ip6_output.c revision 1.20 1 /* $NetBSD: ip6_output.c,v 1.20 2000/05/19 04:34:43 thorpej Exp $ */
2 /* $KAME: ip6_output.c,v 1.102 2000/05/17 15:31:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
66 */
67
68 #include "opt_inet.h"
69 #include "opt_ipsec.h"
70 #include "opt_pfil_hooks.h"
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81
82 #include <net/if.h>
83 #include <net/route.h>
84 #ifdef PFIL_HOOKS
85 #include <net/pfil.h>
86 #endif
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/icmp6.h>
92 #include <netinet6/ip6_var.h>
93 #include <netinet6/in6_pcb.h>
94 #include <netinet6/nd6.h>
95
96 #ifdef IPSEC
97 #include <netinet6/ipsec.h>
98 #include <netkey/key.h>
99 #include <netkey/key_debug.h>
100 #endif /* IPSEC */
101
102 #include "loop.h"
103
104 #include <net/net_osdep.h>
105
106 #ifdef IPV6FIREWALL
107 #include <netinet6/ip6_fw.h>
108 #endif
109
110 struct ip6_exthdrs {
111 struct mbuf *ip6e_ip6;
112 struct mbuf *ip6e_hbh;
113 struct mbuf *ip6e_dest1;
114 struct mbuf *ip6e_rthdr;
115 struct mbuf *ip6e_dest2;
116 };
117
118 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
119 struct socket *));
120 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
121 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
122 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
123 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
124 struct ip6_frag **));
125 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
126 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
127
128 extern struct ifnet loif[NLOOP];
129
130 /*
131 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
132 * header (with pri, len, nxt, hlim, src, dst).
133 * This function may modify ver and hlim only.
134 * The mbuf chain containing the packet will be freed.
135 * The mbuf opt, if present, will not be freed.
136 */
137 int
138 ip6_output(m0, opt, ro, flags, im6o, ifpp)
139 struct mbuf *m0;
140 struct ip6_pktopts *opt;
141 struct route_in6 *ro;
142 int flags;
143 struct ip6_moptions *im6o;
144 struct ifnet **ifpp; /* XXX: just for statistics */
145 {
146 struct ip6_hdr *ip6, *mhip6;
147 struct ifnet *ifp, *origifp;
148 struct mbuf *m = m0;
149 int hlen, tlen, len, off;
150 struct route_in6 ip6route;
151 struct sockaddr_in6 *dst;
152 int error = 0;
153 struct in6_ifaddr *ia;
154 u_long mtu;
155 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
156 struct ip6_exthdrs exthdrs;
157 struct in6_addr finaldst;
158 struct route_in6 *ro_pmtu = NULL;
159 int hdrsplit = 0;
160 int needipsec = 0;
161 #ifdef PFIL_HOOKS
162 struct packet_filter_hook *pfh;
163 struct mbuf *m1;
164 int rv;
165 #endif /* PFIL_HOOKS */
166 #ifdef IPSEC
167 int needipsectun = 0;
168 struct socket *so;
169 struct secpolicy *sp = NULL;
170
171 /* for AH processing. stupid to have "socket" variable in IP layer... */
172 so = ipsec_getsocket(m);
173 ipsec_setsocket(m, NULL);
174 ip6 = mtod(m, struct ip6_hdr *);
175 #endif /* IPSEC */
176
177 #define MAKE_EXTHDR(hp,mp) \
178 { \
179 if (hp) { \
180 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
181 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
182 ((eh)->ip6e_len + 1) << 3); \
183 if (error) \
184 goto freehdrs; \
185 } \
186 }
187
188 bzero(&exthdrs, sizeof(exthdrs));
189 if (opt) {
190 /* Hop-by-Hop options header */
191 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
192 /* Destination options header(1st part) */
193 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
194 /* Routing header */
195 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
196 /* Destination options header(2nd part) */
197 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
198 }
199
200 #ifdef IPSEC
201 /* get a security policy for this packet */
202 if (so == NULL)
203 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
204 else
205 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
206
207 if (sp == NULL) {
208 ipsec6stat.out_inval++;
209 goto bad;
210 }
211
212 error = 0;
213
214 /* check policy */
215 switch (sp->policy) {
216 case IPSEC_POLICY_DISCARD:
217 /*
218 * This packet is just discarded.
219 */
220 ipsec6stat.out_polvio++;
221 goto bad;
222
223 case IPSEC_POLICY_BYPASS:
224 case IPSEC_POLICY_NONE:
225 /* no need to do IPsec. */
226 needipsec = 0;
227 break;
228
229 case IPSEC_POLICY_IPSEC:
230 if (sp->req == NULL) {
231 /* XXX should be panic ? */
232 printf("ip6_output: No IPsec request specified.\n");
233 error = EINVAL;
234 goto bad;
235 }
236 needipsec = 1;
237 break;
238
239 case IPSEC_POLICY_ENTRUST:
240 default:
241 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
242 }
243 #endif /* IPSEC */
244
245 /*
246 * Calculate the total length of the extension header chain.
247 * Keep the length of the unfragmentable part for fragmentation.
248 */
249 optlen = 0;
250 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
251 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
252 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
253 unfragpartlen = optlen + sizeof(struct ip6_hdr);
254 /* NOTE: we don't add AH/ESP length here. do that later. */
255 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
256
257 /*
258 * If we need IPsec, or there is at least one extension header,
259 * separate IP6 header from the payload.
260 */
261 if ((needipsec || optlen) && !hdrsplit) {
262 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
263 m = NULL;
264 goto freehdrs;
265 }
266 m = exthdrs.ip6e_ip6;
267 hdrsplit++;
268 }
269
270 /* adjust pointer */
271 ip6 = mtod(m, struct ip6_hdr *);
272
273 /* adjust mbuf packet header length */
274 m->m_pkthdr.len += optlen;
275 plen = m->m_pkthdr.len - sizeof(*ip6);
276
277 /* If this is a jumbo payload, insert a jumbo payload option. */
278 if (plen > IPV6_MAXPACKET) {
279 if (!hdrsplit) {
280 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
281 m = NULL;
282 goto freehdrs;
283 }
284 m = exthdrs.ip6e_ip6;
285 hdrsplit++;
286 }
287 /* adjust pointer */
288 ip6 = mtod(m, struct ip6_hdr *);
289 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
290 goto freehdrs;
291 ip6->ip6_plen = 0;
292 } else
293 ip6->ip6_plen = htons(plen);
294
295 /*
296 * Concatenate headers and fill in next header fields.
297 * Here we have, on "m"
298 * IPv6 payload
299 * and we insert headers accordingly. Finally, we should be getting:
300 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
301 *
302 * during the header composing process, "m" points to IPv6 header.
303 * "mprev" points to an extension header prior to esp.
304 */
305 {
306 u_char *nexthdrp = &ip6->ip6_nxt;
307 struct mbuf *mprev = m;
308
309 /*
310 * we treat dest2 specially. this makes IPsec processing
311 * much easier.
312 *
313 * result: IPv6 dest2 payload
314 * m and mprev will point to IPv6 header.
315 */
316 if (exthdrs.ip6e_dest2) {
317 if (!hdrsplit)
318 panic("assumption failed: hdr not split");
319 exthdrs.ip6e_dest2->m_next = m->m_next;
320 m->m_next = exthdrs.ip6e_dest2;
321 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
322 ip6->ip6_nxt = IPPROTO_DSTOPTS;
323 }
324
325 #define MAKE_CHAIN(m,mp,p,i)\
326 {\
327 if (m) {\
328 if (!hdrsplit) \
329 panic("assumption failed: hdr not split"); \
330 *mtod((m), u_char *) = *(p);\
331 *(p) = (i);\
332 p = mtod((m), u_char *);\
333 (m)->m_next = (mp)->m_next;\
334 (mp)->m_next = (m);\
335 (mp) = (m);\
336 }\
337 }
338 /*
339 * result: IPv6 hbh dest1 rthdr dest2 payload
340 * m will point to IPv6 header. mprev will point to the
341 * extension header prior to dest2 (rthdr in the above case).
