ip6_output.c revision 1.214 1 /* $NetBSD: ip6_output.c,v 1.214 2018/12/12 01:53:52 rin Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.214 2018/12/12 01:53:52 rin Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_inet.h"
69 #include "opt_inet6.h"
70 #include "opt_ipsec.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/errno.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/syslog.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kauth.h>
83
84 #include <net/if.h>
85 #include <net/route.h>
86 #include <net/pfil.h>
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/ip_var.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet/portalgo.h>
95 #include <netinet6/in6_offload.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/ip6_private.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/nd6.h>
100 #include <netinet6/ip6protosw.h>
101 #include <netinet6/scope6_var.h>
102
103 #ifdef IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/ipsec6.h>
106 #include <netipsec/key.h>
107 #endif
108
109 extern pfil_head_t *inet6_pfil_hook; /* XXX */
110
111 struct ip6_exthdrs {
112 struct mbuf *ip6e_ip6;
113 struct mbuf *ip6e_hbh;
114 struct mbuf *ip6e_dest1;
115 struct mbuf *ip6e_rthdr;
116 struct mbuf *ip6e_dest2;
117 };
118
119 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
120 kauth_cred_t, int);
121 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
122 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
123 int, int, int);
124 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *);
125 static int ip6_getmoptions(struct sockopt *, struct in6pcb *);
126 static int ip6_copyexthdr(struct mbuf **, void *, int);
127 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
128 struct ip6_frag **);
129 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
130 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
131 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
132 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
133 static int ip6_ifaddrvalid(const struct in6_addr *, const struct in6_addr *);
134 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
135
136 #ifdef RFC2292
137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
138 #endif
139
140 static int
141 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
142 {
143 int error = 0;
144
145 switch (rh->ip6r_type) {
146 case IPV6_RTHDR_TYPE_0:
147 /* Dropped, RFC5095. */
148 default: /* is it possible? */
149 error = EINVAL;
150 }
151
152 return error;
153 }
154
155 /*
156 * Send an IP packet to a host.
157 */
158 int
159 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp,
160 struct mbuf * const m, const struct sockaddr_in6 * const dst,
161 const struct rtentry *rt)
162 {
163 int error = 0;
164
165 if (rt != NULL) {
166 error = rt_check_reject_route(rt, ifp);
167 if (error != 0) {
168 m_freem(m);
169 return error;
170 }
171 }
172
173 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
174 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
175 else
176 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
177 return error;
178 }
179
180 /*
181 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
182 * header (with pri, len, nxt, hlim, src, dst).
183 *
184 * This function may modify ver and hlim only. The mbuf chain containing the
185 * packet will be freed. The mbuf opt, if present, will not be freed.
186 *
187 * Type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
188 * nd_ifinfo.linkmtu is u_int32_t. So we use u_long to hold largest one,
189 * which is rt_rmx.rmx_mtu.
190 */
191 int
192 ip6_output(
193 struct mbuf *m0,
194 struct ip6_pktopts *opt,
195 struct route *ro,
196 int flags,
197 struct ip6_moptions *im6o,
198 struct in6pcb *in6p,
199 struct ifnet **ifpp /* XXX: just for statistics */
200 )
201 {
202 struct ip6_hdr *ip6, *mhip6;
203 struct ifnet *ifp = NULL, *origifp = NULL;
204 struct mbuf *m = m0;
205 int tlen, len, off;
206 bool tso;
207 struct route ip6route;
208 struct rtentry *rt = NULL, *rt_pmtu;
209 const struct sockaddr_in6 *dst;
210 struct sockaddr_in6 src_sa, dst_sa;
211 int error = 0;
212 struct in6_ifaddr *ia = NULL;
213 u_long mtu;
214 int alwaysfrag, dontfrag;
215 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
216 struct ip6_exthdrs exthdrs;
217 struct in6_addr finaldst, src0, dst0;
218 u_int32_t zone;
219 struct route *ro_pmtu = NULL;
220 int hdrsplit = 0;
221 int needipsec = 0;
222 #ifdef IPSEC
223 struct secpolicy *sp = NULL;
224 #endif
225 struct psref psref, psref_ia;
226 int bound = curlwp_bind();
227 bool release_psref_ia = false;
228
229 #ifdef DIAGNOSTIC
230 if ((m->m_flags & M_PKTHDR) == 0)
231 panic("ip6_output: no HDR");
232 if ((m->m_pkthdr.csum_flags &
233 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
234 panic("ip6_output: IPv4 checksum offload flags: %d",
235 m->m_pkthdr.csum_flags);
236 }
237 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
238 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
239 panic("ip6_output: conflicting checksum offload flags: %d",
240 m->m_pkthdr.csum_flags);
241 }
242 #endif
243
244 M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
245
246 #define MAKE_EXTHDR(hp, mp) \
247 do { \
248 if (hp) { \
249 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
250 error = ip6_copyexthdr((mp), (void *)(hp), \
251 ((eh)->ip6e_len + 1) << 3); \
252 if (error) \
253 goto freehdrs; \
254 } \
255 } while (/*CONSTCOND*/ 0)
256
257 memset(&exthdrs, 0, sizeof(exthdrs));
258 if (opt) {
259 /* Hop-by-Hop options header */
260 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
261 /* Destination options header (1st part) */
262 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
263 /* Routing header */
264 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
265 /* Destination options header (2nd part) */
266 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
267 }
268
269 /*
270 * Calculate the total length of the extension header chain.
271 * Keep the length of the unfragmentable part for fragmentation.
272 */
273 optlen = 0;
274 if (exthdrs.ip6e_hbh)
275 optlen += exthdrs.ip6e_hbh->m_len;
276 if (exthdrs.ip6e_dest1)
277 optlen += exthdrs.ip6e_dest1->m_len;
278 if (exthdrs.ip6e_rthdr)
279 optlen += exthdrs.ip6e_rthdr->m_len;
280 unfragpartlen = optlen + sizeof(struct ip6_hdr);
281 /* NOTE: we don't add AH/ESP length here. do that later. */
282 if (exthdrs.ip6e_dest2)
283 optlen += exthdrs.ip6e_dest2->m_len;
284
285 #ifdef IPSEC
286 if (ipsec_used) {
287 /* Check the security policy (SP) for the packet */
288 sp = ipsec6_check_policy(m, in6p, flags, &needipsec, &error);
289 if (error != 0) {
290 /*
291 * Hack: -EINVAL is used to signal that a packet
292 * should be silently discarded. This is typically
293 * because we asked key management for an SA and
294 * it was delayed (e.g. kicked up to IKE).
295 */
296 if (error == -EINVAL)
297 error = 0;
298 goto freehdrs;
299 }
300 }
301 #endif
302
303 if (needipsec &&
304 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
305 in6_undefer_cksum_tcpudp(m);
306 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
307 }
308
309 /*
310 * If we need IPsec, or there is at least one extension header,
311 * separate IP6 header from the payload.
312 */
313 if ((needipsec || optlen) && !hdrsplit) {
314 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
315 m = NULL;
316 goto freehdrs;
317 }
318 m = exthdrs.ip6e_ip6;
319 hdrsplit++;
320 }
321
322 /* adjust pointer */
323 ip6 = mtod(m, struct ip6_hdr *);
324
325 /* adjust mbuf packet header length */
326 m->m_pkthdr.len += optlen;
327 plen = m->m_pkthdr.len - sizeof(*ip6);
328
329 /* If this is a jumbo payload, insert a jumbo payload option. */
330 if (plen > IPV6_MAXPACKET) {
331 if (!hdrsplit) {
332 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
333 m = NULL;
334 goto freehdrs;
335 }
336 m = exthdrs.ip6e_ip6;
337 hdrsplit++;
338 }
339 /* adjust pointer */
340 ip6 = mtod(m, struct ip6_hdr *);
341 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
342 goto freehdrs;
343 optlen += 8; /* XXX JUMBOOPTLEN */
344 ip6->ip6_plen = 0;
345 } else
346 ip6->ip6_plen = htons(plen);
347
348 /*
349 * Concatenate headers and fill in next header fields.
350 * Here we have, on "m"
351 * IPv6 payload
352 * and we insert headers accordingly. Finally, we should be getting:
353 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
354 *
355 * during the header composing process, "m" points to IPv6 header.
356 * "mprev" points to an extension header prior to esp.
357 */
358 {
359 u_char *nexthdrp = &ip6->ip6_nxt;
360 struct mbuf *mprev = m;
361
362 /*
363 * we treat dest2 specially. this makes IPsec processing
364 * much easier. the goal here is to make mprev point the
365 * mbuf prior to dest2.
366 *
367 * result: IPv6 dest2 payload
368 * m and mprev will point to IPv6 header.
369 */
370 if (exthdrs.ip6e_dest2) {
371 if (!hdrsplit)
372 panic("assumption failed: hdr not split");
373 exthdrs.ip6e_dest2->m_next = m->m_next;
374 m->m_next = exthdrs.ip6e_dest2;
375 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
376 ip6->ip6_nxt = IPPROTO_DSTOPTS;
377 }
378
379 #define MAKE_CHAIN(m, mp, p, i)\
380 do {\
381 if (m) {\
382 if (!hdrsplit) \
383 panic("assumption failed: hdr not split"); \
384 *mtod((m), u_char *) = *(p);\
385 *(p) = (i);\
386 p = mtod((m), u_char *);\
387 (m)->m_next = (mp)->m_next;\
388 (mp)->m_next = (m);\
389 (mp) = (m);\
390 }\
391 } while (/*CONSTCOND*/ 0)
392 /*
393 * result: IPv6 hbh dest1 rthdr dest2 payload
394 * m will point to IPv6 header. mprev will point to the
395 * extension header prior to dest2 (rthdr in the above case).
396 */
397 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
398 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
399 IPPROTO_DSTOPTS);
400 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
401 IPPROTO_ROUTING);
402
403 M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data,
404 sizeof(struct ip6_hdr) + optlen);
405 }
406
407 /* Need to save for pmtu */
408 finaldst = ip6->ip6_dst;
409
410 /*
411 * If there is a routing header, replace destination address field
412 * with the first hop of the routing header.
413 */
414 if (exthdrs.ip6e_rthdr) {
415 struct ip6_rthdr *rh;
416
417 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
418
419 error = ip6_handle_rthdr(rh, ip6);
420 if (error != 0)
421 goto bad;
422 }
423
424 /* Source address validation */
425 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
426 (flags & IPV6_UNSPECSRC) == 0) {
427 error = EOPNOTSUPP;
428 IP6_STATINC(IP6_STAT_BADSCOPE);
429 goto bad;
430 }
431 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
432 error = EOPNOTSUPP;
433 IP6_STATINC(IP6_STAT_BADSCOPE);
434 goto bad;
435 }
436
437 IP6_STATINC(IP6_STAT_LOCALOUT);
438
439 /*
440 * Route packet.
441 */
442 /* initialize cached route */
443 if (ro == NULL) {
444 memset(&ip6route, 0, sizeof(ip6route));
445 ro = &ip6route;
446 }
447 ro_pmtu = ro;
448 if (opt && opt->ip6po_rthdr)
449 ro = &opt->ip6po_route;
450
451 /*
452 * if specified, try to fill in the traffic class field.
453 * do not override if a non-zero value is already set.
454 * we check the diffserv field and the ecn field separately.
455 */
456 if (opt && opt->ip6po_tclass >= 0) {
457 int mask = 0;
458
459 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
460 mask |= 0xfc;
461 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
462 mask |= 0x03;
463 if (mask != 0)
464 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
465 }
466
467 /* fill in or override the hop limit field, if necessary. */
468 if (opt && opt->ip6po_hlim != -1)
469 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
470 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
471 if (im6o != NULL)
472 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
473 else
474 ip6->ip6_hlim = ip6_defmcasthlim;
475 }
476
477 #ifdef IPSEC
478 if (needipsec) {
479 int s = splsoftnet();
480 error = ipsec6_process_packet(m, sp->req);
481 splx(s);
482
483 /*
484 * Preserve KAME behaviour: ENOENT can be returned
485 * when an SA acquire is in progress. Don't propagate
486 * this to user-level; it confuses applications.
487 * XXX this will go away when the SADB is redone.
488 */
489 if (error == ENOENT)
490 error = 0;
491
492 goto done;
493 }
494 #endif
495
496 /* adjust pointer */
497 ip6 = mtod(m, struct ip6_hdr *);
498
499 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
500
501 /* We do not need a route for multicast */
502 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
503 struct in6_pktinfo *pi = NULL;
504
505 /*
506 * If the outgoing interface for the address is specified by
507 * the caller, use it.
