ip6_output.c revision 1.231.2.1 1 /* $NetBSD: ip6_output.c,v 1.231.2.1 2023/03/23 12:03:04 martin Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.231.2.1 2023/03/23 12:03:04 martin Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_inet.h"
69 #include "opt_inet6.h"
70 #include "opt_ipsec.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/errno.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/syslog.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kauth.h>
83
84 #include <net/if.h>
85 #include <net/route.h>
86 #include <net/pfil.h>
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/ip_var.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet/portalgo.h>
95 #include <netinet6/in6_offload.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/ip6_private.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/nd6.h>
100 #include <netinet6/ip6protosw.h>
101 #include <netinet6/scope6_var.h>
102
103 #ifdef IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/ipsec6.h>
106 #include <netipsec/key.h>
107 #endif
108
109 extern pfil_head_t *inet6_pfil_hook; /* XXX */
110
111 struct ip6_exthdrs {
112 struct mbuf *ip6e_ip6;
113 struct mbuf *ip6e_hbh;
114 struct mbuf *ip6e_dest1;
115 struct mbuf *ip6e_rthdr;
116 struct mbuf *ip6e_dest2;
117 };
118
119 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
120 kauth_cred_t, int);
121 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
122 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
123 int, int, int);
124 static int ip6_setmoptions(const struct sockopt *, struct inpcb *);
125 static int ip6_getmoptions(struct sockopt *, struct inpcb *);
126 static int ip6_copyexthdr(struct mbuf **, void *, int);
127 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
128 struct ip6_frag **);
129 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
130 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
131 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
132 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
133 static int ip6_ifaddrvalid(const struct in6_addr *, const struct in6_addr *);
134 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
135
136 #ifdef RFC2292
137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
138 #endif
139
140 static int
141 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
142 {
143 int error = 0;
144
145 switch (rh->ip6r_type) {
146 case IPV6_RTHDR_TYPE_0:
147 /* Dropped, RFC5095. */
148 default: /* is it possible? */
149 error = EINVAL;
150 }
151
152 return error;
153 }
154
155 /*
156 * Send an IP packet to a host.
157 */
158 int
159 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp,
160 struct mbuf * const m, const struct sockaddr_in6 * const dst,
161 const struct rtentry *rt)
162 {
163 int error = 0;
164
165 if (rt != NULL) {
166 error = rt_check_reject_route(rt, ifp);
167 if (error != 0) {
168 IP6_STATINC(IP6_STAT_RTREJECT);
169 m_freem(m);
170 return error;
171 }
172 }
173
174 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
175 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
176 else
177 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
178 return error;
179 }
180
181 /*
182 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
183 * header (with pri, len, nxt, hlim, src, dst).
184 *
185 * This function may modify ver and hlim only. The mbuf chain containing the
186 * packet will be freed. The mbuf opt, if present, will not be freed.
187 *
188 * Type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
189 * nd_ifinfo.linkmtu is u_int32_t. So we use u_long to hold largest one,
190 * which is rt_rmx.rmx_mtu.
191 */
192 int
193 ip6_output(
194 struct mbuf *m0,
195 struct ip6_pktopts *opt,
196 struct route *ro,
197 int flags,
198 struct ip6_moptions *im6o,
199 struct inpcb *inp,
200 struct ifnet **ifpp /* XXX: just for statistics */
201 )
202 {
203 struct ip6_hdr *ip6, *mhip6;
204 struct ifnet *ifp = NULL, *origifp = NULL;
205 struct mbuf *m = m0;
206 int tlen, len, off;
207 bool tso;
208 struct route ip6route;
209 struct rtentry *rt = NULL, *rt_pmtu;
210 const struct sockaddr_in6 *dst;
211 struct sockaddr_in6 src_sa, dst_sa;
212 int error = 0;
213 struct in6_ifaddr *ia = NULL;
214 u_long mtu;
215 int alwaysfrag, dontfrag;
216 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
217 struct ip6_exthdrs exthdrs;
218 struct in6_addr finaldst, src0, dst0;
219 u_int32_t zone;
220 struct route *ro_pmtu = NULL;
221 int hdrsplit = 0;
222 int needipsec = 0;
223 #ifdef IPSEC
224 struct secpolicy *sp = NULL;
225 #endif
226 struct psref psref, psref_ia;
227 int bound = curlwp_bind();
228 bool release_psref_ia = false;
229
230 #ifdef DIAGNOSTIC
231 if ((m->m_flags & M_PKTHDR) == 0)
232 panic("ip6_output: no HDR");
233 if ((m->m_pkthdr.csum_flags &
234 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
235 panic("ip6_output: IPv4 checksum offload flags: %d",
236 m->m_pkthdr.csum_flags);
237 }
238 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
239 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
240 panic("ip6_output: conflicting checksum offload flags: %d",
241 m->m_pkthdr.csum_flags);
242 }
243 #endif
244
245 M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
246
247 #define MAKE_EXTHDR(hp, mp) \
248 do { \
249 if (hp) { \
250 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
251 error = ip6_copyexthdr((mp), (void *)(hp), \
252 ((eh)->ip6e_len + 1) << 3); \
253 if (error) \
254 goto freehdrs; \
255 } \
256 } while (/*CONSTCOND*/ 0)
257
258 memset(&exthdrs, 0, sizeof(exthdrs));
259 if (opt) {
260 /* Hop-by-Hop options header */
261 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
262 /* Destination options header (1st part) */
263 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
264 /* Routing header */
265 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
266 /* Destination options header (2nd part) */
267 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
268 }
269
270 /*
271 * Calculate the total length of the extension header chain.
272 * Keep the length of the unfragmentable part for fragmentation.
273 */
274 optlen = 0;
275 if (exthdrs.ip6e_hbh)
276 optlen += exthdrs.ip6e_hbh->m_len;
277 if (exthdrs.ip6e_dest1)
278 optlen += exthdrs.ip6e_dest1->m_len;
279 if (exthdrs.ip6e_rthdr)
280 optlen += exthdrs.ip6e_rthdr->m_len;
281 unfragpartlen = optlen + sizeof(struct ip6_hdr);
282 /* NOTE: we don't add AH/ESP length here. do that later. */
283 if (exthdrs.ip6e_dest2)
284 optlen += exthdrs.ip6e_dest2->m_len;
285
286 #ifdef IPSEC
287 if (ipsec_used) {
288 /* Check the security policy (SP) for the packet */
289 sp = ipsec6_check_policy(m, inp, flags, &needipsec, &error);
290 if (error != 0) {
291 /*
292 * Hack: -EINVAL is used to signal that a packet
293 * should be silently discarded. This is typically
294 * because we asked key management for an SA and
295 * it was delayed (e.g. kicked up to IKE).
296 */
297 if (error == -EINVAL)
298 error = 0;
299 IP6_STATINC(IP6_STAT_IPSECDROP_OUT);
300 goto freehdrs;
301 }
302 }
303 #endif
304
305 if (needipsec &&
306 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
307 in6_undefer_cksum_tcpudp(m);
308 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
309 }
310
311 /*
312 * If we need IPsec, or there is at least one extension header,
313 * separate IP6 header from the payload.
314 */
315 if ((needipsec || optlen) && !hdrsplit) {
316 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
317 IP6_STATINC(IP6_STAT_ODROPPED);
318 m = NULL;
319 goto freehdrs;
320 }
321 m = exthdrs.ip6e_ip6;
322 hdrsplit++;
323 }
324
325 /* adjust pointer */
326 ip6 = mtod(m, struct ip6_hdr *);
327
328 /* adjust mbuf packet header length */
329 m->m_pkthdr.len += optlen;
330 plen = m->m_pkthdr.len - sizeof(*ip6);
331
332 /* If this is a jumbo payload, insert a jumbo payload option. */
333 if (plen > IPV6_MAXPACKET) {
334 if (!hdrsplit) {
335 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
336 IP6_STATINC(IP6_STAT_ODROPPED);
337 m = NULL;
338 goto freehdrs;
339 }
340 m = exthdrs.ip6e_ip6;
341 hdrsplit++;
342 }
343 /* adjust pointer */
344 ip6 = mtod(m, struct ip6_hdr *);
345 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) {
346 IP6_STATINC(IP6_STAT_ODROPPED);
347 goto freehdrs;
348 }
349 optlen += 8; /* XXX JUMBOOPTLEN */
350 ip6->ip6_plen = 0;
351 } else
352 ip6->ip6_plen = htons(plen);
353
354 /*
355 * Concatenate headers and fill in next header fields.
356 * Here we have, on "m"
357 * IPv6 payload
358 * and we insert headers accordingly. Finally, we should be getting:
359 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
360 *
361 * during the header composing process, "m" points to IPv6 header.
362 * "mprev" points to an extension header prior to esp.
363 */
364 {
365 u_char *nexthdrp = &ip6->ip6_nxt;
366 struct mbuf *mprev = m;
367
368 /*
369 * we treat dest2 specially. this makes IPsec processing
370 * much easier. the goal here is to make mprev point the
371 * mbuf prior to dest2.
372 *
373 * result: IPv6 dest2 payload
374 * m and mprev will point to IPv6 header.
375 */
376 if (exthdrs.ip6e_dest2) {
377 if (!hdrsplit)
378 panic("assumption failed: hdr not split");
379 exthdrs.ip6e_dest2->m_next = m->m_next;
380 m->m_next = exthdrs.ip6e_dest2;
381 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
382 ip6->ip6_nxt = IPPROTO_DSTOPTS;
383 }
384
385 #define MAKE_CHAIN(m, mp, p, i)\
386 do {\
387 if (m) {\
388 if (!hdrsplit) \
389 panic("assumption failed: hdr not split"); \
390 *mtod((m), u_char *) = *(p);\
391 *(p) = (i);\
392 p = mtod((m), u_char *);\
393 (m)->m_next = (mp)->m_next;\
394 (mp)->m_next = (m);\
395 (mp) = (m);\
396 }\
397 } while (/*CONSTCOND*/ 0)
398 /*
399 * result: IPv6 hbh dest1 rthdr dest2 payload
400 * m will point to IPv6 header. mprev will point to the
401 * extension header prior to dest2 (rthdr in the above case).
402 */
403 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
404 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
405 IPPROTO_DSTOPTS);
406 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
407 IPPROTO_ROUTING);
408
409 M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data,
410 sizeof(struct ip6_hdr) + optlen);
411 }
412
413 /* Need to save for pmtu */
414 finaldst = ip6->ip6_dst;
415
416 /*
417 * If there is a routing header, replace destination address field
418 * with the first hop of the routing header.
419 */
420 if (exthdrs.ip6e_rthdr) {
421 struct ip6_rthdr *rh;
422
423 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
424
425 error = ip6_handle_rthdr(rh, ip6);
426 if (error != 0) {
427 IP6_STATINC(IP6_STAT_ODROPPED);
428 goto bad;
429 }
430 }
431
432 /* Source address validation */
433 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
434 (flags & IPV6_UNSPECSRC) == 0) {
435 error = EOPNOTSUPP;
436 IP6_STATINC(IP6_STAT_BADSCOPE);
437 goto bad;
438 }
439 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
440 error = EOPNOTSUPP;
441 IP6_STATINC(IP6_STAT_BADSCOPE);
442 goto bad;
443 }
444
445 IP6_STATINC(IP6_STAT_LOCALOUT);
446
447 /*
448 * Route packet.
449 */
450 /* initialize cached route */
451 if (ro == NULL) {
452 memset(&ip6route, 0, sizeof(ip6route));
453 ro = &ip6route;
454 }
455 ro_pmtu = ro;
456 if (opt && opt->ip6po_rthdr)
457 ro = &opt->ip6po_route;
458
459 /*
460 * if specified, try to fill in the traffic class field.
461 * do not override if a non-zero value is already set.
462 * we check the diffserv field and the ecn field separately.
463 */
464 if (opt && opt->ip6po_tclass >= 0) {
465 int mask = 0;
466
467 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
468 mask |= 0xfc;
469 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
470 mask |= 0x03;
471 if (mask != 0)
472 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
473 }
474
475 /* fill in or override the hop limit field, if necessary. */
476 if (opt && opt->ip6po_hlim != -1)
477 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
478 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
479 if (im6o != NULL)
480 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
481 else
482 ip6->ip6_hlim = ip6_defmcasthlim;
483 }
484
485 #ifdef IPSEC
486 if (needipsec) {
487 int s = splsoftnet();
488 error = ipsec6_process_packet(m, sp->req, flags);
489 splx(s);
490
491 /*
492 * Preserve KAME behaviour: ENOENT can be returned
493 * when an SA acquire is in progress. Don't propagate
494 * this to user-level; it confuses applications.
495 * XXX this will go away when the SADB is redone.
