Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.2
      1 /*
      2  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. Neither the name of the project nor the names of its contributors
     14  *    may be used to endorse or promote products derived from this software
     15  *    without specific prior written permission.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 
     30 /*
     31  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     32  *	The Regents of the University of California.  All rights reserved.
     33  *
     34  * Redistribution and use in source and binary forms, with or without
     35  * modification, are permitted provided that the following conditions
     36  * are met:
     37  * 1. Redistributions of source code must retain the above copyright
     38  *    notice, this list of conditions and the following disclaimer.
     39  * 2. Redistributions in binary form must reproduce the above copyright
     40  *    notice, this list of conditions and the following disclaimer in the
     41  *    documentation and/or other materials provided with the distribution.
     42  * 3. All advertising materials mentioning features or use of this software
     43  *    must display the following acknowledgement:
     44  *	This product includes software developed by the University of
     45  *	California, Berkeley and its contributors.
     46  * 4. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     63  */
     64 
     65 #ifdef __FreeBSD__
     66 #include "opt_ip6fw.h"
     67 #endif
     68 #if (defined(__FreeBSD__) && __FreeBSD__ >= 3) || defined(__NetBSD__)
     69 #include "opt_inet.h"
     70 #endif
     71 
     72 #include <sys/param.h>
     73 #include <sys/malloc.h>
     74 #include <sys/mbuf.h>
     75 #include <sys/errno.h>
     76 #include <sys/protosw.h>
     77 #include <sys/socket.h>
     78 #include <sys/socketvar.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 
     82 #include <net/if.h>
     83 #include <net/route.h>
     84 
     85 #include <netinet/in.h>
     86 #include <netinet/in_var.h>
     87 #include <netinet6/in6_systm.h>
     88 #include <netinet6/ip6.h>
     89 #include <netinet6/icmp6.h>
     90 #if !defined(__FreeBSD__) || __FreeBSD__ < 3
     91 #include <netinet6/in6_pcb.h>
     92 #else
     93 #include <netinet/in_pcb.h>
     94 #endif
     95 #include <netinet6/ip6_var.h>
     96 #include <netinet6/nd6.h>
     97 
     98 #ifdef IPSEC
     99 #include <netinet6/ipsec.h>
    100 #include <netkey/key.h>
    101 #include <netkey/key_debug.h>
    102 #endif /* IPSEC */
    103 
    104 #include "loop.h"
    105 
    106 struct ip6_exthdrs {
    107 	struct mbuf *ip6e_ip6;
    108 	struct mbuf *ip6e_hbh;
    109 	struct mbuf *ip6e_dest1;
    110 	struct mbuf *ip6e_rthdr;
    111 	struct mbuf *ip6e_dest2;
    112 };
    113 
    114 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
    115 			    struct socket *));
    116 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
    117 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
    118 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
    119 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
    120 				  struct ip6_frag **));
    121 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
    122 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
    123 #ifdef __bsdi__
    124 extern struct ifnet loif;
    125 #endif
    126 
    127 #ifdef __NetBSD__
    128 extern struct ifnet **ifindex2ifnet;
    129 extern struct ifnet loif[NLOOP];
    130 #endif
    131 
    132 /*
    133  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    134  * header (with pri, len, nxt, hlim, src, dst).
    135  * This function may modify ver and hlim only.
    136  * The mbuf chain containing the packet will be freed.
    137  * The mbuf opt, if present, will not be freed.
    138  */
    139 int
    140 ip6_output(m0, opt, ro, flags, im6o)
    141 	struct mbuf *m0;
    142 	struct ip6_pktopts *opt;
    143 	struct route_in6 *ro;
    144 	int flags;
    145 	struct ip6_moptions *im6o;
    146 {
    147 	struct ip6_hdr *ip6, *mhip6;
    148 	struct ifnet *ifp;
    149 	struct mbuf *m = m0;
    150 	int hlen, tlen, len, off;
    151 	struct route_in6 ip6route;
    152 	struct sockaddr_in6 *dst;
    153 	int error = 0;
    154 	struct in6_ifaddr *ia;
    155 	u_long mtu;
    156 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    157 	struct ip6_exthdrs exthdrs;
    158 	struct in6_addr finaldst;
    159 	struct route_in6 *ro_pmtu = NULL;
    160 	int hdrsplit = 0;
    161 	int needipsec = 0;
    162 #ifdef IPSEC
    163 	int needipsectun = 0;
    164 	struct socket *so;
    165 	struct secpolicy *sp = NULL;
    166 
    167 	/* for AH processing. stupid to have "socket" variable in IP layer... */
    168 	so = (struct socket *)m->m_pkthdr.rcvif;
    169 	m->m_pkthdr.rcvif = NULL;
    170 	ip6 = mtod(m, struct ip6_hdr *);
    171 #endif /* IPSEC */
    172 
    173 #define MAKE_EXTHDR(hp,mp)						\
    174     {									\
    175 	if (hp) {							\
    176 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    177 		error = ip6_copyexthdr((mp), (caddr_t)(hp), 		\
    178 				       ((eh)->ip6e_len + 1) << 3);	\
    179 		if (error)						\
    180 			goto freehdrs;					\
    181 	}								\
    182     }
    183 
    184 	bzero(&exthdrs, sizeof(exthdrs));
    185 	if (opt) {
    186 		/* Hop-by-Hop options header */
    187 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    188 		/* Destination options header(1st part) */
    189 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    190 		/* Routing header */
    191 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    192 		/* Destination options header(2nd part) */
    193 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    194 	}
    195 
    196 #ifdef IPSEC
    197 	/* get a security policy for this packet */
    198 	if (so == NULL)
    199 		sp = ipsec6_getpolicybyaddr(m, 0, &error);
    200 	else
    201 		sp = ipsec6_getpolicybysock(m, so, &error);
    202 
    203 	if (sp == NULL) {
    204 		ipsec6stat.out_inval++;
    205 		goto bad;
    206 	}
    207 
    208 	error = 0;
    209 
    210 	/* check policy */
    211 	switch (sp->policy) {
    212 	case IPSEC_POLICY_DISCARD:
    213 		/*
    214 		 * This packet is just discarded.
    215 		 */
    216 		ipsec6stat.out_polvio++;
    217 		goto bad;
    218 
    219 	case IPSEC_POLICY_BYPASS:
    220 	case IPSEC_POLICY_NONE:
    221 		/* no need to do IPsec. */
    222 		needipsec = 0;
    223 		break;
    224 
    225 	case IPSEC_POLICY_IPSEC:
    226 		if (sp->req == NULL) {
    227 			/* XXX should be panic ? */
    228 			printf("ip6_output: No IPsec request specified.\n");
    229 			error = EINVAL;
    230 			goto bad;
    231 		}
    232 		needipsec = 1;
    233 		break;
    234 
    235 	case IPSEC_POLICY_ENTRUST:
    236 	default:
    237 		printf("ip6_output: Invalid policy found. %d\n", sp->policy);
    238 	}
    239 #endif /* IPSEC */
    240 
    241 	/*
    242 	 * Calculate the total length of the extension header chain.
    243 	 * Keep the length of the unfragmentable part for fragmentation.
    244 	 */
    245 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    246 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    247 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    248 	unfragpartlen = plen + sizeof(struct ip6_hdr);
    249 	/* NOTE: we don't add AH/ESP length here. do that later. */
    250 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    251 
    252 	/*
    253 	 * If we need IPsec, or there is at least one extension header,
    254 	 * separate IP6 header from the payload.
    255 	 */
    256 	if ((needipsec || optlen) && !hdrsplit) {
    257 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    258 			m = NULL;
    259 			goto freehdrs;
    260 		}
    261 		m = exthdrs.ip6e_ip6;
    262 		hdrsplit++;
    263 	}
    264 
    265 	/* adjust pointer */
    266 	ip6 = mtod(m, struct ip6_hdr *);
    267 
    268 	/* adjust mbuf packet header length */
    269 	m->m_pkthdr.len += optlen;
    270 	plen = m->m_pkthdr.len - sizeof(*ip6);
    271 
    272 	/* If this is a jumbo payload, insert a jumbo payload option. */
    273 	if (plen > IPV6_MAXPACKET) {
    274 		if (!hdrsplit) {
    275 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    276 				m = NULL;
    277 				goto freehdrs;
    278 			}
    279 			m = exthdrs.ip6e_ip6;
    280 			hdrsplit++;
    281 		}
    282 		/* adjust pointer */
    283 		ip6 = mtod(m, struct ip6_hdr *);
    284 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    285 			goto freehdrs;
    286 		ip6->ip6_plen = 0;
    287 	} else
    288 		ip6->ip6_plen = htons(plen);
    289 
    290 	/*
    291 	 * Concatenate headers and fill in next header fields.
