ip6_output.c revision 1.231.2.2 1 /* $NetBSD: ip6_output.c,v 1.231.2.2 2023/08/04 14:28:01 martin Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.231.2.2 2023/08/04 14:28:01 martin Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_inet.h"
69 #include "opt_inet6.h"
70 #include "opt_ipsec.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/errno.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/syslog.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kauth.h>
83
84 #include <net/if.h>
85 #include <net/route.h>
86 #include <net/pfil.h>
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/ip_var.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet/portalgo.h>
95 #include <netinet6/in6_offload.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/ip6_private.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/nd6.h>
100 #include <netinet6/ip6protosw.h>
101 #include <netinet6/scope6_var.h>
102
103 #ifdef IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/ipsec6.h>
106 #include <netipsec/key.h>
107 #endif
108
109 extern pfil_head_t *inet6_pfil_hook; /* XXX */
110
111 struct ip6_exthdrs {
112 struct mbuf *ip6e_ip6;
113 struct mbuf *ip6e_hbh;
114 struct mbuf *ip6e_dest1;
115 struct mbuf *ip6e_rthdr;
116 struct mbuf *ip6e_dest2;
117 };
118
119 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
120 kauth_cred_t, int);
121 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
122 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
123 int, int, int);
124 static int ip6_setmoptions(const struct sockopt *, struct inpcb *);
125 static int ip6_getmoptions(struct sockopt *, struct inpcb *);
126 static int ip6_copyexthdr(struct mbuf **, void *, int);
127 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
128 struct ip6_frag **);
129 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
130 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
131 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
132 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
133 static int ip6_ifaddrvalid(const struct in6_addr *, const struct in6_addr *);
134 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
135
136 #ifdef RFC2292
137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
138 #endif
139
140 static int
141 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
142 {
143 int error = 0;
144
145 switch (rh->ip6r_type) {
146 case IPV6_RTHDR_TYPE_0:
147 /* Dropped, RFC5095. */
148 default: /* is it possible? */
149 error = EINVAL;
150 }
151
152 return error;
153 }
154
155 /*
156 * Send an IP packet to a host.
157 */
158 int
159 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp,
160 struct mbuf * const m, const struct sockaddr_in6 * const dst,
161 const struct rtentry *rt)
162 {
163 int error = 0;
164
165 if (rt != NULL) {
166 error = rt_check_reject_route(rt, ifp);
167 if (error != 0) {
168 IP6_STATINC(IP6_STAT_RTREJECT);
169 m_freem(m);
170 return error;
171 }
172 }
173
174 /* discard the packet if IPv6 operation is disabled on the interface */
175 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
176 m_freem(m);
177 return ENETDOWN; /* better error? */
178 }
179
180 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
181 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
182 else
183 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
184 return error;
185 }
186
187 /*
188 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
189 * header (with pri, len, nxt, hlim, src, dst).
190 *
191 * This function may modify ver and hlim only. The mbuf chain containing the
192 * packet will be freed. The mbuf opt, if present, will not be freed.
193 *
194 * Type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
195 * nd_ifinfo.linkmtu is u_int32_t. So we use u_long to hold largest one,
196 * which is rt_rmx.rmx_mtu.