496 */
497 if (error == ENOENT)
498 error = 0;
499
500 goto done;
501 }
502 #endif
503
504 /* adjust pointer */
505 ip6 = mtod(m, struct ip6_hdr *);
506
507 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
508
509 /* We do not need a route for multicast */
510 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
511 struct in6_pktinfo *pi = NULL;
512
513 /*
514 * If the outgoing interface for the address is specified by
515 * the caller, use it.
516 */
517 if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
518 /* XXX boundary check is assumed to be already done. */
519 ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
520 } else if (im6o != NULL) {
521 ifp = if_get_byindex(im6o->im6o_multicast_if_index,
522 &psref);
523 }
524 }
525
526 if (ifp == NULL) {
527 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
528 if (error != 0)
529 goto bad;
530 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
531 }
532
533 if (rt == NULL) {
534 /*
535 * If in6_selectroute() does not return a route entry,
536 * dst may not have been updated.
537 */
538 error = rtcache_setdst(ro, sin6tosa(&dst_sa));
539 if (error) {
540 IP6_STATINC(IP6_STAT_ODROPPED);
541 goto bad;
542 }
543 }
544
545 /*
546 * then rt (for unicast) and ifp must be non-NULL valid values.
547 */
548 if ((flags & IPV6_FORWARDING) == 0) {
549 /* XXX: the FORWARDING flag can be set for mrouting. */
550 in6_ifstat_inc(ifp, ifs6_out_request);
551 }
552 if (rt != NULL) {
553 ia = (struct in6_ifaddr *)(rt->rt_ifa);
554 rt->rt_use++;
555 }
556
557 /*
558 * The outgoing interface must be in the zone of source and
559 * destination addresses. We should use ia_ifp to support the
560 * case of sending packets to an address of our own.
561 */
562 if (ia != NULL) {
563 origifp = ia->ia_ifp;
564 if (if_is_deactivated(origifp)) {
565 IP6_STATINC(IP6_STAT_ODROPPED);
566 goto bad;
567 }
568 if_acquire(origifp, &psref_ia);
569 release_psref_ia = true;
570 } else
571 origifp = ifp;
572
573 src0 = ip6->ip6_src;
574 if (in6_setscope(&src0, origifp, &zone))
575 goto badscope;
576 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
577 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
578 goto badscope;
579
580 dst0 = ip6->ip6_dst;
581 if (in6_setscope(&dst0, origifp, &zone))
582 goto badscope;
583 /* re-initialize to be sure */
584 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
585 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
586 goto badscope;
587
588 /* scope check is done. */
589
590 /* Ensure we only send from a valid address. */
591 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
592 (flags & IPV6_FORWARDING) == 0 &&
593 (error = ip6_ifaddrvalid(&src0, &dst0)) != 0)
594 {
595 char ip6buf[INET6_ADDRSTRLEN];
596 nd6log(LOG_ERR,
597 "refusing to send from invalid address %s (pid %d)\n",
598 IN6_PRINT(ip6buf, &src0), curproc->p_pid);
599 IP6_STATINC(IP6_STAT_ODROPPED);
600 in6_ifstat_inc(origifp, ifs6_out_discard);
601 if (error == 1)
602 /*
603 * Address exists, but is tentative or detached.
604 * We can't send from it because it's invalid,
605 * so we drop the packet.
606 */
607 error = 0;
608 else
609 error = EADDRNOTAVAIL;
610 goto bad;
611 }
612
613 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
614 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
615 dst = satocsin6(rt->rt_gateway);
616 else
617 dst = satocsin6(rtcache_getdst(ro));
618
619 /*
620 * XXXXXX: original code follows:
621 */
622 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
623 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
624 else {
625 bool ingroup;
626
627 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
628
629 in6_ifstat_inc(ifp, ifs6_out_mcast);
630
631 /*
632 * Confirm that the outgoing interface supports multicast.
633 */
634 if (!(ifp->if_flags & IFF_MULTICAST)) {
635 IP6_STATINC(IP6_STAT_NOROUTE);
636 in6_ifstat_inc(ifp, ifs6_out_discard);
637 error = ENETUNREACH;
638 goto bad;
639 }
640
641 ingroup = in6_multi_group(&ip6->ip6_dst, ifp);
642 if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) {
643 /*
644 * If we belong to the destination multicast group
645 * on the outgoing interface, and the caller did not
646 * forbid loopback, loop back a copy.
647 */
648 KASSERT(dst != NULL);
649 ip6_mloopback(ifp, m, dst);
650 } else {
651 /*
652 * If we are acting as a multicast router, perform
653 * multicast forwarding as if the packet had just
654 * arrived on the interface to which we are about
655 * to send. The multicast forwarding function
656 * recursively calls this function, using the
657 * IPV6_FORWARDING flag to prevent infinite recursion.
658 *
659 * Multicasts that are looped back by ip6_mloopback(),
660 * above, will be forwarded by the ip6_input() routine,
661 * if necessary.
662 */
663 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
664 if (ip6_mforward(ip6, ifp, m) != 0) {
665 m_freem(m);
666 goto done;
667 }
668 }
669 }
670 /*
671 * Multicasts with a hoplimit of zero may be looped back,
672 * above, but must not be transmitted on a network.
673 * Also, multicasts addressed to the loopback interface
674 * are not sent -- the above call to ip6_mloopback() will
675 * loop back a copy if this host actually belongs to the
676 * destination group on the loopback interface.
677 */
678 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
679 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
680 m_freem(m);
681 goto done;
682 }
683 }
684
685 /*
686 * Fill the outgoing interface to tell the upper layer
687 * to increment per-interface statistics.
688 */
689 if (ifpp)
690 *ifpp = ifp;
691
692 /* Determine path MTU. */
693 /*
694 * ro_pmtu represent final destination while
695 * ro might represent immediate destination.
696 * Use ro_pmtu destination since MTU might differ.
697 */
698 if (ro_pmtu != ro) {
699 union {
700 struct sockaddr dst;
701 struct sockaddr_in6 dst6;
702 } u;
703
704 /* ro_pmtu may not have a cache */
705 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
706 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
707 } else
708 rt_pmtu = rt;
709 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
710 if (rt_pmtu != NULL && rt_pmtu != rt)
711 rtcache_unref(rt_pmtu, ro_pmtu);
712 KASSERT(error == 0); /* ip6_getpmtu never fail if ifp is passed */
713
714 /*
715 * The caller of this function may specify to use the minimum MTU
716 * in some cases.
717 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
718 * setting. The logic is a bit complicated; by default, unicast
719 * packets will follow path MTU while multicast packets will be sent at
720 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
721 * including unicast ones will be sent at the minimum MTU. Multicast
722 * packets will always be sent at the minimum MTU unless
723 * IP6PO_MINMTU_DISABLE is explicitly specified.
724 * See RFC 3542 for more details.
725 */
726 if (mtu > IPV6_MMTU) {
727 if ((flags & IPV6_MINMTU))
728 mtu = IPV6_MMTU;
729 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
730 mtu = IPV6_MMTU;
731 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
732 (opt == NULL ||
733 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
734 mtu = IPV6_MMTU;
735 }
736 }
737
738 /*
739 * clear embedded scope identifiers if necessary.
740 * in6_clearscope will touch the addresses only when necessary.
741 */
742 in6_clearscope(&ip6->ip6_src);
743 in6_clearscope(&ip6->ip6_dst);
744
745 /*
746 * If the outgoing packet contains a hop-by-hop options header,
747 * it must be examined and processed even by the source node.
748 * (RFC 2460, section 4.)
749 *
750 * XXX Is this really necessary?
751 */
752 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
753 u_int32_t dummy1; /* XXX unused */
754 u_int32_t dummy2; /* XXX unused */
755 int hoff = sizeof(struct ip6_hdr);
756
757 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
758 /* m was already freed at this point */
759 error = EINVAL;
760 goto done;
761 }
762
763 ip6 = mtod(m, struct ip6_hdr *);
764 }
765
766 /*
767 * Run through list of hooks for output packets.
768 */
769 error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT);
770 if (error != 0 || m == NULL) {
771 IP6_STATINC(IP6_STAT_PFILDROP_OUT);
772 goto done;
773 }
774 ip6 = mtod(m, struct ip6_hdr *);
775
776 /*
777 * Send the packet to the outgoing interface.
778 * If necessary, do IPv6 fragmentation before sending.
779 *
780 * the logic here is rather complex:
781 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
782 * 1-a: send as is if tlen <= path mtu
783 * 1-b: fragment if tlen > path mtu
784 *
785 * 2: if user asks us not to fragment (dontfrag == 1)
786 * 2-a: send as is if tlen <= interface mtu
787 * 2-b: error if tlen > interface mtu
788 *
789 * 3: if we always need to attach fragment header (alwaysfrag == 1)
790 * always fragment
791 *
792 * 4: if dontfrag == 1 && alwaysfrag == 1
793 * error, as we cannot handle this conflicting request
794 */
795 tlen = m->m_pkthdr.len;
796 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
797 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
798 dontfrag = 1;
799 else
800 dontfrag = 0;
801
802 if (dontfrag && alwaysfrag) { /* case 4 */
803 /* conflicting request - can't transmit */
804 IP6_STATINC(IP6_STAT_CANTFRAG);
805 error = EMSGSIZE;
806 goto bad;
807 }
808 if (dontfrag && (!tso && tlen > ifp->if_mtu)) { /* case 2-b */
809 /*
810 * Even if the DONTFRAG option is specified, we cannot send the
811 * packet when the data length is larger than the MTU of the
812 * outgoing interface.
813 * Notify the error by sending IPV6_PATHMTU ancillary data as
814 * well as returning an error code (the latter is not described
815 * in the API spec.)
816 */
817 u_int32_t mtu32;
818 struct ip6ctlparam ip6cp;
819
820 mtu32 = (u_int32_t)mtu;
821 memset(&ip6cp, 0, sizeof(ip6cp));
822 ip6cp.ip6c_cmdarg = (void *)&mtu32;
823 pfctlinput2(PRC_MSGSIZE,
824 rtcache_getdst(ro_pmtu), &ip6cp);
825
826 IP6_STATINC(IP6_STAT_CANTFRAG);
827 error = EMSGSIZE;
828 goto bad;
829 }
830
831 /*
832 * transmit packet without fragmentation
833 */
834 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
835 /* case 1-a and 2-a */
836 struct in6_ifaddr *ia6;
837 int sw_csum;
838 int s;
839
840 ip6 = mtod(m, struct ip6_hdr *);
841 s = pserialize_read_enter();
842 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
843 if (ia6) {
844 /* Record statistics for this interface address. */
845 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
846 }
847 pserialize_read_exit(s);
848
849 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
850 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
851 if (IN6_NEED_CHECKSUM(ifp,
852 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
853 in6_undefer_cksum_tcpudp(m);
854 }
855 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
856 }
857
858 KASSERT(dst != NULL);
859 if (__predict_false(sw_csum & M_CSUM_TSOv6)) {
860 /*
861 * TSO6 is required by a packet, but disabled for
862 * the interface.
863 */
864 error = ip6_tso_output(ifp, origifp, m, dst, rt);
865 } else
866 error = ip6_if_output(ifp, origifp, m, dst, rt);
867 goto done;
868 }
869
870 if (tso) {
871 IP6_STATINC(IP6_STAT_CANTFRAG); /* XXX */
872 error = EINVAL; /* XXX */
873 goto bad;
874 }
875
876 /*
877 * try to fragment the packet. case 1-b and 3
878 */
879 if (mtu < IPV6_MMTU) {
880 /* path MTU cannot be less than IPV6_MMTU */
881 IP6_STATINC(IP6_STAT_CANTFRAG);
882 error = EMSGSIZE;
883 in6_ifstat_inc(ifp, ifs6_out_fragfail);
884 goto bad;
885 } else if (ip6->ip6_plen == 0) {
886 /* jumbo payload cannot be fragmented */
887 IP6_STATINC(IP6_STAT_CANTFRAG);
888 error = EMSGSIZE;
889 in6_ifstat_inc(ifp, ifs6_out_fragfail);
890 goto bad;
891 } else {
892 const uint32_t id = ip6_randomid();
893 struct mbuf **mnext, *m_frgpart;
894 const int hlen = unfragpartlen;
895 struct ip6_frag *ip6f;
896 u_char nextproto;
897
898 if (mtu > IPV6_MAXPACKET)
899 mtu = IPV6_MAXPACKET;
900
901 /*
902 * Must be able to put at least 8 bytes per fragment.
903 */
904 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
905 if (len < 8) {
906 IP6_STATINC(IP6_STAT_CANTFRAG);
907 error = EMSGSIZE;
908 in6_ifstat_inc(ifp, ifs6_out_fragfail);
909 goto bad;
910 }
911
912 mnext = &m->m_nextpkt;
913
914 /*
915 * Change the next header field of the last header in the
916 * unfragmentable part.