508 */
509 if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
510 /* XXX boundary check is assumed to be already done. */
511 ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
512 } else if (im6o != NULL) {
513 ifp = if_get_byindex(im6o->im6o_multicast_if_index,
514 &psref);
515 }
516 }
517
518 if (ifp == NULL) {
519 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
520 if (error != 0)
521 goto bad;
522 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
523 }
524
525 if (rt == NULL) {
526 /*
527 * If in6_selectroute() does not return a route entry,
528 * dst may not have been updated.
529 */
530 error = rtcache_setdst(ro, sin6tosa(&dst_sa));
531 if (error) {
532 goto bad;
533 }
534 }
535
536 /*
537 * then rt (for unicast) and ifp must be non-NULL valid values.
538 */
539 if ((flags & IPV6_FORWARDING) == 0) {
540 /* XXX: the FORWARDING flag can be set for mrouting. */
541 in6_ifstat_inc(ifp, ifs6_out_request);
542 }
543 if (rt != NULL) {
544 ia = (struct in6_ifaddr *)(rt->rt_ifa);
545 rt->rt_use++;
546 }
547
548 /*
549 * The outgoing interface must be in the zone of source and
550 * destination addresses. We should use ia_ifp to support the
551 * case of sending packets to an address of our own.
552 */
553 if (ia != NULL && ia->ia_ifp) {
554 origifp = ia->ia_ifp;
555 if (if_is_deactivated(origifp))
556 goto bad;
557 if_acquire(origifp, &psref_ia);
558 release_psref_ia = true;
559 } else
560 origifp = ifp;
561
562 src0 = ip6->ip6_src;
563 if (in6_setscope(&src0, origifp, &zone))
564 goto badscope;
565 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
566 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
567 goto badscope;
568
569 dst0 = ip6->ip6_dst;
570 if (in6_setscope(&dst0, origifp, &zone))
571 goto badscope;
572 /* re-initialize to be sure */
573 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
574 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
575 goto badscope;
576
577 /* scope check is done. */
578
579 /* Ensure we only send from a valid address. */
580 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
581 (flags & IPV6_FORWARDING) == 0 &&
582 (error = ip6_ifaddrvalid(&src0, &dst0)) != 0)
583 {
584 char ip6buf[INET6_ADDRSTRLEN];
585 nd6log(LOG_ERR,
586 "refusing to send from invalid address %s (pid %d)\n",
587 IN6_PRINT(ip6buf, &src0), curproc->p_pid);
588 IP6_STATINC(IP6_STAT_ODROPPED);
589 in6_ifstat_inc(origifp, ifs6_out_discard);
590 if (error == 1)
591 /*
592 * Address exists, but is tentative or detached.
593 * We can't send from it because it's invalid,
594 * so we drop the packet.
595 */
596 error = 0;
597 else
598 error = EADDRNOTAVAIL;
599 goto bad;
600 }
601
602 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
603 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
604 dst = satocsin6(rt->rt_gateway);
605 else
606 dst = satocsin6(rtcache_getdst(ro));
607
608 /*
609 * XXXXXX: original code follows:
610 */
611 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
612 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
613 else {
614 bool ingroup;
615
616 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
617
618 in6_ifstat_inc(ifp, ifs6_out_mcast);
619
620 /*
621 * Confirm that the outgoing interface supports multicast.
622 */
623 if (!(ifp->if_flags & IFF_MULTICAST)) {
624 IP6_STATINC(IP6_STAT_NOROUTE);
625 in6_ifstat_inc(ifp, ifs6_out_discard);
626 error = ENETUNREACH;
627 goto bad;
628 }
629
630 ingroup = in6_multi_group(&ip6->ip6_dst, ifp);
631 if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) {
632 /*
633 * If we belong to the destination multicast group
634 * on the outgoing interface, and the caller did not
635 * forbid loopback, loop back a copy.
636 */
637 KASSERT(dst != NULL);
638 ip6_mloopback(ifp, m, dst);
639 } else {
640 /*
641 * If we are acting as a multicast router, perform
642 * multicast forwarding as if the packet had just
643 * arrived on the interface to which we are about
644 * to send. The multicast forwarding function
645 * recursively calls this function, using the
646 * IPV6_FORWARDING flag to prevent infinite recursion.
647 *
648 * Multicasts that are looped back by ip6_mloopback(),
649 * above, will be forwarded by the ip6_input() routine,
650 * if necessary.
651 */
652 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
653 if (ip6_mforward(ip6, ifp, m) != 0) {
654 m_freem(m);
655 goto done;
656 }
657 }
658 }
659 /*
660 * Multicasts with a hoplimit of zero may be looped back,
661 * above, but must not be transmitted on a network.
662 * Also, multicasts addressed to the loopback interface
663 * are not sent -- the above call to ip6_mloopback() will
664 * loop back a copy if this host actually belongs to the
665 * destination group on the loopback interface.
666 */
667 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
668 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
669 m_freem(m);
670 goto done;
671 }
672 }
673
674 /*
675 * Fill the outgoing inteface to tell the upper layer
676 * to increment per-interface statistics.
677 */
678 if (ifpp)
679 *ifpp = ifp;
680
681 /* Determine path MTU. */
682 /*
683 * ro_pmtu represent final destination while
684 * ro might represent immediate destination.
685 * Use ro_pmtu destination since MTU might differ.
686 */
687 if (ro_pmtu != ro) {
688 union {
689 struct sockaddr dst;
690 struct sockaddr_in6 dst6;
691 } u;
692
693 /* ro_pmtu may not have a cache */
694 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
695 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
696 } else
697 rt_pmtu = rt;
698 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
699 if (rt_pmtu != NULL && rt_pmtu != rt)
700 rtcache_unref(rt_pmtu, ro_pmtu);
701 if (error != 0)
702 goto bad;
703
704 /*
705 * The caller of this function may specify to use the minimum MTU
706 * in some cases.
707 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
708 * setting. The logic is a bit complicated; by default, unicast
709 * packets will follow path MTU while multicast packets will be sent at
710 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
711 * including unicast ones will be sent at the minimum MTU. Multicast
712 * packets will always be sent at the minimum MTU unless
713 * IP6PO_MINMTU_DISABLE is explicitly specified.
714 * See RFC 3542 for more details.
715 */
716 if (mtu > IPV6_MMTU) {
717 if ((flags & IPV6_MINMTU))
718 mtu = IPV6_MMTU;
719 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
720 mtu = IPV6_MMTU;
721 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
722 (opt == NULL ||
723 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
724 mtu = IPV6_MMTU;
725 }
726 }
727
728 /*
729 * clear embedded scope identifiers if necessary.
730 * in6_clearscope will touch the addresses only when necessary.
731 */
732 in6_clearscope(&ip6->ip6_src);
733 in6_clearscope(&ip6->ip6_dst);
734
735 /*
736 * If the outgoing packet contains a hop-by-hop options header,
737 * it must be examined and processed even by the source node.
738 * (RFC 2460, section 4.)
739 *
740 * XXX Is this really necessary?
741 */
742 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
743 u_int32_t dummy1; /* XXX unused */
744 u_int32_t dummy2; /* XXX unused */
745 int hoff = sizeof(struct ip6_hdr);
746
747 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
748 /* m was already freed at this point */
749 error = EINVAL;
750 goto done;
751 }
752
753 ip6 = mtod(m, struct ip6_hdr *);
754 }
755
756 /*
757 * Run through list of hooks for output packets.
758 */
759 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
760 goto done;
761 if (m == NULL)
762 goto done;
763 ip6 = mtod(m, struct ip6_hdr *);
764
765 /*
766 * Send the packet to the outgoing interface.
767 * If necessary, do IPv6 fragmentation before sending.
768 *
769 * the logic here is rather complex:
770 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
771 * 1-a: send as is if tlen <= path mtu
772 * 1-b: fragment if tlen > path mtu
773 *
774 * 2: if user asks us not to fragment (dontfrag == 1)
775 * 2-a: send as is if tlen <= interface mtu
776 * 2-b: error if tlen > interface mtu
777 *
778 * 3: if we always need to attach fragment header (alwaysfrag == 1)
779 * always fragment
780 *
781 * 4: if dontfrag == 1 && alwaysfrag == 1
782 * error, as we cannot handle this conflicting request
783 */
784 tlen = m->m_pkthdr.len;
785 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
786 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
787 dontfrag = 1;
788 else
789 dontfrag = 0;
790
791 if (dontfrag && alwaysfrag) { /* case 4 */
792 /* conflicting request - can't transmit */
793 error = EMSGSIZE;
794 goto bad;
795 }
796 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */
797 /*
798 * Even if the DONTFRAG option is specified, we cannot send the
799 * packet when the data length is larger than the MTU of the
800 * outgoing interface.
801 * Notify the error by sending IPV6_PATHMTU ancillary data as
802 * well as returning an error code (the latter is not described
803 * in the API spec.)
804 */
805 u_int32_t mtu32;
806 struct ip6ctlparam ip6cp;
807
808 mtu32 = (u_int32_t)mtu;
809 memset(&ip6cp, 0, sizeof(ip6cp));
810 ip6cp.ip6c_cmdarg = (void *)&mtu32;
811 pfctlinput2(PRC_MSGSIZE,
812 rtcache_getdst(ro_pmtu), &ip6cp);
813
814 error = EMSGSIZE;
815 goto bad;
816 }
817
818 /*
819 * transmit packet without fragmentation
820 */
821 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
822 /* case 1-a and 2-a */
823 struct in6_ifaddr *ia6;
824 int sw_csum;
825 int s;
826
827 ip6 = mtod(m, struct ip6_hdr *);
828 s = pserialize_read_enter();
829 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
830 if (ia6) {
831 /* Record statistics for this interface address. */
832 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
833 }
834 pserialize_read_exit(s);
835
836 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
837 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
838 if (IN6_NEED_CHECKSUM(ifp,
839 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
840 in6_undefer_cksum_tcpudp(m);
841 }
842 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
843 }
844
845 KASSERT(dst != NULL);
846 if (__predict_false(sw_csum & M_CSUM_TSOv6)) {
847 /*
848 * TSO6 is required by a packet, but disabled for
849 * the interface.
850 */
851 error = ip6_tso_output(ifp, origifp, m, dst, rt);
852 } else
853 error = ip6_if_output(ifp, origifp, m, dst, rt);
854 goto done;
855 }
856
857 if (tso) {
858 error = EINVAL; /* XXX */
859 goto bad;
860 }
861
862 /*
863 * try to fragment the packet. case 1-b and 3
864 */
865 if (mtu < IPV6_MMTU) {
866 /* path MTU cannot be less than IPV6_MMTU */
867 error = EMSGSIZE;
868 in6_ifstat_inc(ifp, ifs6_out_fragfail);
869 goto bad;
870 } else if (ip6->ip6_plen == 0) {
871 /* jumbo payload cannot be fragmented */
872 error = EMSGSIZE;
873 in6_ifstat_inc(ifp, ifs6_out_fragfail);
874 goto bad;
875 } else {
876 const u_int32_t id = htonl(ip6_randomid());
877 struct mbuf **mnext, *m_frgpart;
878 const int hlen = unfragpartlen;
879 struct ip6_frag *ip6f;
880 u_char nextproto;
881
882 if (mtu > IPV6_MAXPACKET)
883 mtu = IPV6_MAXPACKET;
884
885 /*
886 * Must be able to put at least 8 bytes per fragment.
887 */
888 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
889 if (len < 8) {
890 error = EMSGSIZE;
891 in6_ifstat_inc(ifp, ifs6_out_fragfail);
892 goto bad;
893 }
894
895 mnext = &m->m_nextpkt;
896
897 /*
898 * Change the next header field of the last header in the
899 * unfragmentable part.
900 */
901 if (exthdrs.ip6e_rthdr) {
902 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
903 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
904 } else if (exthdrs.ip6e_dest1) {
905 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
906 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
907 } else if (exthdrs.ip6e_hbh) {
908 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
909 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
910 } else {
911 nextproto = ip6->ip6_nxt;
912 ip6->ip6_nxt = IPPROTO_FRAGMENT;
913 }
914
915 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
916 != 0) {
917 if (IN6_NEED_CHECKSUM(ifp,
918 m->m_pkthdr.csum_flags &
919 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
920 in6_undefer_cksum_tcpudp(m);
921 }
922 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
923 }
924
925 /*
926 * Loop through length of segment after first fragment,
927 * make new header and copy data of each part and link onto
928 * chain.
