ip6_output.c revision 1.203.2.3 1 /* $NetBSD: ip6_output.c,v 1.203.2.3 2018/05/21 04:36:16 pgoyette Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.203.2.3 2018/05/21 04:36:16 pgoyette Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_inet.h"
69 #include "opt_inet6.h"
70 #include "opt_ipsec.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/errno.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/syslog.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kauth.h>
83
84 #include <net/if.h>
85 #include <net/route.h>
86 #include <net/pfil.h>
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/ip_var.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet/portalgo.h>
95 #include <netinet6/in6_offload.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/ip6_private.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/nd6.h>
100 #include <netinet6/ip6protosw.h>
101 #include <netinet6/scope6_var.h>
102
103 #ifdef IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/ipsec6.h>
106 #include <netipsec/key.h>
107 #endif
108
109 extern pfil_head_t *inet6_pfil_hook; /* XXX */
110
111 struct ip6_exthdrs {
112 struct mbuf *ip6e_ip6;
113 struct mbuf *ip6e_hbh;
114 struct mbuf *ip6e_dest1;
115 struct mbuf *ip6e_rthdr;
116 struct mbuf *ip6e_dest2;
117 };
118
119 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
120 kauth_cred_t, int);
121 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
122 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
123 int, int, int);
124 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *);
125 static int ip6_getmoptions(struct sockopt *, struct in6pcb *);
126 static int ip6_copyexthdr(struct mbuf **, void *, int);
127 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
128 struct ip6_frag **);
129 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
130 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
131 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
132 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
133 static int ip6_ifaddrvalid(const struct in6_addr *, const struct in6_addr *);
134 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
135
136 #ifdef RFC2292
137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
138 #endif
139
140 static int
141 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
142 {
143 int error = 0;
144
145 switch (rh->ip6r_type) {
146 case IPV6_RTHDR_TYPE_0:
147 /* Dropped, RFC5095. */
148 default: /* is it possible? */
149 error = EINVAL;
150 }
151
152 return error;
153 }
154
155 /*
156 * Send an IP packet to a host.
157 */
158 int
159 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp,
160 struct mbuf * const m, const struct sockaddr_in6 * const dst,
161 const struct rtentry *rt)
162 {
163 int error = 0;
164
165 if (rt != NULL) {
166 error = rt_check_reject_route(rt, ifp);
167 if (error != 0) {
168 m_freem(m);
169 return error;
170 }
171 }
172
173 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
174 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
175 else
176 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
177 return error;
178 }
179
180 /*
181 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
182 * header (with pri, len, nxt, hlim, src, dst).
183 *
184 * This function may modify ver and hlim only. The mbuf chain containing the
185 * packet will be freed. The mbuf opt, if present, will not be freed.
186 *
187 * Type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
188 * nd_ifinfo.linkmtu is u_int32_t. So we use u_long to hold largest one,
189 * which is rt_rmx.rmx_mtu.
190 */
191 int
192 ip6_output(
193 struct mbuf *m0,
194 struct ip6_pktopts *opt,
195 struct route *ro,
196 int flags,
197 struct ip6_moptions *im6o,
198 struct in6pcb *in6p,
199 struct ifnet **ifpp /* XXX: just for statistics */
200 )
201 {
202 struct ip6_hdr *ip6, *mhip6;
203 struct ifnet *ifp = NULL, *origifp = NULL;
204 struct mbuf *m = m0;
205 int tlen, len, off;
206 bool tso;
207 struct route ip6route;
208 struct rtentry *rt = NULL, *rt_pmtu;
209 const struct sockaddr_in6 *dst;
210 struct sockaddr_in6 src_sa, dst_sa;
211 int error = 0;
212 struct in6_ifaddr *ia = NULL;
213 u_long mtu;
214 int alwaysfrag, dontfrag;
215 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
216 struct ip6_exthdrs exthdrs;
217 struct in6_addr finaldst, src0, dst0;
218 u_int32_t zone;
219 struct route *ro_pmtu = NULL;
220 int hdrsplit = 0;
221 int needipsec = 0;
222 #ifdef IPSEC
223 struct secpolicy *sp = NULL;
224 #endif
225 struct psref psref, psref_ia;
226 int bound = curlwp_bind();
227 bool release_psref_ia = false;
228
229 #ifdef DIAGNOSTIC
230 if ((m->m_flags & M_PKTHDR) == 0)
231 panic("ip6_output: no HDR");
232 if ((m->m_pkthdr.csum_flags &
233 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
234 panic("ip6_output: IPv4 checksum offload flags: %d",
235 m->m_pkthdr.csum_flags);
236 }
237 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
238 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
239 panic("ip6_output: conflicting checksum offload flags: %d",
240 m->m_pkthdr.csum_flags);
241 }
242 #endif
243
244 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
245
246 #define MAKE_EXTHDR(hp, mp) \
247 do { \
248 if (hp) { \
249 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
250 error = ip6_copyexthdr((mp), (void *)(hp), \
251 ((eh)->ip6e_len + 1) << 3); \
252 if (error) \
253 goto freehdrs; \
254 } \
255 } while (/*CONSTCOND*/ 0)
256
257 memset(&exthdrs, 0, sizeof(exthdrs));
258 if (opt) {
259 /* Hop-by-Hop options header */
260 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
261 /* Destination options header (1st part) */
262 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
263 /* Routing header */
264 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
265 /* Destination options header (2nd part) */
266 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
267 }
268
269 /*
270 * Calculate the total length of the extension header chain.
271 * Keep the length of the unfragmentable part for fragmentation.
272 */
273 optlen = 0;
274 if (exthdrs.ip6e_hbh)
275 optlen += exthdrs.ip6e_hbh->m_len;
276 if (exthdrs.ip6e_dest1)
277 optlen += exthdrs.ip6e_dest1->m_len;
278 if (exthdrs.ip6e_rthdr)
279 optlen += exthdrs.ip6e_rthdr->m_len;
280 unfragpartlen = optlen + sizeof(struct ip6_hdr);
281 /* NOTE: we don't add AH/ESP length here. do that later. */
282 if (exthdrs.ip6e_dest2)
283 optlen += exthdrs.ip6e_dest2->m_len;
284
285 #ifdef IPSEC
286 if (ipsec_used) {
287 /* Check the security policy (SP) for the packet */
288 sp = ipsec6_check_policy(m, in6p, flags, &needipsec, &error);
289 if (error != 0) {
290 /*
291 * Hack: -EINVAL is used to signal that a packet
292 * should be silently discarded. This is typically
293 * because we asked key management for an SA and
294 * it was delayed (e.g. kicked up to IKE).
295 */
296 if (error == -EINVAL)
297 error = 0;
298 goto freehdrs;
299 }
300 }
301 #endif
302
303 if (needipsec &&
304 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
305 in6_delayed_cksum(m);
306 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
307 }
308
309 /*
310 * If we need IPsec, or there is at least one extension header,
311 * separate IP6 header from the payload.
312 */
313 if ((needipsec || optlen) && !hdrsplit) {
314 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
315 m = NULL;
316 goto freehdrs;
317 }
318 m = exthdrs.ip6e_ip6;
319 hdrsplit++;
320 }
321
322 /* adjust pointer */
323 ip6 = mtod(m, struct ip6_hdr *);
324
325 /* adjust mbuf packet header length */
326 m->m_pkthdr.len += optlen;
327 plen = m->m_pkthdr.len - sizeof(*ip6);
328
329 /* If this is a jumbo payload, insert a jumbo payload option. */
330 if (plen > IPV6_MAXPACKET) {
331 if (!hdrsplit) {
332 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
333 m = NULL;
334 goto freehdrs;
335 }
336 m = exthdrs.ip6e_ip6;
337 hdrsplit++;
338 }
339 /* adjust pointer */
340 ip6 = mtod(m, struct ip6_hdr *);
341 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
342 goto freehdrs;
343 optlen += 8; /* XXX JUMBOOPTLEN */
344 ip6->ip6_plen = 0;
345 } else
346 ip6->ip6_plen = htons(plen);
347
348 /*
349 * Concatenate headers and fill in next header fields.
350 * Here we have, on "m"
351 * IPv6 payload
352 * and we insert headers accordingly. Finally, we should be getting:
353 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
354 *
355 * during the header composing process, "m" points to IPv6 header.
356 * "mprev" points to an extension header prior to esp.
357 */
358 {
359 u_char *nexthdrp = &ip6->ip6_nxt;
360 struct mbuf *mprev = m;
361
362 /*
363 * we treat dest2 specially. this makes IPsec processing
364 * much easier. the goal here is to make mprev point the
365 * mbuf prior to dest2.
366 *
367 * result: IPv6 dest2 payload
368 * m and mprev will point to IPv6 header.
369 */
370 if (exthdrs.ip6e_dest2) {
371 if (!hdrsplit)
372 panic("assumption failed: hdr not split");
373 exthdrs.ip6e_dest2->m_next = m->m_next;
374 m->m_next = exthdrs.ip6e_dest2;
375 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
376 ip6->ip6_nxt = IPPROTO_DSTOPTS;
377 }
378
379 #define MAKE_CHAIN(m, mp, p, i)\
380 do {\
381 if (m) {\
382 if (!hdrsplit) \
383 panic("assumption failed: hdr not split"); \
384 *mtod((m), u_char *) = *(p);\
385 *(p) = (i);\
386 p = mtod((m), u_char *);\
387 (m)->m_next = (mp)->m_next;\
388 (mp)->m_next = (m);\
389 (mp) = (m);\
390 }\
391 } while (/*CONSTCOND*/ 0)
392 /*
393 * result: IPv6 hbh dest1 rthdr dest2 payload
394 * m will point to IPv6 header. mprev will point to the
395 * extension header prior to dest2 (rthdr in the above case).
396 */
397 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
398 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
399 IPPROTO_DSTOPTS);
400 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
401 IPPROTO_ROUTING);
402
403 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
404 sizeof(struct ip6_hdr) + optlen);
405 }
406
407 /* Need to save for pmtu */
408 finaldst = ip6->ip6_dst;
409
410 /*
411 * If there is a routing header, replace destination address field
412 * with the first hop of the routing header.
413 */
414 if (exthdrs.ip6e_rthdr) {
415 struct ip6_rthdr *rh;
416
417 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
418
419 error = ip6_handle_rthdr(rh, ip6);
420 if (error != 0)
421 goto bad;
422 }
423
424 /* Source address validation */
425 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
426 (flags & IPV6_UNSPECSRC) == 0) {
427 error = EOPNOTSUPP;
428 IP6_STATINC(IP6_STAT_BADSCOPE);
429 goto bad;
430 }
431 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
432 error = EOPNOTSUPP;
433 IP6_STATINC(IP6_STAT_BADSCOPE);
434 goto bad;
435 }
436
437 IP6_STATINC(IP6_STAT_LOCALOUT);
438
439 /*
440 * Route packet.
441 */
442 /* initialize cached route */
443 if (ro == NULL) {
444 memset(&ip6route, 0, sizeof(ip6route));
445 ro = &ip6route;
446 }
447 ro_pmtu = ro;
448 if (opt && opt->ip6po_rthdr)
449 ro = &opt->ip6po_route;
450
451 /*
452 * if specified, try to fill in the traffic class field.
453 * do not override if a non-zero value is already set.
454 * we check the diffserv field and the ecn field separately.
455 */
456 if (opt && opt->ip6po_tclass >= 0) {
457 int mask = 0;
458
459 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
460 mask |= 0xfc;
461 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
462 mask |= 0x03;
463 if (mask != 0)
464 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
465 }
466
467 /* fill in or override the hop limit field, if necessary. */
468 if (opt && opt->ip6po_hlim != -1)
469 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
470 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
471 if (im6o != NULL)
472 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
473 else
474 ip6->ip6_hlim = ip6_defmcasthlim;
475 }
476
477 #ifdef IPSEC
478 if (needipsec) {
479 int s = splsoftnet();
480 error = ipsec6_process_packet(m, sp->req);
481 splx(s);
482
483 /*
484 * Preserve KAME behaviour: ENOENT can be returned
485 * when an SA acquire is in progress. Don't propagate
486 * this to user-level; it confuses applications.
487 * XXX this will go away when the SADB is redone.
488 */
489 if (error == ENOENT)
490 error = 0;
491
492 goto done;
493 }
494 #endif
495
496 /* adjust pointer */
497 ip6 = mtod(m, struct ip6_hdr *);
498
499 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
500
501 /* We do not need a route for multicast */
502 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
503 struct in6_pktinfo *pi = NULL;
504
505 /*
506 * If the outgoing interface for the address is specified by
507 * the caller, use it.