342 */
343 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
344 nexthdrp, IPPROTO_HOPOPTS);
345 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
346 nexthdrp, IPPROTO_DSTOPTS);
347 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
348 nexthdrp, IPPROTO_ROUTING);
349
350 #ifdef IPSEC
351 if (!needipsec)
352 goto skip_ipsec2;
353
354 /*
355 * pointers after IPsec headers are not valid any more.
356 * other pointers need a great care too.
357 * (IPsec routines should not mangle mbufs prior to AH/ESP)
358 */
359 exthdrs.ip6e_dest2 = NULL;
360
361 {
362 struct ip6_rthdr *rh = NULL;
363 int segleft_org = 0;
364 struct ipsec_output_state state;
365
366 if (exthdrs.ip6e_rthdr) {
367 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
368 segleft_org = rh->ip6r_segleft;
369 rh->ip6r_segleft = 0;
370 }
371
372 bzero(&state, sizeof(state));
373 state.m = m;
374 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
375 &needipsectun);
376 m = state.m;
377 if (error) {
378 /* mbuf is already reclaimed in ipsec6_output_trans. */
379 m = NULL;
380 switch (error) {
381 case EHOSTUNREACH:
382 case ENETUNREACH:
383 case EMSGSIZE:
384 case ENOBUFS:
385 case ENOMEM:
386 break;
387 default:
388 printf("ip6_output (ipsec): error code %d\n", error);
389 /*fall through*/
390 case ENOENT:
391 /* don't show these error codes to the user */
392 error = 0;
393 break;
394 }
395 goto bad;
396 }
397 if (exthdrs.ip6e_rthdr) {
398 /* ah6_output doesn't modify mbuf chain */
399 rh->ip6r_segleft = segleft_org;
400 }
401 }
402 skip_ipsec2:;
403 #endif
404 }
405
406 /*
407 * If there is a routing header, replace destination address field
408 * with the first hop of the routing header.
409 */
410 if (exthdrs.ip6e_rthdr) {
411 struct ip6_rthdr *rh =
412 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
413 struct ip6_rthdr *));
414 struct ip6_rthdr0 *rh0;
415
416 finaldst = ip6->ip6_dst;
417 switch(rh->ip6r_type) {
418 case IPV6_RTHDR_TYPE_0:
419 rh0 = (struct ip6_rthdr0 *)rh;
420 ip6->ip6_dst = rh0->ip6r0_addr[0];
421 bcopy((caddr_t)&rh0->ip6r0_addr[1],
422 (caddr_t)&rh0->ip6r0_addr[0],
423 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1)
424 );
425 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
426 break;
427 default: /* is it possible? */
428 error = EINVAL;
429 goto bad;
430 }
431 }
432
433 /* Source address validation */
434 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
435 (flags & IPV6_DADOUTPUT) == 0) {
436 error = EOPNOTSUPP;
437 ip6stat.ip6s_badscope++;
438 goto bad;
439 }
440 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
441 error = EOPNOTSUPP;
442 ip6stat.ip6s_badscope++;
443 goto bad;
444 }
445
446 ip6stat.ip6s_localout++;
447
448 /*
449 * Route packet.
450 */
451 if (ro == 0) {
452 ro = &ip6route;
453 bzero((caddr_t)ro, sizeof(*ro));
454 }
455 ro_pmtu = ro;
456 if (opt && opt->ip6po_rthdr)
457 ro = &opt->ip6po_route;
458 dst = (struct sockaddr_in6 *)&ro->ro_dst;
459 /*
460 * If there is a cached route,
461 * check that it is to the same destination
462 * and is still up. If not, free it and try again.
463 */
464 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
465 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
466 RTFREE(ro->ro_rt);
467 ro->ro_rt = (struct rtentry *)0;
468 }
469 if (ro->ro_rt == 0) {
470 bzero(dst, sizeof(*dst));
471 dst->sin6_family = AF_INET6;
472 dst->sin6_len = sizeof(struct sockaddr_in6);
473 dst->sin6_addr = ip6->ip6_dst;
474 }
475 #ifdef IPSEC
476 if (needipsec && needipsectun) {
477 struct ipsec_output_state state;
478
479 /*
480 * All the extension headers will become inaccessible
481 * (since they can be encrypted).
482 * Don't panic, we need no more updates to extension headers
483 * on inner IPv6 packet (since they are now encapsulated).
484 *
485 * IPv6 [ESP|AH] IPv6 [extension headers] payload
486 */
487 bzero(&exthdrs, sizeof(exthdrs));
488 exthdrs.ip6e_ip6 = m;
489
490 bzero(&state, sizeof(state));
491 state.m = m;
492 state.ro = (struct route *)ro;
493 state.dst = (struct sockaddr *)dst;
494
495 error = ipsec6_output_tunnel(&state, sp, flags);
496
497 m = state.m;
498 ro = (struct route_in6 *)state.ro;
499 dst = (struct sockaddr_in6 *)state.dst;
500 if (error) {
501 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
502 m0 = m = NULL;
503 m = NULL;
504 switch (error) {
505 case EHOSTUNREACH:
506 case ENETUNREACH:
507 case EMSGSIZE:
508 case ENOBUFS:
509 case ENOMEM:
510 break;
511 default:
512 printf("ip6_output (ipsec): error code %d\n", error);
513 /*fall through*/
514 case ENOENT:
515 /* don't show these error codes to the user */
516 error = 0;
517 break;
518 }
519 goto bad;
520 }
521
522 exthdrs.ip6e_ip6 = m;
523 }
524 #endif /*IPSEC*/
525
526 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
527 /* Unicast */
528
529 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
530 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
531 /* xxx
532 * interface selection comes here
533 * if an interface is specified from an upper layer,
534 * ifp must point it.
535 */
536 if (ro->ro_rt == 0) {
537 /*
538 * non-bsdi always clone routes, if parent is
539 * PRF_CLONING.
540 */
541 rtalloc((struct route *)ro);
542 }
543 if (ro->ro_rt == 0) {
544 ip6stat.ip6s_noroute++;
545 error = EHOSTUNREACH;
546 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
547 goto bad;
548 }
549 ia = ifatoia6(ro->ro_rt->rt_ifa);
550 ifp = ro->ro_rt->rt_ifp;
551 ro->ro_rt->rt_use++;
552 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
553 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
554 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
555
556 in6_ifstat_inc(ifp, ifs6_out_request);
557
558 /*
559 * Check if the outgoing interface conflicts with
560 * the interface specified by ifi6_ifindex (if specified).
561 * Note that loopback interface is always okay.
562 * (this may happen when we are sending a packet to one of
563 * our own addresses.)
564 */
565 if (opt && opt->ip6po_pktinfo
566 && opt->ip6po_pktinfo->ipi6_ifindex) {
567 if (!(ifp->if_flags & IFF_LOOPBACK)
568 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
569 ip6stat.ip6s_noroute++;
570 in6_ifstat_inc(ifp, ifs6_out_discard);
571 error = EHOSTUNREACH;
572 goto bad;
573 }
574 }
575
576 if (opt && opt->ip6po_hlim != -1)
577 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
578 } else {
579 /* Multicast */
580 struct in6_multi *in6m;
581
582 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
583
584 /*
585 * See if the caller provided any multicast options
586 */
587 ifp = NULL;
588 if (im6o != NULL) {
589 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
590 if (im6o->im6o_multicast_ifp != NULL)
591 ifp = im6o->im6o_multicast_ifp;
592 } else
593 ip6->ip6_hlim = ip6_defmcasthlim;
594
595 /*
596 * See if the caller provided the outgoing interface
597 * as an ancillary data.
598 * Boundary check for ifindex is assumed to be already done.
599 */
600 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
601 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
602
603 /*
604 * If the destination is a node-local scope multicast,
605 * the packet should be loop-backed only.
