return EINVAL;
   2412 	}
   2413 
   2414 	/*
   2415 	 * If no interface was explicitly specified, choose an
   2416 	 * appropriate one according to the given multicast address.
   2417 	 */
   2418 	if (mreq.ipv6mr_interface == 0) {
   2419 		struct rtentry *rt;
   2420 		union {
   2421 			struct sockaddr		dst;
   2422 			struct sockaddr_in	dst4;
   2423 			struct sockaddr_in6	dst6;
   2424 		} u;
   2425 		struct route ro;
   2426 
   2427 		/*
   2428 		 * Look up the routing table for the
   2429 		 * address, and choose the outgoing interface.
   2430 		 *   XXX: is it a good approach?
   2431 		 */
   2432 		memset(&ro, 0, sizeof(ro));
   2433 		if (IN6_IS_ADDR_V4MAPPED(ia))
   2434 			sockaddr_in_init(&u.dst4, ia4, 0);
   2435 		else
   2436 			sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
   2437 		error = rtcache_setdst(&ro, &u.dst);
   2438 		if (error != 0)
   2439 			return error;
   2440 		rt = rtcache_init(&ro);
   2441 		*ifp = rt != NULL ?
   2442 		    if_get_byindex(rt->rt_ifp->if_index, psref) : NULL;
   2443 		rtcache_unref(rt, &ro);
   2444 		rtcache_free(&ro);
   2445 	} else {
   2446 		/*
   2447 		 * If the interface is specified, validate it.
   2448 		 */
   2449 		*ifp = if_get_byindex(mreq.ipv6mr_interface, psref);
   2450 		if (*ifp == NULL)
   2451 			return ENXIO;	/* XXX EINVAL? */
   2452 	}
   2453 	if (sizeof(*ia) == l)
   2454 		memcpy(v, ia, l);
   2455 	else
   2456 		memcpy(v, ia4, l);
   2457 	return 0;
   2458 }
   2459 
   2460 /*
   2461  * Set the IP6 multicast options in response to user setsockopt().
   2462  */
   2463 static int
   2464 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p)
   2465 {
   2466 	int error = 0;
   2467 	u_int loop, ifindex;
   2468 	struct ipv6_mreq mreq;
   2469 	struct in6_addr ia;
   2470 	struct ifnet *ifp;
   2471 	struct ip6_moptions *im6o = in6p->in6p_moptions;
   2472 	struct in6_multi_mship *imm;
   2473 
   2474 	KASSERT(in6p_locked(in6p));
   2475 
   2476 	if (im6o == NULL) {
   2477 		/*
   2478 		 * No multicast option buffer attached to the pcb;
   2479 		 * allocate one and initialize to default values.
   2480 		 */
   2481 		im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
   2482 		if (im6o == NULL)
   2483 			return (ENOBUFS);
   2484 		in6p->in6p_moptions = im6o;
   2485 		im6o->im6o_multicast_if_index = 0;
   2486 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2487 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   2488 		LIST_INIT(&im6o->im6o_memberships);
   2489 	}
   2490 
   2491 	switch (sopt->sopt_name) {
   2492 
   2493 	case IPV6_MULTICAST_IF: {
   2494 		int s;
   2495 		/*
   2496 		 * Select the interface for outgoing multicast packets.
   2497 		 */
   2498 		error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
   2499 		if (error != 0)
   2500 			break;
   2501 
   2502 		s = pserialize_read_enter();
   2503 		if (ifindex != 0) {
   2504 			if ((ifp = if_byindex(ifindex)) == NULL) {
   2505 				pserialize_read_exit(s);
   2506 				error = ENXIO;	/* XXX EINVAL? */
   2507 				break;
   2508 			}
   2509 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   2510 				pserialize_read_exit(s);
   2511 				error = EADDRNOTAVAIL;
   2512 				break;
   2513 			}
   2514 		} else
   2515 			ifp = NULL;
   2516 		im6o->im6o_multicast_if_index = if_get_index(ifp);
   2517 		pserialize_read_exit(s);
   2518 		break;
   2519 	    }
   2520 
   2521 	case IPV6_MULTICAST_HOPS:
   2522 	    {
   2523 		/*
   2524 		 * Set the IP6 hoplimit for outgoing multicast packets.