917 */
918 if (exthdrs.ip6e_rthdr) {
919 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
920 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
921 } else if (exthdrs.ip6e_dest1) {
922 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
923 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
924 } else if (exthdrs.ip6e_hbh) {
925 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
926 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
927 } else {
928 nextproto = ip6->ip6_nxt;
929 ip6->ip6_nxt = IPPROTO_FRAGMENT;
930 }
931
932 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
933 != 0) {
934 if (IN6_NEED_CHECKSUM(ifp,
935 m->m_pkthdr.csum_flags &
936 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
937 in6_undefer_cksum_tcpudp(m);
938 }
939 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
940 }
941
942 /*
943 * Loop through length of segment after first fragment,
944 * make new header and copy data of each part and link onto
945 * chain.
946 */
947 m0 = m;
948 for (off = hlen; off < tlen; off += len) {
949 struct mbuf *mlast;
950
951 MGETHDR(m, M_DONTWAIT, MT_HEADER);
952 if (!m) {
953 error = ENOBUFS;
954 IP6_STATINC(IP6_STAT_ODROPPED);
955 goto sendorfree;
956 }
957 m_reset_rcvif(m);
958 m->m_flags = m0->m_flags & M_COPYFLAGS;
959 *mnext = m;
960 mnext = &m->m_nextpkt;
961 m->m_data += max_linkhdr;
962 mhip6 = mtod(m, struct ip6_hdr *);
963 *mhip6 = *ip6;
964 m->m_len = sizeof(*mhip6);
965
966 ip6f = NULL;
967 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
968 if (error) {
969 IP6_STATINC(IP6_STAT_ODROPPED);
970 goto sendorfree;
971 }
972
973 /* Fill in the Frag6 Header */
974 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
975 if (off + len >= tlen)
976 len = tlen - off;
977 else
978 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
979 ip6f->ip6f_reserved = 0;
980 ip6f->ip6f_ident = id;
981 ip6f->ip6f_nxt = nextproto;
982
983 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
984 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
985 if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) {
986 error = ENOBUFS;
987 IP6_STATINC(IP6_STAT_ODROPPED);
988 goto sendorfree;
989 }
990 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
991 ;
992 mlast->m_next = m_frgpart;
993
994 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
995 m_reset_rcvif(m);
996 IP6_STATINC(IP6_STAT_OFRAGMENTS);
997 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
998 }
999
1000 in6_ifstat_inc(ifp, ifs6_out_fragok);
1001 }
1002
1003 sendorfree:
1004 m = m0->m_nextpkt;
1005 m0->m_nextpkt = 0;
1006 m_freem(m0);
1007 for (m0 = m; m; m = m0) {
1008 m0 = m->m_nextpkt;
1009 m->m_nextpkt = 0;
1010 if (error == 0) {
1011 struct in6_ifaddr *ia6;
1012 int s;
1013 ip6 = mtod(m, struct ip6_hdr *);
1014 s = pserialize_read_enter();
1015 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1016 if (ia6) {
1017 /*
1018 * Record statistics for this interface
1019 * address.
1020 */
1021 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1022 m->m_pkthdr.len;
1023 }
1024 pserialize_read_exit(s);
1025 KASSERT(dst != NULL);
1026 error = ip6_if_output(ifp, origifp, m, dst, rt);
1027 } else
1028 m_freem(m);
1029 }
1030
1031 if (error == 0)
1032 IP6_STATINC(IP6_STAT_FRAGMENTED);
1033
1034 done:
1035 rtcache_unref(rt, ro);
1036 if (ro == &ip6route)
1037 rtcache_free(&ip6route);
1038 #ifdef IPSEC
1039 if (sp != NULL)
1040 KEY_SP_UNREF(&sp);
1041 #endif
1042 if_put(ifp, &psref);
1043 if (release_psref_ia)
1044 if_put(origifp, &psref_ia);
1045 curlwp_bindx(bound);
1046
1047 return error;
1048
1049 freehdrs:
1050 m_freem(exthdrs.ip6e_hbh);
1051 m_freem(exthdrs.ip6e_dest1);
1052 m_freem(exthdrs.ip6e_rthdr);
1053 m_freem(exthdrs.ip6e_dest2);
1054 /* FALLTHROUGH */
1055 bad:
1056 m_freem(m);
1057 goto done;
1058
1059 badscope:
1060 IP6_STATINC(IP6_STAT_BADSCOPE);
1061 in6_ifstat_inc(origifp, ifs6_out_discard);
1062 if (error == 0)
1063 error = EHOSTUNREACH; /* XXX */
1064 goto bad;
1065 }
1066
1067 static int
1068 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1069 {
1070 struct mbuf *m;
1071
1072 if (hlen > MCLBYTES)
1073 return ENOBUFS; /* XXX */
1074
1075 MGET(m, M_DONTWAIT, MT_DATA);
1076 if (!m)
1077 return ENOBUFS;
1078
1079 if (hlen > MLEN) {
1080 MCLGET(m, M_DONTWAIT);
1081 if ((m->m_flags & M_EXT) == 0) {
1082 m_free(m);
1083 return ENOBUFS;
1084 }
1085 }
1086 m->m_len = hlen;
1087 if (hdr)
1088 memcpy(mtod(m, void *), hdr, hlen);
1089
1090 *mp = m;
1091 return 0;
1092 }
1093
1094 /*
1095 * Insert jumbo payload option.
1096 */
1097 static int
1098 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1099 {
1100 struct mbuf *mopt;
1101 u_int8_t *optbuf;
1102 u_int32_t v;
1103
1104 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1105
1106 /*
1107 * If there is no hop-by-hop options header, allocate new one.
1108 * If there is one but it doesn't have enough space to store the
1109 * jumbo payload option, allocate a cluster to store the whole options.
1110 * Otherwise, use it to store the options.
1111 */
1112 if (exthdrs->ip6e_hbh == NULL) {
1113 MGET(mopt, M_DONTWAIT, MT_DATA);
1114 if (mopt == 0)
1115 return (ENOBUFS);
1116 mopt->m_len = JUMBOOPTLEN;
1117 optbuf = mtod(mopt, u_int8_t *);
1118 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1119 exthdrs->ip6e_hbh = mopt;
1120 } else {
1121 struct ip6_hbh *hbh;
1122
1123 mopt = exthdrs->ip6e_hbh;
1124 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1125 const int oldoptlen = mopt->m_len;
1126 struct mbuf *n;
1127
1128 /*
1129 * Assumptions:
1130 * - exthdrs->ip6e_hbh is not referenced from places
1131 * other than exthdrs.
1132 * - exthdrs->ip6e_hbh is not an mbuf chain.
1133 */
1134 KASSERT(mopt->m_next == NULL);
1135
1136 /*
1137 * Give up if the whole (new) hbh header does not fit
1138 * even in an mbuf cluster.
1139 */
1140 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1141 return ENOBUFS;
1142
1143 /*
1144 * At this point, we must always prepare a cluster.
1145 */
1146 MGET(n, M_DONTWAIT, MT_DATA);
1147 if (n) {
1148 MCLGET(n, M_DONTWAIT);
1149 if ((n->m_flags & M_EXT) == 0) {
1150 m_freem(n);
1151 n = NULL;
1152 }
1153 }
1154 if (!n)
1155 return ENOBUFS;
1156
1157 n->m_len = oldoptlen + JUMBOOPTLEN;
1158 bcopy(mtod(mopt, void *), mtod(n, void *),
1159 oldoptlen);
1160 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1161 m_freem(mopt);
1162 mopt = exthdrs->ip6e_hbh = n;
1163 } else {
1164 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1165 mopt->m_len += JUMBOOPTLEN;
1166 }
1167 optbuf[0] = IP6OPT_PADN;
1168 optbuf[1] = 0;
1169
1170 /*
1171 * Adjust the header length according to the pad and
1172 * the jumbo payload option.
1173 */
1174 hbh = mtod(mopt, struct ip6_hbh *);
1175 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1176 }
1177
1178 /* fill in the option. */
1179 optbuf[2] = IP6OPT_JUMBO;
1180 optbuf[3] = 4;
1181 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1182 memcpy(&optbuf[4], &v, sizeof(u_int32_t));
1183
1184 /* finally, adjust the packet header length */
1185 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1186
1187 return 0;
1188 #undef JUMBOOPTLEN
1189 }
1190
1191 /*
1192 * Insert fragment header and copy unfragmentable header portions.
1193 *
1194 * *frghdrp will not be read, and it is guaranteed that either an
1195 * error is returned or that *frghdrp will point to space allocated
1196 * for the fragment header.
1197 *
1198 * On entry, m contains:
1199 * IPv6 Header
1200 * On exit, it contains:
1201 * IPv6 Header -> Unfragmentable Part -> Frag6 Header
1202 */
1203 static int
1204 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1205 struct ip6_frag **frghdrp)
1206 {
1207 struct mbuf *n, *mlast;
1208
1209 if (hlen > sizeof(struct ip6_hdr)) {
1210 n = m_copym(m0, sizeof(struct ip6_hdr),
1211 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1212 if (n == NULL)
1213 return ENOBUFS;
1214 m->m_next = n;
1215 } else
1216 n = m;
1217
1218 /* Search for the last mbuf of unfragmentable part. */
1219 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1220 ;
1221
1222 if ((mlast->m_flags & M_EXT) == 0 &&
1223 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1224 /* use the trailing space of the last mbuf for the fragment hdr */
1225 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1226 mlast->m_len);
1227 mlast->m_len += sizeof(struct ip6_frag);
1228 } else {
1229 /* allocate a new mbuf for the fragment header */
1230 struct mbuf *mfrg;
1231
1232 MGET(mfrg, M_DONTWAIT, MT_DATA);
1233 if (mfrg == NULL)
1234 return ENOBUFS;
1235 mfrg->m_len = sizeof(struct ip6_frag);
1236 *frghdrp = mtod(mfrg, struct ip6_frag *);
1237 mlast->m_next = mfrg;
1238 }
1239
1240 return 0;
1241 }
1242
1243 static int
1244 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
1245 int *alwaysfragp)
1246 {
1247 u_int32_t mtu = 0;
1248 int alwaysfrag = 0;
1249 int error = 0;
1250
1251 if (rt != NULL) {
1252 if (ifp == NULL)
1253 ifp = rt->rt_ifp;
1254 mtu = rt->rt_rmx.rmx_mtu;
1255 if (mtu == 0)
1256 mtu = ifp->if_mtu;
1257 else if (mtu < IPV6_MMTU) {
1258 /*
1259 * RFC2460 section 5, last paragraph:
1260 * if we record ICMPv6 too big message with
1261 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1262 * or smaller, with fragment header attached.
1263 * (fragment header is needed regardless from the
1264 * packet size, for translators to identify packets)
1265 */
1266 alwaysfrag = 1;
1267 mtu = IPV6_MMTU;
1268 } else if (mtu > ifp->if_mtu) {
1269 /*
1270 * The MTU on the route is larger than the MTU on
1271 * the interface! This shouldn't happen, unless the
1272 * MTU of the interface has been changed after the
1273 * interface was brought up. Change the MTU in the
1274 * route to match the interface MTU (as long as the
1275 * field isn't locked).
1276 */
1277 mtu = ifp->if_mtu;
1278 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1279 rt->rt_rmx.rmx_mtu = mtu;
1280 }
1281 } else if (ifp) {
1282 mtu = ifp->if_mtu;
1283 } else
1284 error = EHOSTUNREACH; /* XXX */
1285
1286 *mtup = mtu;
1287 if (alwaysfragp)
1288 *alwaysfragp = alwaysfrag;
1289 return (error);
1290 }
1291
1292 /*
1293 * IP6 socket option processing.
