Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.203.2.5
      1 /*	$NetBSD: ip6_output.c,v 1.203.2.5 2018/09/06 06:56:45 pgoyette Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.203.2.5 2018/09/06 06:56:45 pgoyette Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_inet.h"
     69 #include "opt_inet6.h"
     70 #include "opt_ipsec.h"
     71 #endif
     72 
     73 #include <sys/param.h>
     74 #include <sys/malloc.h>
     75 #include <sys/mbuf.h>
     76 #include <sys/errno.h>
     77 #include <sys/socket.h>
     78 #include <sys/socketvar.h>
     79 #include <sys/syslog.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/kauth.h>
     83 
     84 #include <net/if.h>
     85 #include <net/route.h>
     86 #include <net/pfil.h>
     87 
     88 #include <netinet/in.h>
     89 #include <netinet/in_var.h>
     90 #include <netinet/ip6.h>
     91 #include <netinet/ip_var.h>
     92 #include <netinet/icmp6.h>
     93 #include <netinet/in_offload.h>
     94 #include <netinet/portalgo.h>
     95 #include <netinet6/in6_offload.h>
     96 #include <netinet6/ip6_var.h>
     97 #include <netinet6/ip6_private.h>
     98 #include <netinet6/in6_pcb.h>
     99 #include <netinet6/nd6.h>
    100 #include <netinet6/ip6protosw.h>
    101 #include <netinet6/scope6_var.h>
    102 
    103 #ifdef IPSEC
    104 #include <netipsec/ipsec.h>
    105 #include <netipsec/ipsec6.h>
    106 #include <netipsec/key.h>
    107 #endif
    108 
    109 extern pfil_head_t *inet6_pfil_hook;	/* XXX */
    110 
    111 struct ip6_exthdrs {
    112 	struct mbuf *ip6e_ip6;
    113 	struct mbuf *ip6e_hbh;
    114 	struct mbuf *ip6e_dest1;
    115 	struct mbuf *ip6e_rthdr;
    116 	struct mbuf *ip6e_dest2;
    117 };
    118 
    119 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
    120 	kauth_cred_t, int);
    121 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
    122 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
    123 	int, int, int);
    124 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *);
    125 static int ip6_getmoptions(struct sockopt *, struct in6pcb *);
    126 static int ip6_copyexthdr(struct mbuf **, void *, int);
    127 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
    128 	struct ip6_frag **);
    129 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
    130 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
    131 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
    132 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
    133 static int ip6_ifaddrvalid(const struct in6_addr *, const struct in6_addr *);
    134 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
    135 
    136 #ifdef RFC2292
    137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
    138 #endif
    139 
    140 static int
    141 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
    142 {
    143 	int error = 0;
    144 
    145 	switch (rh->ip6r_type) {
    146 	case IPV6_RTHDR_TYPE_0:
    147 		/* Dropped, RFC5095. */
    148 	default:	/* is it possible? */
    149 		error = EINVAL;
    150 	}
    151 
    152 	return error;
    153 }
    154 
    155 /*
    156  * Send an IP packet to a host.
    157  */
    158 int
    159 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp,
    160     struct mbuf * const m, const struct sockaddr_in6 * const dst,
    161     const struct rtentry *rt)
    162 {
    163 	int error = 0;
    164 
    165 	if (rt != NULL) {
    166 		error = rt_check_reject_route(rt, ifp);
    167 		if (error != 0) {
    168 			m_freem(m);
    169 			return error;
    170 		}
    171 	}
    172 
    173 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
    174 		error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
    175 	else
    176 		error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
    177 	return error;
    178 }
    179 
    180 /*
    181  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    182  * header (with pri, len, nxt, hlim, src, dst).
    183  *
    184  * This function may modify ver and hlim only. The mbuf chain containing the
    185  * packet will be freed. The mbuf opt, if present, will not be freed.
    186  *
    187  * Type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    188  * nd_ifinfo.linkmtu is u_int32_t. So we use u_long to hold largest one,
    189  * which is rt_rmx.rmx_mtu.
    190  */
    191 int
    192 ip6_output(
    193     struct mbuf *m0,
    194     struct ip6_pktopts *opt,
    195     struct route *ro,
    196     int flags,
    197     struct ip6_moptions *im6o,
    198     struct in6pcb *in6p,
    199     struct ifnet **ifpp		/* XXX: just for statistics */
    200 )
    201 {
    202 	struct ip6_hdr *ip6, *mhip6;
    203 	struct ifnet *ifp = NULL, *origifp = NULL;
    204 	struct mbuf *m = m0;
    205 	int tlen, len, off;
    206 	bool tso;
    207 	struct route ip6route;
    208 	struct rtentry *rt = NULL, *rt_pmtu;
    209 	const struct sockaddr_in6 *dst;
    210 	struct sockaddr_in6 src_sa, dst_sa;
    211 	int error = 0;
    212 	struct in6_ifaddr *ia = NULL;
    213 	u_long mtu;
    214 	int alwaysfrag, dontfrag;
    215 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    216 	struct ip6_exthdrs exthdrs;
    217 	struct in6_addr finaldst, src0, dst0;
    218 	u_int32_t zone;
    219 	struct route *ro_pmtu = NULL;
    220 	int hdrsplit = 0;
    221 	int needipsec = 0;
    222 #ifdef IPSEC
    223 	struct secpolicy *sp = NULL;
    224 #endif
    225 	struct psref psref, psref_ia;
    226 	int bound = curlwp_bind();
    227 	bool release_psref_ia = false;
    228 
    229 #ifdef DIAGNOSTIC
    230 	if ((m->m_flags & M_PKTHDR) == 0)
    231 		panic("ip6_output: no HDR");
    232 	if ((m->m_pkthdr.csum_flags &
    233 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
    234 		panic("ip6_output: IPv4 checksum offload flags: %d",
    235 		    m->m_pkthdr.csum_flags);
    236 	}
    237 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
    238 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
    239 		panic("ip6_output: conflicting checksum offload flags: %d",
    240 		    m->m_pkthdr.csum_flags);
    241 	}
    242 #endif
    243 
    244 	M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    245 
    246 #define MAKE_EXTHDR(hp, mp)						\
    247     do {								\
    248 	if (hp) {							\
    249 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    250 		error = ip6_copyexthdr((mp), (void *)(hp), 		\
    251 		    ((eh)->ip6e_len + 1) << 3);				\
    252 		if (error)						\
    253 			goto freehdrs;					\
    254 	}								\
    255     } while (/*CONSTCOND*/ 0)
    256 
    257 	memset(&exthdrs, 0, sizeof(exthdrs));
    258 	if (opt) {
    259 		/* Hop-by-Hop options header */
    260 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    261 		/* Destination options header (1st part) */
    262 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    263 		/* Routing header */
    264 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    265 		/* Destination options header (2nd part) */
    266 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    267 	}
    268 
    269 	/*
    270 	 * Calculate the total length of the extension header chain.
    271 	 * Keep the length of the unfragmentable part for fragmentation.
    272 	 */
    273 	optlen = 0;
    274 	if (exthdrs.ip6e_hbh)
    275 		optlen += exthdrs.ip6e_hbh->m_len;
    276 	if (exthdrs.ip6e_dest1)
    277 		optlen += exthdrs.ip6e_dest1->m_len;
    278 	if (exthdrs.ip6e_rthdr)
    279 		optlen += exthdrs.ip6e_rthdr->m_len;
    280 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    281 	/* NOTE: we don't add AH/ESP length here. do that later. */
    282 	if (exthdrs.ip6e_dest2)
    283 		optlen += exthdrs.ip6e_dest2->m_len;
    284 
    285 #ifdef IPSEC
    286 	if (ipsec_used) {
    287 		/* Check the security policy (SP) for the packet */
    288 		sp = ipsec6_check_policy(m, in6p, flags, &needipsec, &error);
    289 		if (error != 0) {
    290 			/*
    291 			 * Hack: -EINVAL is used to signal that a packet
    292 			 * should be silently discarded.  This is typically
    293 			 * because we asked key management for an SA and
    294 			 * it was delayed (e.g. kicked up to IKE).
    295 			 */
    296 			if (error == -EINVAL)
    297 				error = 0;
    298 			goto freehdrs;
    299 		}
    300 	}
    301 #endif
    302 
    303 	if (needipsec &&
    304 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    305 		in6_undefer_cksum_tcpudp(m);
    306 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    307 	}
    308 
    309 	/*
    310 	 * If we need IPsec, or there is at least one extension header,
    311 	 * separate IP6 header from the payload.
    312 	 */
    313 	if ((needipsec || optlen) && !hdrsplit) {
    314 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    315 			m = NULL;
    316 			goto freehdrs;
    317 		}
    318 		m = exthdrs.ip6e_ip6;
    319 		hdrsplit++;
    320 	}
    321 
    322 	/* adjust pointer */
    323 	ip6 = mtod(m, struct ip6_hdr *);
    324 
    325 	/* adjust mbuf packet header length */
    326 	m->m_pkthdr.len += optlen;
    327 	plen = m->m_pkthdr.len - sizeof(*ip6);
    328 
    329 	/* If this is a jumbo payload, insert a jumbo payload option. */
    330 	if (plen > IPV6_MAXPACKET) {
    331 		if (!hdrsplit) {
    332 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    333 				m = NULL;
    334 				goto freehdrs;
    335 			}
    336 			m = exthdrs.ip6e_ip6;
    337 			hdrsplit++;
    338 		}
    339 		/* adjust pointer */
    340 		ip6 = mtod(m, struct ip6_hdr *);
    341 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    342 			goto freehdrs;
    343 		optlen += 8; /* XXX JUMBOOPTLEN */
    344 		ip6->ip6_plen = 0;
    345 	} else
    346 		ip6->ip6_plen = htons(plen);
    347 
    348 	/*
    349 	 * Concatenate headers and fill in next header fields.
    350 	 * Here we have, on "m"
    351 	 *	IPv6 payload
    352 	 * and we insert headers accordingly.  Finally, we should be getting:
    353 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    354 	 *
    355 	 * during the header composing process, "m" points to IPv6 header.
    356 	 * "mprev" points to an extension header prior to esp.
    357 	 */
    358 	{
    359 		u_char *nexthdrp = &ip6->ip6_nxt;
    360 		struct mbuf *mprev = m;
    361 
    362 		/*
    363 		 * we treat dest2 specially.  this makes IPsec processing
    364 		 * much easier.  the goal here is to make mprev point the
    365 		 * mbuf prior to dest2.
    366 		 *
    367 		 * result: IPv6 dest2 payload
    368 		 * m and mprev will point to IPv6 header.
    369 		 */
    370 		if (exthdrs.ip6e_dest2) {
    371 			if (!hdrsplit)
    372 				panic("assumption failed: hdr not split");
    373 			exthdrs.ip6e_dest2->m_next = m->m_next;
    374 			m->m_next = exthdrs.ip6e_dest2;
    375 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    376 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    377 		}
    378 
    379 #define MAKE_CHAIN(m, mp, p, i)\
    380     do {\
    381 	if (m) {\
    382 		if (!hdrsplit) \
    383 			panic("assumption failed: hdr not split"); \
    384 		*mtod((m), u_char *) = *(p);\
    385 		*(p) = (i);\
    386 		p = mtod((m), u_char *);\
    387 		(m)->m_next = (mp)->m_next;\
    388 		(mp)->m_next = (m);\
    389 		(mp) = (m);\
    390 	}\
    391     } while (/*CONSTCOND*/ 0)
    392 		/*
    393 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    394 		 * m will point to IPv6 header.  mprev will point to the
    395 		 * extension header prior to dest2 (rthdr in the above case).
    396 		 */
    397 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    398 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    399 		    IPPROTO_DSTOPTS);
    400 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    401 		    IPPROTO_ROUTING);
    402 
    403 		M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data,
    404 		    sizeof(struct ip6_hdr) + optlen);
    405 	}
    406 
    407 	/* Need to save for pmtu */
    408 	finaldst = ip6->ip6_dst;
    409 
    410 	/*
    411 	 * If there is a routing header, replace destination address field
    412 	 * with the first hop of the routing header.
    413 	 */
    414 	if (exthdrs.ip6e_rthdr) {
    415 		struct ip6_rthdr *rh;
    416 
    417 		rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
    418 
    419 		error = ip6_handle_rthdr(rh, ip6);
    420 		if (error != 0)
    421 			goto bad;
    422 	}
    423 
    424 	/* Source address validation */
    425 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    426 	    (flags & IPV6_UNSPECSRC) == 0) {
    427 		error = EOPNOTSUPP;
    428 		IP6_STATINC(IP6_STAT_BADSCOPE);
    429 		goto bad;
    430 	}
    431 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    432 		error = EOPNOTSUPP;
    433 		IP6_STATINC(IP6_STAT_BADSCOPE);
    434 		goto bad;
    435 	}
    436 
    437 	IP6_STATINC(IP6_STAT_LOCALOUT);
    438 
    439 	/*
    440 	 * Route packet.
    441 	 */
    442 	/* initialize cached route */
    443 	if (ro == NULL) {
    444 		memset(&ip6route, 0, sizeof(ip6route));
    445 		ro = &ip6route;
    446 	}
    447 	ro_pmtu = ro;
    448 	if (opt && opt->ip6po_rthdr)
    449 		ro = &opt->ip6po_route;
    450 
    451 	/*
    452 	 * if specified, try to fill in the traffic class field.
    453 	 * do not override if a non-zero value is already set.
    454 	 * we check the diffserv field and the ecn field separately.
    455 	 */
    456 	if (opt && opt->ip6po_tclass >= 0) {
    457 		int mask = 0;
    458 
    459 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    460 			mask |= 0xfc;
    461 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    462 			mask |= 0x03;
    463 		if (mask != 0)
    464 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    465 	}
    466 
    467 	/* fill in or override the hop limit field, if necessary. */
    468 	if (opt && opt->ip6po_hlim != -1)
    469 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    470 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    471 		if (im6o != NULL)
    472 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    473 		else
    474 			ip6->ip6_hlim = ip6_defmcasthlim;
    475 	}
    476 
    477 #ifdef IPSEC
    478 	if (needipsec) {
    479 		int s = splsoftnet();
    480 		error = ipsec6_process_packet(m, sp->req);
    481 		splx(s);
    482 
    483 		/*
    484 		 * Preserve KAME behaviour: ENOENT can be returned
    485 		 * when an SA acquire is in progress.  Don't propagate
    486 		 * this to user-level; it confuses applications.