197 */
198 int
199 ip6_output(
200 struct mbuf *m0,
201 struct ip6_pktopts *opt,
202 struct route *ro,
203 int flags,
204 struct ip6_moptions *im6o,
205 struct inpcb *inp,
206 struct ifnet **ifpp /* XXX: just for statistics */
207 )
208 {
209 struct ip6_hdr *ip6, *mhip6;
210 struct ifnet *ifp = NULL, *origifp = NULL;
211 struct mbuf *m = m0;
212 int tlen, len, off;
213 bool tso;
214 struct route ip6route;
215 struct rtentry *rt = NULL, *rt_pmtu;
216 const struct sockaddr_in6 *dst;
217 struct sockaddr_in6 src_sa, dst_sa;
218 int error = 0;
219 struct in6_ifaddr *ia = NULL;
220 u_long mtu;
221 int alwaysfrag, dontfrag;
222 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
223 struct ip6_exthdrs exthdrs;
224 struct in6_addr finaldst, src0, dst0;
225 u_int32_t zone;
226 struct route *ro_pmtu = NULL;
227 int hdrsplit = 0;
228 int needipsec = 0;
229 #ifdef IPSEC
230 struct secpolicy *sp = NULL;
231 #endif
232 struct psref psref, psref_ia;
233 int bound = curlwp_bind();
234 bool release_psref_ia = false;
235
236 #ifdef DIAGNOSTIC
237 if ((m->m_flags & M_PKTHDR) == 0)
238 panic("ip6_output: no HDR");
239 if ((m->m_pkthdr.csum_flags &
240 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
241 panic("ip6_output: IPv4 checksum offload flags: %d",
242 m->m_pkthdr.csum_flags);
243 }
244 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
245 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
246 panic("ip6_output: conflicting checksum offload flags: %d",
247 m->m_pkthdr.csum_flags);
248 }
249 #endif
250
251 M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
252
253 #define MAKE_EXTHDR(hp, mp) \
254 do { \
255 if (hp) { \
256 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
257 error = ip6_copyexthdr((mp), (void *)(hp), \
258 ((eh)->ip6e_len + 1) << 3); \
259 if (error) \
260 goto freehdrs; \
261 } \
262 } while (/*CONSTCOND*/ 0)
263
264 memset(&exthdrs, 0, sizeof(exthdrs));
265 if (opt) {
266 /* Hop-by-Hop options header */
267 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
268 /* Destination options header (1st part) */
269 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
270 /* Routing header */
271 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
272 /* Destination options header (2nd part) */
273 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
274 }
275
276 /*
277 * Calculate the total length of the extension header chain.
278 * Keep the length of the unfragmentable part for fragmentation.
279 */
280 optlen = 0;
281 if (exthdrs.ip6e_hbh)
282 optlen += exthdrs.ip6e_hbh->m_len;
283 if (exthdrs.ip6e_dest1)
284 optlen += exthdrs.ip6e_dest1->m_len;
285 if (exthdrs.ip6e_rthdr)
286 optlen += exthdrs.ip6e_rthdr->m_len;
287 unfragpartlen = optlen + sizeof(struct ip6_hdr);
288 /* NOTE: we don't add AH/ESP length here. do that later. */
289 if (exthdrs.ip6e_dest2)
290 optlen += exthdrs.ip6e_dest2->m_len;
291
292 #ifdef IPSEC
293 if (ipsec_used) {
294 /* Check the security policy (SP) for the packet */
295 sp = ipsec6_check_policy(m, inp, flags, &needipsec, &error);
296 if (error != 0) {
297 /*
298 * Hack: -EINVAL is used to signal that a packet
299 * should be silently discarded. This is typically
300 * because we asked key management for an SA and
301 * it was delayed (e.g. kicked up to IKE).
302 */
303 if (error == -EINVAL)
304 error = 0;
305 IP6_STATINC(IP6_STAT_IPSECDROP_OUT);
306 goto freehdrs;
307 }
308 }
309 #endif
310
311 if (needipsec &&
312 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
313 in6_undefer_cksum_tcpudp(m);
314 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
315 }
316
317 /*
318 * If we need IPsec, or there is at least one extension header,
319 * separate IP6 header from the payload.
320 */
321 if ((needipsec || optlen) && !hdrsplit) {
322 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
323 IP6_STATINC(IP6_STAT_ODROPPED);
324 m = NULL;
325 goto freehdrs;
326 }
327 m = exthdrs.ip6e_ip6;
328 hdrsplit++;
329 }
330
331 /* adjust pointer */
332 ip6 = mtod(m, struct ip6_hdr *);
333
334 /* adjust mbuf packet header length */
335 m->m_pkthdr.len += optlen;
336 plen = m->m_pkthdr.len - sizeof(*ip6);
337
338 /* If this is a jumbo payload, insert a jumbo payload option. */
339 if (plen > IPV6_MAXPACKET) {
340 if (!hdrsplit) {
341 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
342 IP6_STATINC(IP6_STAT_ODROPPED);
343 m = NULL;
344 goto freehdrs;
345 }
346 m = exthdrs.ip6e_ip6;
347 hdrsplit++;
348 }
349 /* adjust pointer */
350 ip6 = mtod(m, struct ip6_hdr *);
351 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) {
352 IP6_STATINC(IP6_STAT_ODROPPED);
353 goto freehdrs;
354 }
355 optlen += 8; /* XXX JUMBOOPTLEN */
356 ip6->ip6_plen = 0;
357 } else
358 ip6->ip6_plen = htons(plen);
359
360 /*
361 * Concatenate headers and fill in next header fields.
