ip6_output.c revision 1.225 1 /* $NetBSD: ip6_output.c,v 1.225 2020/08/28 06:32:24 ozaki-r Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.225 2020/08/28 06:32:24 ozaki-r Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_inet.h"
69 #include "opt_inet6.h"
70 #include "opt_ipsec.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/errno.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/syslog.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kauth.h>
83
84 #include <net/if.h>
85 #include <net/route.h>
86 #include <net/pfil.h>
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/ip_var.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet/portalgo.h>
95 #include <netinet6/in6_offload.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/ip6_private.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/nd6.h>
100 #include <netinet6/ip6protosw.h>
101 #include <netinet6/scope6_var.h>
102
103 #ifdef IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/ipsec6.h>
106 #include <netipsec/key.h>
107 #endif
108
109 extern pfil_head_t *inet6_pfil_hook; /* XXX */
110
111 struct ip6_exthdrs {
112 struct mbuf *ip6e_ip6;
113 struct mbuf *ip6e_hbh;
114 struct mbuf *ip6e_dest1;
115 struct mbuf *ip6e_rthdr;
116 struct mbuf *ip6e_dest2;
117 };
118
119 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
120 kauth_cred_t, int);
121 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
122 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
123 int, int, int);
124 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *);
125 static int ip6_getmoptions(struct sockopt *, struct in6pcb *);
126 static int ip6_copyexthdr(struct mbuf **, void *, int);
127 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
128 struct ip6_frag **);
129 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
130 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
131 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
132 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
133 static int ip6_ifaddrvalid(const struct in6_addr *, const struct in6_addr *);
134 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
135
136 #ifdef RFC2292
137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
138 #endif
139
140 static int
141 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
142 {
143 int error = 0;
144
145 switch (rh->ip6r_type) {
146 case IPV6_RTHDR_TYPE_0:
147 /* Dropped, RFC5095. */
148 default: /* is it possible? */
149 error = EINVAL;
150 }
151
152 return error;
153 }
154
155 /*
156 * Send an IP packet to a host.
157 */
158 int
159 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp,
160 struct mbuf * const m, const struct sockaddr_in6 * const dst,
161 const struct rtentry *rt)
162 {
163 int error = 0;
164
165 if (rt != NULL) {
166 error = rt_check_reject_route(rt, ifp);
167 if (error != 0) {
168 IP6_STATINC(IP6_STAT_RTREJECT);
169 m_freem(m);
170 return error;
171 }
172 }
173
174 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
175 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
176 else
177 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
178 return error;
179 }
180
181 /*
182 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
183 * header (with pri, len, nxt, hlim, src, dst).
184 *
185 * This function may modify ver and hlim only. The mbuf chain containing the
186 * packet will be freed. The mbuf opt, if present, will not be freed.
187 *
188 * Type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
189 * nd_ifinfo.linkmtu is u_int32_t. So we use u_long to hold largest one,
190 * which is rt_rmx.rmx_mtu.
191 */
192 int
193 ip6_output(
194 struct mbuf *m0,
195 struct ip6_pktopts *opt,
196 struct route *ro,
197 int flags,
198 struct ip6_moptions *im6o,
199 struct in6pcb *in6p,
200 struct ifnet **ifpp /* XXX: just for statistics */
201 )
202 {
203 struct ip6_hdr *ip6, *mhip6;
204 struct ifnet *ifp = NULL, *origifp = NULL;
205 struct mbuf *m = m0;
206 int tlen, len, off;
207 bool tso;
208 struct route ip6route;
209 struct rtentry *rt = NULL, *rt_pmtu;
210 const struct sockaddr_in6 *dst;
211 struct sockaddr_in6 src_sa, dst_sa;
212 int error = 0;
213 struct in6_ifaddr *ia = NULL;
214 u_long mtu;
215 int alwaysfrag, dontfrag;
216 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
217 struct ip6_exthdrs exthdrs;
218 struct in6_addr finaldst, src0, dst0;
219 u_int32_t zone;
220 struct route *ro_pmtu = NULL;
221 int hdrsplit = 0;
222 int needipsec = 0;
223 #ifdef IPSEC
224 struct secpolicy *sp = NULL;
225 #endif
226 struct psref psref, psref_ia;
227 int bound = curlwp_bind();
228 bool release_psref_ia = false;
229
230 #ifdef DIAGNOSTIC
231 if ((m->m_flags & M_PKTHDR) == 0)
232 panic("ip6_output: no HDR");
233 if ((m->m_pkthdr.csum_flags &
234 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
235 panic("ip6_output: IPv4 checksum offload flags: %d",
236 m->m_pkthdr.csum_flags);
237 }
238 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
239 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
240 panic("ip6_output: conflicting checksum offload flags: %d",
241 m->m_pkthdr.csum_flags);
242 }
243 #endif
244
245 M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
246
247 #define MAKE_EXTHDR(hp, mp) \
248 do { \
249 if (hp) { \
250 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
251 error = ip6_copyexthdr((mp), (void *)(hp), \
252 ((eh)->ip6e_len + 1) << 3); \
253 if (error) \
254 goto freehdrs; \
255 } \
256 } while (/*CONSTCOND*/ 0)
257
258 memset(&exthdrs, 0, sizeof(exthdrs));
259 if (opt) {
260 /* Hop-by-Hop options header */
261 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
262 /* Destination options header (1st part) */
263 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
264 /* Routing header */
265 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
266 /* Destination options header (2nd part) */
267 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
268 }
269
270 /*
271 * Calculate the total length of the extension header chain.
272 * Keep the length of the unfragmentable part for fragmentation.
273 */
274 optlen = 0;
275 if (exthdrs.ip6e_hbh)
276 optlen += exthdrs.ip6e_hbh->m_len;
277 if (exthdrs.ip6e_dest1)
278 optlen += exthdrs.ip6e_dest1->m_len;
279 if (exthdrs.ip6e_rthdr)
280 optlen += exthdrs.ip6e_rthdr->m_len;
281 unfragpartlen = optlen + sizeof(struct ip6_hdr);
282 /* NOTE: we don't add AH/ESP length here. do that later. */
283 if (exthdrs.ip6e_dest2)
284 optlen += exthdrs.ip6e_dest2->m_len;
285
286 #ifdef IPSEC
287 if (ipsec_used) {
288 /* Check the security policy (SP) for the packet */
289 sp = ipsec6_check_policy(m, in6p, flags, &needipsec, &error);
290 if (error != 0) {
291 /*
292 * Hack: -EINVAL is used to signal that a packet
293 * should be silently discarded. This is typically
294 * because we asked key management for an SA and
295 * it was delayed (e.g. kicked up to IKE).
296 */
297 if (error == -EINVAL)
298 error = 0;
299 IP6_STATINC(IP6_STAT_IPSECDROP_OUT);
300 goto freehdrs;
301 }
302 }
303 #endif
304
305 if (needipsec &&
306 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
307 in6_undefer_cksum_tcpudp(m);
308 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
309 }
310
311 /*
312 * If we need IPsec, or there is at least one extension header,
313 * separate IP6 header from the payload.
314 */
315 if ((needipsec || optlen) && !hdrsplit) {
316 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
317 IP6_STATINC(IP6_STAT_ODROPPED);
318 m = NULL;
319 goto freehdrs;
320 }
321 m = exthdrs.ip6e_ip6;
322 hdrsplit++;
323 }
324
325 /* adjust pointer */
326 ip6 = mtod(m, struct ip6_hdr *);
327
328 /* adjust mbuf packet header length */
329 m->m_pkthdr.len += optlen;
330 plen = m->m_pkthdr.len - sizeof(*ip6);
331
332 /* If this is a jumbo payload, insert a jumbo payload option. */
333 if (plen > IPV6_MAXPACKET) {
334 if (!hdrsplit) {
335 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
336 IP6_STATINC(IP6_STAT_ODROPPED);
337 m = NULL;
338 goto freehdrs;
339 }
340 m = exthdrs.ip6e_ip6;
341 hdrsplit++;
342 }
343 /* adjust pointer */
344 ip6 = mtod(m, struct ip6_hdr *);
345 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) {
346 IP6_STATINC(IP6_STAT_ODROPPED);
347 goto freehdrs;
348 }
349 optlen += 8; /* XXX JUMBOOPTLEN */
350 ip6->ip6_plen = 0;
351 } else
352 ip6->ip6_plen = htons(plen);
353
354 /*
355 * Concatenate headers and fill in next header fields.
356 * Here we have, on "m"
357 * IPv6 payload
358 * and we insert headers accordingly. Finally, we should be getting:
359 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
360 *
361 * during the header composing process, "m" points to IPv6 header.
362 * "mprev" points to an extension header prior to esp.
363 */
364 {
365 u_char *nexthdrp = &ip6->ip6_nxt;
366 struct mbuf *mprev = m;
367
368 /*
369 * we treat dest2 specially. this makes IPsec processing
370 * much easier. the goal here is to make mprev point the
371 * mbuf prior to dest2.
372 *
373 * result: IPv6 dest2 payload
374 * m and mprev will point to IPv6 header.
375 */
376 if (exthdrs.ip6e_dest2) {
377 if (!hdrsplit)
378 panic("assumption failed: hdr not split");
379 exthdrs.ip6e_dest2->m_next = m->m_next;
380 m->m_next = exthdrs.ip6e_dest2;
381 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
382 ip6->ip6_nxt = IPPROTO_DSTOPTS;
383 }
384
385 #define MAKE_CHAIN(m, mp, p, i)\
386 do {\
387 if (m) {\
388 if (!hdrsplit) \
389 panic("assumption failed: hdr not split"); \
390 *mtod((m), u_char *) = *(p);\
391 *(p) = (i);\
392 p = mtod((m), u_char *);\
393 (m)->m_next = (mp)->m_next;\
394 (mp)->m_next = (m);\
395 (mp) = (m);\
396 }\
397 } while (/*CONSTCOND*/ 0)
398 /*
399 * result: IPv6 hbh dest1 rthdr dest2 payload
400 * m will point to IPv6 header. mprev will point to the
401 * extension header prior to dest2 (rthdr in the above case).
402 */
403 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
404 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
405 IPPROTO_DSTOPTS);
406 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
407 IPPROTO_ROUTING);
408
409 M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data,
410 sizeof(struct ip6_hdr) + optlen);
411 }
412
413 /* Need to save for pmtu */
414 finaldst = ip6->ip6_dst;
415
416 /*
417 * If there is a routing header, replace destination address field
418 * with the first hop of the routing header.
419 */
420 if (exthdrs.ip6e_rthdr) {
421 struct ip6_rthdr *rh;
422
423 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
424
425 error = ip6_handle_rthdr(rh, ip6);
426 if (error != 0) {
427 IP6_STATINC(IP6_STAT_ODROPPED);
428 goto bad;
429 }
430 }
431
432 /* Source address validation */
433 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
434 (flags & IPV6_UNSPECSRC) == 0) {
435 error = EOPNOTSUPP;
436 IP6_STATINC(IP6_STAT_BADSCOPE);
437 goto bad;
438 }
439 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
440 error = EOPNOTSUPP;
441 IP6_STATINC(IP6_STAT_BADSCOPE);
442 goto bad;
443 }
444
445 IP6_STATINC(IP6_STAT_LOCALOUT);
446
447 /*
448 * Route packet.
449 */
450 /* initialize cached route */
451 if (ro == NULL) {
452 memset(&ip6route, 0, sizeof(ip6route));
453 ro = &ip6route;
454 }
455 ro_pmtu = ro;
456 if (opt && opt->ip6po_rthdr)
457 ro = &opt->ip6po_route;
458
459 /*
460 * if specified, try to fill in the traffic class field.
461 * do not override if a non-zero value is already set.
462 * we check the diffserv field and the ecn field separately.
463 */
464 if (opt && opt->ip6po_tclass >= 0) {
465 int mask = 0;
466
467 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
468 mask |= 0xfc;
469 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
470 mask |= 0x03;
471 if (mask != 0)
472 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
473 }
474
475 /* fill in or override the hop limit field, if necessary. */
476 if (opt && opt->ip6po_hlim != -1)
477 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
478 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
479 if (im6o != NULL)
480 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
481 else
482 ip6->ip6_hlim = ip6_defmcasthlim;
483 }
484
485 #ifdef IPSEC
486 if (needipsec) {
487 int s = splsoftnet();
488 error = ipsec6_process_packet(m, sp->req, flags);
489 splx(s);
490
491 /*
492 * Preserve KAME behaviour: ENOENT can be returned
493 * when an SA acquire is in progress. Don't propagate
494 * this to user-level; it confuses applications.