    487 		 * XXX this will go away when the SADB is redone.
    488 		 */
    489 		if (error == ENOENT)
    490 			error = 0;
    491 
    492 		goto done;
    493 	}
    494 #endif
    495 
    496 	/* adjust pointer */
    497 	ip6 = mtod(m, struct ip6_hdr *);
    498 
    499 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    500 
    501 	/* We do not need a route for multicast */
    502 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    503 		struct in6_pktinfo *pi = NULL;
    504 
    505 		/*
    506 		 * If the outgoing interface for the address is specified by
    507 		 * the caller, use it.
    508 		 */
    509 		if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
    510 			/* XXX boundary check is assumed to be already done. */
    511 			ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
    512 		} else if (im6o != NULL) {
    513 			ifp = if_get_byindex(im6o->im6o_multicast_if_index,
    514 			    &psref);
    515 		}
    516 	}
    517 
    518 	if (ifp == NULL) {
    519 		error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
    520 		if (error != 0)
    521 			goto bad;
    522 		ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
    523 	}
    524 
    525 	if (rt == NULL) {
    526 		/*
    527 		 * If in6_selectroute() does not return a route entry,
    528 		 * dst may not have been updated.
    529 		 */
    530 		error = rtcache_setdst(ro, sin6tosa(&dst_sa));
    531 		if (error) {
    532 			goto bad;
    533 		}
    534 	}
    535 
    536 	/*
    537 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    538 	 */
    539 	if ((flags & IPV6_FORWARDING) == 0) {
    540 		/* XXX: the FORWARDING flag can be set for mrouting. */
    541 		in6_ifstat_inc(ifp, ifs6_out_request);
    542 	}
    543 	if (rt != NULL) {
    544 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    545 		rt->rt_use++;
    546 	}
    547 
    548 	/*
    549 	 * The outgoing interface must be in the zone of source and
    550 	 * destination addresses.  We should use ia_ifp to support the
    551 	 * case of sending packets to an address of our own.
    552 	 */
    553 	if (ia != NULL && ia->ia_ifp) {
    554 		origifp = ia->ia_ifp;
    555 		if (if_is_deactivated(origifp))
    556 			goto bad;
    557 		if_acquire(origifp, &psref_ia);
    558 		release_psref_ia = true;
    559 	} else
    560 		origifp = ifp;
    561 
    562 	src0 = ip6->ip6_src;
    563 	if (in6_setscope(&src0, origifp, &zone))
    564 		goto badscope;
    565 	sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
    566 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    567 		goto badscope;
    568 
    569 	dst0 = ip6->ip6_dst;
    570 	if (in6_setscope(&dst0, origifp, &zone))
    571 		goto badscope;
    572 	/* re-initialize to be sure */
    573 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    574 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    575 		goto badscope;
    576 
    577 	/* scope check is done. */
    578 
    579 	/* Ensure we only send from a valid address. */
    580 	if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
    581 	    (error = ip6_ifaddrvalid(&src0, &dst0)) != 0)
    582 	{
    583 		char ip6buf[INET6_ADDRSTRLEN];
    584 		nd6log(LOG_ERR,
    585 		    "refusing to send from invalid address %s (pid %d)\n",
    586 		    IN6_PRINT(ip6buf, &src0), curproc->p_pid);
    587 		IP6_STATINC(IP6_STAT_ODROPPED);
    588 		in6_ifstat_inc(origifp, ifs6_out_discard);
    589 		if (error == 1)
    590 			/*
    591 			 * Address exists, but is tentative or detached.
    592 			 * We can't send from it because it's invalid,
    593 			 * so we drop the packet.
    594 			 */
    595 			error = 0;
    596 		else
    597 			error = EADDRNOTAVAIL;
    598 		goto bad;
    599 	}
    600 
    601 	if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
    602 	    !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    603 		dst = satocsin6(rt->rt_gateway);
    604 	else
    605 		dst = satocsin6(rtcache_getdst(ro));
    606 
    607 	/*
    608 	 * XXXXXX: original code follows:
    609 	 */
    610 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    611 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    612 	else {
    613 		bool ingroup;
    614 
    615 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    616 
    617 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    618 
    619 		/*
    620 		 * Confirm that the outgoing interface supports multicast.
    621 		 */
    622 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    623 			IP6_STATINC(IP6_STAT_NOROUTE);
    624 			in6_ifstat_inc(ifp, ifs6_out_discard);
    625 			error = ENETUNREACH;
    626 			goto bad;
    627 		}
    628 
    629 		ingroup = in6_multi_group(&ip6->ip6_dst, ifp);
    630 		if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) {
    631 			/*
    632 			 * If we belong to the destination multicast group
    633 			 * on the outgoing interface, and the caller did not
    634 			 * forbid loopback, loop back a copy.
    635 			 */
    636 			KASSERT(dst != NULL);
    637 			ip6_mloopback(ifp, m, dst);
    638 		} else {
    639 			/*
    640 			 * If we are acting as a multicast router, perform
    641 			 * multicast forwarding as if the packet had just
    642 			 * arrived on the interface to which we are about
    643 			 * to send.  The multicast forwarding function
    644 			 * recursively calls this function, using the
    645 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    646 			 *
    647 			 * Multicasts that are looped back by ip6_mloopback(),
    648 			 * above, will be forwarded by the ip6_input() routine,
    649 			 * if necessary.
    650 			 */
    651 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    652 				if (ip6_mforward(ip6, ifp, m) != 0) {
    653 					m_freem(m);
    654 					goto done;
    655 				}
    656 			}
    657 		}
    658 		/*
    659 		 * Multicasts with a hoplimit of zero may be looped back,
    660 		 * above, but must not be transmitted on a network.
    661 		 * Also, multicasts addressed to the loopback interface
    662 		 * are not sent -- the above call to ip6_mloopback() will
    663 		 * loop back a copy if this host actually belongs to the
    664 		 * destination group on the loopback interface.
    665 		 */
    666 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    667 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    668 			m_freem(m);
    669 			goto done;
    670 		}
    671 	}
    672 
    673 	/*
    674 	 * Fill the outgoing inteface to tell the upper layer
    675 	 * to increment per-interface statistics.
    676 	 */
    677 	if (ifpp)
    678 		*ifpp = ifp;
    679 
    680 	/* Determine path MTU. */
    681 	/*
    682 	 * ro_pmtu represent final destination while
    683 	 * ro might represent immediate destination.
    684 	 * Use ro_pmtu destination since MTU might differ.
    685 	 */
    686 	if (ro_pmtu != ro) {
    687 		union {
    688 			struct sockaddr		dst;
    689 			struct sockaddr_in6	dst6;
    690 		} u;
    691 
    692 		/* ro_pmtu may not have a cache */
    693 		sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
    694 		rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
    695 	} else
    696 		rt_pmtu = rt;
    697 	error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
    698 	if (rt_pmtu != NULL && rt_pmtu != rt)
    699 		rtcache_unref(rt_pmtu, ro_pmtu);
    700 	if (error != 0)
    701 		goto bad;
    702 
    703 	/*
    704 	 * The caller of this function may specify to use the minimum MTU
    705 	 * in some cases.
    706 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
    707 	 * setting.  The logic is a bit complicated; by default, unicast
    708 	 * packets will follow path MTU while multicast packets will be sent at
    709 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
    710 	 * including unicast ones will be sent at the minimum MTU.  Multicast
    711 	 * packets will always be sent at the minimum MTU unless
    712 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
    713 	 * See RFC 3542 for more details.
    714 	 */
    715 	if (mtu > IPV6_MMTU) {
    716 		if ((flags & IPV6_MINMTU))
    717 			mtu = IPV6_MMTU;
    718 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
    719 			mtu = IPV6_MMTU;
    720 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
    721 			 (opt == NULL ||
    722 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
    723 			mtu = IPV6_MMTU;
    724 		}
    725 	}
    726 
    727 	/*
    728 	 * clear embedded scope identifiers if necessary.
    729 	 * in6_clearscope will touch the addresses only when necessary.
    730 	 */
    731 	in6_clearscope(&ip6->ip6_src);
    732 	in6_clearscope(&ip6->ip6_dst);
    733 
    734 	/*
    735 	 * If the outgoing packet contains a hop-by-hop options header,
    736 	 * it must be examined and processed even by the source node.
    737 	 * (RFC 2460, section 4.)
    738 	 *
    739 	 * XXX Is this really necessary?
    740 	 */
    741 	if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
    742 		u_int32_t dummy1; /* XXX unused */
    743 		u_int32_t dummy2; /* XXX unused */
    744 		int hoff = sizeof(struct ip6_hdr);
    745 
    746 		if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
    747 			/* m was already freed at this point */
    748 			error = EINVAL;
    749 			goto done;
    750 		}
    751 
    752 		ip6 = mtod(m, struct ip6_hdr *);
    753 	}
    754 
    755 	/*
    756 	 * Run through list of hooks for output packets.
    757 	 */
    758 	if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    759 		goto done;
    760 	if (m == NULL)
    761 		goto done;
    762 	ip6 = mtod(m, struct ip6_hdr *);
    763 
    764 	/*
    765 	 * Send the packet to the outgoing interface.
    766 	 * If necessary, do IPv6 fragmentation before sending.
    767 	 *
    768 	 * the logic here is rather complex:
    769 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    770 	 * 1-a:	send as is if tlen <= path mtu
    771 	 * 1-b:	fragment if tlen > path mtu
    772 	 *
    773 	 * 2: if user asks us not to fragment (dontfrag == 1)
    774 	 * 2-a:	send as is if tlen <= interface mtu
    775 	 * 2-b:	error if tlen > interface mtu
    776 	 *
    777 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    778 	 *	always fragment
    779 	 *
    780 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    781 	 *	error, as we cannot handle this conflicting request
    782 	 */
    783 	tlen = m->m_pkthdr.len;
    784 	tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
    785 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
    786 		dontfrag = 1;
    787 	else
    788 		dontfrag = 0;
    789 
    790 	if (dontfrag && alwaysfrag) {	/* case 4 */
    791 		/* conflicting request - can't transmit */
    792 		error = EMSGSIZE;
    793 		goto bad;
    794 	}
    795 	if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) {	/* case 2-b */
    796 		/*
    797 		 * Even if the DONTFRAG option is specified, we cannot send the
    798 		 * packet when the data length is larger than the MTU of the
    799 		 * outgoing interface.
    800 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    801 		 * well as returning an error code (the latter is not described
    802 		 * in the API spec.)
    803 		 */
    804 		u_int32_t mtu32;
    805 		struct ip6ctlparam ip6cp;
    806 
    807 		mtu32 = (u_int32_t)mtu;
    808 		memset(&ip6cp, 0, sizeof(ip6cp));
    809 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    810 		pfctlinput2(PRC_MSGSIZE,
    811 		    rtcache_getdst(ro_pmtu), &ip6cp);
    812 
    813 		error = EMSGSIZE;
    814 		goto bad;
    815 	}
    816 
    817 	/*
    818 	 * transmit packet without fragmentation
    819 	 */
    820 	if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
    821 		/* case 1-a and 2-a */
    822 		struct in6_ifaddr *ia6;
    823 		int sw_csum;
    824 		int s;
    825 
    826 		ip6 = mtod(m, struct ip6_hdr *);
    827 		s = pserialize_read_enter();
    828 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    829 		if (ia6) {
    830 			/* Record statistics for this interface address. */
    831 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    832 		}
    833 		pserialize_read_exit(s);
    834 
    835 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    836 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    837 			if (IN6_NEED_CHECKSUM(ifp,
    838 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    839 				in6_undefer_cksum_tcpudp(m);
    840 			}
    841 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    842 		}
    843 
    844 		KASSERT(dst != NULL);
    845 		if (__predict_true(!tso ||
    846 		    (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
    847 			error = ip6_if_output(ifp, origifp, m, dst, rt);
    848 		} else {
    849 			error = ip6_tso_output(ifp, origifp, m, dst, rt);
    850 		}
    851 		goto done;
    852 	}
    853 
    854 	if (tso) {
    855 		error = EINVAL; /* XXX */
    856 		goto bad;
    857 	}
    858 
    859 	/*
    860 	 * try to fragment the packet.  case 1-b and 3
    861 	 */
    862 	if (mtu < IPV6_MMTU) {
    863 		/* path MTU cannot be less than IPV6_MMTU */
    864 		error = EMSGSIZE;
    865 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    866 		goto bad;
    867 	} else if (ip6->ip6_plen == 0) {
    868 		/* jumbo payload cannot be fragmented */
    869 		error = EMSGSIZE;
    870 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    871 		goto bad;
    872 	} else {
    873 		const u_int32_t id = htonl(ip6_randomid());
    874 		struct mbuf **mnext, *m_frgpart;
    875 		const int hlen = unfragpartlen;
    876 		struct ip6_frag *ip6f;
    877 		u_char nextproto;
    878 
    879 		if (mtu > IPV6_MAXPACKET)
    880 			mtu = IPV6_MAXPACKET;
    881 
    882 		/*
    883 		 * Must be able to put at least 8 bytes per fragment.
    884 		 */
    885 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    886 		if (len < 8) {
    887 			error = EMSGSIZE;
    888 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
    889 			goto bad;
    890 		}
    891 
    892 		mnext = &m->m_nextpkt;
    893 
    894 		/*
    895 		 * Change the next header field of the last header in the
    896 		 * unfragmentable part.
    897 		 */
    898 		if (exthdrs.ip6e_rthdr) {
    899 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    900 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    901 		} else if (exthdrs.ip6e_dest1) {
    902 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    903 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    904 		} else if (exthdrs.ip6e_hbh) {
    905 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    906 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    907 		} else {
    908 			nextproto = ip6->ip6_nxt;
    909 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    910 		}
    911 
    912 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
    913 		    != 0) {
    914 			if (IN6_NEED_CHECKSUM(ifp,
    915 			    m->m_pkthdr.csum_flags &
    916 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    917 				in6_undefer_cksum_tcpudp(m);
    918 			}
    919 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    920 		}
    921 
    922 		/*
    923 		 * Loop through length of segment after first fragment,
    924 		 * make new header and copy data of each part and link onto
    925 		 * chain.