1294 */
1295 int
1296 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1297 {
1298 int optdatalen, uproto;
1299 void *optdata;
1300 struct inpcb *inp = sotoinpcb(so);
1301 struct ip_moptions **mopts;
1302 int error, optval;
1303 int level, optname;
1304
1305 KASSERT(solocked(so));
1306 KASSERT(sopt != NULL);
1307
1308 level = sopt->sopt_level;
1309 optname = sopt->sopt_name;
1310
1311 error = optval = 0;
1312 uproto = (int)so->so_proto->pr_protocol;
1313
1314 switch (level) {
1315 case IPPROTO_IP:
1316 switch (optname) {
1317 case IP_ADD_MEMBERSHIP:
1318 case IP_DROP_MEMBERSHIP:
1319 case IP_MULTICAST_IF:
1320 case IP_MULTICAST_LOOP:
1321 case IP_MULTICAST_TTL:
1322 mopts = &inp->inp_moptions;
1323 switch (op) {
1324 case PRCO_GETOPT:
1325 return ip_getmoptions(*mopts, sopt);
1326 case PRCO_SETOPT:
1327 return ip_setmoptions(mopts, sopt);
1328 default:
1329 return EINVAL;
1330 }
1331 default:
1332 return ENOPROTOOPT;
1333 }
1334 case IPPROTO_IPV6:
1335 break;
1336 default:
1337 return ENOPROTOOPT;
1338 }
1339 switch (op) {
1340 case PRCO_SETOPT:
1341 switch (optname) {
1342 #ifdef RFC2292
1343 case IPV6_2292PKTOPTIONS:
1344 error = ip6_pcbopts(&in6p_outputopts(inp), so, sopt);
1345 break;
1346 #endif
1347
1348 /*
1349 * Use of some Hop-by-Hop options or some
1350 * Destination options, might require special
1351 * privilege. That is, normal applications
1352 * (without special privilege) might be forbidden
1353 * from setting certain options in outgoing packets,
1354 * and might never see certain options in received
1355 * packets. [RFC 2292 Section 6]
1356 * KAME specific note:
1357 * KAME prevents non-privileged users from sending or
1358 * receiving ANY hbh/dst options in order to avoid
1359 * overhead of parsing options in the kernel.
1360 */
1361 case IPV6_RECVHOPOPTS:
1362 case IPV6_RECVDSTOPTS:
1363 case IPV6_RECVRTHDRDSTOPTS:
1364 error = kauth_authorize_network(
1365 kauth_cred_get(),
1366 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
1367 NULL, NULL, NULL);
1368 if (error)
1369 break;
1370 /* FALLTHROUGH */
1371 case IPV6_UNICAST_HOPS:
1372 case IPV6_HOPLIMIT:
1373 case IPV6_FAITH:
1374
1375 case IPV6_RECVPKTINFO:
1376 case IPV6_RECVHOPLIMIT:
1377 case IPV6_RECVRTHDR:
1378 case IPV6_RECVPATHMTU:
1379 case IPV6_RECVTCLASS:
1380 case IPV6_V6ONLY:
1381 case IPV6_BINDANY:
1382 error = sockopt_getint(sopt, &optval);
1383 if (error)
1384 break;
1385 switch (optname) {
1386 case IPV6_UNICAST_HOPS:
1387 if (optval < -1 || optval >= 256)
1388 error = EINVAL;
1389 else {
1390 /* -1 = kernel default */
1391 in6p_hops6(inp) = optval;
1392 }
1393 break;
1394 #define OPTSET(bit) \
1395 do { \
1396 if (optval) \
1397 inp->inp_flags |= (bit); \
1398 else \
1399 inp->inp_flags &= ~(bit); \
1400 } while (/*CONSTCOND*/ 0)
1401
1402 #ifdef RFC2292
1403 #define OPTSET2292(bit) \
1404 do { \
1405 inp->inp_flags |= IN6P_RFC2292; \
1406 if (optval) \
1407 inp->inp_flags |= (bit); \
1408 else \
1409 inp->inp_flags &= ~(bit); \
1410 } while (/*CONSTCOND*/ 0)
1411 #endif
1412
1413 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0)
1414
1415 case IPV6_RECVPKTINFO:
1416 #ifdef RFC2292
1417 /* cannot mix with RFC2292 */
1418 if (OPTBIT(IN6P_RFC2292)) {
1419 error = EINVAL;
1420 break;
1421 }
1422 #endif
1423 OPTSET(IN6P_PKTINFO);
1424 break;
1425
1426 case IPV6_HOPLIMIT:
1427 {
1428 struct ip6_pktopts **optp;
1429
1430 #ifdef RFC2292
1431 /* cannot mix with RFC2292 */
1432 if (OPTBIT(IN6P_RFC2292)) {
1433 error = EINVAL;
1434 break;
1435 }
1436 #endif
1437 optp = &in6p_outputopts(inp);
1438 error = ip6_pcbopt(IPV6_HOPLIMIT,
1439 (u_char *)&optval,
1440 sizeof(optval),
1441 optp,
1442 kauth_cred_get(), uproto);
1443 break;
1444 }
1445
1446 case IPV6_RECVHOPLIMIT:
1447 #ifdef RFC2292
1448 /* cannot mix with RFC2292 */
1449 if (OPTBIT(IN6P_RFC2292)) {
1450 error = EINVAL;
1451 break;
1452 }
1453 #endif
1454 OPTSET(IN6P_HOPLIMIT);
1455 break;
1456
1457 case IPV6_RECVHOPOPTS:
1458 #ifdef RFC2292
1459 /* cannot mix with RFC2292 */
1460 if (OPTBIT(IN6P_RFC2292)) {
1461 error = EINVAL;
1462 break;
1463 }
1464 #endif
1465 OPTSET(IN6P_HOPOPTS);
1466 break;
1467
1468 case IPV6_RECVDSTOPTS:
1469 #ifdef RFC2292
1470 /* cannot mix with RFC2292 */
1471 if (OPTBIT(IN6P_RFC2292)) {
1472 error = EINVAL;
1473 break;
1474 }
1475 #endif
1476 OPTSET(IN6P_DSTOPTS);
1477 break;
1478
1479 case IPV6_RECVRTHDRDSTOPTS:
1480 #ifdef RFC2292
1481 /* cannot mix with RFC2292 */
1482 if (OPTBIT(IN6P_RFC2292)) {
1483 error = EINVAL;
1484 break;
1485 }
1486 #endif
1487 OPTSET(IN6P_RTHDRDSTOPTS);
1488 break;
1489
1490 case IPV6_RECVRTHDR:
1491 #ifdef RFC2292
1492 /* cannot mix with RFC2292 */
1493 if (OPTBIT(IN6P_RFC2292)) {
1494 error = EINVAL;
1495 break;
1496 }
1497 #endif
1498 OPTSET(IN6P_RTHDR);
1499 break;
1500
1501 case IPV6_FAITH:
1502 OPTSET(IN6P_FAITH);
1503 break;
1504
1505 case IPV6_RECVPATHMTU:
1506 /*
1507 * We ignore this option for TCP
1508 * sockets.
1509 * (RFC3542 leaves this case
1510 * unspecified.)
1511 */
1512 if (uproto != IPPROTO_TCP)
1513 OPTSET(IN6P_MTU);
1514 break;
1515
1516 case IPV6_V6ONLY:
1517 /*
1518 * make setsockopt(IPV6_V6ONLY)
1519 * available only prior to bind(2).
1520 * see ipng mailing list, Jun 22 2001.
1521 */
1522 if (inp->inp_lport ||
1523 !IN6_IS_ADDR_UNSPECIFIED(&in6p_laddr(inp))) {
1524 error = EINVAL;
1525 break;
1526 }
1527 #ifdef INET6_BINDV6ONLY
1528 if (!optval)
1529 error = EINVAL;
1530 #else
1531 OPTSET(IN6P_IPV6_V6ONLY);
1532 #endif
1533 break;
1534
1535 case IPV6_RECVTCLASS:
1536 #ifdef RFC2292
1537 /* cannot mix with RFC2292 XXX */
1538 if (OPTBIT(IN6P_RFC2292)) {
1539 error = EINVAL;
1540 break;
1541 }
1542 #endif
1543 OPTSET(IN6P_TCLASS);
1544 break;
1545
1546 case IPV6_BINDANY:
1547 error = kauth_authorize_network(
1548 kauth_cred_get(), KAUTH_NETWORK_BIND,
1549 KAUTH_REQ_NETWORK_BIND_ANYADDR, so, NULL,
1550 NULL);
1551 if (error)
1552 break;
1553 OPTSET(IN6P_BINDANY);
1554 break;
1555 }
1556 break;
1557
1558 case IPV6_OTCLASS:
1559 {
1560 struct ip6_pktopts **optp;
1561 u_int8_t tclass;
1562
1563 error = sockopt_get(sopt, &tclass, sizeof(tclass));
1564 if (error)
1565 break;
1566 optp = &in6p_outputopts(inp);
1567 error = ip6_pcbopt(optname,
1568 (u_char *)&tclass,
1569 sizeof(tclass),
1570 optp,
1571 kauth_cred_get(), uproto);
1572 break;
1573 }
1574
1575 case IPV6_TCLASS:
1576 case IPV6_DONTFRAG:
1577 case IPV6_USE_MIN_MTU:
1578 case IPV6_PREFER_TEMPADDR:
1579 error = sockopt_getint(sopt, &optval);
1580 if (error)
1581 break;
1582 {
1583 struct ip6_pktopts **optp;
1584 optp = &in6p_outputopts(inp);
1585 error = ip6_pcbopt(optname,
1586 (u_char *)&optval,
1587 sizeof(optval),
1588 optp,
1589 kauth_cred_get(), uproto);
1590 break;
1591 }
1592
1593 #ifdef RFC2292
1594 case IPV6_2292PKTINFO:
1595 case IPV6_2292HOPLIMIT:
1596 case IPV6_2292HOPOPTS:
1597 case IPV6_2292DSTOPTS:
1598 case IPV6_2292RTHDR:
1599 /* RFC 2292 */
1600 error = sockopt_getint(sopt, &optval);
1601 if (error)
1602 break;
1603
1604 switch (optname) {
1605 case IPV6_2292PKTINFO:
1606 OPTSET2292(IN6P_PKTINFO);
1607 break;
1608 case IPV6_2292HOPLIMIT:
1609 OPTSET2292(IN6P_HOPLIMIT);
1610 break;
1611 case IPV6_2292HOPOPTS:
1612 /*
1613 * Check super-user privilege.
1614 * See comments for IPV6_RECVHOPOPTS.
1615 */
1616 error = kauth_authorize_network(
1617 kauth_cred_get(),
1618 KAUTH_NETWORK_IPV6,
1619 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1620 NULL, NULL);
1621 if (error)
1622 return (error);
1623 OPTSET2292(IN6P_HOPOPTS);
1624 break;
1625 case IPV6_2292DSTOPTS:
1626 error = kauth_authorize_network(
1627 kauth_cred_get(),
1628 KAUTH_NETWORK_IPV6,
1629 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1630 NULL, NULL);
1631 if (error)
1632 return (error);
1633 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1634 break;
1635 case IPV6_2292RTHDR:
1636 OPTSET2292(IN6P_RTHDR);
1637 break;
1638 }
1639 break;
1640 #endif
1641 case IPV6_PKTINFO:
1642 case IPV6_HOPOPTS:
1643 case IPV6_RTHDR:
1644 case IPV6_DSTOPTS:
1645 case IPV6_RTHDRDSTOPTS:
1646 case IPV6_NEXTHOP: {
1647 /* new advanced API (RFC3542) */
1648 void *optbuf;
1649 int optbuflen;
1650 struct ip6_pktopts **optp;
1651
1652 #ifdef RFC2292
1653 /* cannot mix with RFC2292 */
1654 if (OPTBIT(IN6P_RFC2292)) {
1655 error = EINVAL;
1656 break;
1657 }
1658 #endif
1659
1660 optbuflen = sopt->sopt_size;
1661 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1662 if (optbuf == NULL) {
1663 error = ENOBUFS;
1664 break;
1665 }
1666
1667 error = sockopt_get(sopt, optbuf, optbuflen);
1668 if (error) {
1669 free(optbuf, M_IP6OPT);
1670 break;
1671 }
1672 optp = &in6p_outputopts(inp);
1673 error = ip6_pcbopt(optname, optbuf, optbuflen,
1674 optp, kauth_cred_get(), uproto);
1675
1676 free(optbuf, M_IP6OPT);
1677 break;
1678 }
1679 #undef OPTSET
1680
1681 case IPV6_MULTICAST_IF:
1682 case IPV6_MULTICAST_HOPS:
1683 case IPV6_MULTICAST_LOOP:
1684 case IPV6_JOIN_GROUP:
1685 case IPV6_LEAVE_GROUP:
1686 error = ip6_setmoptions(sopt, inp);
1687 break;
1688
1689 case IPV6_PORTRANGE:
1690 error = sockopt_getint(sopt, &optval);
1691 if (error)
1692 break;
1693
1694 switch (optval) {
1695 case IPV6_PORTRANGE_DEFAULT:
1696 inp->inp_flags &= ~(IN6P_LOWPORT);
1697 inp->inp_flags &= ~(IN6P_HIGHPORT);
1698 break;
1699
1700 case IPV6_PORTRANGE_HIGH:
1701 inp->inp_flags &= ~(IN6P_LOWPORT);
1702 inp->inp_flags |= IN6P_HIGHPORT;
1703 break;
1704
1705 case IPV6_PORTRANGE_LOW:
1706 inp->inp_flags &= ~(IN6P_HIGHPORT);
1707 inp->inp_flags |= IN6P_LOWPORT;
1708 break;
1709
1710 default:
1711 error = EINVAL;
1712 break;
1713 }
1714 break;
1715
1716 case IPV6_PORTALGO:
1717 error = sockopt_getint(sopt, &optval);
1718 if (error)
1719 break;
1720
1721 error = portalgo_algo_index_select(inp, optval);
1722 break;
1723
1724 #if defined(IPSEC)
1725 case IPV6_IPSEC_POLICY:
1726 if (ipsec_enabled) {
1727 error = ipsec_set_policy(inp,
1728 sopt->sopt_data, sopt->sopt_size,
1729 kauth_cred_get());
1730 } else
1731 error = ENOPROTOOPT;
1732 break;
1733 #endif /* IPSEC */
1734
1735 default:
1736 error = ENOPROTOOPT;
1737 break;
1738 }
1739 break;
1740
1741 case PRCO_GETOPT:
1742 switch (optname) {
1743 #ifdef RFC2292
1744 case IPV6_2292PKTOPTIONS:
1745 /*
1746 * RFC3542 (effectively) deprecated the
1747 * semantics of the 2292-style pktoptions.
