ip6_output.c revision 1.211 1 /* $NetBSD: ip6_output.c,v 1.211 2018/06/01 08:56:00 maxv Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.211 2018/06/01 08:56:00 maxv Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_inet.h"
69 #include "opt_inet6.h"
70 #include "opt_ipsec.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/errno.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/syslog.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kauth.h>
83
84 #include <net/if.h>
85 #include <net/route.h>
86 #include <net/pfil.h>
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/ip_var.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet/portalgo.h>
95 #include <netinet6/in6_offload.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/ip6_private.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/nd6.h>
100 #include <netinet6/ip6protosw.h>
101 #include <netinet6/scope6_var.h>
102
103 #ifdef IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/ipsec6.h>
106 #include <netipsec/key.h>
107 #endif
108
109 extern pfil_head_t *inet6_pfil_hook; /* XXX */
110
111 struct ip6_exthdrs {
112 struct mbuf *ip6e_ip6;
113 struct mbuf *ip6e_hbh;
114 struct mbuf *ip6e_dest1;
115 struct mbuf *ip6e_rthdr;
116 struct mbuf *ip6e_dest2;
117 };
118
119 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
120 kauth_cred_t, int);
121 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
122 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
123 int, int, int);
124 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *);
125 static int ip6_getmoptions(struct sockopt *, struct in6pcb *);
126 static int ip6_copyexthdr(struct mbuf **, void *, int);
127 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
128 struct ip6_frag **);
129 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
130 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
131 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
132 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
133 static int ip6_ifaddrvalid(const struct in6_addr *, const struct in6_addr *);
134 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
135
136 #ifdef RFC2292
137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
138 #endif
139
140 static int
141 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
142 {
143 int error = 0;
144
145 switch (rh->ip6r_type) {
146 case IPV6_RTHDR_TYPE_0:
147 /* Dropped, RFC5095. */
148 default: /* is it possible? */
149 error = EINVAL;
150 }
151
152 return error;
153 }
154
155 /*
156 * Send an IP packet to a host.
157 */
158 int
159 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp,
160 struct mbuf * const m, const struct sockaddr_in6 * const dst,
161 const struct rtentry *rt)
162 {
163 int error = 0;
164
165 if (rt != NULL) {
166 error = rt_check_reject_route(rt, ifp);
167 if (error != 0) {
168 m_freem(m);
169 return error;
170 }
171 }
172
173 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
174 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
175 else
176 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
177 return error;
178 }
179
180 /*
181 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
182 * header (with pri, len, nxt, hlim, src, dst).
183 *
184 * This function may modify ver and hlim only. The mbuf chain containing the
185 * packet will be freed. The mbuf opt, if present, will not be freed.
186 *
187 * Type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
188 * nd_ifinfo.linkmtu is u_int32_t. So we use u_long to hold largest one,
189 * which is rt_rmx.rmx_mtu.
190 */
191 int
192 ip6_output(
193 struct mbuf *m0,
194 struct ip6_pktopts *opt,
195 struct route *ro,
196 int flags,
197 struct ip6_moptions *im6o,
198 struct in6pcb *in6p,
199 struct ifnet **ifpp /* XXX: just for statistics */
200 )
201 {
202 struct ip6_hdr *ip6, *mhip6;
203 struct ifnet *ifp = NULL, *origifp = NULL;
204 struct mbuf *m = m0;
205 int tlen, len, off;
206 bool tso;
207 struct route ip6route;
208 struct rtentry *rt = NULL, *rt_pmtu;
209 const struct sockaddr_in6 *dst;
210 struct sockaddr_in6 src_sa, dst_sa;
211 int error = 0;
212 struct in6_ifaddr *ia = NULL;
213 u_long mtu;
214 int alwaysfrag, dontfrag;
215 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
216 struct ip6_exthdrs exthdrs;
217 struct in6_addr finaldst, src0, dst0;
218 u_int32_t zone;
219 struct route *ro_pmtu = NULL;
220 int hdrsplit = 0;
221 int needipsec = 0;
222 #ifdef IPSEC
223 struct secpolicy *sp = NULL;
224 #endif
225 struct psref psref, psref_ia;
226 int bound = curlwp_bind();
227 bool release_psref_ia = false;
228
229 #ifdef DIAGNOSTIC
230 if ((m->m_flags & M_PKTHDR) == 0)
231 panic("ip6_output: no HDR");
232 if ((m->m_pkthdr.csum_flags &
233 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
234 panic("ip6_output: IPv4 checksum offload flags: %d",
235 m->m_pkthdr.csum_flags);
236 }
237 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
238 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
239 panic("ip6_output: conflicting checksum offload flags: %d",
240 m->m_pkthdr.csum_flags);
241 }
242 #endif
243
244 M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
245
246 #define MAKE_EXTHDR(hp, mp) \
247 do { \
248 if (hp) { \
249 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
250 error = ip6_copyexthdr((mp), (void *)(hp), \
251 ((eh)->ip6e_len + 1) << 3); \
252 if (error) \
253 goto freehdrs; \
254 } \
255 } while (/*CONSTCOND*/ 0)
256
257 memset(&exthdrs, 0, sizeof(exthdrs));
258 if (opt) {
259 /* Hop-by-Hop options header */
260 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
261 /* Destination options header (1st part) */
262 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
263 /* Routing header */
264 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
265 /* Destination options header (2nd part) */
266 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
267 }
268
269 /*
270 * Calculate the total length of the extension header chain.
271 * Keep the length of the unfragmentable part for fragmentation.
272 */
273 optlen = 0;
274 if (exthdrs.ip6e_hbh)
275 optlen += exthdrs.ip6e_hbh->m_len;
276 if (exthdrs.ip6e_dest1)
277 optlen += exthdrs.ip6e_dest1->m_len;
278 if (exthdrs.ip6e_rthdr)
279 optlen += exthdrs.ip6e_rthdr->m_len;
280 unfragpartlen = optlen + sizeof(struct ip6_hdr);
281 /* NOTE: we don't add AH/ESP length here. do that later. */
282 if (exthdrs.ip6e_dest2)
283 optlen += exthdrs.ip6e_dest2->m_len;
284
285 #ifdef IPSEC
286 if (ipsec_used) {
287 /* Check the security policy (SP) for the packet */
288 sp = ipsec6_check_policy(m, in6p, flags, &needipsec, &error);
289 if (error != 0) {
290 /*
291 * Hack: -EINVAL is used to signal that a packet
292 * should be silently discarded. This is typically
293 * because we asked key management for an SA and
294 * it was delayed (e.g. kicked up to IKE).
295 */
296 if (error == -EINVAL)
297 error = 0;
298 goto freehdrs;
299 }
300 }
301 #endif
302
303 if (needipsec &&
304 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
305 in6_delayed_cksum(m);
306 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
307 }
308
309 /*
310 * If we need IPsec, or there is at least one extension header,
311 * separate IP6 header from the payload.
312 */
313 if ((needipsec || optlen) && !hdrsplit) {
314 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
315 m = NULL;
316 goto freehdrs;
317 }
318 m = exthdrs.ip6e_ip6;
319 hdrsplit++;
320 }
321
322 /* adjust pointer */
323 ip6 = mtod(m, struct ip6_hdr *);
324
325 /* adjust mbuf packet header length */
326 m->m_pkthdr.len += optlen;
327 plen = m->m_pkthdr.len - sizeof(*ip6);
328
329 /* If this is a jumbo payload, insert a jumbo payload option. */
330 if (plen > IPV6_MAXPACKET) {
331 if (!hdrsplit) {
332 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
333 m = NULL;
334 goto freehdrs;
335 }
336 m = exthdrs.ip6e_ip6;
337 hdrsplit++;
338 }
339 /* adjust pointer */
340 ip6 = mtod(m, struct ip6_hdr *);
341 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
342 goto freehdrs;
343 optlen += 8; /* XXX JUMBOOPTLEN */
344 ip6->ip6_plen = 0;
345 } else
346 ip6->ip6_plen = htons(plen);
347
348 /*
349 * Concatenate headers and fill in next header fields.
350 * Here we have, on "m"
351 * IPv6 payload
352 * and we insert headers accordingly. Finally, we should be getting:
353 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
354 *
355 * during the header composing process, "m" points to IPv6 header.
356 * "mprev" points to an extension header prior to esp.
357 */
358 {
359 u_char *nexthdrp = &ip6->ip6_nxt;
360 struct mbuf *mprev = m;
361
362 /*
363 * we treat dest2 specially. this makes IPsec processing
364 * much easier. the goal here is to make mprev point the
365 * mbuf prior to dest2.
366 *
367 * result: IPv6 dest2 payload
368 * m and mprev will point to IPv6 header.
369 */
370 if (exthdrs.ip6e_dest2) {
371 if (!hdrsplit)
372 panic("assumption failed: hdr not split");
373 exthdrs.ip6e_dest2->m_next = m->m_next;
374 m->m_next = exthdrs.ip6e_dest2;
375 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
376 ip6->ip6_nxt = IPPROTO_DSTOPTS;
377 }
378
379 #define MAKE_CHAIN(m, mp, p, i)\
380 do {\
381 if (m) {\
382 if (!hdrsplit) \
383 panic("assumption failed: hdr not split"); \
384 *mtod((m), u_char *) = *(p);\
385 *(p) = (i);\
386 p = mtod((m), u_char *);\
387 (m)->m_next = (mp)->m_next;\
388 (mp)->m_next = (m);\
389 (mp) = (m);\
390 }\
391 } while (/*CONSTCOND*/ 0)
392 /*
393 * result: IPv6 hbh dest1 rthdr dest2 payload
394 * m will point to IPv6 header. mprev will point to the
395 * extension header prior to dest2 (rthdr in the above case).
396 */
397 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
398 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
399 IPPROTO_DSTOPTS);
400 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
401 IPPROTO_ROUTING);
402
403 M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data,
404 sizeof(struct ip6_hdr) + optlen);
405 }
406
407 /* Need to save for pmtu */
408 finaldst = ip6->ip6_dst;
409
410 /*
411 * If there is a routing header, replace destination address field
412 * with the first hop of the routing header.
413 */
414 if (exthdrs.ip6e_rthdr) {
415 struct ip6_rthdr *rh;
416
417 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
418
419 error = ip6_handle_rthdr(rh, ip6);
420 if (error != 0)
421 goto bad;
422 }
423
424 /* Source address validation */
425 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
426 (flags & IPV6_UNSPECSRC) == 0) {
427 error = EOPNOTSUPP;
428 IP6_STATINC(IP6_STAT_BADSCOPE);
429 goto bad;
430 }
431 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
432 error = EOPNOTSUPP;
433 IP6_STATINC(IP6_STAT_BADSCOPE);
434 goto bad;
435 }
436
437 IP6_STATINC(IP6_STAT_LOCALOUT);
438
439 /*
440 * Route packet.
441 */
442 /* initialize cached route */
443 if (ro == NULL) {
444 memset(&ip6route, 0, sizeof(ip6route));
445 ro = &ip6route;
446 }
447 ro_pmtu = ro;
448 if (opt && opt->ip6po_rthdr)
449 ro = &opt->ip6po_route;
450
451 /*
452 * if specified, try to fill in the traffic class field.
453 * do not override if a non-zero value is already set.
454 * we check the diffserv field and the ecn field separately.
455 */
456 if (opt && opt->ip6po_tclass >= 0) {
457 int mask = 0;
458
459 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
460 mask |= 0xfc;
461 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
462 mask |= 0x03;
463 if (mask != 0)
464 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
465 }
466
467 /* fill in or override the hop limit field, if necessary. */
468 if (opt && opt->ip6po_hlim != -1)
469 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
470 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
471 if (im6o != NULL)
472 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
473 else
474 ip6->ip6_hlim = ip6_defmcasthlim;
475 }
476
477 #ifdef IPSEC
478 if (needipsec) {
479 int s = splsoftnet();
480 error = ipsec6_process_packet(m, sp->req);
481 splx(s);
482
483 /*
484 * Preserve KAME behaviour: ENOENT can be returned
485 * when an SA acquire is in progress. Don't propagate
486 * this to user-level; it confuses applications.
487 * XXX this will go away when the SADB is redone.
488 */
489 if (error == ENOENT)
490 error = 0;
491
492 goto done;
493 }
494 #endif
495
496 /* adjust pointer */
497 ip6 = mtod(m, struct ip6_hdr *);
498
499 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
500
501 /* We do not need a route for multicast */
502 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
503 struct in6_pktinfo *pi = NULL;
504
505 /*
506 * If the outgoing interface for the address is specified by
507 * the caller, use it.