    926 		 */
    927 		m0 = m;
    928 		for (off = hlen; off < tlen; off += len) {
    929 			struct mbuf *mlast;
    930 
    931 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
    932 			if (!m) {
    933 				error = ENOBUFS;
    934 				IP6_STATINC(IP6_STAT_ODROPPED);
    935 				goto sendorfree;
    936 			}
    937 			m_reset_rcvif(m);
    938 			m->m_flags = m0->m_flags & M_COPYFLAGS;
    939 			*mnext = m;
    940 			mnext = &m->m_nextpkt;
    941 			m->m_data += max_linkhdr;
    942 			mhip6 = mtod(m, struct ip6_hdr *);
    943 			*mhip6 = *ip6;
    944 			m->m_len = sizeof(*mhip6);
    945 
    946 			ip6f = NULL;
    947 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
    948 			if (error) {
    949 				IP6_STATINC(IP6_STAT_ODROPPED);
    950 				goto sendorfree;
    951 			}
    952 
    953 			/* Fill in the Frag6 Header */
    954 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
    955 			if (off + len >= tlen)
    956 				len = tlen - off;
    957 			else
    958 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
    959 			ip6f->ip6f_reserved = 0;
    960 			ip6f->ip6f_ident = id;
    961 			ip6f->ip6f_nxt = nextproto;
    962 
    963 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
    964 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
    965 			if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) {
    966 				error = ENOBUFS;
    967 				IP6_STATINC(IP6_STAT_ODROPPED);
    968 				goto sendorfree;
    969 			}
    970 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
    971 				;
    972 			mlast->m_next = m_frgpart;
    973 
    974 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
    975 			m_reset_rcvif(m);
    976 			IP6_STATINC(IP6_STAT_OFRAGMENTS);
    977 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
    978 		}
    979 
    980 		in6_ifstat_inc(ifp, ifs6_out_fragok);
    981 	}
    982 
    983 sendorfree:
    984 	m = m0->m_nextpkt;
    985 	m0->m_nextpkt = 0;
    986 	m_freem(m0);
    987 	for (m0 = m; m; m = m0) {
    988 		m0 = m->m_nextpkt;
    989 		m->m_nextpkt = 0;
    990 		if (error == 0) {
    991 			struct in6_ifaddr *ia6;
    992 			int s;
    993 			ip6 = mtod(m, struct ip6_hdr *);
    994 			s = pserialize_read_enter();
    995 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    996 			if (ia6) {
    997 				/*
    998 				 * Record statistics for this interface
    999 				 * address.
   1000 				 */
   1001 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
   1002 				    m->m_pkthdr.len;
   1003 			}
   1004 			pserialize_read_exit(s);
   1005 			KASSERT(dst != NULL);
   1006 			error = ip6_if_output(ifp, origifp, m, dst, rt);
   1007 		} else
   1008 			m_freem(m);
   1009 	}
   1010 
   1011 	if (error == 0)
   1012 		IP6_STATINC(IP6_STAT_FRAGMENTED);
   1013 
   1014 done:
   1015 	rtcache_unref(rt, ro);
   1016 	if (ro == &ip6route)
   1017 		rtcache_free(&ip6route);
   1018 #ifdef IPSEC
   1019 	if (sp != NULL)
   1020 		KEY_SP_UNREF(&sp);
   1021 #endif
   1022 	if_put(ifp, &psref);
   1023 	if (release_psref_ia)
   1024 		if_put(origifp, &psref_ia);
   1025 	curlwp_bindx(bound);
   1026 
   1027 	return error;
   1028 
   1029 freehdrs:
   1030 	m_freem(exthdrs.ip6e_hbh);
   1031 	m_freem(exthdrs.ip6e_dest1);
   1032 	m_freem(exthdrs.ip6e_rthdr);
   1033 	m_freem(exthdrs.ip6e_dest2);
   1034 	/* FALLTHROUGH */
   1035 bad:
   1036 	m_freem(m);
   1037 	goto done;
   1038 
   1039 badscope:
   1040 	IP6_STATINC(IP6_STAT_BADSCOPE);
   1041 	in6_ifstat_inc(origifp, ifs6_out_discard);
   1042 	if (error == 0)
   1043 		error = EHOSTUNREACH; /* XXX */
   1044 	goto bad;
   1045 }
   1046 
   1047 static int
   1048 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
   1049 {
   1050 	struct mbuf *m;
   1051 
   1052 	if (hlen > MCLBYTES)
   1053 		return ENOBUFS; /* XXX */
   1054 
   1055 	MGET(m, M_DONTWAIT, MT_DATA);
   1056 	if (!m)
   1057 		return ENOBUFS;
   1058 
   1059 	if (hlen > MLEN) {
   1060 		MCLGET(m, M_DONTWAIT);
   1061 		if ((m->m_flags & M_EXT) == 0) {
   1062 			m_free(m);
   1063 			return ENOBUFS;
   1064 		}
   1065 	}
   1066 	m->m_len = hlen;
   1067 	if (hdr)
   1068 		memcpy(mtod(m, void *), hdr, hlen);
   1069 
   1070 	*mp = m;
   1071 	return 0;
   1072 }
   1073 
   1074 /*
   1075  * Insert jumbo payload option.
   1076  */
   1077 static int
   1078 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
   1079 {
   1080 	struct mbuf *mopt;
   1081 	u_int8_t *optbuf;
   1082 	u_int32_t v;
   1083 
   1084 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1085 
   1086 	/*
   1087 	 * If there is no hop-by-hop options header, allocate new one.
   1088 	 * If there is one but it doesn't have enough space to store the
   1089 	 * jumbo payload option, allocate a cluster to store the whole options.
   1090 	 * Otherwise, use it to store the options.
   1091 	 */
   1092 	if (exthdrs->ip6e_hbh == NULL) {
   1093 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1094 		if (mopt == 0)
   1095 			return (ENOBUFS);
   1096 		mopt->m_len = JUMBOOPTLEN;
   1097 		optbuf = mtod(mopt, u_int8_t *);
   1098 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1099 		exthdrs->ip6e_hbh = mopt;
   1100 	} else {
   1101 		struct ip6_hbh *hbh;
   1102 
   1103 		mopt = exthdrs->ip6e_hbh;
   1104 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1105 			const int oldoptlen = mopt->m_len;
   1106 			struct mbuf *n;
   1107 
   1108 			/*
   1109 			 * Assumptions:
   1110 			 * - exthdrs->ip6e_hbh is not referenced from places
   1111 			 *   other than exthdrs.
   1112 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1113 			 */
   1114 			KASSERT(mopt->m_next == NULL);
   1115 
   1116 			/*
   1117 			 * Give up if the whole (new) hbh header does not fit
   1118 			 * even in an mbuf cluster.
   1119 			 */
   1120 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1121 				return ENOBUFS;
   1122 
   1123 			/*
   1124 			 * At this point, we must always prepare a cluster.
   1125 			 */
   1126 			MGET(n, M_DONTWAIT, MT_DATA);
   1127 			if (n) {
   1128 				MCLGET(n, M_DONTWAIT);
   1129 				if ((n->m_flags & M_EXT) == 0) {
   1130 					m_freem(n);
   1131 					n = NULL;
   1132 				}
   1133 			}
   1134 			if (!n)
   1135 				return ENOBUFS;
   1136 
   1137 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1138 			bcopy(mtod(mopt, void *), mtod(n, void *),
   1139 			    oldoptlen);
   1140 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1141 			m_freem(mopt);
   1142 			mopt = exthdrs->ip6e_hbh = n;
   1143 		} else {
   1144 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1145 			mopt->m_len += JUMBOOPTLEN;
   1146 		}
   1147 		optbuf[0] = IP6OPT_PADN;
   1148 		optbuf[1] = 0;
   1149 
   1150 		/*
   1151 		 * Adjust the header length according to the pad and
   1152 		 * the jumbo payload option.
   1153 		 */
   1154 		hbh = mtod(mopt, struct ip6_hbh *);
   1155 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1156 	}
   1157 
   1158 	/* fill in the option. */
   1159 	optbuf[2] = IP6OPT_JUMBO;
   1160 	optbuf[3] = 4;
   1161 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1162 	memcpy(&optbuf[4], &v, sizeof(u_int32_t));
   1163 
   1164 	/* finally, adjust the packet header length */
   1165 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1166 
   1167 	return 0;
   1168 #undef JUMBOOPTLEN
   1169 }
   1170 
   1171 /*
   1172  * Insert fragment header and copy unfragmentable header portions.
   1173  *
   1174  * *frghdrp will not be read, and it is guaranteed that either an
   1175  * error is returned or that *frghdrp will point to space allocated
   1176  * for the fragment header.
   1177  *
   1178  * On entry, m contains:
   1179  *     IPv6 Header
   1180  * On exit, it contains:
   1181  *     IPv6 Header -> Unfragmentable Part -> Frag6 Header
   1182  */
   1183 static int
   1184 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
   1185 	struct ip6_frag **frghdrp)
   1186 {
   1187 	struct mbuf *n, *mlast;
   1188 
   1189 	if (hlen > sizeof(struct ip6_hdr)) {
   1190 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1191 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1192 		if (n == NULL)
   1193 			return ENOBUFS;
   1194 		m->m_next = n;
   1195 	} else
   1196 		n = m;
   1197 
   1198 	/* Search for the last mbuf of unfragmentable part. */
   1199 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1200 		;
   1201 
   1202 	if ((mlast->m_flags & M_EXT) == 0 &&
   1203 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1204 		/* use the trailing space of the last mbuf for the fragment hdr */
   1205 		*frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
   1206 		    mlast->m_len);
   1207 		mlast->m_len += sizeof(struct ip6_frag);
   1208 	} else {
   1209 		/* allocate a new mbuf for the fragment header */
   1210 		struct mbuf *mfrg;
   1211 
   1212 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1213 		if (mfrg == NULL)
   1214 			return ENOBUFS;
   1215 		mfrg->m_len = sizeof(struct ip6_frag);
   1216 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1217 		mlast->m_next = mfrg;
   1218 	}
   1219 
   1220 	return 0;
   1221 }
   1222 
   1223 static int
   1224 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
   1225     int *alwaysfragp)
   1226 {
   1227 	u_int32_t mtu = 0;
   1228 	int alwaysfrag = 0;
   1229 	int error = 0;
   1230 
   1231 	if (rt != NULL) {
   1232 		u_int32_t ifmtu;
   1233 
   1234 		if (ifp == NULL)
   1235 			ifp = rt->rt_ifp;
   1236 		ifmtu = IN6_LINKMTU(ifp);
   1237 		mtu = rt->rt_rmx.rmx_mtu;
   1238 		if (mtu == 0)
   1239 			mtu = ifmtu;
   1240 		else if (mtu < IPV6_MMTU) {
   1241 			/*
   1242 			 * RFC2460 section 5, last paragraph:
   1243 			 * if we record ICMPv6 too big message with
   1244 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1245 			 * or smaller, with fragment header attached.
   1246 			 * (fragment header is needed regardless from the
   1247 			 * packet size, for translators to identify packets)
   1248 			 */
   1249 			alwaysfrag = 1;
   1250 			mtu = IPV6_MMTU;
   1251 		} else if (mtu > ifmtu) {
   1252 			/*
   1253 			 * The MTU on the route is larger than the MTU on
   1254 			 * the interface!  This shouldn't happen, unless the
   1255 			 * MTU of the interface has been changed after the
   1256 			 * interface was brought up.  Change the MTU in the
   1257 			 * route to match the interface MTU (as long as the
   1258 			 * field isn't locked).
   1259 			 */
   1260 			mtu = ifmtu;
   1261 			if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
   1262 				rt->rt_rmx.rmx_mtu = mtu;
   1263 		}
   1264 	} else if (ifp) {
   1265 		mtu = IN6_LINKMTU(ifp);
   1266 	} else
   1267 		error = EHOSTUNREACH; /* XXX */
   1268 
   1269 	*mtup = mtu;
   1270 	if (alwaysfragp)
   1271 		*alwaysfragp = alwaysfrag;
   1272 	return (error);
   1273 }
   1274 
   1275 /*
   1276  * IP6 socket option processing.
   1277  */
   1278 int
   1279 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1280 {
   1281 	int optdatalen, uproto;
   1282 	void *optdata;
   1283 	struct in6pcb *in6p = sotoin6pcb(so);
   1284 	struct ip_moptions **mopts;
   1285 	int error, optval;
   1286 	int level, optname;
   1287 
   1288 	KASSERT(solocked(so));
   1289 	KASSERT(sopt != NULL);
   1290 
   1291 	level = sopt->sopt_level;
   1292 	optname = sopt->sopt_name;
   1293 
   1294 	error = optval = 0;
   1295 	uproto = (int)so->so_proto->pr_protocol;
   1296 
   1297 	switch (level) {
   1298 	case IPPROTO_IP:
   1299 		switch (optname) {
   1300 		case IP_ADD_MEMBERSHIP:
   1301 		case IP_DROP_MEMBERSHIP:
   1302 		case IP_MULTICAST_IF:
   1303 		case IP_MULTICAST_LOOP:
   1304 		case IP_MULTICAST_TTL:
   1305 			mopts = &in6p->in6p_v4moptions;
   1306 			switch (op) {
   1307 			case PRCO_GETOPT:
   1308 				return ip_getmoptions(*mopts, sopt);
   1309 			case PRCO_SETOPT:
   1310 				return ip_setmoptions(mopts, sopt);
   1311 			default:
   1312 				return EINVAL;
   1313 			}
   1314 		default:
   1315 			return ENOPROTOOPT;
   1316 		}
   1317 	case IPPROTO_IPV6:
   1318 		break;
   1319 	default:
   1320 		return ENOPROTOOPT;
   1321 	}
   1322 	switch (op) {
   1323 	case PRCO_SETOPT:
   1324 		switch (optname) {
   1325 #ifdef RFC2292
   1326 		case IPV6_2292PKTOPTIONS:
   1327 			error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
   1328 			break;
   1329 #endif
   1330 
   1331 		/*
   1332 		 * Use of some Hop-by-Hop options or some
   1333 		 * Destination options, might require special
   1334 		 * privilege.  That is, normal applications
   1335 		 * (without special privilege) might be forbidden
   1336 		 * from setting certain options in outgoing packets,
   1337 		 * and might never see certain options in received
   1338 		 * packets. [RFC 2292 Section 6]
   1339 		 * KAME specific note:
   1340 		 *  KAME prevents non-privileged users from sending or
   1341 		 *  receiving ANY hbh/dst options in order to avoid
   1342 		 *  overhead of parsing options in the kernel.