508 */
509 if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
510 /* XXX boundary check is assumed to be already done. */
511 ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
512 } else if (im6o != NULL) {
513 ifp = if_get_byindex(im6o->im6o_multicast_if_index,
514 &psref);
515 }
516 }
517
518 if (ifp == NULL) {
519 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
520 if (error != 0)
521 goto bad;
522 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
523 }
524
525 if (rt == NULL) {
526 /*
527 * If in6_selectroute() does not return a route entry,
528 * dst may not have been updated.
529 */
530 error = rtcache_setdst(ro, sin6tosa(&dst_sa));
531 if (error) {
532 goto bad;
533 }
534 }
535
536 /*
537 * then rt (for unicast) and ifp must be non-NULL valid values.
538 */
539 if ((flags & IPV6_FORWARDING) == 0) {
540 /* XXX: the FORWARDING flag can be set for mrouting. */
541 in6_ifstat_inc(ifp, ifs6_out_request);
542 }
543 if (rt != NULL) {
544 ia = (struct in6_ifaddr *)(rt->rt_ifa);
545 rt->rt_use++;
546 }
547
548 /*
549 * The outgoing interface must be in the zone of source and
550 * destination addresses. We should use ia_ifp to support the
551 * case of sending packets to an address of our own.
552 */
553 if (ia != NULL && ia->ia_ifp) {
554 origifp = ia->ia_ifp;
555 if (if_is_deactivated(origifp))
556 goto bad;
557 if_acquire(origifp, &psref_ia);
558 release_psref_ia = true;
559 } else
560 origifp = ifp;
561
562 src0 = ip6->ip6_src;
563 if (in6_setscope(&src0, origifp, &zone))
564 goto badscope;
565 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
566 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
567 goto badscope;
568
569 dst0 = ip6->ip6_dst;
570 if (in6_setscope(&dst0, origifp, &zone))
571 goto badscope;
572 /* re-initialize to be sure */
573 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
574 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
575 goto badscope;
576
577 /* scope check is done. */
578
579 /* Ensure we only send from a valid address. */
580 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
581 (error = ip6_ifaddrvalid(&src0, &dst0)) != 0)
582 {
583 char ip6buf[INET6_ADDRSTRLEN];
584 nd6log(LOG_ERR,
585 "refusing to send from invalid address %s (pid %d)\n",
586 IN6_PRINT(ip6buf, &src0), curproc->p_pid);
587 IP6_STATINC(IP6_STAT_ODROPPED);
588 in6_ifstat_inc(origifp, ifs6_out_discard);
589 if (error == 1)
590 /*
591 * Address exists, but is tentative or detached.
592 * We can't send from it because it's invalid,
593 * so we drop the packet.
594 */
595 error = 0;
596 else
597 error = EADDRNOTAVAIL;
598 goto bad;
599 }
600
601 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
602 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
603 dst = satocsin6(rt->rt_gateway);
604 else
605 dst = satocsin6(rtcache_getdst(ro));
606
607 /*
608 * XXXXXX: original code follows:
609 */
610 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
611 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
612 else {
613 bool ingroup;
614
615 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
616
617 in6_ifstat_inc(ifp, ifs6_out_mcast);
618
619 /*
620 * Confirm that the outgoing interface supports multicast.
621 */
622 if (!(ifp->if_flags & IFF_MULTICAST)) {
623 IP6_STATINC(IP6_STAT_NOROUTE);
624 in6_ifstat_inc(ifp, ifs6_out_discard);
625 error = ENETUNREACH;
626 goto bad;
627 }
628
629 ingroup = in6_multi_group(&ip6->ip6_dst, ifp);
630 if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) {
631 /*
632 * If we belong to the destination multicast group
633 * on the outgoing interface, and the caller did not
634 * forbid loopback, loop back a copy.
635 */
636 KASSERT(dst != NULL);
637 ip6_mloopback(ifp, m, dst);
638 } else {
639 /*
640 * If we are acting as a multicast router, perform
641 * multicast forwarding as if the packet had just
642 * arrived on the interface to which we are about
643 * to send. The multicast forwarding function
644 * recursively calls this function, using the
645 * IPV6_FORWARDING flag to prevent infinite recursion.
646 *
647 * Multicasts that are looped back by ip6_mloopback(),
648 * above, will be forwarded by the ip6_input() routine,
649 * if necessary.
650 */
651 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
652 if (ip6_mforward(ip6, ifp, m) != 0) {
653 m_freem(m);
654 goto done;
655 }
656 }
657 }
658 /*
659 * Multicasts with a hoplimit of zero may be looped back,
660 * above, but must not be transmitted on a network.
661 * Also, multicasts addressed to the loopback interface
662 * are not sent -- the above call to ip6_mloopback() will
663 * loop back a copy if this host actually belongs to the
664 * destination group on the loopback interface.
665 */
666 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
667 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
668 m_freem(m);
669 goto done;
670 }
671 }
672
673 /*
674 * Fill the outgoing inteface to tell the upper layer
675 * to increment per-interface statistics.
676 */
677 if (ifpp)
678 *ifpp = ifp;
679
680 /* Determine path MTU. */
681 /*
682 * ro_pmtu represent final destination while
683 * ro might represent immediate destination.
684 * Use ro_pmtu destination since MTU might differ.
685 */
686 if (ro_pmtu != ro) {
687 union {
688 struct sockaddr dst;
689 struct sockaddr_in6 dst6;
690 } u;
691
692 /* ro_pmtu may not have a cache */
693 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
694 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
695 } else
696 rt_pmtu = rt;
697 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
698 if (rt_pmtu != NULL && rt_pmtu != rt)
699 rtcache_unref(rt_pmtu, ro_pmtu);
700 if (error != 0)
701 goto bad;
702
703 /*
704 * The caller of this function may specify to use the minimum MTU
705 * in some cases.
706 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
707 * setting. The logic is a bit complicated; by default, unicast
708 * packets will follow path MTU while multicast packets will be sent at
709 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
710 * including unicast ones will be sent at the minimum MTU. Multicast
711 * packets will always be sent at the minimum MTU unless
712 * IP6PO_MINMTU_DISABLE is explicitly specified.
713 * See RFC 3542 for more details.
714 */
715 if (mtu > IPV6_MMTU) {
716 if ((flags & IPV6_MINMTU))
717 mtu = IPV6_MMTU;
718 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
719 mtu = IPV6_MMTU;
720 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
721 (opt == NULL ||
722 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
723 mtu = IPV6_MMTU;
724 }
725 }
726
727 /*
728 * clear embedded scope identifiers if necessary.
729 * in6_clearscope will touch the addresses only when necessary.
730 */
731 in6_clearscope(&ip6->ip6_src);
732 in6_clearscope(&ip6->ip6_dst);
733
734 /*
735 * If the outgoing packet contains a hop-by-hop options header,
736 * it must be examined and processed even by the source node.
737 * (RFC 2460, section 4.)
738 *
739 * XXX Is this really necessary?
740 */
741 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
742 u_int32_t dummy1; /* XXX unused */
743 u_int32_t dummy2; /* XXX unused */
744 int hoff = sizeof(struct ip6_hdr);
745
746 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
747 /* m was already freed at this point */
748 error = EINVAL;
749 goto done;
750 }
751
752 ip6 = mtod(m, struct ip6_hdr *);
753 }
754
755 /*
756 * Run through list of hooks for output packets.
757 */
758 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
759 goto done;
760 if (m == NULL)
761 goto done;
762 ip6 = mtod(m, struct ip6_hdr *);
763
764 /*
765 * Send the packet to the outgoing interface.
766 * If necessary, do IPv6 fragmentation before sending.
767 *
768 * the logic here is rather complex:
769 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
770 * 1-a: send as is if tlen <= path mtu
771 * 1-b: fragment if tlen > path mtu
772 *
773 * 2: if user asks us not to fragment (dontfrag == 1)
774 * 2-a: send as is if tlen <= interface mtu
775 * 2-b: error if tlen > interface mtu
776 *
777 * 3: if we always need to attach fragment header (alwaysfrag == 1)
778 * always fragment
779 *
780 * 4: if dontfrag == 1 && alwaysfrag == 1
781 * error, as we cannot handle this conflicting request
782 */
783 tlen = m->m_pkthdr.len;
784 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
785 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
786 dontfrag = 1;
787 else
788 dontfrag = 0;
789
790 if (dontfrag && alwaysfrag) { /* case 4 */
791 /* conflicting request - can't transmit */
792 error = EMSGSIZE;
793 goto bad;
794 }
795 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */
796 /*
797 * Even if the DONTFRAG option is specified, we cannot send the
798 * packet when the data length is larger than the MTU of the
799 * outgoing interface.
800 * Notify the error by sending IPV6_PATHMTU ancillary data as
801 * well as returning an error code (the latter is not described
802 * in the API spec.)
803 */
804 u_int32_t mtu32;
805 struct ip6ctlparam ip6cp;
806
807 mtu32 = (u_int32_t)mtu;
808 memset(&ip6cp, 0, sizeof(ip6cp));
809 ip6cp.ip6c_cmdarg = (void *)&mtu32;
810 pfctlinput2(PRC_MSGSIZE,
811 rtcache_getdst(ro_pmtu), &ip6cp);
812
813 error = EMSGSIZE;
814 goto bad;
815 }
816
817 /*
818 * transmit packet without fragmentation
819 */
820 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
821 /* case 1-a and 2-a */
822 struct in6_ifaddr *ia6;
823 int sw_csum;
824 int s;
825
826 ip6 = mtod(m, struct ip6_hdr *);
827 s = pserialize_read_enter();
828 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
829 if (ia6) {
830 /* Record statistics for this interface address. */
831 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
832 }
833 pserialize_read_exit(s);
834
835 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
836 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
837 if (IN6_NEED_CHECKSUM(ifp,
838 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
839 in6_delayed_cksum(m);
840 }
841 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
842 }
843
844 KASSERT(dst != NULL);
845 if (__predict_true(!tso ||
846 (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
847 error = ip6_if_output(ifp, origifp, m, dst, rt);
848 } else {
849 error = ip6_tso_output(ifp, origifp, m, dst, rt);
850 }
851 goto done;
852 }
853
854 if (tso) {
855 error = EINVAL; /* XXX */
856 goto bad;
857 }
858
859 /*
860 * try to fragment the packet. case 1-b and 3
861 */
862 if (mtu < IPV6_MMTU) {
863 /* path MTU cannot be less than IPV6_MMTU */
864 error = EMSGSIZE;
865 in6_ifstat_inc(ifp, ifs6_out_fragfail);
866 goto bad;
867 } else if (ip6->ip6_plen == 0) {
868 /* jumbo payload cannot be fragmented */
869 error = EMSGSIZE;
870 in6_ifstat_inc(ifp, ifs6_out_fragfail);
871 goto bad;
872 } else {
873 const u_int32_t id = htonl(ip6_randomid());
874 struct mbuf **mnext, *m_frgpart;
875 const int hlen = unfragpartlen;
876 struct ip6_frag *ip6f;
877 u_char nextproto;
878 #if 0 /* see below */
879 struct ip6ctlparam ip6cp;
880 u_int32_t mtu32;
881 #endif
882
883 if (mtu > IPV6_MAXPACKET)
884 mtu = IPV6_MAXPACKET;
885
886 #if 0
887 /*
888 * It is believed this code is a leftover from the
889 * development of the IPV6_RECVPATHMTU sockopt and
890 * associated work to implement RFC3542.
891 * It's not entirely clear what the intent of the API
892 * is at this point, so disable this code for now.
893 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
894 * will send notifications if the application requests.
895 */
896
897 /* Notify a proper path MTU to applications. */
898 mtu32 = (u_int32_t)mtu;
899 memset(&ip6cp, 0, sizeof(ip6cp));
900 ip6cp.ip6c_cmdarg = (void *)&mtu32;
901 pfctlinput2(PRC_MSGSIZE,
902 rtcache_getdst(ro_pmtu), &ip6cp);
903 #endif
904
905 /*
906 * Must be able to put at least 8 bytes per fragment.
907 */
908 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
909 if (len < 8) {
910 error = EMSGSIZE;
911 in6_ifstat_inc(ifp, ifs6_out_fragfail);
912 goto bad;
913 }
914
915 mnext = &m->m_nextpkt;
916
917 /*
918 * Change the next header field of the last header in the
919 * unfragmentable part.