1748 * Since it was not reliable in nature (i.e.,
1749 * applications had to expect the lack of some
1750 * information after all), it would make sense
1751 * to simplify this part by always returning
1752 * empty data.
1753 */
1754 break;
1755 #endif
1756
1757 case IPV6_RECVHOPOPTS:
1758 case IPV6_RECVDSTOPTS:
1759 case IPV6_RECVRTHDRDSTOPTS:
1760 case IPV6_UNICAST_HOPS:
1761 case IPV6_RECVPKTINFO:
1762 case IPV6_RECVHOPLIMIT:
1763 case IPV6_RECVRTHDR:
1764 case IPV6_RECVPATHMTU:
1765
1766 case IPV6_FAITH:
1767 case IPV6_V6ONLY:
1768 case IPV6_PORTRANGE:
1769 case IPV6_RECVTCLASS:
1770 case IPV6_BINDANY:
1771 switch (optname) {
1772
1773 case IPV6_RECVHOPOPTS:
1774 optval = OPTBIT(IN6P_HOPOPTS);
1775 break;
1776
1777 case IPV6_RECVDSTOPTS:
1778 optval = OPTBIT(IN6P_DSTOPTS);
1779 break;
1780
1781 case IPV6_RECVRTHDRDSTOPTS:
1782 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1783 break;
1784
1785 case IPV6_UNICAST_HOPS:
1786 optval = in6p_hops6(inp);
1787 break;
1788
1789 case IPV6_RECVPKTINFO:
1790 optval = OPTBIT(IN6P_PKTINFO);
1791 break;
1792
1793 case IPV6_RECVHOPLIMIT:
1794 optval = OPTBIT(IN6P_HOPLIMIT);
1795 break;
1796
1797 case IPV6_RECVRTHDR:
1798 optval = OPTBIT(IN6P_RTHDR);
1799 break;
1800
1801 case IPV6_RECVPATHMTU:
1802 optval = OPTBIT(IN6P_MTU);
1803 break;
1804
1805 case IPV6_FAITH:
1806 optval = OPTBIT(IN6P_FAITH);
1807 break;
1808
1809 case IPV6_V6ONLY:
1810 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1811 break;
1812
1813 case IPV6_PORTRANGE:
1814 {
1815 int flags;
1816 flags = inp->inp_flags;
1817 if (flags & IN6P_HIGHPORT)
1818 optval = IPV6_PORTRANGE_HIGH;
1819 else if (flags & IN6P_LOWPORT)
1820 optval = IPV6_PORTRANGE_LOW;
1821 else
1822 optval = 0;
1823 break;
1824 }
1825 case IPV6_RECVTCLASS:
1826 optval = OPTBIT(IN6P_TCLASS);
1827 break;
1828
1829 case IPV6_BINDANY:
1830 optval = OPTBIT(IN6P_BINDANY);
1831 break;
1832 }
1833
1834 if (error)
1835 break;
1836 error = sockopt_setint(sopt, optval);
1837 break;
1838
1839 case IPV6_PATHMTU:
1840 {
1841 u_long pmtu = 0;
1842 struct ip6_mtuinfo mtuinfo;
1843 struct route *ro = &inp->inp_route;
1844 struct rtentry *rt;
1845 union {
1846 struct sockaddr dst;
1847 struct sockaddr_in6 dst6;
1848 } u;
1849
1850 if (!(so->so_state & SS_ISCONNECTED))
1851 return (ENOTCONN);
1852 /*
1853 * XXX: we dot not consider the case of source
1854 * routing, or optional information to specify
1855 * the outgoing interface.
1856 */
1857 sockaddr_in6_init(&u.dst6, &in6p_faddr(inp), 0, 0, 0);
1858 rt = rtcache_lookup(ro, &u.dst);
1859 error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
1860 rtcache_unref(rt, ro);
1861 if (error)
1862 break;
1863 if (pmtu > IPV6_MAXPACKET)
1864 pmtu = IPV6_MAXPACKET;
1865
1866 memset(&mtuinfo, 0, sizeof(mtuinfo));
1867 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1868 optdata = (void *)&mtuinfo;
1869 optdatalen = sizeof(mtuinfo);
1870 if (optdatalen > MCLBYTES)
1871 return (EMSGSIZE); /* XXX */
1872 error = sockopt_set(sopt, optdata, optdatalen);
1873 break;
1874 }
1875
1876 #ifdef RFC2292
1877 case IPV6_2292PKTINFO:
1878 case IPV6_2292HOPLIMIT:
1879 case IPV6_2292HOPOPTS:
1880 case IPV6_2292RTHDR:
1881 case IPV6_2292DSTOPTS:
1882 switch (optname) {
1883 case IPV6_2292PKTINFO:
1884 optval = OPTBIT(IN6P_PKTINFO);
1885 break;
1886 case IPV6_2292HOPLIMIT:
1887 optval = OPTBIT(IN6P_HOPLIMIT);
1888 break;
1889 case IPV6_2292HOPOPTS:
1890 optval = OPTBIT(IN6P_HOPOPTS);
1891 break;
1892 case IPV6_2292RTHDR:
1893 optval = OPTBIT(IN6P_RTHDR);
1894 break;
1895 case IPV6_2292DSTOPTS:
1896 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1897 break;
1898 }
1899 error = sockopt_setint(sopt, optval);
1900 break;
1901 #endif
1902 case IPV6_PKTINFO:
1903 case IPV6_HOPOPTS:
1904 case IPV6_RTHDR:
1905 case IPV6_DSTOPTS:
1906 case IPV6_RTHDRDSTOPTS:
1907 case IPV6_NEXTHOP:
1908 case IPV6_OTCLASS:
1909 case IPV6_TCLASS:
1910 case IPV6_DONTFRAG:
1911 case IPV6_USE_MIN_MTU:
1912 case IPV6_PREFER_TEMPADDR:
1913 error = ip6_getpcbopt(in6p_outputopts(inp),
1914 optname, sopt);
1915 break;
1916
1917 case IPV6_MULTICAST_IF:
1918 case IPV6_MULTICAST_HOPS:
1919 case IPV6_MULTICAST_LOOP:
1920 case IPV6_JOIN_GROUP:
1921 case IPV6_LEAVE_GROUP:
1922 error = ip6_getmoptions(sopt, inp);
1923 break;
1924
1925 case IPV6_PORTALGO:
1926 optval = inp->inp_portalgo;
1927 error = sockopt_setint(sopt, optval);
1928 break;
1929
1930 #if defined(IPSEC)
1931 case IPV6_IPSEC_POLICY:
1932 if (ipsec_used) {
1933 struct mbuf *m = NULL;
1934
1935 /*
1936 * XXX: this will return EINVAL as sopt is
1937 * empty
1938 */
1939 error = ipsec_get_policy(inp, sopt->sopt_data,
1940 sopt->sopt_size, &m);
1941 if (!error)
1942 error = sockopt_setmbuf(sopt, m);
1943 } else
1944 error = ENOPROTOOPT;
1945 break;
1946 #endif /* IPSEC */
1947
1948 default:
1949 error = ENOPROTOOPT;
1950 break;
1951 }
1952 break;
1953 }
1954 return (error);
1955 }
1956
1957 int
1958 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1959 {
1960 int error = 0, optval;
1961 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1962 struct inpcb *inp = sotoinpcb(so);
1963 int level, optname;
1964
1965 KASSERT(sopt != NULL);
1966
1967 level = sopt->sopt_level;
1968 optname = sopt->sopt_name;
1969
1970 if (level != IPPROTO_IPV6) {
1971 return ENOPROTOOPT;
1972 }
1973
1974 switch (optname) {
1975 case IPV6_CHECKSUM:
1976 /*
1977 * For ICMPv6 sockets, no modification allowed for checksum
1978 * offset, permit "no change" values to help existing apps.
1979 *
1980 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
1981 * for an ICMPv6 socket will fail." The current
1982 * behavior does not meet RFC3542.
1983 */
1984 switch (op) {
1985 case PRCO_SETOPT:
1986 error = sockopt_getint(sopt, &optval);
1987 if (error)
1988 break;
1989 if (optval < -1 ||
1990 (optval > 0 && (optval % 2) != 0)) {
1991 /*
1992 * The API assumes non-negative even offset
1993 * values or -1 as a special value.
1994 */
1995 error = EINVAL;
1996 } else if (so->so_proto->pr_protocol ==
1997 IPPROTO_ICMPV6) {
1998 if (optval != icmp6off)
1999 error = EINVAL;
2000 } else
2001 in6p_cksum(inp) = optval;
2002 break;
2003
2004 case PRCO_GETOPT:
2005 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2006 optval = icmp6off;
2007 else
2008 optval = in6p_cksum(inp);
2009
2010 error = sockopt_setint(sopt, optval);
2011 break;
2012
2013 default:
2014 error = EINVAL;
2015 break;
2016 }
2017 break;
2018
2019 default:
2020 error = ENOPROTOOPT;
2021 break;
2022 }
2023
2024 return (error);
2025 }
2026
2027 #ifdef RFC2292
2028 /*
2029 * Set up IP6 options in pcb for insertion in output packets or
2030 * specifying behavior of outgoing packets.
2031 */
2032 static int
2033 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
2034 struct sockopt *sopt)
2035 {
2036 struct ip6_pktopts *opt = *pktopt;
2037 struct mbuf *m;
2038 int error = 0;
2039
2040 KASSERT(solocked(so));
2041
2042 /* turn off any old options. */
2043 if (opt) {
2044 #ifdef DIAGNOSTIC
2045 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2046 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2047 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2048 printf("ip6_pcbopts: all specified options are cleared.\n");
2049 #endif
2050 ip6_clearpktopts(opt, -1);
2051 } else {
2052 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2053 if (opt == NULL)
2054 return (ENOBUFS);
2055 }
2056 *pktopt = NULL;
2057
2058 if (sopt == NULL || sopt->sopt_size == 0) {
2059 /*
2060 * Only turning off any previous options, regardless of
2061 * whether the opt is just created or given.
2062 */
2063 free(opt, M_IP6OPT);
2064 return (0);
2065 }
2066
2067 /* set options specified by user. */
2068 m = sockopt_getmbuf(sopt);
2069 if (m == NULL) {
2070 free(opt, M_IP6OPT);
2071 return (ENOBUFS);
2072 }
2073
2074 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
2075 so->so_proto->pr_protocol);
2076 m_freem(m);
2077 if (error != 0) {
2078 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2079 free(opt, M_IP6OPT);
2080 return (error);
2081 }
2082 *pktopt = opt;
2083 return (0);
2084 }
2085 #endif
2086
2087 /*
2088 * initialize ip6_pktopts. beware that there are non-zero default values in
2089 * the struct.