   1343 		 */
   1344 		case IPV6_RECVHOPOPTS:
   1345 		case IPV6_RECVDSTOPTS:
   1346 		case IPV6_RECVRTHDRDSTOPTS:
   1347 			error = kauth_authorize_network(kauth_cred_get(),
   1348 			    KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
   1349 			    NULL, NULL, NULL);
   1350 			if (error)
   1351 				break;
   1352 			/* FALLTHROUGH */
   1353 		case IPV6_UNICAST_HOPS:
   1354 		case IPV6_HOPLIMIT:
   1355 		case IPV6_FAITH:
   1356 
   1357 		case IPV6_RECVPKTINFO:
   1358 		case IPV6_RECVHOPLIMIT:
   1359 		case IPV6_RECVRTHDR:
   1360 		case IPV6_RECVPATHMTU:
   1361 		case IPV6_RECVTCLASS:
   1362 		case IPV6_V6ONLY:
   1363 			error = sockopt_getint(sopt, &optval);
   1364 			if (error)
   1365 				break;
   1366 			switch (optname) {
   1367 			case IPV6_UNICAST_HOPS:
   1368 				if (optval < -1 || optval >= 256)
   1369 					error = EINVAL;
   1370 				else {
   1371 					/* -1 = kernel default */
   1372 					in6p->in6p_hops = optval;
   1373 				}
   1374 				break;
   1375 #define OPTSET(bit) \
   1376 do { \
   1377 if (optval) \
   1378 	in6p->in6p_flags |= (bit); \
   1379 else \
   1380 	in6p->in6p_flags &= ~(bit); \
   1381 } while (/*CONSTCOND*/ 0)
   1382 
   1383 #ifdef RFC2292
   1384 #define OPTSET2292(bit) 			\
   1385 do { 						\
   1386 in6p->in6p_flags |= IN6P_RFC2292; 	\
   1387 if (optval) 				\
   1388 	in6p->in6p_flags |= (bit); 	\
   1389 else 					\
   1390 	in6p->in6p_flags &= ~(bit); 	\
   1391 } while (/*CONSTCOND*/ 0)
   1392 #endif
   1393 
   1394 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
   1395 
   1396 			case IPV6_RECVPKTINFO:
   1397 #ifdef RFC2292
   1398 				/* cannot mix with RFC2292 */
   1399 				if (OPTBIT(IN6P_RFC2292)) {
   1400 					error = EINVAL;
   1401 					break;
   1402 				}
   1403 #endif
   1404 				OPTSET(IN6P_PKTINFO);
   1405 				break;
   1406 
   1407 			case IPV6_HOPLIMIT:
   1408 			{
   1409 				struct ip6_pktopts **optp;
   1410 
   1411 #ifdef RFC2292
   1412 				/* cannot mix with RFC2292 */
   1413 				if (OPTBIT(IN6P_RFC2292)) {
   1414 					error = EINVAL;
   1415 					break;
   1416 				}
   1417 #endif
   1418 				optp = &in6p->in6p_outputopts;
   1419 				error = ip6_pcbopt(IPV6_HOPLIMIT,
   1420 						   (u_char *)&optval,
   1421 						   sizeof(optval),
   1422 						   optp,
   1423 						   kauth_cred_get(), uproto);
   1424 				break;
   1425 			}
   1426 
   1427 			case IPV6_RECVHOPLIMIT:
   1428 #ifdef RFC2292
   1429 				/* cannot mix with RFC2292 */
   1430 				if (OPTBIT(IN6P_RFC2292)) {
   1431 					error = EINVAL;
   1432 					break;
   1433 				}
   1434 #endif
   1435 				OPTSET(IN6P_HOPLIMIT);
   1436 				break;
   1437 
   1438 			case IPV6_RECVHOPOPTS:
   1439 #ifdef RFC2292
   1440 				/* cannot mix with RFC2292 */
   1441 				if (OPTBIT(IN6P_RFC2292)) {
   1442 					error = EINVAL;
   1443 					break;
   1444 				}
   1445 #endif
   1446 				OPTSET(IN6P_HOPOPTS);
   1447 				break;
   1448 
   1449 			case IPV6_RECVDSTOPTS:
   1450 #ifdef RFC2292
   1451 				/* cannot mix with RFC2292 */
   1452 				if (OPTBIT(IN6P_RFC2292)) {
   1453 					error = EINVAL;
   1454 					break;
   1455 				}
   1456 #endif
   1457 				OPTSET(IN6P_DSTOPTS);
   1458 				break;
   1459 
   1460 			case IPV6_RECVRTHDRDSTOPTS:
   1461 #ifdef RFC2292
   1462 				/* cannot mix with RFC2292 */
   1463 				if (OPTBIT(IN6P_RFC2292)) {
   1464 					error = EINVAL;
   1465 					break;
   1466 				}
   1467 #endif
   1468 				OPTSET(IN6P_RTHDRDSTOPTS);
   1469 				break;
   1470 
   1471 			case IPV6_RECVRTHDR:
   1472 #ifdef RFC2292
   1473 				/* cannot mix with RFC2292 */
   1474 				if (OPTBIT(IN6P_RFC2292)) {
   1475 					error = EINVAL;
   1476 					break;
   1477 				}
   1478 #endif
   1479 				OPTSET(IN6P_RTHDR);
   1480 				break;
   1481 
   1482 			case IPV6_FAITH:
   1483 				OPTSET(IN6P_FAITH);
   1484 				break;
   1485 
   1486 			case IPV6_RECVPATHMTU:
   1487 				/*
   1488 				 * We ignore this option for TCP
   1489 				 * sockets.
   1490 				 * (RFC3542 leaves this case
   1491 				 * unspecified.)
   1492 				 */
   1493 				if (uproto != IPPROTO_TCP)
   1494 					OPTSET(IN6P_MTU);
   1495 				break;
   1496 
   1497 			case IPV6_V6ONLY:
   1498 				/*
   1499 				 * make setsockopt(IPV6_V6ONLY)
   1500 				 * available only prior to bind(2).
   1501 				 * see ipng mailing list, Jun 22 2001.
   1502 				 */
   1503 				if (in6p->in6p_lport ||
   1504 				    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
   1505 					error = EINVAL;
   1506 					break;
   1507 				}
   1508 #ifdef INET6_BINDV6ONLY
   1509 				if (!optval)
   1510 					error = EINVAL;
   1511 #else
   1512 				OPTSET(IN6P_IPV6_V6ONLY);
   1513 #endif
   1514 				break;
   1515 			case IPV6_RECVTCLASS:
   1516 #ifdef RFC2292
   1517 				/* cannot mix with RFC2292 XXX */
   1518 				if (OPTBIT(IN6P_RFC2292)) {
   1519 					error = EINVAL;
   1520 					break;
   1521 				}
   1522 #endif
   1523 				OPTSET(IN6P_TCLASS);
   1524 				break;
   1525 
   1526 			}
   1527 			break;
   1528 
   1529 		case IPV6_OTCLASS:
   1530 		{
   1531 			struct ip6_pktopts **optp;
   1532 			u_int8_t tclass;
   1533 
   1534 			error = sockopt_get(sopt, &tclass, sizeof(tclass));
   1535 			if (error)
   1536 				break;
   1537 			optp = &in6p->in6p_outputopts;
   1538 			error = ip6_pcbopt(optname,
   1539 					   (u_char *)&tclass,
   1540 					   sizeof(tclass),
   1541 					   optp,
   1542 					   kauth_cred_get(), uproto);
   1543 			break;
   1544 		}
   1545 
   1546 		case IPV6_TCLASS:
   1547 		case IPV6_DONTFRAG:
   1548 		case IPV6_USE_MIN_MTU:
   1549 		case IPV6_PREFER_TEMPADDR:
   1550 			error = sockopt_getint(sopt, &optval);
   1551 			if (error)
   1552 				break;
   1553 			{
   1554 				struct ip6_pktopts **optp;
   1555 				optp = &in6p->in6p_outputopts;
   1556 				error = ip6_pcbopt(optname,
   1557 						   (u_char *)&optval,
   1558 						   sizeof(optval),
   1559 						   optp,
   1560 						   kauth_cred_get(), uproto);
   1561 				break;
   1562 			}
   1563 
   1564 #ifdef RFC2292
   1565 		case IPV6_2292PKTINFO:
   1566 		case IPV6_2292HOPLIMIT:
   1567 		case IPV6_2292HOPOPTS:
   1568 		case IPV6_2292DSTOPTS:
   1569 		case IPV6_2292RTHDR:
   1570 			/* RFC 2292 */
   1571 			error = sockopt_getint(sopt, &optval);
   1572 			if (error)
   1573 				break;
   1574 
   1575 			switch (optname) {
   1576 			case IPV6_2292PKTINFO:
   1577 				OPTSET2292(IN6P_PKTINFO);
   1578 				break;
   1579 			case IPV6_2292HOPLIMIT:
   1580 				OPTSET2292(IN6P_HOPLIMIT);
   1581 				break;
   1582 			case IPV6_2292HOPOPTS:
   1583 				/*
   1584 				 * Check super-user privilege.
   1585 				 * See comments for IPV6_RECVHOPOPTS.
   1586 				 */
   1587 				error =
   1588 				    kauth_authorize_network(kauth_cred_get(),
   1589 				    KAUTH_NETWORK_IPV6,
   1590 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1591 				    NULL, NULL);
   1592 				if (error)
   1593 					return (error);
   1594 				OPTSET2292(IN6P_HOPOPTS);
   1595 				break;
   1596 			case IPV6_2292DSTOPTS:
   1597 				error =
   1598 				    kauth_authorize_network(kauth_cred_get(),
   1599 				    KAUTH_NETWORK_IPV6,
   1600 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1601 				    NULL, NULL);
   1602 				if (error)
   1603 					return (error);
   1604 				OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
   1605 				break;
   1606 			case IPV6_2292RTHDR:
   1607 				OPTSET2292(IN6P_RTHDR);
   1608 				break;
   1609 			}
   1610 			break;
   1611 #endif
   1612 		case IPV6_PKTINFO:
   1613 		case IPV6_HOPOPTS:
   1614 		case IPV6_RTHDR:
   1615 		case IPV6_DSTOPTS:
   1616 		case IPV6_RTHDRDSTOPTS:
   1617 		case IPV6_NEXTHOP: {
   1618 			/* new advanced API (RFC3542) */
   1619 			void *optbuf;
   1620 			int optbuflen;
   1621 			struct ip6_pktopts **optp;
   1622 
   1623 #ifdef RFC2292
   1624 			/* cannot mix with RFC2292 */
   1625 			if (OPTBIT(IN6P_RFC2292)) {
   1626 				error = EINVAL;
   1627 				break;
   1628 			}
   1629 #endif
   1630 
   1631 			optbuflen = sopt->sopt_size;
   1632 			optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
   1633 			if (optbuf == NULL) {
   1634 				error = ENOBUFS;
   1635 				break;
   1636 			}
   1637 
   1638 			error = sockopt_get(sopt, optbuf, optbuflen);
   1639 			if (error) {
   1640 				free(optbuf, M_IP6OPT);
   1641 				break;
   1642 			}
   1643 			optp = &in6p->in6p_outputopts;
   1644 			error = ip6_pcbopt(optname, optbuf, optbuflen,
   1645 			    optp, kauth_cred_get(), uproto);
   1646 
   1647 			free(optbuf, M_IP6OPT);
   1648 			break;
   1649 			}
   1650 #undef OPTSET
   1651 
   1652 		case IPV6_MULTICAST_IF:
   1653 		case IPV6_MULTICAST_HOPS:
   1654 		case IPV6_MULTICAST_LOOP:
   1655 		case IPV6_JOIN_GROUP:
   1656 		case IPV6_LEAVE_GROUP:
   1657 			error = ip6_setmoptions(sopt, in6p);
   1658 			break;
   1659 
   1660 		case IPV6_PORTRANGE:
   1661 			error = sockopt_getint(sopt, &optval);
   1662 			if (error)
   1663 				break;
   1664 
   1665 			switch (optval) {
   1666 			case IPV6_PORTRANGE_DEFAULT:
   1667 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1668 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1669 				break;
   1670 
   1671 			case IPV6_PORTRANGE_HIGH:
   1672 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1673 				in6p->in6p_flags |= IN6P_HIGHPORT;
   1674 				break;
   1675 
   1676 			case IPV6_PORTRANGE_LOW:
   1677 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1678 				in6p->in6p_flags |= IN6P_LOWPORT;
   1679 				break;
   1680 
   1681 			default:
   1682 				error = EINVAL;
   1683 				break;
   1684 			}
   1685 			break;
   1686 
   1687 		case IPV6_PORTALGO:
   1688 			error = sockopt_getint(sopt, &optval);
   1689 			if (error)
   1690 				break;
   1691 
   1692 			error = portalgo_algo_index_select(
   1693 			    (struct inpcb_hdr *)in6p, optval);
   1694 			break;
   1695 
   1696 #if defined(IPSEC)
   1697 		case IPV6_IPSEC_POLICY:
   1698 			if (ipsec_enabled) {
   1699 				error = ipsec_set_policy(in6p,
   1700 				    sopt->sopt_data, sopt->sopt_size,
   1701 				    kauth_cred_get());
   1702 				break;
   1703 			}
   1704 			/*FALLTHROUGH*/
   1705 #endif /* IPSEC */
   1706 
   1707 		default:
   1708 			error = ENOPROTOOPT;
   1709 			break;
   1710 		}
   1711 		break;
   1712 
   1713 	case PRCO_GETOPT:
   1714 		switch (optname) {
   1715 #ifdef RFC2292
   1716 		case IPV6_2292PKTOPTIONS:
   1717 			/*
   1718 			 * RFC3542 (effectively) deprecated the
   1719 			 * semantics of the 2292-style pktoptions.
