ip6_output.c revision 1.202 1 /* $NetBSD: ip6_output.c,v 1.202 2018/02/27 14:44:10 maxv Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.202 2018/02/27 14:44:10 maxv Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_inet.h"
69 #include "opt_inet6.h"
70 #include "opt_ipsec.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/errno.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/syslog.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kauth.h>
83
84 #include <net/if.h>
85 #include <net/route.h>
86 #include <net/pfil.h>
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/ip_var.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet/portalgo.h>
95 #include <netinet6/in6_offload.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/ip6_private.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/nd6.h>
100 #include <netinet6/ip6protosw.h>
101 #include <netinet6/scope6_var.h>
102
103 #ifdef IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/ipsec6.h>
106 #include <netipsec/key.h>
107 #include <netipsec/xform.h>
108 #endif
109
110
111 #include <net/net_osdep.h>
112
113 extern pfil_head_t *inet6_pfil_hook; /* XXX */
114
115 struct ip6_exthdrs {
116 struct mbuf *ip6e_ip6;
117 struct mbuf *ip6e_hbh;
118 struct mbuf *ip6e_dest1;
119 struct mbuf *ip6e_rthdr;
120 struct mbuf *ip6e_dest2;
121 };
122
123 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
124 kauth_cred_t, int);
125 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
126 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
127 int, int, int);
128 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *);
129 static int ip6_getmoptions(struct sockopt *, struct in6pcb *);
130 static int ip6_copyexthdr(struct mbuf **, void *, int);
131 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
132 struct ip6_frag **);
133 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
134 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
135 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
136 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
137 static int ip6_ifaddrvalid(const struct in6_addr *, const struct in6_addr *);
138 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
139
140 #ifdef RFC2292
141 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
142 #endif
143
144 static int
145 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
146 {
147 struct ip6_rthdr0 *rh0;
148 struct in6_addr *addr;
149 struct sockaddr_in6 sa;
150 int error = 0;
151
152 switch (rh->ip6r_type) {
153 case IPV6_RTHDR_TYPE_0:
154 rh0 = (struct ip6_rthdr0 *)rh;
155 addr = (struct in6_addr *)(rh0 + 1);
156
157 /*
158 * construct a sockaddr_in6 form of the first hop.
159 *
160 * XXX we may not have enough information about its scope zone;
161 * there is no standard API to pass the information from the
162 * application.
163 */
164 sockaddr_in6_init(&sa, addr, 0, 0, 0);
165 error = sa6_embedscope(&sa, ip6_use_defzone);
166 if (error != 0)
167 break;
168 memmove(&addr[0], &addr[1],
169 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
170 addr[rh0->ip6r0_segleft - 1] = ip6->ip6_dst;
171 ip6->ip6_dst = sa.sin6_addr;
172 /* XXX */
173 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
174 break;
175 default: /* is it possible? */
176 error = EINVAL;
177 }
178
179 return error;
180 }
181
182 /*
183 * Send an IP packet to a host.
184 */
185 int
186 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp,
187 struct mbuf * const m, const struct sockaddr_in6 * const dst,
188 const struct rtentry *rt)
189 {
190 int error = 0;
191
192 if (rt != NULL) {
193 error = rt_check_reject_route(rt, ifp);
194 if (error != 0) {
195 m_freem(m);
196 return error;
197 }
198 }
199
200 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
201 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
202 else
203 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
204 return error;
205 }
206
207 /*
208 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
209 * header (with pri, len, nxt, hlim, src, dst).
210 *
211 * This function may modify ver and hlim only. The mbuf chain containing the
212 * packet will be freed. The mbuf opt, if present, will not be freed.
213 *
214 * Type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
215 * nd_ifinfo.linkmtu is u_int32_t. So we use u_long to hold largest one,
216 * which is rt_rmx.rmx_mtu.
217 */
218 int
219 ip6_output(
220 struct mbuf *m0,
221 struct ip6_pktopts *opt,
222 struct route *ro,
223 int flags,
224 struct ip6_moptions *im6o,
225 struct in6pcb *in6p,
226 struct ifnet **ifpp /* XXX: just for statistics */
227 )
228 {
229 struct ip6_hdr *ip6, *mhip6;
230 struct ifnet *ifp = NULL, *origifp = NULL;
231 struct mbuf *m = m0;
232 int tlen, len, off;
233 bool tso;
234 struct route ip6route;
235 struct rtentry *rt = NULL, *rt_pmtu;
236 const struct sockaddr_in6 *dst;
237 struct sockaddr_in6 src_sa, dst_sa;
238 int error = 0;
239 struct in6_ifaddr *ia = NULL;
240 u_long mtu;
241 int alwaysfrag, dontfrag;
242 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
243 struct ip6_exthdrs exthdrs;
244 struct in6_addr finaldst, src0, dst0;
245 u_int32_t zone;
246 struct route *ro_pmtu = NULL;
247 int hdrsplit = 0;
248 int needipsec = 0;
249 #ifdef IPSEC
250 struct secpolicy *sp = NULL;
251 #endif
252 struct psref psref, psref_ia;
253 int bound = curlwp_bind();
254 bool release_psref_ia = false;
255
256 #ifdef DIAGNOSTIC
257 if ((m->m_flags & M_PKTHDR) == 0)
258 panic("ip6_output: no HDR");
259 if ((m->m_pkthdr.csum_flags &
260 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
261 panic("ip6_output: IPv4 checksum offload flags: %d",
262 m->m_pkthdr.csum_flags);
263 }
264 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
265 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
266 panic("ip6_output: conflicting checksum offload flags: %d",
267 m->m_pkthdr.csum_flags);
268 }
269 #endif
270
271 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
272
273 #define MAKE_EXTHDR(hp, mp) \
274 do { \
275 if (hp) { \
276 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
277 error = ip6_copyexthdr((mp), (void *)(hp), \
278 ((eh)->ip6e_len + 1) << 3); \
279 if (error) \
280 goto freehdrs; \
281 } \
282 } while (/*CONSTCOND*/ 0)
283
284 memset(&exthdrs, 0, sizeof(exthdrs));
285 if (opt) {
286 /* Hop-by-Hop options header */
287 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
288 /* Destination options header (1st part) */
289 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
290 /* Routing header */
291 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
292 /* Destination options header (2nd part) */
293 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
294 }
295
296 /*
297 * Calculate the total length of the extension header chain.
298 * Keep the length of the unfragmentable part for fragmentation.
299 */
300 optlen = 0;
301 if (exthdrs.ip6e_hbh)
302 optlen += exthdrs.ip6e_hbh->m_len;
303 if (exthdrs.ip6e_dest1)
304 optlen += exthdrs.ip6e_dest1->m_len;
305 if (exthdrs.ip6e_rthdr)
306 optlen += exthdrs.ip6e_rthdr->m_len;
307 unfragpartlen = optlen + sizeof(struct ip6_hdr);
308 /* NOTE: we don't add AH/ESP length here. do that later. */
309 if (exthdrs.ip6e_dest2)
310 optlen += exthdrs.ip6e_dest2->m_len;
311
312 #ifdef IPSEC
313 if (ipsec_used) {
314 /* Check the security policy (SP) for the packet */
315 sp = ipsec6_check_policy(m, in6p, flags, &needipsec, &error);
316 if (error != 0) {
317 /*
318 * Hack: -EINVAL is used to signal that a packet
319 * should be silently discarded. This is typically
320 * because we asked key management for an SA and
321 * it was delayed (e.g. kicked up to IKE).
322 */
323 if (error == -EINVAL)
324 error = 0;
325 goto freehdrs;
326 }
327 }
328 #endif
329
330 if (needipsec &&
331 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
332 in6_delayed_cksum(m);
333 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
334 }
335
336 /*
337 * If we need IPsec, or there is at least one extension header,
338 * separate IP6 header from the payload.
339 */
340 if ((needipsec || optlen) && !hdrsplit) {
341 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
342 m = NULL;
343 goto freehdrs;
344 }
345 m = exthdrs.ip6e_ip6;
346 hdrsplit++;
347 }
348
349 /* adjust pointer */
350 ip6 = mtod(m, struct ip6_hdr *);
351
352 /* adjust mbuf packet header length */
353 m->m_pkthdr.len += optlen;
354 plen = m->m_pkthdr.len - sizeof(*ip6);
355
356 /* If this is a jumbo payload, insert a jumbo payload option. */
357 if (plen > IPV6_MAXPACKET) {
358 if (!hdrsplit) {
359 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
360 m = NULL;
361 goto freehdrs;
362 }
363 m = exthdrs.ip6e_ip6;
364 hdrsplit++;
365 }
366 /* adjust pointer */
367 ip6 = mtod(m, struct ip6_hdr *);
368 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
369 goto freehdrs;
370 optlen += 8; /* XXX JUMBOOPTLEN */
371 ip6->ip6_plen = 0;
372 } else
373 ip6->ip6_plen = htons(plen);
374
375 /*
376 * Concatenate headers and fill in next header fields.
377 * Here we have, on "m"
378 * IPv6 payload
379 * and we insert headers accordingly. Finally, we should be getting:
380 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
381 *
382 * during the header composing process, "m" points to IPv6 header.
383 * "mprev" points to an extension header prior to esp.
384 */
385 {
386 u_char *nexthdrp = &ip6->ip6_nxt;
387 struct mbuf *mprev = m;
388
389 /*
390 * we treat dest2 specially. this makes IPsec processing
391 * much easier. the goal here is to make mprev point the
392 * mbuf prior to dest2.
393 *
394 * result: IPv6 dest2 payload
395 * m and mprev will point to IPv6 header.
396 */
397 if (exthdrs.ip6e_dest2) {
398 if (!hdrsplit)
399 panic("assumption failed: hdr not split");
400 exthdrs.ip6e_dest2->m_next = m->m_next;
401 m->m_next = exthdrs.ip6e_dest2;
402 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
403 ip6->ip6_nxt = IPPROTO_DSTOPTS;
404 }
405
406 #define MAKE_CHAIN(m, mp, p, i)\
407 do {\
408 if (m) {\
409 if (!hdrsplit) \
410 panic("assumption failed: hdr not split"); \
411 *mtod((m), u_char *) = *(p);\
412 *(p) = (i);\
413 p = mtod((m), u_char *);\
414 (m)->m_next = (mp)->m_next;\
415 (mp)->m_next = (m);\
416 (mp) = (m);\
417 }\
418 } while (/*CONSTCOND*/ 0)
419 /*
420 * result: IPv6 hbh dest1 rthdr dest2 payload
421 * m will point to IPv6 header. mprev will point to the
422 * extension header prior to dest2 (rthdr in the above case).
423 */
424 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
425 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
426 IPPROTO_DSTOPTS);
427 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
428 IPPROTO_ROUTING);
429
430 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
431 sizeof(struct ip6_hdr) + optlen);
432 }
433
434 /* Need to save for pmtu */
435 finaldst = ip6->ip6_dst;
436
437 /*
438 * If there is a routing header, replace destination address field
439 * with the first hop of the routing header.
440 */
441 if (exthdrs.ip6e_rthdr) {
442 struct ip6_rthdr *rh;
443
444 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
445
446 error = ip6_handle_rthdr(rh, ip6);
447 if (error != 0)
448 goto bad;
449 }
450
451 /* Source address validation */
452 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
453 (flags & IPV6_UNSPECSRC) == 0) {
454 error = EOPNOTSUPP;
455 IP6_STATINC(IP6_STAT_BADSCOPE);
456 goto bad;
457 }
458 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
459 error = EOPNOTSUPP;
460 IP6_STATINC(IP6_STAT_BADSCOPE);
461 goto bad;
462 }
463
464 IP6_STATINC(IP6_STAT_LOCALOUT);
465
466 /*
467 * Route packet.
468 */
469 /* initialize cached route */
470 if (ro == NULL) {
471 memset(&ip6route, 0, sizeof(ip6route));
472 ro = &ip6route;
473 }
474 ro_pmtu = ro;
475 if (opt && opt->ip6po_rthdr)
476 ro = &opt->ip6po_route;
477
478 /*
479 * if specified, try to fill in the traffic class field.
480 * do not override if a non-zero value is already set.
481 * we check the diffserv field and the ecn field separately.
482 */
483 if (opt && opt->ip6po_tclass >= 0) {
484 int mask = 0;
485
486 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
487 mask |= 0xfc;
488 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
489 mask |= 0x03;
490 if (mask != 0)
491 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
492 }
493
494 /* fill in or override the hop limit field, if necessary. */
495 if (opt && opt->ip6po_hlim != -1)
496 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
497 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
498 if (im6o != NULL)
499 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
500 else
501 ip6->ip6_hlim = ip6_defmcasthlim;
502 }
503
504 #ifdef IPSEC
505 if (needipsec) {
506 int s = splsoftnet();
507 error = ipsec6_process_packet(m, sp->req);
508 splx(s);
509
510 /*
511 * Preserve KAME behaviour: ENOENT can be returned
512 * when an SA acquire is in progress. Don't propagate
513 * this to user-level; it confuses applications.