495 * XXX this will go away when the SADB is redone.
496 */
497 if (error == ENOENT)
498 error = 0;
499
500 goto done;
501 }
502 #endif
503
504 /* adjust pointer */
505 ip6 = mtod(m, struct ip6_hdr *);
506
507 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
508
509 /* We do not need a route for multicast */
510 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
511 struct in6_pktinfo *pi = NULL;
512
513 /*
514 * If the outgoing interface for the address is specified by
515 * the caller, use it.
516 */
517 if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
518 /* XXX boundary check is assumed to be already done. */
519 ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
520 } else if (im6o != NULL) {
521 ifp = if_get_byindex(im6o->im6o_multicast_if_index,
522 &psref);
523 }
524 }
525
526 if (ifp == NULL) {
527 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
528 if (error != 0)
529 goto bad;
530 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
531 }
532
533 if (rt == NULL) {
534 /*
535 * If in6_selectroute() does not return a route entry,
536 * dst may not have been updated.
537 */
538 error = rtcache_setdst(ro, sin6tosa(&dst_sa));
539 if (error) {
540 IP6_STATINC(IP6_STAT_ODROPPED);
541 goto bad;
542 }
543 }
544
545 /*
546 * then rt (for unicast) and ifp must be non-NULL valid values.
547 */
548 if ((flags & IPV6_FORWARDING) == 0) {
549 /* XXX: the FORWARDING flag can be set for mrouting. */
550 in6_ifstat_inc(ifp, ifs6_out_request);
551 }
552 if (rt != NULL) {
553 ia = (struct in6_ifaddr *)(rt->rt_ifa);
554 rt->rt_use++;
555 }
556
557 /*
558 * The outgoing interface must be in the zone of source and
559 * destination addresses. We should use ia_ifp to support the
560 * case of sending packets to an address of our own.
561 */
562 if (ia != NULL) {
563 origifp = ia->ia_ifp;
564 if (if_is_deactivated(origifp)) {
565 IP6_STATINC(IP6_STAT_ODROPPED);
566 goto bad;
567 }
568 if_acquire(origifp, &psref_ia);
569 release_psref_ia = true;
570 } else
571 origifp = ifp;
572
573 src0 = ip6->ip6_src;
574 if (in6_setscope(&src0, origifp, &zone))
575 goto badscope;
576 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
577 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
578 goto badscope;
579
580 dst0 = ip6->ip6_dst;
581 if (in6_setscope(&dst0, origifp, &zone))
582 goto badscope;
583 /* re-initialize to be sure */
584 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
585 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
586 goto badscope;
587
588 /* scope check is done. */
589
590 /* Ensure we only send from a valid address. */
591 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
592 (flags & IPV6_FORWARDING) == 0 &&
593 (error = ip6_ifaddrvalid(&src0, &dst0)) != 0)
594 {
595 char ip6buf[INET6_ADDRSTRLEN];
596 nd6log(LOG_ERR,
597 "refusing to send from invalid address %s (pid %d)\n",
598 IN6_PRINT(ip6buf, &src0), curproc->p_pid);
599 IP6_STATINC(IP6_STAT_ODROPPED);
600 in6_ifstat_inc(origifp, ifs6_out_discard);
601 if (error == 1)
602 /*
603 * Address exists, but is tentative or detached.
604 * We can't send from it because it's invalid,
605 * so we drop the packet.
606 */
607 error = 0;
608 else
609 error = EADDRNOTAVAIL;
610 goto bad;
611 }
612
613 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
614 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
615 dst = satocsin6(rt->rt_gateway);
616 else
617 dst = satocsin6(rtcache_getdst(ro));
618
619 /*
620 * XXXXXX: original code follows:
621 */
622 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
623 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
624 else {
625 bool ingroup;
626
627 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
628
629 in6_ifstat_inc(ifp, ifs6_out_mcast);
630
631 /*
632 * Confirm that the outgoing interface supports multicast.
633 */
634 if (!(ifp->if_flags & IFF_MULTICAST)) {
635 IP6_STATINC(IP6_STAT_NOROUTE);
636 in6_ifstat_inc(ifp, ifs6_out_discard);
637 error = ENETUNREACH;
638 goto bad;
639 }
640
641 ingroup = in6_multi_group(&ip6->ip6_dst, ifp);
642 if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) {
643 /*
644 * If we belong to the destination multicast group
645 * on the outgoing interface, and the caller did not
646 * forbid loopback, loop back a copy.
647 */
648 KASSERT(dst != NULL);
649 ip6_mloopback(ifp, m, dst);
650 } else {
651 /*
652 * If we are acting as a multicast router, perform
653 * multicast forwarding as if the packet had just
654 * arrived on the interface to which we are about
655 * to send. The multicast forwarding function
656 * recursively calls this function, using the
657 * IPV6_FORWARDING flag to prevent infinite recursion.
658 *
659 * Multicasts that are looped back by ip6_mloopback(),
660 * above, will be forwarded by the ip6_input() routine,
661 * if necessary.
662 */
663 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
664 if (ip6_mforward(ip6, ifp, m) != 0) {
665 m_freem(m);
666 goto done;
667 }
668 }
669 }
670 /*
671 * Multicasts with a hoplimit of zero may be looped back,
672 * above, but must not be transmitted on a network.
673 * Also, multicasts addressed to the loopback interface
674 * are not sent -- the above call to ip6_mloopback() will
675 * loop back a copy if this host actually belongs to the
676 * destination group on the loopback interface.
677 */
678 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
679 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
680 m_freem(m);
681 goto done;
682 }
683 }
684
685 /*
686 * Fill the outgoing inteface to tell the upper layer
687 * to increment per-interface statistics.
688 */
689 if (ifpp)
690 *ifpp = ifp;
691
692 /* Determine path MTU. */
693 /*
694 * ro_pmtu represent final destination while
695 * ro might represent immediate destination.
696 * Use ro_pmtu destination since MTU might differ.
697 */
698 if (ro_pmtu != ro) {
699 union {
700 struct sockaddr dst;
701 struct sockaddr_in6 dst6;
702 } u;
703
704 /* ro_pmtu may not have a cache */
705 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
706 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
707 } else
708 rt_pmtu = rt;
709 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
710 if (rt_pmtu != NULL && rt_pmtu != rt)
711 rtcache_unref(rt_pmtu, ro_pmtu);
712 KASSERT(error == 0); /* ip6_getpmtu never fail if ifp is passed */
713
714 /*
715 * The caller of this function may specify to use the minimum MTU
716 * in some cases.
717 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
718 * setting. The logic is a bit complicated; by default, unicast
719 * packets will follow path MTU while multicast packets will be sent at
720 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
721 * including unicast ones will be sent at the minimum MTU. Multicast
722 * packets will always be sent at the minimum MTU unless
723 * IP6PO_MINMTU_DISABLE is explicitly specified.
724 * See RFC 3542 for more details.
725 */
726 if (mtu > IPV6_MMTU) {
727 if ((flags & IPV6_MINMTU))
728 mtu = IPV6_MMTU;
729 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
730 mtu = IPV6_MMTU;
731 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
732 (opt == NULL ||
733 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
734 mtu = IPV6_MMTU;
735 }
736 }
737
738 /*
739 * clear embedded scope identifiers if necessary.
740 * in6_clearscope will touch the addresses only when necessary.
741 */
742 in6_clearscope(&ip6->ip6_src);
743 in6_clearscope(&ip6->ip6_dst);
744
745 /*
746 * If the outgoing packet contains a hop-by-hop options header,
747 * it must be examined and processed even by the source node.
748 * (RFC 2460, section 4.)
749 *
750 * XXX Is this really necessary?
751 */
752 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
753 u_int32_t dummy1; /* XXX unused */
754 u_int32_t dummy2; /* XXX unused */
755 int hoff = sizeof(struct ip6_hdr);
756
757 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
758 /* m was already freed at this point */
759 error = EINVAL;
760 goto done;
761 }
762
763 ip6 = mtod(m, struct ip6_hdr *);
764 }
765
766 /*
767 * Run through list of hooks for output packets.
768 */
769 error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT);
770 if (error != 0 || m == NULL) {
771 IP6_STATINC(IP6_STAT_PFILDROP_OUT);
772 goto done;
773 }
774 ip6 = mtod(m, struct ip6_hdr *);
775
776 /*
777 * Send the packet to the outgoing interface.
778 * If necessary, do IPv6 fragmentation before sending.
779 *
780 * the logic here is rather complex:
781 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
782 * 1-a: send as is if tlen <= path mtu
783 * 1-b: fragment if tlen > path mtu
784 *
785 * 2: if user asks us not to fragment (dontfrag == 1)
786 * 2-a: send as is if tlen <= interface mtu
787 * 2-b: error if tlen > interface mtu
788 *
789 * 3: if we always need to attach fragment header (alwaysfrag == 1)
790 * always fragment
791 *
792 * 4: if dontfrag == 1 && alwaysfrag == 1
793 * error, as we cannot handle this conflicting request
794 */
795 tlen = m->m_pkthdr.len;
796 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
797 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
798 dontfrag = 1;
799 else
800 dontfrag = 0;
801
802 if (dontfrag && alwaysfrag) { /* case 4 */
803 /* conflicting request - can't transmit */
804 IP6_STATINC(IP6_STAT_CANTFRAG);
805 error = EMSGSIZE;
806 goto bad;
807 }
808 if (dontfrag && (!tso && tlen > ifp->if_mtu)) { /* case 2-b */
809 /*
810 * Even if the DONTFRAG option is specified, we cannot send the
811 * packet when the data length is larger than the MTU of the
812 * outgoing interface.
813 * Notify the error by sending IPV6_PATHMTU ancillary data as
814 * well as returning an error code (the latter is not described
815 * in the API spec.)
816 */
817 u_int32_t mtu32;
818 struct ip6ctlparam ip6cp;
819
820 mtu32 = (u_int32_t)mtu;
821 memset(&ip6cp, 0, sizeof(ip6cp));
822 ip6cp.ip6c_cmdarg = (void *)&mtu32;
823 pfctlinput2(PRC_MSGSIZE,
824 rtcache_getdst(ro_pmtu), &ip6cp);
825
826 IP6_STATINC(IP6_STAT_CANTFRAG);
827 error = EMSGSIZE;
828 goto bad;
829 }
830
831 /*
832 * transmit packet without fragmentation
833 */
834 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
835 /* case 1-a and 2-a */
836 struct in6_ifaddr *ia6;
837 int sw_csum;
838 int s;
839
840 ip6 = mtod(m, struct ip6_hdr *);
841 s = pserialize_read_enter();
842 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
843 if (ia6) {
844 /* Record statistics for this interface address. */
845 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
846 }
847 pserialize_read_exit(s);
848
849 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
850 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
851 if (IN6_NEED_CHECKSUM(ifp,
852 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
853 in6_undefer_cksum_tcpudp(m);
854 }
855 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
856 }
857
858 KASSERT(dst != NULL);
859 if (__predict_false(sw_csum & M_CSUM_TSOv6)) {
860 /*
861 * TSO6 is required by a packet, but disabled for
862 * the interface.
863 */
864 error = ip6_tso_output(ifp, origifp, m, dst, rt);
865 } else
866 error = ip6_if_output(ifp, origifp, m, dst, rt);
867 goto done;
868 }
869
870 if (tso) {
871 IP6_STATINC(IP6_STAT_CANTFRAG); /* XXX */
872 error = EINVAL; /* XXX */
873 goto bad;
874 }
875
876 /*
877 * try to fragment the packet. case 1-b and 3
878 */
879 if (mtu < IPV6_MMTU) {
880 /* path MTU cannot be less than IPV6_MMTU */
881 IP6_STATINC(IP6_STAT_CANTFRAG);
882 error = EMSGSIZE;
883 in6_ifstat_inc(ifp, ifs6_out_fragfail);
884 goto bad;
885 } else if (ip6->ip6_plen == 0) {
886 /* jumbo payload cannot be fragmented */
887 IP6_STATINC(IP6_STAT_CANTFRAG);
888 error = EMSGSIZE;
889 in6_ifstat_inc(ifp, ifs6_out_fragfail);
890 goto bad;
891 } else {
892 const u_int32_t id = htonl(ip6_randomid());
893 struct mbuf **mnext, *m_frgpart;
894 const int hlen = unfragpartlen;
895 struct ip6_frag *ip6f;
896 u_char nextproto;
897
898 if (mtu > IPV6_MAXPACKET)
899 mtu = IPV6_MAXPACKET;
900
901 /*
902 * Must be able to put at least 8 bytes per fragment.