2090 */
2091 void
2092 ip6_initpktopts(struct ip6_pktopts *opt)
2093 {
2094
2095 memset(opt, 0, sizeof(*opt));
2096 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2097 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2098 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2099 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2100 }
2101
2102 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2103 static int
2104 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2105 kauth_cred_t cred, int uproto)
2106 {
2107 struct ip6_pktopts *opt;
2108
2109 if (*pktopt == NULL) {
2110 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2111 M_NOWAIT);
2112 if (*pktopt == NULL)
2113 return (ENOBUFS);
2114
2115 ip6_initpktopts(*pktopt);
2116 }
2117 opt = *pktopt;
2118
2119 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2120 }
2121
2122 static int
2123 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2124 {
2125 void *optdata = NULL;
2126 int optdatalen = 0;
2127 struct ip6_ext *ip6e;
2128 int error = 0;
2129 struct in6_pktinfo null_pktinfo;
2130 int deftclass = 0, on;
2131 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2132 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2133
2134 switch (optname) {
2135 case IPV6_PKTINFO:
2136 if (pktopt && pktopt->ip6po_pktinfo)
2137 optdata = (void *)pktopt->ip6po_pktinfo;
2138 else {
2139 /* XXX: we don't have to do this every time... */
2140 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2141 optdata = (void *)&null_pktinfo;
2142 }
2143 optdatalen = sizeof(struct in6_pktinfo);
2144 break;
2145 case IPV6_OTCLASS:
2146 /* XXX */
2147 return (EINVAL);
2148 case IPV6_TCLASS:
2149 if (pktopt && pktopt->ip6po_tclass >= 0)
2150 optdata = (void *)&pktopt->ip6po_tclass;
2151 else
2152 optdata = (void *)&deftclass;
2153 optdatalen = sizeof(int);
2154 break;
2155 case IPV6_HOPOPTS:
2156 if (pktopt && pktopt->ip6po_hbh) {
2157 optdata = (void *)pktopt->ip6po_hbh;
2158 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2159 optdatalen = (ip6e->ip6e_len + 1) << 3;
2160 }
2161 break;
2162 case IPV6_RTHDR:
2163 if (pktopt && pktopt->ip6po_rthdr) {
2164 optdata = (void *)pktopt->ip6po_rthdr;
2165 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2166 optdatalen = (ip6e->ip6e_len + 1) << 3;
2167 }
2168 break;
2169 case IPV6_RTHDRDSTOPTS:
2170 if (pktopt && pktopt->ip6po_dest1) {
2171 optdata = (void *)pktopt->ip6po_dest1;
2172 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2173 optdatalen = (ip6e->ip6e_len + 1) << 3;
2174 }
2175 break;
2176 case IPV6_DSTOPTS:
2177 if (pktopt && pktopt->ip6po_dest2) {
2178 optdata = (void *)pktopt->ip6po_dest2;
2179 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2180 optdatalen = (ip6e->ip6e_len + 1) << 3;
2181 }
2182 break;
2183 case IPV6_NEXTHOP:
2184 if (pktopt && pktopt->ip6po_nexthop) {
2185 optdata = (void *)pktopt->ip6po_nexthop;
2186 optdatalen = pktopt->ip6po_nexthop->sa_len;
2187 }
2188 break;
2189 case IPV6_USE_MIN_MTU:
2190 if (pktopt)
2191 optdata = (void *)&pktopt->ip6po_minmtu;
2192 else
2193 optdata = (void *)&defminmtu;
2194 optdatalen = sizeof(int);
2195 break;
2196 case IPV6_DONTFRAG:
2197 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2198 on = 1;
2199 else
2200 on = 0;
2201 optdata = (void *)&on;
2202 optdatalen = sizeof(on);
2203 break;
2204 case IPV6_PREFER_TEMPADDR:
2205 if (pktopt)
2206 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2207 else
2208 optdata = (void *)&defpreftemp;
2209 optdatalen = sizeof(int);
2210 break;
2211 default: /* should not happen */
2212 #ifdef DIAGNOSTIC
2213 panic("ip6_getpcbopt: unexpected option\n");
2214 #endif
2215 return (ENOPROTOOPT);
2216 }
2217
2218 error = sockopt_set(sopt, optdata, optdatalen);
2219
2220 return (error);
2221 }
2222
2223 void
2224 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2225 {
2226 if (optname == -1 || optname == IPV6_PKTINFO) {
2227 if (pktopt->ip6po_pktinfo)
2228 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2229 pktopt->ip6po_pktinfo = NULL;
2230 }
2231 if (optname == -1 || optname == IPV6_HOPLIMIT)
2232 pktopt->ip6po_hlim = -1;
2233 if (optname == -1 || optname == IPV6_TCLASS)
2234 pktopt->ip6po_tclass = -1;
2235 if (optname == -1 || optname == IPV6_NEXTHOP) {
2236 rtcache_free(&pktopt->ip6po_nextroute);
2237 if (pktopt->ip6po_nexthop)
2238 free(pktopt->ip6po_nexthop, M_IP6OPT);
2239 pktopt->ip6po_nexthop = NULL;
2240 }
2241 if (optname == -1 || optname == IPV6_HOPOPTS) {
2242 if (pktopt->ip6po_hbh)
2243 free(pktopt->ip6po_hbh, M_IP6OPT);
2244 pktopt->ip6po_hbh = NULL;
2245 }
2246 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2247 if (pktopt->ip6po_dest1)
2248 free(pktopt->ip6po_dest1, M_IP6OPT);
2249 pktopt->ip6po_dest1 = NULL;
2250 }
2251 if (optname == -1 || optname == IPV6_RTHDR) {
2252 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2253 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2254 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2255 rtcache_free(&pktopt->ip6po_route);
2256 }
2257 if (optname == -1 || optname == IPV6_DSTOPTS) {
2258 if (pktopt->ip6po_dest2)
2259 free(pktopt->ip6po_dest2, M_IP6OPT);
2260 pktopt->ip6po_dest2 = NULL;
2261 }
2262 }
2263
2264 #define PKTOPT_EXTHDRCPY(type) \
2265 do { \
2266 if (src->type) { \
2267 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2268 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2269 if (dst->type == NULL) \
2270 goto bad; \
2271 memcpy(dst->type, src->type, hlen); \
2272 } \
2273 } while (/*CONSTCOND*/ 0)
2274
2275 static int
2276 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2277 {
2278 dst->ip6po_hlim = src->ip6po_hlim;
2279 dst->ip6po_tclass = src->ip6po_tclass;
2280 dst->ip6po_flags = src->ip6po_flags;
2281 dst->ip6po_minmtu = src->ip6po_minmtu;
2282 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2283 if (src->ip6po_pktinfo) {
2284 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2285 M_IP6OPT, canwait);
2286 if (dst->ip6po_pktinfo == NULL)
2287 goto bad;
2288 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2289 }
2290 if (src->ip6po_nexthop) {
2291 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2292 M_IP6OPT, canwait);
2293 if (dst->ip6po_nexthop == NULL)
2294 goto bad;
2295 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2296 src->ip6po_nexthop->sa_len);
2297 }
2298 PKTOPT_EXTHDRCPY(ip6po_hbh);
2299 PKTOPT_EXTHDRCPY(ip6po_dest1);
2300 PKTOPT_EXTHDRCPY(ip6po_dest2);
2301 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2302 return (0);
2303
2304 bad:
2305 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2306 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2307 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2308 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2309 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2310 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2311
2312 return (ENOBUFS);
2313 }
2314 #undef PKTOPT_EXTHDRCPY
2315
2316 struct ip6_pktopts *
2317 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2318 {
2319 int error;
2320 struct ip6_pktopts *dst;
2321
2322 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2323 if (dst == NULL)
2324 return (NULL);
2325 ip6_initpktopts(dst);
2326
2327 if ((error = copypktopts(dst, src, canwait)) != 0) {
2328 free(dst, M_IP6OPT);
2329 return (NULL);
2330 }
2331
2332 return (dst);
2333 }
2334
2335 void
2336 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2337 {
2338 if (pktopt == NULL)
2339 return;
2340
2341 ip6_clearpktopts(pktopt, -1);
2342
2343 free(pktopt, M_IP6OPT);
2344 }
2345
2346 int
2347 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
2348 struct psref *psref, void *v, size_t l)
2349 {
2350 struct ipv6_mreq mreq;
2351 int error;
2352 struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
2353 struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
2354
2355 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2356 if (error != 0)
2357 return error;
2358
2359 if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
2360 /*
2361 * We use the unspecified address to specify to accept
2362 * all multicast addresses. Only super user is allowed
2363 * to do this.
2364 */
2365 if (kauth_authorize_network(kauth_cred_get(),
2366 KAUTH_NETWORK_IPV6,
2367 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
2368 return EACCES;
2369 } else if (IN6_IS_ADDR_V4MAPPED(ia)) {
2370 // Don't bother if we are not going to use ifp.
2371 if (l == sizeof(*ia)) {
2372 memcpy(v, ia, l);
2373 return 0;
2374 }
2375 } else if (!IN6_IS_ADDR_MULTICAST(ia)) {
2376 return EINVAL;
2377 }
2378
2379 /*
2380 * If no interface was explicitly specified, choose an
2381 * appropriate one according to the given multicast address.
2382 */
2383 if (mreq.ipv6mr_interface == 0) {
2384 struct rtentry *rt;
2385 union {
2386 struct sockaddr dst;
2387 struct sockaddr_in dst4;
2388 struct sockaddr_in6 dst6;
2389 } u;
2390 struct route ro;
2391
2392 /*
2393 * Look up the routing table for the
2394 * address, and choose the outgoing interface.
2395 * XXX: is it a good approach?
2396 */
2397 memset(&ro, 0, sizeof(ro));
2398 if (IN6_IS_ADDR_V4MAPPED(ia))
2399 sockaddr_in_init(&u.dst4, ia4, 0);
2400 else
2401 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
2402 error = rtcache_setdst(&ro, &u.dst);
2403 if (error != 0)
2404 return error;
2405 rt = rtcache_init(&ro);
2406 *ifp = rt != NULL ?
2407 if_get_byindex(rt->rt_ifp->if_index, psref) : NULL;
2408 rtcache_unref(rt, &ro);
2409 rtcache_free(&ro);
2410 } else {
2411 /*
2412 * If the interface is specified, validate it.
2413 */
2414 *ifp = if_get_byindex(mreq.ipv6mr_interface, psref);
2415 if (*ifp == NULL)
2416 return ENXIO; /* XXX EINVAL? */
2417 }
2418 if (sizeof(*ia) == l)
2419 memcpy(v, ia, l);
2420 else
2421 memcpy(v, ia4, l);
2422 return 0;
2423 }
2424
2425 /*
2426 * Set the IP6 multicast options in response to user setsockopt().
2427 */
2428 static int
2429 ip6_setmoptions(const struct sockopt *sopt, struct inpcb *inp)
2430 {
2431 int error = 0;
2432 u_int loop, ifindex;
2433 struct ipv6_mreq mreq;
2434 struct in6_addr ia;
2435 struct ifnet *ifp;
2436 struct ip6_moptions *im6o = in6p_moptions(inp);
2437 struct in6_multi_mship *imm;
2438
2439 KASSERT(inp_locked(inp));
2440
2441 if (im6o == NULL) {
2442 /*
2443 * No multicast option buffer attached to the pcb;
2444 * allocate one and initialize to default values.
2445 */
2446 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2447 if (im6o == NULL)
2448 return (ENOBUFS);
2449 in6p_moptions(inp) = im6o;
2450 im6o->im6o_multicast_if_index = 0;
2451 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2452 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2453 LIST_INIT(&im6o->im6o_memberships);
2454 }
2455
2456 switch (sopt->sopt_name) {
2457
2458 case IPV6_MULTICAST_IF: {
2459 int s;
2460 /*
2461 * Select the interface for outgoing multicast packets.
2462 */
2463 error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2464 if (error != 0)
2465 break;
2466
2467 s = pserialize_read_enter();
2468 if (ifindex != 0) {
2469 if ((ifp = if_byindex(ifindex)) == NULL) {
2470 pserialize_read_exit(s);
2471 error = ENXIO; /* XXX EINVAL? */
2472 break;
2473 }
2474 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2475 pserialize_read_exit(s);
2476 error = EADDRNOTAVAIL;
2477 break;
2478 }
2479 } else
2480 ifp = NULL;
2481 im6o->im6o_multicast_if_index = if_get_index(ifp);
2482 pserialize_read_exit(s);
2483 break;
2484 }
2485
2486 case IPV6_MULTICAST_HOPS:
2487 {
2488 /*
2489 * Set the IP6 hoplimit for outgoing multicast packets.
2490 */
2491 int optval;
2492
2493 error = sockopt_getint(sopt, &optval);
2494 if (error != 0)
2495 break;
2496
2497 if (optval < -1 || optval >= 256)
2498 error = EINVAL;
2499 else if (optval == -1)
2500 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2501 else
2502 im6o->im6o_multicast_hlim = optval;
2503 break;
2504 }
2505
2506 case IPV6_MULTICAST_LOOP:
2507 /*
2508 * Set the loopback flag for outgoing multicast packets.
2509 * Must be zero or one.
2510 */
2511 error = sockopt_get(sopt, &loop, sizeof(loop));
2512 if (error != 0)
2513 break;
2514 if (loop > 1) {
2515 error = EINVAL;
2516 break;
2517 }
2518 im6o->im6o_multicast_loop = loop;
2519 break;
2520
2521 case IPV6_JOIN_GROUP: {
2522 int bound;
2523 struct psref psref;
2524 /*
2525 * Add a multicast group membership.