   2525 		 */
   2526 		int optval;
   2527 
   2528 		error = sockopt_getint(sopt, &optval);
   2529 		if (error != 0)
   2530 			break;
   2531 
   2532 		if (optval < -1 || optval >= 256)
   2533 			error = EINVAL;
   2534 		else if (optval == -1)
   2535 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2536 		else
   2537 			im6o->im6o_multicast_hlim = optval;
   2538 		break;
   2539 	    }
   2540 
   2541 	case IPV6_MULTICAST_LOOP:
   2542 		/*
   2543 		 * Set the loopback flag for outgoing multicast packets.
   2544 		 * Must be zero or one.
   2545 		 */
   2546 		error = sockopt_get(sopt, &loop, sizeof(loop));
   2547 		if (error != 0)
   2548 			break;
   2549 		if (loop > 1) {
   2550 			error = EINVAL;
   2551 			break;
   2552 		}
   2553 		im6o->im6o_multicast_loop = loop;
   2554 		break;
   2555 
   2556 	case IPV6_JOIN_GROUP: {
   2557 		int bound;
   2558 		struct psref psref;
   2559 		/*
   2560 		 * Add a multicast group membership.
   2561 		 * Group must be a valid IP6 multicast address.
   2562 		 */
   2563 		bound = curlwp_bind();
   2564 		error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
   2565 		if (error != 0) {
   2566 			curlwp_bindx(bound);
   2567 			return error;
   2568 		}
   2569 
   2570 		if (IN6_IS_ADDR_V4MAPPED(&ia)) {
   2571 			error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
   2572 			goto put_break;
   2573 		}
   2574 		/*
   2575 		 * See if we found an interface, and confirm that it
   2576 		 * supports multicast
   2577 		 */
   2578 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   2579 			error = EADDRNOTAVAIL;
   2580 			goto put_break;
   2581 		}
   2582 
   2583 		if (in6_setscope(&ia, ifp, NULL)) {
   2584 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   2585 			goto put_break;
   2586 		}
   2587 
   2588 		/*
   2589 		 * See if the membership already exists.
   2590 		 */
   2591 		LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
   2592 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2593 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2594 			    &ia))
   2595 				goto put_break;
   2596 		}
   2597 		if (imm != NULL) {
   2598 			error = EADDRINUSE;
   2599 			goto put_break;
   2600 		}
   2601 		/*
   2602 		 * Everything looks good; add a new record to the multicast
   2603 		 * address list for the given interface.
   2604 		 */
   2605 		imm = in6_joingroup(ifp, &ia, &error, 0);
   2606 		if (imm == NULL)
   2607 			goto put_break;
   2608 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2609 	    put_break:
   2610 		if_put(ifp, &psref);
   2611 		curlwp_bindx(bound);
   2612 		break;
   2613 	    }
   2614 
   2615 	case IPV6_LEAVE_GROUP:
   2616 		/*
   2617 		 * Drop a multicast group membership.
   2618 		 * Group must be a valid IP6 multicast address.
   2619 		 */
   2620 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2621 		if (error != 0)
   2622 			break;
   2623 
   2624 		if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
   2625 			error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
   2626 			break;
   2627 		}
   2628 		/*
   2629 		 * If an interface address was specified, get a pointer
   2630 		 * to its ifnet structure.
   2631 		 */
   2632 		if (mreq.ipv6mr_interface != 0) {
   2633 			if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
   2634 				error = ENXIO;	/* XXX EINVAL? */
   2635 				break;
   2636 			}
   2637 		} else
   2638 			ifp = NULL;
   2639 
   2640 		/* Fill in the scope zone ID */
   2641 		if (ifp) {
   2642 			if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
   2643 				/* XXX: should not happen */
   2644 				error = EADDRNOTAVAIL;
   2645 				break;
   2646 			}
   2647 		} else if (mreq.ipv6mr_interface != 0) {
   2648 			/*
   2649 			 * XXX: This case would happens when the (positive)
   2650 			 * index is in the valid range, but the corresponding
   2651 			 * interface has been detached dynamically.  The above
   2652 			 * check probably avoids such case to happen here, but
   2653 			 * we check it explicitly for safety.