514 * XXX this will go away when the SADB is redone.
515 */
516 if (error == ENOENT)
517 error = 0;
518
519 goto done;
520 }
521 #endif
522
523 /* adjust pointer */
524 ip6 = mtod(m, struct ip6_hdr *);
525
526 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
527
528 /* We do not need a route for multicast */
529 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
530 struct in6_pktinfo *pi = NULL;
531
532 /*
533 * If the outgoing interface for the address is specified by
534 * the caller, use it.
535 */
536 if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
537 /* XXX boundary check is assumed to be already done. */
538 ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
539 } else if (im6o != NULL) {
540 ifp = if_get_byindex(im6o->im6o_multicast_if_index,
541 &psref);
542 }
543 }
544
545 if (ifp == NULL) {
546 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
547 if (error != 0)
548 goto bad;
549 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
550 }
551
552 if (rt == NULL) {
553 /*
554 * If in6_selectroute() does not return a route entry,
555 * dst may not have been updated.
556 */
557 error = rtcache_setdst(ro, sin6tosa(&dst_sa));
558 if (error) {
559 goto bad;
560 }
561 }
562
563 /*
564 * then rt (for unicast) and ifp must be non-NULL valid values.
565 */
566 if ((flags & IPV6_FORWARDING) == 0) {
567 /* XXX: the FORWARDING flag can be set for mrouting. */
568 in6_ifstat_inc(ifp, ifs6_out_request);
569 }
570 if (rt != NULL) {
571 ia = (struct in6_ifaddr *)(rt->rt_ifa);
572 rt->rt_use++;
573 }
574
575 /*
576 * The outgoing interface must be in the zone of source and
577 * destination addresses. We should use ia_ifp to support the
578 * case of sending packets to an address of our own.
579 */
580 if (ia != NULL && ia->ia_ifp) {
581 origifp = ia->ia_ifp;
582 if (if_is_deactivated(origifp))
583 goto bad;
584 if_acquire(origifp, &psref_ia);
585 release_psref_ia = true;
586 } else
587 origifp = ifp;
588
589 src0 = ip6->ip6_src;
590 if (in6_setscope(&src0, origifp, &zone))
591 goto badscope;
592 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
593 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
594 goto badscope;
595
596 dst0 = ip6->ip6_dst;
597 if (in6_setscope(&dst0, origifp, &zone))
598 goto badscope;
599 /* re-initialize to be sure */
600 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
601 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
602 goto badscope;
603
604 /* scope check is done. */
605
606 /* Ensure we only send from a valid address. */
607 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
608 (error = ip6_ifaddrvalid(&src0, &dst0)) != 0)
609 {
610 char ip6buf[INET6_ADDRSTRLEN];
611 nd6log(LOG_ERR,
612 "refusing to send from invalid address %s (pid %d)\n",
613 IN6_PRINT(ip6buf, &src0), curproc->p_pid);
614 IP6_STATINC(IP6_STAT_ODROPPED);
615 in6_ifstat_inc(origifp, ifs6_out_discard);
616 if (error == 1)
617 /*
618 * Address exists, but is tentative or detached.
619 * We can't send from it because it's invalid,
620 * so we drop the packet.
621 */
622 error = 0;
623 else
624 error = EADDRNOTAVAIL;
625 goto bad;
626 }
627
628 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
629 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
630 dst = satocsin6(rt->rt_gateway);
631 else
632 dst = satocsin6(rtcache_getdst(ro));
633
634 /*
635 * XXXXXX: original code follows:
636 */
637 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
638 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
639 else {
640 bool ingroup;
641
642 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
643
644 in6_ifstat_inc(ifp, ifs6_out_mcast);
645
646 /*
647 * Confirm that the outgoing interface supports multicast.
648 */
649 if (!(ifp->if_flags & IFF_MULTICAST)) {
650 IP6_STATINC(IP6_STAT_NOROUTE);
651 in6_ifstat_inc(ifp, ifs6_out_discard);
652 error = ENETUNREACH;
653 goto bad;
654 }
655
656 ingroup = in6_multi_group(&ip6->ip6_dst, ifp);
657 if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) {
658 /*
659 * If we belong to the destination multicast group
660 * on the outgoing interface, and the caller did not
661 * forbid loopback, loop back a copy.
662 */
663 KASSERT(dst != NULL);
664 ip6_mloopback(ifp, m, dst);
665 } else {
666 /*
667 * If we are acting as a multicast router, perform
668 * multicast forwarding as if the packet had just
669 * arrived on the interface to which we are about
670 * to send. The multicast forwarding function
671 * recursively calls this function, using the
672 * IPV6_FORWARDING flag to prevent infinite recursion.
673 *
674 * Multicasts that are looped back by ip6_mloopback(),
675 * above, will be forwarded by the ip6_input() routine,
676 * if necessary.
677 */
678 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
679 if (ip6_mforward(ip6, ifp, m) != 0) {
680 m_freem(m);
681 goto done;
682 }
683 }
684 }
685 /*
686 * Multicasts with a hoplimit of zero may be looped back,
687 * above, but must not be transmitted on a network.
688 * Also, multicasts addressed to the loopback interface
689 * are not sent -- the above call to ip6_mloopback() will
690 * loop back a copy if this host actually belongs to the
691 * destination group on the loopback interface.
692 */
693 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
694 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
695 m_freem(m);
696 goto done;
697 }
698 }
699
700 /*
701 * Fill the outgoing inteface to tell the upper layer
702 * to increment per-interface statistics.
703 */
704 if (ifpp)
705 *ifpp = ifp;
706
707 /* Determine path MTU. */
708 /*
709 * ro_pmtu represent final destination while
710 * ro might represent immediate destination.
711 * Use ro_pmtu destination since MTU might differ.
712 */
713 if (ro_pmtu != ro) {
714 union {
715 struct sockaddr dst;
716 struct sockaddr_in6 dst6;
717 } u;
718
719 /* ro_pmtu may not have a cache */
720 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
721 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
722 } else
723 rt_pmtu = rt;
724 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
725 if (rt_pmtu != NULL && rt_pmtu != rt)
726 rtcache_unref(rt_pmtu, ro_pmtu);
727 if (error != 0)
728 goto bad;
729
730 /*
731 * The caller of this function may specify to use the minimum MTU
732 * in some cases.
733 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
734 * setting. The logic is a bit complicated; by default, unicast
735 * packets will follow path MTU while multicast packets will be sent at
736 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
737 * including unicast ones will be sent at the minimum MTU. Multicast
738 * packets will always be sent at the minimum MTU unless
739 * IP6PO_MINMTU_DISABLE is explicitly specified.
740 * See RFC 3542 for more details.
741 */
742 if (mtu > IPV6_MMTU) {
743 if ((flags & IPV6_MINMTU))
744 mtu = IPV6_MMTU;
745 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
746 mtu = IPV6_MMTU;
747 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
748 (opt == NULL ||
749 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
750 mtu = IPV6_MMTU;
751 }
752 }
753
754 /*
755 * clear embedded scope identifiers if necessary.
756 * in6_clearscope will touch the addresses only when necessary.
757 */
758 in6_clearscope(&ip6->ip6_src);
759 in6_clearscope(&ip6->ip6_dst);
760
761 /*
762 * If the outgoing packet contains a hop-by-hop options header,
763 * it must be examined and processed even by the source node.
764 * (RFC 2460, section 4.)
765 *
766 * XXX Is this really necessary?
767 */
768 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
769 u_int32_t dummy1; /* XXX unused */
770 u_int32_t dummy2; /* XXX unused */
771 int hoff = sizeof(struct ip6_hdr);
772
773 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
774 /* m was already freed at this point */
775 error = EINVAL;
776 goto done;
777 }
778
779 ip6 = mtod(m, struct ip6_hdr *);
780 }
781
782 /*
783 * Run through list of hooks for output packets.
784 */
785 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
786 goto done;
787 if (m == NULL)
788 goto done;
789 ip6 = mtod(m, struct ip6_hdr *);
790
791 /*
792 * Send the packet to the outgoing interface.
793 * If necessary, do IPv6 fragmentation before sending.
794 *
795 * the logic here is rather complex:
796 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
797 * 1-a: send as is if tlen <= path mtu
798 * 1-b: fragment if tlen > path mtu
799 *
800 * 2: if user asks us not to fragment (dontfrag == 1)
801 * 2-a: send as is if tlen <= interface mtu
802 * 2-b: error if tlen > interface mtu
803 *
804 * 3: if we always need to attach fragment header (alwaysfrag == 1)
805 * always fragment
806 *
807 * 4: if dontfrag == 1 && alwaysfrag == 1
808 * error, as we cannot handle this conflicting request
809 */
810 tlen = m->m_pkthdr.len;
811 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
812 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
813 dontfrag = 1;
814 else
815 dontfrag = 0;
816
817 if (dontfrag && alwaysfrag) { /* case 4 */
818 /* conflicting request - can't transmit */
819 error = EMSGSIZE;
820 goto bad;
821 }
822 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */
823 /*
824 * Even if the DONTFRAG option is specified, we cannot send the
825 * packet when the data length is larger than the MTU of the
826 * outgoing interface.
827 * Notify the error by sending IPV6_PATHMTU ancillary data as
828 * well as returning an error code (the latter is not described
829 * in the API spec.)
830 */
831 u_int32_t mtu32;
832 struct ip6ctlparam ip6cp;
833
834 mtu32 = (u_int32_t)mtu;
835 memset(&ip6cp, 0, sizeof(ip6cp));
836 ip6cp.ip6c_cmdarg = (void *)&mtu32;
837 pfctlinput2(PRC_MSGSIZE,
838 rtcache_getdst(ro_pmtu), &ip6cp);
839
840 error = EMSGSIZE;
841 goto bad;
842 }
843
844 /*
845 * transmit packet without fragmentation
846 */
847 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
848 /* case 1-a and 2-a */
849 struct in6_ifaddr *ia6;
850 int sw_csum;
851 int s;
852
853 ip6 = mtod(m, struct ip6_hdr *);
854 s = pserialize_read_enter();
855 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
856 if (ia6) {
857 /* Record statistics for this interface address. */
858 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
859 }
860 pserialize_read_exit(s);
861
862 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
863 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
864 if (IN6_NEED_CHECKSUM(ifp,
865 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
866 in6_delayed_cksum(m);
867 }
868 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
869 }
870
871 KASSERT(dst != NULL);
872 if (__predict_true(!tso ||
873 (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
874 error = ip6_if_output(ifp, origifp, m, dst, rt);
875 } else {
876 error = ip6_tso_output(ifp, origifp, m, dst, rt);
877 }
878 goto done;
879 }
880
881 if (tso) {
882 error = EINVAL; /* XXX */
883 goto bad;
884 }
885
886 /*
887 * try to fragment the packet. case 1-b and 3
888 */
889 if (mtu < IPV6_MMTU) {
890 /* path MTU cannot be less than IPV6_MMTU */
891 error = EMSGSIZE;
892 in6_ifstat_inc(ifp, ifs6_out_fragfail);
893 goto bad;
894 } else if (ip6->ip6_plen == 0) {
895 /* jumbo payload cannot be fragmented */
896 error = EMSGSIZE;
897 in6_ifstat_inc(ifp, ifs6_out_fragfail);
898 goto bad;
899 } else {
900 const u_int32_t id = htonl(ip6_randomid());
901 struct mbuf **mnext, *m_frgpart;
902 const int hlen = unfragpartlen;
903 struct ip6_frag *ip6f;
904 u_char nextproto;
905 #if 0 /* see below */
906 struct ip6ctlparam ip6cp;
907 u_int32_t mtu32;
908 #endif
909
910 if (mtu > IPV6_MAXPACKET)
911 mtu = IPV6_MAXPACKET;
912
913 #if 0
914 /*
915 * It is believed this code is a leftover from the
916 * development of the IPV6_RECVPATHMTU sockopt and
917 * associated work to implement RFC3542.
918 * It's not entirely clear what the intent of the API
919 * is at this point, so disable this code for now.
920 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
921 * will send notifications if the application requests.
922 */
923
924 /* Notify a proper path MTU to applications. */
925 mtu32 = (u_int32_t)mtu;
926 memset(&ip6cp, 0, sizeof(ip6cp));
927 ip6cp.ip6c_cmdarg = (void *)&mtu32;
928 pfctlinput2(PRC_MSGSIZE,
929 rtcache_getdst(ro_pmtu), &ip6cp);
930 #endif
931
932 /*
933 * Must be able to put at least 8 bytes per fragment.