920 */
921 if (exthdrs.ip6e_rthdr) {
922 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
923 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
924 } else if (exthdrs.ip6e_dest1) {
925 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
926 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
927 } else if (exthdrs.ip6e_hbh) {
928 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
929 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
930 } else {
931 nextproto = ip6->ip6_nxt;
932 ip6->ip6_nxt = IPPROTO_FRAGMENT;
933 }
934
935 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
936 != 0) {
937 if (IN6_NEED_CHECKSUM(ifp,
938 m->m_pkthdr.csum_flags &
939 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
940 in6_delayed_cksum(m);
941 }
942 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
943 }
944
945 /*
946 * Loop through length of segment after first fragment,
947 * make new header and copy data of each part and link onto
948 * chain.
949 */
950 m0 = m;
951 for (off = hlen; off < tlen; off += len) {
952 struct mbuf *mlast;
953
954 MGETHDR(m, M_DONTWAIT, MT_HEADER);
955 if (!m) {
956 error = ENOBUFS;
957 IP6_STATINC(IP6_STAT_ODROPPED);
958 goto sendorfree;
959 }
960 m_reset_rcvif(m);
961 m->m_flags = m0->m_flags & M_COPYFLAGS;
962 *mnext = m;
963 mnext = &m->m_nextpkt;
964 m->m_data += max_linkhdr;
965 mhip6 = mtod(m, struct ip6_hdr *);
966 *mhip6 = *ip6;
967 m->m_len = sizeof(*mhip6);
968
969 ip6f = NULL;
970 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
971 if (error) {
972 IP6_STATINC(IP6_STAT_ODROPPED);
973 goto sendorfree;
974 }
975
976 /* Fill in the Frag6 Header */
977 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
978 if (off + len >= tlen)
979 len = tlen - off;
980 else
981 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
982 ip6f->ip6f_reserved = 0;
983 ip6f->ip6f_ident = id;
984 ip6f->ip6f_nxt = nextproto;
985
986 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
987 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
988 if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) {
989 error = ENOBUFS;
990 IP6_STATINC(IP6_STAT_ODROPPED);
991 goto sendorfree;
992 }
993 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
994 ;
995 mlast->m_next = m_frgpart;
996
997 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
998 m_reset_rcvif(m);
999 IP6_STATINC(IP6_STAT_OFRAGMENTS);
1000 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1001 }
1002
1003 in6_ifstat_inc(ifp, ifs6_out_fragok);
1004 }
1005
1006 sendorfree:
1007 m = m0->m_nextpkt;
1008 m0->m_nextpkt = 0;
1009 m_freem(m0);
1010 for (m0 = m; m; m = m0) {
1011 m0 = m->m_nextpkt;
1012 m->m_nextpkt = 0;
1013 if (error == 0) {
1014 struct in6_ifaddr *ia6;
1015 int s;
1016 ip6 = mtod(m, struct ip6_hdr *);
1017 s = pserialize_read_enter();
1018 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1019 if (ia6) {
1020 /*
1021 * Record statistics for this interface
1022 * address.
1023 */
1024 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1025 m->m_pkthdr.len;
1026 }
1027 pserialize_read_exit(s);
1028 KASSERT(dst != NULL);
1029 error = ip6_if_output(ifp, origifp, m, dst, rt);
1030 } else
1031 m_freem(m);
1032 }
1033
1034 if (error == 0)
1035 IP6_STATINC(IP6_STAT_FRAGMENTED);
1036
1037 done:
1038 rtcache_unref(rt, ro);
1039 if (ro == &ip6route)
1040 rtcache_free(&ip6route);
1041 #ifdef IPSEC
1042 if (sp != NULL)
1043 KEY_SP_UNREF(&sp);
1044 #endif
1045 if_put(ifp, &psref);
1046 if (release_psref_ia)
1047 if_put(origifp, &psref_ia);
1048 curlwp_bindx(bound);
1049
1050 return error;
1051
1052 freehdrs:
1053 m_freem(exthdrs.ip6e_hbh);
1054 m_freem(exthdrs.ip6e_dest1);
1055 m_freem(exthdrs.ip6e_rthdr);
1056 m_freem(exthdrs.ip6e_dest2);
1057 /* FALLTHROUGH */
1058 bad:
1059 m_freem(m);
1060 goto done;
1061
1062 badscope:
1063 IP6_STATINC(IP6_STAT_BADSCOPE);
1064 in6_ifstat_inc(origifp, ifs6_out_discard);
1065 if (error == 0)
1066 error = EHOSTUNREACH; /* XXX */
1067 goto bad;
1068 }
1069
1070 static int
1071 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1072 {
1073 struct mbuf *m;
1074
1075 if (hlen > MCLBYTES)
1076 return ENOBUFS; /* XXX */
1077
1078 MGET(m, M_DONTWAIT, MT_DATA);
1079 if (!m)
1080 return ENOBUFS;
1081
1082 if (hlen > MLEN) {
1083 MCLGET(m, M_DONTWAIT);
1084 if ((m->m_flags & M_EXT) == 0) {
1085 m_free(m);
1086 return ENOBUFS;
1087 }
1088 }
1089 m->m_len = hlen;
1090 if (hdr)
1091 memcpy(mtod(m, void *), hdr, hlen);
1092
1093 *mp = m;
1094 return 0;
1095 }
1096
1097 /*
1098 * Process a delayed payload checksum calculation.
1099 */
1100 void
1101 in6_delayed_cksum(struct mbuf *m)
1102 {
1103 uint16_t csum, offset;
1104
1105 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1106 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1107 KASSERT((m->m_pkthdr.csum_flags
1108 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1109
1110 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1111 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1112 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1113 csum = 0xffff;
1114 }
1115
1116 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1117 if ((offset + sizeof(csum)) > m->m_len) {
1118 m_copyback(m, offset, sizeof(csum), &csum);
1119 } else {
1120 *(uint16_t *)(mtod(m, char *) + offset) = csum;
1121 }
1122 }
1123
1124 /*
1125 * Insert jumbo payload option.
1126 */
1127 static int
1128 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1129 {
1130 struct mbuf *mopt;
1131 u_int8_t *optbuf;
1132 u_int32_t v;
1133
1134 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1135
1136 /*
1137 * If there is no hop-by-hop options header, allocate new one.
1138 * If there is one but it doesn't have enough space to store the
1139 * jumbo payload option, allocate a cluster to store the whole options.
1140 * Otherwise, use it to store the options.
1141 */
1142 if (exthdrs->ip6e_hbh == NULL) {
1143 MGET(mopt, M_DONTWAIT, MT_DATA);
1144 if (mopt == 0)
1145 return (ENOBUFS);
1146 mopt->m_len = JUMBOOPTLEN;
1147 optbuf = mtod(mopt, u_int8_t *);
1148 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1149 exthdrs->ip6e_hbh = mopt;
1150 } else {
1151 struct ip6_hbh *hbh;
1152
1153 mopt = exthdrs->ip6e_hbh;
1154 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1155 const int oldoptlen = mopt->m_len;
1156 struct mbuf *n;
1157
1158 /*
1159 * Assumptions:
1160 * - exthdrs->ip6e_hbh is not referenced from places
1161 * other than exthdrs.
1162 * - exthdrs->ip6e_hbh is not an mbuf chain.
1163 */
1164 KASSERT(mopt->m_next == NULL);
1165
1166 /*
1167 * Give up if the whole (new) hbh header does not fit
1168 * even in an mbuf cluster.
1169 */
1170 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1171 return ENOBUFS;
1172
1173 /*
1174 * At this point, we must always prepare a cluster.
1175 */
1176 MGET(n, M_DONTWAIT, MT_DATA);
1177 if (n) {
1178 MCLGET(n, M_DONTWAIT);
1179 if ((n->m_flags & M_EXT) == 0) {
1180 m_freem(n);
1181 n = NULL;
1182 }
1183 }
1184 if (!n)
1185 return ENOBUFS;
1186
1187 n->m_len = oldoptlen + JUMBOOPTLEN;
1188 bcopy(mtod(mopt, void *), mtod(n, void *),
1189 oldoptlen);
1190 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1191 m_freem(mopt);
1192 mopt = exthdrs->ip6e_hbh = n;
1193 } else {
1194 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1195 mopt->m_len += JUMBOOPTLEN;
1196 }
1197 optbuf[0] = IP6OPT_PADN;
1198 optbuf[1] = 0;
1199
1200 /*
1201 * Adjust the header length according to the pad and
1202 * the jumbo payload option.
1203 */
1204 hbh = mtod(mopt, struct ip6_hbh *);
1205 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1206 }
1207
1208 /* fill in the option. */
1209 optbuf[2] = IP6OPT_JUMBO;
1210 optbuf[3] = 4;
1211 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1212 memcpy(&optbuf[4], &v, sizeof(u_int32_t));
1213
1214 /* finally, adjust the packet header length */
1215 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1216
1217 return 0;
1218 #undef JUMBOOPTLEN
1219 }
1220
1221 /*
1222 * Insert fragment header and copy unfragmentable header portions.
1223 *
1224 * *frghdrp will not be read, and it is guaranteed that either an
1225 * error is returned or that *frghdrp will point to space allocated
1226 * for the fragment header.
1227 *
1228 * On entry, m contains:
1229 * IPv6 Header
1230 * On exit, it contains:
1231 * IPv6 Header -> Unfragmentable Part -> Frag6 Header
1232 */
1233 static int
1234 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1235 struct ip6_frag **frghdrp)
1236 {
1237 struct mbuf *n, *mlast;
1238
1239 if (hlen > sizeof(struct ip6_hdr)) {
1240 n = m_copym(m0, sizeof(struct ip6_hdr),
1241 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1242 if (n == NULL)
1243 return ENOBUFS;
1244 m->m_next = n;
1245 } else
1246 n = m;
1247
1248 /* Search for the last mbuf of unfragmentable part. */
1249 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1250 ;
1251
1252 if ((mlast->m_flags & M_EXT) == 0 &&
1253 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1254 /* use the trailing space of the last mbuf for the fragment hdr */
1255 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1256 mlast->m_len);
1257 mlast->m_len += sizeof(struct ip6_frag);
1258 } else {
1259 /* allocate a new mbuf for the fragment header */
1260 struct mbuf *mfrg;
1261
1262 MGET(mfrg, M_DONTWAIT, MT_DATA);
1263 if (mfrg == NULL)
1264 return ENOBUFS;
1265 mfrg->m_len = sizeof(struct ip6_frag);
1266 *frghdrp = mtod(mfrg, struct ip6_frag *);
1267 mlast->m_next = mfrg;
1268 }
1269
1270 return 0;
1271 }
1272
1273 static int
1274 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
1275 int *alwaysfragp)
1276 {
1277 u_int32_t mtu = 0;
1278 int alwaysfrag = 0;
1279 int error = 0;
1280
1281 if (rt != NULL) {
1282 u_int32_t ifmtu;
1283
1284 if (ifp == NULL)
1285 ifp = rt->rt_ifp;
1286 ifmtu = IN6_LINKMTU(ifp);
1287 mtu = rt->rt_rmx.rmx_mtu;
1288 if (mtu == 0)
1289 mtu = ifmtu;
1290 else if (mtu < IPV6_MMTU) {
1291 /*
1292 * RFC2460 section 5, last paragraph:
1293 * if we record ICMPv6 too big message with
1294 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1295 * or smaller, with fragment header attached.
1296 * (fragment header is needed regardless from the
1297 * packet size, for translators to identify packets)
1298 */
1299 alwaysfrag = 1;
1300 mtu = IPV6_MMTU;
1301 } else if (mtu > ifmtu) {
1302 /*
1303 * The MTU on the route is larger than the MTU on
1304 * the interface! This shouldn't happen, unless the
1305 * MTU of the interface has been changed after the
1306 * interface was brought up. Change the MTU in the
1307 * route to match the interface MTU (as long as the
1308 * field isn't locked).
1309 */
1310 mtu = ifmtu;
1311 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1312 rt->rt_rmx.rmx_mtu = mtu;
1313 }
1314 } else if (ifp) {
1315 mtu = IN6_LINKMTU(ifp);
1316 } else
1317 error = EHOSTUNREACH; /* XXX */
1318
1319 *mtup = mtu;
1320 if (alwaysfragp)
1321 *alwaysfragp = alwaysfrag;
1322 return (error);
1323 }
1324
1325 /*
1326 * IP6 socket option processing.