2526 * Group must be a valid IP6 multicast address.
2527 */
2528 bound = curlwp_bind();
2529 ifp = NULL;
2530 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
2531 if (error != 0) {
2532 KASSERT(ifp == NULL);
2533 curlwp_bindx(bound);
2534 return error;
2535 }
2536
2537 if (IN6_IS_ADDR_V4MAPPED(&ia)) {
2538 error = ip_setmoptions(&inp->inp_moptions, sopt);
2539 goto put_break;
2540 }
2541 /*
2542 * See if we found an interface, and confirm that it
2543 * supports multicast
2544 */
2545 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2546 error = EADDRNOTAVAIL;
2547 goto put_break;
2548 }
2549
2550 if (in6_setscope(&ia, ifp, NULL)) {
2551 error = EADDRNOTAVAIL; /* XXX: should not happen */
2552 goto put_break;
2553 }
2554
2555 /*
2556 * See if the membership already exists.
2557 */
2558 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2559 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2560 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2561 &ia))
2562 goto put_break;
2563 }
2564 if (imm != NULL) {
2565 error = EADDRINUSE;
2566 goto put_break;
2567 }
2568 /*
2569 * Everything looks good; add a new record to the multicast
2570 * address list for the given interface.
2571 */
2572 imm = in6_joingroup(ifp, &ia, &error, 0);
2573 if (imm == NULL)
2574 goto put_break;
2575 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2576 put_break:
2577 if_put(ifp, &psref);
2578 curlwp_bindx(bound);
2579 break;
2580 }
2581
2582 case IPV6_LEAVE_GROUP: {
2583 /*
2584 * Drop a multicast group membership.
2585 * Group must be a valid IP6 multicast address.
2586 */
2587 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2588 if (error != 0)
2589 break;
2590
2591 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
2592 error = ip_setmoptions(&inp->inp_moptions, sopt);
2593 break;
2594 }
2595 /*
2596 * If an interface address was specified, get a pointer
2597 * to its ifnet structure.
2598 */
2599 if (mreq.ipv6mr_interface != 0) {
2600 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
2601 error = ENXIO; /* XXX EINVAL? */
2602 break;
2603 }
2604 } else
2605 ifp = NULL;
2606
2607 /* Fill in the scope zone ID */
2608 if (ifp) {
2609 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2610 /* XXX: should not happen */
2611 error = EADDRNOTAVAIL;
2612 break;
2613 }
2614 } else if (mreq.ipv6mr_interface != 0) {
2615 /*
2616 * XXX: This case would happens when the (positive)
2617 * index is in the valid range, but the corresponding
2618 * interface has been detached dynamically. The above
2619 * check probably avoids such case to happen here, but
2620 * we check it explicitly for safety.
2621 */
2622 error = EADDRNOTAVAIL;
2623 break;
2624 } else { /* ipv6mr_interface == 0 */
2625 struct sockaddr_in6 sa6_mc;
2626
2627 /*
2628 * The API spec says as follows:
2629 * If the interface index is specified as 0, the
2630 * system may choose a multicast group membership to
2631 * drop by matching the multicast address only.
2632 * On the other hand, we cannot disambiguate the scope
2633 * zone unless an interface is provided. Thus, we
2634 * check if there's ambiguity with the default scope
2635 * zone as the last resort.
2636 */
2637 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2638 0, 0, 0);
2639 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2640 if (error != 0)
2641 break;
2642 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2643 }
2644
2645 /*
2646 * Find the membership in the membership list.
2647 */
2648 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2649 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2650 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2651 &mreq.ipv6mr_multiaddr))
2652 break;
2653 }
2654 if (imm == NULL) {
2655 /* Unable to resolve interface */
2656 error = EADDRNOTAVAIL;
2657 break;
2658 }
2659 /*
2660 * Give up the multicast address record to which the
2661 * membership points.
2662 */
2663 LIST_REMOVE(imm, i6mm_chain);
2664 in6_leavegroup(imm);
2665 /* in6m_ifp should not leave thanks to inp_lock */
2666 break;
2667 }
2668
2669 default:
2670 error = EOPNOTSUPP;
2671 break;
2672 }
2673
2674 /*
2675 * If all options have default values, no need to keep the mbuf.
2676 */
2677 if (im6o->im6o_multicast_if_index == 0 &&
2678 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2679 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2680 LIST_EMPTY(&im6o->im6o_memberships)) {
2681 free(in6p_moptions(inp), M_IPMOPTS);
2682 in6p_moptions(inp) = NULL;
2683 }
2684
2685 return (error);
2686 }
2687
2688 /*
2689 * Return the IP6 multicast options in response to user getsockopt().
2690 */
2691 static int
2692 ip6_getmoptions(struct sockopt *sopt, struct inpcb *inp)
2693 {
2694 u_int optval;
2695 int error;
2696 struct ip6_moptions *im6o = in6p_moptions(inp);
2697
2698 switch (sopt->sopt_name) {
2699 case IPV6_MULTICAST_IF:
2700 if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
2701 optval = 0;
2702 else
2703 optval = im6o->im6o_multicast_if_index;
2704
2705 error = sockopt_set(sopt, &optval, sizeof(optval));
2706 break;
2707
2708 case IPV6_MULTICAST_HOPS:
2709 if (im6o == NULL)
2710 optval = ip6_defmcasthlim;
2711 else
2712 optval = im6o->im6o_multicast_hlim;
2713
2714 error = sockopt_set(sopt, &optval, sizeof(optval));
2715 break;
2716
2717 case IPV6_MULTICAST_LOOP:
2718 if (im6o == NULL)
2719 optval = IPV6_DEFAULT_MULTICAST_LOOP;
2720 else
2721 optval = im6o->im6o_multicast_loop;
2722
2723 error = sockopt_set(sopt, &optval, sizeof(optval));
2724 break;
2725
2726 default:
2727 error = EOPNOTSUPP;
2728 }
2729
2730 return (error);
2731 }
2732
2733 /*
2734 * Discard the IP6 multicast options.
2735 */
2736 void
2737 ip6_freemoptions(struct ip6_moptions *im6o)
2738 {
2739 struct in6_multi_mship *imm, *nimm;
2740
2741 if (im6o == NULL)
2742 return;
2743
2744 /* The owner of im6o (inp) should be protected by solock */
2745 LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) {
2746 LIST_REMOVE(imm, i6mm_chain);
2747 in6_leavegroup(imm);
2748 }
2749 free(im6o, M_IPMOPTS);
2750 }
2751
2752 /*
2753 * Set IPv6 outgoing packet options based on advanced API.
2754 */
2755 int
2756 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2757 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2758 {
2759 struct cmsghdr *cm = 0;
2760
2761 if (control == NULL || opt == NULL)
2762 return (EINVAL);
2763
2764 ip6_initpktopts(opt);
2765 if (stickyopt) {
2766 int error;
2767
2768 /*
2769 * If stickyopt is provided, make a local copy of the options
2770 * for this particular packet, then override them by ancillary
2771 * objects.
2772 * XXX: copypktopts() does not copy the cached route to a next
2773 * hop (if any). This is not very good in terms of efficiency,
2774 * but we can allow this since this option should be rarely
2775 * used.
2776 */
2777 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2778 return (error);
2779 }
2780
2781 /*
2782 * XXX: Currently, we assume all the optional information is stored
2783 * in a single mbuf.
2784 */
2785 if (control->m_next)
2786 return (EINVAL);
2787
2788 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2789 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2790 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2791 int error;
2792
2793 if (control->m_len < CMSG_LEN(0))
2794 return (EINVAL);
2795
2796 cm = mtod(control, struct cmsghdr *);
2797 if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > control->m_len)
2798 return (EINVAL);
2799 if (cm->cmsg_level != IPPROTO_IPV6)
2800 continue;
2801
2802 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2803 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2804 if (error)
2805 return (error);
2806 }
2807
2808 return (0);
2809 }
2810
2811 /*
2812 * Set a particular packet option, as a sticky option or an ancillary data
2813 * item. "len" can be 0 only when it's a sticky option.
2814 * We have 4 cases of combination of "sticky" and "cmsg":
2815 * "sticky=0, cmsg=0": impossible
2816 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2817 * "sticky=1, cmsg=0": RFC3542 socket option
2818 * "sticky=1, cmsg=1": RFC2292 socket option
2819 */
2820 static int
2821 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2822 kauth_cred_t cred, int sticky, int cmsg, int uproto)
2823 {
2824 int minmtupolicy;
2825 int error;
2826
2827 if (!sticky && !cmsg) {
2828 #ifdef DIAGNOSTIC
2829 printf("ip6_setpktopt: impossible case\n");
2830 #endif
2831 return (EINVAL);
2832 }
2833
2834 /*
2835 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2836 * not be specified in the context of RFC3542. Conversely,
2837 * RFC3542 types should not be specified in the context of RFC2292.
2838 */
2839 if (!cmsg) {
2840 switch (optname) {
2841 case IPV6_2292PKTINFO:
2842 case IPV6_2292HOPLIMIT:
2843 case IPV6_2292NEXTHOP:
2844 case IPV6_2292HOPOPTS:
2845 case IPV6_2292DSTOPTS:
2846 case IPV6_2292RTHDR:
2847 case IPV6_2292PKTOPTIONS:
2848 return (ENOPROTOOPT);
2849 }
2850 }
2851 if (sticky && cmsg) {
2852 switch (optname) {
2853 case IPV6_PKTINFO:
2854 case IPV6_HOPLIMIT:
2855 case IPV6_NEXTHOP:
2856 case IPV6_HOPOPTS:
2857 case IPV6_DSTOPTS:
2858 case IPV6_RTHDRDSTOPTS:
2859 case IPV6_RTHDR:
2860 case IPV6_USE_MIN_MTU:
2861 case IPV6_DONTFRAG:
2862 case IPV6_OTCLASS:
2863 case IPV6_TCLASS:
2864 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
2865 return (ENOPROTOOPT);
2866 }
2867 }
2868
2869 switch (optname) {
2870 #ifdef RFC2292
2871 case IPV6_2292PKTINFO:
2872 #endif
2873 case IPV6_PKTINFO:
2874 {
2875 struct in6_pktinfo *pktinfo;
2876
2877 if (len != sizeof(struct in6_pktinfo))
2878 return (EINVAL);
2879
2880 pktinfo = (struct in6_pktinfo *)buf;
2881
2882 /*
2883 * An application can clear any sticky IPV6_PKTINFO option by
2884 * doing a "regular" setsockopt with ipi6_addr being
2885 * in6addr_any and ipi6_ifindex being zero.
2886 * [RFC 3542, Section 6]
2887 */
2888 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2889 pktinfo->ipi6_ifindex == 0 &&
2890 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2891 ip6_clearpktopts(opt, optname);
2892 break;
2893 }
2894
2895 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2896 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2897 return (EINVAL);
2898 }
2899
2900 /* Validate the interface index if specified. */
2901 if (pktinfo->ipi6_ifindex) {
2902 struct ifnet *ifp;
2903 int s = pserialize_read_enter();
2904 ifp = if_byindex(pktinfo->ipi6_ifindex);
2905 if (ifp == NULL) {
2906 pserialize_read_exit(s);
2907 return ENXIO;
2908 }
2909 pserialize_read_exit(s);
2910 }
2911
2912 /*
2913 * We store the address anyway, and let in6_selectsrc()
2914 * validate the specified address. This is because ipi6_addr
2915 * may not have enough information about its scope zone, and
2916 * we may need additional information (such as outgoing
2917 * interface or the scope zone of a destination address) to
2918 * disambiguate the scope.
2919 * XXX: the delay of the validation may confuse the
2920 * application when it is used as a sticky option.
2921 */
2922 if (opt->ip6po_pktinfo == NULL) {
2923 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2924 M_IP6OPT, M_NOWAIT);
2925 if (opt->ip6po_pktinfo == NULL)
2926 return (ENOBUFS);
2927 }
2928 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2929 break;
2930 }
2931
2932 #ifdef RFC2292
2933 case IPV6_2292HOPLIMIT:
2934 #endif
2935 case IPV6_HOPLIMIT:
2936 {
2937 int *hlimp;
2938
2939 /*
2940 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2941 * to simplify the ordering among hoplimit options.