934 */
935 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
936 if (len < 8) {
937 error = EMSGSIZE;
938 in6_ifstat_inc(ifp, ifs6_out_fragfail);
939 goto bad;
940 }
941
942 mnext = &m->m_nextpkt;
943
944 /*
945 * Change the next header field of the last header in the
946 * unfragmentable part.
947 */
948 if (exthdrs.ip6e_rthdr) {
949 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
950 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
951 } else if (exthdrs.ip6e_dest1) {
952 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
953 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
954 } else if (exthdrs.ip6e_hbh) {
955 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
956 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
957 } else {
958 nextproto = ip6->ip6_nxt;
959 ip6->ip6_nxt = IPPROTO_FRAGMENT;
960 }
961
962 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
963 != 0) {
964 if (IN6_NEED_CHECKSUM(ifp,
965 m->m_pkthdr.csum_flags &
966 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
967 in6_delayed_cksum(m);
968 }
969 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
970 }
971
972 /*
973 * Loop through length of segment after first fragment,
974 * make new header and copy data of each part and link onto
975 * chain.
976 */
977 m0 = m;
978 for (off = hlen; off < tlen; off += len) {
979 struct mbuf *mlast;
980
981 MGETHDR(m, M_DONTWAIT, MT_HEADER);
982 if (!m) {
983 error = ENOBUFS;
984 IP6_STATINC(IP6_STAT_ODROPPED);
985 goto sendorfree;
986 }
987 m_reset_rcvif(m);
988 m->m_flags = m0->m_flags & M_COPYFLAGS;
989 *mnext = m;
990 mnext = &m->m_nextpkt;
991 m->m_data += max_linkhdr;
992 mhip6 = mtod(m, struct ip6_hdr *);
993 *mhip6 = *ip6;
994 m->m_len = sizeof(*mhip6);
995
996 ip6f = NULL;
997 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
998 if (error) {
999 IP6_STATINC(IP6_STAT_ODROPPED);
1000 goto sendorfree;
1001 }
1002
1003 /* Fill in the Frag6 Header */
1004 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
1005 if (off + len >= tlen)
1006 len = tlen - off;
1007 else
1008 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1009 ip6f->ip6f_reserved = 0;
1010 ip6f->ip6f_ident = id;
1011 ip6f->ip6f_nxt = nextproto;
1012
1013 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
1014 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1015 if ((m_frgpart = m_copy(m0, off, len)) == NULL) {
1016 error = ENOBUFS;
1017 IP6_STATINC(IP6_STAT_ODROPPED);
1018 goto sendorfree;
1019 }
1020 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
1021 ;
1022 mlast->m_next = m_frgpart;
1023
1024 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1025 m_reset_rcvif(m);
1026 IP6_STATINC(IP6_STAT_OFRAGMENTS);
1027 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1028 }
1029
1030 in6_ifstat_inc(ifp, ifs6_out_fragok);
1031 }
1032
1033 sendorfree:
1034 m = m0->m_nextpkt;
1035 m0->m_nextpkt = 0;
1036 m_freem(m0);
1037 for (m0 = m; m; m = m0) {
1038 m0 = m->m_nextpkt;
1039 m->m_nextpkt = 0;
1040 if (error == 0) {
1041 struct in6_ifaddr *ia6;
1042 int s;
1043 ip6 = mtod(m, struct ip6_hdr *);
1044 s = pserialize_read_enter();
1045 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1046 if (ia6) {
1047 /*
1048 * Record statistics for this interface
1049 * address.
1050 */
1051 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1052 m->m_pkthdr.len;
1053 }
1054 pserialize_read_exit(s);
1055 KASSERT(dst != NULL);
1056 error = ip6_if_output(ifp, origifp, m, dst, rt);
1057 } else
1058 m_freem(m);
1059 }
1060
1061 if (error == 0)
1062 IP6_STATINC(IP6_STAT_FRAGMENTED);
1063
1064 done:
1065 rtcache_unref(rt, ro);
1066 if (ro == &ip6route)
1067 rtcache_free(&ip6route);
1068 #ifdef IPSEC
1069 if (sp != NULL)
1070 KEY_SP_UNREF(&sp);
1071 #endif
1072 if_put(ifp, &psref);
1073 if (release_psref_ia)
1074 if_put(origifp, &psref_ia);
1075 curlwp_bindx(bound);
1076
1077 return error;
1078
1079 freehdrs:
1080 m_freem(exthdrs.ip6e_hbh);
1081 m_freem(exthdrs.ip6e_dest1);
1082 m_freem(exthdrs.ip6e_rthdr);
1083 m_freem(exthdrs.ip6e_dest2);
1084 /* FALLTHROUGH */
1085 bad:
1086 m_freem(m);
1087 goto done;
1088
1089 badscope:
1090 IP6_STATINC(IP6_STAT_BADSCOPE);
1091 in6_ifstat_inc(origifp, ifs6_out_discard);
1092 if (error == 0)
1093 error = EHOSTUNREACH; /* XXX */
1094 goto bad;
1095 }
1096
1097 static int
1098 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1099 {
1100 struct mbuf *m;
1101
1102 if (hlen > MCLBYTES)
1103 return ENOBUFS; /* XXX */
1104
1105 MGET(m, M_DONTWAIT, MT_DATA);
1106 if (!m)
1107 return ENOBUFS;
1108
1109 if (hlen > MLEN) {
1110 MCLGET(m, M_DONTWAIT);
1111 if ((m->m_flags & M_EXT) == 0) {
1112 m_free(m);
1113 return ENOBUFS;
1114 }
1115 }
1116 m->m_len = hlen;
1117 if (hdr)
1118 memcpy(mtod(m, void *), hdr, hlen);
1119
1120 *mp = m;
1121 return 0;
1122 }
1123
1124 /*
1125 * Process a delayed payload checksum calculation.
1126 */
1127 void
1128 in6_delayed_cksum(struct mbuf *m)
1129 {
1130 uint16_t csum, offset;
1131
1132 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1133 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1134 KASSERT((m->m_pkthdr.csum_flags
1135 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1136
1137 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1138 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1139 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1140 csum = 0xffff;
1141 }
1142
1143 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1144 if ((offset + sizeof(csum)) > m->m_len) {
1145 m_copyback(m, offset, sizeof(csum), &csum);
1146 } else {
1147 *(uint16_t *)(mtod(m, char *) + offset) = csum;
1148 }
1149 }
1150
1151 /*
1152 * Insert jumbo payload option.
1153 */
1154 static int
1155 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1156 {
1157 struct mbuf *mopt;
1158 u_int8_t *optbuf;
1159 u_int32_t v;
1160
1161 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1162
1163 /*
1164 * If there is no hop-by-hop options header, allocate new one.
1165 * If there is one but it doesn't have enough space to store the
1166 * jumbo payload option, allocate a cluster to store the whole options.
1167 * Otherwise, use it to store the options.
1168 */
1169 if (exthdrs->ip6e_hbh == NULL) {
1170 MGET(mopt, M_DONTWAIT, MT_DATA);
1171 if (mopt == 0)
1172 return (ENOBUFS);
1173 mopt->m_len = JUMBOOPTLEN;
1174 optbuf = mtod(mopt, u_int8_t *);
1175 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1176 exthdrs->ip6e_hbh = mopt;
1177 } else {
1178 struct ip6_hbh *hbh;
1179
1180 mopt = exthdrs->ip6e_hbh;
1181 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1182 const int oldoptlen = mopt->m_len;
1183 struct mbuf *n;
1184
1185 /*
1186 * Assumptions:
1187 * - exthdrs->ip6e_hbh is not referenced from places
1188 * other than exthdrs.
1189 * - exthdrs->ip6e_hbh is not an mbuf chain.
1190 */
1191 KASSERT(mopt->m_next == NULL);
1192
1193 /*
1194 * Give up if the whole (new) hbh header does not fit
1195 * even in an mbuf cluster.
1196 */
1197 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1198 return ENOBUFS;
1199
1200 /*
1201 * At this point, we must always prepare a cluster.
1202 */
1203 MGET(n, M_DONTWAIT, MT_DATA);
1204 if (n) {
1205 MCLGET(n, M_DONTWAIT);
1206 if ((n->m_flags & M_EXT) == 0) {
1207 m_freem(n);
1208 n = NULL;
1209 }
1210 }
1211 if (!n)
1212 return ENOBUFS;
1213
1214 n->m_len = oldoptlen + JUMBOOPTLEN;
1215 bcopy(mtod(mopt, void *), mtod(n, void *),
1216 oldoptlen);
1217 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1218 m_freem(mopt);
1219 mopt = exthdrs->ip6e_hbh = n;
1220 } else {
1221 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1222 mopt->m_len += JUMBOOPTLEN;
1223 }
1224 optbuf[0] = IP6OPT_PADN;
1225 optbuf[1] = 0;
1226
1227 /*
1228 * Adjust the header length according to the pad and
1229 * the jumbo payload option.
1230 */
1231 hbh = mtod(mopt, struct ip6_hbh *);
1232 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1233 }
1234
1235 /* fill in the option. */
1236 optbuf[2] = IP6OPT_JUMBO;
1237 optbuf[3] = 4;
1238 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1239 memcpy(&optbuf[4], &v, sizeof(u_int32_t));
1240
1241 /* finally, adjust the packet header length */
1242 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1243
1244 return 0;
1245 #undef JUMBOOPTLEN
1246 }
1247
1248 /*
1249 * Insert fragment header and copy unfragmentable header portions.
1250 *
1251 * *frghdrp will not be read, and it is guaranteed that either an
1252 * error is returned or that *frghdrp will point to space allocated
1253 * for the fragment header.
1254 *
1255 * On entry, m contains:
1256 * IPv6 Header
1257 * On exit, it contains:
1258 * IPv6 Header -> Unfragmentable Part -> Frag6 Header
1259 */
1260 static int
1261 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1262 struct ip6_frag **frghdrp)
1263 {
1264 struct mbuf *n, *mlast;
1265
1266 if (hlen > sizeof(struct ip6_hdr)) {
1267 n = m_copym(m0, sizeof(struct ip6_hdr),
1268 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1269 if (n == NULL)
1270 return ENOBUFS;
1271 m->m_next = n;
1272 } else
1273 n = m;
1274
1275 /* Search for the last mbuf of unfragmentable part. */
1276 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1277 ;
1278
1279 if ((mlast->m_flags & M_EXT) == 0 &&
1280 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1281 /* use the trailing space of the last mbuf for the fragment hdr */
1282 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1283 mlast->m_len);
1284 mlast->m_len += sizeof(struct ip6_frag);
1285 } else {
1286 /* allocate a new mbuf for the fragment header */
1287 struct mbuf *mfrg;
1288
1289 MGET(mfrg, M_DONTWAIT, MT_DATA);
1290 if (mfrg == NULL)
1291 return ENOBUFS;
1292 mfrg->m_len = sizeof(struct ip6_frag);
1293 *frghdrp = mtod(mfrg, struct ip6_frag *);
1294 mlast->m_next = mfrg;
1295 }
1296
1297 return 0;
1298 }
1299
1300 static int
1301 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
1302 int *alwaysfragp)
1303 {
1304 u_int32_t mtu = 0;
1305 int alwaysfrag = 0;
1306 int error = 0;
1307
1308 if (rt != NULL) {
1309 u_int32_t ifmtu;
1310
1311 if (ifp == NULL)
1312 ifp = rt->rt_ifp;
1313 ifmtu = IN6_LINKMTU(ifp);
1314 mtu = rt->rt_rmx.rmx_mtu;
1315 if (mtu == 0)
1316 mtu = ifmtu;
1317 else if (mtu < IPV6_MMTU) {
1318 /*
1319 * RFC2460 section 5, last paragraph:
1320 * if we record ICMPv6 too big message with
1321 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1322 * or smaller, with fragment header attached.
1323 * (fragment header is needed regardless from the
1324 * packet size, for translators to identify packets)
1325 */
1326 alwaysfrag = 1;
1327 mtu = IPV6_MMTU;
1328 } else if (mtu > ifmtu) {
1329 /*
1330 * The MTU on the route is larger than the MTU on
1331 * the interface! This shouldn't happen, unless the
1332 * MTU of the interface has been changed after the
1333 * interface was brought up. Change the MTU in the
1334 * route to match the interface MTU (as long as the
1335 * field isn't locked).