929 */
930 m0 = m;
931 for (off = hlen; off < tlen; off += len) {
932 struct mbuf *mlast;
933
934 MGETHDR(m, M_DONTWAIT, MT_HEADER);
935 if (!m) {
936 error = ENOBUFS;
937 IP6_STATINC(IP6_STAT_ODROPPED);
938 goto sendorfree;
939 }
940 m_reset_rcvif(m);
941 m->m_flags = m0->m_flags & M_COPYFLAGS;
942 *mnext = m;
943 mnext = &m->m_nextpkt;
944 m->m_data += max_linkhdr;
945 mhip6 = mtod(m, struct ip6_hdr *);
946 *mhip6 = *ip6;
947 m->m_len = sizeof(*mhip6);
948
949 ip6f = NULL;
950 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
951 if (error) {
952 IP6_STATINC(IP6_STAT_ODROPPED);
953 goto sendorfree;
954 }
955
956 /* Fill in the Frag6 Header */
957 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
958 if (off + len >= tlen)
959 len = tlen - off;
960 else
961 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
962 ip6f->ip6f_reserved = 0;
963 ip6f->ip6f_ident = id;
964 ip6f->ip6f_nxt = nextproto;
965
966 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
967 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
968 if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) {
969 error = ENOBUFS;
970 IP6_STATINC(IP6_STAT_ODROPPED);
971 goto sendorfree;
972 }
973 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
974 ;
975 mlast->m_next = m_frgpart;
976
977 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
978 m_reset_rcvif(m);
979 IP6_STATINC(IP6_STAT_OFRAGMENTS);
980 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
981 }
982
983 in6_ifstat_inc(ifp, ifs6_out_fragok);
984 }
985
986 sendorfree:
987 m = m0->m_nextpkt;
988 m0->m_nextpkt = 0;
989 m_freem(m0);
990 for (m0 = m; m; m = m0) {
991 m0 = m->m_nextpkt;
992 m->m_nextpkt = 0;
993 if (error == 0) {
994 struct in6_ifaddr *ia6;
995 int s;
996 ip6 = mtod(m, struct ip6_hdr *);
997 s = pserialize_read_enter();
998 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
999 if (ia6) {
1000 /*
1001 * Record statistics for this interface
1002 * address.
1003 */
1004 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1005 m->m_pkthdr.len;
1006 }
1007 pserialize_read_exit(s);
1008 KASSERT(dst != NULL);
1009 error = ip6_if_output(ifp, origifp, m, dst, rt);
1010 } else
1011 m_freem(m);
1012 }
1013
1014 if (error == 0)
1015 IP6_STATINC(IP6_STAT_FRAGMENTED);
1016
1017 done:
1018 rtcache_unref(rt, ro);
1019 if (ro == &ip6route)
1020 rtcache_free(&ip6route);
1021 #ifdef IPSEC
1022 if (sp != NULL)
1023 KEY_SP_UNREF(&sp);
1024 #endif
1025 if_put(ifp, &psref);
1026 if (release_psref_ia)
1027 if_put(origifp, &psref_ia);
1028 curlwp_bindx(bound);
1029
1030 return error;
1031
1032 freehdrs:
1033 m_freem(exthdrs.ip6e_hbh);
1034 m_freem(exthdrs.ip6e_dest1);
1035 m_freem(exthdrs.ip6e_rthdr);
1036 m_freem(exthdrs.ip6e_dest2);
1037 /* FALLTHROUGH */
1038 bad:
1039 m_freem(m);
1040 goto done;
1041
1042 badscope:
1043 IP6_STATINC(IP6_STAT_BADSCOPE);
1044 in6_ifstat_inc(origifp, ifs6_out_discard);
1045 if (error == 0)
1046 error = EHOSTUNREACH; /* XXX */
1047 goto bad;
1048 }
1049
1050 static int
1051 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1052 {
1053 struct mbuf *m;
1054
1055 if (hlen > MCLBYTES)
1056 return ENOBUFS; /* XXX */
1057
1058 MGET(m, M_DONTWAIT, MT_DATA);
1059 if (!m)
1060 return ENOBUFS;
1061
1062 if (hlen > MLEN) {
1063 MCLGET(m, M_DONTWAIT);
1064 if ((m->m_flags & M_EXT) == 0) {
1065 m_free(m);
1066 return ENOBUFS;
1067 }
1068 }
1069 m->m_len = hlen;
1070 if (hdr)
1071 memcpy(mtod(m, void *), hdr, hlen);
1072
1073 *mp = m;
1074 return 0;
1075 }
1076
1077 /*
1078 * Insert jumbo payload option.
1079 */
1080 static int
1081 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1082 {
1083 struct mbuf *mopt;
1084 u_int8_t *optbuf;
1085 u_int32_t v;
1086
1087 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1088
1089 /*
1090 * If there is no hop-by-hop options header, allocate new one.
1091 * If there is one but it doesn't have enough space to store the
1092 * jumbo payload option, allocate a cluster to store the whole options.
1093 * Otherwise, use it to store the options.
1094 */
1095 if (exthdrs->ip6e_hbh == NULL) {
1096 MGET(mopt, M_DONTWAIT, MT_DATA);
1097 if (mopt == 0)
1098 return (ENOBUFS);
1099 mopt->m_len = JUMBOOPTLEN;
1100 optbuf = mtod(mopt, u_int8_t *);
1101 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1102 exthdrs->ip6e_hbh = mopt;
1103 } else {
1104 struct ip6_hbh *hbh;
1105
1106 mopt = exthdrs->ip6e_hbh;
1107 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1108 const int oldoptlen = mopt->m_len;
1109 struct mbuf *n;
1110
1111 /*
1112 * Assumptions:
1113 * - exthdrs->ip6e_hbh is not referenced from places
1114 * other than exthdrs.
1115 * - exthdrs->ip6e_hbh is not an mbuf chain.
1116 */
1117 KASSERT(mopt->m_next == NULL);
1118
1119 /*
1120 * Give up if the whole (new) hbh header does not fit
1121 * even in an mbuf cluster.
1122 */
1123 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1124 return ENOBUFS;
1125
1126 /*
1127 * At this point, we must always prepare a cluster.
1128 */
1129 MGET(n, M_DONTWAIT, MT_DATA);
1130 if (n) {
1131 MCLGET(n, M_DONTWAIT);
1132 if ((n->m_flags & M_EXT) == 0) {
1133 m_freem(n);
1134 n = NULL;
1135 }
1136 }
1137 if (!n)
1138 return ENOBUFS;
1139
1140 n->m_len = oldoptlen + JUMBOOPTLEN;
1141 bcopy(mtod(mopt, void *), mtod(n, void *),
1142 oldoptlen);
1143 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1144 m_freem(mopt);
1145 mopt = exthdrs->ip6e_hbh = n;
1146 } else {
1147 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1148 mopt->m_len += JUMBOOPTLEN;
1149 }
1150 optbuf[0] = IP6OPT_PADN;
1151 optbuf[1] = 0;
1152
1153 /*
1154 * Adjust the header length according to the pad and
1155 * the jumbo payload option.
1156 */
1157 hbh = mtod(mopt, struct ip6_hbh *);
1158 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1159 }
1160
1161 /* fill in the option. */
1162 optbuf[2] = IP6OPT_JUMBO;
1163 optbuf[3] = 4;
1164 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1165 memcpy(&optbuf[4], &v, sizeof(u_int32_t));
1166
1167 /* finally, adjust the packet header length */
1168 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1169
1170 return 0;
1171 #undef JUMBOOPTLEN
1172 }
1173
1174 /*
1175 * Insert fragment header and copy unfragmentable header portions.
1176 *
1177 * *frghdrp will not be read, and it is guaranteed that either an
1178 * error is returned or that *frghdrp will point to space allocated
1179 * for the fragment header.
1180 *
1181 * On entry, m contains:
1182 * IPv6 Header
1183 * On exit, it contains:
1184 * IPv6 Header -> Unfragmentable Part -> Frag6 Header
1185 */
1186 static int
1187 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1188 struct ip6_frag **frghdrp)
1189 {
1190 struct mbuf *n, *mlast;
1191
1192 if (hlen > sizeof(struct ip6_hdr)) {
1193 n = m_copym(m0, sizeof(struct ip6_hdr),
1194 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1195 if (n == NULL)
1196 return ENOBUFS;
1197 m->m_next = n;
1198 } else
1199 n = m;
1200
1201 /* Search for the last mbuf of unfragmentable part. */
1202 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1203 ;
1204
1205 if ((mlast->m_flags & M_EXT) == 0 &&
1206 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1207 /* use the trailing space of the last mbuf for the fragment hdr */
1208 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1209 mlast->m_len);
1210 mlast->m_len += sizeof(struct ip6_frag);
1211 } else {
1212 /* allocate a new mbuf for the fragment header */
1213 struct mbuf *mfrg;
1214
1215 MGET(mfrg, M_DONTWAIT, MT_DATA);
1216 if (mfrg == NULL)
1217 return ENOBUFS;
1218 mfrg->m_len = sizeof(struct ip6_frag);
1219 *frghdrp = mtod(mfrg, struct ip6_frag *);
1220 mlast->m_next = mfrg;
1221 }
1222
1223 return 0;
1224 }
1225
1226 static int
1227 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
1228 int *alwaysfragp)
1229 {
1230 u_int32_t mtu = 0;
1231 int alwaysfrag = 0;
1232 int error = 0;
1233
1234 if (rt != NULL) {
1235 u_int32_t ifmtu;
1236
1237 if (ifp == NULL)
1238 ifp = rt->rt_ifp;
1239 ifmtu = IN6_LINKMTU(ifp);
1240 mtu = rt->rt_rmx.rmx_mtu;
1241 if (mtu == 0)
1242 mtu = ifmtu;
1243 else if (mtu < IPV6_MMTU) {
1244 /*
1245 * RFC2460 section 5, last paragraph:
1246 * if we record ICMPv6 too big message with
1247 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1248 * or smaller, with fragment header attached.
1249 * (fragment header is needed regardless from the
1250 * packet size, for translators to identify packets)
1251 */
1252 alwaysfrag = 1;
1253 mtu = IPV6_MMTU;
1254 } else if (mtu > ifmtu) {
1255 /*
1256 * The MTU on the route is larger than the MTU on
1257 * the interface! This shouldn't happen, unless the
1258 * MTU of the interface has been changed after the
1259 * interface was brought up. Change the MTU in the
1260 * route to match the interface MTU (as long as the
1261 * field isn't locked).
1262 */
1263 mtu = ifmtu;
1264 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1265 rt->rt_rmx.rmx_mtu = mtu;
1266 }
1267 } else if (ifp) {
1268 mtu = IN6_LINKMTU(ifp);
1269 } else
1270 error = EHOSTUNREACH; /* XXX */
1271
1272 *mtup = mtu;
1273 if (alwaysfragp)
1274 *alwaysfragp = alwaysfrag;
1275 return (error);
1276 }
1277
1278 /*
1279 * IP6 socket option processing.
1280 */
1281 int
1282 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1283 {
1284 int optdatalen, uproto;
1285 void *optdata;
1286 struct in6pcb *in6p = sotoin6pcb(so);
1287 struct ip_moptions **mopts;
1288 int error, optval;
1289 int level, optname;
1290
1291 KASSERT(solocked(so));
1292 KASSERT(sopt != NULL);
1293
1294 level = sopt->sopt_level;
1295 optname = sopt->sopt_name;
1296
1297 error = optval = 0;
1298 uproto = (int)so->so_proto->pr_protocol;
1299
1300 switch (level) {
1301 case IPPROTO_IP:
1302 switch (optname) {
1303 case IP_ADD_MEMBERSHIP:
1304 case IP_DROP_MEMBERSHIP:
1305 case IP_MULTICAST_IF:
1306 case IP_MULTICAST_LOOP:
1307 case IP_MULTICAST_TTL:
1308 mopts = &in6p->in6p_v4moptions;
1309 switch (op) {
1310 case PRCO_GETOPT:
1311 return ip_getmoptions(*mopts, sopt);
1312 case PRCO_SETOPT:
1313 return ip_setmoptions(mopts, sopt);
1314 default:
1315 return EINVAL;
1316 }
1317 default:
1318 return ENOPROTOOPT;
1319 }
1320 case IPPROTO_IPV6:
1321 break;
1322 default:
1323 return ENOPROTOOPT;
1324 }
1325 switch (op) {
1326 case PRCO_SETOPT:
1327 switch (optname) {
1328 #ifdef RFC2292
1329 case IPV6_2292PKTOPTIONS:
1330 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
1331 break;
1332 #endif
1333
1334 /*
1335 * Use of some Hop-by-Hop options or some
1336 * Destination options, might require special
1337 * privilege. That is, normal applications
1338 * (without special privilege) might be forbidden
1339 * from setting certain options in outgoing packets,
1340 * and might never see certain options in received
1341 * packets. [RFC 2292 Section 6]
1342 * KAME specific note:
1343 * KAME prevents non-privileged users from sending or
1344 * receiving ANY hbh/dst options in order to avoid
1345 * overhead of parsing options in the kernel.