    292 	 * Here we have, on "m"
    293 	 *	IPv6 payload  or
    294 	 *	IPv6 [esp* dest2 payload]
    295 	 * and we insert headers accordingly.  Finally, we should be getting:
    296 	 *	IPv6 hbh dest1 rthdr ah* dest2 payload  or
    297 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    298 	 */
    299 	{
    300 		u_char *nexthdrp = &ip6->ip6_nxt;
    301 		struct mbuf *mprev = m;
    302 
    303 		/*
    304 		 * we treat dest2 specially.  this makes IPsec processing
    305 		 * much easier.
    306 		 */
    307 		if (exthdrs.ip6e_dest2) {
    308 			if (!hdrsplit)
    309 				panic("assumption failed: hdr not split");
    310 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    311 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    312 		}
    313 
    314 #define MAKE_CHAIN(m,mp,p,i)\
    315     {\
    316 	if (m) {\
    317 		if (!hdrsplit) \
    318 			panic("assumption failed: hdr not split"); \
    319 		*mtod((m), u_char *) = *(p);\
    320 		*(p) = (i);\
    321 		p = mtod((m), u_char *);\
    322 		(m)->m_next = (mp)->m_next;\
    323 		(mp)->m_next = (m);\
    324 		(mp) = (m);\
    325 	}\
    326     }
    327 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
    328 			   nexthdrp, IPPROTO_HOPOPTS);
    329 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
    330 			   nexthdrp, IPPROTO_DSTOPTS);
    331 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
    332 			   nexthdrp, IPPROTO_ROUTING);
    333 
    334 #ifdef IPSEC
    335 		if (!needipsec)
    336 			goto skip_ipsec2;
    337 
    338 		/*
    339 		 * pointers after IPsec headers are not valid any more.
    340 		 * other pointers need a great care too.
    341 		 * (IPsec routines should not mangle mbufs prior to AH/ESP)
    342 		 */
    343 		exthdrs.ip6e_dest2 = NULL;
    344 
    345 	    {
    346 		struct ip6_rthdr *rh = NULL;
    347 		int segleft_org = 0;
    348 		struct ipsec_output_state state;
    349 
    350 		if (exthdrs.ip6e_rthdr) {
    351 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
    352 			segleft_org = rh->ip6r_segleft;
    353 			rh->ip6r_segleft = 0;
    354 		}
    355 
    356 		bzero(&state, sizeof(state));
    357 		state.m = m;
    358 		error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
    359 			&needipsectun);
    360 		m = state.m;
    361 		if (error) {
    362 			/* mbuf is already reclaimed in ipsec6_output_trans. */
    363 			m = NULL;
    364 			switch (error) {
    365 			case EHOSTUNREACH:
    366 			case ENETUNREACH:
    367 			case EMSGSIZE:
    368 			case ENOBUFS:
    369 			case ENOMEM:
    370 				break;
    371 			default:
    372 				printf("ip6_output (ipsec): error code %d\n", error);
    373 				/*fall through*/
    374 			case ENOENT:
    375 				/* don't show these error codes to the user */
    376 				error = 0;
    377 				break;
    378 			}
    379 			goto bad;
    380 		}
    381 		if (exthdrs.ip6e_rthdr) {
    382 			/* ah6_output doesn't modify mbuf chain */
    383 			rh->ip6r_segleft = segleft_org;
    384 		}
    385 	    }
    386 skip_ipsec2:;
    387 #endif
    388 	}
    389 
    390 	/*
    391 	 * If there is a routing header, replace destination address field
    392 	 * with the first hop of the routing header.
    393 	 */
    394 	if (exthdrs.ip6e_rthdr) {
    395 		struct ip6_rthdr *rh =
    396 			(struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    397 						  struct ip6_rthdr *));
    398 		struct ip6_rthdr0 *rh0;
    399 
    400 		finaldst = ip6->ip6_dst;
    401 		switch(rh->ip6r_type) {
    402 		case IPV6_RTHDR_TYPE_0:
    403 			 rh0 = (struct ip6_rthdr0 *)rh;
    404 			 ip6->ip6_dst = rh0->ip6r0_addr[0];
    405 			 bcopy((caddr_t)&rh0->ip6r0_addr[1],
    406 				 (caddr_t)&rh0->ip6r0_addr[0],
    407 				 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1)
    408 				 );
    409 			 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
    410 			 break;
    411 		default:	/* is it possible? */
    412 			 error = EINVAL;
    413 			 goto bad;
    414 		}
    415 	}
    416 
    417 	/* Source address validation */
    418 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    419 	    (flags & IPV6_DADOUTPUT) == 0) {
    420 		error = EOPNOTSUPP;
    421 		ip6stat.ip6s_badscope++;
    422 		goto bad;
    423 	}
    424 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    425 		error = EOPNOTSUPP;
    426 		ip6stat.ip6s_badscope++;
    427 		goto bad;
    428 	}
    429 
    430 	ip6stat.ip6s_localout++;
    431 
    432 	/*
    433 	 * Route packet.
    434 	 */
    435 	if (ro == 0) {
    436 		ro = &ip6route;
    437 		bzero((caddr_t)ro, sizeof(*ro));
    438 	}
    439 	ro_pmtu = ro;
    440 	if (opt && opt->ip6po_rthdr)
    441 		ro = &opt->ip6po_route;
    442 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
    443 	/*
    444 	 * If there is a cached route,
    445 	 * check that it is to the same destination
    446 	 * and is still up. If not, free it and try again.
    447 	 */
    448 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
    449 			 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
    450 		RTFREE(ro->ro_rt);
    451 		ro->ro_rt = (struct rtentry *)0;
    452 	}
    453 	if (ro->ro_rt == 0) {
    454 		bzero(dst, sizeof(*dst));
    455 		dst->sin6_family = AF_INET6;
    456 		dst->sin6_len = sizeof(struct sockaddr_in6);
    457 		dst->sin6_addr = ip6->ip6_dst;
    458 	}
    459 #ifdef IPSEC
    460 	if (needipsec && needipsectun) {
    461 		struct ipsec_output_state state;
    462 
    463 		/*
    464 		 * All the extension headers will become inaccessible
    465 		 * (since they can be encrypted).
    466 		 * Don't panic, we need no more updates to extension headers
    467 		 * on inner IPv6 packet (since they are now encapsulated).
    468 		 *
    469 		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
    470 		 */
    471 		bzero(&exthdrs, sizeof(exthdrs));
    472 		exthdrs.ip6e_ip6 = m;
    473 
    474 		bzero(&state, sizeof(state));
    475 		state.m = m;
    476 		state.ro = (struct route *)ro;
    477 		state.dst = (struct sockaddr *)dst;
    478 
    479 		error = ipsec6_output_tunnel(&state, sp, flags);
    480 
    481 		m = state.m;
    482 		ro = (struct route_in6 *)state.ro;
    483 		dst = (struct sockaddr_in6 *)state.dst;
    484 		if (error) {
    485 			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
    486 			m0 = m = NULL;
    487 			m = NULL;
    488 			switch (error) {
    489 			case EHOSTUNREACH:
    490 			case ENETUNREACH:
    491 			case EMSGSIZE:
    492 			case ENOBUFS:
    493 			case ENOMEM:
    494 				break;
    495 			default:
    496 				printf("ip6_output (ipsec): error code %d\n", error);
    497 				/*fall through*/
    498 			case ENOENT:
    499 				/* don't show these error codes to the user */
    500 				error = 0;
    501 				break;
    502 			}
    503 			goto bad;
    504 		}
    505 
    506 		exthdrs.ip6e_ip6 = m;
    507 	}
    508 #endif /*IPESC*/
    509 
    510 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    511 		/* Unicast */
    512 
    513 #define ifatoia6(ifa)	((struct in6_ifaddr *)(ifa))
    514 #define sin6tosa(sin6)	((struct sockaddr *)(sin6))
    515 		/* xxx
    516 		 * interface selection comes here
    517 		 * if an interface is specified from an upper layer,
    518 		 * ifp must point it.
    519 		 */
    520 		if (ro->ro_rt == 0) {
    521 			if (ro == &ip6route)	/* xxx kazu */
    522 				rtalloc((struct route *)ro);
    523 			else
    524 				rtcalloc((struct route *)ro);
    525 		}
    526 		if (ro->ro_rt == 0) {
    527 			ip6stat.ip6s_noroute++;
    528 			error = EHOSTUNREACH;
    529 			goto bad;
    530 		}
    531 		ia = ifatoia6(ro->ro_rt->rt_ifa);
    532 		ifp = ro->ro_rt->rt_ifp;
    533 		ro->ro_rt->rt_use++;
    534 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
    535 			dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
    536 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    537 
    538 		/*
    539 		 * Check if there is the outgoing interface conflicts with
    540 		 * the interface specified by ifi6_ifindex(if specified).