1327 */
1328 int
1329 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1330 {
1331 int optdatalen, uproto;
1332 void *optdata;
1333 struct in6pcb *in6p = sotoin6pcb(so);
1334 struct ip_moptions **mopts;
1335 int error, optval;
1336 int level, optname;
1337
1338 KASSERT(solocked(so));
1339 KASSERT(sopt != NULL);
1340
1341 level = sopt->sopt_level;
1342 optname = sopt->sopt_name;
1343
1344 error = optval = 0;
1345 uproto = (int)so->so_proto->pr_protocol;
1346
1347 switch (level) {
1348 case IPPROTO_IP:
1349 switch (optname) {
1350 case IP_ADD_MEMBERSHIP:
1351 case IP_DROP_MEMBERSHIP:
1352 case IP_MULTICAST_IF:
1353 case IP_MULTICAST_LOOP:
1354 case IP_MULTICAST_TTL:
1355 mopts = &in6p->in6p_v4moptions;
1356 switch (op) {
1357 case PRCO_GETOPT:
1358 return ip_getmoptions(*mopts, sopt);
1359 case PRCO_SETOPT:
1360 return ip_setmoptions(mopts, sopt);
1361 default:
1362 return EINVAL;
1363 }
1364 default:
1365 return ENOPROTOOPT;
1366 }
1367 case IPPROTO_IPV6:
1368 break;
1369 default:
1370 return ENOPROTOOPT;
1371 }
1372 switch (op) {
1373 case PRCO_SETOPT:
1374 switch (optname) {
1375 #ifdef RFC2292
1376 case IPV6_2292PKTOPTIONS:
1377 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
1378 break;
1379 #endif
1380
1381 /*
1382 * Use of some Hop-by-Hop options or some
1383 * Destination options, might require special
1384 * privilege. That is, normal applications
1385 * (without special privilege) might be forbidden
1386 * from setting certain options in outgoing packets,
1387 * and might never see certain options in received
1388 * packets. [RFC 2292 Section 6]
1389 * KAME specific note:
1390 * KAME prevents non-privileged users from sending or
1391 * receiving ANY hbh/dst options in order to avoid
1392 * overhead of parsing options in the kernel.
1393 */
1394 case IPV6_RECVHOPOPTS:
1395 case IPV6_RECVDSTOPTS:
1396 case IPV6_RECVRTHDRDSTOPTS:
1397 error = kauth_authorize_network(kauth_cred_get(),
1398 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
1399 NULL, NULL, NULL);
1400 if (error)
1401 break;
1402 /* FALLTHROUGH */
1403 case IPV6_UNICAST_HOPS:
1404 case IPV6_HOPLIMIT:
1405 case IPV6_FAITH:
1406
1407 case IPV6_RECVPKTINFO:
1408 case IPV6_RECVHOPLIMIT:
1409 case IPV6_RECVRTHDR:
1410 case IPV6_RECVPATHMTU:
1411 case IPV6_RECVTCLASS:
1412 case IPV6_V6ONLY:
1413 error = sockopt_getint(sopt, &optval);
1414 if (error)
1415 break;
1416 switch (optname) {
1417 case IPV6_UNICAST_HOPS:
1418 if (optval < -1 || optval >= 256)
1419 error = EINVAL;
1420 else {
1421 /* -1 = kernel default */
1422 in6p->in6p_hops = optval;
1423 }
1424 break;
1425 #define OPTSET(bit) \
1426 do { \
1427 if (optval) \
1428 in6p->in6p_flags |= (bit); \
1429 else \
1430 in6p->in6p_flags &= ~(bit); \
1431 } while (/*CONSTCOND*/ 0)
1432
1433 #ifdef RFC2292
1434 #define OPTSET2292(bit) \
1435 do { \
1436 in6p->in6p_flags |= IN6P_RFC2292; \
1437 if (optval) \
1438 in6p->in6p_flags |= (bit); \
1439 else \
1440 in6p->in6p_flags &= ~(bit); \
1441 } while (/*CONSTCOND*/ 0)
1442 #endif
1443
1444 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1445
1446 case IPV6_RECVPKTINFO:
1447 #ifdef RFC2292
1448 /* cannot mix with RFC2292 */
1449 if (OPTBIT(IN6P_RFC2292)) {
1450 error = EINVAL;
1451 break;
1452 }
1453 #endif
1454 OPTSET(IN6P_PKTINFO);
1455 break;
1456
1457 case IPV6_HOPLIMIT:
1458 {
1459 struct ip6_pktopts **optp;
1460
1461 #ifdef RFC2292
1462 /* cannot mix with RFC2292 */
1463 if (OPTBIT(IN6P_RFC2292)) {
1464 error = EINVAL;
1465 break;
1466 }
1467 #endif
1468 optp = &in6p->in6p_outputopts;
1469 error = ip6_pcbopt(IPV6_HOPLIMIT,
1470 (u_char *)&optval,
1471 sizeof(optval),
1472 optp,
1473 kauth_cred_get(), uproto);
1474 break;
1475 }
1476
1477 case IPV6_RECVHOPLIMIT:
1478 #ifdef RFC2292
1479 /* cannot mix with RFC2292 */
1480 if (OPTBIT(IN6P_RFC2292)) {
1481 error = EINVAL;
1482 break;
1483 }
1484 #endif
1485 OPTSET(IN6P_HOPLIMIT);
1486 break;
1487
1488 case IPV6_RECVHOPOPTS:
1489 #ifdef RFC2292
1490 /* cannot mix with RFC2292 */
1491 if (OPTBIT(IN6P_RFC2292)) {
1492 error = EINVAL;
1493 break;
1494 }
1495 #endif
1496 OPTSET(IN6P_HOPOPTS);
1497 break;
1498
1499 case IPV6_RECVDSTOPTS:
1500 #ifdef RFC2292
1501 /* cannot mix with RFC2292 */
1502 if (OPTBIT(IN6P_RFC2292)) {
1503 error = EINVAL;
1504 break;
1505 }
1506 #endif
1507 OPTSET(IN6P_DSTOPTS);
1508 break;
1509
1510 case IPV6_RECVRTHDRDSTOPTS:
1511 #ifdef RFC2292
1512 /* cannot mix with RFC2292 */
1513 if (OPTBIT(IN6P_RFC2292)) {
1514 error = EINVAL;
1515 break;
1516 }
1517 #endif
1518 OPTSET(IN6P_RTHDRDSTOPTS);
1519 break;
1520
1521 case IPV6_RECVRTHDR:
1522 #ifdef RFC2292
1523 /* cannot mix with RFC2292 */
1524 if (OPTBIT(IN6P_RFC2292)) {
1525 error = EINVAL;
1526 break;
1527 }
1528 #endif
1529 OPTSET(IN6P_RTHDR);
1530 break;
1531
1532 case IPV6_FAITH:
1533 OPTSET(IN6P_FAITH);
1534 break;
1535
1536 case IPV6_RECVPATHMTU:
1537 /*
1538 * We ignore this option for TCP
1539 * sockets.
1540 * (RFC3542 leaves this case
1541 * unspecified.)
1542 */
1543 if (uproto != IPPROTO_TCP)
1544 OPTSET(IN6P_MTU);
1545 break;
1546
1547 case IPV6_V6ONLY:
1548 /*
1549 * make setsockopt(IPV6_V6ONLY)
1550 * available only prior to bind(2).
1551 * see ipng mailing list, Jun 22 2001.
1552 */
1553 if (in6p->in6p_lport ||
1554 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1555 error = EINVAL;
1556 break;
1557 }
1558 #ifdef INET6_BINDV6ONLY
1559 if (!optval)
1560 error = EINVAL;
1561 #else
1562 OPTSET(IN6P_IPV6_V6ONLY);
1563 #endif
1564 break;
1565 case IPV6_RECVTCLASS:
1566 #ifdef RFC2292
1567 /* cannot mix with RFC2292 XXX */
1568 if (OPTBIT(IN6P_RFC2292)) {
1569 error = EINVAL;
1570 break;
1571 }
1572 #endif
1573 OPTSET(IN6P_TCLASS);
1574 break;
1575
1576 }
1577 break;
1578
1579 case IPV6_OTCLASS:
1580 {
1581 struct ip6_pktopts **optp;
1582 u_int8_t tclass;
1583
1584 error = sockopt_get(sopt, &tclass, sizeof(tclass));
1585 if (error)
1586 break;
1587 optp = &in6p->in6p_outputopts;
1588 error = ip6_pcbopt(optname,
1589 (u_char *)&tclass,
1590 sizeof(tclass),
1591 optp,
1592 kauth_cred_get(), uproto);
1593 break;
1594 }
1595
1596 case IPV6_TCLASS:
1597 case IPV6_DONTFRAG:
1598 case IPV6_USE_MIN_MTU:
1599 case IPV6_PREFER_TEMPADDR:
1600 error = sockopt_getint(sopt, &optval);
1601 if (error)
1602 break;
1603 {
1604 struct ip6_pktopts **optp;
1605 optp = &in6p->in6p_outputopts;
1606 error = ip6_pcbopt(optname,
1607 (u_char *)&optval,
1608 sizeof(optval),
1609 optp,
1610 kauth_cred_get(), uproto);
1611 break;
1612 }
1613
1614 #ifdef RFC2292
1615 case IPV6_2292PKTINFO:
1616 case IPV6_2292HOPLIMIT:
1617 case IPV6_2292HOPOPTS:
1618 case IPV6_2292DSTOPTS:
1619 case IPV6_2292RTHDR:
1620 /* RFC 2292 */
1621 error = sockopt_getint(sopt, &optval);
1622 if (error)
1623 break;
1624
1625 switch (optname) {
1626 case IPV6_2292PKTINFO:
1627 OPTSET2292(IN6P_PKTINFO);
1628 break;
1629 case IPV6_2292HOPLIMIT:
1630 OPTSET2292(IN6P_HOPLIMIT);
1631 break;
1632 case IPV6_2292HOPOPTS:
1633 /*
1634 * Check super-user privilege.
1635 * See comments for IPV6_RECVHOPOPTS.
1636 */
1637 error =
1638 kauth_authorize_network(kauth_cred_get(),
1639 KAUTH_NETWORK_IPV6,
1640 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1641 NULL, NULL);
1642 if (error)
1643 return (error);
1644 OPTSET2292(IN6P_HOPOPTS);
1645 break;
1646 case IPV6_2292DSTOPTS:
1647 error =
1648 kauth_authorize_network(kauth_cred_get(),
1649 KAUTH_NETWORK_IPV6,
1650 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1651 NULL, NULL);
1652 if (error)
1653 return (error);
1654 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1655 break;
1656 case IPV6_2292RTHDR:
1657 OPTSET2292(IN6P_RTHDR);
1658 break;
1659 }
1660 break;
1661 #endif
1662 case IPV6_PKTINFO:
1663 case IPV6_HOPOPTS:
1664 case IPV6_RTHDR:
1665 case IPV6_DSTOPTS:
1666 case IPV6_RTHDRDSTOPTS:
1667 case IPV6_NEXTHOP: {
1668 /* new advanced API (RFC3542) */
1669 void *optbuf;
1670 int optbuflen;
1671 struct ip6_pktopts **optp;
1672
1673 #ifdef RFC2292
1674 /* cannot mix with RFC2292 */
1675 if (OPTBIT(IN6P_RFC2292)) {
1676 error = EINVAL;
1677 break;
1678 }
1679 #endif
1680
1681 optbuflen = sopt->sopt_size;
1682 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1683 if (optbuf == NULL) {
1684 error = ENOBUFS;
1685 break;
1686 }
1687
1688 error = sockopt_get(sopt, optbuf, optbuflen);
1689 if (error) {
1690 free(optbuf, M_IP6OPT);
1691 break;
1692 }
1693 optp = &in6p->in6p_outputopts;
1694 error = ip6_pcbopt(optname, optbuf, optbuflen,
1695 optp, kauth_cred_get(), uproto);
1696
1697 free(optbuf, M_IP6OPT);
1698 break;
1699 }
1700 #undef OPTSET
1701
1702 case IPV6_MULTICAST_IF:
1703 case IPV6_MULTICAST_HOPS:
1704 case IPV6_MULTICAST_LOOP:
1705 case IPV6_JOIN_GROUP:
1706 case IPV6_LEAVE_GROUP:
1707 error = ip6_setmoptions(sopt, in6p);
1708 break;
1709
1710 case IPV6_PORTRANGE:
1711 error = sockopt_getint(sopt, &optval);
1712 if (error)
1713 break;
1714
1715 switch (optval) {
1716 case IPV6_PORTRANGE_DEFAULT:
1717 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1718 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1719 break;
1720
1721 case IPV6_PORTRANGE_HIGH:
1722 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1723 in6p->in6p_flags |= IN6P_HIGHPORT;
1724 break;
1725
1726 case IPV6_PORTRANGE_LOW:
1727 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1728 in6p->in6p_flags |= IN6P_LOWPORT;
1729 break;
1730
1731 default:
1732 error = EINVAL;
1733 break;
1734 }
1735 break;
1736
1737 case IPV6_PORTALGO:
1738 error = sockopt_getint(sopt, &optval);
1739 if (error)
1740 break;
1741
1742 error = portalgo_algo_index_select(
1743 (struct inpcb_hdr *)in6p, optval);
1744 break;
1745
1746 #if defined(IPSEC)
1747 case IPV6_IPSEC_POLICY:
1748 if (ipsec_enabled) {
1749 error = ipsec_set_policy(in6p,
1750 sopt->sopt_data, sopt->sopt_size,
1751 kauth_cred_get());
1752 break;
1753 }
1754 /*FALLTHROUGH*/
1755 #endif /* IPSEC */
1756
1757 default:
1758 error = ENOPROTOOPT;
1759 break;
1760 }
1761 break;
1762
1763 case PRCO_GETOPT:
1764 switch (optname) {
1765 #ifdef RFC2292
1766 case IPV6_2292PKTOPTIONS:
1767 /*
1768 * RFC3542 (effectively) deprecated the
1769 * semantics of the 2292-style pktoptions.