508 */
509 if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
510 /* XXX boundary check is assumed to be already done. */
511 ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
512 } else if (im6o != NULL) {
513 ifp = if_get_byindex(im6o->im6o_multicast_if_index,
514 &psref);
515 }
516 }
517
518 if (ifp == NULL) {
519 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
520 if (error != 0)
521 goto bad;
522 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
523 }
524
525 if (rt == NULL) {
526 /*
527 * If in6_selectroute() does not return a route entry,
528 * dst may not have been updated.
529 */
530 error = rtcache_setdst(ro, sin6tosa(&dst_sa));
531 if (error) {
532 goto bad;
533 }
534 }
535
536 /*
537 * then rt (for unicast) and ifp must be non-NULL valid values.
538 */
539 if ((flags & IPV6_FORWARDING) == 0) {
540 /* XXX: the FORWARDING flag can be set for mrouting. */
541 in6_ifstat_inc(ifp, ifs6_out_request);
542 }
543 if (rt != NULL) {
544 ia = (struct in6_ifaddr *)(rt->rt_ifa);
545 rt->rt_use++;
546 }
547
548 /*
549 * The outgoing interface must be in the zone of source and
550 * destination addresses. We should use ia_ifp to support the
551 * case of sending packets to an address of our own.
552 */
553 if (ia != NULL && ia->ia_ifp) {
554 origifp = ia->ia_ifp;
555 if (if_is_deactivated(origifp))
556 goto bad;
557 if_acquire(origifp, &psref_ia);
558 release_psref_ia = true;
559 } else
560 origifp = ifp;
561
562 src0 = ip6->ip6_src;
563 if (in6_setscope(&src0, origifp, &zone))
564 goto badscope;
565 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
566 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
567 goto badscope;
568
569 dst0 = ip6->ip6_dst;
570 if (in6_setscope(&dst0, origifp, &zone))
571 goto badscope;
572 /* re-initialize to be sure */
573 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
574 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
575 goto badscope;
576
577 /* scope check is done. */
578
579 /* Ensure we only send from a valid address. */
580 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
581 (error = ip6_ifaddrvalid(&src0, &dst0)) != 0)
582 {
583 char ip6buf[INET6_ADDRSTRLEN];
584 nd6log(LOG_ERR,
585 "refusing to send from invalid address %s (pid %d)\n",
586 IN6_PRINT(ip6buf, &src0), curproc->p_pid);
587 IP6_STATINC(IP6_STAT_ODROPPED);
588 in6_ifstat_inc(origifp, ifs6_out_discard);
589 if (error == 1)
590 /*
591 * Address exists, but is tentative or detached.
592 * We can't send from it because it's invalid,
593 * so we drop the packet.
594 */
595 error = 0;
596 else
597 error = EADDRNOTAVAIL;
598 goto bad;
599 }
600
601 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
602 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
603 dst = satocsin6(rt->rt_gateway);
604 else
605 dst = satocsin6(rtcache_getdst(ro));
606
607 /*
608 * XXXXXX: original code follows:
609 */
610 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
611 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
612 else {
613 bool ingroup;
614
615 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
616
617 in6_ifstat_inc(ifp, ifs6_out_mcast);
618
619 /*
620 * Confirm that the outgoing interface supports multicast.
621 */
622 if (!(ifp->if_flags & IFF_MULTICAST)) {
623 IP6_STATINC(IP6_STAT_NOROUTE);
624 in6_ifstat_inc(ifp, ifs6_out_discard);
625 error = ENETUNREACH;
626 goto bad;
627 }
628
629 ingroup = in6_multi_group(&ip6->ip6_dst, ifp);
630 if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) {
631 /*
632 * If we belong to the destination multicast group
633 * on the outgoing interface, and the caller did not
634 * forbid loopback, loop back a copy.
635 */
636 KASSERT(dst != NULL);
637 ip6_mloopback(ifp, m, dst);
638 } else {
639 /*
640 * If we are acting as a multicast router, perform
641 * multicast forwarding as if the packet had just
642 * arrived on the interface to which we are about
643 * to send. The multicast forwarding function
644 * recursively calls this function, using the
645 * IPV6_FORWARDING flag to prevent infinite recursion.
646 *
647 * Multicasts that are looped back by ip6_mloopback(),
648 * above, will be forwarded by the ip6_input() routine,
649 * if necessary.
650 */
651 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
652 if (ip6_mforward(ip6, ifp, m) != 0) {
653 m_freem(m);
654 goto done;
655 }
656 }
657 }
658 /*
659 * Multicasts with a hoplimit of zero may be looped back,
660 * above, but must not be transmitted on a network.
661 * Also, multicasts addressed to the loopback interface
662 * are not sent -- the above call to ip6_mloopback() will
663 * loop back a copy if this host actually belongs to the
664 * destination group on the loopback interface.
665 */
666 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
667 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
668 m_freem(m);
669 goto done;
670 }
671 }
672
673 /*
674 * Fill the outgoing inteface to tell the upper layer
675 * to increment per-interface statistics.
676 */
677 if (ifpp)
678 *ifpp = ifp;
679
680 /* Determine path MTU. */
681 /*
682 * ro_pmtu represent final destination while
683 * ro might represent immediate destination.
684 * Use ro_pmtu destination since MTU might differ.
685 */
686 if (ro_pmtu != ro) {
687 union {
688 struct sockaddr dst;
689 struct sockaddr_in6 dst6;
690 } u;
691
692 /* ro_pmtu may not have a cache */
693 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
694 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
695 } else
696 rt_pmtu = rt;
697 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
698 if (rt_pmtu != NULL && rt_pmtu != rt)
699 rtcache_unref(rt_pmtu, ro_pmtu);
700 if (error != 0)
701 goto bad;
702
703 /*
704 * The caller of this function may specify to use the minimum MTU
705 * in some cases.
706 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
707 * setting. The logic is a bit complicated; by default, unicast
708 * packets will follow path MTU while multicast packets will be sent at
709 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
710 * including unicast ones will be sent at the minimum MTU. Multicast
711 * packets will always be sent at the minimum MTU unless
712 * IP6PO_MINMTU_DISABLE is explicitly specified.
713 * See RFC 3542 for more details.
714 */
715 if (mtu > IPV6_MMTU) {
716 if ((flags & IPV6_MINMTU))
717 mtu = IPV6_MMTU;
718 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
719 mtu = IPV6_MMTU;
720 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
721 (opt == NULL ||
722 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
723 mtu = IPV6_MMTU;
724 }
725 }
726
727 /*
728 * clear embedded scope identifiers if necessary.
729 * in6_clearscope will touch the addresses only when necessary.
730 */
731 in6_clearscope(&ip6->ip6_src);
732 in6_clearscope(&ip6->ip6_dst);
733
734 /*
735 * If the outgoing packet contains a hop-by-hop options header,
736 * it must be examined and processed even by the source node.
737 * (RFC 2460, section 4.)
738 *
739 * XXX Is this really necessary?
740 */
741 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
742 u_int32_t dummy1; /* XXX unused */
743 u_int32_t dummy2; /* XXX unused */
744 int hoff = sizeof(struct ip6_hdr);
745
746 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
747 /* m was already freed at this point */
748 error = EINVAL;
749 goto done;
750 }
751
752 ip6 = mtod(m, struct ip6_hdr *);
753 }
754
755 /*
756 * Run through list of hooks for output packets.
757 */
758 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
759 goto done;
760 if (m == NULL)
761 goto done;
762 ip6 = mtod(m, struct ip6_hdr *);
763
764 /*
765 * Send the packet to the outgoing interface.
766 * If necessary, do IPv6 fragmentation before sending.
767 *
768 * the logic here is rather complex:
769 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
770 * 1-a: send as is if tlen <= path mtu
771 * 1-b: fragment if tlen > path mtu
772 *
773 * 2: if user asks us not to fragment (dontfrag == 1)
774 * 2-a: send as is if tlen <= interface mtu
775 * 2-b: error if tlen > interface mtu
776 *
777 * 3: if we always need to attach fragment header (alwaysfrag == 1)
778 * always fragment
779 *
780 * 4: if dontfrag == 1 && alwaysfrag == 1
781 * error, as we cannot handle this conflicting request
782 */
783 tlen = m->m_pkthdr.len;
784 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
785 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
786 dontfrag = 1;
787 else
788 dontfrag = 0;
789
790 if (dontfrag && alwaysfrag) { /* case 4 */
791 /* conflicting request - can't transmit */
792 error = EMSGSIZE;
793 goto bad;
794 }
795 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */
796 /*
797 * Even if the DONTFRAG option is specified, we cannot send the
798 * packet when the data length is larger than the MTU of the
799 * outgoing interface.
800 * Notify the error by sending IPV6_PATHMTU ancillary data as
801 * well as returning an error code (the latter is not described
802 * in the API spec.)
803 */
804 u_int32_t mtu32;
805 struct ip6ctlparam ip6cp;
806
807 mtu32 = (u_int32_t)mtu;
808 memset(&ip6cp, 0, sizeof(ip6cp));
809 ip6cp.ip6c_cmdarg = (void *)&mtu32;
810 pfctlinput2(PRC_MSGSIZE,
811 rtcache_getdst(ro_pmtu), &ip6cp);
812
813 error = EMSGSIZE;
814 goto bad;
815 }
816
817 /*
818 * transmit packet without fragmentation
819 */
820 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
821 /* case 1-a and 2-a */
822 struct in6_ifaddr *ia6;
823 int sw_csum;
824 int s;
825
826 ip6 = mtod(m, struct ip6_hdr *);
827 s = pserialize_read_enter();
828 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
829 if (ia6) {
830 /* Record statistics for this interface address. */
831 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
832 }
833 pserialize_read_exit(s);
834
835 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
836 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
837 if (IN6_NEED_CHECKSUM(ifp,
838 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
839 in6_delayed_cksum(m);
840 }
841 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
842 }
843
844 KASSERT(dst != NULL);
845 if (__predict_true(!tso ||
846 (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
847 error = ip6_if_output(ifp, origifp, m, dst, rt);
848 } else {
849 error = ip6_tso_output(ifp, origifp, m, dst, rt);
850 }
851 goto done;
852 }
853
854 if (tso) {
855 error = EINVAL; /* XXX */
856 goto bad;
857 }
858
859 /*
860 * try to fragment the packet. case 1-b and 3
861 */
862 if (mtu < IPV6_MMTU) {
863 /* path MTU cannot be less than IPV6_MMTU */
864 error = EMSGSIZE;
865 in6_ifstat_inc(ifp, ifs6_out_fragfail);
866 goto bad;
867 } else if (ip6->ip6_plen == 0) {
868 /* jumbo payload cannot be fragmented */
869 error = EMSGSIZE;
870 in6_ifstat_inc(ifp, ifs6_out_fragfail);
871 goto bad;
872 } else {
873 const u_int32_t id = htonl(ip6_randomid());
874 struct mbuf **mnext, *m_frgpart;
875 const int hlen = unfragpartlen;
876 struct ip6_frag *ip6f;
877 u_char nextproto;
878
879 if (mtu > IPV6_MAXPACKET)
880 mtu = IPV6_MAXPACKET;
881
882 /*
883 * Must be able to put at least 8 bytes per fragment.
884 */
885 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
886 if (len < 8) {
887 error = EMSGSIZE;
888 in6_ifstat_inc(ifp, ifs6_out_fragfail);
889 goto bad;
890 }
891
892 mnext = &m->m_nextpkt;
893
894 /*
895 * Change the next header field of the last header in the
896 * unfragmentable part.
897 */
898 if (exthdrs.ip6e_rthdr) {
899 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
900 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
901 } else if (exthdrs.ip6e_dest1) {
902 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
903 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
904 } else if (exthdrs.ip6e_hbh) {
905 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
906 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
907 } else {
908 nextproto = ip6->ip6_nxt;
909 ip6->ip6_nxt = IPPROTO_FRAGMENT;
910 }
911
912 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
913 != 0) {
914 if (IN6_NEED_CHECKSUM(ifp,
915 m->m_pkthdr.csum_flags &
916 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
917 in6_delayed_cksum(m);
918 }
919 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
920 }
921
922 /*
923 * Loop through length of segment after first fragment,
924 * make new header and copy data of each part and link onto
925 * chain.