    541 		 * Note that loopback interface is always okay.
    542 		 * (this happens when we are sending packet toward my
    543 		 * interface)
    544 		 */
    545 		if (opt && opt->ip6po_pktinfo
    546 		 && opt->ip6po_pktinfo->ipi6_ifindex) {
    547 			if (!(ifp->if_flags & IFF_LOOPBACK)
    548 			 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
    549 				ip6stat.ip6s_noroute++;
    550 				error = EHOSTUNREACH;
    551 				goto bad;
    552 			}
    553 		}
    554 
    555 		if (opt && opt->ip6po_hlim != -1)
    556 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    557 	} else {
    558 		/* Multicast */
    559 		struct	in6_multi *in6m;
    560 
    561 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    562 
    563 		/*
    564 		 * See if the caller provided any multicast options
    565 		 */
    566 		ifp = NULL;
    567 		if (im6o != NULL) {
    568 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    569 			if (im6o->im6o_multicast_ifp != NULL)
    570 				ifp = im6o->im6o_multicast_ifp;
    571 		} else
    572 			ip6->ip6_hlim = ip6_defmcasthlim;
    573 
    574 		/*
    575 		 * See if the caller provided the outgoing interface
    576 		 * as an ancillary data.
    577 		 * Boundary check for ifindex is assumed to be already done.
    578 		 */
    579 		if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
    580 			ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
    581 
    582 		/*
    583 		 * If the destination is a node-local scope multicast,
    584 		 * the packet should be loop-backed only.
    585 		 */
    586 		if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
    587 			/*
    588 			 * If the outgoing interface is already specified,
    589 			 * it should be a loopback interface.
    590 			 */
    591 			if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
    592 				ip6stat.ip6s_badscope++;
    593 				error = ENETUNREACH; /* XXX: better error? */
    594 				goto bad;
    595 			}
    596 			else {
    597 #ifdef __bsdi__
    598 				ifp = &loif;
    599 #else
    600 				ifp = &loif[0];
    601 #endif
    602 			}
    603 		}
    604 
    605 		if (opt && opt->ip6po_hlim != -1)
    606 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    607 
    608 		/*
    609 		 * If caller did not provide an interface lookup a
    610 		 * default in the routing table.  This is either a
    611 		 * default for the speicfied group (i.e. a host
    612 		 * route), or a multicast default (a route for the
    613 		 * ``net'' ff00::/8).
    614 		 */
    615 		if (ifp == NULL) {
    616 			if (ro->ro_rt == 0) {
    617 #ifdef __FreeBSD__
    618 				ro->ro_rt = rtalloc1((struct sockaddr *)
    619 						&ro->ro_dst, 0, 0UL);
    620 #endif /*__FreeBSD__*/
    621 #if defined(__bsdi__) || defined(__NetBSD__)
    622 				ro->ro_rt = rtalloc1((struct sockaddr *)
    623 						&ro->ro_dst, 0);
    624 #endif /*__bsdi__*/
    625 			}
    626 			if (ro->ro_rt == 0) {
    627 				ip6stat.ip6s_noroute++;
    628 				error = EHOSTUNREACH;
    629 				goto bad;
    630 			}
    631 			ia = ifatoia6(ro->ro_rt->rt_ifa);
    632 			ifp = ro->ro_rt->rt_ifp;
    633 			ro->ro_rt->rt_use++;
    634 		}
    635 		/*
    636 		 * Confirm that the outgoing interface supports multicast.
    637 		 */
    638 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
    639 			ip6stat.ip6s_noroute++;
    640 			error = ENETUNREACH;
    641 			goto bad;
    642 		}
    643 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
    644 		if (in6m != NULL &&
    645 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    646 			/*
    647 			 * If we belong to the destination multicast group
    648 			 * on the outgoing interface, and the caller did not
    649 			 * forbid loopback, loop back a copy.
    650 			 */
    651 			ip6_mloopback(ifp, m, dst);
    652 		} else {
    653 			/*
    654 			 * If we are acting as a multicast router, perform
    655 			 * multicast forwarding as if the packet had just
    656 			 * arrived on the interface to which we are about
    657 			 * to send.  The multicast forwarding function
    658 			 * recursively calls this function, using the
    659 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    660 			 *
    661 			 * Multicasts that are looped back by ip6_mloopback(),
    662 			 * above, will be forwarded by the ip6_input() routine,
    663 			 * if necessary.
    664 			 */
    665 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    666 				if (ip6_mforward(ip6, ifp, m) != NULL) {
    667 					m_freem(m);
    668 					goto done;
    669 				}
    670 			}
    671 		}
    672 		/*
    673 		 * Multicasts with a hoplimit of zero may be looped back,
    674 		 * above, but must not be transmitted on a network.
    675 		 * Also, multicasts addressed to the loopback interface
    676 		 * are not sent -- the above call to ip6_mloopback() will
    677 		 * loop back a copy if this host actually belongs to the
    678 		 * destination group on the loopback interface.
    679 		 */
    680 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
    681 			m_freem(m);
    682 			goto done;
    683 		}
    684 	}
    685 
    686 	/*
    687 	 * Determine path MTU.
    688 	 */
    689 	if (ro_pmtu != ro) {
    690 		/* The first hop and the final destination may differ. */
    691 		struct sockaddr_in6 *sin6_fin =
    692 			(struct sockaddr_in6 *)&ro_pmtu->ro_dst;
    693 		if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
    694 				       !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
    695 							   &finaldst))) {
    696 			RTFREE(ro_pmtu->ro_rt);
    697 			ro_pmtu->ro_rt = (struct rtentry *)0;
    698 		}
    699 		if (ro_pmtu->ro_rt == 0) {
    700 			bzero(sin6_fin, sizeof(*sin6_fin));
    701 			sin6_fin->sin6_family = AF_INET6;
    702 			sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
    703 			sin6_fin->sin6_addr = finaldst;
    704 
    705 #if 0
    706 			rtcalloc((struct route *)ro_pmtu);
    707 #else
    708 			rtalloc((struct route *)ro_pmtu);
    709 #endif
    710 		}
    711 	}
    712 	if (ro_pmtu->ro_rt != NULL) {
    713 		u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
    714 
    715 		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
    716 		if (mtu > ifmtu) {
    717 			/*
    718 			 * The MTU on the route is larger than the MTU on
    719 			 * the interface!  This shouldn't happen, unless the
    720 			 * MTU of the interface has been changed after the
    721 			 * interface was brought up.  Change the MTU in the
    722 			 * route to match the interface MTU (as long as the
    723 			 * field isn't locked).
    724 			 */
    725 			 mtu = ifmtu;
    726 			 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    727 				 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
    728 		}
    729 	} else {
    730 		mtu = nd_ifinfo[ifp->if_index].linkmtu;
    731 	}
    732 
    733 	/*
    734 	 * Fake link-local scope-class addresses
    735 	 */
    736 	if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
    737 		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
    738 			ip6->ip6_src.s6_addr16[1] = 0;
    739 		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
    740 			ip6->ip6_dst.s6_addr16[1] = 0;
    741 	}
    742 
    743 	/*
    744 	 * If the outgoing packet contains a hop-by-hop options header,
    745 	 * it must be examined and processed even by the source node.
    746 	 * (RFC 2460, section 4.)
    747 	 */
    748 	if (exthdrs.ip6e_hbh) {
    749 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh,
    750 					   struct ip6_hbh *);
    751 		long dummy1;	/* XXX unused */
    752 		u_int32_t dummy2; /* XXX unused */
    753 
    754 		/*
    755 		 *  XXX: if we have to send an ICMPv6 error to the sender,
    756 		 *       we need the M_LOOP flag since icmp6_error() expects
    757 		 *       the IPv6 and the hop-by-hop options header are
    758 		 *       continuous unless the flag is set.
    759 		 */
    760 		m->m_flags |= M_LOOP;
    761 		m->m_pkthdr.rcvif = ifp;
    762 		if (ip6_process_hopopts(m,
    763 					(u_int8_t *)(hbh + 1),
    764 					((hbh->ip6h_len + 1) << 3) -
    765 					sizeof(struct ip6_hbh),
    766 					&dummy1, &dummy2) < 0) {
    767 			/* m was already freed at this point */
    768 			error = EINVAL;/* better error? */
    769 			goto done;
    770 		}
    771 		m->m_flags &= ~M_LOOP; /* XXX */
    772 		m->m_pkthdr.rcvif = NULL;
    773 	}
    774 
    775 	/*
    776 	 * Send the packet to the outgoing interface.