1346 */
1347 case IPV6_RECVHOPOPTS:
1348 case IPV6_RECVDSTOPTS:
1349 case IPV6_RECVRTHDRDSTOPTS:
1350 error = kauth_authorize_network(kauth_cred_get(),
1351 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
1352 NULL, NULL, NULL);
1353 if (error)
1354 break;
1355 /* FALLTHROUGH */
1356 case IPV6_UNICAST_HOPS:
1357 case IPV6_HOPLIMIT:
1358 case IPV6_FAITH:
1359
1360 case IPV6_RECVPKTINFO:
1361 case IPV6_RECVHOPLIMIT:
1362 case IPV6_RECVRTHDR:
1363 case IPV6_RECVPATHMTU:
1364 case IPV6_RECVTCLASS:
1365 case IPV6_V6ONLY:
1366 error = sockopt_getint(sopt, &optval);
1367 if (error)
1368 break;
1369 switch (optname) {
1370 case IPV6_UNICAST_HOPS:
1371 if (optval < -1 || optval >= 256)
1372 error = EINVAL;
1373 else {
1374 /* -1 = kernel default */
1375 in6p->in6p_hops = optval;
1376 }
1377 break;
1378 #define OPTSET(bit) \
1379 do { \
1380 if (optval) \
1381 in6p->in6p_flags |= (bit); \
1382 else \
1383 in6p->in6p_flags &= ~(bit); \
1384 } while (/*CONSTCOND*/ 0)
1385
1386 #ifdef RFC2292
1387 #define OPTSET2292(bit) \
1388 do { \
1389 in6p->in6p_flags |= IN6P_RFC2292; \
1390 if (optval) \
1391 in6p->in6p_flags |= (bit); \
1392 else \
1393 in6p->in6p_flags &= ~(bit); \
1394 } while (/*CONSTCOND*/ 0)
1395 #endif
1396
1397 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1398
1399 case IPV6_RECVPKTINFO:
1400 #ifdef RFC2292
1401 /* cannot mix with RFC2292 */
1402 if (OPTBIT(IN6P_RFC2292)) {
1403 error = EINVAL;
1404 break;
1405 }
1406 #endif
1407 OPTSET(IN6P_PKTINFO);
1408 break;
1409
1410 case IPV6_HOPLIMIT:
1411 {
1412 struct ip6_pktopts **optp;
1413
1414 #ifdef RFC2292
1415 /* cannot mix with RFC2292 */
1416 if (OPTBIT(IN6P_RFC2292)) {
1417 error = EINVAL;
1418 break;
1419 }
1420 #endif
1421 optp = &in6p->in6p_outputopts;
1422 error = ip6_pcbopt(IPV6_HOPLIMIT,
1423 (u_char *)&optval,
1424 sizeof(optval),
1425 optp,
1426 kauth_cred_get(), uproto);
1427 break;
1428 }
1429
1430 case IPV6_RECVHOPLIMIT:
1431 #ifdef RFC2292
1432 /* cannot mix with RFC2292 */
1433 if (OPTBIT(IN6P_RFC2292)) {
1434 error = EINVAL;
1435 break;
1436 }
1437 #endif
1438 OPTSET(IN6P_HOPLIMIT);
1439 break;
1440
1441 case IPV6_RECVHOPOPTS:
1442 #ifdef RFC2292
1443 /* cannot mix with RFC2292 */
1444 if (OPTBIT(IN6P_RFC2292)) {
1445 error = EINVAL;
1446 break;
1447 }
1448 #endif
1449 OPTSET(IN6P_HOPOPTS);
1450 break;
1451
1452 case IPV6_RECVDSTOPTS:
1453 #ifdef RFC2292
1454 /* cannot mix with RFC2292 */
1455 if (OPTBIT(IN6P_RFC2292)) {
1456 error = EINVAL;
1457 break;
1458 }
1459 #endif
1460 OPTSET(IN6P_DSTOPTS);
1461 break;
1462
1463 case IPV6_RECVRTHDRDSTOPTS:
1464 #ifdef RFC2292
1465 /* cannot mix with RFC2292 */
1466 if (OPTBIT(IN6P_RFC2292)) {
1467 error = EINVAL;
1468 break;
1469 }
1470 #endif
1471 OPTSET(IN6P_RTHDRDSTOPTS);
1472 break;
1473
1474 case IPV6_RECVRTHDR:
1475 #ifdef RFC2292
1476 /* cannot mix with RFC2292 */
1477 if (OPTBIT(IN6P_RFC2292)) {
1478 error = EINVAL;
1479 break;
1480 }
1481 #endif
1482 OPTSET(IN6P_RTHDR);
1483 break;
1484
1485 case IPV6_FAITH:
1486 OPTSET(IN6P_FAITH);
1487 break;
1488
1489 case IPV6_RECVPATHMTU:
1490 /*
1491 * We ignore this option for TCP
1492 * sockets.
1493 * (RFC3542 leaves this case
1494 * unspecified.)
1495 */
1496 if (uproto != IPPROTO_TCP)
1497 OPTSET(IN6P_MTU);
1498 break;
1499
1500 case IPV6_V6ONLY:
1501 /*
1502 * make setsockopt(IPV6_V6ONLY)
1503 * available only prior to bind(2).
1504 * see ipng mailing list, Jun 22 2001.
1505 */
1506 if (in6p->in6p_lport ||
1507 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1508 error = EINVAL;
1509 break;
1510 }
1511 #ifdef INET6_BINDV6ONLY
1512 if (!optval)
1513 error = EINVAL;
1514 #else
1515 OPTSET(IN6P_IPV6_V6ONLY);
1516 #endif
1517 break;
1518 case IPV6_RECVTCLASS:
1519 #ifdef RFC2292
1520 /* cannot mix with RFC2292 XXX */
1521 if (OPTBIT(IN6P_RFC2292)) {
1522 error = EINVAL;
1523 break;
1524 }
1525 #endif
1526 OPTSET(IN6P_TCLASS);
1527 break;
1528
1529 }
1530 break;
1531
1532 case IPV6_OTCLASS:
1533 {
1534 struct ip6_pktopts **optp;
1535 u_int8_t tclass;
1536
1537 error = sockopt_get(sopt, &tclass, sizeof(tclass));
1538 if (error)
1539 break;
1540 optp = &in6p->in6p_outputopts;
1541 error = ip6_pcbopt(optname,
1542 (u_char *)&tclass,
1543 sizeof(tclass),
1544 optp,
1545 kauth_cred_get(), uproto);
1546 break;
1547 }
1548
1549 case IPV6_TCLASS:
1550 case IPV6_DONTFRAG:
1551 case IPV6_USE_MIN_MTU:
1552 case IPV6_PREFER_TEMPADDR:
1553 error = sockopt_getint(sopt, &optval);
1554 if (error)
1555 break;
1556 {
1557 struct ip6_pktopts **optp;
1558 optp = &in6p->in6p_outputopts;
1559 error = ip6_pcbopt(optname,
1560 (u_char *)&optval,
1561 sizeof(optval),
1562 optp,
1563 kauth_cred_get(), uproto);
1564 break;
1565 }
1566
1567 #ifdef RFC2292
1568 case IPV6_2292PKTINFO:
1569 case IPV6_2292HOPLIMIT:
1570 case IPV6_2292HOPOPTS:
1571 case IPV6_2292DSTOPTS:
1572 case IPV6_2292RTHDR:
1573 /* RFC 2292 */
1574 error = sockopt_getint(sopt, &optval);
1575 if (error)
1576 break;
1577
1578 switch (optname) {
1579 case IPV6_2292PKTINFO:
1580 OPTSET2292(IN6P_PKTINFO);
1581 break;
1582 case IPV6_2292HOPLIMIT:
1583 OPTSET2292(IN6P_HOPLIMIT);
1584 break;
1585 case IPV6_2292HOPOPTS:
1586 /*
1587 * Check super-user privilege.
1588 * See comments for IPV6_RECVHOPOPTS.
1589 */
1590 error =
1591 kauth_authorize_network(kauth_cred_get(),
1592 KAUTH_NETWORK_IPV6,
1593 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1594 NULL, NULL);
1595 if (error)
1596 return (error);
1597 OPTSET2292(IN6P_HOPOPTS);
1598 break;
1599 case IPV6_2292DSTOPTS:
1600 error =
1601 kauth_authorize_network(kauth_cred_get(),
1602 KAUTH_NETWORK_IPV6,
1603 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1604 NULL, NULL);
1605 if (error)
1606 return (error);
1607 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1608 break;
1609 case IPV6_2292RTHDR:
1610 OPTSET2292(IN6P_RTHDR);
1611 break;
1612 }
1613 break;
1614 #endif
1615 case IPV6_PKTINFO:
1616 case IPV6_HOPOPTS:
1617 case IPV6_RTHDR:
1618 case IPV6_DSTOPTS:
1619 case IPV6_RTHDRDSTOPTS:
1620 case IPV6_NEXTHOP: {
1621 /* new advanced API (RFC3542) */
1622 void *optbuf;
1623 int optbuflen;
1624 struct ip6_pktopts **optp;
1625
1626 #ifdef RFC2292
1627 /* cannot mix with RFC2292 */
1628 if (OPTBIT(IN6P_RFC2292)) {
1629 error = EINVAL;
1630 break;
1631 }
1632 #endif
1633
1634 optbuflen = sopt->sopt_size;
1635 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1636 if (optbuf == NULL) {
1637 error = ENOBUFS;
1638 break;
1639 }
1640
1641 error = sockopt_get(sopt, optbuf, optbuflen);
1642 if (error) {
1643 free(optbuf, M_IP6OPT);
1644 break;
1645 }
1646 optp = &in6p->in6p_outputopts;
1647 error = ip6_pcbopt(optname, optbuf, optbuflen,
1648 optp, kauth_cred_get(), uproto);
1649
1650 free(optbuf, M_IP6OPT);
1651 break;
1652 }
1653 #undef OPTSET
1654
1655 case IPV6_MULTICAST_IF:
1656 case IPV6_MULTICAST_HOPS:
1657 case IPV6_MULTICAST_LOOP:
1658 case IPV6_JOIN_GROUP:
1659 case IPV6_LEAVE_GROUP:
1660 error = ip6_setmoptions(sopt, in6p);
1661 break;
1662
1663 case IPV6_PORTRANGE:
1664 error = sockopt_getint(sopt, &optval);
1665 if (error)
1666 break;
1667
1668 switch (optval) {
1669 case IPV6_PORTRANGE_DEFAULT:
1670 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1671 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1672 break;
1673
1674 case IPV6_PORTRANGE_HIGH:
1675 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1676 in6p->in6p_flags |= IN6P_HIGHPORT;
1677 break;
1678
1679 case IPV6_PORTRANGE_LOW:
1680 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1681 in6p->in6p_flags |= IN6P_LOWPORT;
1682 break;
1683
1684 default:
1685 error = EINVAL;
1686 break;
1687 }
1688 break;
1689
1690 case IPV6_PORTALGO:
1691 error = sockopt_getint(sopt, &optval);
1692 if (error)
1693 break;
1694
1695 error = portalgo_algo_index_select(
1696 (struct inpcb_hdr *)in6p, optval);
1697 break;
1698
1699 #if defined(IPSEC)
1700 case IPV6_IPSEC_POLICY:
1701 if (ipsec_enabled) {
1702 error = ipsec_set_policy(in6p,
1703 sopt->sopt_data, sopt->sopt_size,
1704 kauth_cred_get());
1705 break;
1706 }
1707 /*FALLTHROUGH*/
1708 #endif /* IPSEC */
1709
1710 default:
1711 error = ENOPROTOOPT;
1712 break;
1713 }
1714 break;
1715
1716 case PRCO_GETOPT:
1717 switch (optname) {
1718 #ifdef RFC2292
1719 case IPV6_2292PKTOPTIONS:
1720 /*
1721 * RFC3542 (effectively) deprecated the
1722 * semantics of the 2292-style pktoptions.