926 */
927 m0 = m;
928 for (off = hlen; off < tlen; off += len) {
929 struct mbuf *mlast;
930
931 MGETHDR(m, M_DONTWAIT, MT_HEADER);
932 if (!m) {
933 error = ENOBUFS;
934 IP6_STATINC(IP6_STAT_ODROPPED);
935 goto sendorfree;
936 }
937 m_reset_rcvif(m);
938 m->m_flags = m0->m_flags & M_COPYFLAGS;
939 *mnext = m;
940 mnext = &m->m_nextpkt;
941 m->m_data += max_linkhdr;
942 mhip6 = mtod(m, struct ip6_hdr *);
943 *mhip6 = *ip6;
944 m->m_len = sizeof(*mhip6);
945
946 ip6f = NULL;
947 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
948 if (error) {
949 IP6_STATINC(IP6_STAT_ODROPPED);
950 goto sendorfree;
951 }
952
953 /* Fill in the Frag6 Header */
954 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
955 if (off + len >= tlen)
956 len = tlen - off;
957 else
958 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
959 ip6f->ip6f_reserved = 0;
960 ip6f->ip6f_ident = id;
961 ip6f->ip6f_nxt = nextproto;
962
963 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
964 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
965 if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) {
966 error = ENOBUFS;
967 IP6_STATINC(IP6_STAT_ODROPPED);
968 goto sendorfree;
969 }
970 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
971 ;
972 mlast->m_next = m_frgpart;
973
974 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
975 m_reset_rcvif(m);
976 IP6_STATINC(IP6_STAT_OFRAGMENTS);
977 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
978 }
979
980 in6_ifstat_inc(ifp, ifs6_out_fragok);
981 }
982
983 sendorfree:
984 m = m0->m_nextpkt;
985 m0->m_nextpkt = 0;
986 m_freem(m0);
987 for (m0 = m; m; m = m0) {
988 m0 = m->m_nextpkt;
989 m->m_nextpkt = 0;
990 if (error == 0) {
991 struct in6_ifaddr *ia6;
992 int s;
993 ip6 = mtod(m, struct ip6_hdr *);
994 s = pserialize_read_enter();
995 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
996 if (ia6) {
997 /*
998 * Record statistics for this interface
999 * address.
1000 */
1001 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1002 m->m_pkthdr.len;
1003 }
1004 pserialize_read_exit(s);
1005 KASSERT(dst != NULL);
1006 error = ip6_if_output(ifp, origifp, m, dst, rt);
1007 } else
1008 m_freem(m);
1009 }
1010
1011 if (error == 0)
1012 IP6_STATINC(IP6_STAT_FRAGMENTED);
1013
1014 done:
1015 rtcache_unref(rt, ro);
1016 if (ro == &ip6route)
1017 rtcache_free(&ip6route);
1018 #ifdef IPSEC
1019 if (sp != NULL)
1020 KEY_SP_UNREF(&sp);
1021 #endif
1022 if_put(ifp, &psref);
1023 if (release_psref_ia)
1024 if_put(origifp, &psref_ia);
1025 curlwp_bindx(bound);
1026
1027 return error;
1028
1029 freehdrs:
1030 m_freem(exthdrs.ip6e_hbh);
1031 m_freem(exthdrs.ip6e_dest1);
1032 m_freem(exthdrs.ip6e_rthdr);
1033 m_freem(exthdrs.ip6e_dest2);
1034 /* FALLTHROUGH */
1035 bad:
1036 m_freem(m);
1037 goto done;
1038
1039 badscope:
1040 IP6_STATINC(IP6_STAT_BADSCOPE);
1041 in6_ifstat_inc(origifp, ifs6_out_discard);
1042 if (error == 0)
1043 error = EHOSTUNREACH; /* XXX */
1044 goto bad;
1045 }
1046
1047 static int
1048 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1049 {
1050 struct mbuf *m;
1051
1052 if (hlen > MCLBYTES)
1053 return ENOBUFS; /* XXX */
1054
1055 MGET(m, M_DONTWAIT, MT_DATA);
1056 if (!m)
1057 return ENOBUFS;
1058
1059 if (hlen > MLEN) {
1060 MCLGET(m, M_DONTWAIT);
1061 if ((m->m_flags & M_EXT) == 0) {
1062 m_free(m);
1063 return ENOBUFS;
1064 }
1065 }
1066 m->m_len = hlen;
1067 if (hdr)
1068 memcpy(mtod(m, void *), hdr, hlen);
1069
1070 *mp = m;
1071 return 0;
1072 }
1073
1074 /*
1075 * Process a delayed payload checksum calculation.
1076 */
1077 void
1078 in6_delayed_cksum(struct mbuf *m)
1079 {
1080 uint16_t csum, offset;
1081
1082 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1083 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1084 KASSERT((m->m_pkthdr.csum_flags
1085 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1086
1087 offset = M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
1088 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1089 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1090 csum = 0xffff;
1091 }
1092
1093 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1094 if ((offset + sizeof(csum)) > m->m_len) {
1095 m_copyback(m, offset, sizeof(csum), &csum);
1096 } else {
1097 *(uint16_t *)(mtod(m, char *) + offset) = csum;
1098 }
1099 }
1100
1101 /*
1102 * Insert jumbo payload option.
1103 */
1104 static int
1105 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1106 {
1107 struct mbuf *mopt;
1108 u_int8_t *optbuf;
1109 u_int32_t v;
1110
1111 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1112
1113 /*
1114 * If there is no hop-by-hop options header, allocate new one.
1115 * If there is one but it doesn't have enough space to store the
1116 * jumbo payload option, allocate a cluster to store the whole options.
1117 * Otherwise, use it to store the options.
1118 */
1119 if (exthdrs->ip6e_hbh == NULL) {
1120 MGET(mopt, M_DONTWAIT, MT_DATA);
1121 if (mopt == 0)
1122 return (ENOBUFS);
1123 mopt->m_len = JUMBOOPTLEN;
1124 optbuf = mtod(mopt, u_int8_t *);
1125 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1126 exthdrs->ip6e_hbh = mopt;
1127 } else {
1128 struct ip6_hbh *hbh;
1129
1130 mopt = exthdrs->ip6e_hbh;
1131 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1132 const int oldoptlen = mopt->m_len;
1133 struct mbuf *n;
1134
1135 /*
1136 * Assumptions:
1137 * - exthdrs->ip6e_hbh is not referenced from places
1138 * other than exthdrs.
1139 * - exthdrs->ip6e_hbh is not an mbuf chain.
1140 */
1141 KASSERT(mopt->m_next == NULL);
1142
1143 /*
1144 * Give up if the whole (new) hbh header does not fit
1145 * even in an mbuf cluster.
1146 */
1147 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1148 return ENOBUFS;
1149
1150 /*
1151 * At this point, we must always prepare a cluster.
1152 */
1153 MGET(n, M_DONTWAIT, MT_DATA);
1154 if (n) {
1155 MCLGET(n, M_DONTWAIT);
1156 if ((n->m_flags & M_EXT) == 0) {
1157 m_freem(n);
1158 n = NULL;
1159 }
1160 }
1161 if (!n)
1162 return ENOBUFS;
1163
1164 n->m_len = oldoptlen + JUMBOOPTLEN;
1165 bcopy(mtod(mopt, void *), mtod(n, void *),
1166 oldoptlen);
1167 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1168 m_freem(mopt);
1169 mopt = exthdrs->ip6e_hbh = n;
1170 } else {
1171 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1172 mopt->m_len += JUMBOOPTLEN;
1173 }
1174 optbuf[0] = IP6OPT_PADN;
1175 optbuf[1] = 0;
1176
1177 /*
1178 * Adjust the header length according to the pad and
1179 * the jumbo payload option.
1180 */
1181 hbh = mtod(mopt, struct ip6_hbh *);
1182 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1183 }
1184
1185 /* fill in the option. */
1186 optbuf[2] = IP6OPT_JUMBO;
1187 optbuf[3] = 4;
1188 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1189 memcpy(&optbuf[4], &v, sizeof(u_int32_t));
1190
1191 /* finally, adjust the packet header length */
1192 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1193
1194 return 0;
1195 #undef JUMBOOPTLEN
1196 }
1197
1198 /*
1199 * Insert fragment header and copy unfragmentable header portions.
1200 *
1201 * *frghdrp will not be read, and it is guaranteed that either an
1202 * error is returned or that *frghdrp will point to space allocated
1203 * for the fragment header.
1204 *
1205 * On entry, m contains:
1206 * IPv6 Header
1207 * On exit, it contains:
1208 * IPv6 Header -> Unfragmentable Part -> Frag6 Header
1209 */
1210 static int
1211 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1212 struct ip6_frag **frghdrp)
1213 {
1214 struct mbuf *n, *mlast;
1215
1216 if (hlen > sizeof(struct ip6_hdr)) {
1217 n = m_copym(m0, sizeof(struct ip6_hdr),
1218 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1219 if (n == NULL)
1220 return ENOBUFS;
1221 m->m_next = n;
1222 } else
1223 n = m;
1224
1225 /* Search for the last mbuf of unfragmentable part. */
1226 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1227 ;
1228
1229 if ((mlast->m_flags & M_EXT) == 0 &&
1230 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1231 /* use the trailing space of the last mbuf for the fragment hdr */
1232 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1233 mlast->m_len);
1234 mlast->m_len += sizeof(struct ip6_frag);
1235 } else {
1236 /* allocate a new mbuf for the fragment header */
1237 struct mbuf *mfrg;
1238
1239 MGET(mfrg, M_DONTWAIT, MT_DATA);
1240 if (mfrg == NULL)
1241 return ENOBUFS;
1242 mfrg->m_len = sizeof(struct ip6_frag);
1243 *frghdrp = mtod(mfrg, struct ip6_frag *);
1244 mlast->m_next = mfrg;
1245 }
1246
1247 return 0;
1248 }
1249
1250 static int
1251 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
1252 int *alwaysfragp)
1253 {
1254 u_int32_t mtu = 0;
1255 int alwaysfrag = 0;
1256 int error = 0;
1257
1258 if (rt != NULL) {
1259 u_int32_t ifmtu;
1260
1261 if (ifp == NULL)
1262 ifp = rt->rt_ifp;
1263 ifmtu = IN6_LINKMTU(ifp);
1264 mtu = rt->rt_rmx.rmx_mtu;
1265 if (mtu == 0)
1266 mtu = ifmtu;
1267 else if (mtu < IPV6_MMTU) {
1268 /*
1269 * RFC2460 section 5, last paragraph:
1270 * if we record ICMPv6 too big message with
1271 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1272 * or smaller, with fragment header attached.
1273 * (fragment header is needed regardless from the
1274 * packet size, for translators to identify packets)
1275 */
1276 alwaysfrag = 1;
1277 mtu = IPV6_MMTU;
1278 } else if (mtu > ifmtu) {
1279 /*
1280 * The MTU on the route is larger than the MTU on
1281 * the interface! This shouldn't happen, unless the
1282 * MTU of the interface has been changed after the
1283 * interface was brought up. Change the MTU in the
1284 * route to match the interface MTU (as long as the
1285 * field isn't locked).
1286 */
1287 mtu = ifmtu;
1288 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1289 rt->rt_rmx.rmx_mtu = mtu;
1290 }
1291 } else if (ifp) {
1292 mtu = IN6_LINKMTU(ifp);
1293 } else
1294 error = EHOSTUNREACH; /* XXX */
1295
1296 *mtup = mtu;
1297 if (alwaysfragp)
1298 *alwaysfragp = alwaysfrag;
1299 return (error);
1300 }
1301
1302 /*
1303 * IP6 socket option processing.