    777 	 * If necessary, do IPv6 fragmentation before sending.
    778 	 */
    779 	tlen = m->m_pkthdr.len;
    780 	if (tlen <= mtu
    781 #ifdef notyet
    782 	    /*
    783 	     * On any link that cannot convey a 1280-octet packet in one piece,
    784 	     * link-specific fragmentation and reassembly must be provided at
    785 	     * a layer below IPv6. [RFC 2460, sec.5]
    786 	     * Thus if the interface has ability of link-level fragmentation,
    787 	     * we can just send the packet even if the packet size is
    788 	     * larger than the link's MTU.
    789 	     * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
    790 	     */
    791 
    792 	    || ifp->if_flags & IFF_FRAGMENTABLE
    793 #endif
    794 	    )
    795 	{
    796 #ifdef NEWIP6OUTPUT
    797 		error = nd6_output(ifp, m, dst, ro->ro_rt);
    798 #else
    799 		error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst,
    800 					  ro->ro_rt);
    801 #endif
    802 		goto done;
    803 	} else if (mtu < IPV6_MMTU) {
    804 		/*
    805 		 * note that path MTU is never less than IPV6_MMTU
    806 		 * (see icmp6_input).
    807 		 */
    808 		error = EMSGSIZE;
    809 		goto bad;
    810 	} else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
    811 		error = EMSGSIZE;
    812 		goto bad;
    813 	} else {
    814 		struct mbuf **mnext, *m_frgpart;
    815 		struct ip6_frag *ip6f;
    816 		u_long id = htonl(ip6_id++);
    817 		u_char nextproto;
    818 
    819 		/*
    820 		 * Too large for the destination or interface;
    821 		 * fragment if possible.
    822 		 * Must be able to put at least 8 bytes per fragment.
    823 		 */
    824 		hlen = unfragpartlen;
    825 		if (mtu > IPV6_MAXPACKET)
    826 			mtu = IPV6_MAXPACKET;
    827 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    828 		if (len < 8) {
    829 			error = EMSGSIZE;
    830 			goto bad;
    831 		}
    832 
    833 		mnext = &m->m_nextpkt;
    834 
    835 		/*
    836 		 * Change the next header field of the last header in the
    837 		 * unfragmentable part.
    838 		 */
    839 		if (exthdrs.ip6e_rthdr) {
    840 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    841 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    842 		}
    843 		else if (exthdrs.ip6e_dest1) {
    844 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    845 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    846 		}
    847 		else if (exthdrs.ip6e_hbh) {
    848 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    849 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    850 		}
    851 		else {
    852 			nextproto = ip6->ip6_nxt;
    853 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    854 		}
    855 
    856 		/*
    857 		 * Loop through length of segment after first fragment,
    858 		 * make new header and copy data of each part and link onto chain.
    859 		 */
    860 		m0 = m;
    861 		for (off = hlen; off < tlen; off += len) {
    862 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
    863 			if (!m) {
    864 				error = ENOBUFS;
    865 				ip6stat.ip6s_odropped++;
    866 				goto sendorfree;
    867 			}
    868 			m->m_flags = m0->m_flags & M_COPYFLAGS;
    869 			*mnext = m;
    870 			mnext = &m->m_nextpkt;
    871 			m->m_data += max_linkhdr;
    872 			mhip6 = mtod(m, struct ip6_hdr *);
    873 			*mhip6 = *ip6;
    874 			m->m_len = sizeof(*mhip6);
    875  			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
    876  			if (error) {
    877 				ip6stat.ip6s_odropped++;
    878 				goto sendorfree;
    879 			}
    880 			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
    881 			if (off + len >= tlen)
    882 				len = tlen - off;
    883 			else
    884 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
    885 			mhip6->ip6_plen = htons((u_short)(len + hlen +
    886 							  sizeof(*ip6f) -
    887 							  sizeof(struct ip6_hdr)));
    888 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
    889 				error = ENOBUFS;
    890 				ip6stat.ip6s_odropped++;
    891 				goto sendorfree;
    892 			}
    893 			m_cat(m, m_frgpart);
    894 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
    895 			m->m_pkthdr.rcvif = (struct ifnet *)0;
    896 			ip6f->ip6f_reserved = 0;
    897 			ip6f->ip6f_ident = id;
    898 			ip6f->ip6f_nxt = nextproto;
    899 			ip6stat.ip6s_ofragments++;
    900 		}
    901 	}
    902 
    903 	/*
    904 	 * Remove leading garbages.
    905 	 */
    906 sendorfree:
    907 	m = m0->m_nextpkt;
    908 	m0->m_nextpkt = 0;
    909 	m_freem(m0);
    910 	for (m0 = m; m; m = m0) {
    911 		m0 = m->m_nextpkt;
    912 		m->m_nextpkt = 0;
    913 		if (error == 0) {
    914 #ifdef NEWIP6OUTPUT
    915 			error = nd6_output(ifp, m, dst, ro->ro_rt);
    916 #else
    917 			error = (*ifp->if_output)(ifp, m,
    918 						  (struct sockaddr *)dst,
    919 						  ro->ro_rt);
    920 #endif
    921 		}
    922 		else
    923 			m_freem(m);
    924 	}
    925 
    926 	if (error == 0)
    927 		ip6stat.ip6s_fragmented++;
    928 
    929 done:
    930 	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
    931 		RTFREE(ro->ro_rt);
    932 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
    933 		RTFREE(ro_pmtu->ro_rt);
    934 	}
    935 
    936 #ifdef IPSEC
    937 	if (sp != NULL)
    938 		key_freesp(sp);
    939 #endif /* IPSEC */
    940 
    941 	return(error);
    942 
    943 freehdrs:
    944 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
    945 	m_freem(exthdrs.ip6e_dest1);
    946 	m_freem(exthdrs.ip6e_rthdr);
    947 	m_freem(exthdrs.ip6e_dest2);
    948 	/* fall through */
    949 bad:
    950 	m_freem(m);
    951 	goto done;
    952 }
    953 
    954 static int
    955 ip6_copyexthdr(mp, hdr, hlen)
    956 	struct mbuf **mp;
    957 	caddr_t hdr;
    958 	int hlen;
    959 {
    960 	struct mbuf *m;
    961 
    962 	if (hlen > MCLBYTES)
    963 		return(ENOBUFS); /* XXX */
    964 
    965 	MGET(m, M_DONTWAIT, MT_DATA);
    966 	if (!m)
    967 		return(ENOBUFS);
    968 
    969 	if (hlen > MLEN) {
    970 		MCLGET(m, M_DONTWAIT);
    971 		if ((m->m_flags & M_EXT) == 0) {
    972 			m_free(m);
    973 			return(ENOBUFS);
    974 		}
    975 	}
    976 	m->m_len = hlen;
    977 	if (hdr)
    978 		bcopy(hdr, mtod(m, caddr_t), hlen);
    979 
    980 	*mp = m;
    981 	return(0);
    982 }
    983 
    984 /*
    985  * Insert jumbo payload option.
    986  */
    987 static int
    988 ip6_insert_jumboopt(exthdrs, plen)
    989 	struct ip6_exthdrs *exthdrs;
    990 	u_int32_t plen;
    991 {
    992 	struct mbuf *mopt;
    993 	u_char *optbuf;
    994 
    995 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
    996 
    997 	/*
    998 	 * If there is no hop-by-hop options header, allocate new one.
    999 	 * If there is one but it doesn't have enough space to store the
   1000 	 * jumbo payload option, allocate a cluster to store the whole options.
   1001 	 * Otherwise, use it to store the options.
   1002 	 */
   1003 	if (exthdrs->ip6e_hbh == 0) {
   1004 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1005 		if (mopt == 0)
   1006 			return(ENOBUFS);
   1007 		mopt->m_len = JUMBOOPTLEN;
   1008 		optbuf = mtod(mopt, u_char *);
   1009 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1010 		exthdrs->ip6e_hbh = mopt;
   1011 	}
   1012 	else {
   1013 		struct ip6_hbh *hbh;
   1014 
   1015 		mopt = exthdrs->ip6e_hbh;
   1016 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1017 			caddr_t oldoptp = mtod(mopt, caddr_t);
   1018 			int oldoptlen = mopt->m_len;
   1019 
   1020 			if (mopt->m_flags & M_EXT)
   1021 				return(ENOBUFS); /* XXX */
   1022 			MCLGET(mopt, M_DONTWAIT);
   1023 			if ((mopt->m_flags & M_EXT) == 0)
   1024 				return(ENOBUFS);
   1025 
   1026 			bcopy(oldoptp, mtod(mopt, caddr_t), oldoptlen);
   1027 			optbuf = mtod(mopt, caddr_t) + oldoptlen;
   1028 			mopt->m_len = oldoptlen + JUMBOOPTLEN;
   1029 		}
   1030 		else {
   1031 			optbuf = mtod(mopt, u_char *) + mopt->m_len;
   1032 			mopt->m_len += JUMBOOPTLEN;
   1033 		}
   1034 		optbuf[0] = IP6OPT_PADN;
   1035 		optbuf[1] = 1;
   1036 
   1037 		/*
   1038 		 * Adjust the header length according to the pad and
   1039 		 * the jumbo payload option.