1723 * Since it was not reliable in nature (i.e.,
1724 * applications had to expect the lack of some
1725 * information after all), it would make sense
1726 * to simplify this part by always returning
1727 * empty data.
1728 */
1729 break;
1730 #endif
1731
1732 case IPV6_RECVHOPOPTS:
1733 case IPV6_RECVDSTOPTS:
1734 case IPV6_RECVRTHDRDSTOPTS:
1735 case IPV6_UNICAST_HOPS:
1736 case IPV6_RECVPKTINFO:
1737 case IPV6_RECVHOPLIMIT:
1738 case IPV6_RECVRTHDR:
1739 case IPV6_RECVPATHMTU:
1740
1741 case IPV6_FAITH:
1742 case IPV6_V6ONLY:
1743 case IPV6_PORTRANGE:
1744 case IPV6_RECVTCLASS:
1745 switch (optname) {
1746
1747 case IPV6_RECVHOPOPTS:
1748 optval = OPTBIT(IN6P_HOPOPTS);
1749 break;
1750
1751 case IPV6_RECVDSTOPTS:
1752 optval = OPTBIT(IN6P_DSTOPTS);
1753 break;
1754
1755 case IPV6_RECVRTHDRDSTOPTS:
1756 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1757 break;
1758
1759 case IPV6_UNICAST_HOPS:
1760 optval = in6p->in6p_hops;
1761 break;
1762
1763 case IPV6_RECVPKTINFO:
1764 optval = OPTBIT(IN6P_PKTINFO);
1765 break;
1766
1767 case IPV6_RECVHOPLIMIT:
1768 optval = OPTBIT(IN6P_HOPLIMIT);
1769 break;
1770
1771 case IPV6_RECVRTHDR:
1772 optval = OPTBIT(IN6P_RTHDR);
1773 break;
1774
1775 case IPV6_RECVPATHMTU:
1776 optval = OPTBIT(IN6P_MTU);
1777 break;
1778
1779 case IPV6_FAITH:
1780 optval = OPTBIT(IN6P_FAITH);
1781 break;
1782
1783 case IPV6_V6ONLY:
1784 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1785 break;
1786
1787 case IPV6_PORTRANGE:
1788 {
1789 int flags;
1790 flags = in6p->in6p_flags;
1791 if (flags & IN6P_HIGHPORT)
1792 optval = IPV6_PORTRANGE_HIGH;
1793 else if (flags & IN6P_LOWPORT)
1794 optval = IPV6_PORTRANGE_LOW;
1795 else
1796 optval = 0;
1797 break;
1798 }
1799 case IPV6_RECVTCLASS:
1800 optval = OPTBIT(IN6P_TCLASS);
1801 break;
1802
1803 }
1804 if (error)
1805 break;
1806 error = sockopt_setint(sopt, optval);
1807 break;
1808
1809 case IPV6_PATHMTU:
1810 {
1811 u_long pmtu = 0;
1812 struct ip6_mtuinfo mtuinfo;
1813 struct route *ro = &in6p->in6p_route;
1814 struct rtentry *rt;
1815 union {
1816 struct sockaddr dst;
1817 struct sockaddr_in6 dst6;
1818 } u;
1819
1820 if (!(so->so_state & SS_ISCONNECTED))
1821 return (ENOTCONN);
1822 /*
1823 * XXX: we dot not consider the case of source
1824 * routing, or optional information to specify
1825 * the outgoing interface.
1826 */
1827 sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0);
1828 rt = rtcache_lookup(ro, &u.dst);
1829 error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
1830 rtcache_unref(rt, ro);
1831 if (error)
1832 break;
1833 if (pmtu > IPV6_MAXPACKET)
1834 pmtu = IPV6_MAXPACKET;
1835
1836 memset(&mtuinfo, 0, sizeof(mtuinfo));
1837 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1838 optdata = (void *)&mtuinfo;
1839 optdatalen = sizeof(mtuinfo);
1840 if (optdatalen > MCLBYTES)
1841 return (EMSGSIZE); /* XXX */
1842 error = sockopt_set(sopt, optdata, optdatalen);
1843 break;
1844 }
1845
1846 #ifdef RFC2292
1847 case IPV6_2292PKTINFO:
1848 case IPV6_2292HOPLIMIT:
1849 case IPV6_2292HOPOPTS:
1850 case IPV6_2292RTHDR:
1851 case IPV6_2292DSTOPTS:
1852 switch (optname) {
1853 case IPV6_2292PKTINFO:
1854 optval = OPTBIT(IN6P_PKTINFO);
1855 break;
1856 case IPV6_2292HOPLIMIT:
1857 optval = OPTBIT(IN6P_HOPLIMIT);
1858 break;
1859 case IPV6_2292HOPOPTS:
1860 optval = OPTBIT(IN6P_HOPOPTS);
1861 break;
1862 case IPV6_2292RTHDR:
1863 optval = OPTBIT(IN6P_RTHDR);
1864 break;
1865 case IPV6_2292DSTOPTS:
1866 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1867 break;
1868 }
1869 error = sockopt_setint(sopt, optval);
1870 break;
1871 #endif
1872 case IPV6_PKTINFO:
1873 case IPV6_HOPOPTS:
1874 case IPV6_RTHDR:
1875 case IPV6_DSTOPTS:
1876 case IPV6_RTHDRDSTOPTS:
1877 case IPV6_NEXTHOP:
1878 case IPV6_OTCLASS:
1879 case IPV6_TCLASS:
1880 case IPV6_DONTFRAG:
1881 case IPV6_USE_MIN_MTU:
1882 case IPV6_PREFER_TEMPADDR:
1883 error = ip6_getpcbopt(in6p->in6p_outputopts,
1884 optname, sopt);
1885 break;
1886
1887 case IPV6_MULTICAST_IF:
1888 case IPV6_MULTICAST_HOPS:
1889 case IPV6_MULTICAST_LOOP:
1890 case IPV6_JOIN_GROUP:
1891 case IPV6_LEAVE_GROUP:
1892 error = ip6_getmoptions(sopt, in6p);
1893 break;
1894
1895 case IPV6_PORTALGO:
1896 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
1897 error = sockopt_setint(sopt, optval);
1898 break;
1899
1900 #if defined(IPSEC)
1901 case IPV6_IPSEC_POLICY:
1902 if (ipsec_used) {
1903 struct mbuf *m = NULL;
1904
1905 /*
1906 * XXX: this will return EINVAL as sopt is
1907 * empty
1908 */
1909 error = ipsec_get_policy(in6p, sopt->sopt_data,
1910 sopt->sopt_size, &m);
1911 if (!error)
1912 error = sockopt_setmbuf(sopt, m);
1913 break;
1914 }
1915 /*FALLTHROUGH*/
1916 #endif /* IPSEC */
1917
1918 default:
1919 error = ENOPROTOOPT;
1920 break;
1921 }
1922 break;
1923 }
1924 return (error);
1925 }
1926
1927 int
1928 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1929 {
1930 int error = 0, optval;
1931 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1932 struct in6pcb *in6p = sotoin6pcb(so);
1933 int level, optname;
1934
1935 KASSERT(sopt != NULL);
1936
1937 level = sopt->sopt_level;
1938 optname = sopt->sopt_name;
1939
1940 if (level != IPPROTO_IPV6) {
1941 return ENOPROTOOPT;
1942 }
1943
1944 switch (optname) {
1945 case IPV6_CHECKSUM:
1946 /*
1947 * For ICMPv6 sockets, no modification allowed for checksum
1948 * offset, permit "no change" values to help existing apps.
1949 *
1950 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
1951 * for an ICMPv6 socket will fail." The current
1952 * behavior does not meet RFC3542.
1953 */
1954 switch (op) {
1955 case PRCO_SETOPT:
1956 error = sockopt_getint(sopt, &optval);
1957 if (error)
1958 break;
1959 if ((optval % 2) != 0) {
1960 /* the API assumes even offset values */
1961 error = EINVAL;
1962 } else if (so->so_proto->pr_protocol ==
1963 IPPROTO_ICMPV6) {
1964 if (optval != icmp6off)
1965 error = EINVAL;
1966 } else
1967 in6p->in6p_cksum = optval;
1968 break;
1969
1970 case PRCO_GETOPT:
1971 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1972 optval = icmp6off;
1973 else
1974 optval = in6p->in6p_cksum;
1975
1976 error = sockopt_setint(sopt, optval);
1977 break;
1978
1979 default:
1980 error = EINVAL;
1981 break;
1982 }
1983 break;
1984
1985 default:
1986 error = ENOPROTOOPT;
1987 break;
1988 }
1989
1990 return (error);
1991 }
1992
1993 #ifdef RFC2292
1994 /*
1995 * Set up IP6 options in pcb for insertion in output packets or
1996 * specifying behavior of outgoing packets.
1997 */
1998 static int
1999 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
2000 struct sockopt *sopt)
2001 {
2002 struct ip6_pktopts *opt = *pktopt;
2003 struct mbuf *m;
2004 int error = 0;
2005
2006 KASSERT(solocked(so));
2007
2008 /* turn off any old options. */
2009 if (opt) {
2010 #ifdef DIAGNOSTIC
2011 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2012 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2013 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2014 printf("ip6_pcbopts: all specified options are cleared.\n");
2015 #endif
2016 ip6_clearpktopts(opt, -1);
2017 } else {
2018 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2019 if (opt == NULL)
2020 return (ENOBUFS);
2021 }
2022 *pktopt = NULL;
2023
2024 if (sopt == NULL || sopt->sopt_size == 0) {
2025 /*
2026 * Only turning off any previous options, regardless of
2027 * whether the opt is just created or given.
2028 */
2029 free(opt, M_IP6OPT);
2030 return (0);
2031 }
2032
2033 /* set options specified by user. */
2034 m = sockopt_getmbuf(sopt);
2035 if (m == NULL) {
2036 free(opt, M_IP6OPT);
2037 return (ENOBUFS);
2038 }
2039
2040 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
2041 so->so_proto->pr_protocol);
2042 m_freem(m);
2043 if (error != 0) {
2044 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2045 free(opt, M_IP6OPT);
2046 return (error);
2047 }
2048 *pktopt = opt;
2049 return (0);
2050 }
2051 #endif
2052
2053 /*
2054 * initialize ip6_pktopts. beware that there are non-zero default values in
2055 * the struct.