1304 */
1305 int
1306 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1307 {
1308 int optdatalen, uproto;
1309 void *optdata;
1310 struct in6pcb *in6p = sotoin6pcb(so);
1311 struct ip_moptions **mopts;
1312 int error, optval;
1313 int level, optname;
1314
1315 KASSERT(solocked(so));
1316 KASSERT(sopt != NULL);
1317
1318 level = sopt->sopt_level;
1319 optname = sopt->sopt_name;
1320
1321 error = optval = 0;
1322 uproto = (int)so->so_proto->pr_protocol;
1323
1324 switch (level) {
1325 case IPPROTO_IP:
1326 switch (optname) {
1327 case IP_ADD_MEMBERSHIP:
1328 case IP_DROP_MEMBERSHIP:
1329 case IP_MULTICAST_IF:
1330 case IP_MULTICAST_LOOP:
1331 case IP_MULTICAST_TTL:
1332 mopts = &in6p->in6p_v4moptions;
1333 switch (op) {
1334 case PRCO_GETOPT:
1335 return ip_getmoptions(*mopts, sopt);
1336 case PRCO_SETOPT:
1337 return ip_setmoptions(mopts, sopt);
1338 default:
1339 return EINVAL;
1340 }
1341 default:
1342 return ENOPROTOOPT;
1343 }
1344 case IPPROTO_IPV6:
1345 break;
1346 default:
1347 return ENOPROTOOPT;
1348 }
1349 switch (op) {
1350 case PRCO_SETOPT:
1351 switch (optname) {
1352 #ifdef RFC2292
1353 case IPV6_2292PKTOPTIONS:
1354 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
1355 break;
1356 #endif
1357
1358 /*
1359 * Use of some Hop-by-Hop options or some
1360 * Destination options, might require special
1361 * privilege. That is, normal applications
1362 * (without special privilege) might be forbidden
1363 * from setting certain options in outgoing packets,
1364 * and might never see certain options in received
1365 * packets. [RFC 2292 Section 6]
1366 * KAME specific note:
1367 * KAME prevents non-privileged users from sending or
1368 * receiving ANY hbh/dst options in order to avoid
1369 * overhead of parsing options in the kernel.
1370 */
1371 case IPV6_RECVHOPOPTS:
1372 case IPV6_RECVDSTOPTS:
1373 case IPV6_RECVRTHDRDSTOPTS:
1374 error = kauth_authorize_network(kauth_cred_get(),
1375 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
1376 NULL, NULL, NULL);
1377 if (error)
1378 break;
1379 /* FALLTHROUGH */
1380 case IPV6_UNICAST_HOPS:
1381 case IPV6_HOPLIMIT:
1382 case IPV6_FAITH:
1383
1384 case IPV6_RECVPKTINFO:
1385 case IPV6_RECVHOPLIMIT:
1386 case IPV6_RECVRTHDR:
1387 case IPV6_RECVPATHMTU:
1388 case IPV6_RECVTCLASS:
1389 case IPV6_V6ONLY:
1390 error = sockopt_getint(sopt, &optval);
1391 if (error)
1392 break;
1393 switch (optname) {
1394 case IPV6_UNICAST_HOPS:
1395 if (optval < -1 || optval >= 256)
1396 error = EINVAL;
1397 else {
1398 /* -1 = kernel default */
1399 in6p->in6p_hops = optval;
1400 }
1401 break;
1402 #define OPTSET(bit) \
1403 do { \
1404 if (optval) \
1405 in6p->in6p_flags |= (bit); \
1406 else \
1407 in6p->in6p_flags &= ~(bit); \
1408 } while (/*CONSTCOND*/ 0)
1409
1410 #ifdef RFC2292
1411 #define OPTSET2292(bit) \
1412 do { \
1413 in6p->in6p_flags |= IN6P_RFC2292; \
1414 if (optval) \
1415 in6p->in6p_flags |= (bit); \
1416 else \
1417 in6p->in6p_flags &= ~(bit); \
1418 } while (/*CONSTCOND*/ 0)
1419 #endif
1420
1421 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1422
1423 case IPV6_RECVPKTINFO:
1424 #ifdef RFC2292
1425 /* cannot mix with RFC2292 */
1426 if (OPTBIT(IN6P_RFC2292)) {
1427 error = EINVAL;
1428 break;
1429 }
1430 #endif
1431 OPTSET(IN6P_PKTINFO);
1432 break;
1433
1434 case IPV6_HOPLIMIT:
1435 {
1436 struct ip6_pktopts **optp;
1437
1438 #ifdef RFC2292
1439 /* cannot mix with RFC2292 */
1440 if (OPTBIT(IN6P_RFC2292)) {
1441 error = EINVAL;
1442 break;
1443 }
1444 #endif
1445 optp = &in6p->in6p_outputopts;
1446 error = ip6_pcbopt(IPV6_HOPLIMIT,
1447 (u_char *)&optval,
1448 sizeof(optval),
1449 optp,
1450 kauth_cred_get(), uproto);
1451 break;
1452 }
1453
1454 case IPV6_RECVHOPLIMIT:
1455 #ifdef RFC2292
1456 /* cannot mix with RFC2292 */
1457 if (OPTBIT(IN6P_RFC2292)) {
1458 error = EINVAL;
1459 break;
1460 }
1461 #endif
1462 OPTSET(IN6P_HOPLIMIT);
1463 break;
1464
1465 case IPV6_RECVHOPOPTS:
1466 #ifdef RFC2292
1467 /* cannot mix with RFC2292 */
1468 if (OPTBIT(IN6P_RFC2292)) {
1469 error = EINVAL;
1470 break;
1471 }
1472 #endif
1473 OPTSET(IN6P_HOPOPTS);
1474 break;
1475
1476 case IPV6_RECVDSTOPTS:
1477 #ifdef RFC2292
1478 /* cannot mix with RFC2292 */
1479 if (OPTBIT(IN6P_RFC2292)) {
1480 error = EINVAL;
1481 break;
1482 }
1483 #endif
1484 OPTSET(IN6P_DSTOPTS);
1485 break;
1486
1487 case IPV6_RECVRTHDRDSTOPTS:
1488 #ifdef RFC2292
1489 /* cannot mix with RFC2292 */
1490 if (OPTBIT(IN6P_RFC2292)) {
1491 error = EINVAL;
1492 break;
1493 }
1494 #endif
1495 OPTSET(IN6P_RTHDRDSTOPTS);
1496 break;
1497
1498 case IPV6_RECVRTHDR:
1499 #ifdef RFC2292
1500 /* cannot mix with RFC2292 */
1501 if (OPTBIT(IN6P_RFC2292)) {
1502 error = EINVAL;
1503 break;
1504 }
1505 #endif
1506 OPTSET(IN6P_RTHDR);
1507 break;
1508
1509 case IPV6_FAITH:
1510 OPTSET(IN6P_FAITH);
1511 break;
1512
1513 case IPV6_RECVPATHMTU:
1514 /*
1515 * We ignore this option for TCP
1516 * sockets.
1517 * (RFC3542 leaves this case
1518 * unspecified.)
1519 */
1520 if (uproto != IPPROTO_TCP)
1521 OPTSET(IN6P_MTU);
1522 break;
1523
1524 case IPV6_V6ONLY:
1525 /*
1526 * make setsockopt(IPV6_V6ONLY)
1527 * available only prior to bind(2).
1528 * see ipng mailing list, Jun 22 2001.
1529 */
1530 if (in6p->in6p_lport ||
1531 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1532 error = EINVAL;
1533 break;
1534 }
1535 #ifdef INET6_BINDV6ONLY
1536 if (!optval)
1537 error = EINVAL;
1538 #else
1539 OPTSET(IN6P_IPV6_V6ONLY);
1540 #endif
1541 break;
1542 case IPV6_RECVTCLASS:
1543 #ifdef RFC2292
1544 /* cannot mix with RFC2292 XXX */
1545 if (OPTBIT(IN6P_RFC2292)) {
1546 error = EINVAL;
1547 break;
1548 }
1549 #endif
1550 OPTSET(IN6P_TCLASS);
1551 break;
1552
1553 }
1554 break;
1555
1556 case IPV6_OTCLASS:
1557 {
1558 struct ip6_pktopts **optp;
1559 u_int8_t tclass;
1560
1561 error = sockopt_get(sopt, &tclass, sizeof(tclass));
1562 if (error)
1563 break;
1564 optp = &in6p->in6p_outputopts;
1565 error = ip6_pcbopt(optname,
1566 (u_char *)&tclass,
1567 sizeof(tclass),
1568 optp,
1569 kauth_cred_get(), uproto);
1570 break;
1571 }
1572
1573 case IPV6_TCLASS:
1574 case IPV6_DONTFRAG:
1575 case IPV6_USE_MIN_MTU:
1576 case IPV6_PREFER_TEMPADDR:
1577 error = sockopt_getint(sopt, &optval);
1578 if (error)
1579 break;
1580 {
1581 struct ip6_pktopts **optp;
1582 optp = &in6p->in6p_outputopts;
1583 error = ip6_pcbopt(optname,
1584 (u_char *)&optval,
1585 sizeof(optval),
1586 optp,
1587 kauth_cred_get(), uproto);
1588 break;
1589 }
1590
1591 #ifdef RFC2292
1592 case IPV6_2292PKTINFO:
1593 case IPV6_2292HOPLIMIT:
1594 case IPV6_2292HOPOPTS:
1595 case IPV6_2292DSTOPTS:
1596 case IPV6_2292RTHDR:
1597 /* RFC 2292 */
1598 error = sockopt_getint(sopt, &optval);
1599 if (error)
1600 break;
1601
1602 switch (optname) {
1603 case IPV6_2292PKTINFO:
1604 OPTSET2292(IN6P_PKTINFO);
1605 break;
1606 case IPV6_2292HOPLIMIT:
1607 OPTSET2292(IN6P_HOPLIMIT);
1608 break;
1609 case IPV6_2292HOPOPTS:
1610 /*
1611 * Check super-user privilege.
1612 * See comments for IPV6_RECVHOPOPTS.
1613 */
1614 error =
1615 kauth_authorize_network(kauth_cred_get(),
1616 KAUTH_NETWORK_IPV6,
1617 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1618 NULL, NULL);
1619 if (error)
1620 return (error);
1621 OPTSET2292(IN6P_HOPOPTS);
1622 break;
1623 case IPV6_2292DSTOPTS:
1624 error =
1625 kauth_authorize_network(kauth_cred_get(),
1626 KAUTH_NETWORK_IPV6,
1627 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1628 NULL, NULL);
1629 if (error)
1630 return (error);
1631 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1632 break;
1633 case IPV6_2292RTHDR:
1634 OPTSET2292(IN6P_RTHDR);
1635 break;
1636 }
1637 break;
1638 #endif
1639 case IPV6_PKTINFO:
1640 case IPV6_HOPOPTS:
1641 case IPV6_RTHDR:
1642 case IPV6_DSTOPTS:
1643 case IPV6_RTHDRDSTOPTS:
1644 case IPV6_NEXTHOP: {
1645 /* new advanced API (RFC3542) */
1646 void *optbuf;
1647 int optbuflen;
1648 struct ip6_pktopts **optp;
1649
1650 #ifdef RFC2292
1651 /* cannot mix with RFC2292 */
1652 if (OPTBIT(IN6P_RFC2292)) {
1653 error = EINVAL;
1654 break;
1655 }
1656 #endif
1657
1658 optbuflen = sopt->sopt_size;
1659 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1660 if (optbuf == NULL) {
1661 error = ENOBUFS;
1662 break;
1663 }
1664
1665 error = sockopt_get(sopt, optbuf, optbuflen);
1666 if (error) {
1667 free(optbuf, M_IP6OPT);
1668 break;
1669 }
1670 optp = &in6p->in6p_outputopts;
1671 error = ip6_pcbopt(optname, optbuf, optbuflen,
1672 optp, kauth_cred_get(), uproto);
1673
1674 free(optbuf, M_IP6OPT);
1675 break;
1676 }
1677 #undef OPTSET
1678
1679 case IPV6_MULTICAST_IF:
1680 case IPV6_MULTICAST_HOPS:
1681 case IPV6_MULTICAST_LOOP:
1682 case IPV6_JOIN_GROUP:
1683 case IPV6_LEAVE_GROUP:
1684 error = ip6_setmoptions(sopt, in6p);
1685 break;
1686
1687 case IPV6_PORTRANGE:
1688 error = sockopt_getint(sopt, &optval);
1689 if (error)
1690 break;
1691
1692 switch (optval) {
1693 case IPV6_PORTRANGE_DEFAULT:
1694 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1695 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1696 break;
1697
1698 case IPV6_PORTRANGE_HIGH:
1699 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1700 in6p->in6p_flags |= IN6P_HIGHPORT;
1701 break;
1702
1703 case IPV6_PORTRANGE_LOW:
1704 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1705 in6p->in6p_flags |= IN6P_LOWPORT;
1706 break;
1707
1708 default:
1709 error = EINVAL;
1710 break;
1711 }
1712 break;
1713
1714 case IPV6_PORTALGO:
1715 error = sockopt_getint(sopt, &optval);
1716 if (error)
1717 break;
1718
1719 error = portalgo_algo_index_select(
1720 (struct inpcb_hdr *)in6p, optval);
1721 break;
1722
1723 #if defined(IPSEC)
1724 case IPV6_IPSEC_POLICY:
1725 if (ipsec_enabled) {
1726 error = ipsec_set_policy(in6p,
1727 sopt->sopt_data, sopt->sopt_size,
1728 kauth_cred_get());
1729 break;
1730 }
1731 /*FALLTHROUGH*/
1732 #endif /* IPSEC */
1733
1734 default:
1735 error = ENOPROTOOPT;
1736 break;
1737 }
1738 break;
1739
1740 case PRCO_GETOPT:
1741 switch (optname) {
1742 #ifdef RFC2292
1743 case IPV6_2292PKTOPTIONS:
1744 /*
1745 * RFC3542 (effectively) deprecated the
1746 * semantics of the 2292-style pktoptions.