903 */
904 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
905 if (len < 8) {
906 IP6_STATINC(IP6_STAT_CANTFRAG);
907 error = EMSGSIZE;
908 in6_ifstat_inc(ifp, ifs6_out_fragfail);
909 goto bad;
910 }
911
912 mnext = &m->m_nextpkt;
913
914 /*
915 * Change the next header field of the last header in the
916 * unfragmentable part.
917 */
918 if (exthdrs.ip6e_rthdr) {
919 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
920 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
921 } else if (exthdrs.ip6e_dest1) {
922 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
923 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
924 } else if (exthdrs.ip6e_hbh) {
925 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
926 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
927 } else {
928 nextproto = ip6->ip6_nxt;
929 ip6->ip6_nxt = IPPROTO_FRAGMENT;
930 }
931
932 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
933 != 0) {
934 if (IN6_NEED_CHECKSUM(ifp,
935 m->m_pkthdr.csum_flags &
936 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
937 in6_undefer_cksum_tcpudp(m);
938 }
939 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
940 }
941
942 /*
943 * Loop through length of segment after first fragment,
944 * make new header and copy data of each part and link onto
945 * chain.
946 */
947 m0 = m;
948 for (off = hlen; off < tlen; off += len) {
949 struct mbuf *mlast;
950
951 MGETHDR(m, M_DONTWAIT, MT_HEADER);
952 if (!m) {
953 error = ENOBUFS;
954 IP6_STATINC(IP6_STAT_ODROPPED);
955 goto sendorfree;
956 }
957 m_reset_rcvif(m);
958 m->m_flags = m0->m_flags & M_COPYFLAGS;
959 *mnext = m;
960 mnext = &m->m_nextpkt;
961 m->m_data += max_linkhdr;
962 mhip6 = mtod(m, struct ip6_hdr *);
963 *mhip6 = *ip6;
964 m->m_len = sizeof(*mhip6);
965
966 ip6f = NULL;
967 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
968 if (error) {
969 IP6_STATINC(IP6_STAT_ODROPPED);
970 goto sendorfree;
971 }
972
973 /* Fill in the Frag6 Header */
974 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
975 if (off + len >= tlen)
976 len = tlen - off;
977 else
978 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
979 ip6f->ip6f_reserved = 0;
980 ip6f->ip6f_ident = id;
981 ip6f->ip6f_nxt = nextproto;
982
983 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
984 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
985 if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) {
986 error = ENOBUFS;
987 IP6_STATINC(IP6_STAT_ODROPPED);
988 goto sendorfree;
989 }
990 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
991 ;
992 mlast->m_next = m_frgpart;
993
994 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
995 m_reset_rcvif(m);
996 IP6_STATINC(IP6_STAT_OFRAGMENTS);
997 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
998 }
999
1000 in6_ifstat_inc(ifp, ifs6_out_fragok);
1001 }
1002
1003 sendorfree:
1004 m = m0->m_nextpkt;
1005 m0->m_nextpkt = 0;
1006 m_freem(m0);
1007 for (m0 = m; m; m = m0) {
1008 m0 = m->m_nextpkt;
1009 m->m_nextpkt = 0;
1010 if (error == 0) {
1011 struct in6_ifaddr *ia6;
1012 int s;
1013 ip6 = mtod(m, struct ip6_hdr *);
1014 s = pserialize_read_enter();
1015 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1016 if (ia6) {
1017 /*
1018 * Record statistics for this interface
1019 * address.
1020 */
1021 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1022 m->m_pkthdr.len;
1023 }
1024 pserialize_read_exit(s);
1025 KASSERT(dst != NULL);
1026 error = ip6_if_output(ifp, origifp, m, dst, rt);
1027 } else
1028 m_freem(m);
1029 }
1030
1031 if (error == 0)
1032 IP6_STATINC(IP6_STAT_FRAGMENTED);
1033
1034 done:
1035 rtcache_unref(rt, ro);
1036 if (ro == &ip6route)
1037 rtcache_free(&ip6route);
1038 #ifdef IPSEC
1039 if (sp != NULL)
1040 KEY_SP_UNREF(&sp);
1041 #endif
1042 if_put(ifp, &psref);
1043 if (release_psref_ia)
1044 if_put(origifp, &psref_ia);
1045 curlwp_bindx(bound);
1046
1047 return error;
1048
1049 freehdrs:
1050 m_freem(exthdrs.ip6e_hbh);
1051 m_freem(exthdrs.ip6e_dest1);
1052 m_freem(exthdrs.ip6e_rthdr);
1053 m_freem(exthdrs.ip6e_dest2);
1054 /* FALLTHROUGH */
1055 bad:
1056 m_freem(m);
1057 goto done;
1058
1059 badscope:
1060 IP6_STATINC(IP6_STAT_BADSCOPE);
1061 in6_ifstat_inc(origifp, ifs6_out_discard);
1062 if (error == 0)
1063 error = EHOSTUNREACH; /* XXX */
1064 goto bad;
1065 }
1066
1067 static int
1068 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1069 {
1070 struct mbuf *m;
1071
1072 if (hlen > MCLBYTES)
1073 return ENOBUFS; /* XXX */
1074
1075 MGET(m, M_DONTWAIT, MT_DATA);
1076 if (!m)
1077 return ENOBUFS;
1078
1079 if (hlen > MLEN) {
1080 MCLGET(m, M_DONTWAIT);
1081 if ((m->m_flags & M_EXT) == 0) {
1082 m_free(m);
1083 return ENOBUFS;
1084 }
1085 }
1086 m->m_len = hlen;
1087 if (hdr)
1088 memcpy(mtod(m, void *), hdr, hlen);
1089
1090 *mp = m;
1091 return 0;
1092 }
1093
1094 /*
1095 * Insert jumbo payload option.
1096 */
1097 static int
1098 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1099 {
1100 struct mbuf *mopt;
1101 u_int8_t *optbuf;
1102 u_int32_t v;
1103
1104 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1105
1106 /*
1107 * If there is no hop-by-hop options header, allocate new one.
1108 * If there is one but it doesn't have enough space to store the
1109 * jumbo payload option, allocate a cluster to store the whole options.
1110 * Otherwise, use it to store the options.
1111 */
1112 if (exthdrs->ip6e_hbh == NULL) {
1113 MGET(mopt, M_DONTWAIT, MT_DATA);
1114 if (mopt == 0)
1115 return (ENOBUFS);
1116 mopt->m_len = JUMBOOPTLEN;
1117 optbuf = mtod(mopt, u_int8_t *);
1118 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1119 exthdrs->ip6e_hbh = mopt;
1120 } else {
1121 struct ip6_hbh *hbh;
1122
1123 mopt = exthdrs->ip6e_hbh;
1124 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1125 const int oldoptlen = mopt->m_len;
1126 struct mbuf *n;
1127
1128 /*
1129 * Assumptions:
1130 * - exthdrs->ip6e_hbh is not referenced from places
1131 * other than exthdrs.
1132 * - exthdrs->ip6e_hbh is not an mbuf chain.
1133 */
1134 KASSERT(mopt->m_next == NULL);
1135
1136 /*
1137 * Give up if the whole (new) hbh header does not fit
1138 * even in an mbuf cluster.
1139 */
1140 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1141 return ENOBUFS;
1142
1143 /*
1144 * At this point, we must always prepare a cluster.
1145 */
1146 MGET(n, M_DONTWAIT, MT_DATA);
1147 if (n) {
1148 MCLGET(n, M_DONTWAIT);
1149 if ((n->m_flags & M_EXT) == 0) {
1150 m_freem(n);
1151 n = NULL;
1152 }
1153 }
1154 if (!n)
1155 return ENOBUFS;
1156
1157 n->m_len = oldoptlen + JUMBOOPTLEN;
1158 bcopy(mtod(mopt, void *), mtod(n, void *),
1159 oldoptlen);
1160 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1161 m_freem(mopt);
1162 mopt = exthdrs->ip6e_hbh = n;
1163 } else {
1164 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1165 mopt->m_len += JUMBOOPTLEN;
1166 }
1167 optbuf[0] = IP6OPT_PADN;
1168 optbuf[1] = 0;
1169
1170 /*
1171 * Adjust the header length according to the pad and
1172 * the jumbo payload option.
1173 */
1174 hbh = mtod(mopt, struct ip6_hbh *);
1175 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1176 }
1177
1178 /* fill in the option. */
1179 optbuf[2] = IP6OPT_JUMBO;
1180 optbuf[3] = 4;
1181 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1182 memcpy(&optbuf[4], &v, sizeof(u_int32_t));
1183
1184 /* finally, adjust the packet header length */
1185 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1186
1187 return 0;
1188 #undef JUMBOOPTLEN
1189 }
1190
1191 /*
1192 * Insert fragment header and copy unfragmentable header portions.
1193 *
1194 * *frghdrp will not be read, and it is guaranteed that either an
1195 * error is returned or that *frghdrp will point to space allocated
1196 * for the fragment header.
1197 *
1198 * On entry, m contains:
1199 * IPv6 Header
1200 * On exit, it contains:
1201 * IPv6 Header -> Unfragmentable Part -> Frag6 Header
1202 */
1203 static int
1204 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1205 struct ip6_frag **frghdrp)
1206 {
1207 struct mbuf *n, *mlast;
1208
1209 if (hlen > sizeof(struct ip6_hdr)) {
1210 n = m_copym(m0, sizeof(struct ip6_hdr),
1211 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1212 if (n == NULL)
1213 return ENOBUFS;
1214 m->m_next = n;
1215 } else
1216 n = m;
1217
1218 /* Search for the last mbuf of unfragmentable part. */
1219 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1220 ;
1221
1222 if ((mlast->m_flags & M_EXT) == 0 &&
1223 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1224 /* use the trailing space of the last mbuf for the fragment hdr */
1225 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1226 mlast->m_len);
1227 mlast->m_len += sizeof(struct ip6_frag);
1228 } else {
1229 /* allocate a new mbuf for the fragment header */
1230 struct mbuf *mfrg;
1231
1232 MGET(mfrg, M_DONTWAIT, MT_DATA);
1233 if (mfrg == NULL)
1234 return ENOBUFS;
1235 mfrg->m_len = sizeof(struct ip6_frag);
1236 *frghdrp = mtod(mfrg, struct ip6_frag *);
1237 mlast->m_next = mfrg;
1238 }
1239
1240 return 0;
1241 }
1242
1243 static int
1244 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
1245 int *alwaysfragp)
1246 {
1247 u_int32_t mtu = 0;
1248 int alwaysfrag = 0;
1249 int error = 0;
1250
1251 if (rt != NULL) {
1252 if (ifp == NULL)
1253 ifp = rt->rt_ifp;
1254 mtu = rt->rt_rmx.rmx_mtu;
1255 if (mtu == 0)
1256 mtu = ifp->if_mtu;
1257 else if (mtu < IPV6_MMTU) {
1258 /*
1259 * RFC2460 section 5, last paragraph:
1260 * if we record ICMPv6 too big message with
1261 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1262 * or smaller, with fragment header attached.
1263 * (fragment header is needed regardless from the
1264 * packet size, for translators to identify packets)
1265 */
1266 alwaysfrag = 1;
1267 mtu = IPV6_MMTU;
1268 } else if (mtu > ifp->if_mtu) {
1269 /*
1270 * The MTU on the route is larger than the MTU on
1271 * the interface! This shouldn't happen, unless the
1272 * MTU of the interface has been changed after the
1273 * interface was brought up. Change the MTU in the
1274 * route to match the interface MTU (as long as the
1275 * field isn't locked).
1276 */
1277 mtu = ifp->if_mtu;
1278 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1279 rt->rt_rmx.rmx_mtu = mtu;
1280 }
1281 } else if (ifp) {
1282 mtu = ifp->if_mtu;
1283 } else
1284 error = EHOSTUNREACH; /* XXX */
1285
1286 *mtup = mtu;
1287 if (alwaysfragp)
1288 *alwaysfragp = alwaysfrag;
1289 return (error);
1290 }
1291
1292 /*
1293 * IP6 socket option processing.