606 */
607 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
608 /*
609 * If the outgoing interface is already specified,
610 * it should be a loopback interface.
611 */
612 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
613 ip6stat.ip6s_badscope++;
614 error = ENETUNREACH; /* XXX: better error? */
615 /* XXX correct ifp? */
616 in6_ifstat_inc(ifp, ifs6_out_discard);
617 goto bad;
618 } else {
619 ifp = &loif[0];
620 }
621 }
622
623 if (opt && opt->ip6po_hlim != -1)
624 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
625
626 /*
627 * If caller did not provide an interface lookup a
628 * default in the routing table. This is either a
629 * default for the speicfied group (i.e. a host
630 * route), or a multicast default (a route for the
631 * ``net'' ff00::/8).
632 */
633 if (ifp == NULL) {
634 if (ro->ro_rt == 0) {
635 ro->ro_rt = rtalloc1((struct sockaddr *)
636 &ro->ro_dst, 0
637 );
638 }
639 if (ro->ro_rt == 0) {
640 ip6stat.ip6s_noroute++;
641 error = EHOSTUNREACH;
642 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
643 goto bad;
644 }
645 ia = ifatoia6(ro->ro_rt->rt_ifa);
646 ifp = ro->ro_rt->rt_ifp;
647 ro->ro_rt->rt_use++;
648 }
649
650 if ((flags & IPV6_FORWARDING) == 0)
651 in6_ifstat_inc(ifp, ifs6_out_request);
652 in6_ifstat_inc(ifp, ifs6_out_mcast);
653
654 /*
655 * Confirm that the outgoing interface supports multicast.
656 */
657 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
658 ip6stat.ip6s_noroute++;
659 in6_ifstat_inc(ifp, ifs6_out_discard);
660 error = ENETUNREACH;
661 goto bad;
662 }
663 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
664 if (in6m != NULL &&
665 (im6o == NULL || im6o->im6o_multicast_loop)) {
666 /*
667 * If we belong to the destination multicast group
668 * on the outgoing interface, and the caller did not
669 * forbid loopback, loop back a copy.
670 */
671 ip6_mloopback(ifp, m, dst);
672 } else {
673 /*
674 * If we are acting as a multicast router, perform
675 * multicast forwarding as if the packet had just
676 * arrived on the interface to which we are about
677 * to send. The multicast forwarding function
678 * recursively calls this function, using the
679 * IPV6_FORWARDING flag to prevent infinite recursion.
680 *
681 * Multicasts that are looped back by ip6_mloopback(),
682 * above, will be forwarded by the ip6_input() routine,
683 * if necessary.
684 */
685 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
686 if (ip6_mforward(ip6, ifp, m) != 0) {
687 m_freem(m);
688 goto done;
689 }
690 }
691 }
692 /*
693 * Multicasts with a hoplimit of zero may be looped back,
694 * above, but must not be transmitted on a network.
695 * Also, multicasts addressed to the loopback interface
696 * are not sent -- the above call to ip6_mloopback() will
697 * loop back a copy if this host actually belongs to the
698 * destination group on the loopback interface.
699 */
700 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
701 m_freem(m);
702 goto done;
703 }
704 }
705
706 /*
707 * Fill the outgoing inteface to tell the upper layer
708 * to increment per-interface statistics.
709 */
710 if (ifpp)
711 *ifpp = ifp;
712
713 /*
714 * Determine path MTU.
715 */
716 if (ro_pmtu != ro) {
717 /* The first hop and the final destination may differ. */
718 struct sockaddr_in6 *sin6_fin =
719 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
720 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
721 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
722 &finaldst))) {
723 RTFREE(ro_pmtu->ro_rt);
724 ro_pmtu->ro_rt = (struct rtentry *)0;
725 }
726 if (ro_pmtu->ro_rt == 0) {
727 bzero(sin6_fin, sizeof(*sin6_fin));
728 sin6_fin->sin6_family = AF_INET6;
729 sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
730 sin6_fin->sin6_addr = finaldst;
731
732 rtalloc((struct route *)ro_pmtu);
733 }
734 }
735 if (ro_pmtu->ro_rt != NULL) {
736 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
737
738 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
739 if (mtu > ifmtu) {
740 /*
741 * The MTU on the route is larger than the MTU on
742 * the interface! This shouldn't happen, unless the
743 * MTU of the interface has been changed after the
744 * interface was brought up. Change the MTU in the
745 * route to match the interface MTU (as long as the
746 * field isn't locked).
747 */
748 mtu = ifmtu;
749 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
750 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
751 }
752 } else {
753 mtu = nd_ifinfo[ifp->if_index].linkmtu;
754 }
755
756 /* Fake scoped addresses */
757 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
758 /*
759 * If source or destination address is a scoped address, and
760 * the packet is going to be sent to a loopback interface,
761 * we should keep the original interface.
762 */
763
764 /*
765 * XXX: this is a very experimental and temporary solution.
766 * We eventually have sockaddr_in6 and use the sin6_scope_id
767 * field of the structure here.
768 * We rely on the consistency between two scope zone ids
769 * of source add destination, which should already be assured
770 * Larger scopes than link will be supported in the near
771 * future.
772 */
773 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
774 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
775 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
776 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
777 else
778 origifp = ifp;
779 }
780 else
781 origifp = ifp;
782 #ifndef FAKE_LOOPBACK_IF
783 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
784 #else
785 if (1)
786 #endif
787 {
788 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
789 ip6->ip6_src.s6_addr16[1] = 0;
790 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
791 ip6->ip6_dst.s6_addr16[1] = 0;
792 }
793
794 /*
795 * If the outgoing packet contains a hop-by-hop options header,
796 * it must be examined and processed even by the source node.
797 * (RFC 2460, section 4.)
798 */
799 if (exthdrs.ip6e_hbh) {
800 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh,
801 struct ip6_hbh *);
802 u_int32_t dummy1; /* XXX unused */
803 u_int32_t dummy2; /* XXX unused */
804
805 /*
806 * XXX: if we have to send an ICMPv6 error to the sender,
807 * we need the M_LOOP flag since icmp6_error() expects
808 * the IPv6 and the hop-by-hop options header are
809 * continuous unless the flag is set.
810 */
811 m->m_flags |= M_LOOP;
812 m->m_pkthdr.rcvif = ifp;
813 if (ip6_process_hopopts(m,
814 (u_int8_t *)(hbh + 1),
815 ((hbh->ip6h_len + 1) << 3) -
816 sizeof(struct ip6_hbh),
817 &dummy1, &dummy2) < 0) {
818 /* m was already freed at this point */
819 error = EINVAL;/* better error? */
820 goto done;
821 }
822 m->m_flags &= ~M_LOOP; /* XXX */
823 m->m_pkthdr.rcvif = NULL;
824 }
825
826 #ifdef PFIL_HOOKS
827 /*
828 * Run through list of hooks for output packets.
829 */
830 m1 = m;
831 pfh = pfil_hook_get(PFIL_OUT, &inetsw[ip_protox[IPPROTO_IPV6]].pr_pfh);
832 for (; pfh; pfh = pfh->pfil_link.tqe_next)
833 if (pfh->pfil_func) {
834 rv = pfh->pfil_func(ip6, sizeof(*ip6), ifp, 1, &m1);
835 if (rv) {
836 error = EHOSTUNREACH;
837 goto done;
838 }
839 m = m1;
840 if (m == NULL)
841 goto done;
842 ip6 = mtod(m, struct ip6_hdr *);
843 }
844 #endif /* PFIL_HOOKS */
845 /*
846 * Send the packet to the outgoing interface.
847 * If necessary, do IPv6 fragmentation before sending.
848 */
849 tlen = m->m_pkthdr.len;
850 if (tlen <= mtu
851 #ifdef notyet
852 /*
853 * On any link that cannot convey a 1280-octet packet in one piece,
854 * link-specific fragmentation and reassembly must be provided at
855 * a layer below IPv6. [RFC 2460, sec.5]
856 * Thus if the interface has ability of link-level fragmentation,
857 * we can just send the packet even if the packet size is
858 * larger than the link's MTU.