   1040 		 */
   1041 		hbh = mtod(mopt, struct ip6_hbh *);
   1042 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1043 	}
   1044 
   1045 	/* fill in the option. */
   1046 	optbuf[2] = IP6OPT_JUMBO;
   1047 	optbuf[3] = 4;
   1048 	*(u_int32_t *)&optbuf[4] = htonl(plen + JUMBOOPTLEN);
   1049 
   1050 	/* finally, adjust the packet header length */
   1051 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1052 
   1053 	return(0);
   1054 #undef JUMBOOPTLEN
   1055 }
   1056 
   1057 /*
   1058  * Insert fragment header and copy unfragmentable header portions.
   1059  */
   1060 static int
   1061 ip6_insertfraghdr(m0, m, hlen, frghdrp)
   1062 	struct mbuf *m0, *m;
   1063 	int hlen;
   1064 	struct ip6_frag **frghdrp;
   1065 {
   1066 	struct mbuf *n, *mlast;
   1067 
   1068 	if (hlen > sizeof(struct ip6_hdr)) {
   1069 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1070 			    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1071 		if (n == 0)
   1072 			return(ENOBUFS);
   1073 		m->m_next = n;
   1074 	}
   1075 	else
   1076 		n = m;
   1077 
   1078 	/* Search for the last mbuf of unfragmentable part. */
   1079 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1080 		;
   1081 
   1082 	if ((mlast->m_flags & M_EXT) == 0 &&
   1083 	    M_TRAILINGSPACE(mlast) < sizeof(struct ip6_frag)) {
   1084 		/* use the trailing space of the last mbuf for the fragment hdr */
   1085 		*frghdrp =
   1086 			(struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
   1087 		mlast->m_len += sizeof(struct ip6_frag);
   1088 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1089 	}
   1090 	else {
   1091 		/* allocate a new mbuf for the fragment header */
   1092 		struct mbuf *mfrg;
   1093 
   1094 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1095 		if (mfrg == 0)
   1096 			return(ENOBUFS);
   1097 		mfrg->m_len = sizeof(struct ip6_frag);
   1098 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1099 		mlast->m_next = mfrg;
   1100 	}
   1101 
   1102 	return(0);
   1103 }
   1104 
   1105 /*
   1106  * IP6 socket option processing.
   1107  */
   1108 int
   1109 ip6_ctloutput(op, so, level, optname, mp)
   1110 	int op;
   1111 	struct socket *so;
   1112 	int level, optname;
   1113 	struct mbuf **mp;
   1114 {
   1115 	register struct in6pcb *in6p = sotoin6pcb(so);
   1116 	register struct mbuf *m = *mp;
   1117 	register int optval = 0;
   1118 	int error = 0;
   1119 	struct proc *p = curproc;	/* XXX */
   1120 
   1121 	if (level == IPPROTO_IPV6)
   1122 		switch (op) {
   1123 
   1124 		case PRCO_SETOPT:
   1125 			switch (optname) {
   1126 			case IPV6_PKTOPTIONS:
   1127 				return(ip6_pcbopts(&in6p->in6p_outputopts,
   1128 						   m, so));
   1129 			case IPV6_HOPOPTS:
   1130 			case IPV6_DSTOPTS:
   1131 				if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
   1132 					error = EPERM;
   1133 					break;
   1134 				}
   1135 				/* fall through */
   1136 			case IPV6_UNICAST_HOPS:
   1137 			case IPV6_RECVOPTS:
   1138 			case IPV6_RECVRETOPTS:
   1139 			case IPV6_RECVDSTADDR:
   1140 			case IPV6_PKTINFO:
   1141 			case IPV6_HOPLIMIT:
   1142 			case IPV6_RTHDR:
   1143 			case IPV6_CHECKSUM:
   1144 			case IPV6_FAITH:
   1145 				if (!m || m->m_len != sizeof(int))
   1146 					error = EINVAL;
   1147 				else {
   1148 					optval = *mtod(m, int *);
   1149 					switch (optname) {
   1150 
   1151 					case IPV6_UNICAST_HOPS:
   1152 						if (optval < -1 || optval >= 256)
   1153 							error = EINVAL;
   1154 						else {
   1155 							/* -1 = kernel default */
   1156 							in6p->in6p_hops = optval;
   1157 						}
   1158 						break;
   1159 #define OPTSET(bit) \
   1160 	if (optval) \
   1161 		in6p->in6p_flags |= bit; \
   1162 	else \
   1163 		in6p->in6p_flags &= ~bit;
   1164 
   1165 					case IPV6_RECVOPTS:
   1166 						OPTSET(IN6P_RECVOPTS);
   1167 						break;
   1168 
   1169 					case IPV6_RECVRETOPTS:
   1170 						OPTSET(IN6P_RECVRETOPTS);
   1171 						break;
   1172 
   1173 					case IPV6_RECVDSTADDR:
   1174 						OPTSET(IN6P_RECVDSTADDR);
   1175 						break;
   1176 
   1177 					case IPV6_PKTINFO:
   1178 						OPTSET(IN6P_PKTINFO);
   1179 						break;
   1180 
   1181 					case IPV6_HOPLIMIT:
   1182 						OPTSET(IN6P_HOPLIMIT);
   1183 						break;
   1184 
   1185 					case IPV6_HOPOPTS:
   1186 						OPTSET(IN6P_HOPOPTS);
   1187 						break;
   1188 
   1189 					case IPV6_DSTOPTS:
   1190 						OPTSET(IN6P_DSTOPTS);
   1191 						break;
   1192 
   1193 					case IPV6_RTHDR:
   1194 						OPTSET(IN6P_RTHDR);
   1195 						break;
   1196 
   1197 					case IPV6_CHECKSUM:
   1198 						in6p->in6p_cksum = optval;
   1199 						break;
   1200 
   1201 					case IPV6_FAITH:
   1202 						OPTSET(IN6P_FAITH);
   1203 						break;
   1204 					}
   1205 				}
   1206 				break;
   1207 #undef OPTSET
   1208 
   1209 			case IPV6_MULTICAST_IF:
   1210 			case IPV6_MULTICAST_HOPS:
   1211 			case IPV6_MULTICAST_LOOP:
   1212 			case IPV6_JOIN_GROUP:
   1213 			case IPV6_LEAVE_GROUP:
   1214 				error =	ip6_setmoptions(optname, &in6p->in6p_moptions, m);
   1215 				break;
   1216 
   1217 #ifdef IPSEC
   1218 			case IPV6_IPSEC_POLICY:
   1219 			    {
   1220 				caddr_t req = NULL;
   1221 				int len = 0;
   1222 				int priv = 0;
   1223 #ifdef __NetBSD__
   1224 				if (p == 0 || suser(p->p_ucred, &p->p_acflag))
   1225 					priv = 0;
   1226 				else
   1227 					priv = 1;
   1228 #else
   1229 				priv = (in6p->in6p_socket->so_state & SS_PRIV);
   1230 #endif
   1231 				if (m != 0) {
   1232 					req = mtod(m, caddr_t);
   1233 					len = m->m_len;
   1234 				}
   1235 				error = ipsec_set_policy(&in6p->in6p_sp,
   1236 				                   optname, req, len,
   1237 				                   priv);
   1238 			    }
   1239 				break;
   1240 #endif /* IPSEC */
   1241 
   1242 			default:
   1243 				error = ENOPROTOOPT;
   1244 				break;
   1245 			}
   1246 			if (m)
   1247 				(void)m_free(m);
   1248 			break;
   1249 
   1250 		case PRCO_GETOPT:
   1251 			switch (optname) {
   1252 
   1253 			case IPV6_OPTIONS:
   1254 			case IPV6_RETOPTS:
   1255 #if 0
   1256 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1257 				if (in6p->in6p_options) {
   1258 					m->m_len = in6p->in6p_options->m_len;
   1259 					bcopy(mtod(in6p->in6p_options, caddr_t),
   1260 					      mtod(m, caddr_t),
   1261 					      (unsigned)m->m_len);
   1262 				} else
   1263 					m->m_len = 0;
   1264 				break;
   1265 #else
   1266 				error = ENOPROTOOPT;
   1267 				break;
   1268 #endif
   1269 
   1270 			case IPV6_PKTOPTIONS:
   1271 				if (in6p->in6p_options) {
   1272 					*mp = m_copym(in6p->in6p_options, 0,
   1273 						      M_COPYALL, M_WAIT);
   1274 				} else {
   1275 					*mp = m_get(M_WAIT, MT_SOOPTS);
   1276 					(*mp)->m_len = 0;
   1277 				}
   1278 				break;
   1279 