1294 */
1295 int
1296 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1297 {
1298 int optdatalen, uproto;
1299 void *optdata;
1300 struct in6pcb *in6p = sotoin6pcb(so);
1301 struct ip_moptions **mopts;
1302 int error, optval;
1303 int level, optname;
1304
1305 KASSERT(solocked(so));
1306 KASSERT(sopt != NULL);
1307
1308 level = sopt->sopt_level;
1309 optname = sopt->sopt_name;
1310
1311 error = optval = 0;
1312 uproto = (int)so->so_proto->pr_protocol;
1313
1314 switch (level) {
1315 case IPPROTO_IP:
1316 switch (optname) {
1317 case IP_ADD_MEMBERSHIP:
1318 case IP_DROP_MEMBERSHIP:
1319 case IP_MULTICAST_IF:
1320 case IP_MULTICAST_LOOP:
1321 case IP_MULTICAST_TTL:
1322 mopts = &in6p->in6p_v4moptions;
1323 switch (op) {
1324 case PRCO_GETOPT:
1325 return ip_getmoptions(*mopts, sopt);
1326 case PRCO_SETOPT:
1327 return ip_setmoptions(mopts, sopt);
1328 default:
1329 return EINVAL;
1330 }
1331 default:
1332 return ENOPROTOOPT;
1333 }
1334 case IPPROTO_IPV6:
1335 break;
1336 default:
1337 return ENOPROTOOPT;
1338 }
1339 switch (op) {
1340 case PRCO_SETOPT:
1341 switch (optname) {
1342 #ifdef RFC2292
1343 case IPV6_2292PKTOPTIONS:
1344 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
1345 break;
1346 #endif
1347
1348 /*
1349 * Use of some Hop-by-Hop options or some
1350 * Destination options, might require special
1351 * privilege. That is, normal applications
1352 * (without special privilege) might be forbidden
1353 * from setting certain options in outgoing packets,
1354 * and might never see certain options in received
1355 * packets. [RFC 2292 Section 6]
1356 * KAME specific note:
1357 * KAME prevents non-privileged users from sending or
1358 * receiving ANY hbh/dst options in order to avoid
1359 * overhead of parsing options in the kernel.
1360 */
1361 case IPV6_RECVHOPOPTS:
1362 case IPV6_RECVDSTOPTS:
1363 case IPV6_RECVRTHDRDSTOPTS:
1364 error = kauth_authorize_network(kauth_cred_get(),
1365 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
1366 NULL, NULL, NULL);
1367 if (error)
1368 break;
1369 /* FALLTHROUGH */
1370 case IPV6_UNICAST_HOPS:
1371 case IPV6_HOPLIMIT:
1372 case IPV6_FAITH:
1373
1374 case IPV6_RECVPKTINFO:
1375 case IPV6_RECVHOPLIMIT:
1376 case IPV6_RECVRTHDR:
1377 case IPV6_RECVPATHMTU:
1378 case IPV6_RECVTCLASS:
1379 case IPV6_V6ONLY:
1380 error = sockopt_getint(sopt, &optval);
1381 if (error)
1382 break;
1383 switch (optname) {
1384 case IPV6_UNICAST_HOPS:
1385 if (optval < -1 || optval >= 256)
1386 error = EINVAL;
1387 else {
1388 /* -1 = kernel default */
1389 in6p->in6p_hops = optval;
1390 }
1391 break;
1392 #define OPTSET(bit) \
1393 do { \
1394 if (optval) \
1395 in6p->in6p_flags |= (bit); \
1396 else \
1397 in6p->in6p_flags &= ~(bit); \
1398 } while (/*CONSTCOND*/ 0)
1399
1400 #ifdef RFC2292
1401 #define OPTSET2292(bit) \
1402 do { \
1403 in6p->in6p_flags |= IN6P_RFC2292; \
1404 if (optval) \
1405 in6p->in6p_flags |= (bit); \
1406 else \
1407 in6p->in6p_flags &= ~(bit); \
1408 } while (/*CONSTCOND*/ 0)
1409 #endif
1410
1411 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1412
1413 case IPV6_RECVPKTINFO:
1414 #ifdef RFC2292
1415 /* cannot mix with RFC2292 */
1416 if (OPTBIT(IN6P_RFC2292)) {
1417 error = EINVAL;
1418 break;
1419 }
1420 #endif
1421 OPTSET(IN6P_PKTINFO);
1422 break;
1423
1424 case IPV6_HOPLIMIT:
1425 {
1426 struct ip6_pktopts **optp;
1427
1428 #ifdef RFC2292
1429 /* cannot mix with RFC2292 */
1430 if (OPTBIT(IN6P_RFC2292)) {
1431 error = EINVAL;
1432 break;
1433 }
1434 #endif
1435 optp = &in6p->in6p_outputopts;
1436 error = ip6_pcbopt(IPV6_HOPLIMIT,
1437 (u_char *)&optval,
1438 sizeof(optval),
1439 optp,
1440 kauth_cred_get(), uproto);
1441 break;
1442 }
1443
1444 case IPV6_RECVHOPLIMIT:
1445 #ifdef RFC2292
1446 /* cannot mix with RFC2292 */
1447 if (OPTBIT(IN6P_RFC2292)) {
1448 error = EINVAL;
1449 break;
1450 }
1451 #endif
1452 OPTSET(IN6P_HOPLIMIT);
1453 break;
1454
1455 case IPV6_RECVHOPOPTS:
1456 #ifdef RFC2292
1457 /* cannot mix with RFC2292 */
1458 if (OPTBIT(IN6P_RFC2292)) {
1459 error = EINVAL;
1460 break;
1461 }
1462 #endif
1463 OPTSET(IN6P_HOPOPTS);
1464 break;
1465
1466 case IPV6_RECVDSTOPTS:
1467 #ifdef RFC2292
1468 /* cannot mix with RFC2292 */
1469 if (OPTBIT(IN6P_RFC2292)) {
1470 error = EINVAL;
1471 break;
1472 }
1473 #endif
1474 OPTSET(IN6P_DSTOPTS);
1475 break;
1476
1477 case IPV6_RECVRTHDRDSTOPTS:
1478 #ifdef RFC2292
1479 /* cannot mix with RFC2292 */
1480 if (OPTBIT(IN6P_RFC2292)) {
1481 error = EINVAL;
1482 break;
1483 }
1484 #endif
1485 OPTSET(IN6P_RTHDRDSTOPTS);
1486 break;
1487
1488 case IPV6_RECVRTHDR:
1489 #ifdef RFC2292
1490 /* cannot mix with RFC2292 */
1491 if (OPTBIT(IN6P_RFC2292)) {
1492 error = EINVAL;
1493 break;
1494 }
1495 #endif
1496 OPTSET(IN6P_RTHDR);
1497 break;
1498
1499 case IPV6_FAITH:
1500 OPTSET(IN6P_FAITH);
1501 break;
1502
1503 case IPV6_RECVPATHMTU:
1504 /*
1505 * We ignore this option for TCP
1506 * sockets.
1507 * (RFC3542 leaves this case
1508 * unspecified.)
1509 */
1510 if (uproto != IPPROTO_TCP)
1511 OPTSET(IN6P_MTU);
1512 break;
1513
1514 case IPV6_V6ONLY:
1515 /*
1516 * make setsockopt(IPV6_V6ONLY)
1517 * available only prior to bind(2).
1518 * see ipng mailing list, Jun 22 2001.
1519 */
1520 if (in6p->in6p_lport ||
1521 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1522 error = EINVAL;
1523 break;
1524 }
1525 #ifdef INET6_BINDV6ONLY
1526 if (!optval)
1527 error = EINVAL;
1528 #else
1529 OPTSET(IN6P_IPV6_V6ONLY);
1530 #endif
1531 break;
1532 case IPV6_RECVTCLASS:
1533 #ifdef RFC2292
1534 /* cannot mix with RFC2292 XXX */
1535 if (OPTBIT(IN6P_RFC2292)) {
1536 error = EINVAL;
1537 break;
1538 }
1539 #endif
1540 OPTSET(IN6P_TCLASS);
1541 break;
1542
1543 }
1544 break;
1545
1546 case IPV6_OTCLASS:
1547 {
1548 struct ip6_pktopts **optp;
1549 u_int8_t tclass;
1550
1551 error = sockopt_get(sopt, &tclass, sizeof(tclass));
1552 if (error)
1553 break;
1554 optp = &in6p->in6p_outputopts;
1555 error = ip6_pcbopt(optname,
1556 (u_char *)&tclass,
1557 sizeof(tclass),
1558 optp,
1559 kauth_cred_get(), uproto);
1560 break;
1561 }
1562
1563 case IPV6_TCLASS:
1564 case IPV6_DONTFRAG:
1565 case IPV6_USE_MIN_MTU:
1566 case IPV6_PREFER_TEMPADDR:
1567 error = sockopt_getint(sopt, &optval);
1568 if (error)
1569 break;
1570 {
1571 struct ip6_pktopts **optp;
1572 optp = &in6p->in6p_outputopts;
1573 error = ip6_pcbopt(optname,
1574 (u_char *)&optval,
1575 sizeof(optval),
1576 optp,
1577 kauth_cred_get(), uproto);
1578 break;
1579 }
1580
1581 #ifdef RFC2292
1582 case IPV6_2292PKTINFO:
1583 case IPV6_2292HOPLIMIT:
1584 case IPV6_2292HOPOPTS:
1585 case IPV6_2292DSTOPTS:
1586 case IPV6_2292RTHDR:
1587 /* RFC 2292 */
1588 error = sockopt_getint(sopt, &optval);
1589 if (error)
1590 break;
1591
1592 switch (optname) {
1593 case IPV6_2292PKTINFO:
1594 OPTSET2292(IN6P_PKTINFO);
1595 break;
1596 case IPV6_2292HOPLIMIT:
1597 OPTSET2292(IN6P_HOPLIMIT);
1598 break;
1599 case IPV6_2292HOPOPTS:
1600 /*
1601 * Check super-user privilege.
1602 * See comments for IPV6_RECVHOPOPTS.
1603 */
1604 error =
1605 kauth_authorize_network(kauth_cred_get(),
1606 KAUTH_NETWORK_IPV6,
1607 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1608 NULL, NULL);
1609 if (error)
1610 return (error);
1611 OPTSET2292(IN6P_HOPOPTS);
1612 break;
1613 case IPV6_2292DSTOPTS:
1614 error =
1615 kauth_authorize_network(kauth_cred_get(),
1616 KAUTH_NETWORK_IPV6,
1617 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1618 NULL, NULL);
1619 if (error)
1620 return (error);
1621 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1622 break;
1623 case IPV6_2292RTHDR:
1624 OPTSET2292(IN6P_RTHDR);
1625 break;
1626 }
1627 break;
1628 #endif
1629 case IPV6_PKTINFO:
1630 case IPV6_HOPOPTS:
1631 case IPV6_RTHDR:
1632 case IPV6_DSTOPTS:
1633 case IPV6_RTHDRDSTOPTS:
1634 case IPV6_NEXTHOP: {
1635 /* new advanced API (RFC3542) */
1636 void *optbuf;
1637 int optbuflen;
1638 struct ip6_pktopts **optp;
1639
1640 #ifdef RFC2292
1641 /* cannot mix with RFC2292 */
1642 if (OPTBIT(IN6P_RFC2292)) {
1643 error = EINVAL;
1644 break;
1645 }
1646 #endif
1647
1648 optbuflen = sopt->sopt_size;
1649 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1650 if (optbuf == NULL) {
1651 error = ENOBUFS;
1652 break;
1653 }
1654
1655 error = sockopt_get(sopt, optbuf, optbuflen);
1656 if (error) {
1657 free(optbuf, M_IP6OPT);
1658 break;
1659 }
1660 optp = &in6p->in6p_outputopts;
1661 error = ip6_pcbopt(optname, optbuf, optbuflen,
1662 optp, kauth_cred_get(), uproto);
1663
1664 free(optbuf, M_IP6OPT);
1665 break;
1666 }
1667 #undef OPTSET
1668
1669 case IPV6_MULTICAST_IF:
1670 case IPV6_MULTICAST_HOPS:
1671 case IPV6_MULTICAST_LOOP:
1672 case IPV6_JOIN_GROUP:
1673 case IPV6_LEAVE_GROUP:
1674 error = ip6_setmoptions(sopt, in6p);
1675 break;
1676
1677 case IPV6_PORTRANGE:
1678 error = sockopt_getint(sopt, &optval);
1679 if (error)
1680 break;
1681
1682 switch (optval) {
1683 case IPV6_PORTRANGE_DEFAULT:
1684 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1685 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1686 break;
1687
1688 case IPV6_PORTRANGE_HIGH:
1689 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1690 in6p->in6p_flags |= IN6P_HIGHPORT;
1691 break;
1692
1693 case IPV6_PORTRANGE_LOW:
1694 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1695 in6p->in6p_flags |= IN6P_LOWPORT;
1696 break;
1697
1698 default:
1699 error = EINVAL;
1700 break;
1701 }
1702 break;
1703
1704 case IPV6_PORTALGO:
1705 error = sockopt_getint(sopt, &optval);
1706 if (error)
1707 break;
1708
1709 error = portalgo_algo_index_select(
1710 (struct inpcb_hdr *)in6p, optval);
1711 break;
1712
1713 #if defined(IPSEC)
1714 case IPV6_IPSEC_POLICY:
1715 if (ipsec_enabled) {
1716 error = ipsec_set_policy(in6p,
1717 sopt->sopt_data, sopt->sopt_size,
1718 kauth_cred_get());
1719 } else
1720 error = ENOPROTOOPT;
1721 break;
1722 #endif /* IPSEC */
1723
1724 default:
1725 error = ENOPROTOOPT;
1726 break;
1727 }
1728 break;
1729
1730 case PRCO_GETOPT:
1731 switch (optname) {
1732 #ifdef RFC2292
1733 case IPV6_2292PKTOPTIONS:
1734 /*
1735 * RFC3542 (effectively) deprecated the
1736 * semantics of the 2292-style pktoptions.