1770 * Since it was not reliable in nature (i.e.,
1771 * applications had to expect the lack of some
1772 * information after all), it would make sense
1773 * to simplify this part by always returning
1774 * empty data.
1775 */
1776 break;
1777 #endif
1778
1779 case IPV6_RECVHOPOPTS:
1780 case IPV6_RECVDSTOPTS:
1781 case IPV6_RECVRTHDRDSTOPTS:
1782 case IPV6_UNICAST_HOPS:
1783 case IPV6_RECVPKTINFO:
1784 case IPV6_RECVHOPLIMIT:
1785 case IPV6_RECVRTHDR:
1786 case IPV6_RECVPATHMTU:
1787
1788 case IPV6_FAITH:
1789 case IPV6_V6ONLY:
1790 case IPV6_PORTRANGE:
1791 case IPV6_RECVTCLASS:
1792 switch (optname) {
1793
1794 case IPV6_RECVHOPOPTS:
1795 optval = OPTBIT(IN6P_HOPOPTS);
1796 break;
1797
1798 case IPV6_RECVDSTOPTS:
1799 optval = OPTBIT(IN6P_DSTOPTS);
1800 break;
1801
1802 case IPV6_RECVRTHDRDSTOPTS:
1803 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1804 break;
1805
1806 case IPV6_UNICAST_HOPS:
1807 optval = in6p->in6p_hops;
1808 break;
1809
1810 case IPV6_RECVPKTINFO:
1811 optval = OPTBIT(IN6P_PKTINFO);
1812 break;
1813
1814 case IPV6_RECVHOPLIMIT:
1815 optval = OPTBIT(IN6P_HOPLIMIT);
1816 break;
1817
1818 case IPV6_RECVRTHDR:
1819 optval = OPTBIT(IN6P_RTHDR);
1820 break;
1821
1822 case IPV6_RECVPATHMTU:
1823 optval = OPTBIT(IN6P_MTU);
1824 break;
1825
1826 case IPV6_FAITH:
1827 optval = OPTBIT(IN6P_FAITH);
1828 break;
1829
1830 case IPV6_V6ONLY:
1831 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1832 break;
1833
1834 case IPV6_PORTRANGE:
1835 {
1836 int flags;
1837 flags = in6p->in6p_flags;
1838 if (flags & IN6P_HIGHPORT)
1839 optval = IPV6_PORTRANGE_HIGH;
1840 else if (flags & IN6P_LOWPORT)
1841 optval = IPV6_PORTRANGE_LOW;
1842 else
1843 optval = 0;
1844 break;
1845 }
1846 case IPV6_RECVTCLASS:
1847 optval = OPTBIT(IN6P_TCLASS);
1848 break;
1849
1850 }
1851 if (error)
1852 break;
1853 error = sockopt_setint(sopt, optval);
1854 break;
1855
1856 case IPV6_PATHMTU:
1857 {
1858 u_long pmtu = 0;
1859 struct ip6_mtuinfo mtuinfo;
1860 struct route *ro = &in6p->in6p_route;
1861 struct rtentry *rt;
1862 union {
1863 struct sockaddr dst;
1864 struct sockaddr_in6 dst6;
1865 } u;
1866
1867 if (!(so->so_state & SS_ISCONNECTED))
1868 return (ENOTCONN);
1869 /*
1870 * XXX: we dot not consider the case of source
1871 * routing, or optional information to specify
1872 * the outgoing interface.
1873 */
1874 sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0);
1875 rt = rtcache_lookup(ro, &u.dst);
1876 error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
1877 rtcache_unref(rt, ro);
1878 if (error)
1879 break;
1880 if (pmtu > IPV6_MAXPACKET)
1881 pmtu = IPV6_MAXPACKET;
1882
1883 memset(&mtuinfo, 0, sizeof(mtuinfo));
1884 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1885 optdata = (void *)&mtuinfo;
1886 optdatalen = sizeof(mtuinfo);
1887 if (optdatalen > MCLBYTES)
1888 return (EMSGSIZE); /* XXX */
1889 error = sockopt_set(sopt, optdata, optdatalen);
1890 break;
1891 }
1892
1893 #ifdef RFC2292
1894 case IPV6_2292PKTINFO:
1895 case IPV6_2292HOPLIMIT:
1896 case IPV6_2292HOPOPTS:
1897 case IPV6_2292RTHDR:
1898 case IPV6_2292DSTOPTS:
1899 switch (optname) {
1900 case IPV6_2292PKTINFO:
1901 optval = OPTBIT(IN6P_PKTINFO);
1902 break;
1903 case IPV6_2292HOPLIMIT:
1904 optval = OPTBIT(IN6P_HOPLIMIT);
1905 break;
1906 case IPV6_2292HOPOPTS:
1907 optval = OPTBIT(IN6P_HOPOPTS);
1908 break;
1909 case IPV6_2292RTHDR:
1910 optval = OPTBIT(IN6P_RTHDR);
1911 break;
1912 case IPV6_2292DSTOPTS:
1913 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1914 break;
1915 }
1916 error = sockopt_setint(sopt, optval);
1917 break;
1918 #endif
1919 case IPV6_PKTINFO:
1920 case IPV6_HOPOPTS:
1921 case IPV6_RTHDR:
1922 case IPV6_DSTOPTS:
1923 case IPV6_RTHDRDSTOPTS:
1924 case IPV6_NEXTHOP:
1925 case IPV6_OTCLASS:
1926 case IPV6_TCLASS:
1927 case IPV6_DONTFRAG:
1928 case IPV6_USE_MIN_MTU:
1929 case IPV6_PREFER_TEMPADDR:
1930 error = ip6_getpcbopt(in6p->in6p_outputopts,
1931 optname, sopt);
1932 break;
1933
1934 case IPV6_MULTICAST_IF:
1935 case IPV6_MULTICAST_HOPS:
1936 case IPV6_MULTICAST_LOOP:
1937 case IPV6_JOIN_GROUP:
1938 case IPV6_LEAVE_GROUP:
1939 error = ip6_getmoptions(sopt, in6p);
1940 break;
1941
1942 case IPV6_PORTALGO:
1943 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
1944 error = sockopt_setint(sopt, optval);
1945 break;
1946
1947 #if defined(IPSEC)
1948 case IPV6_IPSEC_POLICY:
1949 if (ipsec_used) {
1950 struct mbuf *m = NULL;
1951
1952 /*
1953 * XXX: this will return EINVAL as sopt is
1954 * empty
1955 */
1956 error = ipsec_get_policy(in6p, sopt->sopt_data,
1957 sopt->sopt_size, &m);
1958 if (!error)
1959 error = sockopt_setmbuf(sopt, m);
1960 break;
1961 }
1962 /*FALLTHROUGH*/
1963 #endif /* IPSEC */
1964
1965 default:
1966 error = ENOPROTOOPT;
1967 break;
1968 }
1969 break;
1970 }
1971 return (error);
1972 }
1973
1974 int
1975 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1976 {
1977 int error = 0, optval;
1978 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1979 struct in6pcb *in6p = sotoin6pcb(so);
1980 int level, optname;
1981
1982 KASSERT(sopt != NULL);
1983
1984 level = sopt->sopt_level;
1985 optname = sopt->sopt_name;
1986
1987 if (level != IPPROTO_IPV6) {
1988 return ENOPROTOOPT;
1989 }
1990
1991 switch (optname) {
1992 case IPV6_CHECKSUM:
1993 /*
1994 * For ICMPv6 sockets, no modification allowed for checksum
1995 * offset, permit "no change" values to help existing apps.
1996 *
1997 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
1998 * for an ICMPv6 socket will fail." The current
1999 * behavior does not meet RFC3542.
2000 */
2001 switch (op) {
2002 case PRCO_SETOPT:
2003 error = sockopt_getint(sopt, &optval);
2004 if (error)
2005 break;
2006 if ((optval % 2) != 0) {
2007 /* the API assumes even offset values */
2008 error = EINVAL;
2009 } else if (so->so_proto->pr_protocol ==
2010 IPPROTO_ICMPV6) {
2011 if (optval != icmp6off)
2012 error = EINVAL;
2013 } else
2014 in6p->in6p_cksum = optval;
2015 break;
2016
2017 case PRCO_GETOPT:
2018 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2019 optval = icmp6off;
2020 else
2021 optval = in6p->in6p_cksum;
2022
2023 error = sockopt_setint(sopt, optval);
2024 break;
2025
2026 default:
2027 error = EINVAL;
2028 break;
2029 }
2030 break;
2031
2032 default:
2033 error = ENOPROTOOPT;
2034 break;
2035 }
2036
2037 return (error);
2038 }
2039
2040 #ifdef RFC2292
2041 /*
2042 * Set up IP6 options in pcb for insertion in output packets or
2043 * specifying behavior of outgoing packets.
2044 */
2045 static int
2046 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
2047 struct sockopt *sopt)
2048 {
2049 struct ip6_pktopts *opt = *pktopt;
2050 struct mbuf *m;
2051 int error = 0;
2052
2053 KASSERT(solocked(so));
2054
2055 /* turn off any old options. */
2056 if (opt) {
2057 #ifdef DIAGNOSTIC
2058 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2059 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2060 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2061 printf("ip6_pcbopts: all specified options are cleared.\n");
2062 #endif
2063 ip6_clearpktopts(opt, -1);
2064 } else {
2065 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2066 if (opt == NULL)
2067 return (ENOBUFS);
2068 }
2069 *pktopt = NULL;
2070
2071 if (sopt == NULL || sopt->sopt_size == 0) {
2072 /*
2073 * Only turning off any previous options, regardless of
2074 * whether the opt is just created or given.
2075 */
2076 free(opt, M_IP6OPT);
2077 return (0);
2078 }
2079
2080 /* set options specified by user. */
2081 m = sockopt_getmbuf(sopt);
2082 if (m == NULL) {
2083 free(opt, M_IP6OPT);
2084 return (ENOBUFS);
2085 }
2086
2087 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
2088 so->so_proto->pr_protocol);
2089 m_freem(m);
2090 if (error != 0) {
2091 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2092 free(opt, M_IP6OPT);
2093 return (error);
2094 }
2095 *pktopt = opt;
2096 return (0);
2097 }
2098 #endif
2099
2100 /*
2101 * initialize ip6_pktopts. beware that there are non-zero default values in
2102 * the struct.