   1720 			 * Since it was not reliable in nature (i.e.,
   1721 			 * applications had to expect the lack of some
   1722 			 * information after all), it would make sense
   1723 			 * to simplify this part by always returning
   1724 			 * empty data.
   1725 			 */
   1726 			break;
   1727 #endif
   1728 
   1729 		case IPV6_RECVHOPOPTS:
   1730 		case IPV6_RECVDSTOPTS:
   1731 		case IPV6_RECVRTHDRDSTOPTS:
   1732 		case IPV6_UNICAST_HOPS:
   1733 		case IPV6_RECVPKTINFO:
   1734 		case IPV6_RECVHOPLIMIT:
   1735 		case IPV6_RECVRTHDR:
   1736 		case IPV6_RECVPATHMTU:
   1737 
   1738 		case IPV6_FAITH:
   1739 		case IPV6_V6ONLY:
   1740 		case IPV6_PORTRANGE:
   1741 		case IPV6_RECVTCLASS:
   1742 			switch (optname) {
   1743 
   1744 			case IPV6_RECVHOPOPTS:
   1745 				optval = OPTBIT(IN6P_HOPOPTS);
   1746 				break;
   1747 
   1748 			case IPV6_RECVDSTOPTS:
   1749 				optval = OPTBIT(IN6P_DSTOPTS);
   1750 				break;
   1751 
   1752 			case IPV6_RECVRTHDRDSTOPTS:
   1753 				optval = OPTBIT(IN6P_RTHDRDSTOPTS);
   1754 				break;
   1755 
   1756 			case IPV6_UNICAST_HOPS:
   1757 				optval = in6p->in6p_hops;
   1758 				break;
   1759 
   1760 			case IPV6_RECVPKTINFO:
   1761 				optval = OPTBIT(IN6P_PKTINFO);
   1762 				break;
   1763 
   1764 			case IPV6_RECVHOPLIMIT:
   1765 				optval = OPTBIT(IN6P_HOPLIMIT);
   1766 				break;
   1767 
   1768 			case IPV6_RECVRTHDR:
   1769 				optval = OPTBIT(IN6P_RTHDR);
   1770 				break;
   1771 
   1772 			case IPV6_RECVPATHMTU:
   1773 				optval = OPTBIT(IN6P_MTU);
   1774 				break;
   1775 
   1776 			case IPV6_FAITH:
   1777 				optval = OPTBIT(IN6P_FAITH);
   1778 				break;
   1779 
   1780 			case IPV6_V6ONLY:
   1781 				optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1782 				break;
   1783 
   1784 			case IPV6_PORTRANGE:
   1785 			    {
   1786 				int flags;
   1787 				flags = in6p->in6p_flags;
   1788 				if (flags & IN6P_HIGHPORT)
   1789 					optval = IPV6_PORTRANGE_HIGH;
   1790 				else if (flags & IN6P_LOWPORT)
   1791 					optval = IPV6_PORTRANGE_LOW;
   1792 				else
   1793 					optval = 0;
   1794 				break;
   1795 			    }
   1796 			case IPV6_RECVTCLASS:
   1797 				optval = OPTBIT(IN6P_TCLASS);
   1798 				break;
   1799 
   1800 			}
   1801 			if (error)
   1802 				break;
   1803 			error = sockopt_setint(sopt, optval);
   1804 			break;
   1805 
   1806 		case IPV6_PATHMTU:
   1807 		    {
   1808 			u_long pmtu = 0;
   1809 			struct ip6_mtuinfo mtuinfo;
   1810 			struct route *ro = &in6p->in6p_route;
   1811 			struct rtentry *rt;
   1812 			union {
   1813 				struct sockaddr		dst;
   1814 				struct sockaddr_in6	dst6;
   1815 			} u;
   1816 
   1817 			if (!(so->so_state & SS_ISCONNECTED))
   1818 				return (ENOTCONN);
   1819 			/*
   1820 			 * XXX: we dot not consider the case of source
   1821 			 * routing, or optional information to specify
   1822 			 * the outgoing interface.
   1823 			 */
   1824 			sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0);
   1825 			rt = rtcache_lookup(ro, &u.dst);
   1826 			error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
   1827 			rtcache_unref(rt, ro);
   1828 			if (error)
   1829 				break;
   1830 			if (pmtu > IPV6_MAXPACKET)
   1831 				pmtu = IPV6_MAXPACKET;
   1832 
   1833 			memset(&mtuinfo, 0, sizeof(mtuinfo));
   1834 			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
   1835 			optdata = (void *)&mtuinfo;
   1836 			optdatalen = sizeof(mtuinfo);
   1837 			if (optdatalen > MCLBYTES)
   1838 				return (EMSGSIZE); /* XXX */
   1839 			error = sockopt_set(sopt, optdata, optdatalen);
   1840 			break;
   1841 		    }
   1842 
   1843 #ifdef RFC2292
   1844 		case IPV6_2292PKTINFO:
   1845 		case IPV6_2292HOPLIMIT:
   1846 		case IPV6_2292HOPOPTS:
   1847 		case IPV6_2292RTHDR:
   1848 		case IPV6_2292DSTOPTS:
   1849 			switch (optname) {
   1850 			case IPV6_2292PKTINFO:
   1851 				optval = OPTBIT(IN6P_PKTINFO);
   1852 				break;
   1853 			case IPV6_2292HOPLIMIT:
   1854 				optval = OPTBIT(IN6P_HOPLIMIT);
   1855 				break;
   1856 			case IPV6_2292HOPOPTS:
   1857 				optval = OPTBIT(IN6P_HOPOPTS);
   1858 				break;
   1859 			case IPV6_2292RTHDR:
   1860 				optval = OPTBIT(IN6P_RTHDR);
   1861 				break;
   1862 			case IPV6_2292DSTOPTS:
   1863 				optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
   1864 				break;
   1865 			}
   1866 			error = sockopt_setint(sopt, optval);
   1867 			break;
   1868 #endif
   1869 		case IPV6_PKTINFO:
   1870 		case IPV6_HOPOPTS:
   1871 		case IPV6_RTHDR:
   1872 		case IPV6_DSTOPTS:
   1873 		case IPV6_RTHDRDSTOPTS:
   1874 		case IPV6_NEXTHOP:
   1875 		case IPV6_OTCLASS:
   1876 		case IPV6_TCLASS:
   1877 		case IPV6_DONTFRAG:
   1878 		case IPV6_USE_MIN_MTU:
   1879 		case IPV6_PREFER_TEMPADDR:
   1880 			error = ip6_getpcbopt(in6p->in6p_outputopts,
   1881 			    optname, sopt);
   1882 			break;
   1883 
   1884 		case IPV6_MULTICAST_IF:
   1885 		case IPV6_MULTICAST_HOPS:
   1886 		case IPV6_MULTICAST_LOOP:
   1887 		case IPV6_JOIN_GROUP:
   1888 		case IPV6_LEAVE_GROUP:
   1889 			error = ip6_getmoptions(sopt, in6p);
   1890 			break;
   1891 
   1892 		case IPV6_PORTALGO:
   1893 			optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
   1894 			error = sockopt_setint(sopt, optval);
   1895 			break;
   1896 
   1897 #if defined(IPSEC)
   1898 		case IPV6_IPSEC_POLICY:
   1899 			if (ipsec_used) {
   1900 				struct mbuf *m = NULL;
   1901 
   1902 				/*
   1903 				 * XXX: this will return EINVAL as sopt is
   1904 				 * empty
   1905 				 */
   1906 				error = ipsec_get_policy(in6p, sopt->sopt_data,
   1907 				    sopt->sopt_size, &m);
   1908 				if (!error)
   1909 					error = sockopt_setmbuf(sopt, m);
   1910 				break;
   1911 			}
   1912 			/*FALLTHROUGH*/
   1913 #endif /* IPSEC */
   1914 
   1915 		default:
   1916 			error = ENOPROTOOPT;
   1917 			break;
   1918 		}
   1919 		break;
   1920 	}
   1921 	return (error);
   1922 }
   1923 
   1924 int
   1925 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1926 {
   1927 	int error = 0, optval;
   1928 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   1929 	struct in6pcb *in6p = sotoin6pcb(so);
   1930 	int level, optname;
   1931 
   1932 	KASSERT(sopt != NULL);
   1933 
   1934 	level = sopt->sopt_level;
   1935 	optname = sopt->sopt_name;
   1936 
   1937 	if (level != IPPROTO_IPV6) {
   1938 		return ENOPROTOOPT;
   1939 	}
   1940 
   1941 	switch (optname) {
   1942 	case IPV6_CHECKSUM:
   1943 		/*
   1944 		 * For ICMPv6 sockets, no modification allowed for checksum
   1945 		 * offset, permit "no change" values to help existing apps.
   1946 		 *
   1947 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
   1948 		 * for an ICMPv6 socket will fail."  The current
   1949 		 * behavior does not meet RFC3542.
   1950 		 */
   1951 		switch (op) {
   1952 		case PRCO_SETOPT:
   1953 			error = sockopt_getint(sopt, &optval);
   1954 			if (error)
   1955 				break;
   1956 			if ((optval % 2) != 0) {
   1957 				/* the API assumes even offset values */
   1958 				error = EINVAL;
   1959 			} else if (so->so_proto->pr_protocol ==
   1960 			    IPPROTO_ICMPV6) {
   1961 				if (optval != icmp6off)
   1962 					error = EINVAL;
   1963 			} else
   1964 				in6p->in6p_cksum = optval;
   1965 			break;
   1966 
   1967 		case PRCO_GETOPT:
   1968 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   1969 				optval = icmp6off;
   1970 			else
   1971 				optval = in6p->in6p_cksum;
   1972 
   1973 			error = sockopt_setint(sopt, optval);
   1974 			break;
   1975 
   1976 		default:
   1977 			error = EINVAL;
   1978 			break;
   1979 		}
   1980 		break;
   1981 
   1982 	default:
   1983 		error = ENOPROTOOPT;
   1984 		break;
   1985 	}
   1986 
   1987 	return (error);
   1988 }
   1989 
   1990 #ifdef RFC2292
   1991 /*
   1992  * Set up IP6 options in pcb for insertion in output packets or
   1993  * specifying behavior of outgoing packets.
   1994  */
   1995 static int
   1996 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
   1997     struct sockopt *sopt)
   1998 {
   1999 	struct ip6_pktopts *opt = *pktopt;
   2000 	struct mbuf *m;
   2001 	int error = 0;
   2002 
   2003 	KASSERT(solocked(so));
   2004 
   2005 	/* turn off any old options. */
   2006 	if (opt) {
   2007 #ifdef DIAGNOSTIC
   2008 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
   2009 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
   2010 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2011 		    printf("ip6_pcbopts: all specified options are cleared.\n");
   2012 #endif
   2013 		ip6_clearpktopts(opt, -1);
   2014 	} else {
   2015 		opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
   2016 		if (opt == NULL)
   2017 			return (ENOBUFS);
   2018 	}
   2019 	*pktopt = NULL;
   2020 
   2021 	if (sopt == NULL || sopt->sopt_size == 0) {
   2022 		/*
   2023 		 * Only turning off any previous options, regardless of
   2024 		 * whether the opt is just created or given.
   2025 		 */
   2026 		free(opt, M_IP6OPT);
   2027 		return (0);
   2028 	}
   2029 
   2030 	/*  set options specified by user. */
   2031 	m = sockopt_getmbuf(sopt);
   2032 	if (m == NULL) {
   2033 		free(opt, M_IP6OPT);
   2034 		return (ENOBUFS);
   2035 	}
   2036 
   2037 	error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
   2038 	    so->so_proto->pr_protocol);
   2039 	m_freem(m);
   2040 	if (error != 0) {
   2041 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
   2042 		free(opt, M_IP6OPT);
   2043 		return (error);
   2044 	}
   2045 	*pktopt = opt;
   2046 	return (0);
   2047 }
   2048 #endif
   2049 
   2050 /*
   2051  * initialize ip6_pktopts.  beware that there are non-zero default values in
   2052  * the struct.