1336 */
1337 mtu = ifmtu;
1338 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1339 rt->rt_rmx.rmx_mtu = mtu;
1340 }
1341 } else if (ifp) {
1342 mtu = IN6_LINKMTU(ifp);
1343 } else
1344 error = EHOSTUNREACH; /* XXX */
1345
1346 *mtup = mtu;
1347 if (alwaysfragp)
1348 *alwaysfragp = alwaysfrag;
1349 return (error);
1350 }
1351
1352 /*
1353 * IP6 socket option processing.
1354 */
1355 int
1356 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1357 {
1358 int optdatalen, uproto;
1359 void *optdata;
1360 struct in6pcb *in6p = sotoin6pcb(so);
1361 struct ip_moptions **mopts;
1362 int error, optval;
1363 int level, optname;
1364
1365 KASSERT(solocked(so));
1366 KASSERT(sopt != NULL);
1367
1368 level = sopt->sopt_level;
1369 optname = sopt->sopt_name;
1370
1371 error = optval = 0;
1372 uproto = (int)so->so_proto->pr_protocol;
1373
1374 switch (level) {
1375 case IPPROTO_IP:
1376 switch (optname) {
1377 case IP_ADD_MEMBERSHIP:
1378 case IP_DROP_MEMBERSHIP:
1379 case IP_MULTICAST_IF:
1380 case IP_MULTICAST_LOOP:
1381 case IP_MULTICAST_TTL:
1382 mopts = &in6p->in6p_v4moptions;
1383 switch (op) {
1384 case PRCO_GETOPT:
1385 return ip_getmoptions(*mopts, sopt);
1386 case PRCO_SETOPT:
1387 return ip_setmoptions(mopts, sopt);
1388 default:
1389 return EINVAL;
1390 }
1391 default:
1392 return ENOPROTOOPT;
1393 }
1394 case IPPROTO_IPV6:
1395 break;
1396 default:
1397 return ENOPROTOOPT;
1398 }
1399 switch (op) {
1400 case PRCO_SETOPT:
1401 switch (optname) {
1402 #ifdef RFC2292
1403 case IPV6_2292PKTOPTIONS:
1404 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
1405 break;
1406 #endif
1407
1408 /*
1409 * Use of some Hop-by-Hop options or some
1410 * Destination options, might require special
1411 * privilege. That is, normal applications
1412 * (without special privilege) might be forbidden
1413 * from setting certain options in outgoing packets,
1414 * and might never see certain options in received
1415 * packets. [RFC 2292 Section 6]
1416 * KAME specific note:
1417 * KAME prevents non-privileged users from sending or
1418 * receiving ANY hbh/dst options in order to avoid
1419 * overhead of parsing options in the kernel.
1420 */
1421 case IPV6_RECVHOPOPTS:
1422 case IPV6_RECVDSTOPTS:
1423 case IPV6_RECVRTHDRDSTOPTS:
1424 error = kauth_authorize_network(kauth_cred_get(),
1425 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
1426 NULL, NULL, NULL);
1427 if (error)
1428 break;
1429 /* FALLTHROUGH */
1430 case IPV6_UNICAST_HOPS:
1431 case IPV6_HOPLIMIT:
1432 case IPV6_FAITH:
1433
1434 case IPV6_RECVPKTINFO:
1435 case IPV6_RECVHOPLIMIT:
1436 case IPV6_RECVRTHDR:
1437 case IPV6_RECVPATHMTU:
1438 case IPV6_RECVTCLASS:
1439 case IPV6_V6ONLY:
1440 error = sockopt_getint(sopt, &optval);
1441 if (error)
1442 break;
1443 switch (optname) {
1444 case IPV6_UNICAST_HOPS:
1445 if (optval < -1 || optval >= 256)
1446 error = EINVAL;
1447 else {
1448 /* -1 = kernel default */
1449 in6p->in6p_hops = optval;
1450 }
1451 break;
1452 #define OPTSET(bit) \
1453 do { \
1454 if (optval) \
1455 in6p->in6p_flags |= (bit); \
1456 else \
1457 in6p->in6p_flags &= ~(bit); \
1458 } while (/*CONSTCOND*/ 0)
1459
1460 #ifdef RFC2292
1461 #define OPTSET2292(bit) \
1462 do { \
1463 in6p->in6p_flags |= IN6P_RFC2292; \
1464 if (optval) \
1465 in6p->in6p_flags |= (bit); \
1466 else \
1467 in6p->in6p_flags &= ~(bit); \
1468 } while (/*CONSTCOND*/ 0)
1469 #endif
1470
1471 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1472
1473 case IPV6_RECVPKTINFO:
1474 #ifdef RFC2292
1475 /* cannot mix with RFC2292 */
1476 if (OPTBIT(IN6P_RFC2292)) {
1477 error = EINVAL;
1478 break;
1479 }
1480 #endif
1481 OPTSET(IN6P_PKTINFO);
1482 break;
1483
1484 case IPV6_HOPLIMIT:
1485 {
1486 struct ip6_pktopts **optp;
1487
1488 #ifdef RFC2292
1489 /* cannot mix with RFC2292 */
1490 if (OPTBIT(IN6P_RFC2292)) {
1491 error = EINVAL;
1492 break;
1493 }
1494 #endif
1495 optp = &in6p->in6p_outputopts;
1496 error = ip6_pcbopt(IPV6_HOPLIMIT,
1497 (u_char *)&optval,
1498 sizeof(optval),
1499 optp,
1500 kauth_cred_get(), uproto);
1501 break;
1502 }
1503
1504 case IPV6_RECVHOPLIMIT:
1505 #ifdef RFC2292
1506 /* cannot mix with RFC2292 */
1507 if (OPTBIT(IN6P_RFC2292)) {
1508 error = EINVAL;
1509 break;
1510 }
1511 #endif
1512 OPTSET(IN6P_HOPLIMIT);
1513 break;
1514
1515 case IPV6_RECVHOPOPTS:
1516 #ifdef RFC2292
1517 /* cannot mix with RFC2292 */
1518 if (OPTBIT(IN6P_RFC2292)) {
1519 error = EINVAL;
1520 break;
1521 }
1522 #endif
1523 OPTSET(IN6P_HOPOPTS);
1524 break;
1525
1526 case IPV6_RECVDSTOPTS:
1527 #ifdef RFC2292
1528 /* cannot mix with RFC2292 */
1529 if (OPTBIT(IN6P_RFC2292)) {
1530 error = EINVAL;
1531 break;
1532 }
1533 #endif
1534 OPTSET(IN6P_DSTOPTS);
1535 break;
1536
1537 case IPV6_RECVRTHDRDSTOPTS:
1538 #ifdef RFC2292
1539 /* cannot mix with RFC2292 */
1540 if (OPTBIT(IN6P_RFC2292)) {
1541 error = EINVAL;
1542 break;
1543 }
1544 #endif
1545 OPTSET(IN6P_RTHDRDSTOPTS);
1546 break;
1547
1548 case IPV6_RECVRTHDR:
1549 #ifdef RFC2292
1550 /* cannot mix with RFC2292 */
1551 if (OPTBIT(IN6P_RFC2292)) {
1552 error = EINVAL;
1553 break;
1554 }
1555 #endif
1556 OPTSET(IN6P_RTHDR);
1557 break;
1558
1559 case IPV6_FAITH:
1560 OPTSET(IN6P_FAITH);
1561 break;
1562
1563 case IPV6_RECVPATHMTU:
1564 /*
1565 * We ignore this option for TCP
1566 * sockets.
1567 * (RFC3542 leaves this case
1568 * unspecified.)
1569 */
1570 if (uproto != IPPROTO_TCP)
1571 OPTSET(IN6P_MTU);
1572 break;
1573
1574 case IPV6_V6ONLY:
1575 /*
1576 * make setsockopt(IPV6_V6ONLY)
1577 * available only prior to bind(2).
1578 * see ipng mailing list, Jun 22 2001.
1579 */
1580 if (in6p->in6p_lport ||
1581 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1582 error = EINVAL;
1583 break;
1584 }
1585 #ifdef INET6_BINDV6ONLY
1586 if (!optval)
1587 error = EINVAL;
1588 #else
1589 OPTSET(IN6P_IPV6_V6ONLY);
1590 #endif
1591 break;
1592 case IPV6_RECVTCLASS:
1593 #ifdef RFC2292
1594 /* cannot mix with RFC2292 XXX */
1595 if (OPTBIT(IN6P_RFC2292)) {
1596 error = EINVAL;
1597 break;
1598 }
1599 #endif
1600 OPTSET(IN6P_TCLASS);
1601 break;
1602
1603 }
1604 break;
1605
1606 case IPV6_OTCLASS:
1607 {
1608 struct ip6_pktopts **optp;
1609 u_int8_t tclass;
1610
1611 error = sockopt_get(sopt, &tclass, sizeof(tclass));
1612 if (error)
1613 break;
1614 optp = &in6p->in6p_outputopts;
1615 error = ip6_pcbopt(optname,
1616 (u_char *)&tclass,
1617 sizeof(tclass),
1618 optp,
1619 kauth_cred_get(), uproto);
1620 break;
1621 }
1622
1623 case IPV6_TCLASS:
1624 case IPV6_DONTFRAG:
1625 case IPV6_USE_MIN_MTU:
1626 case IPV6_PREFER_TEMPADDR:
1627 error = sockopt_getint(sopt, &optval);
1628 if (error)
1629 break;
1630 {
1631 struct ip6_pktopts **optp;
1632 optp = &in6p->in6p_outputopts;
1633 error = ip6_pcbopt(optname,
1634 (u_char *)&optval,
1635 sizeof(optval),
1636 optp,
1637 kauth_cred_get(), uproto);
1638 break;
1639 }
1640
1641 #ifdef RFC2292
1642 case IPV6_2292PKTINFO:
1643 case IPV6_2292HOPLIMIT:
1644 case IPV6_2292HOPOPTS:
1645 case IPV6_2292DSTOPTS:
1646 case IPV6_2292RTHDR:
1647 /* RFC 2292 */
1648 error = sockopt_getint(sopt, &optval);
1649 if (error)
1650 break;
1651
1652 switch (optname) {
1653 case IPV6_2292PKTINFO:
1654 OPTSET2292(IN6P_PKTINFO);
1655 break;
1656 case IPV6_2292HOPLIMIT:
1657 OPTSET2292(IN6P_HOPLIMIT);
1658 break;
1659 case IPV6_2292HOPOPTS:
1660 /*
1661 * Check super-user privilege.
1662 * See comments for IPV6_RECVHOPOPTS.
1663 */
1664 error =
1665 kauth_authorize_network(kauth_cred_get(),
1666 KAUTH_NETWORK_IPV6,
1667 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1668 NULL, NULL);
1669 if (error)
1670 return (error);
1671 OPTSET2292(IN6P_HOPOPTS);
1672 break;
1673 case IPV6_2292DSTOPTS:
1674 error =
1675 kauth_authorize_network(kauth_cred_get(),
1676 KAUTH_NETWORK_IPV6,
1677 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1678 NULL, NULL);
1679 if (error)
1680 return (error);
1681 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1682 break;
1683 case IPV6_2292RTHDR:
1684 OPTSET2292(IN6P_RTHDR);
1685 break;
1686 }
1687 break;
1688 #endif
1689 case IPV6_PKTINFO:
1690 case IPV6_HOPOPTS:
1691 case IPV6_RTHDR:
1692 case IPV6_DSTOPTS:
1693 case IPV6_RTHDRDSTOPTS:
1694 case IPV6_NEXTHOP: {
1695 /* new advanced API (RFC3542) */
1696 void *optbuf;
1697 int optbuflen;
1698 struct ip6_pktopts **optp;
1699
1700 #ifdef RFC2292
1701 /* cannot mix with RFC2292 */
1702 if (OPTBIT(IN6P_RFC2292)) {
1703 error = EINVAL;
1704 break;
1705 }
1706 #endif
1707
1708 optbuflen = sopt->sopt_size;
1709 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1710 if (optbuf == NULL) {
1711 error = ENOBUFS;
1712 break;
1713 }
1714
1715 error = sockopt_get(sopt, optbuf, optbuflen);
1716 if (error) {
1717 free(optbuf, M_IP6OPT);
1718 break;
1719 }
1720 optp = &in6p->in6p_outputopts;
1721 error = ip6_pcbopt(optname, optbuf, optbuflen,
1722 optp, kauth_cred_get(), uproto);
1723
1724 free(optbuf, M_IP6OPT);
1725 break;
1726 }
1727 #undef OPTSET
1728
1729 case IPV6_MULTICAST_IF:
1730 case IPV6_MULTICAST_HOPS:
1731 case IPV6_MULTICAST_LOOP:
1732 case IPV6_JOIN_GROUP:
1733 case IPV6_LEAVE_GROUP:
1734 error = ip6_setmoptions(sopt, in6p);
1735 break;
1736
1737 case IPV6_PORTRANGE:
1738 error = sockopt_getint(sopt, &optval);
1739 if (error)
1740 break;
1741
1742 switch (optval) {
1743 case IPV6_PORTRANGE_DEFAULT:
1744 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1745 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1746 break;
1747
1748 case IPV6_PORTRANGE_HIGH:
1749 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1750 in6p->in6p_flags |= IN6P_HIGHPORT;
1751 break;
1752
1753 case IPV6_PORTRANGE_LOW:
1754 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1755 in6p->in6p_flags |= IN6P_LOWPORT;
1756 break;
1757
1758 default:
1759 error = EINVAL;
1760 break;
1761 }
1762 break;
1763
1764 case IPV6_PORTALGO:
1765 error = sockopt_getint(sopt, &optval);
1766 if (error)
1767 break;
1768
1769 error = portalgo_algo_index_select(
1770 (struct inpcb_hdr *)in6p, optval);
1771 break;
1772
1773 #if defined(IPSEC)
1774 case IPV6_IPSEC_POLICY:
1775 if (ipsec_enabled) {
1776 error = ipsec6_set_policy(in6p, optname,
1777 sopt->sopt_data, sopt->sopt_size,
1778 kauth_cred_get());
1779 break;
1780 }
1781 /*FALLTHROUGH*/
1782 #endif /* IPSEC */
1783
1784 default:
1785 error = ENOPROTOOPT;
1786 break;
1787 }
1788 break;
1789
1790 case PRCO_GETOPT:
1791 switch (optname) {
1792 #ifdef RFC2292
1793 case IPV6_2292PKTOPTIONS:
1794 /*
1795 * RFC3542 (effectively) deprecated the
1796 * semantics of the 2292-style pktoptions.