859 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
860 */
861
862 || ifp->if_flags & IFF_FRAGMENTABLE
863 #endif
864 )
865 {
866 #ifdef IFA_STATS
867 if (IFA_STATS) {
868 struct in6_ifaddr *ia6;
869 ip6 = mtod(m, struct ip6_hdr *);
870 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
871 if (ia6) {
872 ia->ia_ifa.ifa_data.ifad_outbytes +=
873 m->m_pkthdr.len;
874 }
875 }
876 #endif
877 #ifdef OLDIP6OUTPUT
878 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst,
879 ro->ro_rt);
880 #else
881 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
882 #endif
883 goto done;
884 } else if (mtu < IPV6_MMTU) {
885 /*
886 * note that path MTU is never less than IPV6_MMTU
887 * (see icmp6_input).
888 */
889 error = EMSGSIZE;
890 in6_ifstat_inc(ifp, ifs6_out_fragfail);
891 goto bad;
892 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
893 error = EMSGSIZE;
894 in6_ifstat_inc(ifp, ifs6_out_fragfail);
895 goto bad;
896 } else {
897 struct mbuf **mnext, *m_frgpart;
898 struct ip6_frag *ip6f;
899 u_int32_t id = htonl(ip6_id++);
900 u_char nextproto;
901
902 /*
903 * Too large for the destination or interface;
904 * fragment if possible.
905 * Must be able to put at least 8 bytes per fragment.
906 */
907 hlen = unfragpartlen;
908 if (mtu > IPV6_MAXPACKET)
909 mtu = IPV6_MAXPACKET;
910 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
911 if (len < 8) {
912 error = EMSGSIZE;
913 in6_ifstat_inc(ifp, ifs6_out_fragfail);
914 goto bad;
915 }
916
917 mnext = &m->m_nextpkt;
918
919 /*
920 * Change the next header field of the last header in the
921 * unfragmentable part.
922 */
923 if (exthdrs.ip6e_rthdr) {
924 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
925 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
926 } else if (exthdrs.ip6e_dest1) {
927 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
928 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
929 } else if (exthdrs.ip6e_hbh) {
930 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
931 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
932 } else {
933 nextproto = ip6->ip6_nxt;
934 ip6->ip6_nxt = IPPROTO_FRAGMENT;
935 }
936
937 /*
938 * Loop through length of segment after first fragment,
939 * make new header and copy data of each part and link onto chain.
940 */
941 m0 = m;
942 for (off = hlen; off < tlen; off += len) {
943 MGETHDR(m, M_DONTWAIT, MT_HEADER);
944 if (!m) {
945 error = ENOBUFS;
946 ip6stat.ip6s_odropped++;
947 goto sendorfree;
948 }
949 m->m_flags = m0->m_flags & M_COPYFLAGS;
950 *mnext = m;
951 mnext = &m->m_nextpkt;
952 m->m_data += max_linkhdr;
953 mhip6 = mtod(m, struct ip6_hdr *);
954 *mhip6 = *ip6;
955 m->m_len = sizeof(*mhip6);
956 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
957 if (error) {
958 ip6stat.ip6s_odropped++;
959 goto sendorfree;
960 }
961 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
962 if (off + len >= tlen)
963 len = tlen - off;
964 else
965 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
966 mhip6->ip6_plen = htons((u_short)(len + hlen +
967 sizeof(*ip6f) -
968 sizeof(struct ip6_hdr)));
969 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
970 error = ENOBUFS;
971 ip6stat.ip6s_odropped++;
972 goto sendorfree;
973 }
974 m_cat(m, m_frgpart);
975 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
976 m->m_pkthdr.rcvif = (struct ifnet *)0;
977 ip6f->ip6f_reserved = 0;
978 ip6f->ip6f_ident = id;
979 ip6f->ip6f_nxt = nextproto;
980 ip6stat.ip6s_ofragments++;
981 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
982 }
983
984 in6_ifstat_inc(ifp, ifs6_out_fragok);
985 }
986
987 /*
988 * Remove leading garbages.
989 */
990 sendorfree:
991 m = m0->m_nextpkt;
992 m0->m_nextpkt = 0;
993 m_freem(m0);
994 for (m0 = m; m; m = m0) {
995 m0 = m->m_nextpkt;
996 m->m_nextpkt = 0;
997 if (error == 0) {
998 #ifdef IFA_STATS
999 if (IFA_STATS) {
1000 struct in6_ifaddr *ia6;
1001 ip6 = mtod(m, struct ip6_hdr *);
1002 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1003 if (ia6) {
1004 ia->ia_ifa.ifa_data.ifad_outbytes +=
1005 m->m_pkthdr.len;
1006 }
1007 }
1008 #endif
1009 #ifdef OLDIP6OUTPUT
1010 error = (*ifp->if_output)(ifp, m,
1011 (struct sockaddr *)dst,
1012 ro->ro_rt);
1013 #else
1014 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1015 #endif
1016 } else
1017 m_freem(m);
1018 }
1019
1020 if (error == 0)
1021 ip6stat.ip6s_fragmented++;
1022
1023 done:
1024 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1025 RTFREE(ro->ro_rt);
1026 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1027 RTFREE(ro_pmtu->ro_rt);
1028 }
1029
1030 #ifdef IPSEC
1031 if (sp != NULL)
1032 key_freesp(sp);
1033 #endif /* IPSEC */
1034
1035 return(error);
1036
1037 freehdrs:
1038 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1039 m_freem(exthdrs.ip6e_dest1);
1040 m_freem(exthdrs.ip6e_rthdr);
1041 m_freem(exthdrs.ip6e_dest2);
1042 /* fall through */
1043 bad:
1044 m_freem(m);
1045 goto done;
1046 }
1047
1048 static int
1049 ip6_copyexthdr(mp, hdr, hlen)
1050 struct mbuf **mp;
1051 caddr_t hdr;
1052 int hlen;
1053 {
1054 struct mbuf *m;
1055
1056 if (hlen > MCLBYTES)
1057 return(ENOBUFS); /* XXX */
1058
1059 MGET(m, M_DONTWAIT, MT_DATA);
1060 if (!m)
1061 return(ENOBUFS);
1062
1063 if (hlen > MLEN) {
1064 MCLGET(m, M_DONTWAIT);
1065 if ((m->m_flags & M_EXT) == 0) {
1066 m_free(m);
1067 return(ENOBUFS);
1068 }
1069 }
1070 m->m_len = hlen;
1071 if (hdr)
1072 bcopy(hdr, mtod(m, caddr_t), hlen);
1073
1074 *mp = m;
1075 return(0);
1076 }
1077
1078 /*
1079 * Insert jumbo payload option.
1080 */
1081 static int
1082 ip6_insert_jumboopt(exthdrs, plen)
1083 struct ip6_exthdrs *exthdrs;
1084 u_int32_t plen;
1085 {
1086 struct mbuf *mopt;
1087 u_char *optbuf;
1088
1089 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1090
1091 /*
1092 * If there is no hop-by-hop options header, allocate new one.
1093 * If there is one but it doesn't have enough space to store the
1094 * jumbo payload option, allocate a cluster to store the whole options.
1095 * Otherwise, use it to store the options.