1737 * Since it was not reliable in nature (i.e.,
1738 * applications had to expect the lack of some
1739 * information after all), it would make sense
1740 * to simplify this part by always returning
1741 * empty data.
1742 */
1743 break;
1744 #endif
1745
1746 case IPV6_RECVHOPOPTS:
1747 case IPV6_RECVDSTOPTS:
1748 case IPV6_RECVRTHDRDSTOPTS:
1749 case IPV6_UNICAST_HOPS:
1750 case IPV6_RECVPKTINFO:
1751 case IPV6_RECVHOPLIMIT:
1752 case IPV6_RECVRTHDR:
1753 case IPV6_RECVPATHMTU:
1754
1755 case IPV6_FAITH:
1756 case IPV6_V6ONLY:
1757 case IPV6_PORTRANGE:
1758 case IPV6_RECVTCLASS:
1759 switch (optname) {
1760
1761 case IPV6_RECVHOPOPTS:
1762 optval = OPTBIT(IN6P_HOPOPTS);
1763 break;
1764
1765 case IPV6_RECVDSTOPTS:
1766 optval = OPTBIT(IN6P_DSTOPTS);
1767 break;
1768
1769 case IPV6_RECVRTHDRDSTOPTS:
1770 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1771 break;
1772
1773 case IPV6_UNICAST_HOPS:
1774 optval = in6p->in6p_hops;
1775 break;
1776
1777 case IPV6_RECVPKTINFO:
1778 optval = OPTBIT(IN6P_PKTINFO);
1779 break;
1780
1781 case IPV6_RECVHOPLIMIT:
1782 optval = OPTBIT(IN6P_HOPLIMIT);
1783 break;
1784
1785 case IPV6_RECVRTHDR:
1786 optval = OPTBIT(IN6P_RTHDR);
1787 break;
1788
1789 case IPV6_RECVPATHMTU:
1790 optval = OPTBIT(IN6P_MTU);
1791 break;
1792
1793 case IPV6_FAITH:
1794 optval = OPTBIT(IN6P_FAITH);
1795 break;
1796
1797 case IPV6_V6ONLY:
1798 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1799 break;
1800
1801 case IPV6_PORTRANGE:
1802 {
1803 int flags;
1804 flags = in6p->in6p_flags;
1805 if (flags & IN6P_HIGHPORT)
1806 optval = IPV6_PORTRANGE_HIGH;
1807 else if (flags & IN6P_LOWPORT)
1808 optval = IPV6_PORTRANGE_LOW;
1809 else
1810 optval = 0;
1811 break;
1812 }
1813 case IPV6_RECVTCLASS:
1814 optval = OPTBIT(IN6P_TCLASS);
1815 break;
1816
1817 }
1818 if (error)
1819 break;
1820 error = sockopt_setint(sopt, optval);
1821 break;
1822
1823 case IPV6_PATHMTU:
1824 {
1825 u_long pmtu = 0;
1826 struct ip6_mtuinfo mtuinfo;
1827 struct route *ro = &in6p->in6p_route;
1828 struct rtentry *rt;
1829 union {
1830 struct sockaddr dst;
1831 struct sockaddr_in6 dst6;
1832 } u;
1833
1834 if (!(so->so_state & SS_ISCONNECTED))
1835 return (ENOTCONN);
1836 /*
1837 * XXX: we dot not consider the case of source
1838 * routing, or optional information to specify
1839 * the outgoing interface.
1840 */
1841 sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0);
1842 rt = rtcache_lookup(ro, &u.dst);
1843 error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
1844 rtcache_unref(rt, ro);
1845 if (error)
1846 break;
1847 if (pmtu > IPV6_MAXPACKET)
1848 pmtu = IPV6_MAXPACKET;
1849
1850 memset(&mtuinfo, 0, sizeof(mtuinfo));
1851 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1852 optdata = (void *)&mtuinfo;
1853 optdatalen = sizeof(mtuinfo);
1854 if (optdatalen > MCLBYTES)
1855 return (EMSGSIZE); /* XXX */
1856 error = sockopt_set(sopt, optdata, optdatalen);
1857 break;
1858 }
1859
1860 #ifdef RFC2292
1861 case IPV6_2292PKTINFO:
1862 case IPV6_2292HOPLIMIT:
1863 case IPV6_2292HOPOPTS:
1864 case IPV6_2292RTHDR:
1865 case IPV6_2292DSTOPTS:
1866 switch (optname) {
1867 case IPV6_2292PKTINFO:
1868 optval = OPTBIT(IN6P_PKTINFO);
1869 break;
1870 case IPV6_2292HOPLIMIT:
1871 optval = OPTBIT(IN6P_HOPLIMIT);
1872 break;
1873 case IPV6_2292HOPOPTS:
1874 optval = OPTBIT(IN6P_HOPOPTS);
1875 break;
1876 case IPV6_2292RTHDR:
1877 optval = OPTBIT(IN6P_RTHDR);
1878 break;
1879 case IPV6_2292DSTOPTS:
1880 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1881 break;
1882 }
1883 error = sockopt_setint(sopt, optval);
1884 break;
1885 #endif
1886 case IPV6_PKTINFO:
1887 case IPV6_HOPOPTS:
1888 case IPV6_RTHDR:
1889 case IPV6_DSTOPTS:
1890 case IPV6_RTHDRDSTOPTS:
1891 case IPV6_NEXTHOP:
1892 case IPV6_OTCLASS:
1893 case IPV6_TCLASS:
1894 case IPV6_DONTFRAG:
1895 case IPV6_USE_MIN_MTU:
1896 case IPV6_PREFER_TEMPADDR:
1897 error = ip6_getpcbopt(in6p->in6p_outputopts,
1898 optname, sopt);
1899 break;
1900
1901 case IPV6_MULTICAST_IF:
1902 case IPV6_MULTICAST_HOPS:
1903 case IPV6_MULTICAST_LOOP:
1904 case IPV6_JOIN_GROUP:
1905 case IPV6_LEAVE_GROUP:
1906 error = ip6_getmoptions(sopt, in6p);
1907 break;
1908
1909 case IPV6_PORTALGO:
1910 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
1911 error = sockopt_setint(sopt, optval);
1912 break;
1913
1914 #if defined(IPSEC)
1915 case IPV6_IPSEC_POLICY:
1916 if (ipsec_used) {
1917 struct mbuf *m = NULL;
1918
1919 /*
1920 * XXX: this will return EINVAL as sopt is
1921 * empty
1922 */
1923 error = ipsec_get_policy(in6p, sopt->sopt_data,
1924 sopt->sopt_size, &m);
1925 if (!error)
1926 error = sockopt_setmbuf(sopt, m);
1927 } else
1928 error = ENOPROTOOPT;
1929 break;
1930 #endif /* IPSEC */
1931
1932 default:
1933 error = ENOPROTOOPT;
1934 break;
1935 }
1936 break;
1937 }
1938 return (error);
1939 }
1940
1941 int
1942 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1943 {
1944 int error = 0, optval;
1945 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1946 struct in6pcb *in6p = sotoin6pcb(so);
1947 int level, optname;
1948
1949 KASSERT(sopt != NULL);
1950
1951 level = sopt->sopt_level;
1952 optname = sopt->sopt_name;
1953
1954 if (level != IPPROTO_IPV6) {
1955 return ENOPROTOOPT;
1956 }
1957
1958 switch (optname) {
1959 case IPV6_CHECKSUM:
1960 /*
1961 * For ICMPv6 sockets, no modification allowed for checksum
1962 * offset, permit "no change" values to help existing apps.
1963 *
1964 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
1965 * for an ICMPv6 socket will fail." The current
1966 * behavior does not meet RFC3542.
1967 */
1968 switch (op) {
1969 case PRCO_SETOPT:
1970 error = sockopt_getint(sopt, &optval);
1971 if (error)
1972 break;
1973 if ((optval % 2) != 0) {
1974 /* the API assumes even offset values */
1975 error = EINVAL;
1976 } else if (so->so_proto->pr_protocol ==
1977 IPPROTO_ICMPV6) {
1978 if (optval != icmp6off)
1979 error = EINVAL;
1980 } else
1981 in6p->in6p_cksum = optval;
1982 break;
1983
1984 case PRCO_GETOPT:
1985 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1986 optval = icmp6off;
1987 else
1988 optval = in6p->in6p_cksum;
1989
1990 error = sockopt_setint(sopt, optval);
1991 break;
1992
1993 default:
1994 error = EINVAL;
1995 break;
1996 }
1997 break;
1998
1999 default:
2000 error = ENOPROTOOPT;
2001 break;
2002 }
2003
2004 return (error);
2005 }
2006
2007 #ifdef RFC2292
2008 /*
2009 * Set up IP6 options in pcb for insertion in output packets or
2010 * specifying behavior of outgoing packets.
2011 */
2012 static int
2013 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
2014 struct sockopt *sopt)
2015 {
2016 struct ip6_pktopts *opt = *pktopt;
2017 struct mbuf *m;
2018 int error = 0;
2019
2020 KASSERT(solocked(so));
2021
2022 /* turn off any old options. */
2023 if (opt) {
2024 #ifdef DIAGNOSTIC
2025 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2026 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2027 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2028 printf("ip6_pcbopts: all specified options are cleared.\n");
2029 #endif
2030 ip6_clearpktopts(opt, -1);
2031 } else {
2032 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2033 if (opt == NULL)
2034 return (ENOBUFS);
2035 }
2036 *pktopt = NULL;
2037
2038 if (sopt == NULL || sopt->sopt_size == 0) {
2039 /*
2040 * Only turning off any previous options, regardless of
2041 * whether the opt is just created or given.
2042 */
2043 free(opt, M_IP6OPT);
2044 return (0);
2045 }
2046
2047 /* set options specified by user. */
2048 m = sockopt_getmbuf(sopt);
2049 if (m == NULL) {
2050 free(opt, M_IP6OPT);
2051 return (ENOBUFS);
2052 }
2053
2054 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
2055 so->so_proto->pr_protocol);
2056 m_freem(m);
2057 if (error != 0) {
2058 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2059 free(opt, M_IP6OPT);
2060 return (error);
2061 }
2062 *pktopt = opt;
2063 return (0);
2064 }
2065 #endif
2066
2067 /*
2068 * initialize ip6_pktopts. beware that there are non-zero default values in
2069 * the struct.