1747 * Since it was not reliable in nature (i.e.,
1748 * applications had to expect the lack of some
1749 * information after all), it would make sense
1750 * to simplify this part by always returning
1751 * empty data.
1752 */
1753 break;
1754 #endif
1755
1756 case IPV6_RECVHOPOPTS:
1757 case IPV6_RECVDSTOPTS:
1758 case IPV6_RECVRTHDRDSTOPTS:
1759 case IPV6_UNICAST_HOPS:
1760 case IPV6_RECVPKTINFO:
1761 case IPV6_RECVHOPLIMIT:
1762 case IPV6_RECVRTHDR:
1763 case IPV6_RECVPATHMTU:
1764
1765 case IPV6_FAITH:
1766 case IPV6_V6ONLY:
1767 case IPV6_PORTRANGE:
1768 case IPV6_RECVTCLASS:
1769 switch (optname) {
1770
1771 case IPV6_RECVHOPOPTS:
1772 optval = OPTBIT(IN6P_HOPOPTS);
1773 break;
1774
1775 case IPV6_RECVDSTOPTS:
1776 optval = OPTBIT(IN6P_DSTOPTS);
1777 break;
1778
1779 case IPV6_RECVRTHDRDSTOPTS:
1780 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1781 break;
1782
1783 case IPV6_UNICAST_HOPS:
1784 optval = in6p->in6p_hops;
1785 break;
1786
1787 case IPV6_RECVPKTINFO:
1788 optval = OPTBIT(IN6P_PKTINFO);
1789 break;
1790
1791 case IPV6_RECVHOPLIMIT:
1792 optval = OPTBIT(IN6P_HOPLIMIT);
1793 break;
1794
1795 case IPV6_RECVRTHDR:
1796 optval = OPTBIT(IN6P_RTHDR);
1797 break;
1798
1799 case IPV6_RECVPATHMTU:
1800 optval = OPTBIT(IN6P_MTU);
1801 break;
1802
1803 case IPV6_FAITH:
1804 optval = OPTBIT(IN6P_FAITH);
1805 break;
1806
1807 case IPV6_V6ONLY:
1808 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1809 break;
1810
1811 case IPV6_PORTRANGE:
1812 {
1813 int flags;
1814 flags = in6p->in6p_flags;
1815 if (flags & IN6P_HIGHPORT)
1816 optval = IPV6_PORTRANGE_HIGH;
1817 else if (flags & IN6P_LOWPORT)
1818 optval = IPV6_PORTRANGE_LOW;
1819 else
1820 optval = 0;
1821 break;
1822 }
1823 case IPV6_RECVTCLASS:
1824 optval = OPTBIT(IN6P_TCLASS);
1825 break;
1826
1827 }
1828 if (error)
1829 break;
1830 error = sockopt_setint(sopt, optval);
1831 break;
1832
1833 case IPV6_PATHMTU:
1834 {
1835 u_long pmtu = 0;
1836 struct ip6_mtuinfo mtuinfo;
1837 struct route *ro = &in6p->in6p_route;
1838 struct rtentry *rt;
1839 union {
1840 struct sockaddr dst;
1841 struct sockaddr_in6 dst6;
1842 } u;
1843
1844 if (!(so->so_state & SS_ISCONNECTED))
1845 return (ENOTCONN);
1846 /*
1847 * XXX: we dot not consider the case of source
1848 * routing, or optional information to specify
1849 * the outgoing interface.
1850 */
1851 sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0);
1852 rt = rtcache_lookup(ro, &u.dst);
1853 error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
1854 rtcache_unref(rt, ro);
1855 if (error)
1856 break;
1857 if (pmtu > IPV6_MAXPACKET)
1858 pmtu = IPV6_MAXPACKET;
1859
1860 memset(&mtuinfo, 0, sizeof(mtuinfo));
1861 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1862 optdata = (void *)&mtuinfo;
1863 optdatalen = sizeof(mtuinfo);
1864 if (optdatalen > MCLBYTES)
1865 return (EMSGSIZE); /* XXX */
1866 error = sockopt_set(sopt, optdata, optdatalen);
1867 break;
1868 }
1869
1870 #ifdef RFC2292
1871 case IPV6_2292PKTINFO:
1872 case IPV6_2292HOPLIMIT:
1873 case IPV6_2292HOPOPTS:
1874 case IPV6_2292RTHDR:
1875 case IPV6_2292DSTOPTS:
1876 switch (optname) {
1877 case IPV6_2292PKTINFO:
1878 optval = OPTBIT(IN6P_PKTINFO);
1879 break;
1880 case IPV6_2292HOPLIMIT:
1881 optval = OPTBIT(IN6P_HOPLIMIT);
1882 break;
1883 case IPV6_2292HOPOPTS:
1884 optval = OPTBIT(IN6P_HOPOPTS);
1885 break;
1886 case IPV6_2292RTHDR:
1887 optval = OPTBIT(IN6P_RTHDR);
1888 break;
1889 case IPV6_2292DSTOPTS:
1890 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1891 break;
1892 }
1893 error = sockopt_setint(sopt, optval);
1894 break;
1895 #endif
1896 case IPV6_PKTINFO:
1897 case IPV6_HOPOPTS:
1898 case IPV6_RTHDR:
1899 case IPV6_DSTOPTS:
1900 case IPV6_RTHDRDSTOPTS:
1901 case IPV6_NEXTHOP:
1902 case IPV6_OTCLASS:
1903 case IPV6_TCLASS:
1904 case IPV6_DONTFRAG:
1905 case IPV6_USE_MIN_MTU:
1906 case IPV6_PREFER_TEMPADDR:
1907 error = ip6_getpcbopt(in6p->in6p_outputopts,
1908 optname, sopt);
1909 break;
1910
1911 case IPV6_MULTICAST_IF:
1912 case IPV6_MULTICAST_HOPS:
1913 case IPV6_MULTICAST_LOOP:
1914 case IPV6_JOIN_GROUP:
1915 case IPV6_LEAVE_GROUP:
1916 error = ip6_getmoptions(sopt, in6p);
1917 break;
1918
1919 case IPV6_PORTALGO:
1920 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
1921 error = sockopt_setint(sopt, optval);
1922 break;
1923
1924 #if defined(IPSEC)
1925 case IPV6_IPSEC_POLICY:
1926 if (ipsec_used) {
1927 struct mbuf *m = NULL;
1928
1929 /*
1930 * XXX: this will return EINVAL as sopt is
1931 * empty
1932 */
1933 error = ipsec_get_policy(in6p, sopt->sopt_data,
1934 sopt->sopt_size, &m);
1935 if (!error)
1936 error = sockopt_setmbuf(sopt, m);
1937 break;
1938 }
1939 /*FALLTHROUGH*/
1940 #endif /* IPSEC */
1941
1942 default:
1943 error = ENOPROTOOPT;
1944 break;
1945 }
1946 break;
1947 }
1948 return (error);
1949 }
1950
1951 int
1952 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1953 {
1954 int error = 0, optval;
1955 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1956 struct in6pcb *in6p = sotoin6pcb(so);
1957 int level, optname;
1958
1959 KASSERT(sopt != NULL);
1960
1961 level = sopt->sopt_level;
1962 optname = sopt->sopt_name;
1963
1964 if (level != IPPROTO_IPV6) {
1965 return ENOPROTOOPT;
1966 }
1967
1968 switch (optname) {
1969 case IPV6_CHECKSUM:
1970 /*
1971 * For ICMPv6 sockets, no modification allowed for checksum
1972 * offset, permit "no change" values to help existing apps.
1973 *
1974 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
1975 * for an ICMPv6 socket will fail." The current
1976 * behavior does not meet RFC3542.
1977 */
1978 switch (op) {
1979 case PRCO_SETOPT:
1980 error = sockopt_getint(sopt, &optval);
1981 if (error)
1982 break;
1983 if ((optval % 2) != 0) {
1984 /* the API assumes even offset values */
1985 error = EINVAL;
1986 } else if (so->so_proto->pr_protocol ==
1987 IPPROTO_ICMPV6) {
1988 if (optval != icmp6off)
1989 error = EINVAL;
1990 } else
1991 in6p->in6p_cksum = optval;
1992 break;
1993
1994 case PRCO_GETOPT:
1995 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1996 optval = icmp6off;
1997 else
1998 optval = in6p->in6p_cksum;
1999
2000 error = sockopt_setint(sopt, optval);
2001 break;
2002
2003 default:
2004 error = EINVAL;
2005 break;
2006 }
2007 break;
2008
2009 default:
2010 error = ENOPROTOOPT;
2011 break;
2012 }
2013
2014 return (error);
2015 }
2016
2017 #ifdef RFC2292
2018 /*
2019 * Set up IP6 options in pcb for insertion in output packets or
2020 * specifying behavior of outgoing packets.
2021 */
2022 static int
2023 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
2024 struct sockopt *sopt)
2025 {
2026 struct ip6_pktopts *opt = *pktopt;
2027 struct mbuf *m;
2028 int error = 0;
2029
2030 KASSERT(solocked(so));
2031
2032 /* turn off any old options. */
2033 if (opt) {
2034 #ifdef DIAGNOSTIC
2035 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2036 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2037 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2038 printf("ip6_pcbopts: all specified options are cleared.\n");
2039 #endif
2040 ip6_clearpktopts(opt, -1);
2041 } else {
2042 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2043 if (opt == NULL)
2044 return (ENOBUFS);
2045 }
2046 *pktopt = NULL;
2047
2048 if (sopt == NULL || sopt->sopt_size == 0) {
2049 /*
2050 * Only turning off any previous options, regardless of
2051 * whether the opt is just created or given.
2052 */
2053 free(opt, M_IP6OPT);
2054 return (0);
2055 }
2056
2057 /* set options specified by user. */
2058 m = sockopt_getmbuf(sopt);
2059 if (m == NULL) {
2060 free(opt, M_IP6OPT);
2061 return (ENOBUFS);
2062 }
2063
2064 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
2065 so->so_proto->pr_protocol);
2066 m_freem(m);
2067 if (error != 0) {
2068 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2069 free(opt, M_IP6OPT);
2070 return (error);
2071 }
2072 *pktopt = opt;
2073 return (0);
2074 }
2075 #endif
2076
2077 /*
2078 * initialize ip6_pktopts. beware that there are non-zero default values in
2079 * the struct.