   1280 			case IPV6_HOPOPTS:
   1281 			case IPV6_DSTOPTS:
   1282 				if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
   1283 					error = EPERM;
   1284 					break;
   1285 				}
   1286 				/* fall through */
   1287 			case IPV6_UNICAST_HOPS:
   1288 			case IPV6_RECVOPTS:
   1289 			case IPV6_RECVRETOPTS:
   1290 			case IPV6_RECVDSTADDR:
   1291 			case IPV6_PKTINFO:
   1292 			case IPV6_HOPLIMIT:
   1293 			case IPV6_RTHDR:
   1294 			case IPV6_CHECKSUM:
   1295 			case IPV6_FAITH:
   1296 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1297 				m->m_len = sizeof(int);
   1298 				switch (optname) {
   1299 
   1300 				case IPV6_UNICAST_HOPS:
   1301 					optval = in6p->in6p_hops;
   1302 					break;
   1303 
   1304 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
   1305 
   1306 				case IPV6_RECVOPTS:
   1307 					optval = OPTBIT(IN6P_RECVOPTS);
   1308 					break;
   1309 
   1310 				case IPV6_RECVRETOPTS:
   1311 					optval = OPTBIT(IN6P_RECVRETOPTS);
   1312 					break;
   1313 
   1314 				case IPV6_RECVDSTADDR:
   1315 					optval = OPTBIT(IN6P_RECVDSTADDR);
   1316 					break;
   1317 
   1318 				case IPV6_PKTINFO:
   1319 					optval = OPTBIT(IN6P_PKTINFO);
   1320 					break;
   1321 
   1322 				case IPV6_HOPLIMIT:
   1323 					optval = OPTBIT(IN6P_HOPLIMIT);
   1324 					break;
   1325 
   1326 				case IPV6_HOPOPTS:
   1327 					optval = OPTBIT(IN6P_HOPOPTS);
   1328 					break;
   1329 
   1330 				case IPV6_DSTOPTS:
   1331 					optval = OPTBIT(IN6P_DSTOPTS);
   1332 					break;
   1333 
   1334 				case IPV6_RTHDR:
   1335 					optval = OPTBIT(IN6P_RTHDR);
   1336 					break;
   1337 
   1338 				case IPV6_CHECKSUM:
   1339 					optval = in6p->in6p_cksum;
   1340 					break;
   1341 
   1342 				case IPV6_FAITH:
   1343 					optval = OPTBIT(IN6P_FAITH);
   1344 					break;
   1345 				}
   1346 				*mtod(m, int *) = optval;
   1347 				break;
   1348 
   1349 			case IPV6_MULTICAST_IF:
   1350 			case IPV6_MULTICAST_HOPS:
   1351 			case IPV6_MULTICAST_LOOP:
   1352 			case IPV6_JOIN_GROUP:
   1353 			case IPV6_LEAVE_GROUP:
   1354 				error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
   1355 				break;
   1356 
   1357 #ifdef IPSEC
   1358 			case IPV6_IPSEC_POLICY:
   1359 				error = ipsec_get_policy(in6p->in6p_sp, mp);
   1360 				break;
   1361 #endif /* IPSEC */
   1362 
   1363 			default:
   1364 				error = ENOPROTOOPT;
   1365 				break;
   1366 			}
   1367 			break;
   1368 		}
   1369 	else {
   1370 		error = EINVAL;
   1371 		if (op == PRCO_SETOPT && *mp)
   1372 			(void)m_free(*mp);
   1373 	}
   1374 	return(error);
   1375 }
   1376 
   1377 /*
   1378  * Set up IP6 options in pcb for insertion in output packets.
   1379  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1380  * with destination address if source routed.
   1381  */
   1382 static int
   1383 ip6_pcbopts(pktopt, m, so)
   1384 	struct ip6_pktopts **pktopt;
   1385 	register struct mbuf *m;
   1386 	struct socket *so;
   1387 {
   1388 	register struct ip6_pktopts *opt = *pktopt;
   1389 	int error = 0;
   1390 	struct proc *p = curproc;	/* XXX */
   1391 	int priv = 0;
   1392 
   1393 	/* turn off any old options. */
   1394 	if (opt) {
   1395 		if (opt->ip6po_m)
   1396 			(void)m_free(opt->ip6po_m);
   1397 	}
   1398 	else
   1399 		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
   1400 	*pktopt = 0;
   1401 
   1402 	if (!m || m->m_len == 0) {
   1403 		/*
   1404 		 * Only turning off any previous options.
   1405 		 */
   1406 		if (opt)
   1407 			free(opt, M_IP6OPT);
   1408 		if (m)
   1409 			(void)m_free(m);
   1410 		return(0);
   1411 	}
   1412 
   1413 	/*  set options specified by user. */
   1414 	if (p && !suser(p->p_ucred, &p->p_acflag))
   1415 		priv = 1;
   1416 	if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
   1417 		(void)m_free(m);
   1418 		return(error);
   1419 	}
   1420 	*pktopt = opt;
   1421 	return(0);
   1422 }
   1423 
   1424 /*
   1425  * Set the IP6 multicast options in response to user setsockopt().
   1426  */
   1427 static int
   1428 ip6_setmoptions(optname, im6op, m)
   1429 	int optname;
   1430 	struct ip6_moptions **im6op;
   1431 	struct mbuf *m;
   1432 {
   1433 	int error = 0;
   1434 	u_int loop, ifindex;
   1435 	struct ipv6_mreq *mreq;
   1436 	struct ifnet *ifp;
   1437 	struct ip6_moptions *im6o = *im6op;
   1438 	struct route_in6 ro;
   1439 	struct sockaddr_in6 *dst;
   1440 	struct in6_multi_mship *imm;
   1441 	struct proc *p = curproc;	/* XXX */
   1442 
   1443 	if (im6o == NULL) {
   1444 		/*
   1445 		 * No multicast option buffer attached to the pcb;
   1446 		 * allocate one and initialize to default values.
   1447 		 */
   1448 		im6o = (struct ip6_moptions *)
   1449 			malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
   1450 
   1451 		if (im6o == NULL)
   1452 			return(ENOBUFS);
   1453 		*im6op = im6o;
   1454 		im6o->im6o_multicast_ifp = NULL;
   1455 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   1456 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   1457 		LIST_INIT(&im6o->im6o_memberships);
   1458 	}
   1459 
   1460 	switch (optname) {
   1461 
   1462 	case IPV6_MULTICAST_IF:
   1463 		/*
   1464 		 * Select the interface for outgoing multicast packets.
   1465 		 */
   1466 		if (m == NULL || m->m_len != sizeof(u_int)) {
   1467 			error = EINVAL;
   1468 			break;
   1469 		}
   1470 		ifindex = *(mtod(m, u_int *));
   1471 		if (ifindex < 0 || if_index < ifindex) {
   1472 			error = ENXIO;	/* XXX EINVAL? */
   1473 			break;
   1474 		}
   1475 		ifp = ifindex2ifnet[ifindex];
   1476 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1477 			error = EADDRNOTAVAIL;
   1478 			break;
   1479 		}
   1480 		im6o->im6o_multicast_ifp = ifp;
   1481 		break;
   1482 
   1483 	case IPV6_MULTICAST_HOPS:
   1484 	    {
   1485 		/*
   1486 		 * Set the IP6 hoplimit for outgoing multicast packets.
   1487 		 */
   1488 		int optval;
   1489 		if (m == NULL || m->m_len != sizeof(int)) {
   1490 			error = EINVAL;
   1491 			break;
   1492 		}
   1493 		optval = *(mtod(m, u_int *));
   1494 		if (optval < -1 || optval >= 256)
   1495 			error = EINVAL;
   1496 		else if (optval == -1)
   1497 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   1498 		else
   1499 			im6o->im6o_multicast_hlim = optval;
   1500 		break;
   1501 	    }
   1502 
   1503 	case IPV6_MULTICAST_LOOP:
   1504 		/*
   1505 		 * Set the loopback flag for outgoing multicast packets.
   1506 		 * Must be zero or one.
   1507 		 */
   1508 		if (m == NULL || m->m_len != sizeof(u_int) ||
   1509 		   (loop = *(mtod(m, u_int *))) > 1) {
   1510 			error = EINVAL;
   1511 			break;
   1512 		}
   1513 		im6o->im6o_multicast_loop = loop;
   1514 		break;
   1515 
   1516 	case IPV6_JOIN_GROUP:
   1517 		/*
   1518 		 * Add a multicast group membership.
