ip6_output.c revision 1.206 1 /* $NetBSD: ip6_output.c,v 1.206 2018/04/26 19:50:09 maxv Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.206 2018/04/26 19:50:09 maxv Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_inet.h"
69 #include "opt_inet6.h"
70 #include "opt_ipsec.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/errno.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/syslog.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kauth.h>
83
84 #include <net/if.h>
85 #include <net/route.h>
86 #include <net/pfil.h>
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/ip_var.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet/portalgo.h>
95 #include <netinet6/in6_offload.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/ip6_private.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/nd6.h>
100 #include <netinet6/ip6protosw.h>
101 #include <netinet6/scope6_var.h>
102
103 #ifdef IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/ipsec6.h>
106 #include <netipsec/key.h>
107 #endif
108
109
110 #include <net/net_osdep.h>
111
112 extern pfil_head_t *inet6_pfil_hook; /* XXX */
113
114 struct ip6_exthdrs {
115 struct mbuf *ip6e_ip6;
116 struct mbuf *ip6e_hbh;
117 struct mbuf *ip6e_dest1;
118 struct mbuf *ip6e_rthdr;
119 struct mbuf *ip6e_dest2;
120 };
121
122 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
123 kauth_cred_t, int);
124 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
125 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
126 int, int, int);
127 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *);
128 static int ip6_getmoptions(struct sockopt *, struct in6pcb *);
129 static int ip6_copyexthdr(struct mbuf **, void *, int);
130 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
131 struct ip6_frag **);
132 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
133 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
134 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
135 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
136 static int ip6_ifaddrvalid(const struct in6_addr *, const struct in6_addr *);
137 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
138
139 #ifdef RFC2292
140 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
141 #endif
142
143 static int
144 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
145 {
146 int error = 0;
147
148 switch (rh->ip6r_type) {
149 case IPV6_RTHDR_TYPE_0:
150 /* Dropped, RFC5095. */
151 default: /* is it possible? */
152 error = EINVAL;
153 }
154
155 return error;
156 }
157
158 /*
159 * Send an IP packet to a host.
160 */
161 int
162 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp,
163 struct mbuf * const m, const struct sockaddr_in6 * const dst,
164 const struct rtentry *rt)
165 {
166 int error = 0;
167
168 if (rt != NULL) {
169 error = rt_check_reject_route(rt, ifp);
170 if (error != 0) {
171 m_freem(m);
172 return error;
173 }
174 }
175
176 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
177 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
178 else
179 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
180 return error;
181 }
182
183 /*
184 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
185 * header (with pri, len, nxt, hlim, src, dst).
186 *
187 * This function may modify ver and hlim only. The mbuf chain containing the
188 * packet will be freed. The mbuf opt, if present, will not be freed.
189 *
190 * Type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
191 * nd_ifinfo.linkmtu is u_int32_t. So we use u_long to hold largest one,
192 * which is rt_rmx.rmx_mtu.
193 */
194 int
195 ip6_output(
196 struct mbuf *m0,
197 struct ip6_pktopts *opt,
198 struct route *ro,
199 int flags,
200 struct ip6_moptions *im6o,
201 struct in6pcb *in6p,
202 struct ifnet **ifpp /* XXX: just for statistics */
203 )
204 {
205 struct ip6_hdr *ip6, *mhip6;
206 struct ifnet *ifp = NULL, *origifp = NULL;
207 struct mbuf *m = m0;
208 int tlen, len, off;
209 bool tso;
210 struct route ip6route;
211 struct rtentry *rt = NULL, *rt_pmtu;
212 const struct sockaddr_in6 *dst;
213 struct sockaddr_in6 src_sa, dst_sa;
214 int error = 0;
215 struct in6_ifaddr *ia = NULL;
216 u_long mtu;
217 int alwaysfrag, dontfrag;
218 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
219 struct ip6_exthdrs exthdrs;
220 struct in6_addr finaldst, src0, dst0;
221 u_int32_t zone;
222 struct route *ro_pmtu = NULL;
223 int hdrsplit = 0;
224 int needipsec = 0;
225 #ifdef IPSEC
226 struct secpolicy *sp = NULL;
227 #endif
228 struct psref psref, psref_ia;
229 int bound = curlwp_bind();
230 bool release_psref_ia = false;
231
232 #ifdef DIAGNOSTIC
233 if ((m->m_flags & M_PKTHDR) == 0)
234 panic("ip6_output: no HDR");
235 if ((m->m_pkthdr.csum_flags &
236 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
237 panic("ip6_output: IPv4 checksum offload flags: %d",
238 m->m_pkthdr.csum_flags);
239 }
240 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
241 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
242 panic("ip6_output: conflicting checksum offload flags: %d",
243 m->m_pkthdr.csum_flags);
244 }
245 #endif
246
247 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
248
249 #define MAKE_EXTHDR(hp, mp) \
250 do { \
251 if (hp) { \
252 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
253 error = ip6_copyexthdr((mp), (void *)(hp), \
254 ((eh)->ip6e_len + 1) << 3); \
255 if (error) \
256 goto freehdrs; \
257 } \
258 } while (/*CONSTCOND*/ 0)
259
260 memset(&exthdrs, 0, sizeof(exthdrs));
261 if (opt) {
262 /* Hop-by-Hop options header */
263 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
264 /* Destination options header (1st part) */
265 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
266 /* Routing header */
267 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
268 /* Destination options header (2nd part) */
269 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
270 }
271
272 /*
273 * Calculate the total length of the extension header chain.
274 * Keep the length of the unfragmentable part for fragmentation.
275 */
276 optlen = 0;
277 if (exthdrs.ip6e_hbh)
278 optlen += exthdrs.ip6e_hbh->m_len;
279 if (exthdrs.ip6e_dest1)
280 optlen += exthdrs.ip6e_dest1->m_len;
281 if (exthdrs.ip6e_rthdr)
282 optlen += exthdrs.ip6e_rthdr->m_len;
283 unfragpartlen = optlen + sizeof(struct ip6_hdr);
284 /* NOTE: we don't add AH/ESP length here. do that later. */
285 if (exthdrs.ip6e_dest2)
286 optlen += exthdrs.ip6e_dest2->m_len;
287
288 #ifdef IPSEC
289 if (ipsec_used) {
290 /* Check the security policy (SP) for the packet */
291 sp = ipsec6_check_policy(m, in6p, flags, &needipsec, &error);
292 if (error != 0) {
293 /*
294 * Hack: -EINVAL is used to signal that a packet
295 * should be silently discarded. This is typically
296 * because we asked key management for an SA and
297 * it was delayed (e.g. kicked up to IKE).
298 */
299 if (error == -EINVAL)
300 error = 0;
301 goto freehdrs;
302 }
303 }
304 #endif
305
306 if (needipsec &&
307 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
308 in6_delayed_cksum(m);
309 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
310 }
311
312 /*
313 * If we need IPsec, or there is at least one extension header,
314 * separate IP6 header from the payload.
315 */
316 if ((needipsec || optlen) && !hdrsplit) {
317 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
318 m = NULL;
319 goto freehdrs;
320 }
321 m = exthdrs.ip6e_ip6;
322 hdrsplit++;
323 }
324
325 /* adjust pointer */
326 ip6 = mtod(m, struct ip6_hdr *);
327
328 /* adjust mbuf packet header length */
329 m->m_pkthdr.len += optlen;
330 plen = m->m_pkthdr.len - sizeof(*ip6);
331
332 /* If this is a jumbo payload, insert a jumbo payload option. */
333 if (plen > IPV6_MAXPACKET) {
334 if (!hdrsplit) {
335 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
336 m = NULL;
337 goto freehdrs;
338 }
339 m = exthdrs.ip6e_ip6;
340 hdrsplit++;
341 }
342 /* adjust pointer */
343 ip6 = mtod(m, struct ip6_hdr *);
344 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
345 goto freehdrs;
346 optlen += 8; /* XXX JUMBOOPTLEN */
347 ip6->ip6_plen = 0;
348 } else
349 ip6->ip6_plen = htons(plen);
350
351 /*
352 * Concatenate headers and fill in next header fields.
353 * Here we have, on "m"
354 * IPv6 payload
355 * and we insert headers accordingly. Finally, we should be getting:
356 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
357 *
358 * during the header composing process, "m" points to IPv6 header.
359 * "mprev" points to an extension header prior to esp.
360 */
361 {
362 u_char *nexthdrp = &ip6->ip6_nxt;
363 struct mbuf *mprev = m;
364
365 /*
366 * we treat dest2 specially. this makes IPsec processing
367 * much easier. the goal here is to make mprev point the
368 * mbuf prior to dest2.
369 *
370 * result: IPv6 dest2 payload
371 * m and mprev will point to IPv6 header.
372 */
373 if (exthdrs.ip6e_dest2) {
374 if (!hdrsplit)
375 panic("assumption failed: hdr not split");
376 exthdrs.ip6e_dest2->m_next = m->m_next;
377 m->m_next = exthdrs.ip6e_dest2;
378 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
379 ip6->ip6_nxt = IPPROTO_DSTOPTS;
380 }
381
382 #define MAKE_CHAIN(m, mp, p, i)\
383 do {\
384 if (m) {\
385 if (!hdrsplit) \
386 panic("assumption failed: hdr not split"); \
387 *mtod((m), u_char *) = *(p);\
388 *(p) = (i);\
389 p = mtod((m), u_char *);\
390 (m)->m_next = (mp)->m_next;\
391 (mp)->m_next = (m);\
392 (mp) = (m);\
393 }\
394 } while (/*CONSTCOND*/ 0)
395 /*
396 * result: IPv6 hbh dest1 rthdr dest2 payload
397 * m will point to IPv6 header. mprev will point to the
398 * extension header prior to dest2 (rthdr in the above case).
399 */
400 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
401 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
402 IPPROTO_DSTOPTS);
403 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
404 IPPROTO_ROUTING);
405
406 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
407 sizeof(struct ip6_hdr) + optlen);
408 }
409
410 /* Need to save for pmtu */
411 finaldst = ip6->ip6_dst;
412
413 /*
414 * If there is a routing header, replace destination address field
415 * with the first hop of the routing header.
416 */
417 if (exthdrs.ip6e_rthdr) {
418 struct ip6_rthdr *rh;
419
420 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
421
422 error = ip6_handle_rthdr(rh, ip6);
423 if (error != 0)
424 goto bad;
425 }
426
427 /* Source address validation */
428 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
429 (flags & IPV6_UNSPECSRC) == 0) {
430 error = EOPNOTSUPP;
431 IP6_STATINC(IP6_STAT_BADSCOPE);
432 goto bad;
433 }
434 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
435 error = EOPNOTSUPP;
436 IP6_STATINC(IP6_STAT_BADSCOPE);
437 goto bad;
438 }
439
440 IP6_STATINC(IP6_STAT_LOCALOUT);
441
442 /*
443 * Route packet.
444 */
445 /* initialize cached route */
446 if (ro == NULL) {
447 memset(&ip6route, 0, sizeof(ip6route));
448 ro = &ip6route;
449 }
450 ro_pmtu = ro;
451 if (opt && opt->ip6po_rthdr)
452 ro = &opt->ip6po_route;
453
454 /*
455 * if specified, try to fill in the traffic class field.
456 * do not override if a non-zero value is already set.
457 * we check the diffserv field and the ecn field separately.
458 */
459 if (opt && opt->ip6po_tclass >= 0) {
460 int mask = 0;
461
462 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
463 mask |= 0xfc;
464 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
465 mask |= 0x03;
466 if (mask != 0)
467 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
468 }
469
470 /* fill in or override the hop limit field, if necessary. */
471 if (opt && opt->ip6po_hlim != -1)
472 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
473 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
474 if (im6o != NULL)
475 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
476 else
477 ip6->ip6_hlim = ip6_defmcasthlim;
478 }
479
480 #ifdef IPSEC
481 if (needipsec) {
482 int s = splsoftnet();
483 error = ipsec6_process_packet(m, sp->req);
484 splx(s);
485
486 /*
487 * Preserve KAME behaviour: ENOENT can be returned
488 * when an SA acquire is in progress. Don't propagate
489 * this to user-level; it confuses applications.
490 * XXX this will go away when the SADB is redone.
491 */
492 if (error == ENOENT)
493 error = 0;
494
495 goto done;
496 }
497 #endif
498
499 /* adjust pointer */
500 ip6 = mtod(m, struct ip6_hdr *);
501
502 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
503
504 /* We do not need a route for multicast */
505 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
506 struct in6_pktinfo *pi = NULL;
507
508 /*
509 * If the outgoing interface for the address is specified by
510 * the caller, use it.