2080 */
2081 void
2082 ip6_initpktopts(struct ip6_pktopts *opt)
2083 {
2084
2085 memset(opt, 0, sizeof(*opt));
2086 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2087 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2088 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2089 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2090 }
2091
2092 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2093 static int
2094 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2095 kauth_cred_t cred, int uproto)
2096 {
2097 struct ip6_pktopts *opt;
2098
2099 if (*pktopt == NULL) {
2100 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2101 M_NOWAIT);
2102 if (*pktopt == NULL)
2103 return (ENOBUFS);
2104
2105 ip6_initpktopts(*pktopt);
2106 }
2107 opt = *pktopt;
2108
2109 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2110 }
2111
2112 static int
2113 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2114 {
2115 void *optdata = NULL;
2116 int optdatalen = 0;
2117 struct ip6_ext *ip6e;
2118 int error = 0;
2119 struct in6_pktinfo null_pktinfo;
2120 int deftclass = 0, on;
2121 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2122 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2123
2124 switch (optname) {
2125 case IPV6_PKTINFO:
2126 if (pktopt && pktopt->ip6po_pktinfo)
2127 optdata = (void *)pktopt->ip6po_pktinfo;
2128 else {
2129 /* XXX: we don't have to do this every time... */
2130 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2131 optdata = (void *)&null_pktinfo;
2132 }
2133 optdatalen = sizeof(struct in6_pktinfo);
2134 break;
2135 case IPV6_OTCLASS:
2136 /* XXX */
2137 return (EINVAL);
2138 case IPV6_TCLASS:
2139 if (pktopt && pktopt->ip6po_tclass >= 0)
2140 optdata = (void *)&pktopt->ip6po_tclass;
2141 else
2142 optdata = (void *)&deftclass;
2143 optdatalen = sizeof(int);
2144 break;
2145 case IPV6_HOPOPTS:
2146 if (pktopt && pktopt->ip6po_hbh) {
2147 optdata = (void *)pktopt->ip6po_hbh;
2148 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2149 optdatalen = (ip6e->ip6e_len + 1) << 3;
2150 }
2151 break;
2152 case IPV6_RTHDR:
2153 if (pktopt && pktopt->ip6po_rthdr) {
2154 optdata = (void *)pktopt->ip6po_rthdr;
2155 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2156 optdatalen = (ip6e->ip6e_len + 1) << 3;
2157 }
2158 break;
2159 case IPV6_RTHDRDSTOPTS:
2160 if (pktopt && pktopt->ip6po_dest1) {
2161 optdata = (void *)pktopt->ip6po_dest1;
2162 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2163 optdatalen = (ip6e->ip6e_len + 1) << 3;
2164 }
2165 break;
2166 case IPV6_DSTOPTS:
2167 if (pktopt && pktopt->ip6po_dest2) {
2168 optdata = (void *)pktopt->ip6po_dest2;
2169 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2170 optdatalen = (ip6e->ip6e_len + 1) << 3;
2171 }
2172 break;
2173 case IPV6_NEXTHOP:
2174 if (pktopt && pktopt->ip6po_nexthop) {
2175 optdata = (void *)pktopt->ip6po_nexthop;
2176 optdatalen = pktopt->ip6po_nexthop->sa_len;
2177 }
2178 break;
2179 case IPV6_USE_MIN_MTU:
2180 if (pktopt)
2181 optdata = (void *)&pktopt->ip6po_minmtu;
2182 else
2183 optdata = (void *)&defminmtu;
2184 optdatalen = sizeof(int);
2185 break;
2186 case IPV6_DONTFRAG:
2187 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2188 on = 1;
2189 else
2190 on = 0;
2191 optdata = (void *)&on;
2192 optdatalen = sizeof(on);
2193 break;
2194 case IPV6_PREFER_TEMPADDR:
2195 if (pktopt)
2196 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2197 else
2198 optdata = (void *)&defpreftemp;
2199 optdatalen = sizeof(int);
2200 break;
2201 default: /* should not happen */
2202 #ifdef DIAGNOSTIC
2203 panic("ip6_getpcbopt: unexpected option\n");
2204 #endif
2205 return (ENOPROTOOPT);
2206 }
2207
2208 error = sockopt_set(sopt, optdata, optdatalen);
2209
2210 return (error);
2211 }
2212
2213 void
2214 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2215 {
2216 if (optname == -1 || optname == IPV6_PKTINFO) {
2217 if (pktopt->ip6po_pktinfo)
2218 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2219 pktopt->ip6po_pktinfo = NULL;
2220 }
2221 if (optname == -1 || optname == IPV6_HOPLIMIT)
2222 pktopt->ip6po_hlim = -1;
2223 if (optname == -1 || optname == IPV6_TCLASS)
2224 pktopt->ip6po_tclass = -1;
2225 if (optname == -1 || optname == IPV6_NEXTHOP) {
2226 rtcache_free(&pktopt->ip6po_nextroute);
2227 if (pktopt->ip6po_nexthop)
2228 free(pktopt->ip6po_nexthop, M_IP6OPT);
2229 pktopt->ip6po_nexthop = NULL;
2230 }
2231 if (optname == -1 || optname == IPV6_HOPOPTS) {
2232 if (pktopt->ip6po_hbh)
2233 free(pktopt->ip6po_hbh, M_IP6OPT);
2234 pktopt->ip6po_hbh = NULL;
2235 }
2236 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2237 if (pktopt->ip6po_dest1)
2238 free(pktopt->ip6po_dest1, M_IP6OPT);
2239 pktopt->ip6po_dest1 = NULL;
2240 }
2241 if (optname == -1 || optname == IPV6_RTHDR) {
2242 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2243 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2244 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2245 rtcache_free(&pktopt->ip6po_route);
2246 }
2247 if (optname == -1 || optname == IPV6_DSTOPTS) {
2248 if (pktopt->ip6po_dest2)
2249 free(pktopt->ip6po_dest2, M_IP6OPT);
2250 pktopt->ip6po_dest2 = NULL;
2251 }
2252 }
2253
2254 #define PKTOPT_EXTHDRCPY(type) \
2255 do { \
2256 if (src->type) { \
2257 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2258 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2259 if (dst->type == NULL) \
2260 goto bad; \
2261 memcpy(dst->type, src->type, hlen); \
2262 } \
2263 } while (/*CONSTCOND*/ 0)
2264
2265 static int
2266 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2267 {
2268 dst->ip6po_hlim = src->ip6po_hlim;
2269 dst->ip6po_tclass = src->ip6po_tclass;
2270 dst->ip6po_flags = src->ip6po_flags;
2271 dst->ip6po_minmtu = src->ip6po_minmtu;
2272 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2273 if (src->ip6po_pktinfo) {
2274 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2275 M_IP6OPT, canwait);
2276 if (dst->ip6po_pktinfo == NULL)
2277 goto bad;
2278 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2279 }
2280 if (src->ip6po_nexthop) {
2281 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2282 M_IP6OPT, canwait);
2283 if (dst->ip6po_nexthop == NULL)
2284 goto bad;
2285 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2286 src->ip6po_nexthop->sa_len);
2287 }
2288 PKTOPT_EXTHDRCPY(ip6po_hbh);
2289 PKTOPT_EXTHDRCPY(ip6po_dest1);
2290 PKTOPT_EXTHDRCPY(ip6po_dest2);
2291 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2292 return (0);
2293
2294 bad:
2295 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2296 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2297 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2298 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2299 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2300 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2301
2302 return (ENOBUFS);
2303 }
2304 #undef PKTOPT_EXTHDRCPY
2305
2306 struct ip6_pktopts *
2307 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2308 {
2309 int error;
2310 struct ip6_pktopts *dst;
2311
2312 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2313 if (dst == NULL)
2314 return (NULL);
2315 ip6_initpktopts(dst);
2316
2317 if ((error = copypktopts(dst, src, canwait)) != 0) {
2318 free(dst, M_IP6OPT);
2319 return (NULL);
2320 }
2321
2322 return (dst);
2323 }
2324
2325 void
2326 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2327 {
2328 if (pktopt == NULL)
2329 return;
2330
2331 ip6_clearpktopts(pktopt, -1);
2332
2333 free(pktopt, M_IP6OPT);
2334 }
2335
2336 int
2337 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
2338 struct psref *psref, void *v, size_t l)
2339 {
2340 struct ipv6_mreq mreq;
2341 int error;
2342 struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
2343 struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
2344
2345 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2346 if (error != 0)
2347 return error;
2348
2349 if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
2350 /*
2351 * We use the unspecified address to specify to accept
2352 * all multicast addresses. Only super user is allowed
2353 * to do this.
2354 */
2355 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6,
2356 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
2357 return EACCES;
2358 } else if (IN6_IS_ADDR_V4MAPPED(ia)) {
2359 // Don't bother if we are not going to use ifp.
2360 if (l == sizeof(*ia)) {
2361 memcpy(v, ia, l);
2362 return 0;
2363 }
2364 } else if (!IN6_IS_ADDR_MULTICAST(ia)) {
2365 return EINVAL;
2366 }
2367
2368 /*
2369 * If no interface was explicitly specified, choose an
2370 * appropriate one according to the given multicast address.
2371 */
2372 if (mreq.ipv6mr_interface == 0) {
2373 struct rtentry *rt;
2374 union {
2375 struct sockaddr dst;
2376 struct sockaddr_in dst4;
2377 struct sockaddr_in6 dst6;
2378 } u;
2379 struct route ro;
2380
2381 /*
2382 * Look up the routing table for the
2383 * address, and choose the outgoing interface.
2384 * XXX: is it a good approach?
2385 */
2386 memset(&ro, 0, sizeof(ro));
2387 if (IN6_IS_ADDR_V4MAPPED(ia))
2388 sockaddr_in_init(&u.dst4, ia4, 0);
2389 else
2390 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
2391 error = rtcache_setdst(&ro, &u.dst);
2392 if (error != 0)
2393 return error;
2394 rt = rtcache_init(&ro);
2395 *ifp = rt != NULL ?
2396 if_get_byindex(rt->rt_ifp->if_index, psref) : NULL;
2397 rtcache_unref(rt, &ro);
2398 rtcache_free(&ro);
2399 } else {
2400 /*
2401 * If the interface is specified, validate it.
2402 */
2403 *ifp = if_get_byindex(mreq.ipv6mr_interface, psref);
2404 if (*ifp == NULL)
2405 return ENXIO; /* XXX EINVAL? */
2406 }
2407 if (sizeof(*ia) == l)
2408 memcpy(v, ia, l);
2409 else
2410 memcpy(v, ia4, l);
2411 return 0;
2412 }
2413
2414 /*
2415 * Set the IP6 multicast options in response to user setsockopt().
2416 */
2417 static int
2418 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p)
2419 {
2420 int error = 0;
2421 u_int loop, ifindex;
2422 struct ipv6_mreq mreq;
2423 struct in6_addr ia;
2424 struct ifnet *ifp;
2425 struct ip6_moptions *im6o = in6p->in6p_moptions;
2426 struct in6_multi_mship *imm;
2427
2428 KASSERT(in6p_locked(in6p));
2429
2430 if (im6o == NULL) {
2431 /*
2432 * No multicast option buffer attached to the pcb;
2433 * allocate one and initialize to default values.
2434 */
2435 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2436 if (im6o == NULL)
2437 return (ENOBUFS);
2438 in6p->in6p_moptions = im6o;
2439 im6o->im6o_multicast_if_index = 0;
2440 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2441 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2442 LIST_INIT(&im6o->im6o_memberships);
2443 }
2444
2445 switch (sopt->sopt_name) {
2446
2447 case IPV6_MULTICAST_IF: {
2448 int s;
2449 /*
2450 * Select the interface for outgoing multicast packets.
2451 */
2452 error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2453 if (error != 0)
2454 break;
2455
2456 s = pserialize_read_enter();
2457 if (ifindex != 0) {
2458 if ((ifp = if_byindex(ifindex)) == NULL) {
2459 pserialize_read_exit(s);
2460 error = ENXIO; /* XXX EINVAL? */
2461 break;
2462 }
2463 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2464 pserialize_read_exit(s);
2465 error = EADDRNOTAVAIL;
2466 break;
2467 }
2468 } else
2469 ifp = NULL;
2470 im6o->im6o_multicast_if_index = if_get_index(ifp);
2471 pserialize_read_exit(s);
2472 break;
2473 }
2474
2475 case IPV6_MULTICAST_HOPS:
2476 {
2477 /*
2478 * Set the IP6 hoplimit for outgoing multicast packets.
2479 */
2480 int optval;
2481
2482 error = sockopt_getint(sopt, &optval);
2483 if (error != 0)
2484 break;
2485
2486 if (optval < -1 || optval >= 256)
2487 error = EINVAL;
2488 else if (optval == -1)
2489 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2490 else
2491 im6o->im6o_multicast_hlim = optval;
2492 break;
2493 }
2494
2495 case IPV6_MULTICAST_LOOP:
2496 /*
2497 * Set the loopback flag for outgoing multicast packets.
2498 * Must be zero or one.
2499 */
2500 error = sockopt_get(sopt, &loop, sizeof(loop));
2501 if (error != 0)
2502 break;
2503 if (loop > 1) {
2504 error = EINVAL;
2505 break;
2506 }
2507 im6o->im6o_multicast_loop = loop;
2508 break;
2509
2510 case IPV6_JOIN_GROUP: {
2511 int bound;
2512 struct psref psref;
2513 /*
2514 * Add a multicast group membership.
2515 * Group must be a valid IP6 multicast address.