362 * Here we have, on "m"
363 * IPv6 payload
364 * and we insert headers accordingly. Finally, we should be getting:
365 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
366 *
367 * during the header composing process, "m" points to IPv6 header.
368 * "mprev" points to an extension header prior to esp.
369 */
370 {
371 u_char *nexthdrp = &ip6->ip6_nxt;
372 struct mbuf *mprev = m;
373
374 /*
375 * we treat dest2 specially. this makes IPsec processing
376 * much easier. the goal here is to make mprev point the
377 * mbuf prior to dest2.
378 *
379 * result: IPv6 dest2 payload
380 * m and mprev will point to IPv6 header.
381 */
382 if (exthdrs.ip6e_dest2) {
383 if (!hdrsplit)
384 panic("assumption failed: hdr not split");
385 exthdrs.ip6e_dest2->m_next = m->m_next;
386 m->m_next = exthdrs.ip6e_dest2;
387 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
388 ip6->ip6_nxt = IPPROTO_DSTOPTS;
389 }
390
391 #define MAKE_CHAIN(m, mp, p, i)\
392 do {\
393 if (m) {\
394 if (!hdrsplit) \
395 panic("assumption failed: hdr not split"); \
396 *mtod((m), u_char *) = *(p);\
397 *(p) = (i);\
398 p = mtod((m), u_char *);\
399 (m)->m_next = (mp)->m_next;\
400 (mp)->m_next = (m);\
401 (mp) = (m);\
402 }\
403 } while (/*CONSTCOND*/ 0)
404 /*
405 * result: IPv6 hbh dest1 rthdr dest2 payload
406 * m will point to IPv6 header. mprev will point to the
407 * extension header prior to dest2 (rthdr in the above case).
408 */
409 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
410 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
411 IPPROTO_DSTOPTS);
412 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
413 IPPROTO_ROUTING);
414
415 M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data,
416 sizeof(struct ip6_hdr) + optlen);
417 }
418
419 /* Need to save for pmtu */
420 finaldst = ip6->ip6_dst;
421
422 /*
423 * If there is a routing header, replace destination address field
424 * with the first hop of the routing header.
425 */
426 if (exthdrs.ip6e_rthdr) {
427 struct ip6_rthdr *rh;
428
429 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
430
431 error = ip6_handle_rthdr(rh, ip6);
432 if (error != 0) {
433 IP6_STATINC(IP6_STAT_ODROPPED);
434 goto bad;
435 }
436 }
437
438 /* Source address validation */
439 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
440 (flags & IPV6_UNSPECSRC) == 0) {
441 error = EOPNOTSUPP;
442 IP6_STATINC(IP6_STAT_BADSCOPE);
443 goto bad;
444 }
445 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
446 error = EOPNOTSUPP;
447 IP6_STATINC(IP6_STAT_BADSCOPE);
448 goto bad;
449 }
450
451 IP6_STATINC(IP6_STAT_LOCALOUT);
452
453 /*
454 * Route packet.
455 */
456 /* initialize cached route */
457 if (ro == NULL) {
458 memset(&ip6route, 0, sizeof(ip6route));
459 ro = &ip6route;
460 }
461 ro_pmtu = ro;
462 if (opt && opt->ip6po_rthdr)
463 ro = &opt->ip6po_route;
464
465 /*
466 * if specified, try to fill in the traffic class field.
467 * do not override if a non-zero value is already set.
468 * we check the diffserv field and the ecn field separately.
469 */
470 if (opt && opt->ip6po_tclass >= 0) {
471 int mask = 0;
472
473 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
474 mask |= 0xfc;
475 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
476 mask |= 0x03;
477 if (mask != 0)
478 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
479 }
480
481 /* fill in or override the hop limit field, if necessary. */
482 if (opt && opt->ip6po_hlim != -1)
483 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
484 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
485 if (im6o != NULL)
486 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
487 else
488 ip6->ip6_hlim = ip6_defmcasthlim;
489 }
490
491 #ifdef IPSEC
492 if (needipsec) {
493 int s = splsoftnet();
494 error = ipsec6_process_packet(m, sp->req, flags);
495 splx(s);
496
497 /*
498 * Preserve KAME behaviour: ENOENT can be returned
499 * when an SA acquire is in progress. Don't propagate
500 * this to user-level; it confuses applications.