2070 */
2071 void
2072 ip6_initpktopts(struct ip6_pktopts *opt)
2073 {
2074
2075 memset(opt, 0, sizeof(*opt));
2076 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2077 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2078 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2079 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2080 }
2081
2082 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2083 static int
2084 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2085 kauth_cred_t cred, int uproto)
2086 {
2087 struct ip6_pktopts *opt;
2088
2089 if (*pktopt == NULL) {
2090 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2091 M_NOWAIT);
2092 if (*pktopt == NULL)
2093 return (ENOBUFS);
2094
2095 ip6_initpktopts(*pktopt);
2096 }
2097 opt = *pktopt;
2098
2099 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2100 }
2101
2102 static int
2103 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2104 {
2105 void *optdata = NULL;
2106 int optdatalen = 0;
2107 struct ip6_ext *ip6e;
2108 int error = 0;
2109 struct in6_pktinfo null_pktinfo;
2110 int deftclass = 0, on;
2111 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2112 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2113
2114 switch (optname) {
2115 case IPV6_PKTINFO:
2116 if (pktopt && pktopt->ip6po_pktinfo)
2117 optdata = (void *)pktopt->ip6po_pktinfo;
2118 else {
2119 /* XXX: we don't have to do this every time... */
2120 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2121 optdata = (void *)&null_pktinfo;
2122 }
2123 optdatalen = sizeof(struct in6_pktinfo);
2124 break;
2125 case IPV6_OTCLASS:
2126 /* XXX */
2127 return (EINVAL);
2128 case IPV6_TCLASS:
2129 if (pktopt && pktopt->ip6po_tclass >= 0)
2130 optdata = (void *)&pktopt->ip6po_tclass;
2131 else
2132 optdata = (void *)&deftclass;
2133 optdatalen = sizeof(int);
2134 break;
2135 case IPV6_HOPOPTS:
2136 if (pktopt && pktopt->ip6po_hbh) {
2137 optdata = (void *)pktopt->ip6po_hbh;
2138 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2139 optdatalen = (ip6e->ip6e_len + 1) << 3;
2140 }
2141 break;
2142 case IPV6_RTHDR:
2143 if (pktopt && pktopt->ip6po_rthdr) {
2144 optdata = (void *)pktopt->ip6po_rthdr;
2145 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2146 optdatalen = (ip6e->ip6e_len + 1) << 3;
2147 }
2148 break;
2149 case IPV6_RTHDRDSTOPTS:
2150 if (pktopt && pktopt->ip6po_dest1) {
2151 optdata = (void *)pktopt->ip6po_dest1;
2152 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2153 optdatalen = (ip6e->ip6e_len + 1) << 3;
2154 }
2155 break;
2156 case IPV6_DSTOPTS:
2157 if (pktopt && pktopt->ip6po_dest2) {
2158 optdata = (void *)pktopt->ip6po_dest2;
2159 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2160 optdatalen = (ip6e->ip6e_len + 1) << 3;
2161 }
2162 break;
2163 case IPV6_NEXTHOP:
2164 if (pktopt && pktopt->ip6po_nexthop) {
2165 optdata = (void *)pktopt->ip6po_nexthop;
2166 optdatalen = pktopt->ip6po_nexthop->sa_len;
2167 }
2168 break;
2169 case IPV6_USE_MIN_MTU:
2170 if (pktopt)
2171 optdata = (void *)&pktopt->ip6po_minmtu;
2172 else
2173 optdata = (void *)&defminmtu;
2174 optdatalen = sizeof(int);
2175 break;
2176 case IPV6_DONTFRAG:
2177 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2178 on = 1;
2179 else
2180 on = 0;
2181 optdata = (void *)&on;
2182 optdatalen = sizeof(on);
2183 break;
2184 case IPV6_PREFER_TEMPADDR:
2185 if (pktopt)
2186 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2187 else
2188 optdata = (void *)&defpreftemp;
2189 optdatalen = sizeof(int);
2190 break;
2191 default: /* should not happen */
2192 #ifdef DIAGNOSTIC
2193 panic("ip6_getpcbopt: unexpected option\n");
2194 #endif
2195 return (ENOPROTOOPT);
2196 }
2197
2198 error = sockopt_set(sopt, optdata, optdatalen);
2199
2200 return (error);
2201 }
2202
2203 void
2204 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2205 {
2206 if (optname == -1 || optname == IPV6_PKTINFO) {
2207 if (pktopt->ip6po_pktinfo)
2208 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2209 pktopt->ip6po_pktinfo = NULL;
2210 }
2211 if (optname == -1 || optname == IPV6_HOPLIMIT)
2212 pktopt->ip6po_hlim = -1;
2213 if (optname == -1 || optname == IPV6_TCLASS)
2214 pktopt->ip6po_tclass = -1;
2215 if (optname == -1 || optname == IPV6_NEXTHOP) {
2216 rtcache_free(&pktopt->ip6po_nextroute);
2217 if (pktopt->ip6po_nexthop)
2218 free(pktopt->ip6po_nexthop, M_IP6OPT);
2219 pktopt->ip6po_nexthop = NULL;
2220 }
2221 if (optname == -1 || optname == IPV6_HOPOPTS) {
2222 if (pktopt->ip6po_hbh)
2223 free(pktopt->ip6po_hbh, M_IP6OPT);
2224 pktopt->ip6po_hbh = NULL;
2225 }
2226 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2227 if (pktopt->ip6po_dest1)
2228 free(pktopt->ip6po_dest1, M_IP6OPT);
2229 pktopt->ip6po_dest1 = NULL;
2230 }
2231 if (optname == -1 || optname == IPV6_RTHDR) {
2232 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2233 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2234 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2235 rtcache_free(&pktopt->ip6po_route);
2236 }
2237 if (optname == -1 || optname == IPV6_DSTOPTS) {
2238 if (pktopt->ip6po_dest2)
2239 free(pktopt->ip6po_dest2, M_IP6OPT);
2240 pktopt->ip6po_dest2 = NULL;
2241 }
2242 }
2243
2244 #define PKTOPT_EXTHDRCPY(type) \
2245 do { \
2246 if (src->type) { \
2247 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2248 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2249 if (dst->type == NULL) \
2250 goto bad; \
2251 memcpy(dst->type, src->type, hlen); \
2252 } \
2253 } while (/*CONSTCOND*/ 0)
2254
2255 static int
2256 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2257 {
2258 dst->ip6po_hlim = src->ip6po_hlim;
2259 dst->ip6po_tclass = src->ip6po_tclass;
2260 dst->ip6po_flags = src->ip6po_flags;
2261 dst->ip6po_minmtu = src->ip6po_minmtu;
2262 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2263 if (src->ip6po_pktinfo) {
2264 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2265 M_IP6OPT, canwait);
2266 if (dst->ip6po_pktinfo == NULL)
2267 goto bad;
2268 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2269 }
2270 if (src->ip6po_nexthop) {
2271 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2272 M_IP6OPT, canwait);
2273 if (dst->ip6po_nexthop == NULL)
2274 goto bad;
2275 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2276 src->ip6po_nexthop->sa_len);
2277 }
2278 PKTOPT_EXTHDRCPY(ip6po_hbh);
2279 PKTOPT_EXTHDRCPY(ip6po_dest1);
2280 PKTOPT_EXTHDRCPY(ip6po_dest2);
2281 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2282 return (0);
2283
2284 bad:
2285 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2286 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2287 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2288 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2289 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2290 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2291
2292 return (ENOBUFS);
2293 }
2294 #undef PKTOPT_EXTHDRCPY
2295
2296 struct ip6_pktopts *
2297 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2298 {
2299 int error;
2300 struct ip6_pktopts *dst;
2301
2302 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2303 if (dst == NULL)
2304 return (NULL);
2305 ip6_initpktopts(dst);
2306
2307 if ((error = copypktopts(dst, src, canwait)) != 0) {
2308 free(dst, M_IP6OPT);
2309 return (NULL);
2310 }
2311
2312 return (dst);
2313 }
2314
2315 void
2316 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2317 {
2318 if (pktopt == NULL)
2319 return;
2320
2321 ip6_clearpktopts(pktopt, -1);
2322
2323 free(pktopt, M_IP6OPT);
2324 }
2325
2326 int
2327 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
2328 struct psref *psref, void *v, size_t l)
2329 {
2330 struct ipv6_mreq mreq;
2331 int error;
2332 struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
2333 struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
2334
2335 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2336 if (error != 0)
2337 return error;
2338
2339 if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
2340 /*
2341 * We use the unspecified address to specify to accept
2342 * all multicast addresses. Only super user is allowed
2343 * to do this.
2344 */
2345 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6,
2346 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
2347 return EACCES;
2348 } else if (IN6_IS_ADDR_V4MAPPED(ia)) {
2349 // Don't bother if we are not going to use ifp.
2350 if (l == sizeof(*ia)) {
2351 memcpy(v, ia, l);
2352 return 0;
2353 }
2354 } else if (!IN6_IS_ADDR_MULTICAST(ia)) {
2355 return EINVAL;
2356 }
2357
2358 /*
2359 * If no interface was explicitly specified, choose an
2360 * appropriate one according to the given multicast address.
2361 */
2362 if (mreq.ipv6mr_interface == 0) {
2363 struct rtentry *rt;
2364 union {
2365 struct sockaddr dst;
2366 struct sockaddr_in dst4;
2367 struct sockaddr_in6 dst6;
2368 } u;
2369 struct route ro;
2370
2371 /*
2372 * Look up the routing table for the
2373 * address, and choose the outgoing interface.
2374 * XXX: is it a good approach?
2375 */
2376 memset(&ro, 0, sizeof(ro));
2377 if (IN6_IS_ADDR_V4MAPPED(ia))
2378 sockaddr_in_init(&u.dst4, ia4, 0);
2379 else
2380 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
2381 error = rtcache_setdst(&ro, &u.dst);
2382 if (error != 0)
2383 return error;
2384 rt = rtcache_init(&ro);
2385 *ifp = rt != NULL ?
2386 if_get_byindex(rt->rt_ifp->if_index, psref) : NULL;
2387 rtcache_unref(rt, &ro);
2388 rtcache_free(&ro);
2389 } else {
2390 /*
2391 * If the interface is specified, validate it.
2392 */
2393 *ifp = if_get_byindex(mreq.ipv6mr_interface, psref);
2394 if (*ifp == NULL)
2395 return ENXIO; /* XXX EINVAL? */
2396 }
2397 if (sizeof(*ia) == l)
2398 memcpy(v, ia, l);
2399 else
2400 memcpy(v, ia4, l);
2401 return 0;
2402 }
2403
2404 /*
2405 * Set the IP6 multicast options in response to user setsockopt().
2406 */
2407 static int
2408 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p)
2409 {
2410 int error = 0;
2411 u_int loop, ifindex;
2412 struct ipv6_mreq mreq;
2413 struct in6_addr ia;
2414 struct ifnet *ifp;
2415 struct ip6_moptions *im6o = in6p->in6p_moptions;
2416 struct in6_multi_mship *imm;
2417
2418 KASSERT(in6p_locked(in6p));
2419
2420 if (im6o == NULL) {
2421 /*
2422 * No multicast option buffer attached to the pcb;
2423 * allocate one and initialize to default values.
2424 */
2425 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2426 if (im6o == NULL)
2427 return (ENOBUFS);
2428 in6p->in6p_moptions = im6o;
2429 im6o->im6o_multicast_if_index = 0;
2430 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2431 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2432 LIST_INIT(&im6o->im6o_memberships);
2433 }
2434
2435 switch (sopt->sopt_name) {
2436
2437 case IPV6_MULTICAST_IF: {
2438 int s;
2439 /*
2440 * Select the interface for outgoing multicast packets.
2441 */
2442 error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2443 if (error != 0)
2444 break;
2445
2446 s = pserialize_read_enter();
2447 if (ifindex != 0) {
2448 if ((ifp = if_byindex(ifindex)) == NULL) {
2449 pserialize_read_exit(s);
2450 error = ENXIO; /* XXX EINVAL? */
2451 break;
2452 }
2453 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2454 pserialize_read_exit(s);
2455 error = EADDRNOTAVAIL;
2456 break;
2457 }
2458 } else
2459 ifp = NULL;
2460 im6o->im6o_multicast_if_index = if_get_index(ifp);
2461 pserialize_read_exit(s);
2462 break;
2463 }
2464
2465 case IPV6_MULTICAST_HOPS:
2466 {
2467 /*
2468 * Set the IP6 hoplimit for outgoing multicast packets.
2469 */
2470 int optval;
2471
2472 error = sockopt_getint(sopt, &optval);
2473 if (error != 0)
2474 break;
2475
2476 if (optval < -1 || optval >= 256)
2477 error = EINVAL;
2478 else if (optval == -1)
2479 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2480 else
2481 im6o->im6o_multicast_hlim = optval;
2482 break;
2483 }
2484
2485 case IPV6_MULTICAST_LOOP:
2486 /*
2487 * Set the loopback flag for outgoing multicast packets.
2488 * Must be zero or one.