2516 */
2517 bound = curlwp_bind();
2518 ifp = NULL;
2519 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
2520 if (error != 0) {
2521 KASSERT(ifp == NULL);
2522 curlwp_bindx(bound);
2523 return error;
2524 }
2525
2526 if (IN6_IS_ADDR_V4MAPPED(&ia)) {
2527 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2528 goto put_break;
2529 }
2530 /*
2531 * See if we found an interface, and confirm that it
2532 * supports multicast
2533 */
2534 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2535 error = EADDRNOTAVAIL;
2536 goto put_break;
2537 }
2538
2539 if (in6_setscope(&ia, ifp, NULL)) {
2540 error = EADDRNOTAVAIL; /* XXX: should not happen */
2541 goto put_break;
2542 }
2543
2544 /*
2545 * See if the membership already exists.
2546 */
2547 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2548 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2549 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2550 &ia))
2551 goto put_break;
2552 }
2553 if (imm != NULL) {
2554 error = EADDRINUSE;
2555 goto put_break;
2556 }
2557 /*
2558 * Everything looks good; add a new record to the multicast
2559 * address list for the given interface.
2560 */
2561 IFNET_LOCK(ifp);
2562 imm = in6_joingroup(ifp, &ia, &error, 0);
2563 IFNET_UNLOCK(ifp);
2564 if (imm == NULL)
2565 goto put_break;
2566 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2567 put_break:
2568 if_put(ifp, &psref);
2569 curlwp_bindx(bound);
2570 break;
2571 }
2572
2573 case IPV6_LEAVE_GROUP: {
2574 struct ifnet *in6m_ifp;
2575 /*
2576 * Drop a multicast group membership.
2577 * Group must be a valid IP6 multicast address.
2578 */
2579 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2580 if (error != 0)
2581 break;
2582
2583 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
2584 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2585 break;
2586 }
2587 /*
2588 * If an interface address was specified, get a pointer
2589 * to its ifnet structure.
2590 */
2591 if (mreq.ipv6mr_interface != 0) {
2592 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
2593 error = ENXIO; /* XXX EINVAL? */
2594 break;
2595 }
2596 } else
2597 ifp = NULL;
2598
2599 /* Fill in the scope zone ID */
2600 if (ifp) {
2601 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2602 /* XXX: should not happen */
2603 error = EADDRNOTAVAIL;
2604 break;
2605 }
2606 } else if (mreq.ipv6mr_interface != 0) {
2607 /*
2608 * XXX: This case would happens when the (positive)
2609 * index is in the valid range, but the corresponding
2610 * interface has been detached dynamically. The above
2611 * check probably avoids such case to happen here, but
2612 * we check it explicitly for safety.
2613 */
2614 error = EADDRNOTAVAIL;
2615 break;
2616 } else { /* ipv6mr_interface == 0 */
2617 struct sockaddr_in6 sa6_mc;
2618
2619 /*
2620 * The API spec says as follows:
2621 * If the interface index is specified as 0, the
2622 * system may choose a multicast group membership to
2623 * drop by matching the multicast address only.
2624 * On the other hand, we cannot disambiguate the scope
2625 * zone unless an interface is provided. Thus, we
2626 * check if there's ambiguity with the default scope
2627 * zone as the last resort.
2628 */
2629 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2630 0, 0, 0);
2631 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2632 if (error != 0)
2633 break;
2634 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2635 }
2636
2637 /*
2638 * Find the membership in the membership list.
2639 */
2640 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2641 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2642 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2643 &mreq.ipv6mr_multiaddr))
2644 break;
2645 }
2646 if (imm == NULL) {
2647 /* Unable to resolve interface */
2648 error = EADDRNOTAVAIL;
2649 break;
2650 }
2651 /*
2652 * Give up the multicast address record to which the
2653 * membership points.
2654 */
2655 LIST_REMOVE(imm, i6mm_chain);
2656 in6m_ifp = imm->i6mm_maddr->in6m_ifp;
2657 IFNET_LOCK(in6m_ifp);
2658 in6_leavegroup(imm);
2659 /* in6m_ifp should not leave thanks to in6p_lock */
2660 IFNET_UNLOCK(in6m_ifp);
2661 break;
2662 }
2663
2664 default:
2665 error = EOPNOTSUPP;
2666 break;
2667 }
2668
2669 /*
2670 * If all options have default values, no need to keep the mbuf.
2671 */
2672 if (im6o->im6o_multicast_if_index == 0 &&
2673 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2674 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2675 LIST_EMPTY(&im6o->im6o_memberships)) {
2676 free(in6p->in6p_moptions, M_IPMOPTS);
2677 in6p->in6p_moptions = NULL;
2678 }
2679
2680 return (error);
2681 }
2682
2683 /*
2684 * Return the IP6 multicast options in response to user getsockopt().
2685 */
2686 static int
2687 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p)
2688 {
2689 u_int optval;
2690 int error;
2691 struct ip6_moptions *im6o = in6p->in6p_moptions;
2692
2693 switch (sopt->sopt_name) {
2694 case IPV6_MULTICAST_IF:
2695 if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
2696 optval = 0;
2697 else
2698 optval = im6o->im6o_multicast_if_index;
2699
2700 error = sockopt_set(sopt, &optval, sizeof(optval));
2701 break;
2702
2703 case IPV6_MULTICAST_HOPS:
2704 if (im6o == NULL)
2705 optval = ip6_defmcasthlim;
2706 else
2707 optval = im6o->im6o_multicast_hlim;
2708
2709 error = sockopt_set(sopt, &optval, sizeof(optval));
2710 break;
2711
2712 case IPV6_MULTICAST_LOOP:
2713 if (im6o == NULL)
2714 optval = IPV6_DEFAULT_MULTICAST_LOOP;
2715 else
2716 optval = im6o->im6o_multicast_loop;
2717
2718 error = sockopt_set(sopt, &optval, sizeof(optval));
2719 break;
2720
2721 default:
2722 error = EOPNOTSUPP;
2723 }
2724
2725 return (error);
2726 }
2727
2728 /*
2729 * Discard the IP6 multicast options.
2730 */
2731 void
2732 ip6_freemoptions(struct ip6_moptions *im6o)
2733 {
2734 struct in6_multi_mship *imm, *nimm;
2735
2736 if (im6o == NULL)
2737 return;
2738
2739 /* The owner of im6o (in6p) should be protected by solock */
2740 LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) {
2741 struct ifnet *ifp;
2742
2743 LIST_REMOVE(imm, i6mm_chain);
2744
2745 ifp = imm->i6mm_maddr->in6m_ifp;
2746 IFNET_LOCK(ifp);
2747 in6_leavegroup(imm);
2748 /* ifp should not leave thanks to solock */
2749 IFNET_UNLOCK(ifp);
2750 }
2751 free(im6o, M_IPMOPTS);
2752 }
2753
2754 /*
2755 * Set IPv6 outgoing packet options based on advanced API.
2756 */
2757 int
2758 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2759 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2760 {
2761 struct cmsghdr *cm = 0;
2762
2763 if (control == NULL || opt == NULL)
2764 return (EINVAL);
2765
2766 ip6_initpktopts(opt);
2767 if (stickyopt) {
2768 int error;
2769
2770 /*
2771 * If stickyopt is provided, make a local copy of the options
2772 * for this particular packet, then override them by ancillary
2773 * objects.
2774 * XXX: copypktopts() does not copy the cached route to a next
2775 * hop (if any). This is not very good in terms of efficiency,
2776 * but we can allow this since this option should be rarely
2777 * used.
2778 */
2779 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2780 return (error);
2781 }
2782
2783 /*
2784 * XXX: Currently, we assume all the optional information is stored
2785 * in a single mbuf.
2786 */
2787 if (control->m_next)
2788 return (EINVAL);
2789
2790 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2791 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2792 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2793 int error;
2794
2795 if (control->m_len < CMSG_LEN(0))
2796 return (EINVAL);
2797
2798 cm = mtod(control, struct cmsghdr *);
2799 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2800 return (EINVAL);
2801 if (cm->cmsg_level != IPPROTO_IPV6)
2802 continue;
2803
2804 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2805 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2806 if (error)
2807 return (error);
2808 }
2809
2810 return (0);
2811 }
2812
2813 /*
2814 * Set a particular packet option, as a sticky option or an ancillary data
2815 * item. "len" can be 0 only when it's a sticky option.
2816 * We have 4 cases of combination of "sticky" and "cmsg":
2817 * "sticky=0, cmsg=0": impossible
2818 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2819 * "sticky=1, cmsg=0": RFC3542 socket option
2820 * "sticky=1, cmsg=1": RFC2292 socket option
2821 */
2822 static int
2823 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2824 kauth_cred_t cred, int sticky, int cmsg, int uproto)
2825 {
2826 int minmtupolicy;
2827 int error;
2828
2829 if (!sticky && !cmsg) {
2830 #ifdef DIAGNOSTIC
2831 printf("ip6_setpktopt: impossible case\n");
2832 #endif
2833 return (EINVAL);
2834 }
2835
2836 /*
2837 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2838 * not be specified in the context of RFC3542. Conversely,
2839 * RFC3542 types should not be specified in the context of RFC2292.
2840 */
2841 if (!cmsg) {
2842 switch (optname) {
2843 case IPV6_2292PKTINFO:
2844 case IPV6_2292HOPLIMIT:
2845 case IPV6_2292NEXTHOP:
2846 case IPV6_2292HOPOPTS:
2847 case IPV6_2292DSTOPTS:
2848 case IPV6_2292RTHDR:
2849 case IPV6_2292PKTOPTIONS:
2850 return (ENOPROTOOPT);
2851 }
2852 }
2853 if (sticky && cmsg) {
2854 switch (optname) {
2855 case IPV6_PKTINFO:
2856 case IPV6_HOPLIMIT:
2857 case IPV6_NEXTHOP:
2858 case IPV6_HOPOPTS:
2859 case IPV6_DSTOPTS:
2860 case IPV6_RTHDRDSTOPTS:
2861 case IPV6_RTHDR:
2862 case IPV6_USE_MIN_MTU:
2863 case IPV6_DONTFRAG:
2864 case IPV6_OTCLASS:
2865 case IPV6_TCLASS:
2866 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
2867 return (ENOPROTOOPT);
2868 }
2869 }
2870
2871 switch (optname) {
2872 #ifdef RFC2292
2873 case IPV6_2292PKTINFO:
2874 #endif
2875 case IPV6_PKTINFO:
2876 {
2877 struct in6_pktinfo *pktinfo;
2878
2879 if (len != sizeof(struct in6_pktinfo))
2880 return (EINVAL);
2881
2882 pktinfo = (struct in6_pktinfo *)buf;
2883
2884 /*
2885 * An application can clear any sticky IPV6_PKTINFO option by
2886 * doing a "regular" setsockopt with ipi6_addr being
2887 * in6addr_any and ipi6_ifindex being zero.
2888 * [RFC 3542, Section 6]
2889 */
2890 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2891 pktinfo->ipi6_ifindex == 0 &&
2892 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2893 ip6_clearpktopts(opt, optname);
2894 break;
2895 }
2896
2897 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2898 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2899 return (EINVAL);
2900 }
2901
2902 /* Validate the interface index if specified. */
2903 if (pktinfo->ipi6_ifindex) {
2904 struct ifnet *ifp;
2905 int s = pserialize_read_enter();
2906 ifp = if_byindex(pktinfo->ipi6_ifindex);
2907 if (ifp == NULL) {
2908 pserialize_read_exit(s);
2909 return ENXIO;
2910 }
2911 pserialize_read_exit(s);
2912 }
2913
2914 /*
2915 * We store the address anyway, and let in6_selectsrc()
2916 * validate the specified address. This is because ipi6_addr
2917 * may not have enough information about its scope zone, and
2918 * we may need additional information (such as outgoing
2919 * interface or the scope zone of a destination address) to
2920 * disambiguate the scope.
2921 * XXX: the delay of the validation may confuse the
2922 * application when it is used as a sticky option.
2923 */
2924 if (opt->ip6po_pktinfo == NULL) {
2925 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2926 M_IP6OPT, M_NOWAIT);
2927 if (opt->ip6po_pktinfo == NULL)
2928 return (ENOBUFS);
2929 }
2930 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2931 break;
2932 }
2933
2934 #ifdef RFC2292
2935 case IPV6_2292HOPLIMIT:
2936 #endif
2937 case IPV6_HOPLIMIT:
2938 {
2939 int *hlimp;
2940
2941 /*
2942 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2943 * to simplify the ordering among hoplimit options.