1096 */
1097 if (exthdrs->ip6e_hbh == 0) {
1098 MGET(mopt, M_DONTWAIT, MT_DATA);
1099 if (mopt == 0)
1100 return(ENOBUFS);
1101 mopt->m_len = JUMBOOPTLEN;
1102 optbuf = mtod(mopt, u_char *);
1103 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1104 exthdrs->ip6e_hbh = mopt;
1105 } else {
1106 struct ip6_hbh *hbh;
1107
1108 mopt = exthdrs->ip6e_hbh;
1109 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1110 caddr_t oldoptp = mtod(mopt, caddr_t);
1111 int oldoptlen = mopt->m_len;
1112
1113 if (mopt->m_flags & M_EXT)
1114 return(ENOBUFS); /* XXX */
1115 MCLGET(mopt, M_DONTWAIT);
1116 if ((mopt->m_flags & M_EXT) == 0)
1117 return(ENOBUFS);
1118
1119 bcopy(oldoptp, mtod(mopt, caddr_t), oldoptlen);
1120 optbuf = mtod(mopt, caddr_t) + oldoptlen;
1121 mopt->m_len = oldoptlen + JUMBOOPTLEN;
1122 } else {
1123 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1124 mopt->m_len += JUMBOOPTLEN;
1125 }
1126 optbuf[0] = IP6OPT_PADN;
1127 optbuf[1] = 1;
1128
1129 /*
1130 * Adjust the header length according to the pad and
1131 * the jumbo payload option.
1132 */
1133 hbh = mtod(mopt, struct ip6_hbh *);
1134 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1135 }
1136
1137 /* fill in the option. */
1138 optbuf[2] = IP6OPT_JUMBO;
1139 optbuf[3] = 4;
1140 *(u_int32_t *)&optbuf[4] = htonl(plen + JUMBOOPTLEN);
1141
1142 /* finally, adjust the packet header length */
1143 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1144
1145 return(0);
1146 #undef JUMBOOPTLEN
1147 }
1148
1149 /*
1150 * Insert fragment header and copy unfragmentable header portions.
1151 */
1152 static int
1153 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1154 struct mbuf *m0, *m;
1155 int hlen;
1156 struct ip6_frag **frghdrp;
1157 {
1158 struct mbuf *n, *mlast;
1159
1160 if (hlen > sizeof(struct ip6_hdr)) {
1161 n = m_copym(m0, sizeof(struct ip6_hdr),
1162 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1163 if (n == 0)
1164 return(ENOBUFS);
1165 m->m_next = n;
1166 } else
1167 n = m;
1168
1169 /* Search for the last mbuf of unfragmentable part. */
1170 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1171 ;
1172
1173 if ((mlast->m_flags & M_EXT) == 0 &&
1174 M_TRAILINGSPACE(mlast) < sizeof(struct ip6_frag)) {
1175 /* use the trailing space of the last mbuf for the fragment hdr */
1176 *frghdrp =
1177 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1178 mlast->m_len += sizeof(struct ip6_frag);
1179 m->m_pkthdr.len += sizeof(struct ip6_frag);
1180 } else {
1181 /* allocate a new mbuf for the fragment header */
1182 struct mbuf *mfrg;
1183
1184 MGET(mfrg, M_DONTWAIT, MT_DATA);
1185 if (mfrg == 0)
1186 return(ENOBUFS);
1187 mfrg->m_len = sizeof(struct ip6_frag);
1188 *frghdrp = mtod(mfrg, struct ip6_frag *);
1189 mlast->m_next = mfrg;
1190 }
1191
1192 return(0);
1193 }
1194
1195 /*
1196 * IP6 socket option processing.
1197 */
1198 int
1199 ip6_ctloutput(op, so, level, optname, mp)
1200 int op;
1201 struct socket *so;
1202 int level, optname;
1203 struct mbuf **mp;
1204 {
1205 register struct in6pcb *in6p = sotoin6pcb(so);
1206 register struct mbuf *m = *mp;
1207 register int optval = 0;
1208 int error = 0;
1209 struct proc *p = curproc; /* XXX */
1210
1211 if (level == IPPROTO_IPV6) {
1212 switch (op) {
1213
1214 case PRCO_SETOPT:
1215 switch (optname) {
1216 case IPV6_PKTOPTIONS:
1217 return(ip6_pcbopts(&in6p->in6p_outputopts,
1218 m, so));
1219 case IPV6_HOPOPTS:
1220 case IPV6_DSTOPTS:
1221 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1222 error = EPERM;
1223 break;
1224 }
1225 /* fall through */
1226 case IPV6_UNICAST_HOPS:
1227 case IPV6_RECVOPTS:
1228 case IPV6_RECVRETOPTS:
1229 case IPV6_RECVDSTADDR:
1230 case IPV6_PKTINFO:
1231 case IPV6_HOPLIMIT:
1232 case IPV6_RTHDR:
1233 case IPV6_CHECKSUM:
1234 case IPV6_FAITH:
1235 #ifndef INET6_BINDV6ONLY
1236 case IPV6_BINDV6ONLY:
1237 #endif
1238 if (!m || m->m_len != sizeof(int))
1239 error = EINVAL;
1240 else {
1241 optval = *mtod(m, int *);
1242 switch (optname) {
1243
1244 case IPV6_UNICAST_HOPS:
1245 if (optval < -1 || optval >= 256)
1246 error = EINVAL;
1247 else {
1248 /* -1 = kernel default */
1249 in6p->in6p_hops = optval;
1250 }
1251 break;
1252 #define OPTSET(bit) \
1253 if (optval) \
1254 in6p->in6p_flags |= bit; \
1255 else \
1256 in6p->in6p_flags &= ~bit;
1257
1258 case IPV6_RECVOPTS:
1259 OPTSET(IN6P_RECVOPTS);
1260 break;
1261
1262 case IPV6_RECVRETOPTS:
1263 OPTSET(IN6P_RECVRETOPTS);
1264 break;
1265
1266 case IPV6_RECVDSTADDR:
1267 OPTSET(IN6P_RECVDSTADDR);
1268 break;
1269
1270 case IPV6_PKTINFO:
1271 OPTSET(IN6P_PKTINFO);
1272 break;
1273
1274 case IPV6_HOPLIMIT:
1275 OPTSET(IN6P_HOPLIMIT);
1276 break;
1277
1278 case IPV6_HOPOPTS:
1279 OPTSET(IN6P_HOPOPTS);
1280 break;
1281
1282 case IPV6_DSTOPTS:
1283 OPTSET(IN6P_DSTOPTS);
1284 break;
1285
1286 case IPV6_RTHDR:
1287 OPTSET(IN6P_RTHDR);
1288 break;
1289
1290 case IPV6_CHECKSUM:
1291 in6p->in6p_cksum = optval;
1292 break;
1293
1294 case IPV6_FAITH:
1295 OPTSET(IN6P_FAITH);
1296 break;
1297
1298 #ifndef INET6_BINDV6ONLY
1299 case IPV6_BINDV6ONLY:
1300 OPTSET(IN6P_BINDV6ONLY);
1301 break;
1302 #endif
1303 }
1304 }
1305 break;
1306 #undef OPTSET
1307
1308 case IPV6_MULTICAST_IF:
1309 case IPV6_MULTICAST_HOPS:
1310 case IPV6_MULTICAST_LOOP:
1311 case IPV6_JOIN_GROUP:
1312 case IPV6_LEAVE_GROUP:
1313 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m);
1314 break;
1315
1316 case IPV6_PORTRANGE:
1317 optval = *mtod(m, int *);
1318
1319 switch (optval) {
1320 case IPV6_PORTRANGE_DEFAULT:
1321 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1322 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1323 break;
1324
1325 case IPV6_PORTRANGE_HIGH:
1326 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1327 in6p->in6p_flags |= IN6P_HIGHPORT;
1328 break;
1329
1330 case IPV6_PORTRANGE_LOW:
1331 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1332 in6p->in6p_flags |= IN6P_LOWPORT;
1333 break;
1334
1335 default:
1336 error = EINVAL;
1337 break;
1338 }
1339 break;
1340
1341 #ifdef IPSEC
1342 case IPV6_IPSEC_POLICY:
1343 {
1344 caddr_t req = NULL;