2103 */
2104 void
2105 ip6_initpktopts(struct ip6_pktopts *opt)
2106 {
2107
2108 memset(opt, 0, sizeof(*opt));
2109 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2110 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2111 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2112 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2113 }
2114
2115 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2116 static int
2117 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2118 kauth_cred_t cred, int uproto)
2119 {
2120 struct ip6_pktopts *opt;
2121
2122 if (*pktopt == NULL) {
2123 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2124 M_NOWAIT);
2125 if (*pktopt == NULL)
2126 return (ENOBUFS);
2127
2128 ip6_initpktopts(*pktopt);
2129 }
2130 opt = *pktopt;
2131
2132 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2133 }
2134
2135 static int
2136 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2137 {
2138 void *optdata = NULL;
2139 int optdatalen = 0;
2140 struct ip6_ext *ip6e;
2141 int error = 0;
2142 struct in6_pktinfo null_pktinfo;
2143 int deftclass = 0, on;
2144 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2145 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2146
2147 switch (optname) {
2148 case IPV6_PKTINFO:
2149 if (pktopt && pktopt->ip6po_pktinfo)
2150 optdata = (void *)pktopt->ip6po_pktinfo;
2151 else {
2152 /* XXX: we don't have to do this every time... */
2153 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2154 optdata = (void *)&null_pktinfo;
2155 }
2156 optdatalen = sizeof(struct in6_pktinfo);
2157 break;
2158 case IPV6_OTCLASS:
2159 /* XXX */
2160 return (EINVAL);
2161 case IPV6_TCLASS:
2162 if (pktopt && pktopt->ip6po_tclass >= 0)
2163 optdata = (void *)&pktopt->ip6po_tclass;
2164 else
2165 optdata = (void *)&deftclass;
2166 optdatalen = sizeof(int);
2167 break;
2168 case IPV6_HOPOPTS:
2169 if (pktopt && pktopt->ip6po_hbh) {
2170 optdata = (void *)pktopt->ip6po_hbh;
2171 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2172 optdatalen = (ip6e->ip6e_len + 1) << 3;
2173 }
2174 break;
2175 case IPV6_RTHDR:
2176 if (pktopt && pktopt->ip6po_rthdr) {
2177 optdata = (void *)pktopt->ip6po_rthdr;
2178 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2179 optdatalen = (ip6e->ip6e_len + 1) << 3;
2180 }
2181 break;
2182 case IPV6_RTHDRDSTOPTS:
2183 if (pktopt && pktopt->ip6po_dest1) {
2184 optdata = (void *)pktopt->ip6po_dest1;
2185 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2186 optdatalen = (ip6e->ip6e_len + 1) << 3;
2187 }
2188 break;
2189 case IPV6_DSTOPTS:
2190 if (pktopt && pktopt->ip6po_dest2) {
2191 optdata = (void *)pktopt->ip6po_dest2;
2192 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2193 optdatalen = (ip6e->ip6e_len + 1) << 3;
2194 }
2195 break;
2196 case IPV6_NEXTHOP:
2197 if (pktopt && pktopt->ip6po_nexthop) {
2198 optdata = (void *)pktopt->ip6po_nexthop;
2199 optdatalen = pktopt->ip6po_nexthop->sa_len;
2200 }
2201 break;
2202 case IPV6_USE_MIN_MTU:
2203 if (pktopt)
2204 optdata = (void *)&pktopt->ip6po_minmtu;
2205 else
2206 optdata = (void *)&defminmtu;
2207 optdatalen = sizeof(int);
2208 break;
2209 case IPV6_DONTFRAG:
2210 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2211 on = 1;
2212 else
2213 on = 0;
2214 optdata = (void *)&on;
2215 optdatalen = sizeof(on);
2216 break;
2217 case IPV6_PREFER_TEMPADDR:
2218 if (pktopt)
2219 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2220 else
2221 optdata = (void *)&defpreftemp;
2222 optdatalen = sizeof(int);
2223 break;
2224 default: /* should not happen */
2225 #ifdef DIAGNOSTIC
2226 panic("ip6_getpcbopt: unexpected option\n");
2227 #endif
2228 return (ENOPROTOOPT);
2229 }
2230
2231 error = sockopt_set(sopt, optdata, optdatalen);
2232
2233 return (error);
2234 }
2235
2236 void
2237 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2238 {
2239 if (optname == -1 || optname == IPV6_PKTINFO) {
2240 if (pktopt->ip6po_pktinfo)
2241 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2242 pktopt->ip6po_pktinfo = NULL;
2243 }
2244 if (optname == -1 || optname == IPV6_HOPLIMIT)
2245 pktopt->ip6po_hlim = -1;
2246 if (optname == -1 || optname == IPV6_TCLASS)
2247 pktopt->ip6po_tclass = -1;
2248 if (optname == -1 || optname == IPV6_NEXTHOP) {
2249 rtcache_free(&pktopt->ip6po_nextroute);
2250 if (pktopt->ip6po_nexthop)
2251 free(pktopt->ip6po_nexthop, M_IP6OPT);
2252 pktopt->ip6po_nexthop = NULL;
2253 }
2254 if (optname == -1 || optname == IPV6_HOPOPTS) {
2255 if (pktopt->ip6po_hbh)
2256 free(pktopt->ip6po_hbh, M_IP6OPT);
2257 pktopt->ip6po_hbh = NULL;
2258 }
2259 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2260 if (pktopt->ip6po_dest1)
2261 free(pktopt->ip6po_dest1, M_IP6OPT);
2262 pktopt->ip6po_dest1 = NULL;
2263 }
2264 if (optname == -1 || optname == IPV6_RTHDR) {
2265 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2266 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2267 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2268 rtcache_free(&pktopt->ip6po_route);
2269 }
2270 if (optname == -1 || optname == IPV6_DSTOPTS) {
2271 if (pktopt->ip6po_dest2)
2272 free(pktopt->ip6po_dest2, M_IP6OPT);
2273 pktopt->ip6po_dest2 = NULL;
2274 }
2275 }
2276
2277 #define PKTOPT_EXTHDRCPY(type) \
2278 do { \
2279 if (src->type) { \
2280 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2281 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2282 if (dst->type == NULL) \
2283 goto bad; \
2284 memcpy(dst->type, src->type, hlen); \
2285 } \
2286 } while (/*CONSTCOND*/ 0)
2287
2288 static int
2289 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2290 {
2291 dst->ip6po_hlim = src->ip6po_hlim;
2292 dst->ip6po_tclass = src->ip6po_tclass;
2293 dst->ip6po_flags = src->ip6po_flags;
2294 dst->ip6po_minmtu = src->ip6po_minmtu;
2295 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2296 if (src->ip6po_pktinfo) {
2297 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2298 M_IP6OPT, canwait);
2299 if (dst->ip6po_pktinfo == NULL)
2300 goto bad;
2301 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2302 }
2303 if (src->ip6po_nexthop) {
2304 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2305 M_IP6OPT, canwait);
2306 if (dst->ip6po_nexthop == NULL)
2307 goto bad;
2308 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2309 src->ip6po_nexthop->sa_len);
2310 }
2311 PKTOPT_EXTHDRCPY(ip6po_hbh);
2312 PKTOPT_EXTHDRCPY(ip6po_dest1);
2313 PKTOPT_EXTHDRCPY(ip6po_dest2);
2314 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2315 return (0);
2316
2317 bad:
2318 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2319 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2320 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2321 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2322 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2323 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2324
2325 return (ENOBUFS);
2326 }
2327 #undef PKTOPT_EXTHDRCPY
2328
2329 struct ip6_pktopts *
2330 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2331 {
2332 int error;
2333 struct ip6_pktopts *dst;
2334
2335 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2336 if (dst == NULL)
2337 return (NULL);
2338 ip6_initpktopts(dst);
2339
2340 if ((error = copypktopts(dst, src, canwait)) != 0) {
2341 free(dst, M_IP6OPT);
2342 return (NULL);
2343 }
2344
2345 return (dst);
2346 }
2347
2348 void
2349 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2350 {
2351 if (pktopt == NULL)
2352 return;
2353
2354 ip6_clearpktopts(pktopt, -1);
2355
2356 free(pktopt, M_IP6OPT);
2357 }
2358
2359 int
2360 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
2361 struct psref *psref, void *v, size_t l)
2362 {
2363 struct ipv6_mreq mreq;
2364 int error;
2365 struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
2366 struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
2367
2368 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2369 if (error != 0)
2370 return error;
2371
2372 if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
2373 /*
2374 * We use the unspecified address to specify to accept
2375 * all multicast addresses. Only super user is allowed
2376 * to do this.
2377 */
2378 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6,
2379 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
2380 return EACCES;
2381 } else if (IN6_IS_ADDR_V4MAPPED(ia)) {
2382 // Don't bother if we are not going to use ifp.
2383 if (l == sizeof(*ia)) {
2384 memcpy(v, ia, l);
2385 return 0;
2386 }
2387 } else if (!IN6_IS_ADDR_MULTICAST(ia)) {
2388 return EINVAL;
2389 }
2390
2391 /*
2392 * If no interface was explicitly specified, choose an
2393 * appropriate one according to the given multicast address.
2394 */
2395 if (mreq.ipv6mr_interface == 0) {
2396 struct rtentry *rt;
2397 union {
2398 struct sockaddr dst;
2399 struct sockaddr_in dst4;
2400 struct sockaddr_in6 dst6;
2401 } u;
2402 struct route ro;
2403
2404 /*
2405 * Look up the routing table for the
2406 * address, and choose the outgoing interface.
2407 * XXX: is it a good approach?
2408 */
2409 memset(&ro, 0, sizeof(ro));
2410 if (IN6_IS_ADDR_V4MAPPED(ia))
2411 sockaddr_in_init(&u.dst4, ia4, 0);
2412 else
2413 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
2414 error = rtcache_setdst(&ro, &u.dst);
2415 if (error != 0)
2416 return error;
2417 rt = rtcache_init(&ro);
2418 *ifp = rt != NULL ?
2419 if_get_byindex(rt->rt_ifp->if_index, psref) : NULL;
2420 rtcache_unref(rt, &ro);
2421 rtcache_free(&ro);
2422 } else {
2423 /*
2424 * If the interface is specified, validate it.
2425 */
2426 *ifp = if_get_byindex(mreq.ipv6mr_interface, psref);
2427 if (*ifp == NULL)
2428 return ENXIO; /* XXX EINVAL? */
2429 }
2430 if (sizeof(*ia) == l)
2431 memcpy(v, ia, l);
2432 else
2433 memcpy(v, ia4, l);
2434 return 0;
2435 }
2436
2437 /*
2438 * Set the IP6 multicast options in response to user setsockopt().
2439 */
2440 static int
2441 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p)
2442 {
2443 int error = 0;
2444 u_int loop, ifindex;
2445 struct ipv6_mreq mreq;
2446 struct in6_addr ia;
2447 struct ifnet *ifp;
2448 struct ip6_moptions *im6o = in6p->in6p_moptions;
2449 struct in6_multi_mship *imm;
2450
2451 KASSERT(in6p_locked(in6p));
2452
2453 if (im6o == NULL) {
2454 /*
2455 * No multicast option buffer attached to the pcb;
2456 * allocate one and initialize to default values.
2457 */
2458 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2459 if (im6o == NULL)
2460 return (ENOBUFS);
2461 in6p->in6p_moptions = im6o;
2462 im6o->im6o_multicast_if_index = 0;
2463 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2464 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2465 LIST_INIT(&im6o->im6o_memberships);
2466 }
2467
2468 switch (sopt->sopt_name) {
2469
2470 case IPV6_MULTICAST_IF: {
2471 int s;
2472 /*
2473 * Select the interface for outgoing multicast packets.
2474 */
2475 error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2476 if (error != 0)
2477 break;
2478
2479 s = pserialize_read_enter();
2480 if (ifindex != 0) {
2481 if ((ifp = if_byindex(ifindex)) == NULL) {
2482 pserialize_read_exit(s);
2483 error = ENXIO; /* XXX EINVAL? */
2484 break;
2485 }
2486 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2487 pserialize_read_exit(s);
2488 error = EADDRNOTAVAIL;
2489 break;
2490 }
2491 } else
2492 ifp = NULL;
2493 im6o->im6o_multicast_if_index = if_get_index(ifp);
2494 pserialize_read_exit(s);
2495 break;
2496 }
2497
2498 case IPV6_MULTICAST_HOPS:
2499 {
2500 /*
2501 * Set the IP6 hoplimit for outgoing multicast packets.
2502 */
2503 int optval;
2504
2505 error = sockopt_getint(sopt, &optval);
2506 if (error != 0)
2507 break;
2508
2509 if (optval < -1 || optval >= 256)
2510 error = EINVAL;
2511 else if (optval == -1)
2512 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2513 else
2514 im6o->im6o_multicast_hlim = optval;
2515 break;
2516 }
2517
2518 case IPV6_MULTICAST_LOOP:
2519 /*
2520 * Set the loopback flag for outgoing multicast packets.
2521 * Must be zero or one.
2522 */
2523 error = sockopt_get(sopt, &loop, sizeof(loop));
2524 if (error != 0)
2525 break;
2526 if (loop > 1) {
2527 error = EINVAL;
2528 break;
2529 }
2530 im6o->im6o_multicast_loop = loop;
2531 break;
2532
2533 case IPV6_JOIN_GROUP: {
2534 int bound;
2535 struct psref psref;
2536 /*
2537 * Add a multicast group membership.
2538 * Group must be a valid IP6 multicast address.