   2654 			 */
   2655 			error = EADDRNOTAVAIL;
   2656 			break;
   2657 		} else {	/* ipv6mr_interface == 0 */
   2658 			struct sockaddr_in6 sa6_mc;
   2659 
   2660 			/*
   2661 			 * The API spec says as follows:
   2662 			 *  If the interface index is specified as 0, the
   2663 			 *  system may choose a multicast group membership to
   2664 			 *  drop by matching the multicast address only.
   2665 			 * On the other hand, we cannot disambiguate the scope
   2666 			 * zone unless an interface is provided.  Thus, we
   2667 			 * check if there's ambiguity with the default scope
   2668 			 * zone as the last resort.
   2669 			 */
   2670 			sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
   2671 			    0, 0, 0);
   2672 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2673 			if (error != 0)
   2674 				break;
   2675 			mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2676 		}
   2677 
   2678 		/*
   2679 		 * Find the membership in the membership list.
   2680 		 */
   2681 		LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
   2682 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2683 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2684 			    &mreq.ipv6mr_multiaddr))
   2685 				break;
   2686 		}
   2687 		if (imm == NULL) {
   2688 			/* Unable to resolve interface */
   2689 			error = EADDRNOTAVAIL;
   2690 			break;
   2691 		}
   2692 		/*
   2693 		 * Give up the multicast address record to which the
   2694 		 * membership points.
   2695 		 */
   2696 		LIST_REMOVE(imm, i6mm_chain);
   2697 		in6_leavegroup(imm);
   2698 		break;
   2699 
   2700 	default:
   2701 		error = EOPNOTSUPP;
   2702 		break;
   2703 	}
   2704 
   2705 	/*
   2706 	 * If all options have default values, no need to keep the mbuf.
   2707 	 */
   2708 	if (im6o->im6o_multicast_if_index == 0 &&
   2709 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2710 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2711 	    LIST_EMPTY(&im6o->im6o_memberships)) {
   2712 		free(in6p->in6p_moptions, M_IPMOPTS);
   2713 		in6p->in6p_moptions = NULL;
   2714 	}
   2715 
   2716 	return (error);
   2717 }
   2718 
   2719 /*
   2720  * Return the IP6 multicast options in response to user getsockopt().
   2721  */
   2722 static int
   2723 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p)
   2724 {
   2725 	u_int optval;
   2726 	int error;
   2727 	struct ip6_moptions *im6o = in6p->in6p_moptions;
   2728 
   2729 	switch (sopt->sopt_name) {
   2730 	case IPV6_MULTICAST_IF:
   2731 		if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
   2732 			optval = 0;
   2733 		else
   2734 			optval = im6o->im6o_multicast_if_index;
   2735 
   2736 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2737 		break;
   2738 
   2739 	case IPV6_MULTICAST_HOPS:
   2740 		if (im6o == NULL)
   2741 			optval = ip6_defmcasthlim;
   2742 		else
   2743 			optval = im6o->im6o_multicast_hlim;
   2744 
   2745 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2746 		break;
   2747 
   2748 	case IPV6_MULTICAST_LOOP:
   2749 		if (im6o == NULL)
   2750 			optval = IPV6_DEFAULT_MULTICAST_LOOP;
   2751 		else
   2752 			optval = im6o->im6o_multicast_loop;
   2753 
   2754 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2755 		break;
   2756 
   2757 	default:
   2758 		error = EOPNOTSUPP;
   2759 	}
   2760 
   2761 	return (error);
   2762 }
   2763 
   2764 /*
   2765  * Discard the IP6 multicast options.
   2766  */
   2767 void
   2768 ip6_freemoptions(struct ip6_moptions *im6o)
   2769 {
   2770 	struct in6_multi_mship *imm, *nimm;
   2771 
   2772 	if (im6o == NULL)
   2773 		return;
   2774 
   2775 	/* The owner of im6o (in6p) should be protected by solock */
   2776 	LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) {
   2777 		LIST_REMOVE(imm, i6mm_chain);
   2778 		in6_leavegroup(imm);
   2779 	}
   2780 	free(im6o, M_IPMOPTS);
   2781 }
   2782 
   2783 /*
   2784  * Set IPv6 outgoing packet options based on advanced API.