2489 */
2490 error = sockopt_get(sopt, &loop, sizeof(loop));
2491 if (error != 0)
2492 break;
2493 if (loop > 1) {
2494 error = EINVAL;
2495 break;
2496 }
2497 im6o->im6o_multicast_loop = loop;
2498 break;
2499
2500 case IPV6_JOIN_GROUP: {
2501 int bound;
2502 struct psref psref;
2503 /*
2504 * Add a multicast group membership.
2505 * Group must be a valid IP6 multicast address.
2506 */
2507 bound = curlwp_bind();
2508 ifp = NULL;
2509 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
2510 if (error != 0) {
2511 KASSERT(ifp == NULL);
2512 curlwp_bindx(bound);
2513 return error;
2514 }
2515
2516 if (IN6_IS_ADDR_V4MAPPED(&ia)) {
2517 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2518 goto put_break;
2519 }
2520 /*
2521 * See if we found an interface, and confirm that it
2522 * supports multicast
2523 */
2524 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2525 error = EADDRNOTAVAIL;
2526 goto put_break;
2527 }
2528
2529 if (in6_setscope(&ia, ifp, NULL)) {
2530 error = EADDRNOTAVAIL; /* XXX: should not happen */
2531 goto put_break;
2532 }
2533
2534 /*
2535 * See if the membership already exists.
2536 */
2537 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2538 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2539 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2540 &ia))
2541 goto put_break;
2542 }
2543 if (imm != NULL) {
2544 error = EADDRINUSE;
2545 goto put_break;
2546 }
2547 /*
2548 * Everything looks good; add a new record to the multicast
2549 * address list for the given interface.
2550 */
2551 imm = in6_joingroup(ifp, &ia, &error, 0);
2552 if (imm == NULL)
2553 goto put_break;
2554 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2555 put_break:
2556 if_put(ifp, &psref);
2557 curlwp_bindx(bound);
2558 break;
2559 }
2560
2561 case IPV6_LEAVE_GROUP: {
2562 /*
2563 * Drop a multicast group membership.
2564 * Group must be a valid IP6 multicast address.
2565 */
2566 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2567 if (error != 0)
2568 break;
2569
2570 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
2571 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2572 break;
2573 }
2574 /*
2575 * If an interface address was specified, get a pointer
2576 * to its ifnet structure.
2577 */
2578 if (mreq.ipv6mr_interface != 0) {
2579 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
2580 error = ENXIO; /* XXX EINVAL? */
2581 break;
2582 }
2583 } else
2584 ifp = NULL;
2585
2586 /* Fill in the scope zone ID */
2587 if (ifp) {
2588 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2589 /* XXX: should not happen */
2590 error = EADDRNOTAVAIL;
2591 break;
2592 }
2593 } else if (mreq.ipv6mr_interface != 0) {
2594 /*
2595 * XXX: This case would happens when the (positive)
2596 * index is in the valid range, but the corresponding
2597 * interface has been detached dynamically. The above
2598 * check probably avoids such case to happen here, but
2599 * we check it explicitly for safety.
2600 */
2601 error = EADDRNOTAVAIL;
2602 break;
2603 } else { /* ipv6mr_interface == 0 */
2604 struct sockaddr_in6 sa6_mc;
2605
2606 /*
2607 * The API spec says as follows:
2608 * If the interface index is specified as 0, the
2609 * system may choose a multicast group membership to
2610 * drop by matching the multicast address only.
2611 * On the other hand, we cannot disambiguate the scope
2612 * zone unless an interface is provided. Thus, we
2613 * check if there's ambiguity with the default scope
2614 * zone as the last resort.
2615 */
2616 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2617 0, 0, 0);
2618 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2619 if (error != 0)
2620 break;
2621 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2622 }
2623
2624 /*
2625 * Find the membership in the membership list.
2626 */
2627 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2628 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2629 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2630 &mreq.ipv6mr_multiaddr))
2631 break;
2632 }
2633 if (imm == NULL) {
2634 /* Unable to resolve interface */
2635 error = EADDRNOTAVAIL;
2636 break;
2637 }
2638 /*
2639 * Give up the multicast address record to which the
2640 * membership points.
2641 */
2642 LIST_REMOVE(imm, i6mm_chain);
2643 in6_leavegroup(imm);
2644 /* in6m_ifp should not leave thanks to in6p_lock */
2645 break;
2646 }
2647
2648 default:
2649 error = EOPNOTSUPP;
2650 break;
2651 }
2652
2653 /*
2654 * If all options have default values, no need to keep the mbuf.
2655 */
2656 if (im6o->im6o_multicast_if_index == 0 &&
2657 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2658 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2659 LIST_EMPTY(&im6o->im6o_memberships)) {
2660 free(in6p->in6p_moptions, M_IPMOPTS);
2661 in6p->in6p_moptions = NULL;
2662 }
2663
2664 return (error);
2665 }
2666
2667 /*
2668 * Return the IP6 multicast options in response to user getsockopt().
2669 */
2670 static int
2671 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p)
2672 {
2673 u_int optval;
2674 int error;
2675 struct ip6_moptions *im6o = in6p->in6p_moptions;
2676
2677 switch (sopt->sopt_name) {
2678 case IPV6_MULTICAST_IF:
2679 if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
2680 optval = 0;
2681 else
2682 optval = im6o->im6o_multicast_if_index;
2683
2684 error = sockopt_set(sopt, &optval, sizeof(optval));
2685 break;
2686
2687 case IPV6_MULTICAST_HOPS:
2688 if (im6o == NULL)
2689 optval = ip6_defmcasthlim;
2690 else
2691 optval = im6o->im6o_multicast_hlim;
2692
2693 error = sockopt_set(sopt, &optval, sizeof(optval));
2694 break;
2695
2696 case IPV6_MULTICAST_LOOP:
2697 if (im6o == NULL)
2698 optval = IPV6_DEFAULT_MULTICAST_LOOP;
2699 else
2700 optval = im6o->im6o_multicast_loop;
2701
2702 error = sockopt_set(sopt, &optval, sizeof(optval));
2703 break;
2704
2705 default:
2706 error = EOPNOTSUPP;
2707 }
2708
2709 return (error);
2710 }
2711
2712 /*
2713 * Discard the IP6 multicast options.
2714 */
2715 void
2716 ip6_freemoptions(struct ip6_moptions *im6o)
2717 {
2718 struct in6_multi_mship *imm, *nimm;
2719
2720 if (im6o == NULL)
2721 return;
2722
2723 /* The owner of im6o (in6p) should be protected by solock */
2724 LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) {
2725 LIST_REMOVE(imm, i6mm_chain);
2726 in6_leavegroup(imm);
2727 }
2728 free(im6o, M_IPMOPTS);
2729 }
2730
2731 /*
2732 * Set IPv6 outgoing packet options based on advanced API.
2733 */
2734 int
2735 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2736 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2737 {
2738 struct cmsghdr *cm = 0;
2739
2740 if (control == NULL || opt == NULL)
2741 return (EINVAL);
2742
2743 ip6_initpktopts(opt);
2744 if (stickyopt) {
2745 int error;
2746
2747 /*
2748 * If stickyopt is provided, make a local copy of the options
2749 * for this particular packet, then override them by ancillary
2750 * objects.
2751 * XXX: copypktopts() does not copy the cached route to a next
2752 * hop (if any). This is not very good in terms of efficiency,
2753 * but we can allow this since this option should be rarely
2754 * used.
2755 */
2756 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2757 return (error);
2758 }
2759
2760 /*
2761 * XXX: Currently, we assume all the optional information is stored
2762 * in a single mbuf.
2763 */
2764 if (control->m_next)
2765 return (EINVAL);
2766
2767 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2768 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2769 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2770 int error;
2771
2772 if (control->m_len < CMSG_LEN(0))
2773 return (EINVAL);
2774
2775 cm = mtod(control, struct cmsghdr *);
2776 if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > control->m_len)
2777 return (EINVAL);
2778 if (cm->cmsg_level != IPPROTO_IPV6)
2779 continue;
2780
2781 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2782 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2783 if (error)
2784 return (error);
2785 }
2786
2787 return (0);
2788 }
2789
2790 /*
2791 * Set a particular packet option, as a sticky option or an ancillary data
2792 * item. "len" can be 0 only when it's a sticky option.
2793 * We have 4 cases of combination of "sticky" and "cmsg":
2794 * "sticky=0, cmsg=0": impossible
2795 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2796 * "sticky=1, cmsg=0": RFC3542 socket option
2797 * "sticky=1, cmsg=1": RFC2292 socket option
2798 */
2799 static int
2800 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2801 kauth_cred_t cred, int sticky, int cmsg, int uproto)
2802 {
2803 int minmtupolicy;
2804 int error;
2805
2806 if (!sticky && !cmsg) {
2807 #ifdef DIAGNOSTIC
2808 printf("ip6_setpktopt: impossible case\n");
2809 #endif
2810 return (EINVAL);
2811 }
2812
2813 /*
2814 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2815 * not be specified in the context of RFC3542. Conversely,
2816 * RFC3542 types should not be specified in the context of RFC2292.
2817 */
2818 if (!cmsg) {
2819 switch (optname) {
2820 case IPV6_2292PKTINFO:
2821 case IPV6_2292HOPLIMIT:
2822 case IPV6_2292NEXTHOP:
2823 case IPV6_2292HOPOPTS:
2824 case IPV6_2292DSTOPTS:
2825 case IPV6_2292RTHDR:
2826 case IPV6_2292PKTOPTIONS:
2827 return (ENOPROTOOPT);
2828 }
2829 }
2830 if (sticky && cmsg) {
2831 switch (optname) {
2832 case IPV6_PKTINFO:
2833 case IPV6_HOPLIMIT:
2834 case IPV6_NEXTHOP:
2835 case IPV6_HOPOPTS:
2836 case IPV6_DSTOPTS:
2837 case IPV6_RTHDRDSTOPTS:
2838 case IPV6_RTHDR:
2839 case IPV6_USE_MIN_MTU:
2840 case IPV6_DONTFRAG:
2841 case IPV6_OTCLASS:
2842 case IPV6_TCLASS:
2843 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
2844 return (ENOPROTOOPT);
2845 }
2846 }
2847
2848 switch (optname) {
2849 #ifdef RFC2292
2850 case IPV6_2292PKTINFO:
2851 #endif
2852 case IPV6_PKTINFO:
2853 {
2854 struct in6_pktinfo *pktinfo;
2855
2856 if (len != sizeof(struct in6_pktinfo))
2857 return (EINVAL);
2858
2859 pktinfo = (struct in6_pktinfo *)buf;
2860
2861 /*
2862 * An application can clear any sticky IPV6_PKTINFO option by
2863 * doing a "regular" setsockopt with ipi6_addr being
2864 * in6addr_any and ipi6_ifindex being zero.
2865 * [RFC 3542, Section 6]
2866 */
2867 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2868 pktinfo->ipi6_ifindex == 0 &&
2869 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2870 ip6_clearpktopts(opt, optname);
2871 break;
2872 }
2873
2874 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2875 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2876 return (EINVAL);
2877 }
2878
2879 /* Validate the interface index if specified. */
2880 if (pktinfo->ipi6_ifindex) {
2881 struct ifnet *ifp;
2882 int s = pserialize_read_enter();
2883 ifp = if_byindex(pktinfo->ipi6_ifindex);
2884 if (ifp == NULL) {
2885 pserialize_read_exit(s);
2886 return ENXIO;
2887 }
2888 pserialize_read_exit(s);
2889 }
2890
2891 /*
2892 * We store the address anyway, and let in6_selectsrc()
2893 * validate the specified address. This is because ipi6_addr
2894 * may not have enough information about its scope zone, and
2895 * we may need additional information (such as outgoing
2896 * interface or the scope zone of a destination address) to
2897 * disambiguate the scope.
2898 * XXX: the delay of the validation may confuse the
2899 * application when it is used as a sticky option.
2900 */
2901 if (opt->ip6po_pktinfo == NULL) {
2902 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2903 M_IP6OPT, M_NOWAIT);
2904 if (opt->ip6po_pktinfo == NULL)
2905 return (ENOBUFS);
2906 }
2907 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2908 break;
2909 }
2910
2911 #ifdef RFC2292
2912 case IPV6_2292HOPLIMIT:
2913 #endif
2914 case IPV6_HOPLIMIT:
2915 {
2916 int *hlimp;
2917
2918 /*
2919 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2920 * to simplify the ordering among hoplimit options.