   2053  */
   2054 void
   2055 ip6_initpktopts(struct ip6_pktopts *opt)
   2056 {
   2057 
   2058 	memset(opt, 0, sizeof(*opt));
   2059 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
   2060 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
   2061 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
   2062 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
   2063 }
   2064 
   2065 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
   2066 static int
   2067 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
   2068     kauth_cred_t cred, int uproto)
   2069 {
   2070 	struct ip6_pktopts *opt;
   2071 
   2072 	if (*pktopt == NULL) {
   2073 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
   2074 		    M_NOWAIT);
   2075 		if (*pktopt == NULL)
   2076 			return (ENOBUFS);
   2077 
   2078 		ip6_initpktopts(*pktopt);
   2079 	}
   2080 	opt = *pktopt;
   2081 
   2082 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
   2083 }
   2084 
   2085 static int
   2086 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
   2087 {
   2088 	void *optdata = NULL;
   2089 	int optdatalen = 0;
   2090 	struct ip6_ext *ip6e;
   2091 	int error = 0;
   2092 	struct in6_pktinfo null_pktinfo;
   2093 	int deftclass = 0, on;
   2094 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
   2095 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
   2096 
   2097 	switch (optname) {
   2098 	case IPV6_PKTINFO:
   2099 		if (pktopt && pktopt->ip6po_pktinfo)
   2100 			optdata = (void *)pktopt->ip6po_pktinfo;
   2101 		else {
   2102 			/* XXX: we don't have to do this every time... */
   2103 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
   2104 			optdata = (void *)&null_pktinfo;
   2105 		}
   2106 		optdatalen = sizeof(struct in6_pktinfo);
   2107 		break;
   2108 	case IPV6_OTCLASS:
   2109 		/* XXX */
   2110 		return (EINVAL);
   2111 	case IPV6_TCLASS:
   2112 		if (pktopt && pktopt->ip6po_tclass >= 0)
   2113 			optdata = (void *)&pktopt->ip6po_tclass;
   2114 		else
   2115 			optdata = (void *)&deftclass;
   2116 		optdatalen = sizeof(int);
   2117 		break;
   2118 	case IPV6_HOPOPTS:
   2119 		if (pktopt && pktopt->ip6po_hbh) {
   2120 			optdata = (void *)pktopt->ip6po_hbh;
   2121 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
   2122 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2123 		}
   2124 		break;
   2125 	case IPV6_RTHDR:
   2126 		if (pktopt && pktopt->ip6po_rthdr) {
   2127 			optdata = (void *)pktopt->ip6po_rthdr;
   2128 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
   2129 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2130 		}
   2131 		break;
   2132 	case IPV6_RTHDRDSTOPTS:
   2133 		if (pktopt && pktopt->ip6po_dest1) {
   2134 			optdata = (void *)pktopt->ip6po_dest1;
   2135 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
   2136 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2137 		}
   2138 		break;
   2139 	case IPV6_DSTOPTS:
   2140 		if (pktopt && pktopt->ip6po_dest2) {
   2141 			optdata = (void *)pktopt->ip6po_dest2;
   2142 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
   2143 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2144 		}
   2145 		break;
   2146 	case IPV6_NEXTHOP:
   2147 		if (pktopt && pktopt->ip6po_nexthop) {
   2148 			optdata = (void *)pktopt->ip6po_nexthop;
   2149 			optdatalen = pktopt->ip6po_nexthop->sa_len;
   2150 		}
   2151 		break;
   2152 	case IPV6_USE_MIN_MTU:
   2153 		if (pktopt)
   2154 			optdata = (void *)&pktopt->ip6po_minmtu;
   2155 		else
   2156 			optdata = (void *)&defminmtu;
   2157 		optdatalen = sizeof(int);
   2158 		break;
   2159 	case IPV6_DONTFRAG:
   2160 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
   2161 			on = 1;
   2162 		else
   2163 			on = 0;
   2164 		optdata = (void *)&on;
   2165 		optdatalen = sizeof(on);
   2166 		break;
   2167 	case IPV6_PREFER_TEMPADDR:
   2168 		if (pktopt)
   2169 			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
   2170 		else
   2171 			optdata = (void *)&defpreftemp;
   2172 		optdatalen = sizeof(int);
   2173 		break;
   2174 	default:		/* should not happen */
   2175 #ifdef DIAGNOSTIC
   2176 		panic("ip6_getpcbopt: unexpected option\n");
   2177 #endif
   2178 		return (ENOPROTOOPT);
   2179 	}
   2180 
   2181 	error = sockopt_set(sopt, optdata, optdatalen);
   2182 
   2183 	return (error);
   2184 }
   2185 
   2186 void
   2187 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
   2188 {
   2189 	if (optname == -1 || optname == IPV6_PKTINFO) {
   2190 		if (pktopt->ip6po_pktinfo)
   2191 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
   2192 		pktopt->ip6po_pktinfo = NULL;
   2193 	}
   2194 	if (optname == -1 || optname == IPV6_HOPLIMIT)
   2195 		pktopt->ip6po_hlim = -1;
   2196 	if (optname == -1 || optname == IPV6_TCLASS)
   2197 		pktopt->ip6po_tclass = -1;
   2198 	if (optname == -1 || optname == IPV6_NEXTHOP) {
   2199 		rtcache_free(&pktopt->ip6po_nextroute);
   2200 		if (pktopt->ip6po_nexthop)
   2201 			free(pktopt->ip6po_nexthop, M_IP6OPT);
   2202 		pktopt->ip6po_nexthop = NULL;
   2203 	}
   2204 	if (optname == -1 || optname == IPV6_HOPOPTS) {
   2205 		if (pktopt->ip6po_hbh)
   2206 			free(pktopt->ip6po_hbh, M_IP6OPT);
   2207 		pktopt->ip6po_hbh = NULL;
   2208 	}
   2209 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
   2210 		if (pktopt->ip6po_dest1)
   2211 			free(pktopt->ip6po_dest1, M_IP6OPT);
   2212 		pktopt->ip6po_dest1 = NULL;
   2213 	}
   2214 	if (optname == -1 || optname == IPV6_RTHDR) {
   2215 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2216 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
   2217 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
   2218 		rtcache_free(&pktopt->ip6po_route);
   2219 	}
   2220 	if (optname == -1 || optname == IPV6_DSTOPTS) {
   2221 		if (pktopt->ip6po_dest2)
   2222 			free(pktopt->ip6po_dest2, M_IP6OPT);
   2223 		pktopt->ip6po_dest2 = NULL;
   2224 	}
   2225 }
   2226 
   2227 #define PKTOPT_EXTHDRCPY(type) 					\
   2228 do {								\
   2229 	if (src->type) {					\
   2230 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
   2231 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
   2232 		if (dst->type == NULL)				\
   2233 			goto bad;				\
   2234 		memcpy(dst->type, src->type, hlen);		\
   2235 	}							\
   2236 } while (/*CONSTCOND*/ 0)
   2237 
   2238 static int
   2239 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
   2240 {
   2241 	dst->ip6po_hlim = src->ip6po_hlim;
   2242 	dst->ip6po_tclass = src->ip6po_tclass;
   2243 	dst->ip6po_flags = src->ip6po_flags;
   2244 	dst->ip6po_minmtu = src->ip6po_minmtu;
   2245 	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
   2246 	if (src->ip6po_pktinfo) {
   2247 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
   2248 		    M_IP6OPT, canwait);
   2249 		if (dst->ip6po_pktinfo == NULL)
   2250 			goto bad;
   2251 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
   2252 	}
   2253 	if (src->ip6po_nexthop) {
   2254 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
   2255 		    M_IP6OPT, canwait);
   2256 		if (dst->ip6po_nexthop == NULL)
   2257 			goto bad;
   2258 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
   2259 		    src->ip6po_nexthop->sa_len);
   2260 	}
   2261 	PKTOPT_EXTHDRCPY(ip6po_hbh);
   2262 	PKTOPT_EXTHDRCPY(ip6po_dest1);
   2263 	PKTOPT_EXTHDRCPY(ip6po_dest2);
   2264 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
   2265 	return (0);
   2266 
   2267   bad:
   2268 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
   2269 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
   2270 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
   2271 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
   2272 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
   2273 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
   2274 
   2275 	return (ENOBUFS);
   2276 }
   2277 #undef PKTOPT_EXTHDRCPY
   2278 
   2279 struct ip6_pktopts *
   2280 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
   2281 {
   2282 	int error;
   2283 	struct ip6_pktopts *dst;
   2284 
   2285 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
   2286 	if (dst == NULL)
   2287 		return (NULL);
   2288 	ip6_initpktopts(dst);
   2289 
   2290 	if ((error = copypktopts(dst, src, canwait)) != 0) {
   2291 		free(dst, M_IP6OPT);
   2292 		return (NULL);
   2293 	}
   2294 
   2295 	return (dst);
   2296 }
   2297 
   2298 void
   2299 ip6_freepcbopts(struct ip6_pktopts *pktopt)
   2300 {
   2301 	if (pktopt == NULL)
   2302 		return;
   2303 
   2304 	ip6_clearpktopts(pktopt, -1);
   2305 
   2306 	free(pktopt, M_IP6OPT);
   2307 }
   2308 
   2309 int
   2310 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
   2311     struct psref *psref, void *v, size_t l)
   2312 {
   2313 	struct ipv6_mreq mreq;
   2314 	int error;
   2315 	struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
   2316 	struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
   2317 
   2318 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2319 	if (error != 0)
   2320 		return error;
   2321 
   2322 	if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
   2323 		/*
   2324 		 * We use the unspecified address to specify to accept
   2325 		 * all multicast addresses. Only super user is allowed
   2326 		 * to do this.
   2327 		 */
   2328 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6,
   2329 		    KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
   2330 			return EACCES;
   2331 	} else if (IN6_IS_ADDR_V4MAPPED(ia)) {
   2332 		// Don't bother if we are not going to use ifp.
   2333 		if (l == sizeof(*ia)) {
   2334 			memcpy(v, ia, l);
   2335 			return 0;
   2336 		}
   2337 	} else if (!IN6_IS_ADDR_MULTICAST(ia)) {
   2338 		return EINVAL;
   2339 	}
   2340 
   2341 	/*
   2342 	 * If no interface was explicitly specified, choose an
   2343 	 * appropriate one according to the given multicast address.
   2344 	 */
   2345 	if (mreq.ipv6mr_interface == 0) {
   2346 		struct rtentry *rt;
   2347 		union {
   2348 			struct sockaddr		dst;
   2349 			struct sockaddr_in	dst4;
   2350 			struct sockaddr_in6	dst6;
   2351 		} u;
   2352 		struct route ro;
   2353 
   2354 		/*
   2355 		 * Look up the routing table for the
   2356 		 * address, and choose the outgoing interface.
   2357 		 *   XXX: is it a good approach?
   2358 		 */
   2359 		memset(&ro, 0, sizeof(ro));
   2360 		if (IN6_IS_ADDR_V4MAPPED(ia))
   2361 			sockaddr_in_init(&u.dst4, ia4, 0);
   2362 		else
   2363 			sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
   2364 		error = rtcache_setdst(&ro, &u.dst);
   2365 		if (error != 0)
   2366 			return error;
   2367 		rt = rtcache_init(&ro);
   2368 		*ifp = rt != NULL ?
   2369 		    if_get_byindex(rt->rt_ifp->if_index, psref) : NULL;
   2370 		rtcache_unref(rt, &ro);
   2371 		rtcache_free(&ro);
   2372 	} else {
   2373 		/*
   2374 		 * If the interface is specified, validate it.
   2375 		 */
   2376 		*ifp = if_get_byindex(mreq.ipv6mr_interface, psref);
   2377 		if (*ifp == NULL)
   2378 			return ENXIO;	/* XXX EINVAL? */
   2379 	}
   2380 	if (sizeof(*ia) == l)
   2381 		memcpy(v, ia, l);
   2382 	else
   2383 		memcpy(v, ia4, l);
   2384 	return 0;
   2385 }
   2386 
   2387 /*
   2388  * Set the IP6 multicast options in response to user setsockopt().
   2389  */
   2390 static int
   2391 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p)
   2392 {
   2393 	int error = 0;
   2394 	u_int loop, ifindex;
   2395 	struct ipv6_mreq mreq;
   2396 	struct in6_addr ia;
   2397 	struct ifnet *ifp;
   2398 	struct ip6_moptions *im6o = in6p->in6p_moptions;
   2399 	struct in6_multi_mship *imm;
   2400 
   2401 	KASSERT(in6p_locked(in6p));
   2402 
   2403 	if (im6o == NULL) {
   2404 		/*
   2405 		 * No multicast option buffer attached to the pcb;
   2406 		 * allocate one and initialize to default values.
   2407 		 */
   2408 		im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
   2409 		if (im6o == NULL)
   2410 			return (ENOBUFS);
   2411 		in6p->in6p_moptions = im6o;
   2412 		im6o->im6o_multicast_if_index = 0;
   2413 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2414 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   2415 		LIST_INIT(&im6o->im6o_memberships);
   2416 	}
   2417 
   2418 	switch (sopt->sopt_name) {
   2419 
   2420 	case IPV6_MULTICAST_IF: {
   2421 		int s;
   2422 		/*
   2423 		 * Select the interface for outgoing multicast packets.
   2424 		 */
   2425 		error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
   2426 		if (error != 0)
   2427 			break;
   2428 
   2429 		s = pserialize_read_enter();
   2430 		if (ifindex != 0) {
   2431 			if ((ifp = if_byindex(ifindex)) == NULL) {
   2432 				pserialize_read_exit(s);
   2433 				error = ENXIO;	/* XXX EINVAL? */
   2434 				break;
   2435 			}
   2436 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   2437 				pserialize_read_exit(s);
   2438 				error = EADDRNOTAVAIL;
   2439 				break;
   2440 			}
   2441 		} else
   2442 			ifp = NULL;
   2443 		im6o->im6o_multicast_if_index = if_get_index(ifp);
   2444 		pserialize_read_exit(s);
   2445 		break;
   2446 	    }
   2447 
   2448 	case IPV6_MULTICAST_HOPS:
   2449 	    {
   2450 		/*
   2451 		 * Set the IP6 hoplimit for outgoing multicast packets.
   2452 		 */
   2453 		int optval;
   2454 
   2455 		error = sockopt_getint(sopt, &optval);
   2456 		if (error != 0)
   2457 			break;
   2458 
   2459 		if (optval < -1 || optval >= 256)
   2460 			error = EINVAL;
   2461 		else if (optval == -1)
   2462 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2463 		else
   2464 			im6o->im6o_multicast_hlim = optval;
   2465 		break;
   2466 	    }
   2467 
   2468 	case IPV6_MULTICAST_LOOP:
   2469 		/*
   2470 		 * Set the loopback flag for outgoing multicast packets.
   2471 		 * Must be zero or one.
   2472 		 */
   2473 		error = sockopt_get(sopt, &loop, sizeof(loop));
   2474 		if (error != 0)
   2475 			break;
   2476 		if (loop > 1) {
   2477 			error = EINVAL;
   2478 			break;
   2479 		}
   2480 		im6o->im6o_multicast_loop = loop;
   2481 		break;
   2482 
   2483 	case IPV6_JOIN_GROUP: {
   2484 		int bound;
   2485 		struct psref psref;
   2486 		/*
   2487 		 * Add a multicast group membership.
   2488 		 * Group must be a valid IP6 multicast address.
   2489 		 */
   2490 		bound = curlwp_bind();
   2491 		ifp = NULL;
   2492 		error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
   2493 		if (error != 0) {
   2494 			KASSERT(ifp == NULL);
   2495 			curlwp_bindx(bound);
   2496 			return error;
   2497 		}
   2498 
   2499 		if (IN6_IS_ADDR_V4MAPPED(&ia)) {
   2500 			error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
   2501 			goto put_break;
   2502 		}
   2503 		/*
   2504 		 * See if we found an interface, and confirm that it
   2505 		 * supports multicast
   2506 		 */
   2507 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   2508 			error = EADDRNOTAVAIL;
   2509 			goto put_break;
   2510 		}
   2511 
   2512 		if (in6_setscope(&ia, ifp, NULL)) {
   2513 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   2514 			goto put_break;
   2515 		}
   2516 
   2517 		/*
   2518 		 * See if the membership already exists.