501 * XXX this will go away when the SADB is redone.
502 */
503 if (error == ENOENT)
504 error = 0;
505
506 goto done;
507 }
508 #endif
509
510 /* adjust pointer */
511 ip6 = mtod(m, struct ip6_hdr *);
512
513 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
514
515 /* We do not need a route for multicast */
516 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
517 struct in6_pktinfo *pi = NULL;
518
519 /*
520 * If the outgoing interface for the address is specified by
521 * the caller, use it.
522 */
523 if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
524 /* XXX boundary check is assumed to be already done. */
525 ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
526 } else if (im6o != NULL) {
527 ifp = if_get_byindex(im6o->im6o_multicast_if_index,
528 &psref);
529 }
530 }
531
532 if (ifp == NULL) {
533 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
534 if (error != 0)
535 goto bad;
536 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
537 }
538
539 if (rt == NULL) {
540 /*
541 * If in6_selectroute() does not return a route entry,
542 * dst may not have been updated.
543 */
544 error = rtcache_setdst(ro, sin6tosa(&dst_sa));
545 if (error) {
546 IP6_STATINC(IP6_STAT_ODROPPED);
547 goto bad;
548 }
549 }
550
551 /*
552 * then rt (for unicast) and ifp must be non-NULL valid values.
553 */
554 if ((flags & IPV6_FORWARDING) == 0) {
555 /* XXX: the FORWARDING flag can be set for mrouting. */
556 in6_ifstat_inc(ifp, ifs6_out_request);
557 }
558 if (rt != NULL) {
559 ia = (struct in6_ifaddr *)(rt->rt_ifa);
560 rt->rt_use++;
561 }
562
563 /*
564 * The outgoing interface must be in the zone of source and
565 * destination addresses. We should use ia_ifp to support the
566 * case of sending packets to an address of our own.
567 */
568 if (ia != NULL) {
569 origifp = ia->ia_ifp;
570 if (if_is_deactivated(origifp)) {
571 IP6_STATINC(IP6_STAT_ODROPPED);
572 goto bad;
573 }
574 if_acquire(origifp, &psref_ia);
575 release_psref_ia = true;
576 } else
577 origifp = ifp;
578
579 src0 = ip6->ip6_src;
580 if (in6_setscope(&src0, origifp, &zone))
581 goto badscope;
582 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
583 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
584 goto badscope;
585
586 dst0 = ip6->ip6_dst;
587 if (in6_setscope(&dst0, origifp, &zone))
588 goto badscope;
589 /* re-initialize to be sure */
590 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
591 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
592 goto badscope;
593
594 /* scope check is done. */
595
596 /* Ensure we only send from a valid address. */
597 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
598 (flags & IPV6_FORWARDING) == 0 &&
599 (error = ip6_ifaddrvalid(&src0, &dst0)) != 0)
600 {
601 char ip6buf[INET6_ADDRSTRLEN];
602 nd6log(LOG_ERR,
603 "refusing to send from invalid address %s (pid %d)\n",
604 IN6_PRINT(ip6buf, &src0), curproc->p_pid);
605 IP6_STATINC(IP6_STAT_ODROPPED);
606 in6_ifstat_inc(origifp, ifs6_out_discard);
607 if (error == 1)
608 /*
609 * Address exists, but is tentative or detached.
610 * We can't send from it because it's invalid,
611 * so we drop the packet.
612 */
613 error = 0;
614 else
615 error = EADDRNOTAVAIL;
616 goto bad;
617 }
618
619 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
620 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
621 dst = satocsin6(rt->rt_gateway);
622 else
623 dst = satocsin6(rtcache_getdst(ro));
624
625 /*
626 * XXXXXX: original code follows:
627 */
628 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
629 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
630 else {
631 bool ingroup;
632
633 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
634
635 in6_ifstat_inc(ifp, ifs6_out_mcast);
636
637 /*
638 * Confirm that the outgoing interface supports multicast.
639 */
640 if (!(ifp->if_flags & IFF_MULTICAST)) {
641 IP6_STATINC(IP6_STAT_NOROUTE);
642 in6_ifstat_inc(ifp, ifs6_out_discard);
643 error = ENETUNREACH;
644 goto bad;
645 }
646
647 ingroup = in6_multi_group(&ip6->ip6_dst, ifp);
648 if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) {
649 /*
650 * If we belong to the destination multicast group
651 * on the outgoing interface, and the caller did not
652 * forbid loopback, loop back a copy.