1797 * Since it was not reliable in nature (i.e.,
1798 * applications had to expect the lack of some
1799 * information after all), it would make sense
1800 * to simplify this part by always returning
1801 * empty data.
1802 */
1803 break;
1804 #endif
1805
1806 case IPV6_RECVHOPOPTS:
1807 case IPV6_RECVDSTOPTS:
1808 case IPV6_RECVRTHDRDSTOPTS:
1809 case IPV6_UNICAST_HOPS:
1810 case IPV6_RECVPKTINFO:
1811 case IPV6_RECVHOPLIMIT:
1812 case IPV6_RECVRTHDR:
1813 case IPV6_RECVPATHMTU:
1814
1815 case IPV6_FAITH:
1816 case IPV6_V6ONLY:
1817 case IPV6_PORTRANGE:
1818 case IPV6_RECVTCLASS:
1819 switch (optname) {
1820
1821 case IPV6_RECVHOPOPTS:
1822 optval = OPTBIT(IN6P_HOPOPTS);
1823 break;
1824
1825 case IPV6_RECVDSTOPTS:
1826 optval = OPTBIT(IN6P_DSTOPTS);
1827 break;
1828
1829 case IPV6_RECVRTHDRDSTOPTS:
1830 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1831 break;
1832
1833 case IPV6_UNICAST_HOPS:
1834 optval = in6p->in6p_hops;
1835 break;
1836
1837 case IPV6_RECVPKTINFO:
1838 optval = OPTBIT(IN6P_PKTINFO);
1839 break;
1840
1841 case IPV6_RECVHOPLIMIT:
1842 optval = OPTBIT(IN6P_HOPLIMIT);
1843 break;
1844
1845 case IPV6_RECVRTHDR:
1846 optval = OPTBIT(IN6P_RTHDR);
1847 break;
1848
1849 case IPV6_RECVPATHMTU:
1850 optval = OPTBIT(IN6P_MTU);
1851 break;
1852
1853 case IPV6_FAITH:
1854 optval = OPTBIT(IN6P_FAITH);
1855 break;
1856
1857 case IPV6_V6ONLY:
1858 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1859 break;
1860
1861 case IPV6_PORTRANGE:
1862 {
1863 int flags;
1864 flags = in6p->in6p_flags;
1865 if (flags & IN6P_HIGHPORT)
1866 optval = IPV6_PORTRANGE_HIGH;
1867 else if (flags & IN6P_LOWPORT)
1868 optval = IPV6_PORTRANGE_LOW;
1869 else
1870 optval = 0;
1871 break;
1872 }
1873 case IPV6_RECVTCLASS:
1874 optval = OPTBIT(IN6P_TCLASS);
1875 break;
1876
1877 }
1878 if (error)
1879 break;
1880 error = sockopt_setint(sopt, optval);
1881 break;
1882
1883 case IPV6_PATHMTU:
1884 {
1885 u_long pmtu = 0;
1886 struct ip6_mtuinfo mtuinfo;
1887 struct route *ro = &in6p->in6p_route;
1888 struct rtentry *rt;
1889 union {
1890 struct sockaddr dst;
1891 struct sockaddr_in6 dst6;
1892 } u;
1893
1894 if (!(so->so_state & SS_ISCONNECTED))
1895 return (ENOTCONN);
1896 /*
1897 * XXX: we dot not consider the case of source
1898 * routing, or optional information to specify
1899 * the outgoing interface.
1900 */
1901 sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0);
1902 rt = rtcache_lookup(ro, &u.dst);
1903 error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
1904 rtcache_unref(rt, ro);
1905 if (error)
1906 break;
1907 if (pmtu > IPV6_MAXPACKET)
1908 pmtu = IPV6_MAXPACKET;
1909
1910 memset(&mtuinfo, 0, sizeof(mtuinfo));
1911 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1912 optdata = (void *)&mtuinfo;
1913 optdatalen = sizeof(mtuinfo);
1914 if (optdatalen > MCLBYTES)
1915 return (EMSGSIZE); /* XXX */
1916 error = sockopt_set(sopt, optdata, optdatalen);
1917 break;
1918 }
1919
1920 #ifdef RFC2292
1921 case IPV6_2292PKTINFO:
1922 case IPV6_2292HOPLIMIT:
1923 case IPV6_2292HOPOPTS:
1924 case IPV6_2292RTHDR:
1925 case IPV6_2292DSTOPTS:
1926 switch (optname) {
1927 case IPV6_2292PKTINFO:
1928 optval = OPTBIT(IN6P_PKTINFO);
1929 break;
1930 case IPV6_2292HOPLIMIT:
1931 optval = OPTBIT(IN6P_HOPLIMIT);
1932 break;
1933 case IPV6_2292HOPOPTS:
1934 optval = OPTBIT(IN6P_HOPOPTS);
1935 break;
1936 case IPV6_2292RTHDR:
1937 optval = OPTBIT(IN6P_RTHDR);
1938 break;
1939 case IPV6_2292DSTOPTS:
1940 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1941 break;
1942 }
1943 error = sockopt_setint(sopt, optval);
1944 break;
1945 #endif
1946 case IPV6_PKTINFO:
1947 case IPV6_HOPOPTS:
1948 case IPV6_RTHDR:
1949 case IPV6_DSTOPTS:
1950 case IPV6_RTHDRDSTOPTS:
1951 case IPV6_NEXTHOP:
1952 case IPV6_OTCLASS:
1953 case IPV6_TCLASS:
1954 case IPV6_DONTFRAG:
1955 case IPV6_USE_MIN_MTU:
1956 case IPV6_PREFER_TEMPADDR:
1957 error = ip6_getpcbopt(in6p->in6p_outputopts,
1958 optname, sopt);
1959 break;
1960
1961 case IPV6_MULTICAST_IF:
1962 case IPV6_MULTICAST_HOPS:
1963 case IPV6_MULTICAST_LOOP:
1964 case IPV6_JOIN_GROUP:
1965 case IPV6_LEAVE_GROUP:
1966 error = ip6_getmoptions(sopt, in6p);
1967 break;
1968
1969 case IPV6_PORTALGO:
1970 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
1971 error = sockopt_setint(sopt, optval);
1972 break;
1973
1974 #if defined(IPSEC)
1975 case IPV6_IPSEC_POLICY:
1976 if (ipsec_used) {
1977 struct mbuf *m = NULL;
1978
1979 /*
1980 * XXX: this will return EINVAL as sopt is
1981 * empty
1982 */
1983 error = ipsec_get_policy(in6p, sopt->sopt_data,
1984 sopt->sopt_size, &m);
1985 if (!error)
1986 error = sockopt_setmbuf(sopt, m);
1987 break;
1988 }
1989 /*FALLTHROUGH*/
1990 #endif /* IPSEC */
1991
1992 default:
1993 error = ENOPROTOOPT;
1994 break;
1995 }
1996 break;
1997 }
1998 return (error);
1999 }
2000
2001 int
2002 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
2003 {
2004 int error = 0, optval;
2005 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2006 struct in6pcb *in6p = sotoin6pcb(so);
2007 int level, optname;
2008
2009 KASSERT(sopt != NULL);
2010
2011 level = sopt->sopt_level;
2012 optname = sopt->sopt_name;
2013
2014 if (level != IPPROTO_IPV6) {
2015 return ENOPROTOOPT;
2016 }
2017
2018 switch (optname) {
2019 case IPV6_CHECKSUM:
2020 /*
2021 * For ICMPv6 sockets, no modification allowed for checksum
2022 * offset, permit "no change" values to help existing apps.
2023 *
2024 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
2025 * for an ICMPv6 socket will fail." The current
2026 * behavior does not meet RFC3542.
2027 */
2028 switch (op) {
2029 case PRCO_SETOPT:
2030 error = sockopt_getint(sopt, &optval);
2031 if (error)
2032 break;
2033 if ((optval % 2) != 0) {
2034 /* the API assumes even offset values */
2035 error = EINVAL;
2036 } else if (so->so_proto->pr_protocol ==
2037 IPPROTO_ICMPV6) {
2038 if (optval != icmp6off)
2039 error = EINVAL;
2040 } else
2041 in6p->in6p_cksum = optval;
2042 break;
2043
2044 case PRCO_GETOPT:
2045 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2046 optval = icmp6off;
2047 else
2048 optval = in6p->in6p_cksum;
2049
2050 error = sockopt_setint(sopt, optval);
2051 break;
2052
2053 default:
2054 error = EINVAL;
2055 break;
2056 }
2057 break;
2058
2059 default:
2060 error = ENOPROTOOPT;
2061 break;
2062 }
2063
2064 return (error);
2065 }
2066
2067 #ifdef RFC2292
2068 /*
2069 * Set up IP6 options in pcb for insertion in output packets or
2070 * specifying behavior of outgoing packets.
2071 */
2072 static int
2073 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
2074 struct sockopt *sopt)
2075 {
2076 struct ip6_pktopts *opt = *pktopt;
2077 struct mbuf *m;
2078 int error = 0;
2079
2080 KASSERT(solocked(so));
2081
2082 /* turn off any old options. */
2083 if (opt) {
2084 #ifdef DIAGNOSTIC
2085 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2086 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2087 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2088 printf("ip6_pcbopts: all specified options are cleared.\n");
2089 #endif
2090 ip6_clearpktopts(opt, -1);
2091 } else {
2092 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2093 if (opt == NULL)
2094 return (ENOBUFS);
2095 }
2096 *pktopt = NULL;
2097
2098 if (sopt == NULL || sopt->sopt_size == 0) {
2099 /*
2100 * Only turning off any previous options, regardless of
2101 * whether the opt is just created or given.
2102 */
2103 free(opt, M_IP6OPT);
2104 return (0);
2105 }
2106
2107 /* set options specified by user. */
2108 m = sockopt_getmbuf(sopt);
2109 if (m == NULL) {
2110 free(opt, M_IP6OPT);
2111 return (ENOBUFS);
2112 }
2113
2114 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
2115 so->so_proto->pr_protocol);
2116 m_freem(m);
2117 if (error != 0) {
2118 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2119 free(opt, M_IP6OPT);
2120 return (error);
2121 }
2122 *pktopt = opt;
2123 return (0);
2124 }
2125 #endif
2126
2127 /*
2128 * initialize ip6_pktopts. beware that there are non-zero default values in
2129 * the struct.