511 */
512 if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
513 /* XXX boundary check is assumed to be already done. */
514 ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
515 } else if (im6o != NULL) {
516 ifp = if_get_byindex(im6o->im6o_multicast_if_index,
517 &psref);
518 }
519 }
520
521 if (ifp == NULL) {
522 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
523 if (error != 0)
524 goto bad;
525 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
526 }
527
528 if (rt == NULL) {
529 /*
530 * If in6_selectroute() does not return a route entry,
531 * dst may not have been updated.
532 */
533 error = rtcache_setdst(ro, sin6tosa(&dst_sa));
534 if (error) {
535 goto bad;
536 }
537 }
538
539 /*
540 * then rt (for unicast) and ifp must be non-NULL valid values.
541 */
542 if ((flags & IPV6_FORWARDING) == 0) {
543 /* XXX: the FORWARDING flag can be set for mrouting. */
544 in6_ifstat_inc(ifp, ifs6_out_request);
545 }
546 if (rt != NULL) {
547 ia = (struct in6_ifaddr *)(rt->rt_ifa);
548 rt->rt_use++;
549 }
550
551 /*
552 * The outgoing interface must be in the zone of source and
553 * destination addresses. We should use ia_ifp to support the
554 * case of sending packets to an address of our own.
555 */
556 if (ia != NULL && ia->ia_ifp) {
557 origifp = ia->ia_ifp;
558 if (if_is_deactivated(origifp))
559 goto bad;
560 if_acquire(origifp, &psref_ia);
561 release_psref_ia = true;
562 } else
563 origifp = ifp;
564
565 src0 = ip6->ip6_src;
566 if (in6_setscope(&src0, origifp, &zone))
567 goto badscope;
568 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
569 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
570 goto badscope;
571
572 dst0 = ip6->ip6_dst;
573 if (in6_setscope(&dst0, origifp, &zone))
574 goto badscope;
575 /* re-initialize to be sure */
576 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
577 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
578 goto badscope;
579
580 /* scope check is done. */
581
582 /* Ensure we only send from a valid address. */
583 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
584 (error = ip6_ifaddrvalid(&src0, &dst0)) != 0)
585 {
586 char ip6buf[INET6_ADDRSTRLEN];
587 nd6log(LOG_ERR,
588 "refusing to send from invalid address %s (pid %d)\n",
589 IN6_PRINT(ip6buf, &src0), curproc->p_pid);
590 IP6_STATINC(IP6_STAT_ODROPPED);
591 in6_ifstat_inc(origifp, ifs6_out_discard);
592 if (error == 1)
593 /*
594 * Address exists, but is tentative or detached.
595 * We can't send from it because it's invalid,
596 * so we drop the packet.
597 */
598 error = 0;
599 else
600 error = EADDRNOTAVAIL;
601 goto bad;
602 }
603
604 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
605 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
606 dst = satocsin6(rt->rt_gateway);
607 else
608 dst = satocsin6(rtcache_getdst(ro));
609
610 /*
611 * XXXXXX: original code follows:
612 */
613 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
614 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
615 else {
616 bool ingroup;
617
618 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
619
620 in6_ifstat_inc(ifp, ifs6_out_mcast);
621
622 /*
623 * Confirm that the outgoing interface supports multicast.
624 */
625 if (!(ifp->if_flags & IFF_MULTICAST)) {
626 IP6_STATINC(IP6_STAT_NOROUTE);
627 in6_ifstat_inc(ifp, ifs6_out_discard);
628 error = ENETUNREACH;
629 goto bad;
630 }
631
632 ingroup = in6_multi_group(&ip6->ip6_dst, ifp);
633 if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) {
634 /*
635 * If we belong to the destination multicast group
636 * on the outgoing interface, and the caller did not
637 * forbid loopback, loop back a copy.
638 */
639 KASSERT(dst != NULL);
640 ip6_mloopback(ifp, m, dst);
641 } else {
642 /*
643 * If we are acting as a multicast router, perform
644 * multicast forwarding as if the packet had just
645 * arrived on the interface to which we are about
646 * to send. The multicast forwarding function
647 * recursively calls this function, using the
648 * IPV6_FORWARDING flag to prevent infinite recursion.
649 *
650 * Multicasts that are looped back by ip6_mloopback(),
651 * above, will be forwarded by the ip6_input() routine,
652 * if necessary.
653 */
654 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
655 if (ip6_mforward(ip6, ifp, m) != 0) {
656 m_freem(m);
657 goto done;
658 }
659 }
660 }
661 /*
662 * Multicasts with a hoplimit of zero may be looped back,
663 * above, but must not be transmitted on a network.
664 * Also, multicasts addressed to the loopback interface
665 * are not sent -- the above call to ip6_mloopback() will
666 * loop back a copy if this host actually belongs to the
667 * destination group on the loopback interface.
668 */
669 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
670 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
671 m_freem(m);
672 goto done;
673 }
674 }
675
676 /*
677 * Fill the outgoing inteface to tell the upper layer
678 * to increment per-interface statistics.
679 */
680 if (ifpp)
681 *ifpp = ifp;
682
683 /* Determine path MTU. */
684 /*
685 * ro_pmtu represent final destination while
686 * ro might represent immediate destination.
687 * Use ro_pmtu destination since MTU might differ.
688 */
689 if (ro_pmtu != ro) {
690 union {
691 struct sockaddr dst;
692 struct sockaddr_in6 dst6;
693 } u;
694
695 /* ro_pmtu may not have a cache */
696 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
697 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
698 } else
699 rt_pmtu = rt;
700 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
701 if (rt_pmtu != NULL && rt_pmtu != rt)
702 rtcache_unref(rt_pmtu, ro_pmtu);
703 if (error != 0)
704 goto bad;
705
706 /*
707 * The caller of this function may specify to use the minimum MTU
708 * in some cases.
709 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
710 * setting. The logic is a bit complicated; by default, unicast
711 * packets will follow path MTU while multicast packets will be sent at
712 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
713 * including unicast ones will be sent at the minimum MTU. Multicast
714 * packets will always be sent at the minimum MTU unless
715 * IP6PO_MINMTU_DISABLE is explicitly specified.
716 * See RFC 3542 for more details.
717 */
718 if (mtu > IPV6_MMTU) {
719 if ((flags & IPV6_MINMTU))
720 mtu = IPV6_MMTU;
721 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
722 mtu = IPV6_MMTU;
723 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
724 (opt == NULL ||
725 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
726 mtu = IPV6_MMTU;
727 }
728 }
729
730 /*
731 * clear embedded scope identifiers if necessary.
732 * in6_clearscope will touch the addresses only when necessary.
733 */
734 in6_clearscope(&ip6->ip6_src);
735 in6_clearscope(&ip6->ip6_dst);
736
737 /*
738 * If the outgoing packet contains a hop-by-hop options header,
739 * it must be examined and processed even by the source node.
740 * (RFC 2460, section 4.)
741 *
742 * XXX Is this really necessary?
743 */
744 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
745 u_int32_t dummy1; /* XXX unused */
746 u_int32_t dummy2; /* XXX unused */
747 int hoff = sizeof(struct ip6_hdr);
748
749 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
750 /* m was already freed at this point */
751 error = EINVAL;
752 goto done;
753 }
754
755 ip6 = mtod(m, struct ip6_hdr *);
756 }
757
758 /*
759 * Run through list of hooks for output packets.
760 */
761 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
762 goto done;
763 if (m == NULL)
764 goto done;
765 ip6 = mtod(m, struct ip6_hdr *);
766
767 /*
768 * Send the packet to the outgoing interface.
769 * If necessary, do IPv6 fragmentation before sending.
770 *
771 * the logic here is rather complex:
772 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
773 * 1-a: send as is if tlen <= path mtu
774 * 1-b: fragment if tlen > path mtu
775 *
776 * 2: if user asks us not to fragment (dontfrag == 1)
777 * 2-a: send as is if tlen <= interface mtu
778 * 2-b: error if tlen > interface mtu
779 *
780 * 3: if we always need to attach fragment header (alwaysfrag == 1)
781 * always fragment
782 *
783 * 4: if dontfrag == 1 && alwaysfrag == 1
784 * error, as we cannot handle this conflicting request
785 */
786 tlen = m->m_pkthdr.len;
787 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
788 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
789 dontfrag = 1;
790 else
791 dontfrag = 0;
792
793 if (dontfrag && alwaysfrag) { /* case 4 */
794 /* conflicting request - can't transmit */
795 error = EMSGSIZE;
796 goto bad;
797 }
798 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */
799 /*
800 * Even if the DONTFRAG option is specified, we cannot send the
801 * packet when the data length is larger than the MTU of the
802 * outgoing interface.
803 * Notify the error by sending IPV6_PATHMTU ancillary data as
804 * well as returning an error code (the latter is not described
805 * in the API spec.)
806 */
807 u_int32_t mtu32;
808 struct ip6ctlparam ip6cp;
809
810 mtu32 = (u_int32_t)mtu;
811 memset(&ip6cp, 0, sizeof(ip6cp));
812 ip6cp.ip6c_cmdarg = (void *)&mtu32;
813 pfctlinput2(PRC_MSGSIZE,
814 rtcache_getdst(ro_pmtu), &ip6cp);
815
816 error = EMSGSIZE;
817 goto bad;
818 }
819
820 /*
821 * transmit packet without fragmentation
822 */
823 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
824 /* case 1-a and 2-a */
825 struct in6_ifaddr *ia6;
826 int sw_csum;
827 int s;
828
829 ip6 = mtod(m, struct ip6_hdr *);
830 s = pserialize_read_enter();
831 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
832 if (ia6) {
833 /* Record statistics for this interface address. */
834 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
835 }
836 pserialize_read_exit(s);
837
838 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
839 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
840 if (IN6_NEED_CHECKSUM(ifp,
841 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
842 in6_delayed_cksum(m);
843 }
844 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
845 }
846
847 KASSERT(dst != NULL);
848 if (__predict_true(!tso ||
849 (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
850 error = ip6_if_output(ifp, origifp, m, dst, rt);
851 } else {
852 error = ip6_tso_output(ifp, origifp, m, dst, rt);
853 }
854 goto done;
855 }
856
857 if (tso) {
858 error = EINVAL; /* XXX */
859 goto bad;
860 }
861
862 /*
863 * try to fragment the packet. case 1-b and 3
864 */
865 if (mtu < IPV6_MMTU) {
866 /* path MTU cannot be less than IPV6_MMTU */
867 error = EMSGSIZE;
868 in6_ifstat_inc(ifp, ifs6_out_fragfail);
869 goto bad;
870 } else if (ip6->ip6_plen == 0) {
871 /* jumbo payload cannot be fragmented */
872 error = EMSGSIZE;
873 in6_ifstat_inc(ifp, ifs6_out_fragfail);
874 goto bad;
875 } else {
876 const u_int32_t id = htonl(ip6_randomid());
877 struct mbuf **mnext, *m_frgpart;
878 const int hlen = unfragpartlen;
879 struct ip6_frag *ip6f;
880 u_char nextproto;
881 #if 0 /* see below */
882 struct ip6ctlparam ip6cp;
883 u_int32_t mtu32;
884 #endif
885
886 if (mtu > IPV6_MAXPACKET)
887 mtu = IPV6_MAXPACKET;
888
889 #if 0
890 /*
891 * It is believed this code is a leftover from the
892 * development of the IPV6_RECVPATHMTU sockopt and
893 * associated work to implement RFC3542.
894 * It's not entirely clear what the intent of the API
895 * is at this point, so disable this code for now.
896 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
897 * will send notifications if the application requests.
898 */
899
900 /* Notify a proper path MTU to applications. */
901 mtu32 = (u_int32_t)mtu;
902 memset(&ip6cp, 0, sizeof(ip6cp));
903 ip6cp.ip6c_cmdarg = (void *)&mtu32;
904 pfctlinput2(PRC_MSGSIZE,
905 rtcache_getdst(ro_pmtu), &ip6cp);
906 #endif
907
908 /*
909 * Must be able to put at least 8 bytes per fragment.
910 */
911 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
912 if (len < 8) {
913 error = EMSGSIZE;
914 in6_ifstat_inc(ifp, ifs6_out_fragfail);
915 goto bad;
916 }
917
918 mnext = &m->m_nextpkt;
919
920 /*
921 * Change the next header field of the last header in the
922 * unfragmentable part.