2944 */
2945 if (optname == IPV6_HOPLIMIT && sticky)
2946 return (ENOPROTOOPT);
2947
2948 if (len != sizeof(int))
2949 return (EINVAL);
2950 hlimp = (int *)buf;
2951 if (*hlimp < -1 || *hlimp > 255)
2952 return (EINVAL);
2953
2954 opt->ip6po_hlim = *hlimp;
2955 break;
2956 }
2957
2958 case IPV6_OTCLASS:
2959 if (len != sizeof(u_int8_t))
2960 return (EINVAL);
2961
2962 opt->ip6po_tclass = *(u_int8_t *)buf;
2963 break;
2964
2965 case IPV6_TCLASS:
2966 {
2967 int tclass;
2968
2969 if (len != sizeof(int))
2970 return (EINVAL);
2971 tclass = *(int *)buf;
2972 if (tclass < -1 || tclass > 255)
2973 return (EINVAL);
2974
2975 opt->ip6po_tclass = tclass;
2976 break;
2977 }
2978
2979 #ifdef RFC2292
2980 case IPV6_2292NEXTHOP:
2981 #endif
2982 case IPV6_NEXTHOP:
2983 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2984 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2985 if (error)
2986 return (error);
2987
2988 if (len == 0) { /* just remove the option */
2989 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2990 break;
2991 }
2992
2993 /* check if cmsg_len is large enough for sa_len */
2994 if (len < sizeof(struct sockaddr) || len < *buf)
2995 return (EINVAL);
2996
2997 switch (((struct sockaddr *)buf)->sa_family) {
2998 case AF_INET6:
2999 {
3000 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3001
3002 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3003 return (EINVAL);
3004
3005 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3006 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3007 return (EINVAL);
3008 }
3009 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
3010 != 0) {
3011 return (error);
3012 }
3013 break;
3014 }
3015 case AF_LINK: /* eventually be supported? */
3016 default:
3017 return (EAFNOSUPPORT);
3018 }
3019
3020 /* turn off the previous option, then set the new option. */
3021 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3022 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3023 if (opt->ip6po_nexthop == NULL)
3024 return (ENOBUFS);
3025 memcpy(opt->ip6po_nexthop, buf, *buf);
3026 break;
3027
3028 #ifdef RFC2292
3029 case IPV6_2292HOPOPTS:
3030 #endif
3031 case IPV6_HOPOPTS:
3032 {
3033 struct ip6_hbh *hbh;
3034 int hbhlen;
3035
3036 /*
3037 * XXX: We don't allow a non-privileged user to set ANY HbH
3038 * options, since per-option restriction has too much
3039 * overhead.
3040 */
3041 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3042 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3043 if (error)
3044 return (error);
3045
3046 if (len == 0) {
3047 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3048 break; /* just remove the option */
3049 }
3050
3051 /* message length validation */
3052 if (len < sizeof(struct ip6_hbh))
3053 return (EINVAL);
3054 hbh = (struct ip6_hbh *)buf;
3055 hbhlen = (hbh->ip6h_len + 1) << 3;
3056 if (len != hbhlen)
3057 return (EINVAL);
3058
3059 /* turn off the previous option, then set the new option. */
3060 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3061 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3062 if (opt->ip6po_hbh == NULL)
3063 return (ENOBUFS);
3064 memcpy(opt->ip6po_hbh, hbh, hbhlen);
3065
3066 break;
3067 }
3068
3069 #ifdef RFC2292
3070 case IPV6_2292DSTOPTS:
3071 #endif
3072 case IPV6_DSTOPTS:
3073 case IPV6_RTHDRDSTOPTS:
3074 {
3075 struct ip6_dest *dest, **newdest = NULL;
3076 int destlen;
3077
3078 /* XXX: see the comment for IPV6_HOPOPTS */
3079 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3080 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3081 if (error)
3082 return (error);
3083
3084 if (len == 0) {
3085 ip6_clearpktopts(opt, optname);
3086 break; /* just remove the option */
3087 }
3088
3089 /* message length validation */
3090 if (len < sizeof(struct ip6_dest))
3091 return (EINVAL);
3092 dest = (struct ip6_dest *)buf;
3093 destlen = (dest->ip6d_len + 1) << 3;
3094 if (len != destlen)
3095 return (EINVAL);
3096 /*
3097 * Determine the position that the destination options header
3098 * should be inserted; before or after the routing header.
3099 */
3100 switch (optname) {
3101 case IPV6_2292DSTOPTS:
3102 /*
3103 * The old advanced API is ambiguous on this point.
3104 * Our approach is to determine the position based
3105 * according to the existence of a routing header.
3106 * Note, however, that this depends on the order of the
3107 * extension headers in the ancillary data; the 1st
3108 * part of the destination options header must appear
3109 * before the routing header in the ancillary data,
3110 * too.
3111 * RFC3542 solved the ambiguity by introducing
3112 * separate ancillary data or option types.
3113 */
3114 if (opt->ip6po_rthdr == NULL)
3115 newdest = &opt->ip6po_dest1;
3116 else
3117 newdest = &opt->ip6po_dest2;
3118 break;
3119 case IPV6_RTHDRDSTOPTS:
3120 newdest = &opt->ip6po_dest1;
3121 break;
3122 case IPV6_DSTOPTS:
3123 newdest = &opt->ip6po_dest2;
3124 break;
3125 }
3126
3127 /* turn off the previous option, then set the new option. */
3128 ip6_clearpktopts(opt, optname);
3129 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3130 if (*newdest == NULL)
3131 return (ENOBUFS);
3132 memcpy(*newdest, dest, destlen);
3133
3134 break;
3135 }
3136
3137 #ifdef RFC2292
3138 case IPV6_2292RTHDR:
3139 #endif
3140 case IPV6_RTHDR:
3141 {
3142 struct ip6_rthdr *rth;
3143 int rthlen;
3144
3145 if (len == 0) {
3146 ip6_clearpktopts(opt, IPV6_RTHDR);
3147 break; /* just remove the option */
3148 }
3149
3150 /* message length validation */
3151 if (len < sizeof(struct ip6_rthdr))
3152 return (EINVAL);
3153 rth = (struct ip6_rthdr *)buf;
3154 rthlen = (rth->ip6r_len + 1) << 3;
3155 if (len != rthlen)
3156 return (EINVAL);
3157 switch (rth->ip6r_type) {
3158 case IPV6_RTHDR_TYPE_0:
3159 /* Dropped, RFC5095. */
3160 default:
3161 return (EINVAL); /* not supported */
3162 }
3163 /* turn off the previous option */
3164 ip6_clearpktopts(opt, IPV6_RTHDR);
3165 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3166 if (opt->ip6po_rthdr == NULL)
3167 return (ENOBUFS);
3168 memcpy(opt->ip6po_rthdr, rth, rthlen);
3169 break;
3170 }
3171
3172 case IPV6_USE_MIN_MTU:
3173 if (len != sizeof(int))
3174 return (EINVAL);
3175 minmtupolicy = *(int *)buf;
3176 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3177 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3178 minmtupolicy != IP6PO_MINMTU_ALL) {
3179 return (EINVAL);
3180 }
3181 opt->ip6po_minmtu = minmtupolicy;
3182 break;
3183
3184 case IPV6_DONTFRAG:
3185 if (len != sizeof(int))
3186 return (EINVAL);
3187
3188 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3189 /*
3190 * we ignore this option for TCP sockets.
3191 * (RFC3542 leaves this case unspecified.)
3192 */
3193 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3194 } else
3195 opt->ip6po_flags |= IP6PO_DONTFRAG;
3196 break;
3197
3198 case IPV6_PREFER_TEMPADDR:
3199 {
3200 int preftemp;
3201
3202 if (len != sizeof(int))
3203 return (EINVAL);
3204 preftemp = *(int *)buf;
3205 switch (preftemp) {
3206 case IP6PO_TEMPADDR_SYSTEM:
3207 case IP6PO_TEMPADDR_NOTPREFER:
3208 case IP6PO_TEMPADDR_PREFER:
3209 break;
3210 default:
3211 return (EINVAL);
3212 }
3213 opt->ip6po_prefer_tempaddr = preftemp;
3214 break;
3215 }
3216
3217 default:
3218 return (ENOPROTOOPT);
3219 } /* end of switch */
3220
3221 return (0);
3222 }
3223
3224 /*
3225 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3226 * packet to the input queue of a specified interface. Note that this
3227 * calls the output routine of the loopback "driver", but with an interface
3228 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3229 */
3230 void
3231 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3232 const struct sockaddr_in6 *dst)
3233 {
3234 struct mbuf *copym;
3235 struct ip6_hdr *ip6;
3236
3237 copym = m_copypacket(m, M_DONTWAIT);
3238 if (copym == NULL)
3239 return;
3240
3241 /*
3242 * Make sure to deep-copy IPv6 header portion in case the data
3243 * is in an mbuf cluster, so that we can safely override the IPv6
3244 * header portion later.
3245 */
3246 if ((copym->m_flags & M_EXT) != 0 ||
3247 copym->m_len < sizeof(struct ip6_hdr)) {
3248 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3249 if (copym == NULL)
3250 return;
3251 }
3252
3253 #ifdef DIAGNOSTIC
3254 if (copym->m_len < sizeof(*ip6)) {
3255 m_freem(copym);
3256 return;
3257 }
3258 #endif
3259
3260 ip6 = mtod(copym, struct ip6_hdr *);
3261 /*
3262 * clear embedded scope identifiers if necessary.
3263 * in6_clearscope will touch the addresses only when necessary.
3264 */
3265 in6_clearscope(&ip6->ip6_src);
3266 in6_clearscope(&ip6->ip6_dst);
3267
3268 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3269 }
3270
3271 /*
3272 * Chop IPv6 header off from the payload.
3273 */
3274 static int
3275 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3276 {
3277 struct mbuf *mh;
3278 struct ip6_hdr *ip6;
3279
3280 ip6 = mtod(m, struct ip6_hdr *);
3281 if (m->m_len > sizeof(*ip6)) {
3282 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3283 if (mh == NULL) {
3284 m_freem(m);
3285 return ENOBUFS;
3286 }
3287 M_MOVE_PKTHDR(mh, m);
3288 MH_ALIGN(mh, sizeof(*ip6));
3289 m->m_len -= sizeof(*ip6);
3290 m->m_data += sizeof(*ip6);
3291 mh->m_next = m;
3292 mh->m_len = sizeof(*ip6);
3293 memcpy(mtod(mh, void *), (void *)ip6, sizeof(*ip6));
3294 m = mh;
3295 }
3296 exthdrs->ip6e_ip6 = m;
3297 return 0;
3298 }
3299
3300 /*
3301 * Compute IPv6 extension header length.
3302 */
3303 int
3304 ip6_optlen(struct in6pcb *in6p)
3305 {
3306 int len;
3307
3308 if (!in6p->in6p_outputopts)
3309 return 0;
3310
3311 len = 0;
3312 #define elen(x) \
3313 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3314
3315 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3316 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3317 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3318 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3319 return len;
3320 #undef elen
3321 }
3322
3323 /*
3324 * Ensure sending address is valid.
3325 * Returns 0 on success, -1 if an error should be sent back or 1
3326 * if the packet could be dropped without error (protocol dependent).
3327 */
3328 static int
3329 ip6_ifaddrvalid(const struct in6_addr *src, const struct in6_addr *dst)
3330 {
3331 struct sockaddr_in6 sin6;
3332 int s, error;
3333 struct ifaddr *ifa;
3334 struct in6_ifaddr *ia6;
3335
3336 if (IN6_IS_ADDR_UNSPECIFIED(src))
3337 return 0;
3338
3339 memset(&sin6, 0, sizeof(sin6));
3340 sin6.sin6_family = AF_INET6;
3341 sin6.sin6_len = sizeof(sin6);
3342 sin6.sin6_addr = *src;
3343
3344 s = pserialize_read_enter();
3345 ifa = ifa_ifwithaddr(sin6tosa(&sin6));
3346 if ((ia6 = ifatoia6(ifa)) == NULL ||
3347 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
3348 error = -1;
3349 else if (ia6->ia6_flags & IN6_IFF_TENTATIVE)
3350 error = 1;
3351 else if (ia6->ia6_flags & IN6_IFF_DETACHED &&
3352 (sin6.sin6_addr = *dst, ifa_ifwithaddr(sin6tosa(&sin6)) == NULL))
3353 /* Allow internal traffic to DETACHED addresses */
3354 error = 1;
3355 else
3356 error = 0;
3357 pserialize_read_exit(s);
3358
3359 return error;
3360 }
3361