   2785  */
   2786 int
   2787 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
   2788 	struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
   2789 {
   2790 	struct cmsghdr *cm = 0;
   2791 
   2792 	if (control == NULL || opt == NULL)
   2793 		return (EINVAL);
   2794 
   2795 	ip6_initpktopts(opt);
   2796 	if (stickyopt) {
   2797 		int error;
   2798 
   2799 		/*
   2800 		 * If stickyopt is provided, make a local copy of the options
   2801 		 * for this particular packet, then override them by ancillary
   2802 		 * objects.
   2803 		 * XXX: copypktopts() does not copy the cached route to a next
   2804 		 * hop (if any).  This is not very good in terms of efficiency,
   2805 		 * but we can allow this since this option should be rarely
   2806 		 * used.
   2807 		 */
   2808 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
   2809 			return (error);
   2810 	}
   2811 
   2812 	/*
   2813 	 * XXX: Currently, we assume all the optional information is stored
   2814 	 * in a single mbuf.
   2815 	 */
   2816 	if (control->m_next)
   2817 		return (EINVAL);
   2818 
   2819 	/* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
   2820 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2821 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2822 		int error;
   2823 
   2824 		if (control->m_len < CMSG_LEN(0))
   2825 			return (EINVAL);
   2826 
   2827 		cm = mtod(control, struct cmsghdr *);
   2828 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   2829 			return (EINVAL);
   2830 		if (cm->cmsg_level != IPPROTO_IPV6)
   2831 			continue;
   2832 
   2833 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
   2834 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
   2835 		if (error)
   2836 			return (error);
   2837 	}
   2838 
   2839 	return (0);
   2840 }
   2841 
   2842 /*
   2843  * Set a particular packet option, as a sticky option or an ancillary data
   2844  * item.  "len" can be 0 only when it's a sticky option.
   2845  * We have 4 cases of combination of "sticky" and "cmsg":
   2846  * "sticky=0, cmsg=0": impossible
   2847  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
   2848  * "sticky=1, cmsg=0": RFC3542 socket option
   2849  * "sticky=1, cmsg=1": RFC2292 socket option
   2850  */
   2851 static int
   2852 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
   2853     kauth_cred_t cred, int sticky, int cmsg, int uproto)
   2854 {
   2855 	int minmtupolicy;
   2856 	int error;
   2857 
   2858 	if (!sticky && !cmsg) {
   2859 #ifdef DIAGNOSTIC
   2860 		printf("ip6_setpktopt: impossible case\n");
   2861 #endif
   2862 		return (EINVAL);
   2863 	}
   2864 
   2865 	/*
   2866 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
   2867 	 * not be specified in the context of RFC3542.  Conversely,
   2868 	 * RFC3542 types should not be specified in the context of RFC2292.
   2869 	 */
   2870 	if (!cmsg) {
   2871 		switch (optname) {
   2872 		case IPV6_2292PKTINFO:
   2873 		case IPV6_2292HOPLIMIT:
   2874 		case IPV6_2292NEXTHOP:
   2875 		case IPV6_2292HOPOPTS:
   2876 		case IPV6_2292DSTOPTS:
   2877 		case IPV6_2292RTHDR:
   2878 		case IPV6_2292PKTOPTIONS:
   2879 			return (ENOPROTOOPT);
   2880 		}
   2881 	}
   2882 	if (sticky && cmsg) {
   2883 		switch (optname) {
   2884 		case IPV6_PKTINFO:
   2885 		case IPV6_HOPLIMIT:
   2886 		case IPV6_NEXTHOP:
   2887 		case IPV6_HOPOPTS:
   2888 		case IPV6_DSTOPTS:
   2889 		case IPV6_RTHDRDSTOPTS:
   2890 		case IPV6_RTHDR:
   2891 		case IPV6_USE_MIN_MTU:
   2892 		case IPV6_DONTFRAG:
   2893 		case IPV6_OTCLASS:
   2894 		case IPV6_TCLASS:
   2895 		case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
   2896 			return (ENOPROTOOPT);
   2897 		}
   2898 	}
   2899 
   2900 	switch (optname) {
   2901 #ifdef RFC2292
   2902 	case IPV6_2292PKTINFO:
   2903 #endif
   2904 	case IPV6_PKTINFO:
   2905 	{
   2906 		struct in6_pktinfo *pktinfo;
   2907 
   2908 		if (len != sizeof(struct in6_pktinfo))
   2909 			return (EINVAL);
   2910 
   2911 		pktinfo = (struct in6_pktinfo *)buf;
   2912 
   2913 		/*
   2914 		 * An application can clear any sticky IPV6_PKTINFO option by
   2915 		 * doing a "regular" setsockopt with ipi6_addr being
   2916 		 * in6addr_any and ipi6_ifindex being zero.