1345 size_t len = 0;
1346
1347 int priv = 0;
1348 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1349 priv = 0;
1350 else
1351 priv = 1;
1352 if (m) {
1353 req = mtod(m, caddr_t);
1354 len = m->m_len;
1355 }
1356 error = ipsec6_set_policy(in6p,
1357 optname, req, len, priv);
1358 }
1359 break;
1360 #endif /* IPSEC */
1361
1362 default:
1363 error = ENOPROTOOPT;
1364 break;
1365 }
1366 if (m)
1367 (void)m_free(m);
1368 break;
1369
1370 case PRCO_GETOPT:
1371 switch (optname) {
1372
1373 case IPV6_OPTIONS:
1374 case IPV6_RETOPTS:
1375 #if 0
1376 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1377 if (in6p->in6p_options) {
1378 m->m_len = in6p->in6p_options->m_len;
1379 bcopy(mtod(in6p->in6p_options, caddr_t),
1380 mtod(m, caddr_t),
1381 (unsigned)m->m_len);
1382 } else
1383 m->m_len = 0;
1384 break;
1385 #else
1386 error = ENOPROTOOPT;
1387 break;
1388 #endif
1389
1390 case IPV6_PKTOPTIONS:
1391 if (in6p->in6p_options) {
1392 *mp = m_copym(in6p->in6p_options, 0,
1393 M_COPYALL, M_WAIT);
1394 } else {
1395 *mp = m_get(M_WAIT, MT_SOOPTS);
1396 (*mp)->m_len = 0;
1397 }
1398 break;
1399
1400 case IPV6_HOPOPTS:
1401 case IPV6_DSTOPTS:
1402 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1403 error = EPERM;
1404 break;
1405 }
1406 /* fall through */
1407 case IPV6_UNICAST_HOPS:
1408 case IPV6_RECVOPTS:
1409 case IPV6_RECVRETOPTS:
1410 case IPV6_RECVDSTADDR:
1411 case IPV6_PORTRANGE:
1412 case IPV6_PKTINFO:
1413 case IPV6_HOPLIMIT:
1414 case IPV6_RTHDR:
1415 case IPV6_CHECKSUM:
1416 case IPV6_FAITH:
1417 #ifndef INET6_BINDV6ONLY
1418 case IPV6_BINDV6ONLY:
1419 #endif
1420 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1421 m->m_len = sizeof(int);
1422 switch (optname) {
1423
1424 case IPV6_UNICAST_HOPS:
1425 optval = in6p->in6p_hops;
1426 break;
1427
1428 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1429
1430 case IPV6_RECVOPTS:
1431 optval = OPTBIT(IN6P_RECVOPTS);
1432 break;
1433
1434 case IPV6_RECVRETOPTS:
1435 optval = OPTBIT(IN6P_RECVRETOPTS);
1436 break;
1437
1438 case IPV6_RECVDSTADDR:
1439 optval = OPTBIT(IN6P_RECVDSTADDR);
1440 break;
1441
1442 case IPV6_PORTRANGE:
1443 {
1444 int flags;
1445 flags = in6p->in6p_flags;
1446 if (flags & IN6P_HIGHPORT)
1447 optval = IPV6_PORTRANGE_HIGH;
1448 else if (flags & IN6P_LOWPORT)
1449 optval = IPV6_PORTRANGE_LOW;
1450 else
1451 optval = 0;
1452 break;
1453 }
1454
1455 case IPV6_PKTINFO:
1456 optval = OPTBIT(IN6P_PKTINFO);
1457 break;
1458
1459 case IPV6_HOPLIMIT:
1460 optval = OPTBIT(IN6P_HOPLIMIT);
1461 break;
1462
1463 case IPV6_HOPOPTS:
1464 optval = OPTBIT(IN6P_HOPOPTS);
1465 break;
1466
1467 case IPV6_DSTOPTS:
1468 optval = OPTBIT(IN6P_DSTOPTS);
1469 break;
1470
1471 case IPV6_RTHDR:
1472 optval = OPTBIT(IN6P_RTHDR);
1473 break;
1474
1475 case IPV6_CHECKSUM:
1476 optval = in6p->in6p_cksum;
1477 break;
1478
1479 case IPV6_FAITH:
1480 optval = OPTBIT(IN6P_FAITH);
1481 break;
1482
1483 #ifndef INET6_BINDV6ONLY
1484 case IPV6_BINDV6ONLY:
1485 optval = OPTBIT(IN6P_BINDV6ONLY);
1486 break;
1487 #endif
1488 }
1489 *mtod(m, int *) = optval;
1490 break;
1491
1492 case IPV6_MULTICAST_IF:
1493 case IPV6_MULTICAST_HOPS:
1494 case IPV6_MULTICAST_LOOP:
1495 case IPV6_JOIN_GROUP:
1496 case IPV6_LEAVE_GROUP:
1497 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1498 break;
1499
1500 #ifdef IPSEC
1501 case IPV6_IPSEC_POLICY:
1502 {
1503 caddr_t req = NULL;
1504 size_t len = 0;
1505
1506 if (m) {
1507 req = mtod(m, caddr_t);
1508 len = m->m_len;
1509 }
1510 error = ipsec6_get_policy(in6p, req, len, mp);
1511 break;
1512 }
1513 #endif /* IPSEC */
1514
1515 default:
1516 error = ENOPROTOOPT;
1517 break;
1518 }
1519 break;
1520 }
1521 } else {
1522 error = EINVAL;
1523 if (op == PRCO_SETOPT && *mp)
1524 (void)m_free(*mp);
1525 }
1526 return(error);
1527 }
1528
1529 /*
1530 * Set up IP6 options in pcb for insertion in output packets.
1531 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1532 * with destination address if source routed.
1533 */
1534 static int
1535 ip6_pcbopts(pktopt, m, so)
1536 struct ip6_pktopts **pktopt;
1537 register struct mbuf *m;
1538 struct socket *so;
1539 {
1540 register struct ip6_pktopts *opt = *pktopt;
1541 int error = 0;
1542 struct proc *p = curproc; /* XXX */
1543 int priv = 0;
1544
1545 /* turn off any old options. */
1546 if (opt) {
1547 if (opt->ip6po_m)
1548 (void)m_free(opt->ip6po_m);
1549 } else
1550 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1551 *pktopt = 0;
1552
1553 if (!m || m->m_len == 0) {
1554 /*
1555 * Only turning off any previous options.
1556 */
1557 if (opt)
1558 free(opt, M_IP6OPT);
1559 if (m)
1560 (void)m_free(m);
1561 return(0);
1562 }
1563
1564 /* set options specified by user. */
1565 if (p && !suser(p->p_ucred, &p->p_acflag))
1566 priv = 1;
1567 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1568 (void)m_free(m);
1569 return(error);
1570 }
1571 *pktopt = opt;
1572 return(0);
1573 }
1574
1575 /*
1576 * Set the IP6 multicast options in response to user setsockopt().
1577 */
1578 static int
1579 ip6_setmoptions(optname, im6op, m)
1580 int optname;
1581 struct ip6_moptions **im6op;
1582 struct mbuf *m;
1583 {
1584 int error = 0;
1585 u_int loop, ifindex;
1586 struct ipv6_mreq *mreq;
1587 struct ifnet *ifp;
1588 struct ip6_moptions *im6o = *im6op;
1589 struct route_in6 ro;
1590 struct sockaddr_in6 *dst;
1591 struct in6_multi_mship *imm;
1592 struct proc *p = curproc; /* XXX */
1593
1594 if (im6o == NULL) {
1595 /*
1596 * No multicast option buffer attached to the pcb;
1597 * allocate one and initialize to default values.
1598 */
1599 im6o = (struct ip6_moptions *)
1600 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1601
1602 if (im6o == NULL)
1603 return(ENOBUFS);
1604 *im6op = im6o;
1605 im6o->im6o_multicast_ifp = NULL;
1606 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1607 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1608 LIST_INIT(&im6o->im6o_memberships);
1609 }
1610
1611 switch (optname) {
1612
1613 case IPV6_MULTICAST_IF:
1614 /*
1615 * Select the interface for outgoing multicast packets.