2130 */
2131 void
2132 ip6_initpktopts(struct ip6_pktopts *opt)
2133 {
2134
2135 memset(opt, 0, sizeof(*opt));
2136 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2137 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2138 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2139 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2140 }
2141
2142 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2143 static int
2144 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2145 kauth_cred_t cred, int uproto)
2146 {
2147 struct ip6_pktopts *opt;
2148
2149 if (*pktopt == NULL) {
2150 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2151 M_NOWAIT);
2152 if (*pktopt == NULL)
2153 return (ENOBUFS);
2154
2155 ip6_initpktopts(*pktopt);
2156 }
2157 opt = *pktopt;
2158
2159 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2160 }
2161
2162 static int
2163 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2164 {
2165 void *optdata = NULL;
2166 int optdatalen = 0;
2167 struct ip6_ext *ip6e;
2168 int error = 0;
2169 struct in6_pktinfo null_pktinfo;
2170 int deftclass = 0, on;
2171 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2172 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2173
2174 switch (optname) {
2175 case IPV6_PKTINFO:
2176 if (pktopt && pktopt->ip6po_pktinfo)
2177 optdata = (void *)pktopt->ip6po_pktinfo;
2178 else {
2179 /* XXX: we don't have to do this every time... */
2180 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2181 optdata = (void *)&null_pktinfo;
2182 }
2183 optdatalen = sizeof(struct in6_pktinfo);
2184 break;
2185 case IPV6_OTCLASS:
2186 /* XXX */
2187 return (EINVAL);
2188 case IPV6_TCLASS:
2189 if (pktopt && pktopt->ip6po_tclass >= 0)
2190 optdata = (void *)&pktopt->ip6po_tclass;
2191 else
2192 optdata = (void *)&deftclass;
2193 optdatalen = sizeof(int);
2194 break;
2195 case IPV6_HOPOPTS:
2196 if (pktopt && pktopt->ip6po_hbh) {
2197 optdata = (void *)pktopt->ip6po_hbh;
2198 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2199 optdatalen = (ip6e->ip6e_len + 1) << 3;
2200 }
2201 break;
2202 case IPV6_RTHDR:
2203 if (pktopt && pktopt->ip6po_rthdr) {
2204 optdata = (void *)pktopt->ip6po_rthdr;
2205 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2206 optdatalen = (ip6e->ip6e_len + 1) << 3;
2207 }
2208 break;
2209 case IPV6_RTHDRDSTOPTS:
2210 if (pktopt && pktopt->ip6po_dest1) {
2211 optdata = (void *)pktopt->ip6po_dest1;
2212 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2213 optdatalen = (ip6e->ip6e_len + 1) << 3;
2214 }
2215 break;
2216 case IPV6_DSTOPTS:
2217 if (pktopt && pktopt->ip6po_dest2) {
2218 optdata = (void *)pktopt->ip6po_dest2;
2219 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2220 optdatalen = (ip6e->ip6e_len + 1) << 3;
2221 }
2222 break;
2223 case IPV6_NEXTHOP:
2224 if (pktopt && pktopt->ip6po_nexthop) {
2225 optdata = (void *)pktopt->ip6po_nexthop;
2226 optdatalen = pktopt->ip6po_nexthop->sa_len;
2227 }
2228 break;
2229 case IPV6_USE_MIN_MTU:
2230 if (pktopt)
2231 optdata = (void *)&pktopt->ip6po_minmtu;
2232 else
2233 optdata = (void *)&defminmtu;
2234 optdatalen = sizeof(int);
2235 break;
2236 case IPV6_DONTFRAG:
2237 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2238 on = 1;
2239 else
2240 on = 0;
2241 optdata = (void *)&on;
2242 optdatalen = sizeof(on);
2243 break;
2244 case IPV6_PREFER_TEMPADDR:
2245 if (pktopt)
2246 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2247 else
2248 optdata = (void *)&defpreftemp;
2249 optdatalen = sizeof(int);
2250 break;
2251 default: /* should not happen */
2252 #ifdef DIAGNOSTIC
2253 panic("ip6_getpcbopt: unexpected option\n");
2254 #endif
2255 return (ENOPROTOOPT);
2256 }
2257
2258 error = sockopt_set(sopt, optdata, optdatalen);
2259
2260 return (error);
2261 }
2262
2263 void
2264 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2265 {
2266 if (optname == -1 || optname == IPV6_PKTINFO) {
2267 if (pktopt->ip6po_pktinfo)
2268 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2269 pktopt->ip6po_pktinfo = NULL;
2270 }
2271 if (optname == -1 || optname == IPV6_HOPLIMIT)
2272 pktopt->ip6po_hlim = -1;
2273 if (optname == -1 || optname == IPV6_TCLASS)
2274 pktopt->ip6po_tclass = -1;
2275 if (optname == -1 || optname == IPV6_NEXTHOP) {
2276 rtcache_free(&pktopt->ip6po_nextroute);
2277 if (pktopt->ip6po_nexthop)
2278 free(pktopt->ip6po_nexthop, M_IP6OPT);
2279 pktopt->ip6po_nexthop = NULL;
2280 }
2281 if (optname == -1 || optname == IPV6_HOPOPTS) {
2282 if (pktopt->ip6po_hbh)
2283 free(pktopt->ip6po_hbh, M_IP6OPT);
2284 pktopt->ip6po_hbh = NULL;
2285 }
2286 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2287 if (pktopt->ip6po_dest1)
2288 free(pktopt->ip6po_dest1, M_IP6OPT);
2289 pktopt->ip6po_dest1 = NULL;
2290 }
2291 if (optname == -1 || optname == IPV6_RTHDR) {
2292 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2293 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2294 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2295 rtcache_free(&pktopt->ip6po_route);
2296 }
2297 if (optname == -1 || optname == IPV6_DSTOPTS) {
2298 if (pktopt->ip6po_dest2)
2299 free(pktopt->ip6po_dest2, M_IP6OPT);
2300 pktopt->ip6po_dest2 = NULL;
2301 }
2302 }
2303
2304 #define PKTOPT_EXTHDRCPY(type) \
2305 do { \
2306 if (src->type) { \
2307 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2308 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2309 if (dst->type == NULL) \
2310 goto bad; \
2311 memcpy(dst->type, src->type, hlen); \
2312 } \
2313 } while (/*CONSTCOND*/ 0)
2314
2315 static int
2316 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2317 {
2318 dst->ip6po_hlim = src->ip6po_hlim;
2319 dst->ip6po_tclass = src->ip6po_tclass;
2320 dst->ip6po_flags = src->ip6po_flags;
2321 dst->ip6po_minmtu = src->ip6po_minmtu;
2322 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2323 if (src->ip6po_pktinfo) {
2324 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2325 M_IP6OPT, canwait);
2326 if (dst->ip6po_pktinfo == NULL)
2327 goto bad;
2328 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2329 }
2330 if (src->ip6po_nexthop) {
2331 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2332 M_IP6OPT, canwait);
2333 if (dst->ip6po_nexthop == NULL)
2334 goto bad;
2335 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2336 src->ip6po_nexthop->sa_len);
2337 }
2338 PKTOPT_EXTHDRCPY(ip6po_hbh);
2339 PKTOPT_EXTHDRCPY(ip6po_dest1);
2340 PKTOPT_EXTHDRCPY(ip6po_dest2);
2341 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2342 return (0);
2343
2344 bad:
2345 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2346 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2347 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2348 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2349 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2350 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2351
2352 return (ENOBUFS);
2353 }
2354 #undef PKTOPT_EXTHDRCPY
2355
2356 struct ip6_pktopts *
2357 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2358 {
2359 int error;
2360 struct ip6_pktopts *dst;
2361
2362 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2363 if (dst == NULL)
2364 return (NULL);
2365 ip6_initpktopts(dst);
2366
2367 if ((error = copypktopts(dst, src, canwait)) != 0) {
2368 free(dst, M_IP6OPT);
2369 return (NULL);
2370 }
2371
2372 return (dst);
2373 }
2374
2375 void
2376 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2377 {
2378 if (pktopt == NULL)
2379 return;
2380
2381 ip6_clearpktopts(pktopt, -1);
2382
2383 free(pktopt, M_IP6OPT);
2384 }
2385
2386 int
2387 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
2388 struct psref *psref, void *v, size_t l)
2389 {
2390 struct ipv6_mreq mreq;
2391 int error;
2392 struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
2393 struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
2394
2395 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2396 if (error != 0)
2397 return error;
2398
2399 if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
2400 /*
2401 * We use the unspecified address to specify to accept
2402 * all multicast addresses. Only super user is allowed
2403 * to do this.
2404 */
2405 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6,
2406 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
2407 return EACCES;
2408 } else if (IN6_IS_ADDR_V4MAPPED(ia)) {
2409 // Don't bother if we are not going to use ifp.
2410 if (l == sizeof(*ia)) {
2411 memcpy(v, ia, l);
2412 return 0;
2413 }
2414 } else if (!IN6_IS_ADDR_MULTICAST(ia)) {
2415 return EINVAL;
2416 }
2417
2418 /*
2419 * If no interface was explicitly specified, choose an
2420 * appropriate one according to the given multicast address.
2421 */
2422 if (mreq.ipv6mr_interface == 0) {
2423 struct rtentry *rt;
2424 union {
2425 struct sockaddr dst;
2426 struct sockaddr_in dst4;
2427 struct sockaddr_in6 dst6;
2428 } u;
2429 struct route ro;
2430
2431 /*
2432 * Look up the routing table for the
2433 * address, and choose the outgoing interface.
2434 * XXX: is it a good approach?
2435 */
2436 memset(&ro, 0, sizeof(ro));
2437 if (IN6_IS_ADDR_V4MAPPED(ia))
2438 sockaddr_in_init(&u.dst4, ia4, 0);
2439 else
2440 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
2441 error = rtcache_setdst(&ro, &u.dst);
2442 if (error != 0)
2443 return error;
2444 rt = rtcache_init(&ro);
2445 *ifp = rt != NULL ?
2446 if_get_byindex(rt->rt_ifp->if_index, psref) : NULL;
2447 rtcache_unref(rt, &ro);
2448 rtcache_free(&ro);
2449 } else {
2450 /*
2451 * If the interface is specified, validate it.
2452 */
2453 *ifp = if_get_byindex(mreq.ipv6mr_interface, psref);
2454 if (*ifp == NULL)
2455 return ENXIO; /* XXX EINVAL? */
2456 }
2457 if (sizeof(*ia) == l)
2458 memcpy(v, ia, l);
2459 else
2460 memcpy(v, ia4, l);
2461 return 0;
2462 }
2463
2464 /*
2465 * Set the IP6 multicast options in response to user setsockopt().
2466 */
2467 static int
2468 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p)
2469 {
2470 int error = 0;
2471 u_int loop, ifindex;
2472 struct ipv6_mreq mreq;
2473 struct in6_addr ia;
2474 struct ifnet *ifp;
2475 struct ip6_moptions *im6o = in6p->in6p_moptions;
2476 struct in6_multi_mship *imm;
2477
2478 KASSERT(in6p_locked(in6p));
2479
2480 if (im6o == NULL) {
2481 /*
2482 * No multicast option buffer attached to the pcb;
2483 * allocate one and initialize to default values.
2484 */
2485 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2486 if (im6o == NULL)
2487 return (ENOBUFS);
2488 in6p->in6p_moptions = im6o;
2489 im6o->im6o_multicast_if_index = 0;
2490 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2491 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2492 LIST_INIT(&im6o->im6o_memberships);
2493 }
2494
2495 switch (sopt->sopt_name) {
2496
2497 case IPV6_MULTICAST_IF: {
2498 int s;
2499 /*
2500 * Select the interface for outgoing multicast packets.
2501 */
2502 error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2503 if (error != 0)
2504 break;
2505
2506 s = pserialize_read_enter();
2507 if (ifindex != 0) {
2508 if ((ifp = if_byindex(ifindex)) == NULL) {
2509 pserialize_read_exit(s);
2510 error = ENXIO; /* XXX EINVAL? */
2511 break;
2512 }
2513 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2514 pserialize_read_exit(s);
2515 error = EADDRNOTAVAIL;
2516 break;
2517 }
2518 } else
2519 ifp = NULL;
2520 im6o->im6o_multicast_if_index = if_get_index(ifp);
2521 pserialize_read_exit(s);
2522 break;
2523 }
2524
2525 case IPV6_MULTICAST_HOPS:
2526 {
2527 /*
2528 * Set the IP6 hoplimit for outgoing multicast packets.
2529 */
2530 int optval;
2531
2532 error = sockopt_getint(sopt, &optval);
2533 if (error != 0)
2534 break;
2535
2536 if (optval < -1 || optval >= 256)
2537 error = EINVAL;
2538 else if (optval == -1)
2539 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2540 else
2541 im6o->im6o_multicast_hlim = optval;
2542 break;
2543 }
2544
2545 case IPV6_MULTICAST_LOOP:
2546 /*
2547 * Set the loopback flag for outgoing multicast packets.
2548 * Must be zero or one.
2549 */
2550 error = sockopt_get(sopt, &loop, sizeof(loop));
2551 if (error != 0)
2552 break;
2553 if (loop > 1) {
2554 error = EINVAL;
2555 break;
2556 }
2557 im6o->im6o_multicast_loop = loop;
2558 break;
2559
2560 case IPV6_JOIN_GROUP: {
2561 int bound;
2562 struct psref psref;
2563 /*
2564 * Add a multicast group membership.