923 */
924 if (exthdrs.ip6e_rthdr) {
925 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
926 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
927 } else if (exthdrs.ip6e_dest1) {
928 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
929 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
930 } else if (exthdrs.ip6e_hbh) {
931 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
932 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
933 } else {
934 nextproto = ip6->ip6_nxt;
935 ip6->ip6_nxt = IPPROTO_FRAGMENT;
936 }
937
938 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
939 != 0) {
940 if (IN6_NEED_CHECKSUM(ifp,
941 m->m_pkthdr.csum_flags &
942 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
943 in6_delayed_cksum(m);
944 }
945 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
946 }
947
948 /*
949 * Loop through length of segment after first fragment,
950 * make new header and copy data of each part and link onto
951 * chain.
952 */
953 m0 = m;
954 for (off = hlen; off < tlen; off += len) {
955 struct mbuf *mlast;
956
957 MGETHDR(m, M_DONTWAIT, MT_HEADER);
958 if (!m) {
959 error = ENOBUFS;
960 IP6_STATINC(IP6_STAT_ODROPPED);
961 goto sendorfree;
962 }
963 m_reset_rcvif(m);
964 m->m_flags = m0->m_flags & M_COPYFLAGS;
965 *mnext = m;
966 mnext = &m->m_nextpkt;
967 m->m_data += max_linkhdr;
968 mhip6 = mtod(m, struct ip6_hdr *);
969 *mhip6 = *ip6;
970 m->m_len = sizeof(*mhip6);
971
972 ip6f = NULL;
973 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
974 if (error) {
975 IP6_STATINC(IP6_STAT_ODROPPED);
976 goto sendorfree;
977 }
978
979 /* Fill in the Frag6 Header */
980 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
981 if (off + len >= tlen)
982 len = tlen - off;
983 else
984 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
985 ip6f->ip6f_reserved = 0;
986 ip6f->ip6f_ident = id;
987 ip6f->ip6f_nxt = nextproto;
988
989 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
990 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
991 if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) {
992 error = ENOBUFS;
993 IP6_STATINC(IP6_STAT_ODROPPED);
994 goto sendorfree;
995 }
996 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
997 ;
998 mlast->m_next = m_frgpart;
999
1000 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1001 m_reset_rcvif(m);
1002 IP6_STATINC(IP6_STAT_OFRAGMENTS);
1003 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1004 }
1005
1006 in6_ifstat_inc(ifp, ifs6_out_fragok);
1007 }
1008
1009 sendorfree:
1010 m = m0->m_nextpkt;
1011 m0->m_nextpkt = 0;
1012 m_freem(m0);
1013 for (m0 = m; m; m = m0) {
1014 m0 = m->m_nextpkt;
1015 m->m_nextpkt = 0;
1016 if (error == 0) {
1017 struct in6_ifaddr *ia6;
1018 int s;
1019 ip6 = mtod(m, struct ip6_hdr *);
1020 s = pserialize_read_enter();
1021 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1022 if (ia6) {
1023 /*
1024 * Record statistics for this interface
1025 * address.
1026 */
1027 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1028 m->m_pkthdr.len;
1029 }
1030 pserialize_read_exit(s);
1031 KASSERT(dst != NULL);
1032 error = ip6_if_output(ifp, origifp, m, dst, rt);
1033 } else
1034 m_freem(m);
1035 }
1036
1037 if (error == 0)
1038 IP6_STATINC(IP6_STAT_FRAGMENTED);
1039
1040 done:
1041 rtcache_unref(rt, ro);
1042 if (ro == &ip6route)
1043 rtcache_free(&ip6route);
1044 #ifdef IPSEC
1045 if (sp != NULL)
1046 KEY_SP_UNREF(&sp);
1047 #endif
1048 if_put(ifp, &psref);
1049 if (release_psref_ia)
1050 if_put(origifp, &psref_ia);
1051 curlwp_bindx(bound);
1052
1053 return error;
1054
1055 freehdrs:
1056 m_freem(exthdrs.ip6e_hbh);
1057 m_freem(exthdrs.ip6e_dest1);
1058 m_freem(exthdrs.ip6e_rthdr);
1059 m_freem(exthdrs.ip6e_dest2);
1060 /* FALLTHROUGH */
1061 bad:
1062 m_freem(m);
1063 goto done;
1064
1065 badscope:
1066 IP6_STATINC(IP6_STAT_BADSCOPE);
1067 in6_ifstat_inc(origifp, ifs6_out_discard);
1068 if (error == 0)
1069 error = EHOSTUNREACH; /* XXX */
1070 goto bad;
1071 }
1072
1073 static int
1074 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1075 {
1076 struct mbuf *m;
1077
1078 if (hlen > MCLBYTES)
1079 return ENOBUFS; /* XXX */
1080
1081 MGET(m, M_DONTWAIT, MT_DATA);
1082 if (!m)
1083 return ENOBUFS;
1084
1085 if (hlen > MLEN) {
1086 MCLGET(m, M_DONTWAIT);
1087 if ((m->m_flags & M_EXT) == 0) {
1088 m_free(m);
1089 return ENOBUFS;
1090 }
1091 }
1092 m->m_len = hlen;
1093 if (hdr)
1094 memcpy(mtod(m, void *), hdr, hlen);
1095
1096 *mp = m;
1097 return 0;
1098 }
1099
1100 /*
1101 * Process a delayed payload checksum calculation.
1102 */
1103 void
1104 in6_delayed_cksum(struct mbuf *m)
1105 {
1106 uint16_t csum, offset;
1107
1108 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1109 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1110 KASSERT((m->m_pkthdr.csum_flags
1111 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1112
1113 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1114 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1115 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1116 csum = 0xffff;
1117 }
1118
1119 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1120 if ((offset + sizeof(csum)) > m->m_len) {
1121 m_copyback(m, offset, sizeof(csum), &csum);
1122 } else {
1123 *(uint16_t *)(mtod(m, char *) + offset) = csum;
1124 }
1125 }
1126
1127 /*
1128 * Insert jumbo payload option.
1129 */
1130 static int
1131 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1132 {
1133 struct mbuf *mopt;
1134 u_int8_t *optbuf;
1135 u_int32_t v;
1136
1137 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1138
1139 /*
1140 * If there is no hop-by-hop options header, allocate new one.
1141 * If there is one but it doesn't have enough space to store the
1142 * jumbo payload option, allocate a cluster to store the whole options.
1143 * Otherwise, use it to store the options.
1144 */
1145 if (exthdrs->ip6e_hbh == NULL) {
1146 MGET(mopt, M_DONTWAIT, MT_DATA);
1147 if (mopt == 0)
1148 return (ENOBUFS);
1149 mopt->m_len = JUMBOOPTLEN;
1150 optbuf = mtod(mopt, u_int8_t *);
1151 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1152 exthdrs->ip6e_hbh = mopt;
1153 } else {
1154 struct ip6_hbh *hbh;
1155
1156 mopt = exthdrs->ip6e_hbh;
1157 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1158 const int oldoptlen = mopt->m_len;
1159 struct mbuf *n;
1160
1161 /*
1162 * Assumptions:
1163 * - exthdrs->ip6e_hbh is not referenced from places
1164 * other than exthdrs.
1165 * - exthdrs->ip6e_hbh is not an mbuf chain.
1166 */
1167 KASSERT(mopt->m_next == NULL);
1168
1169 /*
1170 * Give up if the whole (new) hbh header does not fit
1171 * even in an mbuf cluster.
1172 */
1173 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1174 return ENOBUFS;
1175
1176 /*
1177 * At this point, we must always prepare a cluster.
1178 */
1179 MGET(n, M_DONTWAIT, MT_DATA);
1180 if (n) {
1181 MCLGET(n, M_DONTWAIT);
1182 if ((n->m_flags & M_EXT) == 0) {
1183 m_freem(n);
1184 n = NULL;
1185 }
1186 }
1187 if (!n)
1188 return ENOBUFS;
1189
1190 n->m_len = oldoptlen + JUMBOOPTLEN;
1191 bcopy(mtod(mopt, void *), mtod(n, void *),
1192 oldoptlen);
1193 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1194 m_freem(mopt);
1195 mopt = exthdrs->ip6e_hbh = n;
1196 } else {
1197 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1198 mopt->m_len += JUMBOOPTLEN;
1199 }
1200 optbuf[0] = IP6OPT_PADN;
1201 optbuf[1] = 0;
1202
1203 /*
1204 * Adjust the header length according to the pad and
1205 * the jumbo payload option.
1206 */
1207 hbh = mtod(mopt, struct ip6_hbh *);
1208 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1209 }
1210
1211 /* fill in the option. */
1212 optbuf[2] = IP6OPT_JUMBO;
1213 optbuf[3] = 4;
1214 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1215 memcpy(&optbuf[4], &v, sizeof(u_int32_t));
1216
1217 /* finally, adjust the packet header length */
1218 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1219
1220 return 0;
1221 #undef JUMBOOPTLEN
1222 }
1223
1224 /*
1225 * Insert fragment header and copy unfragmentable header portions.
1226 *
1227 * *frghdrp will not be read, and it is guaranteed that either an
1228 * error is returned or that *frghdrp will point to space allocated
1229 * for the fragment header.
1230 *
1231 * On entry, m contains:
1232 * IPv6 Header
1233 * On exit, it contains:
1234 * IPv6 Header -> Unfragmentable Part -> Frag6 Header
1235 */
1236 static int
1237 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1238 struct ip6_frag **frghdrp)
1239 {
1240 struct mbuf *n, *mlast;
1241
1242 if (hlen > sizeof(struct ip6_hdr)) {
1243 n = m_copym(m0, sizeof(struct ip6_hdr),
1244 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1245 if (n == NULL)
1246 return ENOBUFS;
1247 m->m_next = n;
1248 } else
1249 n = m;
1250
1251 /* Search for the last mbuf of unfragmentable part. */
1252 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1253 ;
1254
1255 if ((mlast->m_flags & M_EXT) == 0 &&
1256 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1257 /* use the trailing space of the last mbuf for the fragment hdr */
1258 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1259 mlast->m_len);
1260 mlast->m_len += sizeof(struct ip6_frag);
1261 } else {
1262 /* allocate a new mbuf for the fragment header */
1263 struct mbuf *mfrg;
1264
1265 MGET(mfrg, M_DONTWAIT, MT_DATA);
1266 if (mfrg == NULL)
1267 return ENOBUFS;
1268 mfrg->m_len = sizeof(struct ip6_frag);
1269 *frghdrp = mtod(mfrg, struct ip6_frag *);
1270 mlast->m_next = mfrg;
1271 }
1272
1273 return 0;
1274 }
1275
1276 static int
1277 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
1278 int *alwaysfragp)
1279 {
1280 u_int32_t mtu = 0;
1281 int alwaysfrag = 0;
1282 int error = 0;
1283
1284 if (rt != NULL) {
1285 u_int32_t ifmtu;
1286
1287 if (ifp == NULL)
1288 ifp = rt->rt_ifp;
1289 ifmtu = IN6_LINKMTU(ifp);
1290 mtu = rt->rt_rmx.rmx_mtu;
1291 if (mtu == 0)
1292 mtu = ifmtu;
1293 else if (mtu < IPV6_MMTU) {
1294 /*
1295 * RFC2460 section 5, last paragraph:
1296 * if we record ICMPv6 too big message with
1297 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1298 * or smaller, with fragment header attached.
1299 * (fragment header is needed regardless from the
1300 * packet size, for translators to identify packets)
1301 */
1302 alwaysfrag = 1;
1303 mtu = IPV6_MMTU;
1304 } else if (mtu > ifmtu) {
1305 /*
1306 * The MTU on the route is larger than the MTU on
1307 * the interface! This shouldn't happen, unless the
1308 * MTU of the interface has been changed after the
1309 * interface was brought up. Change the MTU in the
1310 * route to match the interface MTU (as long as the
1311 * field isn't locked).
1312 */
1313 mtu = ifmtu;
1314 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1315 rt->rt_rmx.rmx_mtu = mtu;
1316 }
1317 } else if (ifp) {
1318 mtu = IN6_LINKMTU(ifp);
1319 } else
1320 error = EHOSTUNREACH; /* XXX */
1321
1322 *mtup = mtu;
1323 if (alwaysfragp)
1324 *alwaysfragp = alwaysfrag;
1325 return (error);
1326 }
1327
1328 /*
1329 * IP6 socket option processing.