1616 */
1617 if (m == NULL || m->m_len != sizeof(u_int)) {
1618 error = EINVAL;
1619 break;
1620 }
1621 ifindex = *(mtod(m, u_int *));
1622 if (ifindex < 0 || if_index < ifindex) {
1623 error = ENXIO; /* XXX EINVAL? */
1624 break;
1625 }
1626 ifp = ifindex2ifnet[ifindex];
1627 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1628 error = EADDRNOTAVAIL;
1629 break;
1630 }
1631 im6o->im6o_multicast_ifp = ifp;
1632 break;
1633
1634 case IPV6_MULTICAST_HOPS:
1635 {
1636 /*
1637 * Set the IP6 hoplimit for outgoing multicast packets.
1638 */
1639 int optval;
1640 if (m == NULL || m->m_len != sizeof(int)) {
1641 error = EINVAL;
1642 break;
1643 }
1644 optval = *(mtod(m, u_int *));
1645 if (optval < -1 || optval >= 256)
1646 error = EINVAL;
1647 else if (optval == -1)
1648 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1649 else
1650 im6o->im6o_multicast_hlim = optval;
1651 break;
1652 }
1653
1654 case IPV6_MULTICAST_LOOP:
1655 /*
1656 * Set the loopback flag for outgoing multicast packets.
1657 * Must be zero or one.
1658 */
1659 if (m == NULL || m->m_len != sizeof(u_int) ||
1660 (loop = *(mtod(m, u_int *))) > 1) {
1661 error = EINVAL;
1662 break;
1663 }
1664 im6o->im6o_multicast_loop = loop;
1665 break;
1666
1667 case IPV6_JOIN_GROUP:
1668 /*
1669 * Add a multicast group membership.
1670 * Group must be a valid IP6 multicast address.
1671 */
1672 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1673 error = EINVAL;
1674 break;
1675 }
1676 mreq = mtod(m, struct ipv6_mreq *);
1677 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1678 /*
1679 * We use the unspecified address to specify to accept
1680 * all multicast addresses. Only super user is allowed
1681 * to do this.
1682 */
1683 if (suser(p->p_ucred, &p->p_acflag)) {
1684 error = EACCES;
1685 break;
1686 }
1687 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1688 error = EINVAL;
1689 break;
1690 }
1691
1692 /*
1693 * If the interface is specified, validate it.
1694 */
1695 if (mreq->ipv6mr_interface < 0
1696 || if_index < mreq->ipv6mr_interface) {
1697 error = ENXIO; /* XXX EINVAL? */
1698 break;
1699 }
1700 /*
1701 * If no interface was explicitly specified, choose an
1702 * appropriate one according to the given multicast address.
1703 */
1704 if (mreq->ipv6mr_interface == 0) {
1705 /*
1706 * If the multicast address is in node-local scope,
1707 * the interface should be a loopback interface.
1708 * Otherwise, look up the routing table for the
1709 * address, and choose the outgoing interface.
1710 * XXX: is it a good approach?
1711 */
1712 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1713 ifp = &loif[0];
1714 } else {
1715 ro.ro_rt = NULL;
1716 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1717 bzero(dst, sizeof(*dst));
1718 dst->sin6_len = sizeof(struct sockaddr_in6);
1719 dst->sin6_family = AF_INET6;
1720 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1721 rtalloc((struct route *)&ro);
1722 if (ro.ro_rt == NULL) {
1723 error = EADDRNOTAVAIL;
1724 break;
1725 }
1726 ifp = ro.ro_rt->rt_ifp;
1727 rtfree(ro.ro_rt);
1728 }
1729 } else
1730 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1731
1732 /*
1733 * See if we found an interface, and confirm that it
1734 * supports multicast
1735 */
1736 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1737 error = EADDRNOTAVAIL;
1738 break;
1739 }
1740 /*
1741 * Put interface index into the multicast address,
1742 * if the address has link-local scope.
1743 */
1744 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1745 mreq->ipv6mr_multiaddr.s6_addr16[1]
1746 = htons(mreq->ipv6mr_interface);
1747 }
1748 /*
1749 * See if the membership already exists.
1750 */
1751 for (imm = im6o->im6o_memberships.lh_first;
1752 imm != NULL; imm = imm->i6mm_chain.le_next)
1753 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1754 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1755 &mreq->ipv6mr_multiaddr))
1756 break;
1757 if (imm != NULL) {
1758 error = EADDRINUSE;
1759 break;
1760 }
1761 /*
1762 * Everything looks good; add a new record to the multicast
1763 * address list for the given interface.
1764 */
1765 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
1766 if (imm == NULL) {
1767 error = ENOBUFS;
1768 break;
1769 }
1770 if ((imm->i6mm_maddr =
1771 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
1772 free(imm, M_IPMADDR);
1773 break;
1774 }
1775 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1776 break;
1777
1778 case IPV6_LEAVE_GROUP:
1779 /*
1780 * Drop a multicast group membership.
1781 * Group must be a valid IP6 multicast address.
1782 */
1783 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1784 error = EINVAL;
1785 break;
1786 }
1787 mreq = mtod(m, struct ipv6_mreq *);
1788 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1789 if (suser(p->p_ucred, &p->p_acflag)) {
1790 error = EACCES;
1791 break;
1792 }
1793 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1794 error = EINVAL;
1795 break;
1796 }
1797 /*
1798 * If an interface address was specified, get a pointer
1799 * to its ifnet structure.
1800 */
1801 if (mreq->ipv6mr_interface < 0
1802 || if_index < mreq->ipv6mr_interface) {
1803 error = ENXIO; /* XXX EINVAL? */
1804 break;
1805 }
1806 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1807 /*
1808 * Put interface index into the multicast address,
1809 * if the address has link-local scope.
1810 */
1811 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1812 mreq->ipv6mr_multiaddr.s6_addr16[1]
1813 = htons(mreq->ipv6mr_interface);
1814 }
1815 /*
1816 * Find the membership in the membership list.
1817 */
1818 for (imm = im6o->im6o_memberships.lh_first;
1819 imm != NULL; imm = imm->i6mm_chain.le_next) {
1820 if ((ifp == NULL ||
1821 imm->i6mm_maddr->in6m_ifp == ifp) &&
1822 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1823 &mreq->ipv6mr_multiaddr))
1824 break;
1825 }
1826 if (imm == NULL) {
1827 /* Unable to resolve interface */
1828 error = EADDRNOTAVAIL;
1829 break;
1830 }
1831 /*
1832 * Give up the multicast address record to which the
1833 * membership points.
1834 */
1835 LIST_REMOVE(imm, i6mm_chain);
1836 in6_delmulti(imm->i6mm_maddr);
1837 free(imm, M_IPMADDR);
1838 break;
1839
1840 default:
1841 error = EOPNOTSUPP;
1842 break;
1843 }
1844
1845 /*
1846 * If all options have default values, no need to keep the mbuf.
1847 */
1848 if (im6o->im6o_multicast_ifp == NULL &&
1849 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1850 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1851 im6o->im6o_memberships.lh_first == NULL) {
1852 free(*im6op, M_IPMOPTS);
1853 *im6op = NULL;
1854 }
1855
1856 return(error);
1857 }
1858
1859 /*
1860 * Return the IP6 multicast options in response to user getsockopt().
1861 */
1862 static int
1863 ip6_getmoptions(optname, im6o, mp)
1864 int optname;
1865 register struct ip6_moptions *im6o;
1866 register struct mbuf **mp;
1867 {
1868 u_int *hlim, *loop, *ifindex;
1869
1870 *mp = m_get(M_WAIT, MT_SOOPTS);
1871
1872 switch (optname) {
1873
1874 case IPV6_MULTICAST_IF:
1875 ifindex = mtod(*mp, u_int *);
1876 (*mp)->m_len = sizeof(u_int);
1877 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1878 *ifindex = 0;
1879 else
1880 *ifindex = im6o->im6o_multicast_ifp->if_index;
1881 return(0);
1882
1883 case IPV6_MULTICAST_HOPS:
1884 hlim = mtod(*mp, u_int *);
1885 (*mp)->m_len = sizeof(u_int);
1886 if (im6o == NULL)
1887 *hlim = ip6_defmcasthlim;
1888 else
1889 *hlim = im6o->im6o_multicast_hlim;
1890 return(0);
1891
1892 case IPV6_MULTICAST_LOOP:
1893 loop = mtod(*mp, u_int *);
1894 (*mp)->m_len = sizeof(u_int);
1895 if (im6o == NULL)
1896 *loop = ip6_defmcasthlim;
1897 else
1898 *loop = im6o->im6o_multicast_loop;
1899 return(0);
1900
1901 default:
1902 return(EOPNOTSUPP);
1903 }
1904 }
1905
1906 /*
1907 * Discard the IP6 multicast options.