2056 */
2057 void
2058 ip6_initpktopts(struct ip6_pktopts *opt)
2059 {
2060
2061 memset(opt, 0, sizeof(*opt));
2062 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2063 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2064 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2065 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2066 }
2067
2068 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2069 static int
2070 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2071 kauth_cred_t cred, int uproto)
2072 {
2073 struct ip6_pktopts *opt;
2074
2075 if (*pktopt == NULL) {
2076 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2077 M_NOWAIT);
2078 if (*pktopt == NULL)
2079 return (ENOBUFS);
2080
2081 ip6_initpktopts(*pktopt);
2082 }
2083 opt = *pktopt;
2084
2085 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2086 }
2087
2088 static int
2089 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2090 {
2091 void *optdata = NULL;
2092 int optdatalen = 0;
2093 struct ip6_ext *ip6e;
2094 int error = 0;
2095 struct in6_pktinfo null_pktinfo;
2096 int deftclass = 0, on;
2097 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2098 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2099
2100 switch (optname) {
2101 case IPV6_PKTINFO:
2102 if (pktopt && pktopt->ip6po_pktinfo)
2103 optdata = (void *)pktopt->ip6po_pktinfo;
2104 else {
2105 /* XXX: we don't have to do this every time... */
2106 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2107 optdata = (void *)&null_pktinfo;
2108 }
2109 optdatalen = sizeof(struct in6_pktinfo);
2110 break;
2111 case IPV6_OTCLASS:
2112 /* XXX */
2113 return (EINVAL);
2114 case IPV6_TCLASS:
2115 if (pktopt && pktopt->ip6po_tclass >= 0)
2116 optdata = (void *)&pktopt->ip6po_tclass;
2117 else
2118 optdata = (void *)&deftclass;
2119 optdatalen = sizeof(int);
2120 break;
2121 case IPV6_HOPOPTS:
2122 if (pktopt && pktopt->ip6po_hbh) {
2123 optdata = (void *)pktopt->ip6po_hbh;
2124 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2125 optdatalen = (ip6e->ip6e_len + 1) << 3;
2126 }
2127 break;
2128 case IPV6_RTHDR:
2129 if (pktopt && pktopt->ip6po_rthdr) {
2130 optdata = (void *)pktopt->ip6po_rthdr;
2131 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2132 optdatalen = (ip6e->ip6e_len + 1) << 3;
2133 }
2134 break;
2135 case IPV6_RTHDRDSTOPTS:
2136 if (pktopt && pktopt->ip6po_dest1) {
2137 optdata = (void *)pktopt->ip6po_dest1;
2138 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2139 optdatalen = (ip6e->ip6e_len + 1) << 3;
2140 }
2141 break;
2142 case IPV6_DSTOPTS:
2143 if (pktopt && pktopt->ip6po_dest2) {
2144 optdata = (void *)pktopt->ip6po_dest2;
2145 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2146 optdatalen = (ip6e->ip6e_len + 1) << 3;
2147 }
2148 break;
2149 case IPV6_NEXTHOP:
2150 if (pktopt && pktopt->ip6po_nexthop) {
2151 optdata = (void *)pktopt->ip6po_nexthop;
2152 optdatalen = pktopt->ip6po_nexthop->sa_len;
2153 }
2154 break;
2155 case IPV6_USE_MIN_MTU:
2156 if (pktopt)
2157 optdata = (void *)&pktopt->ip6po_minmtu;
2158 else
2159 optdata = (void *)&defminmtu;
2160 optdatalen = sizeof(int);
2161 break;
2162 case IPV6_DONTFRAG:
2163 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2164 on = 1;
2165 else
2166 on = 0;
2167 optdata = (void *)&on;
2168 optdatalen = sizeof(on);
2169 break;
2170 case IPV6_PREFER_TEMPADDR:
2171 if (pktopt)
2172 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2173 else
2174 optdata = (void *)&defpreftemp;
2175 optdatalen = sizeof(int);
2176 break;
2177 default: /* should not happen */
2178 #ifdef DIAGNOSTIC
2179 panic("ip6_getpcbopt: unexpected option\n");
2180 #endif
2181 return (ENOPROTOOPT);
2182 }
2183
2184 error = sockopt_set(sopt, optdata, optdatalen);
2185
2186 return (error);
2187 }
2188
2189 void
2190 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2191 {
2192 if (optname == -1 || optname == IPV6_PKTINFO) {
2193 if (pktopt->ip6po_pktinfo)
2194 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2195 pktopt->ip6po_pktinfo = NULL;
2196 }
2197 if (optname == -1 || optname == IPV6_HOPLIMIT)
2198 pktopt->ip6po_hlim = -1;
2199 if (optname == -1 || optname == IPV6_TCLASS)
2200 pktopt->ip6po_tclass = -1;
2201 if (optname == -1 || optname == IPV6_NEXTHOP) {
2202 rtcache_free(&pktopt->ip6po_nextroute);
2203 if (pktopt->ip6po_nexthop)
2204 free(pktopt->ip6po_nexthop, M_IP6OPT);
2205 pktopt->ip6po_nexthop = NULL;
2206 }
2207 if (optname == -1 || optname == IPV6_HOPOPTS) {
2208 if (pktopt->ip6po_hbh)
2209 free(pktopt->ip6po_hbh, M_IP6OPT);
2210 pktopt->ip6po_hbh = NULL;
2211 }
2212 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2213 if (pktopt->ip6po_dest1)
2214 free(pktopt->ip6po_dest1, M_IP6OPT);
2215 pktopt->ip6po_dest1 = NULL;
2216 }
2217 if (optname == -1 || optname == IPV6_RTHDR) {
2218 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2219 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2220 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2221 rtcache_free(&pktopt->ip6po_route);
2222 }
2223 if (optname == -1 || optname == IPV6_DSTOPTS) {
2224 if (pktopt->ip6po_dest2)
2225 free(pktopt->ip6po_dest2, M_IP6OPT);
2226 pktopt->ip6po_dest2 = NULL;
2227 }
2228 }
2229
2230 #define PKTOPT_EXTHDRCPY(type) \
2231 do { \
2232 if (src->type) { \
2233 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2234 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2235 if (dst->type == NULL) \
2236 goto bad; \
2237 memcpy(dst->type, src->type, hlen); \
2238 } \
2239 } while (/*CONSTCOND*/ 0)
2240
2241 static int
2242 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2243 {
2244 dst->ip6po_hlim = src->ip6po_hlim;
2245 dst->ip6po_tclass = src->ip6po_tclass;
2246 dst->ip6po_flags = src->ip6po_flags;
2247 dst->ip6po_minmtu = src->ip6po_minmtu;
2248 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2249 if (src->ip6po_pktinfo) {
2250 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2251 M_IP6OPT, canwait);
2252 if (dst->ip6po_pktinfo == NULL)
2253 goto bad;
2254 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2255 }
2256 if (src->ip6po_nexthop) {
2257 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2258 M_IP6OPT, canwait);
2259 if (dst->ip6po_nexthop == NULL)
2260 goto bad;
2261 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2262 src->ip6po_nexthop->sa_len);
2263 }
2264 PKTOPT_EXTHDRCPY(ip6po_hbh);
2265 PKTOPT_EXTHDRCPY(ip6po_dest1);
2266 PKTOPT_EXTHDRCPY(ip6po_dest2);
2267 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2268 return (0);
2269
2270 bad:
2271 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2272 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2273 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2274 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2275 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2276 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2277
2278 return (ENOBUFS);
2279 }
2280 #undef PKTOPT_EXTHDRCPY
2281
2282 struct ip6_pktopts *
2283 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2284 {
2285 int error;
2286 struct ip6_pktopts *dst;
2287
2288 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2289 if (dst == NULL)
2290 return (NULL);
2291 ip6_initpktopts(dst);
2292
2293 if ((error = copypktopts(dst, src, canwait)) != 0) {
2294 free(dst, M_IP6OPT);
2295 return (NULL);
2296 }
2297
2298 return (dst);
2299 }
2300
2301 void
2302 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2303 {
2304 if (pktopt == NULL)
2305 return;
2306
2307 ip6_clearpktopts(pktopt, -1);
2308
2309 free(pktopt, M_IP6OPT);
2310 }
2311
2312 int
2313 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
2314 struct psref *psref, void *v, size_t l)
2315 {
2316 struct ipv6_mreq mreq;
2317 int error;
2318 struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
2319 struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
2320
2321 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2322 if (error != 0)
2323 return error;
2324
2325 if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
2326 /*
2327 * We use the unspecified address to specify to accept
2328 * all multicast addresses. Only super user is allowed
2329 * to do this.
2330 */
2331 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6,
2332 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
2333 return EACCES;
2334 } else if (IN6_IS_ADDR_V4MAPPED(ia)) {
2335 // Don't bother if we are not going to use ifp.
2336 if (l == sizeof(*ia)) {
2337 memcpy(v, ia, l);
2338 return 0;
2339 }
2340 } else if (!IN6_IS_ADDR_MULTICAST(ia)) {
2341 return EINVAL;
2342 }
2343
2344 /*
2345 * If no interface was explicitly specified, choose an
2346 * appropriate one according to the given multicast address.
2347 */
2348 if (mreq.ipv6mr_interface == 0) {
2349 struct rtentry *rt;
2350 union {
2351 struct sockaddr dst;
2352 struct sockaddr_in dst4;
2353 struct sockaddr_in6 dst6;
2354 } u;
2355 struct route ro;
2356
2357 /*
2358 * Look up the routing table for the
2359 * address, and choose the outgoing interface.
2360 * XXX: is it a good approach?
2361 */
2362 memset(&ro, 0, sizeof(ro));
2363 if (IN6_IS_ADDR_V4MAPPED(ia))
2364 sockaddr_in_init(&u.dst4, ia4, 0);
2365 else
2366 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
2367 error = rtcache_setdst(&ro, &u.dst);
2368 if (error != 0)
2369 return error;
2370 rt = rtcache_init(&ro);
2371 *ifp = rt != NULL ?
2372 if_get_byindex(rt->rt_ifp->if_index, psref) : NULL;
2373 rtcache_unref(rt, &ro);
2374 rtcache_free(&ro);
2375 } else {
2376 /*
2377 * If the interface is specified, validate it.
2378 */
2379 *ifp = if_get_byindex(mreq.ipv6mr_interface, psref);
2380 if (*ifp == NULL)
2381 return ENXIO; /* XXX EINVAL? */
2382 }
2383 if (sizeof(*ia) == l)
2384 memcpy(v, ia, l);
2385 else
2386 memcpy(v, ia4, l);
2387 return 0;
2388 }
2389
2390 /*
2391 * Set the IP6 multicast options in response to user setsockopt().
2392 */
2393 static int
2394 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p)
2395 {
2396 int error = 0;
2397 u_int loop, ifindex;
2398 struct ipv6_mreq mreq;
2399 struct in6_addr ia;
2400 struct ifnet *ifp;
2401 struct ip6_moptions *im6o = in6p->in6p_moptions;
2402 struct in6_multi_mship *imm;
2403
2404 KASSERT(in6p_locked(in6p));
2405
2406 if (im6o == NULL) {
2407 /*
2408 * No multicast option buffer attached to the pcb;
2409 * allocate one and initialize to default values.
2410 */
2411 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2412 if (im6o == NULL)
2413 return (ENOBUFS);
2414 in6p->in6p_moptions = im6o;
2415 im6o->im6o_multicast_if_index = 0;
2416 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2417 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2418 LIST_INIT(&im6o->im6o_memberships);
2419 }
2420
2421 switch (sopt->sopt_name) {
2422
2423 case IPV6_MULTICAST_IF: {
2424 int s;
2425 /*
2426 * Select the interface for outgoing multicast packets.
2427 */
2428 error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2429 if (error != 0)
2430 break;
2431
2432 s = pserialize_read_enter();
2433 if (ifindex != 0) {
2434 if ((ifp = if_byindex(ifindex)) == NULL) {
2435 pserialize_read_exit(s);
2436 error = ENXIO; /* XXX EINVAL? */
2437 break;
2438 }
2439 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2440 pserialize_read_exit(s);
2441 error = EADDRNOTAVAIL;
2442 break;
2443 }
2444 } else
2445 ifp = NULL;
2446 im6o->im6o_multicast_if_index = if_get_index(ifp);
2447 pserialize_read_exit(s);
2448 break;
2449 }
2450
2451 case IPV6_MULTICAST_HOPS:
2452 {
2453 /*
2454 * Set the IP6 hoplimit for outgoing multicast packets.
2455 */
2456 int optval;
2457
2458 error = sockopt_getint(sopt, &optval);
2459 if (error != 0)
2460 break;
2461
2462 if (optval < -1 || optval >= 256)
2463 error = EINVAL;
2464 else if (optval == -1)
2465 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2466 else
2467 im6o->im6o_multicast_hlim = optval;
2468 break;
2469 }
2470
2471 case IPV6_MULTICAST_LOOP:
2472 /*
2473 * Set the loopback flag for outgoing multicast packets.
2474 * Must be zero or one.
2475 */
2476 error = sockopt_get(sopt, &loop, sizeof(loop));
2477 if (error != 0)
2478 break;
2479 if (loop > 1) {
2480 error = EINVAL;
2481 break;
2482 }
2483 im6o->im6o_multicast_loop = loop;
2484 break;
2485
2486 case IPV6_JOIN_GROUP: {
2487 int bound;
2488 struct psref psref;
2489 /*
2490 * Add a multicast group membership.
2491 * Group must be a valid IP6 multicast address.