1330 */
1331 int
1332 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1333 {
1334 int optdatalen, uproto;
1335 void *optdata;
1336 struct in6pcb *in6p = sotoin6pcb(so);
1337 struct ip_moptions **mopts;
1338 int error, optval;
1339 int level, optname;
1340
1341 KASSERT(solocked(so));
1342 KASSERT(sopt != NULL);
1343
1344 level = sopt->sopt_level;
1345 optname = sopt->sopt_name;
1346
1347 error = optval = 0;
1348 uproto = (int)so->so_proto->pr_protocol;
1349
1350 switch (level) {
1351 case IPPROTO_IP:
1352 switch (optname) {
1353 case IP_ADD_MEMBERSHIP:
1354 case IP_DROP_MEMBERSHIP:
1355 case IP_MULTICAST_IF:
1356 case IP_MULTICAST_LOOP:
1357 case IP_MULTICAST_TTL:
1358 mopts = &in6p->in6p_v4moptions;
1359 switch (op) {
1360 case PRCO_GETOPT:
1361 return ip_getmoptions(*mopts, sopt);
1362 case PRCO_SETOPT:
1363 return ip_setmoptions(mopts, sopt);
1364 default:
1365 return EINVAL;
1366 }
1367 default:
1368 return ENOPROTOOPT;
1369 }
1370 case IPPROTO_IPV6:
1371 break;
1372 default:
1373 return ENOPROTOOPT;
1374 }
1375 switch (op) {
1376 case PRCO_SETOPT:
1377 switch (optname) {
1378 #ifdef RFC2292
1379 case IPV6_2292PKTOPTIONS:
1380 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
1381 break;
1382 #endif
1383
1384 /*
1385 * Use of some Hop-by-Hop options or some
1386 * Destination options, might require special
1387 * privilege. That is, normal applications
1388 * (without special privilege) might be forbidden
1389 * from setting certain options in outgoing packets,
1390 * and might never see certain options in received
1391 * packets. [RFC 2292 Section 6]
1392 * KAME specific note:
1393 * KAME prevents non-privileged users from sending or
1394 * receiving ANY hbh/dst options in order to avoid
1395 * overhead of parsing options in the kernel.
1396 */
1397 case IPV6_RECVHOPOPTS:
1398 case IPV6_RECVDSTOPTS:
1399 case IPV6_RECVRTHDRDSTOPTS:
1400 error = kauth_authorize_network(kauth_cred_get(),
1401 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
1402 NULL, NULL, NULL);
1403 if (error)
1404 break;
1405 /* FALLTHROUGH */
1406 case IPV6_UNICAST_HOPS:
1407 case IPV6_HOPLIMIT:
1408 case IPV6_FAITH:
1409
1410 case IPV6_RECVPKTINFO:
1411 case IPV6_RECVHOPLIMIT:
1412 case IPV6_RECVRTHDR:
1413 case IPV6_RECVPATHMTU:
1414 case IPV6_RECVTCLASS:
1415 case IPV6_V6ONLY:
1416 error = sockopt_getint(sopt, &optval);
1417 if (error)
1418 break;
1419 switch (optname) {
1420 case IPV6_UNICAST_HOPS:
1421 if (optval < -1 || optval >= 256)
1422 error = EINVAL;
1423 else {
1424 /* -1 = kernel default */
1425 in6p->in6p_hops = optval;
1426 }
1427 break;
1428 #define OPTSET(bit) \
1429 do { \
1430 if (optval) \
1431 in6p->in6p_flags |= (bit); \
1432 else \
1433 in6p->in6p_flags &= ~(bit); \
1434 } while (/*CONSTCOND*/ 0)
1435
1436 #ifdef RFC2292
1437 #define OPTSET2292(bit) \
1438 do { \
1439 in6p->in6p_flags |= IN6P_RFC2292; \
1440 if (optval) \
1441 in6p->in6p_flags |= (bit); \
1442 else \
1443 in6p->in6p_flags &= ~(bit); \
1444 } while (/*CONSTCOND*/ 0)
1445 #endif
1446
1447 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1448
1449 case IPV6_RECVPKTINFO:
1450 #ifdef RFC2292
1451 /* cannot mix with RFC2292 */
1452 if (OPTBIT(IN6P_RFC2292)) {
1453 error = EINVAL;
1454 break;
1455 }
1456 #endif
1457 OPTSET(IN6P_PKTINFO);
1458 break;
1459
1460 case IPV6_HOPLIMIT:
1461 {
1462 struct ip6_pktopts **optp;
1463
1464 #ifdef RFC2292
1465 /* cannot mix with RFC2292 */
1466 if (OPTBIT(IN6P_RFC2292)) {
1467 error = EINVAL;
1468 break;
1469 }
1470 #endif
1471 optp = &in6p->in6p_outputopts;
1472 error = ip6_pcbopt(IPV6_HOPLIMIT,
1473 (u_char *)&optval,
1474 sizeof(optval),
1475 optp,
1476 kauth_cred_get(), uproto);
1477 break;
1478 }
1479
1480 case IPV6_RECVHOPLIMIT:
1481 #ifdef RFC2292
1482 /* cannot mix with RFC2292 */
1483 if (OPTBIT(IN6P_RFC2292)) {
1484 error = EINVAL;
1485 break;
1486 }
1487 #endif
1488 OPTSET(IN6P_HOPLIMIT);
1489 break;
1490
1491 case IPV6_RECVHOPOPTS:
1492 #ifdef RFC2292
1493 /* cannot mix with RFC2292 */
1494 if (OPTBIT(IN6P_RFC2292)) {
1495 error = EINVAL;
1496 break;
1497 }
1498 #endif
1499 OPTSET(IN6P_HOPOPTS);
1500 break;
1501
1502 case IPV6_RECVDSTOPTS:
1503 #ifdef RFC2292
1504 /* cannot mix with RFC2292 */
1505 if (OPTBIT(IN6P_RFC2292)) {
1506 error = EINVAL;
1507 break;
1508 }
1509 #endif
1510 OPTSET(IN6P_DSTOPTS);
1511 break;
1512
1513 case IPV6_RECVRTHDRDSTOPTS:
1514 #ifdef RFC2292
1515 /* cannot mix with RFC2292 */
1516 if (OPTBIT(IN6P_RFC2292)) {
1517 error = EINVAL;
1518 break;
1519 }
1520 #endif
1521 OPTSET(IN6P_RTHDRDSTOPTS);
1522 break;
1523
1524 case IPV6_RECVRTHDR:
1525 #ifdef RFC2292
1526 /* cannot mix with RFC2292 */
1527 if (OPTBIT(IN6P_RFC2292)) {
1528 error = EINVAL;
1529 break;
1530 }
1531 #endif
1532 OPTSET(IN6P_RTHDR);
1533 break;
1534
1535 case IPV6_FAITH:
1536 OPTSET(IN6P_FAITH);
1537 break;
1538
1539 case IPV6_RECVPATHMTU:
1540 /*
1541 * We ignore this option for TCP
1542 * sockets.
1543 * (RFC3542 leaves this case
1544 * unspecified.)
1545 */
1546 if (uproto != IPPROTO_TCP)
1547 OPTSET(IN6P_MTU);
1548 break;
1549
1550 case IPV6_V6ONLY:
1551 /*
1552 * make setsockopt(IPV6_V6ONLY)
1553 * available only prior to bind(2).
1554 * see ipng mailing list, Jun 22 2001.
1555 */
1556 if (in6p->in6p_lport ||
1557 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1558 error = EINVAL;
1559 break;
1560 }
1561 #ifdef INET6_BINDV6ONLY
1562 if (!optval)
1563 error = EINVAL;
1564 #else
1565 OPTSET(IN6P_IPV6_V6ONLY);
1566 #endif
1567 break;
1568 case IPV6_RECVTCLASS:
1569 #ifdef RFC2292
1570 /* cannot mix with RFC2292 XXX */
1571 if (OPTBIT(IN6P_RFC2292)) {
1572 error = EINVAL;
1573 break;
1574 }
1575 #endif
1576 OPTSET(IN6P_TCLASS);
1577 break;
1578
1579 }
1580 break;
1581
1582 case IPV6_OTCLASS:
1583 {
1584 struct ip6_pktopts **optp;
1585 u_int8_t tclass;
1586
1587 error = sockopt_get(sopt, &tclass, sizeof(tclass));
1588 if (error)
1589 break;
1590 optp = &in6p->in6p_outputopts;
1591 error = ip6_pcbopt(optname,
1592 (u_char *)&tclass,
1593 sizeof(tclass),
1594 optp,
1595 kauth_cred_get(), uproto);
1596 break;
1597 }
1598
1599 case IPV6_TCLASS:
1600 case IPV6_DONTFRAG:
1601 case IPV6_USE_MIN_MTU:
1602 case IPV6_PREFER_TEMPADDR:
1603 error = sockopt_getint(sopt, &optval);
1604 if (error)
1605 break;
1606 {
1607 struct ip6_pktopts **optp;
1608 optp = &in6p->in6p_outputopts;
1609 error = ip6_pcbopt(optname,
1610 (u_char *)&optval,
1611 sizeof(optval),
1612 optp,
1613 kauth_cred_get(), uproto);
1614 break;
1615 }
1616
1617 #ifdef RFC2292
1618 case IPV6_2292PKTINFO:
1619 case IPV6_2292HOPLIMIT:
1620 case IPV6_2292HOPOPTS:
1621 case IPV6_2292DSTOPTS:
1622 case IPV6_2292RTHDR:
1623 /* RFC 2292 */
1624 error = sockopt_getint(sopt, &optval);
1625 if (error)
1626 break;
1627
1628 switch (optname) {
1629 case IPV6_2292PKTINFO:
1630 OPTSET2292(IN6P_PKTINFO);
1631 break;
1632 case IPV6_2292HOPLIMIT:
1633 OPTSET2292(IN6P_HOPLIMIT);
1634 break;
1635 case IPV6_2292HOPOPTS:
1636 /*
1637 * Check super-user privilege.
1638 * See comments for IPV6_RECVHOPOPTS.
1639 */
1640 error =
1641 kauth_authorize_network(kauth_cred_get(),
1642 KAUTH_NETWORK_IPV6,
1643 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1644 NULL, NULL);
1645 if (error)
1646 return (error);
1647 OPTSET2292(IN6P_HOPOPTS);
1648 break;
1649 case IPV6_2292DSTOPTS:
1650 error =
1651 kauth_authorize_network(kauth_cred_get(),
1652 KAUTH_NETWORK_IPV6,
1653 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1654 NULL, NULL);
1655 if (error)
1656 return (error);
1657 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1658 break;
1659 case IPV6_2292RTHDR:
1660 OPTSET2292(IN6P_RTHDR);
1661 break;
1662 }
1663 break;
1664 #endif
1665 case IPV6_PKTINFO:
1666 case IPV6_HOPOPTS:
1667 case IPV6_RTHDR:
1668 case IPV6_DSTOPTS:
1669 case IPV6_RTHDRDSTOPTS:
1670 case IPV6_NEXTHOP: {
1671 /* new advanced API (RFC3542) */
1672 void *optbuf;
1673 int optbuflen;
1674 struct ip6_pktopts **optp;
1675
1676 #ifdef RFC2292
1677 /* cannot mix with RFC2292 */
1678 if (OPTBIT(IN6P_RFC2292)) {
1679 error = EINVAL;
1680 break;
1681 }
1682 #endif
1683
1684 optbuflen = sopt->sopt_size;
1685 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1686 if (optbuf == NULL) {
1687 error = ENOBUFS;
1688 break;
1689 }
1690
1691 error = sockopt_get(sopt, optbuf, optbuflen);
1692 if (error) {
1693 free(optbuf, M_IP6OPT);
1694 break;
1695 }
1696 optp = &in6p->in6p_outputopts;
1697 error = ip6_pcbopt(optname, optbuf, optbuflen,
1698 optp, kauth_cred_get(), uproto);
1699
1700 free(optbuf, M_IP6OPT);
1701 break;
1702 }
1703 #undef OPTSET
1704
1705 case IPV6_MULTICAST_IF:
1706 case IPV6_MULTICAST_HOPS:
1707 case IPV6_MULTICAST_LOOP:
1708 case IPV6_JOIN_GROUP:
1709 case IPV6_LEAVE_GROUP:
1710 error = ip6_setmoptions(sopt, in6p);
1711 break;
1712
1713 case IPV6_PORTRANGE:
1714 error = sockopt_getint(sopt, &optval);
1715 if (error)
1716 break;
1717
1718 switch (optval) {
1719 case IPV6_PORTRANGE_DEFAULT:
1720 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1721 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1722 break;
1723
1724 case IPV6_PORTRANGE_HIGH:
1725 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1726 in6p->in6p_flags |= IN6P_HIGHPORT;
1727 break;
1728
1729 case IPV6_PORTRANGE_LOW:
1730 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1731 in6p->in6p_flags |= IN6P_LOWPORT;
1732 break;
1733
1734 default:
1735 error = EINVAL;
1736 break;
1737 }
1738 break;
1739
1740 case IPV6_PORTALGO:
1741 error = sockopt_getint(sopt, &optval);
1742 if (error)
1743 break;
1744
1745 error = portalgo_algo_index_select(
1746 (struct inpcb_hdr *)in6p, optval);
1747 break;
1748
1749 #if defined(IPSEC)
1750 case IPV6_IPSEC_POLICY:
1751 if (ipsec_enabled) {
1752 error = ipsec_set_policy(in6p, optname,
1753 sopt->sopt_data, sopt->sopt_size,
1754 kauth_cred_get());
1755 break;
1756 }
1757 /*FALLTHROUGH*/
1758 #endif /* IPSEC */
1759
1760 default:
1761 error = ENOPROTOOPT;
1762 break;
1763 }
1764 break;
1765
1766 case PRCO_GETOPT:
1767 switch (optname) {
1768 #ifdef RFC2292
1769 case IPV6_2292PKTOPTIONS:
1770 /*
1771 * RFC3542 (effectively) deprecated the
1772 * semantics of the 2292-style pktoptions.