   1519 		 * Group must be a valid IP6 multicast address.
   1520 		 */
   1521 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   1522 			error = EINVAL;
   1523 			break;
   1524 		}
   1525 		mreq = mtod(m, struct ipv6_mreq *);
   1526 		if (IN6_IS_ADDR_ANY(&mreq->ipv6mr_multiaddr)) {
   1527 			/*
   1528 			 * We use the unspecified address to specify to accept
   1529 			 * all multicast addresses. Only super user is allowed
   1530 			 * to do this.
   1531 			 */
   1532 			if (suser(p->p_ucred, &p->p_acflag)) {
   1533 				error = EACCES;
   1534 				break;
   1535 			}
   1536 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
   1537 			error = EINVAL;
   1538 			break;
   1539 		}
   1540 
   1541 		/*
   1542 		 * If the interface is specified, validate it.
   1543 		 */
   1544 		if (mreq->ipv6mr_interface < 0
   1545 		 || if_index < mreq->ipv6mr_interface) {
   1546 			error = ENXIO;	/* XXX EINVAL? */
   1547 			break;
   1548 		}
   1549 		/*
   1550 		 * If no interface was explicitly specified, choose an
   1551 		 * appropriate one according to the given multicast address.
   1552 		 */
   1553 		if (mreq->ipv6mr_interface == 0) {
   1554 			/*
   1555 			 * If the multicast address is in node-local scope,
   1556 			 * the interface should be a loopback interface.
   1557 			 * Otherwise, look up the routing table for the
   1558 			 * address, and choose the outgoing interface.
   1559 			 *   XXX: is it a good approach?
   1560 			 */
   1561 			if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
   1562 #ifdef __bsdi__
   1563 				ifp = &loif;
   1564 #else
   1565 				ifp = &loif[0];
   1566 #endif
   1567 			}
   1568 			else {
   1569 				ro.ro_rt = NULL;
   1570 				dst = (struct sockaddr_in6 *)&ro.ro_dst;
   1571 				bzero(dst, sizeof(*dst));
   1572 				dst->sin6_len = sizeof(struct sockaddr_in6);
   1573 				dst->sin6_family = AF_INET6;
   1574 				dst->sin6_addr = mreq->ipv6mr_multiaddr;
   1575 				rtalloc((struct route *)&ro);
   1576 				if (ro.ro_rt == NULL) {
   1577 					error = EADDRNOTAVAIL;
   1578 					break;
   1579 				}
   1580 				ifp = ro.ro_rt->rt_ifp;
   1581 				rtfree(ro.ro_rt);
   1582 			}
   1583 		} else
   1584 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   1585 
   1586 		/*
   1587 		 * See if we found an interface, and confirm that it
   1588 		 * supports multicast
   1589 		 */
   1590 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1591 			error = EADDRNOTAVAIL;
   1592 			break;
   1593 		}
   1594 		/*
   1595 		 * Put interface index into the multicast address,
   1596 		 * if the address has link-local scope.
   1597 		 */
   1598 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
   1599 			mreq->ipv6mr_multiaddr.s6_addr16[1]
   1600 				= htons(mreq->ipv6mr_interface);
   1601 		}
   1602 		/*
   1603 		 * See if the membership already exists.
   1604 		 */
   1605 		for (imm = im6o->im6o_memberships.lh_first;
   1606 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   1607 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   1608 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   1609 					       &mreq->ipv6mr_multiaddr))
   1610 				break;
   1611 		if (imm != NULL) {
   1612 			error = EADDRINUSE;
   1613 			break;
   1614 		}
   1615 		/*
   1616 		 * Everything looks good; add a new record to the multicast
   1617 		 * address list for the given interface.
   1618 		 */
   1619 		imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
   1620 		if (imm == NULL) {
   1621 			error = ENOBUFS;
   1622 			break;
   1623 		}
   1624 		if ((imm->i6mm_maddr =
   1625 		     in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
   1626 			free(imm, M_IPMADDR);
   1627 			break;
   1628 		}
   1629 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   1630 		break;
   1631 
   1632 	case IPV6_LEAVE_GROUP:
   1633 		/*
   1634 		 * Drop a multicast group membership.
   1635 		 * Group must be a valid IP6 multicast address.
   1636 		 */
   1637 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   1638 			error = EINVAL;
   1639 			break;
   1640 		}
   1641 		mreq = mtod(m, struct ipv6_mreq *);
   1642 		if (IN6_IS_ADDR_ANY(&mreq->ipv6mr_multiaddr)) {
   1643 			if (suser(p->p_ucred, &p->p_acflag)) {
   1644 				error = EACCES;
   1645 				break;
   1646 			}
   1647 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
   1648 			error = EINVAL;
   1649 			break;
   1650 		}
   1651 		/*
   1652 		 * If an interface address was specified, get a pointer
   1653 		 * to its ifnet structure.
   1654 		 */
   1655 		if (mreq->ipv6mr_interface < 0
   1656 		 || if_index < mreq->ipv6mr_interface) {
   1657 			error = ENXIO;	/* XXX EINVAL? */
   1658 			break;
   1659 		}
   1660 		ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   1661 		/*
   1662 		 * Put interface index into the multicast address,
   1663 		 * if the address has link-local scope.
   1664 		 */
   1665 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
   1666 			mreq->ipv6mr_multiaddr.s6_addr16[1]
   1667 				= htons(mreq->ipv6mr_interface);
   1668 		}
   1669 		/*
   1670 		 * Find the membership in the membership list.
   1671 		 */
   1672 		for (imm = im6o->im6o_memberships.lh_first;
   1673 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   1674 			if ((ifp == NULL ||
   1675 			     imm->i6mm_maddr->in6m_ifp == ifp) &&
   1676 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   1677 					       &mreq->ipv6mr_multiaddr))
   1678 				break;
   1679 		}
   1680 		if (imm == NULL) {
   1681 			/* Unable to resolve interface */
   1682 			error = EADDRNOTAVAIL;
   1683 			break;
   1684 		}
   1685 		/*
   1686 		 * Give up the multicast address record to which the
   1687 		 * membership points.
   1688 		 */
   1689 		LIST_REMOVE(imm, i6mm_chain);
   1690 		in6_delmulti(imm->i6mm_maddr);
   1691 		free(imm, M_IPMADDR);
   1692 		break;
   1693 
   1694 	default:
   1695 		error = EOPNOTSUPP;
   1696 		break;
   1697 	}
   1698 
   1699 	/*
   1700 	 * If all options have default values, no need to keep the mbuf.
   1701 	 */
   1702 	if (im6o->im6o_multicast_ifp == NULL &&
   1703 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   1704 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   1705 	    im6o->im6o_memberships.lh_first == NULL) {
   1706 		free(*im6op, M_IPMOPTS);
   1707 		*im6op = NULL;
   1708 	}
   1709 
   1710 	return(error);
   1711 }
   1712 
   1713 /*
   1714  * Return the IP6 multicast options in response to user getsockopt().
   1715  */
   1716 static int
   1717 ip6_getmoptions(optname, im6o, mp)
   1718 	int optname;
   1719 	register struct ip6_moptions *im6o;
   1720 	register struct mbuf **mp;
   1721 {
   1722 	u_int *hlim, *loop, *ifindex;
   1723 
   1724 	*mp = m_get(M_WAIT, MT_SOOPTS);
   1725 
   1726 	switch (optname) {
   1727 
   1728 	case IPV6_MULTICAST_IF:
   1729 		ifindex = mtod(*mp, u_int *);
   1730 		(*mp)->m_len = sizeof(u_int);
   1731 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
   1732 			*ifindex = 0;
   1733 		else
   1734 			*ifindex = im6o->im6o_multicast_ifp->if_index;
   1735 		return(0);
   1736 
   1737 	case IPV6_MULTICAST_HOPS:
   1738 		hlim = mtod(*mp, u_int *);
   1739 		(*mp)->m_len = sizeof(u_int);
   1740 		if (im6o == NULL)
   1741 			*hlim = ip6_defmcasthlim;
   1742 		else
   1743 			*hlim = im6o->im6o_multicast_hlim;
   1744 		return(0);
   1745 
   1746 	case IPV6_MULTICAST_LOOP:
   1747 		loop = mtod(*mp, u_int *);
   1748 		(*mp)->m_len = sizeof(u_int);
   1749 		if (im6o == NULL)
   1750 			*loop = ip6_defmcasthlim;
   1751 		else
   1752 			*loop = im6o->im6o_multicast_loop;
   1753 		return(0);
   1754 
   1755 	default:
   1756 		return(EOPNOTSUPP);
   1757 	}
   1758 }
   1759 
   1760 /*
   1761  * Discard the IP6 multicast options.