   2519 		 */
   2520 		LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
   2521 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2522 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2523 			    &ia))
   2524 				goto put_break;
   2525 		}
   2526 		if (imm != NULL) {
   2527 			error = EADDRINUSE;
   2528 			goto put_break;
   2529 		}
   2530 		/*
   2531 		 * Everything looks good; add a new record to the multicast
   2532 		 * address list for the given interface.
   2533 		 */
   2534 		IFNET_LOCK(ifp);
   2535 		imm = in6_joingroup(ifp, &ia, &error, 0);
   2536 		IFNET_UNLOCK(ifp);
   2537 		if (imm == NULL)
   2538 			goto put_break;
   2539 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2540 	    put_break:
   2541 		if_put(ifp, &psref);
   2542 		curlwp_bindx(bound);
   2543 		break;
   2544 	    }
   2545 
   2546 	case IPV6_LEAVE_GROUP: {
   2547 		struct ifnet *in6m_ifp;
   2548 		/*
   2549 		 * Drop a multicast group membership.
   2550 		 * Group must be a valid IP6 multicast address.
   2551 		 */
   2552 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2553 		if (error != 0)
   2554 			break;
   2555 
   2556 		if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
   2557 			error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
   2558 			break;
   2559 		}
   2560 		/*
   2561 		 * If an interface address was specified, get a pointer
   2562 		 * to its ifnet structure.
   2563 		 */
   2564 		if (mreq.ipv6mr_interface != 0) {
   2565 			if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
   2566 				error = ENXIO;	/* XXX EINVAL? */
   2567 				break;
   2568 			}
   2569 		} else
   2570 			ifp = NULL;
   2571 
   2572 		/* Fill in the scope zone ID */
   2573 		if (ifp) {
   2574 			if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
   2575 				/* XXX: should not happen */
   2576 				error = EADDRNOTAVAIL;
   2577 				break;
   2578 			}
   2579 		} else if (mreq.ipv6mr_interface != 0) {
   2580 			/*
   2581 			 * XXX: This case would happens when the (positive)
   2582 			 * index is in the valid range, but the corresponding
   2583 			 * interface has been detached dynamically.  The above
   2584 			 * check probably avoids such case to happen here, but
   2585 			 * we check it explicitly for safety.
   2586 			 */
   2587 			error = EADDRNOTAVAIL;
   2588 			break;
   2589 		} else {	/* ipv6mr_interface == 0 */
   2590 			struct sockaddr_in6 sa6_mc;
   2591 
   2592 			/*
   2593 			 * The API spec says as follows:
   2594 			 *  If the interface index is specified as 0, the
   2595 			 *  system may choose a multicast group membership to
   2596 			 *  drop by matching the multicast address only.
   2597 			 * On the other hand, we cannot disambiguate the scope
   2598 			 * zone unless an interface is provided.  Thus, we
   2599 			 * check if there's ambiguity with the default scope
   2600 			 * zone as the last resort.
   2601 			 */
   2602 			sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
   2603 			    0, 0, 0);
   2604 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2605 			if (error != 0)
   2606 				break;
   2607 			mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2608 		}
   2609 
   2610 		/*
   2611 		 * Find the membership in the membership list.
   2612 		 */
   2613 		LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
   2614 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2615 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2616 			    &mreq.ipv6mr_multiaddr))
   2617 				break;
   2618 		}
   2619 		if (imm == NULL) {
   2620 			/* Unable to resolve interface */
   2621 			error = EADDRNOTAVAIL;
   2622 			break;
   2623 		}
   2624 		/*
   2625 		 * Give up the multicast address record to which the
   2626 		 * membership points.
   2627 		 */
   2628 		LIST_REMOVE(imm, i6mm_chain);
   2629 		in6m_ifp = imm->i6mm_maddr->in6m_ifp;
   2630 		IFNET_LOCK(in6m_ifp);
   2631 		in6_leavegroup(imm);
   2632 		/* in6m_ifp should not leave thanks to in6p_lock */
   2633 		IFNET_UNLOCK(in6m_ifp);
   2634 		break;
   2635 	    }
   2636 
   2637 	default:
   2638 		error = EOPNOTSUPP;
   2639 		break;
   2640 	}
   2641 
   2642 	/*
   2643 	 * If all options have default values, no need to keep the mbuf.
   2644 	 */
   2645 	if (im6o->im6o_multicast_if_index == 0 &&
   2646 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2647 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2648 	    LIST_EMPTY(&im6o->im6o_memberships)) {
   2649 		free(in6p->in6p_moptions, M_IPMOPTS);
   2650 		in6p->in6p_moptions = NULL;
   2651 	}
   2652 
   2653 	return (error);
   2654 }
   2655 
   2656 /*
   2657  * Return the IP6 multicast options in response to user getsockopt().
   2658  */
   2659 static int
   2660 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p)
   2661 {
   2662 	u_int optval;
   2663 	int error;
   2664 	struct ip6_moptions *im6o = in6p->in6p_moptions;
   2665 
   2666 	switch (sopt->sopt_name) {
   2667 	case IPV6_MULTICAST_IF:
   2668 		if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
   2669 			optval = 0;
   2670 		else
   2671 			optval = im6o->im6o_multicast_if_index;
   2672 
   2673 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2674 		break;
   2675 
   2676 	case IPV6_MULTICAST_HOPS:
   2677 		if (im6o == NULL)
   2678 			optval = ip6_defmcasthlim;
   2679 		else
   2680 			optval = im6o->im6o_multicast_hlim;
   2681 
   2682 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2683 		break;
   2684 
   2685 	case IPV6_MULTICAST_LOOP:
   2686 		if (im6o == NULL)
   2687 			optval = IPV6_DEFAULT_MULTICAST_LOOP;
   2688 		else
   2689 			optval = im6o->im6o_multicast_loop;
   2690 
   2691 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2692 		break;
   2693 
   2694 	default:
   2695 		error = EOPNOTSUPP;
   2696 	}
   2697 
   2698 	return (error);
   2699 }
   2700 
   2701 /*
   2702  * Discard the IP6 multicast options.
   2703  */
   2704 void
   2705 ip6_freemoptions(struct ip6_moptions *im6o)
   2706 {
   2707 	struct in6_multi_mship *imm, *nimm;
   2708 
   2709 	if (im6o == NULL)
   2710 		return;
   2711 
   2712 	/* The owner of im6o (in6p) should be protected by solock */
   2713 	LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) {
   2714 		struct ifnet *ifp;
   2715 
   2716 		LIST_REMOVE(imm, i6mm_chain);
   2717 
   2718 		ifp = imm->i6mm_maddr->in6m_ifp;
   2719 		IFNET_LOCK(ifp);
   2720 		in6_leavegroup(imm);
   2721 		/* ifp should not leave thanks to solock */
   2722 		IFNET_UNLOCK(ifp);
   2723 	}
   2724 	free(im6o, M_IPMOPTS);
   2725 }
   2726 
   2727 /*
   2728  * Set IPv6 outgoing packet options based on advanced API.
   2729  */
   2730 int
   2731 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
   2732 	struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
   2733 {
   2734 	struct cmsghdr *cm = 0;
   2735 
   2736 	if (control == NULL || opt == NULL)
   2737 		return (EINVAL);
   2738 
   2739 	ip6_initpktopts(opt);
   2740 	if (stickyopt) {
   2741 		int error;
   2742 
   2743 		/*
   2744 		 * If stickyopt is provided, make a local copy of the options
   2745 		 * for this particular packet, then override them by ancillary
   2746 		 * objects.
   2747 		 * XXX: copypktopts() does not copy the cached route to a next
   2748 		 * hop (if any).  This is not very good in terms of efficiency,
   2749 		 * but we can allow this since this option should be rarely
   2750 		 * used.
   2751 		 */
   2752 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
   2753 			return (error);
   2754 	}
   2755 
   2756 	/*
   2757 	 * XXX: Currently, we assume all the optional information is stored
   2758 	 * in a single mbuf.
   2759 	 */
   2760 	if (control->m_next)
   2761 		return (EINVAL);
   2762 
   2763 	/* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
   2764 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2765 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2766 		int error;
   2767 
   2768 		if (control->m_len < CMSG_LEN(0))
   2769 			return (EINVAL);
   2770 
   2771 		cm = mtod(control, struct cmsghdr *);
   2772 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   2773 			return (EINVAL);
   2774 		if (cm->cmsg_level != IPPROTO_IPV6)
   2775 			continue;
   2776 
   2777 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
   2778 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
   2779 		if (error)
   2780 			return (error);
   2781 	}
   2782 
   2783 	return (0);
   2784 }
   2785 
   2786 /*
   2787  * Set a particular packet option, as a sticky option or an ancillary data
   2788  * item.  "len" can be 0 only when it's a sticky option.
   2789  * We have 4 cases of combination of "sticky" and "cmsg":
   2790  * "sticky=0, cmsg=0": impossible
   2791  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
   2792  * "sticky=1, cmsg=0": RFC3542 socket option
   2793  * "sticky=1, cmsg=1": RFC2292 socket option
   2794  */
   2795 static int
   2796 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
   2797     kauth_cred_t cred, int sticky, int cmsg, int uproto)
   2798 {
   2799 	int minmtupolicy;
   2800 	int error;
   2801 
   2802 	if (!sticky && !cmsg) {
   2803 #ifdef DIAGNOSTIC
   2804 		printf("ip6_setpktopt: impossible case\n");
   2805 #endif
   2806 		return (EINVAL);
   2807 	}
   2808 
   2809 	/*
   2810 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
   2811 	 * not be specified in the context of RFC3542.  Conversely,
   2812 	 * RFC3542 types should not be specified in the context of RFC2292.
   2813 	 */
   2814 	if (!cmsg) {
   2815 		switch (optname) {
   2816 		case IPV6_2292PKTINFO:
   2817 		case IPV6_2292HOPLIMIT:
   2818 		case IPV6_2292NEXTHOP:
   2819 		case IPV6_2292HOPOPTS:
   2820 		case IPV6_2292DSTOPTS:
   2821 		case IPV6_2292RTHDR:
   2822 		case IPV6_2292PKTOPTIONS:
   2823 			return (ENOPROTOOPT);
   2824 		}
   2825 	}
   2826 	if (sticky && cmsg) {
   2827 		switch (optname) {
   2828 		case IPV6_PKTINFO:
   2829 		case IPV6_HOPLIMIT:
   2830 		case IPV6_NEXTHOP:
   2831 		case IPV6_HOPOPTS:
   2832 		case IPV6_DSTOPTS:
   2833 		case IPV6_RTHDRDSTOPTS:
   2834 		case IPV6_RTHDR:
   2835 		case IPV6_USE_MIN_MTU:
   2836 		case IPV6_DONTFRAG:
   2837 		case IPV6_OTCLASS:
   2838 		case IPV6_TCLASS:
   2839 		case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
   2840 			return (ENOPROTOOPT);
   2841 		}
   2842 	}
   2843 
   2844 	switch (optname) {
   2845 #ifdef RFC2292
   2846 	case IPV6_2292PKTINFO:
   2847 #endif
   2848 	case IPV6_PKTINFO:
   2849 	{
   2850 		struct in6_pktinfo *pktinfo;
   2851 
   2852 		if (len != sizeof(struct in6_pktinfo))
   2853 			return (EINVAL);
   2854 
   2855 		pktinfo = (struct in6_pktinfo *)buf;
   2856 
   2857 		/*
   2858 		 * An application can clear any sticky IPV6_PKTINFO option by
   2859 		 * doing a "regular" setsockopt with ipi6_addr being
   2860 		 * in6addr_any and ipi6_ifindex being zero.
   2861 		 * [RFC 3542, Section 6]
   2862 		 */
   2863 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
   2864 		    pktinfo->ipi6_ifindex == 0 &&
   2865 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2866 			ip6_clearpktopts(opt, optname);
   2867 			break;
   2868 		}
   2869 
   2870 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
   2871 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2872 			return (EINVAL);
   2873 		}
   2874 
   2875 		/* Validate the interface index if specified. */
   2876 		if (pktinfo->ipi6_ifindex) {
   2877 			struct ifnet *ifp;
   2878 			int s = pserialize_read_enter();
   2879 			ifp = if_byindex(pktinfo->ipi6_ifindex);
   2880 			if (ifp == NULL) {
   2881 				pserialize_read_exit(s);
   2882 				return ENXIO;
   2883 			}
   2884 			pserialize_read_exit(s);
   2885 		}
   2886 
   2887 		/*
   2888 		 * We store the address anyway, and let in6_selectsrc()
   2889 		 * validate the specified address.  This is because ipi6_addr
   2890 		 * may not have enough information about its scope zone, and
   2891 		 * we may need additional information (such as outgoing
   2892 		 * interface or the scope zone of a destination address) to
   2893 		 * disambiguate the scope.
   2894 		 * XXX: the delay of the validation may confuse the
   2895 		 * application when it is used as a sticky option.
   2896 		 */
   2897 		if (opt->ip6po_pktinfo == NULL) {
   2898 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
   2899 			    M_IP6OPT, M_NOWAIT);
   2900 			if (opt->ip6po_pktinfo == NULL)
   2901 				return (ENOBUFS);
   2902 		}
   2903 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
   2904 		break;
   2905 	}
   2906 
   2907 #ifdef RFC2292
   2908 	case IPV6_2292HOPLIMIT:
   2909 #endif
   2910 	case IPV6_HOPLIMIT:
   2911 	{
   2912 		int *hlimp;
   2913 
   2914 		/*
   2915 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
   2916 		 * to simplify the ordering among hoplimit options.