2921 */
2922 if (optname == IPV6_HOPLIMIT && sticky)
2923 return (ENOPROTOOPT);
2924
2925 if (len != sizeof(int))
2926 return (EINVAL);
2927 hlimp = (int *)buf;
2928 if (*hlimp < -1 || *hlimp > 255)
2929 return (EINVAL);
2930
2931 opt->ip6po_hlim = *hlimp;
2932 break;
2933 }
2934
2935 case IPV6_OTCLASS:
2936 if (len != sizeof(u_int8_t))
2937 return (EINVAL);
2938
2939 opt->ip6po_tclass = *(u_int8_t *)buf;
2940 break;
2941
2942 case IPV6_TCLASS:
2943 {
2944 int tclass;
2945
2946 if (len != sizeof(int))
2947 return (EINVAL);
2948 tclass = *(int *)buf;
2949 if (tclass < -1 || tclass > 255)
2950 return (EINVAL);
2951
2952 opt->ip6po_tclass = tclass;
2953 break;
2954 }
2955
2956 #ifdef RFC2292
2957 case IPV6_2292NEXTHOP:
2958 #endif
2959 case IPV6_NEXTHOP:
2960 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2961 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2962 if (error)
2963 return (error);
2964
2965 if (len == 0) { /* just remove the option */
2966 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2967 break;
2968 }
2969
2970 /* check if cmsg_len is large enough for sa_len */
2971 if (len < sizeof(struct sockaddr) || len < *buf)
2972 return (EINVAL);
2973
2974 switch (((struct sockaddr *)buf)->sa_family) {
2975 case AF_INET6:
2976 {
2977 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2978
2979 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2980 return (EINVAL);
2981
2982 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2983 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2984 return (EINVAL);
2985 }
2986 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
2987 != 0) {
2988 return (error);
2989 }
2990 break;
2991 }
2992 case AF_LINK: /* eventually be supported? */
2993 default:
2994 return (EAFNOSUPPORT);
2995 }
2996
2997 /* turn off the previous option, then set the new option. */
2998 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2999 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3000 if (opt->ip6po_nexthop == NULL)
3001 return (ENOBUFS);
3002 memcpy(opt->ip6po_nexthop, buf, *buf);
3003 break;
3004
3005 #ifdef RFC2292
3006 case IPV6_2292HOPOPTS:
3007 #endif
3008 case IPV6_HOPOPTS:
3009 {
3010 struct ip6_hbh *hbh;
3011 int hbhlen;
3012
3013 /*
3014 * XXX: We don't allow a non-privileged user to set ANY HbH
3015 * options, since per-option restriction has too much
3016 * overhead.
3017 */
3018 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3019 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3020 if (error)
3021 return (error);
3022
3023 if (len == 0) {
3024 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3025 break; /* just remove the option */
3026 }
3027
3028 /* message length validation */
3029 if (len < sizeof(struct ip6_hbh))
3030 return (EINVAL);
3031 hbh = (struct ip6_hbh *)buf;
3032 hbhlen = (hbh->ip6h_len + 1) << 3;
3033 if (len != hbhlen)
3034 return (EINVAL);
3035
3036 /* turn off the previous option, then set the new option. */
3037 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3038 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3039 if (opt->ip6po_hbh == NULL)
3040 return (ENOBUFS);
3041 memcpy(opt->ip6po_hbh, hbh, hbhlen);
3042
3043 break;
3044 }
3045
3046 #ifdef RFC2292
3047 case IPV6_2292DSTOPTS:
3048 #endif
3049 case IPV6_DSTOPTS:
3050 case IPV6_RTHDRDSTOPTS:
3051 {
3052 struct ip6_dest *dest, **newdest = NULL;
3053 int destlen;
3054
3055 /* XXX: see the comment for IPV6_HOPOPTS */
3056 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3057 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3058 if (error)
3059 return (error);
3060
3061 if (len == 0) {
3062 ip6_clearpktopts(opt, optname);
3063 break; /* just remove the option */
3064 }
3065
3066 /* message length validation */
3067 if (len < sizeof(struct ip6_dest))
3068 return (EINVAL);
3069 dest = (struct ip6_dest *)buf;
3070 destlen = (dest->ip6d_len + 1) << 3;
3071 if (len != destlen)
3072 return (EINVAL);
3073 /*
3074 * Determine the position that the destination options header
3075 * should be inserted; before or after the routing header.
3076 */
3077 switch (optname) {
3078 case IPV6_2292DSTOPTS:
3079 /*
3080 * The old advanced API is ambiguous on this point.
3081 * Our approach is to determine the position based
3082 * according to the existence of a routing header.
3083 * Note, however, that this depends on the order of the
3084 * extension headers in the ancillary data; the 1st
3085 * part of the destination options header must appear
3086 * before the routing header in the ancillary data,
3087 * too.
3088 * RFC3542 solved the ambiguity by introducing
3089 * separate ancillary data or option types.
3090 */
3091 if (opt->ip6po_rthdr == NULL)
3092 newdest = &opt->ip6po_dest1;
3093 else
3094 newdest = &opt->ip6po_dest2;
3095 break;
3096 case IPV6_RTHDRDSTOPTS:
3097 newdest = &opt->ip6po_dest1;
3098 break;
3099 case IPV6_DSTOPTS:
3100 newdest = &opt->ip6po_dest2;
3101 break;
3102 }
3103
3104 /* turn off the previous option, then set the new option. */
3105 ip6_clearpktopts(opt, optname);
3106 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3107 if (*newdest == NULL)
3108 return (ENOBUFS);
3109 memcpy(*newdest, dest, destlen);
3110
3111 break;
3112 }
3113
3114 #ifdef RFC2292
3115 case IPV6_2292RTHDR:
3116 #endif
3117 case IPV6_RTHDR:
3118 {
3119 struct ip6_rthdr *rth;
3120 int rthlen;
3121
3122 if (len == 0) {
3123 ip6_clearpktopts(opt, IPV6_RTHDR);
3124 break; /* just remove the option */
3125 }
3126
3127 /* message length validation */
3128 if (len < sizeof(struct ip6_rthdr))
3129 return (EINVAL);
3130 rth = (struct ip6_rthdr *)buf;
3131 rthlen = (rth->ip6r_len + 1) << 3;
3132 if (len != rthlen)
3133 return (EINVAL);
3134 switch (rth->ip6r_type) {
3135 case IPV6_RTHDR_TYPE_0:
3136 /* Dropped, RFC5095. */
3137 default:
3138 return (EINVAL); /* not supported */
3139 }
3140 /* turn off the previous option */
3141 ip6_clearpktopts(opt, IPV6_RTHDR);
3142 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3143 if (opt->ip6po_rthdr == NULL)
3144 return (ENOBUFS);
3145 memcpy(opt->ip6po_rthdr, rth, rthlen);
3146 break;
3147 }
3148
3149 case IPV6_USE_MIN_MTU:
3150 if (len != sizeof(int))
3151 return (EINVAL);
3152 minmtupolicy = *(int *)buf;
3153 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3154 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3155 minmtupolicy != IP6PO_MINMTU_ALL) {
3156 return (EINVAL);
3157 }
3158 opt->ip6po_minmtu = minmtupolicy;
3159 break;
3160
3161 case IPV6_DONTFRAG:
3162 if (len != sizeof(int))
3163 return (EINVAL);
3164
3165 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3166 /*
3167 * we ignore this option for TCP sockets.
3168 * (RFC3542 leaves this case unspecified.)
3169 */
3170 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3171 } else
3172 opt->ip6po_flags |= IP6PO_DONTFRAG;
3173 break;
3174
3175 case IPV6_PREFER_TEMPADDR:
3176 {
3177 int preftemp;
3178
3179 if (len != sizeof(int))
3180 return (EINVAL);
3181 preftemp = *(int *)buf;
3182 switch (preftemp) {
3183 case IP6PO_TEMPADDR_SYSTEM:
3184 case IP6PO_TEMPADDR_NOTPREFER:
3185 case IP6PO_TEMPADDR_PREFER:
3186 break;
3187 default:
3188 return (EINVAL);
3189 }
3190 opt->ip6po_prefer_tempaddr = preftemp;
3191 break;
3192 }
3193
3194 default:
3195 return (ENOPROTOOPT);
3196 } /* end of switch */
3197
3198 return (0);
3199 }
3200
3201 /*
3202 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3203 * packet to the input queue of a specified interface. Note that this
3204 * calls the output routine of the loopback "driver", but with an interface
3205 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3206 */
3207 void
3208 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3209 const struct sockaddr_in6 *dst)
3210 {
3211 struct mbuf *copym;
3212 struct ip6_hdr *ip6;
3213
3214 copym = m_copypacket(m, M_DONTWAIT);
3215 if (copym == NULL)
3216 return;
3217
3218 /*
3219 * Make sure to deep-copy IPv6 header portion in case the data
3220 * is in an mbuf cluster, so that we can safely override the IPv6
3221 * header portion later.
3222 */
3223 if ((copym->m_flags & M_EXT) != 0 ||
3224 copym->m_len < sizeof(struct ip6_hdr)) {
3225 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3226 if (copym == NULL)
3227 return;
3228 }
3229
3230 #ifdef DIAGNOSTIC
3231 if (copym->m_len < sizeof(*ip6)) {
3232 m_freem(copym);
3233 return;
3234 }
3235 #endif
3236
3237 ip6 = mtod(copym, struct ip6_hdr *);
3238 /*
3239 * clear embedded scope identifiers if necessary.
3240 * in6_clearscope will touch the addresses only when necessary.
3241 */
3242 in6_clearscope(&ip6->ip6_src);
3243 in6_clearscope(&ip6->ip6_dst);
3244
3245 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3246 }
3247
3248 /*
3249 * Chop IPv6 header off from the payload.
3250 */
3251 static int
3252 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3253 {
3254 struct mbuf *mh;
3255 struct ip6_hdr *ip6;
3256
3257 ip6 = mtod(m, struct ip6_hdr *);
3258 if (m->m_len > sizeof(*ip6)) {
3259 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3260 if (mh == NULL) {
3261 m_freem(m);
3262 return ENOBUFS;
3263 }
3264 m_move_pkthdr(mh, m);
3265 m_align(mh, sizeof(*ip6));
3266 m->m_len -= sizeof(*ip6);
3267 m->m_data += sizeof(*ip6);
3268 mh->m_next = m;
3269 mh->m_len = sizeof(*ip6);
3270 memcpy(mtod(mh, void *), (void *)ip6, sizeof(*ip6));
3271 m = mh;
3272 }
3273 exthdrs->ip6e_ip6 = m;
3274 return 0;
3275 }
3276
3277 /*
3278 * Compute IPv6 extension header length.
3279 */
3280 int
3281 ip6_optlen(struct in6pcb *in6p)
3282 {
3283 int len;
3284
3285 if (!in6p->in6p_outputopts)
3286 return 0;
3287
3288 len = 0;
3289 #define elen(x) \
3290 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3291
3292 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3293 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3294 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3295 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3296 return len;
3297 #undef elen
3298 }
3299
3300 /*
3301 * Ensure sending address is valid.
3302 * Returns 0 on success, -1 if an error should be sent back or 1
3303 * if the packet could be dropped without error (protocol dependent).
3304 */
3305 static int
3306 ip6_ifaddrvalid(const struct in6_addr *src, const struct in6_addr *dst)
3307 {
3308 struct sockaddr_in6 sin6;
3309 int s, error;
3310 struct ifaddr *ifa;
3311 struct in6_ifaddr *ia6;
3312
3313 if (IN6_IS_ADDR_UNSPECIFIED(src))
3314 return 0;
3315
3316 memset(&sin6, 0, sizeof(sin6));
3317 sin6.sin6_family = AF_INET6;
3318 sin6.sin6_len = sizeof(sin6);
3319 sin6.sin6_addr = *src;
3320
3321 s = pserialize_read_enter();
3322 ifa = ifa_ifwithaddr(sin6tosa(&sin6));
3323 if ((ia6 = ifatoia6(ifa)) == NULL ||
3324 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
3325 error = -1;
3326 else if (ia6->ia6_flags & IN6_IFF_TENTATIVE)
3327 error = 1;
3328 else if (ia6->ia6_flags & IN6_IFF_DETACHED &&
3329 (sin6.sin6_addr = *dst, ifa_ifwithaddr(sin6tosa(&sin6)) == NULL))
3330 /* Allow internal traffic to DETACHED addresses */
3331 error = 1;
3332 else
3333 error = 0;
3334 pserialize_read_exit(s);
3335
3336 return error;
3337 }
3338