1773 * Since it was not reliable in nature (i.e.,
1774 * applications had to expect the lack of some
1775 * information after all), it would make sense
1776 * to simplify this part by always returning
1777 * empty data.
1778 */
1779 break;
1780 #endif
1781
1782 case IPV6_RECVHOPOPTS:
1783 case IPV6_RECVDSTOPTS:
1784 case IPV6_RECVRTHDRDSTOPTS:
1785 case IPV6_UNICAST_HOPS:
1786 case IPV6_RECVPKTINFO:
1787 case IPV6_RECVHOPLIMIT:
1788 case IPV6_RECVRTHDR:
1789 case IPV6_RECVPATHMTU:
1790
1791 case IPV6_FAITH:
1792 case IPV6_V6ONLY:
1793 case IPV6_PORTRANGE:
1794 case IPV6_RECVTCLASS:
1795 switch (optname) {
1796
1797 case IPV6_RECVHOPOPTS:
1798 optval = OPTBIT(IN6P_HOPOPTS);
1799 break;
1800
1801 case IPV6_RECVDSTOPTS:
1802 optval = OPTBIT(IN6P_DSTOPTS);
1803 break;
1804
1805 case IPV6_RECVRTHDRDSTOPTS:
1806 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1807 break;
1808
1809 case IPV6_UNICAST_HOPS:
1810 optval = in6p->in6p_hops;
1811 break;
1812
1813 case IPV6_RECVPKTINFO:
1814 optval = OPTBIT(IN6P_PKTINFO);
1815 break;
1816
1817 case IPV6_RECVHOPLIMIT:
1818 optval = OPTBIT(IN6P_HOPLIMIT);
1819 break;
1820
1821 case IPV6_RECVRTHDR:
1822 optval = OPTBIT(IN6P_RTHDR);
1823 break;
1824
1825 case IPV6_RECVPATHMTU:
1826 optval = OPTBIT(IN6P_MTU);
1827 break;
1828
1829 case IPV6_FAITH:
1830 optval = OPTBIT(IN6P_FAITH);
1831 break;
1832
1833 case IPV6_V6ONLY:
1834 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1835 break;
1836
1837 case IPV6_PORTRANGE:
1838 {
1839 int flags;
1840 flags = in6p->in6p_flags;
1841 if (flags & IN6P_HIGHPORT)
1842 optval = IPV6_PORTRANGE_HIGH;
1843 else if (flags & IN6P_LOWPORT)
1844 optval = IPV6_PORTRANGE_LOW;
1845 else
1846 optval = 0;
1847 break;
1848 }
1849 case IPV6_RECVTCLASS:
1850 optval = OPTBIT(IN6P_TCLASS);
1851 break;
1852
1853 }
1854 if (error)
1855 break;
1856 error = sockopt_setint(sopt, optval);
1857 break;
1858
1859 case IPV6_PATHMTU:
1860 {
1861 u_long pmtu = 0;
1862 struct ip6_mtuinfo mtuinfo;
1863 struct route *ro = &in6p->in6p_route;
1864 struct rtentry *rt;
1865 union {
1866 struct sockaddr dst;
1867 struct sockaddr_in6 dst6;
1868 } u;
1869
1870 if (!(so->so_state & SS_ISCONNECTED))
1871 return (ENOTCONN);
1872 /*
1873 * XXX: we dot not consider the case of source
1874 * routing, or optional information to specify
1875 * the outgoing interface.
1876 */
1877 sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0);
1878 rt = rtcache_lookup(ro, &u.dst);
1879 error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
1880 rtcache_unref(rt, ro);
1881 if (error)
1882 break;
1883 if (pmtu > IPV6_MAXPACKET)
1884 pmtu = IPV6_MAXPACKET;
1885
1886 memset(&mtuinfo, 0, sizeof(mtuinfo));
1887 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1888 optdata = (void *)&mtuinfo;
1889 optdatalen = sizeof(mtuinfo);
1890 if (optdatalen > MCLBYTES)
1891 return (EMSGSIZE); /* XXX */
1892 error = sockopt_set(sopt, optdata, optdatalen);
1893 break;
1894 }
1895
1896 #ifdef RFC2292
1897 case IPV6_2292PKTINFO:
1898 case IPV6_2292HOPLIMIT:
1899 case IPV6_2292HOPOPTS:
1900 case IPV6_2292RTHDR:
1901 case IPV6_2292DSTOPTS:
1902 switch (optname) {
1903 case IPV6_2292PKTINFO:
1904 optval = OPTBIT(IN6P_PKTINFO);
1905 break;
1906 case IPV6_2292HOPLIMIT:
1907 optval = OPTBIT(IN6P_HOPLIMIT);
1908 break;
1909 case IPV6_2292HOPOPTS:
1910 optval = OPTBIT(IN6P_HOPOPTS);
1911 break;
1912 case IPV6_2292RTHDR:
1913 optval = OPTBIT(IN6P_RTHDR);
1914 break;
1915 case IPV6_2292DSTOPTS:
1916 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1917 break;
1918 }
1919 error = sockopt_setint(sopt, optval);
1920 break;
1921 #endif
1922 case IPV6_PKTINFO:
1923 case IPV6_HOPOPTS:
1924 case IPV6_RTHDR:
1925 case IPV6_DSTOPTS:
1926 case IPV6_RTHDRDSTOPTS:
1927 case IPV6_NEXTHOP:
1928 case IPV6_OTCLASS:
1929 case IPV6_TCLASS:
1930 case IPV6_DONTFRAG:
1931 case IPV6_USE_MIN_MTU:
1932 case IPV6_PREFER_TEMPADDR:
1933 error = ip6_getpcbopt(in6p->in6p_outputopts,
1934 optname, sopt);
1935 break;
1936
1937 case IPV6_MULTICAST_IF:
1938 case IPV6_MULTICAST_HOPS:
1939 case IPV6_MULTICAST_LOOP:
1940 case IPV6_JOIN_GROUP:
1941 case IPV6_LEAVE_GROUP:
1942 error = ip6_getmoptions(sopt, in6p);
1943 break;
1944
1945 case IPV6_PORTALGO:
1946 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
1947 error = sockopt_setint(sopt, optval);
1948 break;
1949
1950 #if defined(IPSEC)
1951 case IPV6_IPSEC_POLICY:
1952 if (ipsec_used) {
1953 struct mbuf *m = NULL;
1954
1955 /*
1956 * XXX: this will return EINVAL as sopt is
1957 * empty
1958 */
1959 error = ipsec_get_policy(in6p, sopt->sopt_data,
1960 sopt->sopt_size, &m);
1961 if (!error)
1962 error = sockopt_setmbuf(sopt, m);
1963 break;
1964 }
1965 /*FALLTHROUGH*/
1966 #endif /* IPSEC */
1967
1968 default:
1969 error = ENOPROTOOPT;
1970 break;
1971 }
1972 break;
1973 }
1974 return (error);
1975 }
1976
1977 int
1978 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1979 {
1980 int error = 0, optval;
1981 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1982 struct in6pcb *in6p = sotoin6pcb(so);
1983 int level, optname;
1984
1985 KASSERT(sopt != NULL);
1986
1987 level = sopt->sopt_level;
1988 optname = sopt->sopt_name;
1989
1990 if (level != IPPROTO_IPV6) {
1991 return ENOPROTOOPT;
1992 }
1993
1994 switch (optname) {
1995 case IPV6_CHECKSUM:
1996 /*
1997 * For ICMPv6 sockets, no modification allowed for checksum
1998 * offset, permit "no change" values to help existing apps.
1999 *
2000 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
2001 * for an ICMPv6 socket will fail." The current
2002 * behavior does not meet RFC3542.
2003 */
2004 switch (op) {
2005 case PRCO_SETOPT:
2006 error = sockopt_getint(sopt, &optval);
2007 if (error)
2008 break;
2009 if ((optval % 2) != 0) {
2010 /* the API assumes even offset values */
2011 error = EINVAL;
2012 } else if (so->so_proto->pr_protocol ==
2013 IPPROTO_ICMPV6) {
2014 if (optval != icmp6off)
2015 error = EINVAL;
2016 } else
2017 in6p->in6p_cksum = optval;
2018 break;
2019
2020 case PRCO_GETOPT:
2021 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2022 optval = icmp6off;
2023 else
2024 optval = in6p->in6p_cksum;
2025
2026 error = sockopt_setint(sopt, optval);
2027 break;
2028
2029 default:
2030 error = EINVAL;
2031 break;
2032 }
2033 break;
2034
2035 default:
2036 error = ENOPROTOOPT;
2037 break;
2038 }
2039
2040 return (error);
2041 }
2042
2043 #ifdef RFC2292
2044 /*
2045 * Set up IP6 options in pcb for insertion in output packets or
2046 * specifying behavior of outgoing packets.
2047 */
2048 static int
2049 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
2050 struct sockopt *sopt)
2051 {
2052 struct ip6_pktopts *opt = *pktopt;
2053 struct mbuf *m;
2054 int error = 0;
2055
2056 KASSERT(solocked(so));
2057
2058 /* turn off any old options. */
2059 if (opt) {
2060 #ifdef DIAGNOSTIC
2061 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2062 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2063 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2064 printf("ip6_pcbopts: all specified options are cleared.\n");
2065 #endif
2066 ip6_clearpktopts(opt, -1);
2067 } else {
2068 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2069 if (opt == NULL)
2070 return (ENOBUFS);
2071 }
2072 *pktopt = NULL;
2073
2074 if (sopt == NULL || sopt->sopt_size == 0) {
2075 /*
2076 * Only turning off any previous options, regardless of
2077 * whether the opt is just created or given.
2078 */
2079 free(opt, M_IP6OPT);
2080 return (0);
2081 }
2082
2083 /* set options specified by user. */
2084 m = sockopt_getmbuf(sopt);
2085 if (m == NULL) {
2086 free(opt, M_IP6OPT);
2087 return (ENOBUFS);
2088 }
2089
2090 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
2091 so->so_proto->pr_protocol);
2092 m_freem(m);
2093 if (error != 0) {
2094 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2095 free(opt, M_IP6OPT);
2096 return (error);
2097 }
2098 *pktopt = opt;
2099 return (0);
2100 }
2101 #endif
2102
2103 /*
2104 * initialize ip6_pktopts. beware that there are non-zero default values in
2105 * the struct.