2539 */
2540 bound = curlwp_bind();
2541 ifp = NULL;
2542 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
2543 if (error != 0) {
2544 KASSERT(ifp == NULL);
2545 curlwp_bindx(bound);
2546 return error;
2547 }
2548
2549 if (IN6_IS_ADDR_V4MAPPED(&ia)) {
2550 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2551 goto put_break;
2552 }
2553 /*
2554 * See if we found an interface, and confirm that it
2555 * supports multicast
2556 */
2557 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2558 error = EADDRNOTAVAIL;
2559 goto put_break;
2560 }
2561
2562 if (in6_setscope(&ia, ifp, NULL)) {
2563 error = EADDRNOTAVAIL; /* XXX: should not happen */
2564 goto put_break;
2565 }
2566
2567 /*
2568 * See if the membership already exists.
2569 */
2570 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2571 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2572 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2573 &ia))
2574 goto put_break;
2575 }
2576 if (imm != NULL) {
2577 error = EADDRINUSE;
2578 goto put_break;
2579 }
2580 /*
2581 * Everything looks good; add a new record to the multicast
2582 * address list for the given interface.
2583 */
2584 IFNET_LOCK(ifp);
2585 imm = in6_joingroup(ifp, &ia, &error, 0);
2586 IFNET_UNLOCK(ifp);
2587 if (imm == NULL)
2588 goto put_break;
2589 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2590 put_break:
2591 if_put(ifp, &psref);
2592 curlwp_bindx(bound);
2593 break;
2594 }
2595
2596 case IPV6_LEAVE_GROUP: {
2597 struct ifnet *in6m_ifp;
2598 /*
2599 * Drop a multicast group membership.
2600 * Group must be a valid IP6 multicast address.
2601 */
2602 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2603 if (error != 0)
2604 break;
2605
2606 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
2607 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2608 break;
2609 }
2610 /*
2611 * If an interface address was specified, get a pointer
2612 * to its ifnet structure.
2613 */
2614 if (mreq.ipv6mr_interface != 0) {
2615 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
2616 error = ENXIO; /* XXX EINVAL? */
2617 break;
2618 }
2619 } else
2620 ifp = NULL;
2621
2622 /* Fill in the scope zone ID */
2623 if (ifp) {
2624 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2625 /* XXX: should not happen */
2626 error = EADDRNOTAVAIL;
2627 break;
2628 }
2629 } else if (mreq.ipv6mr_interface != 0) {
2630 /*
2631 * XXX: This case would happens when the (positive)
2632 * index is in the valid range, but the corresponding
2633 * interface has been detached dynamically. The above
2634 * check probably avoids such case to happen here, but
2635 * we check it explicitly for safety.
2636 */
2637 error = EADDRNOTAVAIL;
2638 break;
2639 } else { /* ipv6mr_interface == 0 */
2640 struct sockaddr_in6 sa6_mc;
2641
2642 /*
2643 * The API spec says as follows:
2644 * If the interface index is specified as 0, the
2645 * system may choose a multicast group membership to
2646 * drop by matching the multicast address only.
2647 * On the other hand, we cannot disambiguate the scope
2648 * zone unless an interface is provided. Thus, we
2649 * check if there's ambiguity with the default scope
2650 * zone as the last resort.
2651 */
2652 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2653 0, 0, 0);
2654 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2655 if (error != 0)
2656 break;
2657 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2658 }
2659
2660 /*
2661 * Find the membership in the membership list.
2662 */
2663 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2664 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2665 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2666 &mreq.ipv6mr_multiaddr))
2667 break;
2668 }
2669 if (imm == NULL) {
2670 /* Unable to resolve interface */
2671 error = EADDRNOTAVAIL;
2672 break;
2673 }
2674 /*
2675 * Give up the multicast address record to which the
2676 * membership points.
2677 */
2678 LIST_REMOVE(imm, i6mm_chain);
2679 in6m_ifp = imm->i6mm_maddr->in6m_ifp;
2680 IFNET_LOCK(in6m_ifp);
2681 in6_leavegroup(imm);
2682 /* in6m_ifp should not leave thanks to in6p_lock */
2683 IFNET_UNLOCK(in6m_ifp);
2684 break;
2685 }
2686
2687 default:
2688 error = EOPNOTSUPP;
2689 break;
2690 }
2691
2692 /*
2693 * If all options have default values, no need to keep the mbuf.
2694 */
2695 if (im6o->im6o_multicast_if_index == 0 &&
2696 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2697 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2698 LIST_EMPTY(&im6o->im6o_memberships)) {
2699 free(in6p->in6p_moptions, M_IPMOPTS);
2700 in6p->in6p_moptions = NULL;
2701 }
2702
2703 return (error);
2704 }
2705
2706 /*
2707 * Return the IP6 multicast options in response to user getsockopt().
2708 */
2709 static int
2710 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p)
2711 {
2712 u_int optval;
2713 int error;
2714 struct ip6_moptions *im6o = in6p->in6p_moptions;
2715
2716 switch (sopt->sopt_name) {
2717 case IPV6_MULTICAST_IF:
2718 if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
2719 optval = 0;
2720 else
2721 optval = im6o->im6o_multicast_if_index;
2722
2723 error = sockopt_set(sopt, &optval, sizeof(optval));
2724 break;
2725
2726 case IPV6_MULTICAST_HOPS:
2727 if (im6o == NULL)
2728 optval = ip6_defmcasthlim;
2729 else
2730 optval = im6o->im6o_multicast_hlim;
2731
2732 error = sockopt_set(sopt, &optval, sizeof(optval));
2733 break;
2734
2735 case IPV6_MULTICAST_LOOP:
2736 if (im6o == NULL)
2737 optval = IPV6_DEFAULT_MULTICAST_LOOP;
2738 else
2739 optval = im6o->im6o_multicast_loop;
2740
2741 error = sockopt_set(sopt, &optval, sizeof(optval));
2742 break;
2743
2744 default:
2745 error = EOPNOTSUPP;
2746 }
2747
2748 return (error);
2749 }
2750
2751 /*
2752 * Discard the IP6 multicast options.
2753 */
2754 void
2755 ip6_freemoptions(struct ip6_moptions *im6o)
2756 {
2757 struct in6_multi_mship *imm, *nimm;
2758
2759 if (im6o == NULL)
2760 return;
2761
2762 /* The owner of im6o (in6p) should be protected by solock */
2763 LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) {
2764 struct ifnet *ifp;
2765
2766 LIST_REMOVE(imm, i6mm_chain);
2767
2768 ifp = imm->i6mm_maddr->in6m_ifp;
2769 IFNET_LOCK(ifp);
2770 in6_leavegroup(imm);
2771 /* ifp should not leave thanks to solock */
2772 IFNET_UNLOCK(ifp);
2773 }
2774 free(im6o, M_IPMOPTS);
2775 }
2776
2777 /*
2778 * Set IPv6 outgoing packet options based on advanced API.
2779 */
2780 int
2781 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2782 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2783 {
2784 struct cmsghdr *cm = 0;
2785
2786 if (control == NULL || opt == NULL)
2787 return (EINVAL);
2788
2789 ip6_initpktopts(opt);
2790 if (stickyopt) {
2791 int error;
2792
2793 /*
2794 * If stickyopt is provided, make a local copy of the options
2795 * for this particular packet, then override them by ancillary
2796 * objects.
2797 * XXX: copypktopts() does not copy the cached route to a next
2798 * hop (if any). This is not very good in terms of efficiency,
2799 * but we can allow this since this option should be rarely
2800 * used.
2801 */
2802 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2803 return (error);
2804 }
2805
2806 /*
2807 * XXX: Currently, we assume all the optional information is stored
2808 * in a single mbuf.
2809 */
2810 if (control->m_next)
2811 return (EINVAL);
2812
2813 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2814 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2815 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2816 int error;
2817
2818 if (control->m_len < CMSG_LEN(0))
2819 return (EINVAL);
2820
2821 cm = mtod(control, struct cmsghdr *);
2822 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2823 return (EINVAL);
2824 if (cm->cmsg_level != IPPROTO_IPV6)
2825 continue;
2826
2827 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2828 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2829 if (error)
2830 return (error);
2831 }
2832
2833 return (0);
2834 }
2835
2836 /*
2837 * Set a particular packet option, as a sticky option or an ancillary data
2838 * item. "len" can be 0 only when it's a sticky option.
2839 * We have 4 cases of combination of "sticky" and "cmsg":
2840 * "sticky=0, cmsg=0": impossible
2841 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2842 * "sticky=1, cmsg=0": RFC3542 socket option
2843 * "sticky=1, cmsg=1": RFC2292 socket option
2844 */
2845 static int
2846 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2847 kauth_cred_t cred, int sticky, int cmsg, int uproto)
2848 {
2849 int minmtupolicy;
2850 int error;
2851
2852 if (!sticky && !cmsg) {
2853 #ifdef DIAGNOSTIC
2854 printf("ip6_setpktopt: impossible case\n");
2855 #endif
2856 return (EINVAL);
2857 }
2858
2859 /*
2860 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2861 * not be specified in the context of RFC3542. Conversely,
2862 * RFC3542 types should not be specified in the context of RFC2292.
2863 */
2864 if (!cmsg) {
2865 switch (optname) {
2866 case IPV6_2292PKTINFO:
2867 case IPV6_2292HOPLIMIT:
2868 case IPV6_2292NEXTHOP:
2869 case IPV6_2292HOPOPTS:
2870 case IPV6_2292DSTOPTS:
2871 case IPV6_2292RTHDR:
2872 case IPV6_2292PKTOPTIONS:
2873 return (ENOPROTOOPT);
2874 }
2875 }
2876 if (sticky && cmsg) {
2877 switch (optname) {
2878 case IPV6_PKTINFO:
2879 case IPV6_HOPLIMIT:
2880 case IPV6_NEXTHOP:
2881 case IPV6_HOPOPTS:
2882 case IPV6_DSTOPTS:
2883 case IPV6_RTHDRDSTOPTS:
2884 case IPV6_RTHDR:
2885 case IPV6_USE_MIN_MTU:
2886 case IPV6_DONTFRAG:
2887 case IPV6_OTCLASS:
2888 case IPV6_TCLASS:
2889 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
2890 return (ENOPROTOOPT);
2891 }
2892 }
2893
2894 switch (optname) {
2895 #ifdef RFC2292
2896 case IPV6_2292PKTINFO:
2897 #endif
2898 case IPV6_PKTINFO:
2899 {
2900 struct in6_pktinfo *pktinfo;
2901
2902 if (len != sizeof(struct in6_pktinfo))
2903 return (EINVAL);
2904
2905 pktinfo = (struct in6_pktinfo *)buf;
2906
2907 /*
2908 * An application can clear any sticky IPV6_PKTINFO option by
2909 * doing a "regular" setsockopt with ipi6_addr being
2910 * in6addr_any and ipi6_ifindex being zero.
2911 * [RFC 3542, Section 6]
2912 */
2913 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2914 pktinfo->ipi6_ifindex == 0 &&
2915 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2916 ip6_clearpktopts(opt, optname);
2917 break;
2918 }
2919
2920 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2921 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2922 return (EINVAL);
2923 }
2924
2925 /* Validate the interface index if specified. */
2926 if (pktinfo->ipi6_ifindex) {
2927 struct ifnet *ifp;
2928 int s = pserialize_read_enter();
2929 ifp = if_byindex(pktinfo->ipi6_ifindex);
2930 if (ifp == NULL) {
2931 pserialize_read_exit(s);
2932 return ENXIO;
2933 }
2934 pserialize_read_exit(s);
2935 }
2936
2937 /*
2938 * We store the address anyway, and let in6_selectsrc()
2939 * validate the specified address. This is because ipi6_addr
2940 * may not have enough information about its scope zone, and
2941 * we may need additional information (such as outgoing
2942 * interface or the scope zone of a destination address) to
2943 * disambiguate the scope.
2944 * XXX: the delay of the validation may confuse the
2945 * application when it is used as a sticky option.
2946 */
2947 if (opt->ip6po_pktinfo == NULL) {
2948 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2949 M_IP6OPT, M_NOWAIT);
2950 if (opt->ip6po_pktinfo == NULL)
2951 return (ENOBUFS);
2952 }
2953 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2954 break;
2955 }
2956
2957 #ifdef RFC2292
2958 case IPV6_2292HOPLIMIT:
2959 #endif
2960 case IPV6_HOPLIMIT:
2961 {
2962 int *hlimp;
2963
2964 /*
2965 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2966 * to simplify the ordering among hoplimit options.