   2917 		 * [RFC 3542, Section 6]
   2918 		 */
   2919 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
   2920 		    pktinfo->ipi6_ifindex == 0 &&
   2921 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2922 			ip6_clearpktopts(opt, optname);
   2923 			break;
   2924 		}
   2925 
   2926 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
   2927 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2928 			return (EINVAL);
   2929 		}
   2930 
   2931 		/* Validate the interface index if specified. */
   2932 		if (pktinfo->ipi6_ifindex) {
   2933 			struct ifnet *ifp;
   2934 			int s = pserialize_read_enter();
   2935 			ifp = if_byindex(pktinfo->ipi6_ifindex);
   2936 			if (ifp == NULL) {
   2937 				pserialize_read_exit(s);
   2938 				return ENXIO;
   2939 			}
   2940 			pserialize_read_exit(s);
   2941 		}
   2942 
   2943 		/*
   2944 		 * We store the address anyway, and let in6_selectsrc()
   2945 		 * validate the specified address.  This is because ipi6_addr
   2946 		 * may not have enough information about its scope zone, and
   2947 		 * we may need additional information (such as outgoing
   2948 		 * interface or the scope zone of a destination address) to
   2949 		 * disambiguate the scope.
   2950 		 * XXX: the delay of the validation may confuse the
   2951 		 * application when it is used as a sticky option.
   2952 		 */
   2953 		if (opt->ip6po_pktinfo == NULL) {
   2954 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
   2955 			    M_IP6OPT, M_NOWAIT);
   2956 			if (opt->ip6po_pktinfo == NULL)
   2957 				return (ENOBUFS);
   2958 		}
   2959 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
   2960 		break;
   2961 	}
   2962 
   2963 #ifdef RFC2292
   2964 	case IPV6_2292HOPLIMIT:
   2965 #endif
   2966 	case IPV6_HOPLIMIT:
   2967 	{
   2968 		int *hlimp;
   2969 
   2970 		/*
   2971 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
   2972 		 * to simplify the ordering among hoplimit options.
   2973 		 */
   2974 		if (optname == IPV6_HOPLIMIT && sticky)
   2975 			return (ENOPROTOOPT);
   2976 
   2977 		if (len != sizeof(int))
   2978 			return (EINVAL);
   2979 		hlimp = (int *)buf;
   2980 		if (*hlimp < -1 || *hlimp > 255)
   2981 			return (EINVAL);
   2982 
   2983 		opt->ip6po_hlim = *hlimp;
   2984 		break;
   2985 	}
   2986 
   2987 	case IPV6_OTCLASS:
   2988 		if (len != sizeof(u_int8_t))
   2989 			return (EINVAL);
   2990 
   2991 		opt->ip6po_tclass = *(u_int8_t *)buf;
   2992 		break;
   2993 
   2994 	case IPV6_TCLASS:
   2995 	{
   2996 		int tclass;
   2997 
   2998 		if (len != sizeof(int))
   2999 			return (EINVAL);
   3000 		tclass = *(int *)buf;
   3001 		if (tclass < -1 || tclass > 255)
   3002 			return (EINVAL);
   3003 
   3004 		opt->ip6po_tclass = tclass;
   3005 		break;
   3006 	}
   3007 
   3008 #ifdef RFC2292
   3009 	case IPV6_2292NEXTHOP:
   3010 #endif
   3011 	case IPV6_NEXTHOP:
   3012 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   3013 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   3014 		if (error)
   3015 			return (error);
   3016 
   3017 		if (len == 0) {	/* just remove the option */
   3018 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
   3019 			break;
   3020 		}
   3021 
   3022 		/* check if cmsg_len is large enough for sa_len */
   3023 		if (len < sizeof(struct sockaddr) || len < *buf)
   3024 			return (EINVAL);
   3025 
   3026 		switch (((struct sockaddr *)buf)->sa_family) {
   3027 		case AF_INET6:
   3028 		{
   3029 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
   3030 
   3031 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
   3032 				return (EINVAL);
   3033 
   3034 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
   3035 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
   3036 				return (EINVAL);
   3037 			}
   3038 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
   3039 			    != 0) {
   3040 				return (error);
   3041 			}
   3042 			break;
   3043 		}
   3044 		case AF_LINK:	/* eventually be supported? */
   3045 		default:
   3046 			return (EAFNOSUPPORT);
   3047 		}
   3048 
   3049 		/* turn off the previous option, then set the new option. */
   3050 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
   3051 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
   3052 		if (opt->ip6po_nexthop == NULL)
   3053 			return (ENOBUFS);
   3054 		memcpy(opt->ip6po_nexthop, buf, *buf);
   3055 		break;
   3056 
   3057 #ifdef RFC2292
   3058 	case IPV6_2292HOPOPTS:
   3059 #endif
   3060 	case IPV6_HOPOPTS:
   3061 	{
   3062 		struct ip6_hbh *hbh;
   3063 		int hbhlen;
   3064 
   3065 		/*
   3066 		 * XXX: We don't allow a non-privileged user to set ANY HbH
   3067 		 * options, since per-option restriction has too much
   3068 		 * overhead.