2942 */
2943 if (optname == IPV6_HOPLIMIT && sticky)
2944 return (ENOPROTOOPT);
2945
2946 if (len != sizeof(int))
2947 return (EINVAL);
2948 hlimp = (int *)buf;
2949 if (*hlimp < -1 || *hlimp > 255)
2950 return (EINVAL);
2951
2952 opt->ip6po_hlim = *hlimp;
2953 break;
2954 }
2955
2956 case IPV6_OTCLASS:
2957 if (len != sizeof(u_int8_t))
2958 return (EINVAL);
2959
2960 opt->ip6po_tclass = *(u_int8_t *)buf;
2961 break;
2962
2963 case IPV6_TCLASS:
2964 {
2965 int tclass;
2966
2967 if (len != sizeof(int))
2968 return (EINVAL);
2969 tclass = *(int *)buf;
2970 if (tclass < -1 || tclass > 255)
2971 return (EINVAL);
2972
2973 opt->ip6po_tclass = tclass;
2974 break;
2975 }
2976
2977 #ifdef RFC2292
2978 case IPV6_2292NEXTHOP:
2979 #endif
2980 case IPV6_NEXTHOP:
2981 error = kauth_authorize_network(cred,
2982 KAUTH_NETWORK_IPV6,
2983 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2984 if (error)
2985 return (error);
2986
2987 if (len == 0) { /* just remove the option */
2988 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2989 break;
2990 }
2991
2992 /* check if cmsg_len is large enough for sa_len */
2993 if (len < sizeof(struct sockaddr) || len < *buf)
2994 return (EINVAL);
2995
2996 switch (((struct sockaddr *)buf)->sa_family) {
2997 case AF_INET6:
2998 {
2999 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3000
3001 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3002 return (EINVAL);
3003
3004 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3005 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3006 return (EINVAL);
3007 }
3008 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
3009 != 0) {
3010 return (error);
3011 }
3012 break;
3013 }
3014 case AF_LINK: /* eventually be supported? */
3015 default:
3016 return (EAFNOSUPPORT);
3017 }
3018
3019 /* turn off the previous option, then set the new option. */
3020 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3021 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3022 if (opt->ip6po_nexthop == NULL)
3023 return (ENOBUFS);
3024 memcpy(opt->ip6po_nexthop, buf, *buf);
3025 break;
3026
3027 #ifdef RFC2292
3028 case IPV6_2292HOPOPTS:
3029 #endif
3030 case IPV6_HOPOPTS:
3031 {
3032 struct ip6_hbh *hbh;
3033 int hbhlen;
3034
3035 /*
3036 * XXX: We don't allow a non-privileged user to set ANY HbH
3037 * options, since per-option restriction has too much
3038 * overhead.
3039 */
3040 error = kauth_authorize_network(cred,
3041 KAUTH_NETWORK_IPV6,
3042 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3043 if (error)
3044 return (error);
3045
3046 if (len == 0) {
3047 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3048 break; /* just remove the option */
3049 }
3050
3051 /* message length validation */
3052 if (len < sizeof(struct ip6_hbh))
3053 return (EINVAL);
3054 hbh = (struct ip6_hbh *)buf;
3055 hbhlen = (hbh->ip6h_len + 1) << 3;
3056 if (len != hbhlen)
3057 return (EINVAL);
3058
3059 /* turn off the previous option, then set the new option. */
3060 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3061 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3062 if (opt->ip6po_hbh == NULL)
3063 return (ENOBUFS);
3064 memcpy(opt->ip6po_hbh, hbh, hbhlen);
3065
3066 break;
3067 }
3068
3069 #ifdef RFC2292
3070 case IPV6_2292DSTOPTS:
3071 #endif
3072 case IPV6_DSTOPTS:
3073 case IPV6_RTHDRDSTOPTS:
3074 {
3075 struct ip6_dest *dest, **newdest = NULL;
3076 int destlen;
3077
3078 /* XXX: see the comment for IPV6_HOPOPTS */
3079 error = kauth_authorize_network(cred,
3080 KAUTH_NETWORK_IPV6,
3081 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3082 if (error)
3083 return (error);
3084
3085 if (len == 0) {
3086 ip6_clearpktopts(opt, optname);
3087 break; /* just remove the option */
3088 }
3089
3090 /* message length validation */
3091 if (len < sizeof(struct ip6_dest))
3092 return (EINVAL);
3093 dest = (struct ip6_dest *)buf;
3094 destlen = (dest->ip6d_len + 1) << 3;
3095 if (len != destlen)
3096 return (EINVAL);
3097 /*
3098 * Determine the position that the destination options header
3099 * should be inserted; before or after the routing header.
3100 */
3101 switch (optname) {
3102 case IPV6_2292DSTOPTS:
3103 /*
3104 * The old advanced API is ambiguous on this point.
3105 * Our approach is to determine the position based
3106 * according to the existence of a routing header.
3107 * Note, however, that this depends on the order of the
3108 * extension headers in the ancillary data; the 1st
3109 * part of the destination options header must appear
3110 * before the routing header in the ancillary data,
3111 * too.
3112 * RFC3542 solved the ambiguity by introducing
3113 * separate ancillary data or option types.
3114 */
3115 if (opt->ip6po_rthdr == NULL)
3116 newdest = &opt->ip6po_dest1;
3117 else
3118 newdest = &opt->ip6po_dest2;
3119 break;
3120 case IPV6_RTHDRDSTOPTS:
3121 newdest = &opt->ip6po_dest1;
3122 break;
3123 case IPV6_DSTOPTS:
3124 newdest = &opt->ip6po_dest2;
3125 break;
3126 }
3127
3128 /* turn off the previous option, then set the new option. */
3129 ip6_clearpktopts(opt, optname);
3130 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3131 if (*newdest == NULL)
3132 return (ENOBUFS);
3133 memcpy(*newdest, dest, destlen);
3134
3135 break;
3136 }
3137
3138 #ifdef RFC2292
3139 case IPV6_2292RTHDR:
3140 #endif
3141 case IPV6_RTHDR:
3142 {
3143 struct ip6_rthdr *rth;
3144 int rthlen;
3145
3146 if (len == 0) {
3147 ip6_clearpktopts(opt, IPV6_RTHDR);
3148 break; /* just remove the option */
3149 }
3150
3151 /* message length validation */
3152 if (len < sizeof(struct ip6_rthdr))
3153 return (EINVAL);
3154 rth = (struct ip6_rthdr *)buf;
3155 rthlen = (rth->ip6r_len + 1) << 3;
3156 if (len != rthlen)
3157 return (EINVAL);
3158 switch (rth->ip6r_type) {
3159 case IPV6_RTHDR_TYPE_0:
3160 /* Dropped, RFC5095. */
3161 default:
3162 return (EINVAL); /* not supported */
3163 }
3164 /* turn off the previous option */
3165 ip6_clearpktopts(opt, IPV6_RTHDR);
3166 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3167 if (opt->ip6po_rthdr == NULL)
3168 return (ENOBUFS);
3169 memcpy(opt->ip6po_rthdr, rth, rthlen);
3170 break;
3171 }
3172
3173 case IPV6_USE_MIN_MTU:
3174 if (len != sizeof(int))
3175 return (EINVAL);
3176 minmtupolicy = *(int *)buf;
3177 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3178 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3179 minmtupolicy != IP6PO_MINMTU_ALL) {
3180 return (EINVAL);
3181 }
3182 opt->ip6po_minmtu = minmtupolicy;
3183 break;
3184
3185 case IPV6_DONTFRAG:
3186 if (len != sizeof(int))
3187 return (EINVAL);
3188
3189 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3190 /*
3191 * we ignore this option for TCP sockets.
3192 * (RFC3542 leaves this case unspecified.)
3193 */
3194 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3195 } else
3196 opt->ip6po_flags |= IP6PO_DONTFRAG;
3197 break;
3198
3199 case IPV6_PREFER_TEMPADDR:
3200 {
3201 int preftemp;
3202
3203 if (len != sizeof(int))
3204 return (EINVAL);
3205 preftemp = *(int *)buf;
3206 switch (preftemp) {
3207 case IP6PO_TEMPADDR_SYSTEM:
3208 case IP6PO_TEMPADDR_NOTPREFER:
3209 case IP6PO_TEMPADDR_PREFER:
3210 break;
3211 default:
3212 return (EINVAL);
3213 }
3214 opt->ip6po_prefer_tempaddr = preftemp;
3215 break;
3216 }
3217
3218 default:
3219 return (ENOPROTOOPT);
3220 } /* end of switch */
3221
3222 return (0);
3223 }
3224
3225 /*
3226 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3227 * packet to the input queue of a specified interface. Note that this
3228 * calls the output routine of the loopback "driver", but with an interface
3229 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3230 */
3231 void
3232 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3233 const struct sockaddr_in6 *dst)
3234 {
3235 struct mbuf *copym;
3236 struct ip6_hdr *ip6;
3237
3238 copym = m_copypacket(m, M_DONTWAIT);
3239 if (copym == NULL)
3240 return;
3241
3242 /*
3243 * Make sure to deep-copy IPv6 header portion in case the data
3244 * is in an mbuf cluster, so that we can safely override the IPv6
3245 * header portion later.
3246 */
3247 if ((copym->m_flags & M_EXT) != 0 ||
3248 copym->m_len < sizeof(struct ip6_hdr)) {
3249 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3250 if (copym == NULL)
3251 return;
3252 }
3253
3254 #ifdef DIAGNOSTIC
3255 if (copym->m_len < sizeof(*ip6)) {
3256 m_freem(copym);
3257 return;
3258 }
3259 #endif
3260
3261 ip6 = mtod(copym, struct ip6_hdr *);
3262 /*
3263 * clear embedded scope identifiers if necessary.
3264 * in6_clearscope will touch the addresses only when necessary.
3265 */
3266 in6_clearscope(&ip6->ip6_src);
3267 in6_clearscope(&ip6->ip6_dst);
3268
3269 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3270 }
3271
3272 /*
3273 * Chop IPv6 header off from the payload.
3274 */
3275 static int
3276 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3277 {
3278 struct mbuf *mh;
3279 struct ip6_hdr *ip6;
3280
3281 ip6 = mtod(m, struct ip6_hdr *);
3282 if (m->m_len > sizeof(*ip6)) {
3283 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3284 if (mh == NULL) {
3285 m_freem(m);
3286 return ENOBUFS;
3287 }
3288 m_move_pkthdr(mh, m);
3289 m_align(mh, sizeof(*ip6));
3290 m->m_len -= sizeof(*ip6);
3291 m->m_data += sizeof(*ip6);
3292 mh->m_next = m;
3293 mh->m_len = sizeof(*ip6);
3294 memcpy(mtod(mh, void *), (void *)ip6, sizeof(*ip6));
3295 m = mh;
3296 }
3297 exthdrs->ip6e_ip6 = m;
3298 return 0;
3299 }
3300
3301 /*
3302 * Compute IPv6 extension header length.
3303 */
3304 int
3305 ip6_optlen(struct inpcb *inp)
3306 {
3307 int len;
3308
3309 if (!in6p_outputopts(inp))
3310 return 0;
3311
3312 len = 0;
3313 #define elen(x) \
3314 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3315
3316 len += elen(in6p_outputopts(inp)->ip6po_hbh);
3317 len += elen(in6p_outputopts(inp)->ip6po_dest1);
3318 len += elen(in6p_outputopts(inp)->ip6po_rthdr);
3319 len += elen(in6p_outputopts(inp)->ip6po_dest2);
3320 return len;
3321 #undef elen
3322 }
3323
3324 /*
3325 * Ensure sending address is valid.
3326 * Returns 0 on success, -1 if an error should be sent back or 1
3327 * if the packet could be dropped without error (protocol dependent).
3328 */
3329 static int
3330 ip6_ifaddrvalid(const struct in6_addr *src, const struct in6_addr *dst)
3331 {
3332 struct sockaddr_in6 sin6;
3333 int s, error;
3334 struct ifaddr *ifa;
3335 struct in6_ifaddr *ia6;
3336
3337 if (IN6_IS_ADDR_UNSPECIFIED(src))
3338 return 0;
3339
3340 memset(&sin6, 0, sizeof(sin6));
3341 sin6.sin6_family = AF_INET6;
3342 sin6.sin6_len = sizeof(sin6);
3343 sin6.sin6_addr = *src;
3344
3345 s = pserialize_read_enter();
3346 ifa = ifa_ifwithaddr(sin6tosa(&sin6));
3347 if ((ia6 = ifatoia6(ifa)) == NULL ||
3348 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
3349 error = -1;
3350 else if (ia6->ia6_flags & IN6_IFF_TENTATIVE)
3351 error = 1;
3352 else if (ia6->ia6_flags & IN6_IFF_DETACHED &&
3353 (sin6.sin6_addr = *dst, ifa_ifwithaddr(sin6tosa(&sin6)) == NULL))
3354 /* Allow internal traffic to DETACHED addresses */
3355 error = 1;
3356 else
3357 error = 0;
3358 pserialize_read_exit(s);
3359
3360 return error;
3361 }
3362