   1762  */
   1763 void
   1764 ip6_freemoptions(im6o)
   1765 	register struct ip6_moptions *im6o;
   1766 {
   1767 	struct in6_multi_mship *imm;
   1768 
   1769 	if (im6o == NULL)
   1770 		return;
   1771 
   1772 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   1773 		LIST_REMOVE(imm, i6mm_chain);
   1774 		if (imm->i6mm_maddr)
   1775 			in6_delmulti(imm->i6mm_maddr);
   1776 		free(imm, M_IPMADDR);
   1777 	}
   1778 	free(im6o, M_IPMOPTS);
   1779 }
   1780 
   1781 /*
   1782  * Set IPv6 outgoing packet options based on advanced API.
   1783  */
   1784 int
   1785 ip6_setpktoptions(control, opt, priv)
   1786 	struct mbuf *control;
   1787 	struct ip6_pktopts *opt;
   1788 	int priv;
   1789 {
   1790 	register struct cmsghdr *cm = 0;
   1791 
   1792 	if (control == 0 || opt == 0)
   1793 		return(EINVAL);
   1794 
   1795 	bzero(opt, sizeof(*opt));
   1796 	opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
   1797 
   1798 	/*
   1799 	 * XXX: Currently, we assume all the optional information is stored
   1800 	 * in a single mbuf.
   1801 	 */
   1802 	if (control->m_next)
   1803 		return(EINVAL);
   1804 
   1805 	opt->ip6po_m = control;
   1806 
   1807 	for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   1808 		     control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   1809 		cm = mtod(control, struct cmsghdr *);
   1810 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   1811 			return(EINVAL);
   1812 		if (cm->cmsg_level != IPPROTO_IPV6)
   1813 			continue;
   1814 
   1815 		switch(cm->cmsg_type) {
   1816 		case IPV6_PKTINFO:
   1817 			if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
   1818 				return(EINVAL);
   1819 			opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
   1820 			if (opt->ip6po_pktinfo->ipi6_ifindex &&
   1821 			    IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
   1822 				opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
   1823 					htons(opt->ip6po_pktinfo->ipi6_ifindex);
   1824 
   1825 			if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
   1826 			 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
   1827 				return(ENXIO);
   1828 			}
   1829 
   1830 			if (!IN6_IS_ADDR_ANY(&opt->ip6po_pktinfo->ipi6_addr)) {
   1831 				struct ifaddr *ia;
   1832 				struct sockaddr_in6 sin6;
   1833 
   1834 				bzero(&sin6, sizeof(sin6));
   1835 				sin6.sin6_len = sizeof(sin6);
   1836 				sin6.sin6_family = AF_INET6;
   1837 				sin6.sin6_addr =
   1838 					opt->ip6po_pktinfo->ipi6_addr;
   1839 				ia = ifa_ifwithaddr(sin6tosa(&sin6));
   1840 				if (ia == NULL ||
   1841 				    (opt->ip6po_pktinfo->ipi6_ifindex &&
   1842 				     (ia->ifa_ifp->if_index !=
   1843 				      opt->ip6po_pktinfo->ipi6_ifindex))) {
   1844 					return(EADDRNOTAVAIL);
   1845 				}
   1846 				/*
   1847 				 * Check if the requested source address is
   1848 				 * indeed a unicast address assigned to the
   1849 				 * node.
   1850 				 */
   1851 				if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
   1852 					return(EADDRNOTAVAIL);
   1853 			}
   1854 			break;
   1855 
   1856 		case IPV6_HOPLIMIT:
   1857 			if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
   1858 				return(EINVAL);
   1859 
   1860 			opt->ip6po_hlim = *(int *)CMSG_DATA(cm);
   1861 			if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
   1862 				return(EINVAL);
   1863 			break;
   1864 
   1865 		case IPV6_NEXTHOP:
   1866 			if (!priv)
   1867 				return(EPERM);
   1868 			if (cm->cmsg_len < sizeof(u_char) ||
   1869 			    cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
   1870 				return(EINVAL);
   1871 
   1872 			opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
   1873 
   1874 			break;
   1875 
   1876 		case IPV6_HOPOPTS:
   1877 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
   1878 				return(EINVAL);
   1879 			opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
   1880 			if (cm->cmsg_len !=
   1881 			    CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
   1882 				return(EINVAL);
   1883 			break;
   1884 
   1885 		case IPV6_DSTOPTS:
   1886 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
   1887 				return(EINVAL);
   1888 
   1889 			/*
   1890 			 * If there is no routing header yet, the destination
   1891 			 * options header should be put on the 1st part.
   1892 			 * Otherwise, the header should be on the 2nd part.
   1893 			 * (See RFC 2460, section 4.1)
   1894 			 */
   1895 			if (opt->ip6po_rthdr == NULL) {
   1896 				opt->ip6po_dest1 =
   1897 					(struct ip6_dest *)CMSG_DATA(cm);
   1898 				if (cm->cmsg_len !=
   1899 				    CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
   1900 					     << 3))
   1901 					return(EINVAL);
   1902 			}
   1903 			else {
   1904 				opt->ip6po_dest2 =
   1905 					(struct ip6_dest *)CMSG_DATA(cm);
   1906 				if (cm->cmsg_len !=
   1907 				    CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
   1908 					     << 3))
   1909 					return(EINVAL);
   1910 			}
   1911 			break;
   1912 
   1913 		case IPV6_RTHDR:
   1914 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
   1915 				return(EINVAL);
   1916 			opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
   1917 			if (cm->cmsg_len !=
   1918 			    CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
   1919 				return(EINVAL);
   1920 			switch(opt->ip6po_rthdr->ip6r_type) {
   1921 			case IPV6_RTHDR_TYPE_0:
   1922 				if (opt->ip6po_rthdr->ip6r_segleft == 0)
   1923 					return(EINVAL);
   1924 				break;
   1925 			default:
   1926 				return(EINVAL);
   1927 			}
   1928 			break;
   1929 
   1930 		default:
   1931 			return(ENOPROTOOPT);
   1932 		}
   1933 	}
   1934 
   1935 	return(0);
   1936 }
   1937 
   1938 /*
   1939  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   1940  * packet to the input queue of a specified interface.  Note that this
   1941  * calls the output routine of the loopback "driver", but with an interface
   1942  * pointer that might NOT be &loif -- easier than replicating that code here.
   1943  */
   1944 void
   1945 ip6_mloopback(ifp, m, dst)
   1946 	struct ifnet *ifp;
   1947 	register struct mbuf *m;
   1948 	register struct sockaddr_in6 *dst;
   1949 {
   1950 	struct	mbuf *copym;
   1951 
   1952 	copym = m_copy(m, 0, M_COPYALL);
   1953 	if (copym != NULL)
   1954 		(void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
   1955 }
   1956 
   1957 /*
   1958  * Chop IPv6 header off from the payload.
   1959  */
   1960 static int
   1961 ip6_splithdr(m, exthdrs)
   1962 	struct mbuf *m;
   1963 	struct ip6_exthdrs *exthdrs;
   1964 {
   1965 	struct mbuf *mh;
   1966 	struct ip6_hdr *ip6;
   1967 
   1968 	ip6 = mtod(m, struct ip6_hdr *);
   1969 	if (m->m_len > sizeof(*ip6)) {
   1970 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   1971 		if (mh == 0) {
   1972 			m_freem(m);
   1973 			return ENOBUFS;
   1974 		}
   1975 		M_COPY_PKTHDR(mh, m);
   1976 		MH_ALIGN(mh, sizeof(*ip6));
   1977 		m->m_flags &= ~M_PKTHDR;
   1978 		m->m_len -= sizeof(*ip6);
   1979 		m->m_data += sizeof(*ip6);
   1980 		mh->m_next = m;
   1981 		m = mh;
   1982 		m->m_len = sizeof(*ip6);
   1983 		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
   1984 	}
   1985 	exthdrs->ip6e_ip6 = m;
   1986 	return 0;
   1987 }
   1988 
   1989 /*
   1990  * Compute IPv6 extension header length.
   1991  */
   1992 int
   1993 ip6_optlen(in6p)
   1994 	struct in6pcb *in6p;
   1995 {
   1996 	int len;
   1997 
   1998 	if (!in6p->in6p_outputopts)
   1999 		return 0;
   2000 
   2001 	len = 0;
   2002 #define elen(x) \
   2003     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   2004 
   2005 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   2006 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   2007 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   2008 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   2009 	return len;
   2010 #undef elen
   2011 }
   2012