   3069 		 */
   3070 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   3071 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   3072 		if (error)
   3073 			return (error);
   3074 
   3075 		if (len == 0) {
   3076 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3077 			break;	/* just remove the option */
   3078 		}
   3079 
   3080 		/* message length validation */
   3081 		if (len < sizeof(struct ip6_hbh))
   3082 			return (EINVAL);
   3083 		hbh = (struct ip6_hbh *)buf;
   3084 		hbhlen = (hbh->ip6h_len + 1) << 3;
   3085 		if (len != hbhlen)
   3086 			return (EINVAL);
   3087 
   3088 		/* turn off the previous option, then set the new option. */
   3089 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3090 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
   3091 		if (opt->ip6po_hbh == NULL)
   3092 			return (ENOBUFS);
   3093 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
   3094 
   3095 		break;
   3096 	}
   3097 
   3098 #ifdef RFC2292
   3099 	case IPV6_2292DSTOPTS:
   3100 #endif
   3101 	case IPV6_DSTOPTS:
   3102 	case IPV6_RTHDRDSTOPTS:
   3103 	{
   3104 		struct ip6_dest *dest, **newdest = NULL;
   3105 		int destlen;
   3106 
   3107 		/* XXX: see the comment for IPV6_HOPOPTS */
   3108 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   3109 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   3110 		if (error)
   3111 			return (error);
   3112 
   3113 		if (len == 0) {
   3114 			ip6_clearpktopts(opt, optname);
   3115 			break;	/* just remove the option */
   3116 		}
   3117 
   3118 		/* message length validation */
   3119 		if (len < sizeof(struct ip6_dest))
   3120 			return (EINVAL);
   3121 		dest = (struct ip6_dest *)buf;
   3122 		destlen = (dest->ip6d_len + 1) << 3;
   3123 		if (len != destlen)
   3124 			return (EINVAL);
   3125 		/*
   3126 		 * Determine the position that the destination options header
   3127 		 * should be inserted; before or after the routing header.
   3128 		 */
   3129 		switch (optname) {
   3130 		case IPV6_2292DSTOPTS:
   3131 			/*
   3132 			 * The old advanced API is ambiguous on this point.
   3133 			 * Our approach is to determine the position based
   3134 			 * according to the existence of a routing header.
   3135 			 * Note, however, that this depends on the order of the
   3136 			 * extension headers in the ancillary data; the 1st
   3137 			 * part of the destination options header must appear
   3138 			 * before the routing header in the ancillary data,
   3139 			 * too.
   3140 			 * RFC3542 solved the ambiguity by introducing
   3141 			 * separate ancillary data or option types.