2106 */
2107 void
2108 ip6_initpktopts(struct ip6_pktopts *opt)
2109 {
2110
2111 memset(opt, 0, sizeof(*opt));
2112 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2113 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2114 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2115 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2116 }
2117
2118 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2119 static int
2120 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2121 kauth_cred_t cred, int uproto)
2122 {
2123 struct ip6_pktopts *opt;
2124
2125 if (*pktopt == NULL) {
2126 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2127 M_NOWAIT);
2128 if (*pktopt == NULL)
2129 return (ENOBUFS);
2130
2131 ip6_initpktopts(*pktopt);
2132 }
2133 opt = *pktopt;
2134
2135 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2136 }
2137
2138 static int
2139 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2140 {
2141 void *optdata = NULL;
2142 int optdatalen = 0;
2143 struct ip6_ext *ip6e;
2144 int error = 0;
2145 struct in6_pktinfo null_pktinfo;
2146 int deftclass = 0, on;
2147 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2148 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2149
2150 switch (optname) {
2151 case IPV6_PKTINFO:
2152 if (pktopt && pktopt->ip6po_pktinfo)
2153 optdata = (void *)pktopt->ip6po_pktinfo;
2154 else {
2155 /* XXX: we don't have to do this every time... */
2156 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2157 optdata = (void *)&null_pktinfo;
2158 }
2159 optdatalen = sizeof(struct in6_pktinfo);
2160 break;
2161 case IPV6_OTCLASS:
2162 /* XXX */
2163 return (EINVAL);
2164 case IPV6_TCLASS:
2165 if (pktopt && pktopt->ip6po_tclass >= 0)
2166 optdata = (void *)&pktopt->ip6po_tclass;
2167 else
2168 optdata = (void *)&deftclass;
2169 optdatalen = sizeof(int);
2170 break;
2171 case IPV6_HOPOPTS:
2172 if (pktopt && pktopt->ip6po_hbh) {
2173 optdata = (void *)pktopt->ip6po_hbh;
2174 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2175 optdatalen = (ip6e->ip6e_len + 1) << 3;
2176 }
2177 break;
2178 case IPV6_RTHDR:
2179 if (pktopt && pktopt->ip6po_rthdr) {
2180 optdata = (void *)pktopt->ip6po_rthdr;
2181 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2182 optdatalen = (ip6e->ip6e_len + 1) << 3;
2183 }
2184 break;
2185 case IPV6_RTHDRDSTOPTS:
2186 if (pktopt && pktopt->ip6po_dest1) {
2187 optdata = (void *)pktopt->ip6po_dest1;
2188 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2189 optdatalen = (ip6e->ip6e_len + 1) << 3;
2190 }
2191 break;
2192 case IPV6_DSTOPTS:
2193 if (pktopt && pktopt->ip6po_dest2) {
2194 optdata = (void *)pktopt->ip6po_dest2;
2195 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2196 optdatalen = (ip6e->ip6e_len + 1) << 3;
2197 }
2198 break;
2199 case IPV6_NEXTHOP:
2200 if (pktopt && pktopt->ip6po_nexthop) {
2201 optdata = (void *)pktopt->ip6po_nexthop;
2202 optdatalen = pktopt->ip6po_nexthop->sa_len;
2203 }
2204 break;
2205 case IPV6_USE_MIN_MTU:
2206 if (pktopt)
2207 optdata = (void *)&pktopt->ip6po_minmtu;
2208 else
2209 optdata = (void *)&defminmtu;
2210 optdatalen = sizeof(int);
2211 break;
2212 case IPV6_DONTFRAG:
2213 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2214 on = 1;
2215 else
2216 on = 0;
2217 optdata = (void *)&on;
2218 optdatalen = sizeof(on);
2219 break;
2220 case IPV6_PREFER_TEMPADDR:
2221 if (pktopt)
2222 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2223 else
2224 optdata = (void *)&defpreftemp;
2225 optdatalen = sizeof(int);
2226 break;
2227 default: /* should not happen */
2228 #ifdef DIAGNOSTIC
2229 panic("ip6_getpcbopt: unexpected option\n");
2230 #endif
2231 return (ENOPROTOOPT);
2232 }
2233
2234 error = sockopt_set(sopt, optdata, optdatalen);
2235
2236 return (error);
2237 }
2238
2239 void
2240 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2241 {
2242 if (optname == -1 || optname == IPV6_PKTINFO) {
2243 if (pktopt->ip6po_pktinfo)
2244 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2245 pktopt->ip6po_pktinfo = NULL;
2246 }
2247 if (optname == -1 || optname == IPV6_HOPLIMIT)
2248 pktopt->ip6po_hlim = -1;
2249 if (optname == -1 || optname == IPV6_TCLASS)
2250 pktopt->ip6po_tclass = -1;
2251 if (optname == -1 || optname == IPV6_NEXTHOP) {
2252 rtcache_free(&pktopt->ip6po_nextroute);
2253 if (pktopt->ip6po_nexthop)
2254 free(pktopt->ip6po_nexthop, M_IP6OPT);
2255 pktopt->ip6po_nexthop = NULL;
2256 }
2257 if (optname == -1 || optname == IPV6_HOPOPTS) {
2258 if (pktopt->ip6po_hbh)
2259 free(pktopt->ip6po_hbh, M_IP6OPT);
2260 pktopt->ip6po_hbh = NULL;
2261 }
2262 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2263 if (pktopt->ip6po_dest1)
2264 free(pktopt->ip6po_dest1, M_IP6OPT);
2265 pktopt->ip6po_dest1 = NULL;
2266 }
2267 if (optname == -1 || optname == IPV6_RTHDR) {
2268 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2269 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2270 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2271 rtcache_free(&pktopt->ip6po_route);
2272 }
2273 if (optname == -1 || optname == IPV6_DSTOPTS) {
2274 if (pktopt->ip6po_dest2)
2275 free(pktopt->ip6po_dest2, M_IP6OPT);
2276 pktopt->ip6po_dest2 = NULL;
2277 }
2278 }
2279
2280 #define PKTOPT_EXTHDRCPY(type) \
2281 do { \
2282 if (src->type) { \
2283 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2284 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2285 if (dst->type == NULL) \
2286 goto bad; \
2287 memcpy(dst->type, src->type, hlen); \
2288 } \
2289 } while (/*CONSTCOND*/ 0)
2290
2291 static int
2292 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2293 {
2294 dst->ip6po_hlim = src->ip6po_hlim;
2295 dst->ip6po_tclass = src->ip6po_tclass;
2296 dst->ip6po_flags = src->ip6po_flags;
2297 dst->ip6po_minmtu = src->ip6po_minmtu;
2298 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2299 if (src->ip6po_pktinfo) {
2300 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2301 M_IP6OPT, canwait);
2302 if (dst->ip6po_pktinfo == NULL)
2303 goto bad;
2304 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2305 }
2306 if (src->ip6po_nexthop) {
2307 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2308 M_IP6OPT, canwait);
2309 if (dst->ip6po_nexthop == NULL)
2310 goto bad;
2311 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2312 src->ip6po_nexthop->sa_len);
2313 }
2314 PKTOPT_EXTHDRCPY(ip6po_hbh);
2315 PKTOPT_EXTHDRCPY(ip6po_dest1);
2316 PKTOPT_EXTHDRCPY(ip6po_dest2);
2317 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2318 return (0);
2319
2320 bad:
2321 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2322 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2323 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2324 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2325 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2326 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2327
2328 return (ENOBUFS);
2329 }
2330 #undef PKTOPT_EXTHDRCPY
2331
2332 struct ip6_pktopts *
2333 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2334 {
2335 int error;
2336 struct ip6_pktopts *dst;
2337
2338 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2339 if (dst == NULL)
2340 return (NULL);
2341 ip6_initpktopts(dst);
2342
2343 if ((error = copypktopts(dst, src, canwait)) != 0) {
2344 free(dst, M_IP6OPT);
2345 return (NULL);
2346 }
2347
2348 return (dst);
2349 }
2350
2351 void
2352 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2353 {
2354 if (pktopt == NULL)
2355 return;
2356
2357 ip6_clearpktopts(pktopt, -1);
2358
2359 free(pktopt, M_IP6OPT);
2360 }
2361
2362 int
2363 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
2364 struct psref *psref, void *v, size_t l)
2365 {
2366 struct ipv6_mreq mreq;
2367 int error;
2368 struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
2369 struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
2370
2371 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2372 if (error != 0)
2373 return error;
2374
2375 if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
2376 /*
2377 * We use the unspecified address to specify to accept
2378 * all multicast addresses. Only super user is allowed
2379 * to do this.
2380 */
2381 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6,
2382 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
2383 return EACCES;
2384 } else if (IN6_IS_ADDR_V4MAPPED(ia)) {
2385 // Don't bother if we are not going to use ifp.
2386 if (l == sizeof(*ia)) {
2387 memcpy(v, ia, l);
2388 return 0;
2389 }
2390 } else if (!IN6_IS_ADDR_MULTICAST(ia)) {
2391 return EINVAL;
2392 }
2393
2394 /*
2395 * If no interface was explicitly specified, choose an
2396 * appropriate one according to the given multicast address.
2397 */
2398 if (mreq.ipv6mr_interface == 0) {
2399 struct rtentry *rt;
2400 union {
2401 struct sockaddr dst;
2402 struct sockaddr_in dst4;
2403 struct sockaddr_in6 dst6;
2404 } u;
2405 struct route ro;
2406
2407 /*
2408 * Look up the routing table for the
2409 * address, and choose the outgoing interface.
2410 * XXX: is it a good approach?
2411 */
2412 memset(&ro, 0, sizeof(ro));
2413 if (IN6_IS_ADDR_V4MAPPED(ia))
2414 sockaddr_in_init(&u.dst4, ia4, 0);
2415 else
2416 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
2417 error = rtcache_setdst(&ro, &u.dst);
2418 if (error != 0)
2419 return error;
2420 rt = rtcache_init(&ro);
2421 *ifp = rt != NULL ?
2422 if_get_byindex(rt->rt_ifp->if_index, psref) : NULL;
2423 rtcache_unref(rt, &ro);
2424 rtcache_free(&ro);
2425 } else {
2426 /*
2427 * If the interface is specified, validate it.
2428 */
2429 *ifp = if_get_byindex(mreq.ipv6mr_interface, psref);
2430 if (*ifp == NULL)
2431 return ENXIO; /* XXX EINVAL? */
2432 }
2433 if (sizeof(*ia) == l)
2434 memcpy(v, ia, l);
2435 else
2436 memcpy(v, ia4, l);
2437 return 0;
2438 }
2439
2440 /*
2441 * Set the IP6 multicast options in response to user setsockopt().
2442 */
2443 static int
2444 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p)
2445 {
2446 int error = 0;
2447 u_int loop, ifindex;
2448 struct ipv6_mreq mreq;
2449 struct in6_addr ia;
2450 struct ifnet *ifp;
2451 struct ip6_moptions *im6o = in6p->in6p_moptions;
2452 struct in6_multi_mship *imm;
2453
2454 KASSERT(in6p_locked(in6p));
2455
2456 if (im6o == NULL) {
2457 /*
2458 * No multicast option buffer attached to the pcb;
2459 * allocate one and initialize to default values.
2460 */
2461 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2462 if (im6o == NULL)
2463 return (ENOBUFS);
2464 in6p->in6p_moptions = im6o;
2465 im6o->im6o_multicast_if_index = 0;
2466 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2467 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2468 LIST_INIT(&im6o->im6o_memberships);
2469 }
2470
2471 switch (sopt->sopt_name) {
2472
2473 case IPV6_MULTICAST_IF: {
2474 int s;
2475 /*
2476 * Select the interface for outgoing multicast packets.
2477 */
2478 error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2479 if (error != 0)
2480 break;
2481
2482 s = pserialize_read_enter();
2483 if (ifindex != 0) {
2484 if ((ifp = if_byindex(ifindex)) == NULL) {
2485 pserialize_read_exit(s);
2486 error = ENXIO; /* XXX EINVAL? */
2487 break;
2488 }
2489 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2490 pserialize_read_exit(s);
2491 error = EADDRNOTAVAIL;
2492 break;
2493 }
2494 } else
2495 ifp = NULL;
2496 im6o->im6o_multicast_if_index = if_get_index(ifp);
2497 pserialize_read_exit(s);
2498 break;
2499 }
2500
2501 case IPV6_MULTICAST_HOPS:
2502 {
2503 /*
2504 * Set the IP6 hoplimit for outgoing multicast packets.
2505 */
2506 int optval;
2507
2508 error = sockopt_getint(sopt, &optval);
2509 if (error != 0)
2510 break;
2511
2512 if (optval < -1 || optval >= 256)
2513 error = EINVAL;
2514 else if (optval == -1)
2515 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2516 else
2517 im6o->im6o_multicast_hlim = optval;
2518 break;
2519 }
2520
2521 case IPV6_MULTICAST_LOOP:
2522 /*
2523 * Set the loopback flag for outgoing multicast packets.
2524 * Must be zero or one.
2525 */
2526 error = sockopt_get(sopt, &loop, sizeof(loop));
2527 if (error != 0)
2528 break;
2529 if (loop > 1) {
2530 error = EINVAL;
2531 break;
2532 }
2533 im6o->im6o_multicast_loop = loop;
2534 break;
2535
2536 case IPV6_JOIN_GROUP: {
2537 int bound;
2538 struct psref psref;
2539 /*
2540 * Add a multicast group membership.
2541 * Group must be a valid IP6 multicast address.