2565 * Group must be a valid IP6 multicast address.
2566 */
2567 bound = curlwp_bind();
2568 ifp = NULL;
2569 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
2570 if (error != 0) {
2571 KASSERT(ifp == NULL);
2572 curlwp_bindx(bound);
2573 return error;
2574 }
2575
2576 if (IN6_IS_ADDR_V4MAPPED(&ia)) {
2577 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2578 goto put_break;
2579 }
2580 /*
2581 * See if we found an interface, and confirm that it
2582 * supports multicast
2583 */
2584 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2585 error = EADDRNOTAVAIL;
2586 goto put_break;
2587 }
2588
2589 if (in6_setscope(&ia, ifp, NULL)) {
2590 error = EADDRNOTAVAIL; /* XXX: should not happen */
2591 goto put_break;
2592 }
2593
2594 /*
2595 * See if the membership already exists.
2596 */
2597 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2598 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2599 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2600 &ia))
2601 goto put_break;
2602 }
2603 if (imm != NULL) {
2604 error = EADDRINUSE;
2605 goto put_break;
2606 }
2607 /*
2608 * Everything looks good; add a new record to the multicast
2609 * address list for the given interface.
2610 */
2611 IFNET_LOCK(ifp);
2612 imm = in6_joingroup(ifp, &ia, &error, 0);
2613 IFNET_UNLOCK(ifp);
2614 if (imm == NULL)
2615 goto put_break;
2616 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2617 put_break:
2618 if_put(ifp, &psref);
2619 curlwp_bindx(bound);
2620 break;
2621 }
2622
2623 case IPV6_LEAVE_GROUP: {
2624 struct ifnet *in6m_ifp;
2625 /*
2626 * Drop a multicast group membership.
2627 * Group must be a valid IP6 multicast address.
2628 */
2629 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2630 if (error != 0)
2631 break;
2632
2633 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
2634 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2635 break;
2636 }
2637 /*
2638 * If an interface address was specified, get a pointer
2639 * to its ifnet structure.
2640 */
2641 if (mreq.ipv6mr_interface != 0) {
2642 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
2643 error = ENXIO; /* XXX EINVAL? */
2644 break;
2645 }
2646 } else
2647 ifp = NULL;
2648
2649 /* Fill in the scope zone ID */
2650 if (ifp) {
2651 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2652 /* XXX: should not happen */
2653 error = EADDRNOTAVAIL;
2654 break;
2655 }
2656 } else if (mreq.ipv6mr_interface != 0) {
2657 /*
2658 * XXX: This case would happens when the (positive)
2659 * index is in the valid range, but the corresponding
2660 * interface has been detached dynamically. The above
2661 * check probably avoids such case to happen here, but
2662 * we check it explicitly for safety.
2663 */
2664 error = EADDRNOTAVAIL;
2665 break;
2666 } else { /* ipv6mr_interface == 0 */
2667 struct sockaddr_in6 sa6_mc;
2668
2669 /*
2670 * The API spec says as follows:
2671 * If the interface index is specified as 0, the
2672 * system may choose a multicast group membership to
2673 * drop by matching the multicast address only.
2674 * On the other hand, we cannot disambiguate the scope
2675 * zone unless an interface is provided. Thus, we
2676 * check if there's ambiguity with the default scope
2677 * zone as the last resort.
2678 */
2679 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2680 0, 0, 0);
2681 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2682 if (error != 0)
2683 break;
2684 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2685 }
2686
2687 /*
2688 * Find the membership in the membership list.
2689 */
2690 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2691 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2692 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2693 &mreq.ipv6mr_multiaddr))
2694 break;
2695 }
2696 if (imm == NULL) {
2697 /* Unable to resolve interface */
2698 error = EADDRNOTAVAIL;
2699 break;
2700 }
2701 /*
2702 * Give up the multicast address record to which the
2703 * membership points.
2704 */
2705 LIST_REMOVE(imm, i6mm_chain);
2706 in6m_ifp = imm->i6mm_maddr->in6m_ifp;
2707 IFNET_LOCK(in6m_ifp);
2708 in6_leavegroup(imm);
2709 /* in6m_ifp should not leave thanks to in6p_lock */
2710 IFNET_UNLOCK(in6m_ifp);
2711 break;
2712 }
2713
2714 default:
2715 error = EOPNOTSUPP;
2716 break;
2717 }
2718
2719 /*
2720 * If all options have default values, no need to keep the mbuf.
2721 */
2722 if (im6o->im6o_multicast_if_index == 0 &&
2723 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2724 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2725 LIST_EMPTY(&im6o->im6o_memberships)) {
2726 free(in6p->in6p_moptions, M_IPMOPTS);
2727 in6p->in6p_moptions = NULL;
2728 }
2729
2730 return (error);
2731 }
2732
2733 /*
2734 * Return the IP6 multicast options in response to user getsockopt().
2735 */
2736 static int
2737 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p)
2738 {
2739 u_int optval;
2740 int error;
2741 struct ip6_moptions *im6o = in6p->in6p_moptions;
2742
2743 switch (sopt->sopt_name) {
2744 case IPV6_MULTICAST_IF:
2745 if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
2746 optval = 0;
2747 else
2748 optval = im6o->im6o_multicast_if_index;
2749
2750 error = sockopt_set(sopt, &optval, sizeof(optval));
2751 break;
2752
2753 case IPV6_MULTICAST_HOPS:
2754 if (im6o == NULL)
2755 optval = ip6_defmcasthlim;
2756 else
2757 optval = im6o->im6o_multicast_hlim;
2758
2759 error = sockopt_set(sopt, &optval, sizeof(optval));
2760 break;
2761
2762 case IPV6_MULTICAST_LOOP:
2763 if (im6o == NULL)
2764 optval = IPV6_DEFAULT_MULTICAST_LOOP;
2765 else
2766 optval = im6o->im6o_multicast_loop;
2767
2768 error = sockopt_set(sopt, &optval, sizeof(optval));
2769 break;
2770
2771 default:
2772 error = EOPNOTSUPP;
2773 }
2774
2775 return (error);
2776 }
2777
2778 /*
2779 * Discard the IP6 multicast options.
2780 */
2781 void
2782 ip6_freemoptions(struct ip6_moptions *im6o)
2783 {
2784 struct in6_multi_mship *imm, *nimm;
2785
2786 if (im6o == NULL)
2787 return;
2788
2789 /* The owner of im6o (in6p) should be protected by solock */
2790 LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) {
2791 struct ifnet *ifp;
2792
2793 LIST_REMOVE(imm, i6mm_chain);
2794
2795 ifp = imm->i6mm_maddr->in6m_ifp;
2796 IFNET_LOCK(ifp);
2797 in6_leavegroup(imm);
2798 /* ifp should not leave thanks to solock */
2799 IFNET_UNLOCK(ifp);
2800 }
2801 free(im6o, M_IPMOPTS);
2802 }
2803
2804 /*
2805 * Set IPv6 outgoing packet options based on advanced API.
2806 */
2807 int
2808 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2809 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2810 {
2811 struct cmsghdr *cm = 0;
2812
2813 if (control == NULL || opt == NULL)
2814 return (EINVAL);
2815
2816 ip6_initpktopts(opt);
2817 if (stickyopt) {
2818 int error;
2819
2820 /*
2821 * If stickyopt is provided, make a local copy of the options
2822 * for this particular packet, then override them by ancillary
2823 * objects.
2824 * XXX: copypktopts() does not copy the cached route to a next
2825 * hop (if any). This is not very good in terms of efficiency,
2826 * but we can allow this since this option should be rarely
2827 * used.
2828 */
2829 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2830 return (error);
2831 }
2832
2833 /*
2834 * XXX: Currently, we assume all the optional information is stored
2835 * in a single mbuf.
2836 */
2837 if (control->m_next)
2838 return (EINVAL);
2839
2840 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2841 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2842 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2843 int error;
2844
2845 if (control->m_len < CMSG_LEN(0))
2846 return (EINVAL);
2847
2848 cm = mtod(control, struct cmsghdr *);
2849 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2850 return (EINVAL);
2851 if (cm->cmsg_level != IPPROTO_IPV6)
2852 continue;
2853
2854 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2855 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2856 if (error)
2857 return (error);
2858 }
2859
2860 return (0);
2861 }
2862
2863 /*
2864 * Set a particular packet option, as a sticky option or an ancillary data
2865 * item. "len" can be 0 only when it's a sticky option.
2866 * We have 4 cases of combination of "sticky" and "cmsg":
2867 * "sticky=0, cmsg=0": impossible
2868 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2869 * "sticky=1, cmsg=0": RFC3542 socket option
2870 * "sticky=1, cmsg=1": RFC2292 socket option
2871 */
2872 static int
2873 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2874 kauth_cred_t cred, int sticky, int cmsg, int uproto)
2875 {
2876 int minmtupolicy;
2877 int error;
2878
2879 if (!sticky && !cmsg) {
2880 #ifdef DIAGNOSTIC
2881 printf("ip6_setpktopt: impossible case\n");
2882 #endif
2883 return (EINVAL);
2884 }
2885
2886 /*
2887 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2888 * not be specified in the context of RFC3542. Conversely,
2889 * RFC3542 types should not be specified in the context of RFC2292.
2890 */
2891 if (!cmsg) {
2892 switch (optname) {
2893 case IPV6_2292PKTINFO:
2894 case IPV6_2292HOPLIMIT:
2895 case IPV6_2292NEXTHOP:
2896 case IPV6_2292HOPOPTS:
2897 case IPV6_2292DSTOPTS:
2898 case IPV6_2292RTHDR:
2899 case IPV6_2292PKTOPTIONS:
2900 return (ENOPROTOOPT);
2901 }
2902 }
2903 if (sticky && cmsg) {
2904 switch (optname) {
2905 case IPV6_PKTINFO:
2906 case IPV6_HOPLIMIT:
2907 case IPV6_NEXTHOP:
2908 case IPV6_HOPOPTS:
2909 case IPV6_DSTOPTS:
2910 case IPV6_RTHDRDSTOPTS:
2911 case IPV6_RTHDR:
2912 case IPV6_USE_MIN_MTU:
2913 case IPV6_DONTFRAG:
2914 case IPV6_OTCLASS:
2915 case IPV6_TCLASS:
2916 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
2917 return (ENOPROTOOPT);
2918 }
2919 }
2920
2921 switch (optname) {
2922 #ifdef RFC2292
2923 case IPV6_2292PKTINFO:
2924 #endif
2925 case IPV6_PKTINFO:
2926 {
2927 struct in6_pktinfo *pktinfo;
2928
2929 if (len != sizeof(struct in6_pktinfo))
2930 return (EINVAL);
2931
2932 pktinfo = (struct in6_pktinfo *)buf;
2933
2934 /*
2935 * An application can clear any sticky IPV6_PKTINFO option by
2936 * doing a "regular" setsockopt with ipi6_addr being
2937 * in6addr_any and ipi6_ifindex being zero.
2938 * [RFC 3542, Section 6]
2939 */
2940 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2941 pktinfo->ipi6_ifindex == 0 &&
2942 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2943 ip6_clearpktopts(opt, optname);
2944 break;
2945 }
2946
2947 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2948 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2949 return (EINVAL);
2950 }
2951
2952 /* Validate the interface index if specified. */
2953 if (pktinfo->ipi6_ifindex) {
2954 struct ifnet *ifp;
2955 int s = pserialize_read_enter();
2956 ifp = if_byindex(pktinfo->ipi6_ifindex);
2957 if (ifp == NULL) {
2958 pserialize_read_exit(s);
2959 return ENXIO;
2960 }
2961 pserialize_read_exit(s);
2962 }
2963
2964 /*
2965 * We store the address anyway, and let in6_selectsrc()
2966 * validate the specified address. This is because ipi6_addr
2967 * may not have enough information about its scope zone, and
2968 * we may need additional information (such as outgoing
2969 * interface or the scope zone of a destination address) to
2970 * disambiguate the scope.
2971 * XXX: the delay of the validation may confuse the
2972 * application when it is used as a sticky option.
2973 */
2974 if (opt->ip6po_pktinfo == NULL) {
2975 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2976 M_IP6OPT, M_NOWAIT);
2977 if (opt->ip6po_pktinfo == NULL)
2978 return (ENOBUFS);
2979 }
2980 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2981 break;
2982 }
2983
2984 #ifdef RFC2292
2985 case IPV6_2292HOPLIMIT:
2986 #endif
2987 case IPV6_HOPLIMIT:
2988 {
2989 int *hlimp;
2990
2991 /*
2992 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2993 * to simplify the ordering among hoplimit options.