   3142 			 */
   3143 			if (opt->ip6po_rthdr == NULL)
   3144 				newdest = &opt->ip6po_dest1;
   3145 			else
   3146 				newdest = &opt->ip6po_dest2;
   3147 			break;
   3148 		case IPV6_RTHDRDSTOPTS:
   3149 			newdest = &opt->ip6po_dest1;
   3150 			break;
   3151 		case IPV6_DSTOPTS:
   3152 			newdest = &opt->ip6po_dest2;
   3153 			break;
   3154 		}
   3155 
   3156 		/* turn off the previous option, then set the new option. */
   3157 		ip6_clearpktopts(opt, optname);
   3158 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
   3159 		if (*newdest == NULL)
   3160 			return (ENOBUFS);
   3161 		memcpy(*newdest, dest, destlen);
   3162 
   3163 		break;
   3164 	}
   3165 
   3166 #ifdef RFC2292
   3167 	case IPV6_2292RTHDR:
   3168 #endif
   3169 	case IPV6_RTHDR:
   3170 	{
   3171 		struct ip6_rthdr *rth;
   3172 		int rthlen;
   3173 
   3174 		if (len == 0) {
   3175 			ip6_clearpktopts(opt, IPV6_RTHDR);
   3176 			break;	/* just remove the option */
   3177 		}
   3178 
   3179 		/* message length validation */
   3180 		if (len < sizeof(struct ip6_rthdr))
   3181 			return (EINVAL);
   3182 		rth = (struct ip6_rthdr *)buf;
   3183 		rthlen = (rth->ip6r_len + 1) << 3;
   3184 		if (len != rthlen)
   3185 			return (EINVAL);
   3186 		switch (rth->ip6r_type) {
   3187 		case IPV6_RTHDR_TYPE_0:
   3188 			if (rth->ip6r_len == 0)	/* must contain one addr */
   3189 				return (EINVAL);
   3190 			if (rth->ip6r_len % 2) /* length must be even */
   3191 				return (EINVAL);
   3192 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
   3193 				return (EINVAL);
   3194 			break;
   3195 		default:
   3196 			return (EINVAL);	/* not supported */
   3197 		}
   3198 		/* turn off the previous option */
   3199 		ip6_clearpktopts(opt, IPV6_RTHDR);
   3200 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
   3201 		if (opt->ip6po_rthdr == NULL)
   3202 			return (ENOBUFS);
   3203 		memcpy(opt->ip6po_rthdr, rth, rthlen);
   3204 		break;
   3205 	}
   3206 
   3207 	case IPV6_USE_MIN_MTU:
   3208 		if (len != sizeof(int))
   3209 			return (EINVAL);
   3210 		minmtupolicy = *(int *)buf;
   3211 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
   3212 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
   3213 		    minmtupolicy != IP6PO_MINMTU_ALL) {
   3214 			return (EINVAL);
   3215 		}
   3216 		opt->ip6po_minmtu = minmtupolicy;
   3217 		break;
   3218 
   3219 	case IPV6_DONTFRAG:
   3220 		if (len != sizeof(int))
   3221 			return (EINVAL);
   3222 
   3223 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
   3224 			/*
   3225 			 * we ignore this option for TCP sockets.
   3226 			 * (RFC3542 leaves this case unspecified.)
   3227 			 */
   3228 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
   3229 		} else
   3230 			opt->ip6po_flags |= IP6PO_DONTFRAG;
   3231 		break;
   3232 
   3233 	case IPV6_PREFER_TEMPADDR:
   3234 	{
   3235 		int preftemp;
   3236 
   3237 		if (len != sizeof(int))
   3238 			return (EINVAL);
   3239 		preftemp = *(int *)buf;
   3240 		switch (preftemp) {
   3241 		case IP6PO_TEMPADDR_SYSTEM:
   3242 		case IP6PO_TEMPADDR_NOTPREFER:
   3243 		case IP6PO_TEMPADDR_PREFER:
   3244 			break;
   3245 		default:
   3246 			return (EINVAL);
   3247 		}
   3248 		opt->ip6po_prefer_tempaddr = preftemp;
   3249 		break;
   3250 	}
   3251 
   3252 	default:
   3253 		return (ENOPROTOOPT);
   3254 	} /* end of switch */
   3255 
   3256 	return (0);
   3257 }
   3258 
   3259 /*
   3260  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   3261  * packet to the input queue of a specified interface.  Note that this
   3262  * calls the output routine of the loopback "driver", but with an interface
   3263  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   3264  */
   3265 void
   3266 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
   3267 	const struct sockaddr_in6 *dst)
   3268 {
   3269 	struct mbuf *copym;
   3270 	struct ip6_hdr *ip6;
   3271 
   3272 	copym = m_copy(m, 0, M_COPYALL);
   3273 	if (copym == NULL)
   3274 		return;
   3275 
   3276 	/*
   3277 	 * Make sure to deep-copy IPv6 header portion in case the data
   3278 	 * is in an mbuf cluster, so that we can safely override the IPv6
   3279 	 * header portion later.