1908 */
1909 void
1910 ip6_freemoptions(im6o)
1911 register struct ip6_moptions *im6o;
1912 {
1913 struct in6_multi_mship *imm;
1914
1915 if (im6o == NULL)
1916 return;
1917
1918 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
1919 LIST_REMOVE(imm, i6mm_chain);
1920 if (imm->i6mm_maddr)
1921 in6_delmulti(imm->i6mm_maddr);
1922 free(imm, M_IPMADDR);
1923 }
1924 free(im6o, M_IPMOPTS);
1925 }
1926
1927 /*
1928 * Set IPv6 outgoing packet options based on advanced API.
1929 */
1930 int
1931 ip6_setpktoptions(control, opt, priv)
1932 struct mbuf *control;
1933 struct ip6_pktopts *opt;
1934 int priv;
1935 {
1936 register struct cmsghdr *cm = 0;
1937
1938 if (control == 0 || opt == 0)
1939 return(EINVAL);
1940
1941 bzero(opt, sizeof(*opt));
1942 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
1943
1944 /*
1945 * XXX: Currently, we assume all the optional information is stored
1946 * in a single mbuf.
1947 */
1948 if (control->m_next)
1949 return(EINVAL);
1950
1951 opt->ip6po_m = control;
1952
1953 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
1954 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1955 cm = mtod(control, struct cmsghdr *);
1956 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
1957 return(EINVAL);
1958 if (cm->cmsg_level != IPPROTO_IPV6)
1959 continue;
1960
1961 switch(cm->cmsg_type) {
1962 case IPV6_PKTINFO:
1963 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
1964 return(EINVAL);
1965 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1966 if (opt->ip6po_pktinfo->ipi6_ifindex &&
1967 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
1968 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
1969 htons(opt->ip6po_pktinfo->ipi6_ifindex);
1970
1971 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
1972 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
1973 return(ENXIO);
1974 }
1975
1976 /*
1977 * Check if the requested source address is indeed a
1978 * unicast address assigned to the node.
1979 */
1980 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
1981 struct ifaddr *ia;
1982 struct sockaddr_in6 sin6;
1983
1984 bzero(&sin6, sizeof(sin6));
1985 sin6.sin6_len = sizeof(sin6);
1986 sin6.sin6_family = AF_INET6;
1987 sin6.sin6_addr =
1988 opt->ip6po_pktinfo->ipi6_addr;
1989 ia = ifa_ifwithaddr(sin6tosa(&sin6));
1990 if (ia == NULL ||
1991 (opt->ip6po_pktinfo->ipi6_ifindex &&
1992 (ia->ifa_ifp->if_index !=
1993 opt->ip6po_pktinfo->ipi6_ifindex))) {
1994 return(EADDRNOTAVAIL);
1995 }
1996 /*
1997 * Check if the requested source address is
1998 * indeed a unicast address assigned to the
1999 * node.
2000 */
2001 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2002 return(EADDRNOTAVAIL);
2003 }
2004 break;
2005
2006 case IPV6_HOPLIMIT:
2007 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2008 return(EINVAL);
2009
2010 opt->ip6po_hlim = *(int *)CMSG_DATA(cm);
2011 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2012 return(EINVAL);
2013 break;
2014
2015 case IPV6_NEXTHOP:
2016 if (!priv)
2017 return(EPERM);
2018
2019 if (cm->cmsg_len < sizeof(u_char) ||
2020 /* check if cmsg_len is large enough for sa_len */
2021 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2022 return(EINVAL);
2023
2024 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2025
2026 break;
2027
2028 case IPV6_HOPOPTS:
2029 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2030 return(EINVAL);
2031 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2032 if (cm->cmsg_len !=
2033 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
2034 return(EINVAL);
2035 break;
2036
2037 case IPV6_DSTOPTS:
2038 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2039 return(EINVAL);
2040
2041 /*
2042 * If there is no routing header yet, the destination
2043 * options header should be put on the 1st part.
2044 * Otherwise, the header should be on the 2nd part.
2045 * (See RFC 2460, section 4.1)
2046 */
2047 if (opt->ip6po_rthdr == NULL) {
2048 opt->ip6po_dest1 =
2049 (struct ip6_dest *)CMSG_DATA(cm);
2050 if (cm->cmsg_len !=
2051 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
2052 << 3))
2053 return(EINVAL);
2054 }
2055 else {
2056 opt->ip6po_dest2 =
2057 (struct ip6_dest *)CMSG_DATA(cm);
2058 if (cm->cmsg_len !=
2059 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
2060 << 3))
2061 return(EINVAL);
2062 }
2063 break;
2064
2065 case IPV6_RTHDR:
2066 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2067 return(EINVAL);
2068 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
2069 if (cm->cmsg_len !=
2070 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
2071 return(EINVAL);
2072 switch(opt->ip6po_rthdr->ip6r_type) {
2073 case IPV6_RTHDR_TYPE_0:
2074 if (opt->ip6po_rthdr->ip6r_segleft == 0)
2075 return(EINVAL);
2076 break;
2077 default:
2078 return(EINVAL);
2079 }
2080 break;
2081
2082 default:
2083 return(ENOPROTOOPT);
2084 }
2085 }
2086
2087 return(0);
2088 }
2089
2090 /*
2091 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2092 * packet to the input queue of a specified interface. Note that this
2093 * calls the output routine of the loopback "driver", but with an interface
2094 * pointer that might NOT be &loif -- easier than replicating that code here.
2095 */
2096 void
2097 ip6_mloopback(ifp, m, dst)
2098 struct ifnet *ifp;
2099 register struct mbuf *m;
2100 register struct sockaddr_in6 *dst;
2101 {
2102 struct mbuf *copym;
2103
2104 copym = m_copy(m, 0, M_COPYALL);
2105 if (copym != NULL)
2106 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2107 }
2108
2109 /*
2110 * Chop IPv6 header off from the payload.
2111 */
2112 static int
2113 ip6_splithdr(m, exthdrs)
2114 struct mbuf *m;
2115 struct ip6_exthdrs *exthdrs;
2116 {
2117 struct mbuf *mh;
2118 struct ip6_hdr *ip6;
2119
2120 ip6 = mtod(m, struct ip6_hdr *);
2121 if (m->m_len > sizeof(*ip6)) {
2122 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2123 if (mh == 0) {
2124 m_freem(m);
2125 return ENOBUFS;
2126 }
2127 M_COPY_PKTHDR(mh, m);
2128 MH_ALIGN(mh, sizeof(*ip6));
2129 m->m_flags &= ~M_PKTHDR;
2130 m->m_len -= sizeof(*ip6);
2131 m->m_data += sizeof(*ip6);
2132 mh->m_next = m;
2133 m = mh;
2134 m->m_len = sizeof(*ip6);
2135 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2136 }
2137 exthdrs->ip6e_ip6 = m;
2138 return 0;
2139 }
2140
2141 /*
2142 * Compute IPv6 extension header length.
2143 */
2144 int
2145 ip6_optlen(in6p)
2146 struct in6pcb *in6p;
2147 {
2148 int len;
2149
2150 if (!in6p->in6p_outputopts)
2151 return 0;
2152
2153 len = 0;
2154 #define elen(x) \
2155 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2156
2157 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2158 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2159 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2160 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2161 return len;
2162 #undef elen
2163 }
2164