2994 */
2995 if (optname == IPV6_HOPLIMIT && sticky)
2996 return (ENOPROTOOPT);
2997
2998 if (len != sizeof(int))
2999 return (EINVAL);
3000 hlimp = (int *)buf;
3001 if (*hlimp < -1 || *hlimp > 255)
3002 return (EINVAL);
3003
3004 opt->ip6po_hlim = *hlimp;
3005 break;
3006 }
3007
3008 case IPV6_OTCLASS:
3009 if (len != sizeof(u_int8_t))
3010 return (EINVAL);
3011
3012 opt->ip6po_tclass = *(u_int8_t *)buf;
3013 break;
3014
3015 case IPV6_TCLASS:
3016 {
3017 int tclass;
3018
3019 if (len != sizeof(int))
3020 return (EINVAL);
3021 tclass = *(int *)buf;
3022 if (tclass < -1 || tclass > 255)
3023 return (EINVAL);
3024
3025 opt->ip6po_tclass = tclass;
3026 break;
3027 }
3028
3029 #ifdef RFC2292
3030 case IPV6_2292NEXTHOP:
3031 #endif
3032 case IPV6_NEXTHOP:
3033 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3034 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3035 if (error)
3036 return (error);
3037
3038 if (len == 0) { /* just remove the option */
3039 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3040 break;
3041 }
3042
3043 /* check if cmsg_len is large enough for sa_len */
3044 if (len < sizeof(struct sockaddr) || len < *buf)
3045 return (EINVAL);
3046
3047 switch (((struct sockaddr *)buf)->sa_family) {
3048 case AF_INET6:
3049 {
3050 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3051
3052 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3053 return (EINVAL);
3054
3055 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3056 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3057 return (EINVAL);
3058 }
3059 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
3060 != 0) {
3061 return (error);
3062 }
3063 break;
3064 }
3065 case AF_LINK: /* eventually be supported? */
3066 default:
3067 return (EAFNOSUPPORT);
3068 }
3069
3070 /* turn off the previous option, then set the new option. */
3071 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3072 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3073 if (opt->ip6po_nexthop == NULL)
3074 return (ENOBUFS);
3075 memcpy(opt->ip6po_nexthop, buf, *buf);
3076 break;
3077
3078 #ifdef RFC2292
3079 case IPV6_2292HOPOPTS:
3080 #endif
3081 case IPV6_HOPOPTS:
3082 {
3083 struct ip6_hbh *hbh;
3084 int hbhlen;
3085
3086 /*
3087 * XXX: We don't allow a non-privileged user to set ANY HbH
3088 * options, since per-option restriction has too much
3089 * overhead.
3090 */
3091 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3092 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3093 if (error)
3094 return (error);
3095
3096 if (len == 0) {
3097 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3098 break; /* just remove the option */
3099 }
3100
3101 /* message length validation */
3102 if (len < sizeof(struct ip6_hbh))
3103 return (EINVAL);
3104 hbh = (struct ip6_hbh *)buf;
3105 hbhlen = (hbh->ip6h_len + 1) << 3;
3106 if (len != hbhlen)
3107 return (EINVAL);
3108
3109 /* turn off the previous option, then set the new option. */
3110 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3111 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3112 if (opt->ip6po_hbh == NULL)
3113 return (ENOBUFS);
3114 memcpy(opt->ip6po_hbh, hbh, hbhlen);
3115
3116 break;
3117 }
3118
3119 #ifdef RFC2292
3120 case IPV6_2292DSTOPTS:
3121 #endif
3122 case IPV6_DSTOPTS:
3123 case IPV6_RTHDRDSTOPTS:
3124 {
3125 struct ip6_dest *dest, **newdest = NULL;
3126 int destlen;
3127
3128 /* XXX: see the comment for IPV6_HOPOPTS */
3129 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3130 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3131 if (error)
3132 return (error);
3133
3134 if (len == 0) {
3135 ip6_clearpktopts(opt, optname);
3136 break; /* just remove the option */
3137 }
3138
3139 /* message length validation */
3140 if (len < sizeof(struct ip6_dest))
3141 return (EINVAL);
3142 dest = (struct ip6_dest *)buf;
3143 destlen = (dest->ip6d_len + 1) << 3;
3144 if (len != destlen)
3145 return (EINVAL);
3146 /*
3147 * Determine the position that the destination options header
3148 * should be inserted; before or after the routing header.
3149 */
3150 switch (optname) {
3151 case IPV6_2292DSTOPTS:
3152 /*
3153 * The old advanced API is ambiguous on this point.
3154 * Our approach is to determine the position based
3155 * according to the existence of a routing header.
3156 * Note, however, that this depends on the order of the
3157 * extension headers in the ancillary data; the 1st
3158 * part of the destination options header must appear
3159 * before the routing header in the ancillary data,
3160 * too.
3161 * RFC3542 solved the ambiguity by introducing
3162 * separate ancillary data or option types.
3163 */
3164 if (opt->ip6po_rthdr == NULL)
3165 newdest = &opt->ip6po_dest1;
3166 else
3167 newdest = &opt->ip6po_dest2;
3168 break;
3169 case IPV6_RTHDRDSTOPTS:
3170 newdest = &opt->ip6po_dest1;
3171 break;
3172 case IPV6_DSTOPTS:
3173 newdest = &opt->ip6po_dest2;
3174 break;
3175 }
3176
3177 /* turn off the previous option, then set the new option. */
3178 ip6_clearpktopts(opt, optname);
3179 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3180 if (*newdest == NULL)
3181 return (ENOBUFS);
3182 memcpy(*newdest, dest, destlen);
3183
3184 break;
3185 }
3186
3187 #ifdef RFC2292
3188 case IPV6_2292RTHDR:
3189 #endif
3190 case IPV6_RTHDR:
3191 {
3192 struct ip6_rthdr *rth;
3193 int rthlen;
3194
3195 if (len == 0) {
3196 ip6_clearpktopts(opt, IPV6_RTHDR);
3197 break; /* just remove the option */
3198 }
3199
3200 /* message length validation */
3201 if (len < sizeof(struct ip6_rthdr))
3202 return (EINVAL);
3203 rth = (struct ip6_rthdr *)buf;
3204 rthlen = (rth->ip6r_len + 1) << 3;
3205 if (len != rthlen)
3206 return (EINVAL);
3207 switch (rth->ip6r_type) {
3208 case IPV6_RTHDR_TYPE_0:
3209 if (rth->ip6r_len == 0) /* must contain one addr */
3210 return (EINVAL);
3211 if (rth->ip6r_len % 2) /* length must be even */
3212 return (EINVAL);
3213 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3214 return (EINVAL);
3215 break;
3216 default:
3217 return (EINVAL); /* not supported */
3218 }
3219 /* turn off the previous option */
3220 ip6_clearpktopts(opt, IPV6_RTHDR);
3221 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3222 if (opt->ip6po_rthdr == NULL)
3223 return (ENOBUFS);
3224 memcpy(opt->ip6po_rthdr, rth, rthlen);
3225 break;
3226 }
3227
3228 case IPV6_USE_MIN_MTU:
3229 if (len != sizeof(int))
3230 return (EINVAL);
3231 minmtupolicy = *(int *)buf;
3232 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3233 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3234 minmtupolicy != IP6PO_MINMTU_ALL) {
3235 return (EINVAL);
3236 }
3237 opt->ip6po_minmtu = minmtupolicy;
3238 break;
3239
3240 case IPV6_DONTFRAG:
3241 if (len != sizeof(int))
3242 return (EINVAL);
3243
3244 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3245 /*
3246 * we ignore this option for TCP sockets.
3247 * (RFC3542 leaves this case unspecified.)
3248 */
3249 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3250 } else
3251 opt->ip6po_flags |= IP6PO_DONTFRAG;
3252 break;
3253
3254 case IPV6_PREFER_TEMPADDR:
3255 {
3256 int preftemp;
3257
3258 if (len != sizeof(int))
3259 return (EINVAL);
3260 preftemp = *(int *)buf;
3261 switch (preftemp) {
3262 case IP6PO_TEMPADDR_SYSTEM:
3263 case IP6PO_TEMPADDR_NOTPREFER:
3264 case IP6PO_TEMPADDR_PREFER:
3265 break;
3266 default:
3267 return (EINVAL);
3268 }
3269 opt->ip6po_prefer_tempaddr = preftemp;
3270 break;
3271 }
3272
3273 default:
3274 return (ENOPROTOOPT);
3275 } /* end of switch */
3276
3277 return (0);
3278 }
3279
3280 /*
3281 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3282 * packet to the input queue of a specified interface. Note that this
3283 * calls the output routine of the loopback "driver", but with an interface
3284 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3285 */
3286 void
3287 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3288 const struct sockaddr_in6 *dst)
3289 {
3290 struct mbuf *copym;
3291 struct ip6_hdr *ip6;
3292
3293 copym = m_copy(m, 0, M_COPYALL);
3294 if (copym == NULL)
3295 return;
3296
3297 /*
3298 * Make sure to deep-copy IPv6 header portion in case the data
3299 * is in an mbuf cluster, so that we can safely override the IPv6
3300 * header portion later.
3301 */
3302 if ((copym->m_flags & M_EXT) != 0 ||
3303 copym->m_len < sizeof(struct ip6_hdr)) {
3304 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3305 if (copym == NULL)
3306 return;
3307 }
3308
3309 #ifdef DIAGNOSTIC
3310 if (copym->m_len < sizeof(*ip6)) {
3311 m_freem(copym);
3312 return;
3313 }
3314 #endif
3315
3316 ip6 = mtod(copym, struct ip6_hdr *);
3317 /*
3318 * clear embedded scope identifiers if necessary.
3319 * in6_clearscope will touch the addresses only when necessary.
3320 */
3321 in6_clearscope(&ip6->ip6_src);
3322 in6_clearscope(&ip6->ip6_dst);
3323
3324 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3325 }
3326
3327 /*
3328 * Chop IPv6 header off from the payload.
3329 */
3330 static int
3331 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3332 {
3333 struct mbuf *mh;
3334 struct ip6_hdr *ip6;
3335
3336 ip6 = mtod(m, struct ip6_hdr *);
3337 if (m->m_len > sizeof(*ip6)) {
3338 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3339 if (mh == NULL) {
3340 m_freem(m);
3341 return ENOBUFS;
3342 }
3343 M_MOVE_PKTHDR(mh, m);
3344 MH_ALIGN(mh, sizeof(*ip6));
3345 m->m_len -= sizeof(*ip6);
3346 m->m_data += sizeof(*ip6);
3347 mh->m_next = m;
3348 mh->m_len = sizeof(*ip6);
3349 memcpy(mtod(mh, void *), (void *)ip6, sizeof(*ip6));
3350 m = mh;
3351 }
3352 exthdrs->ip6e_ip6 = m;
3353 return 0;
3354 }
3355
3356 /*
3357 * Compute IPv6 extension header length.
3358 */
3359 int
3360 ip6_optlen(struct in6pcb *in6p)
3361 {
3362 int len;
3363
3364 if (!in6p->in6p_outputopts)
3365 return 0;
3366
3367 len = 0;
3368 #define elen(x) \
3369 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3370
3371 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3372 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3373 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3374 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3375 return len;
3376 #undef elen
3377 }
3378
3379 /*
3380 * Ensure sending address is valid.
3381 * Returns 0 on success, -1 if an error should be sent back or 1
3382 * if the packet could be dropped without error (protocol dependent).
3383 */
3384 static int
3385 ip6_ifaddrvalid(const struct in6_addr *src, const struct in6_addr *dst)
3386 {
3387 struct sockaddr_in6 sin6;
3388 int s, error;
3389 struct ifaddr *ifa;
3390 struct in6_ifaddr *ia6;
3391
3392 if (IN6_IS_ADDR_UNSPECIFIED(src))
3393 return 0;
3394
3395 memset(&sin6, 0, sizeof(sin6));
3396 sin6.sin6_family = AF_INET6;
3397 sin6.sin6_len = sizeof(sin6);
3398 sin6.sin6_addr = *src;
3399
3400 s = pserialize_read_enter();
3401 ifa = ifa_ifwithaddr(sin6tosa(&sin6));
3402 if ((ia6 = ifatoia6(ifa)) == NULL ||
3403 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
3404 error = -1;
3405 else if (ia6->ia6_flags & IN6_IFF_TENTATIVE)
3406 error = 1;
3407 else if (ia6->ia6_flags & IN6_IFF_DETACHED &&
3408 (sin6.sin6_addr = *dst, ifa_ifwithaddr(sin6tosa(&sin6)) == NULL))
3409 /* Allow internal traffic to DETACHED addresses */
3410 error = 1;
3411 else
3412 error = 0;
3413 pserialize_read_exit(s);
3414
3415 return error;
3416 }
3417