2542 */
2543 bound = curlwp_bind();
2544 ifp = NULL;
2545 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
2546 if (error != 0) {
2547 KASSERT(ifp == NULL);
2548 curlwp_bindx(bound);
2549 return error;
2550 }
2551
2552 if (IN6_IS_ADDR_V4MAPPED(&ia)) {
2553 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2554 goto put_break;
2555 }
2556 /*
2557 * See if we found an interface, and confirm that it
2558 * supports multicast
2559 */
2560 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2561 error = EADDRNOTAVAIL;
2562 goto put_break;
2563 }
2564
2565 if (in6_setscope(&ia, ifp, NULL)) {
2566 error = EADDRNOTAVAIL; /* XXX: should not happen */
2567 goto put_break;
2568 }
2569
2570 /*
2571 * See if the membership already exists.
2572 */
2573 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2574 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2575 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2576 &ia))
2577 goto put_break;
2578 }
2579 if (imm != NULL) {
2580 error = EADDRINUSE;
2581 goto put_break;
2582 }
2583 /*
2584 * Everything looks good; add a new record to the multicast
2585 * address list for the given interface.
2586 */
2587 IFNET_LOCK(ifp);
2588 imm = in6_joingroup(ifp, &ia, &error, 0);
2589 IFNET_UNLOCK(ifp);
2590 if (imm == NULL)
2591 goto put_break;
2592 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2593 put_break:
2594 if_put(ifp, &psref);
2595 curlwp_bindx(bound);
2596 break;
2597 }
2598
2599 case IPV6_LEAVE_GROUP: {
2600 struct ifnet *in6m_ifp;
2601 /*
2602 * Drop a multicast group membership.
2603 * Group must be a valid IP6 multicast address.
2604 */
2605 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2606 if (error != 0)
2607 break;
2608
2609 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
2610 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2611 break;
2612 }
2613 /*
2614 * If an interface address was specified, get a pointer
2615 * to its ifnet structure.
2616 */
2617 if (mreq.ipv6mr_interface != 0) {
2618 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
2619 error = ENXIO; /* XXX EINVAL? */
2620 break;
2621 }
2622 } else
2623 ifp = NULL;
2624
2625 /* Fill in the scope zone ID */
2626 if (ifp) {
2627 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2628 /* XXX: should not happen */
2629 error = EADDRNOTAVAIL;
2630 break;
2631 }
2632 } else if (mreq.ipv6mr_interface != 0) {
2633 /*
2634 * XXX: This case would happens when the (positive)
2635 * index is in the valid range, but the corresponding
2636 * interface has been detached dynamically. The above
2637 * check probably avoids such case to happen here, but
2638 * we check it explicitly for safety.
2639 */
2640 error = EADDRNOTAVAIL;
2641 break;
2642 } else { /* ipv6mr_interface == 0 */
2643 struct sockaddr_in6 sa6_mc;
2644
2645 /*
2646 * The API spec says as follows:
2647 * If the interface index is specified as 0, the
2648 * system may choose a multicast group membership to
2649 * drop by matching the multicast address only.
2650 * On the other hand, we cannot disambiguate the scope
2651 * zone unless an interface is provided. Thus, we
2652 * check if there's ambiguity with the default scope
2653 * zone as the last resort.
2654 */
2655 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2656 0, 0, 0);
2657 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2658 if (error != 0)
2659 break;
2660 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2661 }
2662
2663 /*
2664 * Find the membership in the membership list.
2665 */
2666 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2667 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2668 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2669 &mreq.ipv6mr_multiaddr))
2670 break;
2671 }
2672 if (imm == NULL) {
2673 /* Unable to resolve interface */
2674 error = EADDRNOTAVAIL;
2675 break;
2676 }
2677 /*
2678 * Give up the multicast address record to which the
2679 * membership points.
2680 */
2681 LIST_REMOVE(imm, i6mm_chain);
2682 in6m_ifp = imm->i6mm_maddr->in6m_ifp;
2683 IFNET_LOCK(in6m_ifp);
2684 in6_leavegroup(imm);
2685 /* in6m_ifp should not leave thanks to in6p_lock */
2686 IFNET_UNLOCK(in6m_ifp);
2687 break;
2688 }
2689
2690 default:
2691 error = EOPNOTSUPP;
2692 break;
2693 }
2694
2695 /*
2696 * If all options have default values, no need to keep the mbuf.
2697 */
2698 if (im6o->im6o_multicast_if_index == 0 &&
2699 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2700 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2701 LIST_EMPTY(&im6o->im6o_memberships)) {
2702 free(in6p->in6p_moptions, M_IPMOPTS);
2703 in6p->in6p_moptions = NULL;
2704 }
2705
2706 return (error);
2707 }
2708
2709 /*
2710 * Return the IP6 multicast options in response to user getsockopt().
2711 */
2712 static int
2713 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p)
2714 {
2715 u_int optval;
2716 int error;
2717 struct ip6_moptions *im6o = in6p->in6p_moptions;
2718
2719 switch (sopt->sopt_name) {
2720 case IPV6_MULTICAST_IF:
2721 if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
2722 optval = 0;
2723 else
2724 optval = im6o->im6o_multicast_if_index;
2725
2726 error = sockopt_set(sopt, &optval, sizeof(optval));
2727 break;
2728
2729 case IPV6_MULTICAST_HOPS:
2730 if (im6o == NULL)
2731 optval = ip6_defmcasthlim;
2732 else
2733 optval = im6o->im6o_multicast_hlim;
2734
2735 error = sockopt_set(sopt, &optval, sizeof(optval));
2736 break;
2737
2738 case IPV6_MULTICAST_LOOP:
2739 if (im6o == NULL)
2740 optval = IPV6_DEFAULT_MULTICAST_LOOP;
2741 else
2742 optval = im6o->im6o_multicast_loop;
2743
2744 error = sockopt_set(sopt, &optval, sizeof(optval));
2745 break;
2746
2747 default:
2748 error = EOPNOTSUPP;
2749 }
2750
2751 return (error);
2752 }
2753
2754 /*
2755 * Discard the IP6 multicast options.
2756 */
2757 void
2758 ip6_freemoptions(struct ip6_moptions *im6o)
2759 {
2760 struct in6_multi_mship *imm, *nimm;
2761
2762 if (im6o == NULL)
2763 return;
2764
2765 /* The owner of im6o (in6p) should be protected by solock */
2766 LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) {
2767 struct ifnet *ifp;
2768
2769 LIST_REMOVE(imm, i6mm_chain);
2770
2771 ifp = imm->i6mm_maddr->in6m_ifp;
2772 IFNET_LOCK(ifp);
2773 in6_leavegroup(imm);
2774 /* ifp should not leave thanks to solock */
2775 IFNET_UNLOCK(ifp);
2776 }
2777 free(im6o, M_IPMOPTS);
2778 }
2779
2780 /*
2781 * Set IPv6 outgoing packet options based on advanced API.
2782 */
2783 int
2784 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2785 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2786 {
2787 struct cmsghdr *cm = 0;
2788
2789 if (control == NULL || opt == NULL)
2790 return (EINVAL);
2791
2792 ip6_initpktopts(opt);
2793 if (stickyopt) {
2794 int error;
2795
2796 /*
2797 * If stickyopt is provided, make a local copy of the options
2798 * for this particular packet, then override them by ancillary
2799 * objects.
2800 * XXX: copypktopts() does not copy the cached route to a next
2801 * hop (if any). This is not very good in terms of efficiency,
2802 * but we can allow this since this option should be rarely
2803 * used.
2804 */
2805 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2806 return (error);
2807 }
2808
2809 /*
2810 * XXX: Currently, we assume all the optional information is stored
2811 * in a single mbuf.
2812 */
2813 if (control->m_next)
2814 return (EINVAL);
2815
2816 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2817 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2818 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2819 int error;
2820
2821 if (control->m_len < CMSG_LEN(0))
2822 return (EINVAL);
2823
2824 cm = mtod(control, struct cmsghdr *);
2825 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2826 return (EINVAL);
2827 if (cm->cmsg_level != IPPROTO_IPV6)
2828 continue;
2829
2830 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2831 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2832 if (error)
2833 return (error);
2834 }
2835
2836 return (0);
2837 }
2838
2839 /*
2840 * Set a particular packet option, as a sticky option or an ancillary data
2841 * item. "len" can be 0 only when it's a sticky option.
2842 * We have 4 cases of combination of "sticky" and "cmsg":
2843 * "sticky=0, cmsg=0": impossible
2844 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2845 * "sticky=1, cmsg=0": RFC3542 socket option
2846 * "sticky=1, cmsg=1": RFC2292 socket option
2847 */
2848 static int
2849 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2850 kauth_cred_t cred, int sticky, int cmsg, int uproto)
2851 {
2852 int minmtupolicy;
2853 int error;
2854
2855 if (!sticky && !cmsg) {
2856 #ifdef DIAGNOSTIC
2857 printf("ip6_setpktopt: impossible case\n");
2858 #endif
2859 return (EINVAL);
2860 }
2861
2862 /*
2863 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2864 * not be specified in the context of RFC3542. Conversely,
2865 * RFC3542 types should not be specified in the context of RFC2292.
2866 */
2867 if (!cmsg) {
2868 switch (optname) {
2869 case IPV6_2292PKTINFO:
2870 case IPV6_2292HOPLIMIT:
2871 case IPV6_2292NEXTHOP:
2872 case IPV6_2292HOPOPTS:
2873 case IPV6_2292DSTOPTS:
2874 case IPV6_2292RTHDR:
2875 case IPV6_2292PKTOPTIONS:
2876 return (ENOPROTOOPT);
2877 }
2878 }
2879 if (sticky && cmsg) {
2880 switch (optname) {
2881 case IPV6_PKTINFO:
2882 case IPV6_HOPLIMIT:
2883 case IPV6_NEXTHOP:
2884 case IPV6_HOPOPTS:
2885 case IPV6_DSTOPTS:
2886 case IPV6_RTHDRDSTOPTS:
2887 case IPV6_RTHDR:
2888 case IPV6_USE_MIN_MTU:
2889 case IPV6_DONTFRAG:
2890 case IPV6_OTCLASS:
2891 case IPV6_TCLASS:
2892 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
2893 return (ENOPROTOOPT);
2894 }
2895 }
2896
2897 switch (optname) {
2898 #ifdef RFC2292
2899 case IPV6_2292PKTINFO:
2900 #endif
2901 case IPV6_PKTINFO:
2902 {
2903 struct in6_pktinfo *pktinfo;
2904
2905 if (len != sizeof(struct in6_pktinfo))
2906 return (EINVAL);
2907
2908 pktinfo = (struct in6_pktinfo *)buf;
2909
2910 /*
2911 * An application can clear any sticky IPV6_PKTINFO option by
2912 * doing a "regular" setsockopt with ipi6_addr being
2913 * in6addr_any and ipi6_ifindex being zero.
2914 * [RFC 3542, Section 6]
2915 */
2916 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2917 pktinfo->ipi6_ifindex == 0 &&
2918 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2919 ip6_clearpktopts(opt, optname);
2920 break;
2921 }
2922
2923 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2924 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2925 return (EINVAL);
2926 }
2927
2928 /* Validate the interface index if specified. */
2929 if (pktinfo->ipi6_ifindex) {
2930 struct ifnet *ifp;
2931 int s = pserialize_read_enter();
2932 ifp = if_byindex(pktinfo->ipi6_ifindex);
2933 if (ifp == NULL) {
2934 pserialize_read_exit(s);
2935 return ENXIO;
2936 }
2937 pserialize_read_exit(s);
2938 }
2939
2940 /*
2941 * We store the address anyway, and let in6_selectsrc()
2942 * validate the specified address. This is because ipi6_addr
2943 * may not have enough information about its scope zone, and
2944 * we may need additional information (such as outgoing
2945 * interface or the scope zone of a destination address) to
2946 * disambiguate the scope.
2947 * XXX: the delay of the validation may confuse the
2948 * application when it is used as a sticky option.
2949 */
2950 if (opt->ip6po_pktinfo == NULL) {
2951 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2952 M_IP6OPT, M_NOWAIT);
2953 if (opt->ip6po_pktinfo == NULL)
2954 return (ENOBUFS);
2955 }
2956 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2957 break;
2958 }
2959
2960 #ifdef RFC2292
2961 case IPV6_2292HOPLIMIT:
2962 #endif
2963 case IPV6_HOPLIMIT:
2964 {
2965 int *hlimp;
2966
2967 /*
2968 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2969 * to simplify the ordering among hoplimit options.