2492 */
2493 bound = curlwp_bind();
2494 ifp = NULL;
2495 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
2496 if (error != 0) {
2497 KASSERT(ifp == NULL);
2498 curlwp_bindx(bound);
2499 return error;
2500 }
2501
2502 if (IN6_IS_ADDR_V4MAPPED(&ia)) {
2503 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2504 goto put_break;
2505 }
2506 /*
2507 * See if we found an interface, and confirm that it
2508 * supports multicast
2509 */
2510 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2511 error = EADDRNOTAVAIL;
2512 goto put_break;
2513 }
2514
2515 if (in6_setscope(&ia, ifp, NULL)) {
2516 error = EADDRNOTAVAIL; /* XXX: should not happen */
2517 goto put_break;
2518 }
2519
2520 /*
2521 * See if the membership already exists.
2522 */
2523 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2524 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2525 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2526 &ia))
2527 goto put_break;
2528 }
2529 if (imm != NULL) {
2530 error = EADDRINUSE;
2531 goto put_break;
2532 }
2533 /*
2534 * Everything looks good; add a new record to the multicast
2535 * address list for the given interface.
2536 */
2537 IFNET_LOCK(ifp);
2538 imm = in6_joingroup(ifp, &ia, &error, 0);
2539 IFNET_UNLOCK(ifp);
2540 if (imm == NULL)
2541 goto put_break;
2542 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2543 put_break:
2544 if_put(ifp, &psref);
2545 curlwp_bindx(bound);
2546 break;
2547 }
2548
2549 case IPV6_LEAVE_GROUP: {
2550 struct ifnet *in6m_ifp;
2551 /*
2552 * Drop a multicast group membership.
2553 * Group must be a valid IP6 multicast address.
2554 */
2555 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2556 if (error != 0)
2557 break;
2558
2559 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
2560 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2561 break;
2562 }
2563 /*
2564 * If an interface address was specified, get a pointer
2565 * to its ifnet structure.
2566 */
2567 if (mreq.ipv6mr_interface != 0) {
2568 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
2569 error = ENXIO; /* XXX EINVAL? */
2570 break;
2571 }
2572 } else
2573 ifp = NULL;
2574
2575 /* Fill in the scope zone ID */
2576 if (ifp) {
2577 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2578 /* XXX: should not happen */
2579 error = EADDRNOTAVAIL;
2580 break;
2581 }
2582 } else if (mreq.ipv6mr_interface != 0) {
2583 /*
2584 * XXX: This case would happens when the (positive)
2585 * index is in the valid range, but the corresponding
2586 * interface has been detached dynamically. The above
2587 * check probably avoids such case to happen here, but
2588 * we check it explicitly for safety.
2589 */
2590 error = EADDRNOTAVAIL;
2591 break;
2592 } else { /* ipv6mr_interface == 0 */
2593 struct sockaddr_in6 sa6_mc;
2594
2595 /*
2596 * The API spec says as follows:
2597 * If the interface index is specified as 0, the
2598 * system may choose a multicast group membership to
2599 * drop by matching the multicast address only.
2600 * On the other hand, we cannot disambiguate the scope
2601 * zone unless an interface is provided. Thus, we
2602 * check if there's ambiguity with the default scope
2603 * zone as the last resort.
2604 */
2605 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2606 0, 0, 0);
2607 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2608 if (error != 0)
2609 break;
2610 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2611 }
2612
2613 /*
2614 * Find the membership in the membership list.
2615 */
2616 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2617 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2618 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2619 &mreq.ipv6mr_multiaddr))
2620 break;
2621 }
2622 if (imm == NULL) {
2623 /* Unable to resolve interface */
2624 error = EADDRNOTAVAIL;
2625 break;
2626 }
2627 /*
2628 * Give up the multicast address record to which the
2629 * membership points.
2630 */
2631 LIST_REMOVE(imm, i6mm_chain);
2632 in6m_ifp = imm->i6mm_maddr->in6m_ifp;
2633 IFNET_LOCK(in6m_ifp);
2634 in6_leavegroup(imm);
2635 /* in6m_ifp should not leave thanks to in6p_lock */
2636 IFNET_UNLOCK(in6m_ifp);
2637 break;
2638 }
2639
2640 default:
2641 error = EOPNOTSUPP;
2642 break;
2643 }
2644
2645 /*
2646 * If all options have default values, no need to keep the mbuf.
2647 */
2648 if (im6o->im6o_multicast_if_index == 0 &&
2649 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2650 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2651 LIST_EMPTY(&im6o->im6o_memberships)) {
2652 free(in6p->in6p_moptions, M_IPMOPTS);
2653 in6p->in6p_moptions = NULL;
2654 }
2655
2656 return (error);
2657 }
2658
2659 /*
2660 * Return the IP6 multicast options in response to user getsockopt().
2661 */
2662 static int
2663 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p)
2664 {
2665 u_int optval;
2666 int error;
2667 struct ip6_moptions *im6o = in6p->in6p_moptions;
2668
2669 switch (sopt->sopt_name) {
2670 case IPV6_MULTICAST_IF:
2671 if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
2672 optval = 0;
2673 else
2674 optval = im6o->im6o_multicast_if_index;
2675
2676 error = sockopt_set(sopt, &optval, sizeof(optval));
2677 break;
2678
2679 case IPV6_MULTICAST_HOPS:
2680 if (im6o == NULL)
2681 optval = ip6_defmcasthlim;
2682 else
2683 optval = im6o->im6o_multicast_hlim;
2684
2685 error = sockopt_set(sopt, &optval, sizeof(optval));
2686 break;
2687
2688 case IPV6_MULTICAST_LOOP:
2689 if (im6o == NULL)
2690 optval = IPV6_DEFAULT_MULTICAST_LOOP;
2691 else
2692 optval = im6o->im6o_multicast_loop;
2693
2694 error = sockopt_set(sopt, &optval, sizeof(optval));
2695 break;
2696
2697 default:
2698 error = EOPNOTSUPP;
2699 }
2700
2701 return (error);
2702 }
2703
2704 /*
2705 * Discard the IP6 multicast options.
2706 */
2707 void
2708 ip6_freemoptions(struct ip6_moptions *im6o)
2709 {
2710 struct in6_multi_mship *imm, *nimm;
2711
2712 if (im6o == NULL)
2713 return;
2714
2715 /* The owner of im6o (in6p) should be protected by solock */
2716 LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) {
2717 struct ifnet *ifp;
2718
2719 LIST_REMOVE(imm, i6mm_chain);
2720
2721 ifp = imm->i6mm_maddr->in6m_ifp;
2722 IFNET_LOCK(ifp);
2723 in6_leavegroup(imm);
2724 /* ifp should not leave thanks to solock */
2725 IFNET_UNLOCK(ifp);
2726 }
2727 free(im6o, M_IPMOPTS);
2728 }
2729
2730 /*
2731 * Set IPv6 outgoing packet options based on advanced API.
2732 */
2733 int
2734 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2735 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2736 {
2737 struct cmsghdr *cm = 0;
2738
2739 if (control == NULL || opt == NULL)
2740 return (EINVAL);
2741
2742 ip6_initpktopts(opt);
2743 if (stickyopt) {
2744 int error;
2745
2746 /*
2747 * If stickyopt is provided, make a local copy of the options
2748 * for this particular packet, then override them by ancillary
2749 * objects.
2750 * XXX: copypktopts() does not copy the cached route to a next
2751 * hop (if any). This is not very good in terms of efficiency,
2752 * but we can allow this since this option should be rarely
2753 * used.
2754 */
2755 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2756 return (error);
2757 }
2758
2759 /*
2760 * XXX: Currently, we assume all the optional information is stored
2761 * in a single mbuf.
2762 */
2763 if (control->m_next)
2764 return (EINVAL);
2765
2766 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2767 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2768 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2769 int error;
2770
2771 if (control->m_len < CMSG_LEN(0))
2772 return (EINVAL);
2773
2774 cm = mtod(control, struct cmsghdr *);
2775 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2776 return (EINVAL);
2777 if (cm->cmsg_level != IPPROTO_IPV6)
2778 continue;
2779
2780 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2781 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2782 if (error)
2783 return (error);
2784 }
2785
2786 return (0);
2787 }
2788
2789 /*
2790 * Set a particular packet option, as a sticky option or an ancillary data
2791 * item. "len" can be 0 only when it's a sticky option.
2792 * We have 4 cases of combination of "sticky" and "cmsg":
2793 * "sticky=0, cmsg=0": impossible
2794 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2795 * "sticky=1, cmsg=0": RFC3542 socket option
2796 * "sticky=1, cmsg=1": RFC2292 socket option
2797 */
2798 static int
2799 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2800 kauth_cred_t cred, int sticky, int cmsg, int uproto)
2801 {
2802 int minmtupolicy;
2803 int error;
2804
2805 if (!sticky && !cmsg) {
2806 #ifdef DIAGNOSTIC
2807 printf("ip6_setpktopt: impossible case\n");
2808 #endif
2809 return (EINVAL);
2810 }
2811
2812 /*
2813 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2814 * not be specified in the context of RFC3542. Conversely,
2815 * RFC3542 types should not be specified in the context of RFC2292.
2816 */
2817 if (!cmsg) {
2818 switch (optname) {
2819 case IPV6_2292PKTINFO:
2820 case IPV6_2292HOPLIMIT:
2821 case IPV6_2292NEXTHOP:
2822 case IPV6_2292HOPOPTS:
2823 case IPV6_2292DSTOPTS:
2824 case IPV6_2292RTHDR:
2825 case IPV6_2292PKTOPTIONS:
2826 return (ENOPROTOOPT);
2827 }
2828 }
2829 if (sticky && cmsg) {
2830 switch (optname) {
2831 case IPV6_PKTINFO:
2832 case IPV6_HOPLIMIT:
2833 case IPV6_NEXTHOP:
2834 case IPV6_HOPOPTS:
2835 case IPV6_DSTOPTS:
2836 case IPV6_RTHDRDSTOPTS:
2837 case IPV6_RTHDR:
2838 case IPV6_USE_MIN_MTU:
2839 case IPV6_DONTFRAG:
2840 case IPV6_OTCLASS:
2841 case IPV6_TCLASS:
2842 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
2843 return (ENOPROTOOPT);
2844 }
2845 }
2846
2847 switch (optname) {
2848 #ifdef RFC2292
2849 case IPV6_2292PKTINFO:
2850 #endif
2851 case IPV6_PKTINFO:
2852 {
2853 struct in6_pktinfo *pktinfo;
2854
2855 if (len != sizeof(struct in6_pktinfo))
2856 return (EINVAL);
2857
2858 pktinfo = (struct in6_pktinfo *)buf;
2859
2860 /*
2861 * An application can clear any sticky IPV6_PKTINFO option by
2862 * doing a "regular" setsockopt with ipi6_addr being
2863 * in6addr_any and ipi6_ifindex being zero.
2864 * [RFC 3542, Section 6]
2865 */
2866 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2867 pktinfo->ipi6_ifindex == 0 &&
2868 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2869 ip6_clearpktopts(opt, optname);
2870 break;
2871 }
2872
2873 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2874 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2875 return (EINVAL);
2876 }
2877
2878 /* Validate the interface index if specified. */
2879 if (pktinfo->ipi6_ifindex) {
2880 struct ifnet *ifp;
2881 int s = pserialize_read_enter();
2882 ifp = if_byindex(pktinfo->ipi6_ifindex);
2883 if (ifp == NULL) {
2884 pserialize_read_exit(s);
2885 return ENXIO;
2886 }
2887 pserialize_read_exit(s);
2888 }
2889
2890 /*
2891 * We store the address anyway, and let in6_selectsrc()
2892 * validate the specified address. This is because ipi6_addr
2893 * may not have enough information about its scope zone, and
2894 * we may need additional information (such as outgoing
2895 * interface or the scope zone of a destination address) to
2896 * disambiguate the scope.
2897 * XXX: the delay of the validation may confuse the
2898 * application when it is used as a sticky option.
2899 */
2900 if (opt->ip6po_pktinfo == NULL) {
2901 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2902 M_IP6OPT, M_NOWAIT);
2903 if (opt->ip6po_pktinfo == NULL)
2904 return (ENOBUFS);
2905 }
2906 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2907 break;
2908 }
2909
2910 #ifdef RFC2292
2911 case IPV6_2292HOPLIMIT:
2912 #endif
2913 case IPV6_HOPLIMIT:
2914 {
2915 int *hlimp;
2916
2917 /*
2918 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2919 * to simplify the ordering among hoplimit options.