   2917 		 */
   2918 		if (optname == IPV6_HOPLIMIT && sticky)
   2919 			return (ENOPROTOOPT);
   2920 
   2921 		if (len != sizeof(int))
   2922 			return (EINVAL);
   2923 		hlimp = (int *)buf;
   2924 		if (*hlimp < -1 || *hlimp > 255)
   2925 			return (EINVAL);
   2926 
   2927 		opt->ip6po_hlim = *hlimp;
   2928 		break;
   2929 	}
   2930 
   2931 	case IPV6_OTCLASS:
   2932 		if (len != sizeof(u_int8_t))
   2933 			return (EINVAL);
   2934 
   2935 		opt->ip6po_tclass = *(u_int8_t *)buf;
   2936 		break;
   2937 
   2938 	case IPV6_TCLASS:
   2939 	{
   2940 		int tclass;
   2941 
   2942 		if (len != sizeof(int))
   2943 			return (EINVAL);
   2944 		tclass = *(int *)buf;
   2945 		if (tclass < -1 || tclass > 255)
   2946 			return (EINVAL);
   2947 
   2948 		opt->ip6po_tclass = tclass;
   2949 		break;
   2950 	}
   2951 
   2952 #ifdef RFC2292
   2953 	case IPV6_2292NEXTHOP:
   2954 #endif
   2955 	case IPV6_NEXTHOP:
   2956 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   2957 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2958 		if (error)
   2959 			return (error);
   2960 
   2961 		if (len == 0) {	/* just remove the option */
   2962 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
   2963 			break;
   2964 		}
   2965 
   2966 		/* check if cmsg_len is large enough for sa_len */
   2967 		if (len < sizeof(struct sockaddr) || len < *buf)
   2968 			return (EINVAL);
   2969 
   2970 		switch (((struct sockaddr *)buf)->sa_family) {
   2971 		case AF_INET6:
   2972 		{
   2973 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
   2974 
   2975 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
   2976 				return (EINVAL);
   2977 
   2978 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
   2979 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
   2980 				return (EINVAL);
   2981 			}
   2982 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
   2983 			    != 0) {
   2984 				return (error);
   2985 			}
   2986 			break;
   2987 		}
   2988 		case AF_LINK:	/* eventually be supported? */
   2989 		default:
   2990 			return (EAFNOSUPPORT);
   2991 		}
   2992 
   2993 		/* turn off the previous option, then set the new option. */
   2994 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
   2995 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
   2996 		if (opt->ip6po_nexthop == NULL)
   2997 			return (ENOBUFS);
   2998 		memcpy(opt->ip6po_nexthop, buf, *buf);
   2999 		break;
   3000 
   3001 #ifdef RFC2292
   3002 	case IPV6_2292HOPOPTS:
   3003 #endif
   3004 	case IPV6_HOPOPTS:
   3005 	{
   3006 		struct ip6_hbh *hbh;
   3007 		int hbhlen;
   3008 
   3009 		/*
   3010 		 * XXX: We don't allow a non-privileged user to set ANY HbH
   3011 		 * options, since per-option restriction has too much
   3012 		 * overhead.
   3013 		 */
   3014 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   3015 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   3016 		if (error)
   3017 			return (error);
   3018 
   3019 		if (len == 0) {
   3020 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3021 			break;	/* just remove the option */
   3022 		}
   3023 
   3024 		/* message length validation */
   3025 		if (len < sizeof(struct ip6_hbh))
   3026 			return (EINVAL);
   3027 		hbh = (struct ip6_hbh *)buf;
   3028 		hbhlen = (hbh->ip6h_len + 1) << 3;
   3029 		if (len != hbhlen)
   3030 			return (EINVAL);
   3031 
   3032 		/* turn off the previous option, then set the new option. */
   3033 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3034 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
   3035 		if (opt->ip6po_hbh == NULL)
   3036 			return (ENOBUFS);
   3037 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
   3038 
   3039 		break;
   3040 	}
   3041 
   3042 #ifdef RFC2292
   3043 	case IPV6_2292DSTOPTS:
   3044 #endif
   3045 	case IPV6_DSTOPTS:
   3046 	case IPV6_RTHDRDSTOPTS:
   3047 	{
   3048 		struct ip6_dest *dest, **newdest = NULL;
   3049 		int destlen;
   3050 
   3051 		/* XXX: see the comment for IPV6_HOPOPTS */
   3052 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
   3053 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   3054 		if (error)
   3055 			return (error);
   3056 
   3057 		if (len == 0) {
   3058 			ip6_clearpktopts(opt, optname);
   3059 			break;	/* just remove the option */
   3060 		}
   3061 
   3062 		/* message length validation */
   3063 		if (len < sizeof(struct ip6_dest))
   3064 			return (EINVAL);
   3065 		dest = (struct ip6_dest *)buf;
   3066 		destlen = (dest->ip6d_len + 1) << 3;
   3067 		if (len != destlen)
   3068 			return (EINVAL);
   3069 		/*
   3070 		 * Determine the position that the destination options header
   3071 		 * should be inserted; before or after the routing header.
   3072 		 */
   3073 		switch (optname) {
   3074 		case IPV6_2292DSTOPTS:
   3075 			/*
   3076 			 * The old advanced API is ambiguous on this point.
   3077 			 * Our approach is to determine the position based
   3078 			 * according to the existence of a routing header.
   3079 			 * Note, however, that this depends on the order of the
   3080 			 * extension headers in the ancillary data; the 1st
   3081 			 * part of the destination options header must appear
   3082 			 * before the routing header in the ancillary data,
   3083 			 * too.
   3084 			 * RFC3542 solved the ambiguity by introducing
   3085 			 * separate ancillary data or option types.
   3086 			 */
   3087 			if (opt->ip6po_rthdr == NULL)
   3088 				newdest = &opt->ip6po_dest1;
   3089 			else
   3090 				newdest = &opt->ip6po_dest2;
   3091 			break;
   3092 		case IPV6_RTHDRDSTOPTS:
   3093 			newdest = &opt->ip6po_dest1;
   3094 			break;
   3095 		case IPV6_DSTOPTS:
   3096 			newdest = &opt->ip6po_dest2;
   3097 			break;
   3098 		}
   3099 
   3100 		/* turn off the previous option, then set the new option. */
   3101 		ip6_clearpktopts(opt, optname);
   3102 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
   3103 		if (*newdest == NULL)
   3104 			return (ENOBUFS);
   3105 		memcpy(*newdest, dest, destlen);
   3106 
   3107 		break;
   3108 	}
   3109 
   3110 #ifdef RFC2292
   3111 	case IPV6_2292RTHDR:
   3112 #endif
   3113 	case IPV6_RTHDR:
   3114 	{
   3115 		struct ip6_rthdr *rth;
   3116 		int rthlen;
   3117 
   3118 		if (len == 0) {
   3119 			ip6_clearpktopts(opt, IPV6_RTHDR);
   3120 			break;	/* just remove the option */
   3121 		}
   3122 
   3123 		/* message length validation */
   3124 		if (len < sizeof(struct ip6_rthdr))
   3125 			return (EINVAL);
   3126 		rth = (struct ip6_rthdr *)buf;
   3127 		rthlen = (rth->ip6r_len + 1) << 3;
   3128 		if (len != rthlen)
   3129 			return (EINVAL);
   3130 		switch (rth->ip6r_type) {
   3131 		case IPV6_RTHDR_TYPE_0:
   3132 			/* Dropped, RFC5095. */
   3133 		default:
   3134 			return (EINVAL);	/* not supported */
   3135 		}
   3136 		/* turn off the previous option */
   3137 		ip6_clearpktopts(opt, IPV6_RTHDR);
   3138 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
   3139 		if (opt->ip6po_rthdr == NULL)
   3140 			return (ENOBUFS);
   3141 		memcpy(opt->ip6po_rthdr, rth, rthlen);
   3142 		break;
   3143 	}
   3144 
   3145 	case IPV6_USE_MIN_MTU:
   3146 		if (len != sizeof(int))
   3147 			return (EINVAL);
   3148 		minmtupolicy = *(int *)buf;
   3149 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
   3150 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
   3151 		    minmtupolicy != IP6PO_MINMTU_ALL) {
   3152 			return (EINVAL);
   3153 		}
   3154 		opt->ip6po_minmtu = minmtupolicy;
   3155 		break;
   3156 
   3157 	case IPV6_DONTFRAG:
   3158 		if (len != sizeof(int))
   3159 			return (EINVAL);
   3160 
   3161 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
   3162 			/*
   3163 			 * we ignore this option for TCP sockets.
   3164 			 * (RFC3542 leaves this case unspecified.)
   3165 			 */
   3166 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
   3167 		} else
   3168 			opt->ip6po_flags |= IP6PO_DONTFRAG;
   3169 		break;
   3170 
   3171 	case IPV6_PREFER_TEMPADDR:
   3172 	{
   3173 		int preftemp;
   3174 
   3175 		if (len != sizeof(int))
   3176 			return (EINVAL);
   3177 		preftemp = *(int *)buf;
   3178 		switch (preftemp) {
   3179 		case IP6PO_TEMPADDR_SYSTEM:
   3180 		case IP6PO_TEMPADDR_NOTPREFER:
   3181 		case IP6PO_TEMPADDR_PREFER:
   3182 			break;
   3183 		default:
   3184 			return (EINVAL);
   3185 		}
   3186 		opt->ip6po_prefer_tempaddr = preftemp;
   3187 		break;
   3188 	}
   3189 
   3190 	default:
   3191 		return (ENOPROTOOPT);
   3192 	} /* end of switch */
   3193 
   3194 	return (0);
   3195 }
   3196 
   3197 /*
   3198  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   3199  * packet to the input queue of a specified interface.  Note that this
   3200  * calls the output routine of the loopback "driver", but with an interface
   3201  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   3202  */
   3203 void
   3204 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
   3205 	const struct sockaddr_in6 *dst)
   3206 {
   3207 	struct mbuf *copym;
   3208 	struct ip6_hdr *ip6;
   3209 
   3210 	copym = m_copypacket(m, M_DONTWAIT);
   3211 	if (copym == NULL)
   3212 		return;
   3213 
   3214 	/*
   3215 	 * Make sure to deep-copy IPv6 header portion in case the data
   3216 	 * is in an mbuf cluster, so that we can safely override the IPv6
   3217 	 * header portion later.
   3218 	 */
   3219 	if ((copym->m_flags & M_EXT) != 0 ||
   3220 	    copym->m_len < sizeof(struct ip6_hdr)) {
   3221 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   3222 		if (copym == NULL)
   3223 			return;
   3224 	}
   3225 
   3226 #ifdef DIAGNOSTIC
   3227 	if (copym->m_len < sizeof(*ip6)) {
   3228 		m_freem(copym);
   3229 		return;
   3230 	}
   3231 #endif
   3232 
   3233 	ip6 = mtod(copym, struct ip6_hdr *);
   3234 	/*
   3235 	 * clear embedded scope identifiers if necessary.
   3236 	 * in6_clearscope will touch the addresses only when necessary.
   3237 	 */
   3238 	in6_clearscope(&ip6->ip6_src);
   3239 	in6_clearscope(&ip6->ip6_dst);
   3240 
   3241 	(void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
   3242 }
   3243 
   3244 /*
   3245  * Chop IPv6 header off from the payload.
   3246  */
   3247 static int
   3248 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
   3249 {
   3250 	struct mbuf *mh;
   3251 	struct ip6_hdr *ip6;
   3252 
   3253 	ip6 = mtod(m, struct ip6_hdr *);
   3254 	if (m->m_len > sizeof(*ip6)) {
   3255 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   3256 		if (mh == NULL) {
   3257 			m_freem(m);
   3258 			return ENOBUFS;
   3259 		}
   3260 		M_MOVE_PKTHDR(mh, m);
   3261 		MH_ALIGN(mh, sizeof(*ip6));
   3262 		m->m_len -= sizeof(*ip6);
   3263 		m->m_data += sizeof(*ip6);
   3264 		mh->m_next = m;
   3265 		mh->m_len = sizeof(*ip6);
   3266 		memcpy(mtod(mh, void *), (void *)ip6, sizeof(*ip6));
   3267 		m = mh;
   3268 	}
   3269 	exthdrs->ip6e_ip6 = m;
   3270 	return 0;
   3271 }
   3272 
   3273 /*
   3274  * Compute IPv6 extension header length.
   3275  */
   3276 int
   3277 ip6_optlen(struct in6pcb *in6p)
   3278 {
   3279 	int len;
   3280 
   3281 	if (!in6p->in6p_outputopts)
   3282 		return 0;
   3283 
   3284 	len = 0;
   3285 #define elen(x) \
   3286     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   3287 
   3288 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   3289 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   3290 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   3291 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   3292 	return len;
   3293 #undef elen
   3294 }
   3295 
   3296 /*
   3297  * Ensure sending address is valid.
   3298  * Returns 0 on success, -1 if an error should be sent back or 1
   3299  * if the packet could be dropped without error (protocol dependent).
   3300  */
   3301 static int
   3302 ip6_ifaddrvalid(const struct in6_addr *src, const struct in6_addr *dst)
   3303 {
   3304 	struct sockaddr_in6 sin6;
   3305 	int s, error;
   3306 	struct ifaddr *ifa;
   3307 	struct in6_ifaddr *ia6;
   3308 
   3309 	if (IN6_IS_ADDR_UNSPECIFIED(src))
   3310 		return 0;
   3311 
   3312 	memset(&sin6, 0, sizeof(sin6));
   3313 	sin6.sin6_family = AF_INET6;
   3314 	sin6.sin6_len = sizeof(sin6);
   3315 	sin6.sin6_addr = *src;
   3316 
   3317 	s = pserialize_read_enter();
   3318 	ifa = ifa_ifwithaddr(sin6tosa(&sin6));
   3319 	if ((ia6 = ifatoia6(ifa)) == NULL ||
   3320 	    ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
   3321 		error = -1;
   3322 	else if (ia6->ia6_flags & IN6_IFF_TENTATIVE)
   3323 		error = 1;
   3324 	else if (ia6->ia6_flags & IN6_IFF_DETACHED &&
   3325 	    (sin6.sin6_addr = *dst, ifa_ifwithaddr(sin6tosa(&sin6)) == NULL))
   3326 		/* Allow internal traffic to DETACHED addresses */
   3327 		error = 1;
   3328 	else
   3329 		error = 0;
   3330 	pserialize_read_exit(s);
   3331 
   3332 	return error;
   3333 }
   3334