2970 */
2971 if (optname == IPV6_HOPLIMIT && sticky)
2972 return (ENOPROTOOPT);
2973
2974 if (len != sizeof(int))
2975 return (EINVAL);
2976 hlimp = (int *)buf;
2977 if (*hlimp < -1 || *hlimp > 255)
2978 return (EINVAL);
2979
2980 opt->ip6po_hlim = *hlimp;
2981 break;
2982 }
2983
2984 case IPV6_OTCLASS:
2985 if (len != sizeof(u_int8_t))
2986 return (EINVAL);
2987
2988 opt->ip6po_tclass = *(u_int8_t *)buf;
2989 break;
2990
2991 case IPV6_TCLASS:
2992 {
2993 int tclass;
2994
2995 if (len != sizeof(int))
2996 return (EINVAL);
2997 tclass = *(int *)buf;
2998 if (tclass < -1 || tclass > 255)
2999 return (EINVAL);
3000
3001 opt->ip6po_tclass = tclass;
3002 break;
3003 }
3004
3005 #ifdef RFC2292
3006 case IPV6_2292NEXTHOP:
3007 #endif
3008 case IPV6_NEXTHOP:
3009 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3010 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3011 if (error)
3012 return (error);
3013
3014 if (len == 0) { /* just remove the option */
3015 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3016 break;
3017 }
3018
3019 /* check if cmsg_len is large enough for sa_len */
3020 if (len < sizeof(struct sockaddr) || len < *buf)
3021 return (EINVAL);
3022
3023 switch (((struct sockaddr *)buf)->sa_family) {
3024 case AF_INET6:
3025 {
3026 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3027
3028 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3029 return (EINVAL);
3030
3031 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3032 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3033 return (EINVAL);
3034 }
3035 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
3036 != 0) {
3037 return (error);
3038 }
3039 break;
3040 }
3041 case AF_LINK: /* eventually be supported? */
3042 default:
3043 return (EAFNOSUPPORT);
3044 }
3045
3046 /* turn off the previous option, then set the new option. */
3047 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3048 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3049 if (opt->ip6po_nexthop == NULL)
3050 return (ENOBUFS);
3051 memcpy(opt->ip6po_nexthop, buf, *buf);
3052 break;
3053
3054 #ifdef RFC2292
3055 case IPV6_2292HOPOPTS:
3056 #endif
3057 case IPV6_HOPOPTS:
3058 {
3059 struct ip6_hbh *hbh;
3060 int hbhlen;
3061
3062 /*
3063 * XXX: We don't allow a non-privileged user to set ANY HbH
3064 * options, since per-option restriction has too much
3065 * overhead.
3066 */
3067 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3068 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3069 if (error)
3070 return (error);
3071
3072 if (len == 0) {
3073 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3074 break; /* just remove the option */
3075 }
3076
3077 /* message length validation */
3078 if (len < sizeof(struct ip6_hbh))
3079 return (EINVAL);
3080 hbh = (struct ip6_hbh *)buf;
3081 hbhlen = (hbh->ip6h_len + 1) << 3;
3082 if (len != hbhlen)
3083 return (EINVAL);
3084
3085 /* turn off the previous option, then set the new option. */
3086 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3087 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3088 if (opt->ip6po_hbh == NULL)
3089 return (ENOBUFS);
3090 memcpy(opt->ip6po_hbh, hbh, hbhlen);
3091
3092 break;
3093 }
3094
3095 #ifdef RFC2292
3096 case IPV6_2292DSTOPTS:
3097 #endif
3098 case IPV6_DSTOPTS:
3099 case IPV6_RTHDRDSTOPTS:
3100 {
3101 struct ip6_dest *dest, **newdest = NULL;
3102 int destlen;
3103
3104 /* XXX: see the comment for IPV6_HOPOPTS */
3105 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3106 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3107 if (error)
3108 return (error);
3109
3110 if (len == 0) {
3111 ip6_clearpktopts(opt, optname);
3112 break; /* just remove the option */
3113 }
3114
3115 /* message length validation */
3116 if (len < sizeof(struct ip6_dest))
3117 return (EINVAL);
3118 dest = (struct ip6_dest *)buf;
3119 destlen = (dest->ip6d_len + 1) << 3;
3120 if (len != destlen)
3121 return (EINVAL);
3122 /*
3123 * Determine the position that the destination options header
3124 * should be inserted; before or after the routing header.
3125 */
3126 switch (optname) {
3127 case IPV6_2292DSTOPTS:
3128 /*
3129 * The old advanced API is ambiguous on this point.
3130 * Our approach is to determine the position based
3131 * according to the existence of a routing header.
3132 * Note, however, that this depends on the order of the
3133 * extension headers in the ancillary data; the 1st
3134 * part of the destination options header must appear
3135 * before the routing header in the ancillary data,
3136 * too.
3137 * RFC3542 solved the ambiguity by introducing
3138 * separate ancillary data or option types.
3139 */
3140 if (opt->ip6po_rthdr == NULL)
3141 newdest = &opt->ip6po_dest1;
3142 else
3143 newdest = &opt->ip6po_dest2;
3144 break;
3145 case IPV6_RTHDRDSTOPTS:
3146 newdest = &opt->ip6po_dest1;
3147 break;
3148 case IPV6_DSTOPTS:
3149 newdest = &opt->ip6po_dest2;
3150 break;
3151 }
3152
3153 /* turn off the previous option, then set the new option. */
3154 ip6_clearpktopts(opt, optname);
3155 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3156 if (*newdest == NULL)
3157 return (ENOBUFS);
3158 memcpy(*newdest, dest, destlen);
3159
3160 break;
3161 }
3162
3163 #ifdef RFC2292
3164 case IPV6_2292RTHDR:
3165 #endif
3166 case IPV6_RTHDR:
3167 {
3168 struct ip6_rthdr *rth;
3169 int rthlen;
3170
3171 if (len == 0) {
3172 ip6_clearpktopts(opt, IPV6_RTHDR);
3173 break; /* just remove the option */
3174 }
3175
3176 /* message length validation */
3177 if (len < sizeof(struct ip6_rthdr))
3178 return (EINVAL);
3179 rth = (struct ip6_rthdr *)buf;
3180 rthlen = (rth->ip6r_len + 1) << 3;
3181 if (len != rthlen)
3182 return (EINVAL);
3183 switch (rth->ip6r_type) {
3184 case IPV6_RTHDR_TYPE_0:
3185 /* Dropped, RFC5095. */
3186 default:
3187 return (EINVAL); /* not supported */
3188 }
3189 /* turn off the previous option */
3190 ip6_clearpktopts(opt, IPV6_RTHDR);
3191 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3192 if (opt->ip6po_rthdr == NULL)
3193 return (ENOBUFS);
3194 memcpy(opt->ip6po_rthdr, rth, rthlen);
3195 break;
3196 }
3197
3198 case IPV6_USE_MIN_MTU:
3199 if (len != sizeof(int))
3200 return (EINVAL);
3201 minmtupolicy = *(int *)buf;
3202 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3203 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3204 minmtupolicy != IP6PO_MINMTU_ALL) {
3205 return (EINVAL);
3206 }
3207 opt->ip6po_minmtu = minmtupolicy;
3208 break;
3209
3210 case IPV6_DONTFRAG:
3211 if (len != sizeof(int))
3212 return (EINVAL);
3213
3214 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3215 /*
3216 * we ignore this option for TCP sockets.
3217 * (RFC3542 leaves this case unspecified.)
3218 */
3219 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3220 } else
3221 opt->ip6po_flags |= IP6PO_DONTFRAG;
3222 break;
3223
3224 case IPV6_PREFER_TEMPADDR:
3225 {
3226 int preftemp;
3227
3228 if (len != sizeof(int))
3229 return (EINVAL);
3230 preftemp = *(int *)buf;
3231 switch (preftemp) {
3232 case IP6PO_TEMPADDR_SYSTEM:
3233 case IP6PO_TEMPADDR_NOTPREFER:
3234 case IP6PO_TEMPADDR_PREFER:
3235 break;
3236 default:
3237 return (EINVAL);
3238 }
3239 opt->ip6po_prefer_tempaddr = preftemp;
3240 break;
3241 }
3242
3243 default:
3244 return (ENOPROTOOPT);
3245 } /* end of switch */
3246
3247 return (0);
3248 }
3249
3250 /*
3251 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3252 * packet to the input queue of a specified interface. Note that this
3253 * calls the output routine of the loopback "driver", but with an interface
3254 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3255 */
3256 void
3257 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3258 const struct sockaddr_in6 *dst)
3259 {
3260 struct mbuf *copym;
3261 struct ip6_hdr *ip6;
3262
3263 copym = m_copym(m, 0, M_COPYALL, M_DONTWAIT);
3264 if (copym == NULL)
3265 return;
3266
3267 /*
3268 * Make sure to deep-copy IPv6 header portion in case the data
3269 * is in an mbuf cluster, so that we can safely override the IPv6
3270 * header portion later.
3271 */
3272 if ((copym->m_flags & M_EXT) != 0 ||
3273 copym->m_len < sizeof(struct ip6_hdr)) {
3274 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3275 if (copym == NULL)
3276 return;
3277 }
3278
3279 #ifdef DIAGNOSTIC
3280 if (copym->m_len < sizeof(*ip6)) {
3281 m_freem(copym);
3282 return;
3283 }
3284 #endif
3285
3286 ip6 = mtod(copym, struct ip6_hdr *);
3287 /*
3288 * clear embedded scope identifiers if necessary.
3289 * in6_clearscope will touch the addresses only when necessary.
3290 */
3291 in6_clearscope(&ip6->ip6_src);
3292 in6_clearscope(&ip6->ip6_dst);
3293
3294 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3295 }
3296
3297 /*
3298 * Chop IPv6 header off from the payload.
3299 */
3300 static int
3301 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3302 {
3303 struct mbuf *mh;
3304 struct ip6_hdr *ip6;
3305
3306 ip6 = mtod(m, struct ip6_hdr *);
3307 if (m->m_len > sizeof(*ip6)) {
3308 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3309 if (mh == NULL) {
3310 m_freem(m);
3311 return ENOBUFS;
3312 }
3313 M_MOVE_PKTHDR(mh, m);
3314 MH_ALIGN(mh, sizeof(*ip6));
3315 m->m_len -= sizeof(*ip6);
3316 m->m_data += sizeof(*ip6);
3317 mh->m_next = m;
3318 mh->m_len = sizeof(*ip6);
3319 memcpy(mtod(mh, void *), (void *)ip6, sizeof(*ip6));
3320 m = mh;
3321 }
3322 exthdrs->ip6e_ip6 = m;
3323 return 0;
3324 }
3325
3326 /*
3327 * Compute IPv6 extension header length.
3328 */
3329 int
3330 ip6_optlen(struct in6pcb *in6p)
3331 {
3332 int len;
3333
3334 if (!in6p->in6p_outputopts)
3335 return 0;
3336
3337 len = 0;
3338 #define elen(x) \
3339 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3340
3341 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3342 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3343 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3344 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3345 return len;
3346 #undef elen
3347 }
3348
3349 /*
3350 * Ensure sending address is valid.
3351 * Returns 0 on success, -1 if an error should be sent back or 1
3352 * if the packet could be dropped without error (protocol dependent).
3353 */
3354 static int
3355 ip6_ifaddrvalid(const struct in6_addr *src, const struct in6_addr *dst)
3356 {
3357 struct sockaddr_in6 sin6;
3358 int s, error;
3359 struct ifaddr *ifa;
3360 struct in6_ifaddr *ia6;
3361
3362 if (IN6_IS_ADDR_UNSPECIFIED(src))
3363 return 0;
3364
3365 memset(&sin6, 0, sizeof(sin6));
3366 sin6.sin6_family = AF_INET6;
3367 sin6.sin6_len = sizeof(sin6);
3368 sin6.sin6_addr = *src;
3369
3370 s = pserialize_read_enter();
3371 ifa = ifa_ifwithaddr(sin6tosa(&sin6));
3372 if ((ia6 = ifatoia6(ifa)) == NULL ||
3373 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
3374 error = -1;
3375 else if (ia6->ia6_flags & IN6_IFF_TENTATIVE)
3376 error = 1;
3377 else if (ia6->ia6_flags & IN6_IFF_DETACHED &&
3378 (sin6.sin6_addr = *dst, ifa_ifwithaddr(sin6tosa(&sin6)) == NULL))
3379 /* Allow internal traffic to DETACHED addresses */
3380 error = 1;
3381 else
3382 error = 0;
3383 pserialize_read_exit(s);
3384
3385 return error;
3386 }
3387