2920 */
2921 if (optname == IPV6_HOPLIMIT && sticky)
2922 return (ENOPROTOOPT);
2923
2924 if (len != sizeof(int))
2925 return (EINVAL);
2926 hlimp = (int *)buf;
2927 if (*hlimp < -1 || *hlimp > 255)
2928 return (EINVAL);
2929
2930 opt->ip6po_hlim = *hlimp;
2931 break;
2932 }
2933
2934 case IPV6_OTCLASS:
2935 if (len != sizeof(u_int8_t))
2936 return (EINVAL);
2937
2938 opt->ip6po_tclass = *(u_int8_t *)buf;
2939 break;
2940
2941 case IPV6_TCLASS:
2942 {
2943 int tclass;
2944
2945 if (len != sizeof(int))
2946 return (EINVAL);
2947 tclass = *(int *)buf;
2948 if (tclass < -1 || tclass > 255)
2949 return (EINVAL);
2950
2951 opt->ip6po_tclass = tclass;
2952 break;
2953 }
2954
2955 #ifdef RFC2292
2956 case IPV6_2292NEXTHOP:
2957 #endif
2958 case IPV6_NEXTHOP:
2959 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2960 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2961 if (error)
2962 return (error);
2963
2964 if (len == 0) { /* just remove the option */
2965 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2966 break;
2967 }
2968
2969 /* check if cmsg_len is large enough for sa_len */
2970 if (len < sizeof(struct sockaddr) || len < *buf)
2971 return (EINVAL);
2972
2973 switch (((struct sockaddr *)buf)->sa_family) {
2974 case AF_INET6:
2975 {
2976 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2977
2978 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2979 return (EINVAL);
2980
2981 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2982 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2983 return (EINVAL);
2984 }
2985 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
2986 != 0) {
2987 return (error);
2988 }
2989 break;
2990 }
2991 case AF_LINK: /* eventually be supported? */
2992 default:
2993 return (EAFNOSUPPORT);
2994 }
2995
2996 /* turn off the previous option, then set the new option. */
2997 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2998 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2999 if (opt->ip6po_nexthop == NULL)
3000 return (ENOBUFS);
3001 memcpy(opt->ip6po_nexthop, buf, *buf);
3002 break;
3003
3004 #ifdef RFC2292
3005 case IPV6_2292HOPOPTS:
3006 #endif
3007 case IPV6_HOPOPTS:
3008 {
3009 struct ip6_hbh *hbh;
3010 int hbhlen;
3011
3012 /*
3013 * XXX: We don't allow a non-privileged user to set ANY HbH
3014 * options, since per-option restriction has too much
3015 * overhead.
3016 */
3017 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3018 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3019 if (error)
3020 return (error);
3021
3022 if (len == 0) {
3023 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3024 break; /* just remove the option */
3025 }
3026
3027 /* message length validation */
3028 if (len < sizeof(struct ip6_hbh))
3029 return (EINVAL);
3030 hbh = (struct ip6_hbh *)buf;
3031 hbhlen = (hbh->ip6h_len + 1) << 3;
3032 if (len != hbhlen)
3033 return (EINVAL);
3034
3035 /* turn off the previous option, then set the new option. */
3036 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3037 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3038 if (opt->ip6po_hbh == NULL)
3039 return (ENOBUFS);
3040 memcpy(opt->ip6po_hbh, hbh, hbhlen);
3041
3042 break;
3043 }
3044
3045 #ifdef RFC2292
3046 case IPV6_2292DSTOPTS:
3047 #endif
3048 case IPV6_DSTOPTS:
3049 case IPV6_RTHDRDSTOPTS:
3050 {
3051 struct ip6_dest *dest, **newdest = NULL;
3052 int destlen;
3053
3054 /* XXX: see the comment for IPV6_HOPOPTS */
3055 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3056 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3057 if (error)
3058 return (error);
3059
3060 if (len == 0) {
3061 ip6_clearpktopts(opt, optname);
3062 break; /* just remove the option */
3063 }
3064
3065 /* message length validation */
3066 if (len < sizeof(struct ip6_dest))
3067 return (EINVAL);
3068 dest = (struct ip6_dest *)buf;
3069 destlen = (dest->ip6d_len + 1) << 3;
3070 if (len != destlen)
3071 return (EINVAL);
3072 /*
3073 * Determine the position that the destination options header
3074 * should be inserted; before or after the routing header.
3075 */
3076 switch (optname) {
3077 case IPV6_2292DSTOPTS:
3078 /*
3079 * The old advanced API is ambiguous on this point.
3080 * Our approach is to determine the position based
3081 * according to the existence of a routing header.
3082 * Note, however, that this depends on the order of the
3083 * extension headers in the ancillary data; the 1st
3084 * part of the destination options header must appear
3085 * before the routing header in the ancillary data,
3086 * too.
3087 * RFC3542 solved the ambiguity by introducing
3088 * separate ancillary data or option types.
3089 */
3090 if (opt->ip6po_rthdr == NULL)
3091 newdest = &opt->ip6po_dest1;
3092 else
3093 newdest = &opt->ip6po_dest2;
3094 break;
3095 case IPV6_RTHDRDSTOPTS:
3096 newdest = &opt->ip6po_dest1;
3097 break;
3098 case IPV6_DSTOPTS:
3099 newdest = &opt->ip6po_dest2;
3100 break;
3101 }
3102
3103 /* turn off the previous option, then set the new option. */
3104 ip6_clearpktopts(opt, optname);
3105 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3106 if (*newdest == NULL)
3107 return (ENOBUFS);
3108 memcpy(*newdest, dest, destlen);
3109
3110 break;
3111 }
3112
3113 #ifdef RFC2292
3114 case IPV6_2292RTHDR:
3115 #endif
3116 case IPV6_RTHDR:
3117 {
3118 struct ip6_rthdr *rth;
3119 int rthlen;
3120
3121 if (len == 0) {
3122 ip6_clearpktopts(opt, IPV6_RTHDR);
3123 break; /* just remove the option */
3124 }
3125
3126 /* message length validation */
3127 if (len < sizeof(struct ip6_rthdr))
3128 return (EINVAL);
3129 rth = (struct ip6_rthdr *)buf;
3130 rthlen = (rth->ip6r_len + 1) << 3;
3131 if (len != rthlen)
3132 return (EINVAL);
3133 switch (rth->ip6r_type) {
3134 case IPV6_RTHDR_TYPE_0:
3135 /* Dropped, RFC5095. */
3136 default:
3137 return (EINVAL); /* not supported */
3138 }
3139 /* turn off the previous option */
3140 ip6_clearpktopts(opt, IPV6_RTHDR);
3141 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3142 if (opt->ip6po_rthdr == NULL)
3143 return (ENOBUFS);
3144 memcpy(opt->ip6po_rthdr, rth, rthlen);
3145 break;
3146 }
3147
3148 case IPV6_USE_MIN_MTU:
3149 if (len != sizeof(int))
3150 return (EINVAL);
3151 minmtupolicy = *(int *)buf;
3152 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3153 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3154 minmtupolicy != IP6PO_MINMTU_ALL) {
3155 return (EINVAL);
3156 }
3157 opt->ip6po_minmtu = minmtupolicy;
3158 break;
3159
3160 case IPV6_DONTFRAG:
3161 if (len != sizeof(int))
3162 return (EINVAL);
3163
3164 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3165 /*
3166 * we ignore this option for TCP sockets.
3167 * (RFC3542 leaves this case unspecified.)
3168 */
3169 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3170 } else
3171 opt->ip6po_flags |= IP6PO_DONTFRAG;
3172 break;
3173
3174 case IPV6_PREFER_TEMPADDR:
3175 {
3176 int preftemp;
3177
3178 if (len != sizeof(int))
3179 return (EINVAL);
3180 preftemp = *(int *)buf;
3181 switch (preftemp) {
3182 case IP6PO_TEMPADDR_SYSTEM:
3183 case IP6PO_TEMPADDR_NOTPREFER:
3184 case IP6PO_TEMPADDR_PREFER:
3185 break;
3186 default:
3187 return (EINVAL);
3188 }
3189 opt->ip6po_prefer_tempaddr = preftemp;
3190 break;
3191 }
3192
3193 default:
3194 return (ENOPROTOOPT);
3195 } /* end of switch */
3196
3197 return (0);
3198 }
3199
3200 /*
3201 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3202 * packet to the input queue of a specified interface. Note that this
3203 * calls the output routine of the loopback "driver", but with an interface
3204 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3205 */
3206 void
3207 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3208 const struct sockaddr_in6 *dst)
3209 {
3210 struct mbuf *copym;
3211 struct ip6_hdr *ip6;
3212
3213 copym = m_copypacket(m, M_DONTWAIT);
3214 if (copym == NULL)
3215 return;
3216
3217 /*
3218 * Make sure to deep-copy IPv6 header portion in case the data
3219 * is in an mbuf cluster, so that we can safely override the IPv6
3220 * header portion later.
3221 */
3222 if ((copym->m_flags & M_EXT) != 0 ||
3223 copym->m_len < sizeof(struct ip6_hdr)) {
3224 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3225 if (copym == NULL)
3226 return;
3227 }
3228
3229 #ifdef DIAGNOSTIC
3230 if (copym->m_len < sizeof(*ip6)) {
3231 m_freem(copym);
3232 return;
3233 }
3234 #endif
3235
3236 ip6 = mtod(copym, struct ip6_hdr *);
3237 /*
3238 * clear embedded scope identifiers if necessary.
3239 * in6_clearscope will touch the addresses only when necessary.
3240 */
3241 in6_clearscope(&ip6->ip6_src);
3242 in6_clearscope(&ip6->ip6_dst);
3243
3244 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3245 }
3246
3247 /*
3248 * Chop IPv6 header off from the payload.
3249 */
3250 static int
3251 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3252 {
3253 struct mbuf *mh;
3254 struct ip6_hdr *ip6;
3255
3256 ip6 = mtod(m, struct ip6_hdr *);
3257 if (m->m_len > sizeof(*ip6)) {
3258 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3259 if (mh == NULL) {
3260 m_freem(m);
3261 return ENOBUFS;
3262 }
3263 M_MOVE_PKTHDR(mh, m);
3264 MH_ALIGN(mh, sizeof(*ip6));
3265 m->m_len -= sizeof(*ip6);
3266 m->m_data += sizeof(*ip6);
3267 mh->m_next = m;
3268 mh->m_len = sizeof(*ip6);
3269 memcpy(mtod(mh, void *), (void *)ip6, sizeof(*ip6));
3270 m = mh;
3271 }
3272 exthdrs->ip6e_ip6 = m;
3273 return 0;
3274 }
3275
3276 /*
3277 * Compute IPv6 extension header length.
3278 */
3279 int
3280 ip6_optlen(struct in6pcb *in6p)
3281 {
3282 int len;
3283
3284 if (!in6p->in6p_outputopts)
3285 return 0;
3286
3287 len = 0;
3288 #define elen(x) \
3289 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3290
3291 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3292 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3293 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3294 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3295 return len;
3296 #undef elen
3297 }
3298
3299 /*
3300 * Ensure sending address is valid.
3301 * Returns 0 on success, -1 if an error should be sent back or 1
3302 * if the packet could be dropped without error (protocol dependent).
3303 */
3304 static int
3305 ip6_ifaddrvalid(const struct in6_addr *src, const struct in6_addr *dst)
3306 {
3307 struct sockaddr_in6 sin6;
3308 int s, error;
3309 struct ifaddr *ifa;
3310 struct in6_ifaddr *ia6;
3311
3312 if (IN6_IS_ADDR_UNSPECIFIED(src))
3313 return 0;
3314
3315 memset(&sin6, 0, sizeof(sin6));
3316 sin6.sin6_family = AF_INET6;
3317 sin6.sin6_len = sizeof(sin6);
3318 sin6.sin6_addr = *src;
3319
3320 s = pserialize_read_enter();
3321 ifa = ifa_ifwithaddr(sin6tosa(&sin6));
3322 if ((ia6 = ifatoia6(ifa)) == NULL ||
3323 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
3324 error = -1;
3325 else if (ia6->ia6_flags & IN6_IFF_TENTATIVE)
3326 error = 1;
3327 else if (ia6->ia6_flags & IN6_IFF_DETACHED &&
3328 (sin6.sin6_addr = *dst, ifa_ifwithaddr(sin6tosa(&sin6)) == NULL))
3329 /* Allow internal traffic to DETACHED addresses */
3330 error = 1;
3331 else
3332 error = 0;
3333 pserialize_read_exit(s);
3334
3335 return error;
3336 }
3337