   3280 	 */
   3281 	if ((copym->m_flags & M_EXT) != 0 ||
   3282 	    copym->m_len < sizeof(struct ip6_hdr)) {
   3283 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   3284 		if (copym == NULL)
   3285 			return;
   3286 	}
   3287 
   3288 #ifdef DIAGNOSTIC
   3289 	if (copym->m_len < sizeof(*ip6)) {
   3290 		m_freem(copym);
   3291 		return;
   3292 	}
   3293 #endif
   3294 
   3295 	ip6 = mtod(copym, struct ip6_hdr *);
   3296 	/*
   3297 	 * clear embedded scope identifiers if necessary.
   3298 	 * in6_clearscope will touch the addresses only when necessary.
   3299 	 */
   3300 	in6_clearscope(&ip6->ip6_src);
   3301 	in6_clearscope(&ip6->ip6_dst);
   3302 
   3303 	(void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
   3304 }
   3305 
   3306 /*
   3307  * Chop IPv6 header off from the payload.
   3308  */
   3309 static int
   3310 ip6_splithdr(struct mbuf *m,  struct ip6_exthdrs *exthdrs)
   3311 {
   3312 	struct mbuf *mh;
   3313 	struct ip6_hdr *ip6;
   3314 
   3315 	ip6 = mtod(m, struct ip6_hdr *);
   3316 	if (m->m_len > sizeof(*ip6)) {
   3317 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   3318 		if (mh == 0) {
   3319 			m_freem(m);
   3320 			return ENOBUFS;
   3321 		}
   3322 		M_MOVE_PKTHDR(mh, m);
   3323 		MH_ALIGN(mh, sizeof(*ip6));
   3324 		m->m_len -= sizeof(*ip6);
   3325 		m->m_data += sizeof(*ip6);
   3326 		mh->m_next = m;
   3327 		m = mh;
   3328 		m->m_len = sizeof(*ip6);
   3329 		bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
   3330 	}
   3331 	exthdrs->ip6e_ip6 = m;
   3332 	return 0;
   3333 }
   3334 
   3335 /*
   3336  * Compute IPv6 extension header length.
   3337  */
   3338 int
   3339 ip6_optlen(struct in6pcb *in6p)
   3340 {
   3341 	int len;
   3342 
   3343 	if (!in6p->in6p_outputopts)
   3344 		return 0;
   3345 
   3346 	len = 0;
   3347 #define elen(x) \
   3348     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   3349 
   3350 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   3351 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   3352 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   3353 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   3354 	return len;
   3355 #undef elen
   3356 }
   3357 
   3358 /*
   3359  * Ensure sending address is valid.
   3360  * Returns 0 on success, -1 if an error should be sent back or 1
   3361  * if the packet could be dropped without error (protocol dependent).
   3362  */
   3363 static int
   3364 ip6_ifaddrvalid(const struct in6_addr *addr)
   3365 {
   3366 	struct sockaddr_in6 sin6;
   3367 	int s, error;
   3368 	struct ifaddr *ifa;
   3369 	struct in6_ifaddr *ia6;
   3370 
   3371 	if (IN6_IS_ADDR_UNSPECIFIED(addr))
   3372 		return 0;
   3373 
   3374 	memset(&sin6, 0, sizeof(sin6));
   3375 	sin6.sin6_family = AF_INET6;
   3376 	sin6.sin6_len = sizeof(sin6);
   3377 	sin6.sin6_addr = *addr;
   3378 
   3379 	s = pserialize_read_enter();
   3380 	ifa = ifa_ifwithaddr(sin6tosa(&sin6));
   3381 	if ((ia6 = ifatoia6(ifa)) == NULL ||
   3382 	    ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
   3383 		error = -1;
   3384 	else if (ia6->ia6_flags & (IN6_IFF_TENTATIVE | IN6_IFF_DETACHED))
   3385 		error = 1;
   3386 	else
   3387 		error = 0;
   3388 	pserialize_read_exit(s);
   3389 
   3390 	return error;
   3391 }
   3392