2967 */
2968 if (optname == IPV6_HOPLIMIT && sticky)
2969 return (ENOPROTOOPT);
2970
2971 if (len != sizeof(int))
2972 return (EINVAL);
2973 hlimp = (int *)buf;
2974 if (*hlimp < -1 || *hlimp > 255)
2975 return (EINVAL);
2976
2977 opt->ip6po_hlim = *hlimp;
2978 break;
2979 }
2980
2981 case IPV6_OTCLASS:
2982 if (len != sizeof(u_int8_t))
2983 return (EINVAL);
2984
2985 opt->ip6po_tclass = *(u_int8_t *)buf;
2986 break;
2987
2988 case IPV6_TCLASS:
2989 {
2990 int tclass;
2991
2992 if (len != sizeof(int))
2993 return (EINVAL);
2994 tclass = *(int *)buf;
2995 if (tclass < -1 || tclass > 255)
2996 return (EINVAL);
2997
2998 opt->ip6po_tclass = tclass;
2999 break;
3000 }
3001
3002 #ifdef RFC2292
3003 case IPV6_2292NEXTHOP:
3004 #endif
3005 case IPV6_NEXTHOP:
3006 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3007 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3008 if (error)
3009 return (error);
3010
3011 if (len == 0) { /* just remove the option */
3012 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3013 break;
3014 }
3015
3016 /* check if cmsg_len is large enough for sa_len */
3017 if (len < sizeof(struct sockaddr) || len < *buf)
3018 return (EINVAL);
3019
3020 switch (((struct sockaddr *)buf)->sa_family) {
3021 case AF_INET6:
3022 {
3023 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3024
3025 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3026 return (EINVAL);
3027
3028 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3029 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3030 return (EINVAL);
3031 }
3032 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
3033 != 0) {
3034 return (error);
3035 }
3036 break;
3037 }
3038 case AF_LINK: /* eventually be supported? */
3039 default:
3040 return (EAFNOSUPPORT);
3041 }
3042
3043 /* turn off the previous option, then set the new option. */
3044 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3045 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3046 if (opt->ip6po_nexthop == NULL)
3047 return (ENOBUFS);
3048 memcpy(opt->ip6po_nexthop, buf, *buf);
3049 break;
3050
3051 #ifdef RFC2292
3052 case IPV6_2292HOPOPTS:
3053 #endif
3054 case IPV6_HOPOPTS:
3055 {
3056 struct ip6_hbh *hbh;
3057 int hbhlen;
3058
3059 /*
3060 * XXX: We don't allow a non-privileged user to set ANY HbH
3061 * options, since per-option restriction has too much
3062 * overhead.
3063 */
3064 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3065 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3066 if (error)
3067 return (error);
3068
3069 if (len == 0) {
3070 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3071 break; /* just remove the option */
3072 }
3073
3074 /* message length validation */
3075 if (len < sizeof(struct ip6_hbh))
3076 return (EINVAL);
3077 hbh = (struct ip6_hbh *)buf;
3078 hbhlen = (hbh->ip6h_len + 1) << 3;
3079 if (len != hbhlen)
3080 return (EINVAL);
3081
3082 /* turn off the previous option, then set the new option. */
3083 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3084 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3085 if (opt->ip6po_hbh == NULL)
3086 return (ENOBUFS);
3087 memcpy(opt->ip6po_hbh, hbh, hbhlen);
3088
3089 break;
3090 }
3091
3092 #ifdef RFC2292
3093 case IPV6_2292DSTOPTS:
3094 #endif
3095 case IPV6_DSTOPTS:
3096 case IPV6_RTHDRDSTOPTS:
3097 {
3098 struct ip6_dest *dest, **newdest = NULL;
3099 int destlen;
3100
3101 /* XXX: see the comment for IPV6_HOPOPTS */
3102 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3103 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3104 if (error)
3105 return (error);
3106
3107 if (len == 0) {
3108 ip6_clearpktopts(opt, optname);
3109 break; /* just remove the option */
3110 }
3111
3112 /* message length validation */
3113 if (len < sizeof(struct ip6_dest))
3114 return (EINVAL);
3115 dest = (struct ip6_dest *)buf;
3116 destlen = (dest->ip6d_len + 1) << 3;
3117 if (len != destlen)
3118 return (EINVAL);
3119 /*
3120 * Determine the position that the destination options header
3121 * should be inserted; before or after the routing header.
3122 */
3123 switch (optname) {
3124 case IPV6_2292DSTOPTS:
3125 /*
3126 * The old advanced API is ambiguous on this point.
3127 * Our approach is to determine the position based
3128 * according to the existence of a routing header.
3129 * Note, however, that this depends on the order of the
3130 * extension headers in the ancillary data; the 1st
3131 * part of the destination options header must appear
3132 * before the routing header in the ancillary data,
3133 * too.
3134 * RFC3542 solved the ambiguity by introducing
3135 * separate ancillary data or option types.
3136 */
3137 if (opt->ip6po_rthdr == NULL)
3138 newdest = &opt->ip6po_dest1;
3139 else
3140 newdest = &opt->ip6po_dest2;
3141 break;
3142 case IPV6_RTHDRDSTOPTS:
3143 newdest = &opt->ip6po_dest1;
3144 break;
3145 case IPV6_DSTOPTS:
3146 newdest = &opt->ip6po_dest2;
3147 break;
3148 }
3149
3150 /* turn off the previous option, then set the new option. */
3151 ip6_clearpktopts(opt, optname);
3152 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3153 if (*newdest == NULL)
3154 return (ENOBUFS);
3155 memcpy(*newdest, dest, destlen);
3156
3157 break;
3158 }
3159
3160 #ifdef RFC2292
3161 case IPV6_2292RTHDR:
3162 #endif
3163 case IPV6_RTHDR:
3164 {
3165 struct ip6_rthdr *rth;
3166 int rthlen;
3167
3168 if (len == 0) {
3169 ip6_clearpktopts(opt, IPV6_RTHDR);
3170 break; /* just remove the option */
3171 }
3172
3173 /* message length validation */
3174 if (len < sizeof(struct ip6_rthdr))
3175 return (EINVAL);
3176 rth = (struct ip6_rthdr *)buf;
3177 rthlen = (rth->ip6r_len + 1) << 3;
3178 if (len != rthlen)
3179 return (EINVAL);
3180 switch (rth->ip6r_type) {
3181 case IPV6_RTHDR_TYPE_0:
3182 /* Dropped, RFC5095. */
3183 default:
3184 return (EINVAL); /* not supported */
3185 }
3186 /* turn off the previous option */
3187 ip6_clearpktopts(opt, IPV6_RTHDR);
3188 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3189 if (opt->ip6po_rthdr == NULL)
3190 return (ENOBUFS);
3191 memcpy(opt->ip6po_rthdr, rth, rthlen);
3192 break;
3193 }
3194
3195 case IPV6_USE_MIN_MTU:
3196 if (len != sizeof(int))
3197 return (EINVAL);
3198 minmtupolicy = *(int *)buf;
3199 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3200 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3201 minmtupolicy != IP6PO_MINMTU_ALL) {
3202 return (EINVAL);
3203 }
3204 opt->ip6po_minmtu = minmtupolicy;
3205 break;
3206
3207 case IPV6_DONTFRAG:
3208 if (len != sizeof(int))
3209 return (EINVAL);
3210
3211 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3212 /*
3213 * we ignore this option for TCP sockets.
3214 * (RFC3542 leaves this case unspecified.)
3215 */
3216 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3217 } else
3218 opt->ip6po_flags |= IP6PO_DONTFRAG;
3219 break;
3220
3221 case IPV6_PREFER_TEMPADDR:
3222 {
3223 int preftemp;
3224
3225 if (len != sizeof(int))
3226 return (EINVAL);
3227 preftemp = *(int *)buf;
3228 switch (preftemp) {
3229 case IP6PO_TEMPADDR_SYSTEM:
3230 case IP6PO_TEMPADDR_NOTPREFER:
3231 case IP6PO_TEMPADDR_PREFER:
3232 break;
3233 default:
3234 return (EINVAL);
3235 }
3236 opt->ip6po_prefer_tempaddr = preftemp;
3237 break;
3238 }
3239
3240 default:
3241 return (ENOPROTOOPT);
3242 } /* end of switch */
3243
3244 return (0);
3245 }
3246
3247 /*
3248 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3249 * packet to the input queue of a specified interface. Note that this
3250 * calls the output routine of the loopback "driver", but with an interface
3251 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3252 */
3253 void
3254 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3255 const struct sockaddr_in6 *dst)
3256 {
3257 struct mbuf *copym;
3258 struct ip6_hdr *ip6;
3259
3260 copym = m_copypacket(m, M_DONTWAIT);
3261 if (copym == NULL)
3262 return;
3263
3264 /*
3265 * Make sure to deep-copy IPv6 header portion in case the data
3266 * is in an mbuf cluster, so that we can safely override the IPv6
3267 * header portion later.
3268 */
3269 if ((copym->m_flags & M_EXT) != 0 ||
3270 copym->m_len < sizeof(struct ip6_hdr)) {
3271 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3272 if (copym == NULL)
3273 return;
3274 }
3275
3276 #ifdef DIAGNOSTIC
3277 if (copym->m_len < sizeof(*ip6)) {
3278 m_freem(copym);
3279 return;
3280 }
3281 #endif
3282
3283 ip6 = mtod(copym, struct ip6_hdr *);
3284 /*
3285 * clear embedded scope identifiers if necessary.
3286 * in6_clearscope will touch the addresses only when necessary.
3287 */
3288 in6_clearscope(&ip6->ip6_src);
3289 in6_clearscope(&ip6->ip6_dst);
3290
3291 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3292 }
3293
3294 /*
3295 * Chop IPv6 header off from the payload.
3296 */
3297 static int
3298 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3299 {
3300 struct mbuf *mh;
3301 struct ip6_hdr *ip6;
3302
3303 ip6 = mtod(m, struct ip6_hdr *);
3304 if (m->m_len > sizeof(*ip6)) {
3305 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3306 if (mh == NULL) {
3307 m_freem(m);
3308 return ENOBUFS;
3309 }
3310 M_MOVE_PKTHDR(mh, m);
3311 MH_ALIGN(mh, sizeof(*ip6));
3312 m->m_len -= sizeof(*ip6);
3313 m->m_data += sizeof(*ip6);
3314 mh->m_next = m;
3315 mh->m_len = sizeof(*ip6);
3316 memcpy(mtod(mh, void *), (void *)ip6, sizeof(*ip6));
3317 m = mh;
3318 }
3319 exthdrs->ip6e_ip6 = m;
3320 return 0;
3321 }
3322
3323 /*
3324 * Compute IPv6 extension header length.
3325 */
3326 int
3327 ip6_optlen(struct in6pcb *in6p)
3328 {
3329 int len;
3330
3331 if (!in6p->in6p_outputopts)
3332 return 0;
3333
3334 len = 0;
3335 #define elen(x) \
3336 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3337
3338 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3339 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3340 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3341 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3342 return len;
3343 #undef elen
3344 }
3345
3346 /*
3347 * Ensure sending address is valid.
3348 * Returns 0 on success, -1 if an error should be sent back or 1
3349 * if the packet could be dropped without error (protocol dependent).
3350 */
3351 static int
3352 ip6_ifaddrvalid(const struct in6_addr *src, const struct in6_addr *dst)
3353 {
3354 struct sockaddr_in6 sin6;
3355 int s, error;
3356 struct ifaddr *ifa;
3357 struct in6_ifaddr *ia6;
3358
3359 if (IN6_IS_ADDR_UNSPECIFIED(src))
3360 return 0;
3361
3362 memset(&sin6, 0, sizeof(sin6));
3363 sin6.sin6_family = AF_INET6;
3364 sin6.sin6_len = sizeof(sin6);
3365 sin6.sin6_addr = *src;
3366
3367 s = pserialize_read_enter();
3368 ifa = ifa_ifwithaddr(sin6tosa(&sin6));
3369 if ((ia6 = ifatoia6(ifa)) == NULL ||
3370 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
3371 error = -1;
3372 else if (ia6->ia6_flags & IN6_IFF_TENTATIVE)
3373 error = 1;
3374 else if (ia6->ia6_flags & IN6_IFF_DETACHED &&
3375 (sin6.sin6_addr = *dst, ifa_ifwithaddr(sin6tosa(&sin6)) == NULL))
3376 /* Allow internal traffic to DETACHED addresses */
3377 error = 1;
3378 else
3379 error = 0;
3380 pserialize_read_exit(s);
3381
3382 return error;
3383 }
3384