653 */
654 KASSERT(dst != NULL);
655 ip6_mloopback(ifp, m, dst);
656 } else {
657 /*
658 * If we are acting as a multicast router, perform
659 * multicast forwarding as if the packet had just
660 * arrived on the interface to which we are about
661 * to send. The multicast forwarding function
662 * recursively calls this function, using the
663 * IPV6_FORWARDING flag to prevent infinite recursion.
664 *
665 * Multicasts that are looped back by ip6_mloopback(),
666 * above, will be forwarded by the ip6_input() routine,
667 * if necessary.
668 */
669 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
670 if (ip6_mforward(ip6, ifp, m) != 0) {
671 m_freem(m);
672 goto done;
673 }
674 }
675 }
676 /*
677 * Multicasts with a hoplimit of zero may be looped back,
678 * above, but must not be transmitted on a network.
679 * Also, multicasts addressed to the loopback interface
680 * are not sent -- the above call to ip6_mloopback() will
681 * loop back a copy if this host actually belongs to the
682 * destination group on the loopback interface.
683 */
684 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
685 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
686 m_freem(m);
687 goto done;
688 }
689 }
690
691 /*
692 * Fill the outgoing interface to tell the upper layer
693 * to increment per-interface statistics.
694 */
695 if (ifpp)
696 *ifpp = ifp;
697
698 /* Determine path MTU. */
699 /*
700 * ro_pmtu represent final destination while
701 * ro might represent immediate destination.
702 * Use ro_pmtu destination since MTU might differ.
703 */
704 if (ro_pmtu != ro) {
705 union {
706 struct sockaddr dst;
707 struct sockaddr_in6 dst6;
708 } u;
709
710 /* ro_pmtu may not have a cache */
711 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
712 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
713 } else
714 rt_pmtu = rt;
715 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
716 if (rt_pmtu != NULL && rt_pmtu != rt)
717 rtcache_unref(rt_pmtu, ro_pmtu);
718 KASSERT(error == 0); /* ip6_getpmtu never fail if ifp is passed */
719
720 /*
721 * The caller of this function may specify to use the minimum MTU
722 * in some cases.
723 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
724 * setting. The logic is a bit complicated; by default, unicast
725 * packets will follow path MTU while multicast packets will be sent at
726 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
727 * including unicast ones will be sent at the minimum MTU. Multicast
728 * packets will always be sent at the minimum MTU unless
729 * IP6PO_MINMTU_DISABLE is explicitly specified.
730 * See RFC 3542 for more details.
731 */
732 if (mtu > IPV6_MMTU) {
733 if ((flags & IPV6_MINMTU))
734 mtu = IPV6_MMTU;
735 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
736 mtu = IPV6_MMTU;
737 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
738 (opt == NULL ||
739 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
740 mtu = IPV6_MMTU;
741 }
742 }
743
744 /*
745 * clear embedded scope identifiers if necessary.
746 * in6_clearscope will touch the addresses only when necessary.
747 */
748 in6_clearscope(&ip6->ip6_src);
749 in6_clearscope(&ip6->ip6_dst);
750
751 /*
752 * If the outgoing packet contains a hop-by-hop options header,
753 * it must be examined and processed even by the source node.
754 * (RFC 2460, section 4.)
755 *
756 * XXX Is this really necessary?
757 */
758 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
759 u_int32_t dummy1; /* XXX unused */
760 u_int32_t dummy2; /* XXX unused */
761 int hoff = sizeof(struct ip6_hdr);
762
763 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
764 /* m was already freed at this point */
765 error = EINVAL;
766 goto done;
767 }
768
769 ip6 = mtod(m, struct ip6_hdr *);
770 }
771
772 /*
773 * Run through list of hooks for output packets.
774 */
775 error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT);
776 if (error != 0 || m == NULL) {
777 IP6_STATINC(IP6_STAT_PFILDROP_OUT);
778 goto done;
779 }
780 ip6 = mtod(m, struct ip6_hdr *);
781
782 /*
783 * Send the packet to the outgoing interface.
784 * If necessary, do IPv6 fragmentation before sending.
785 *
786 * the logic here is rather complex:
787 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
788 * 1-a: send as is if tlen <= path mtu
789 * 1-b: fragment if tlen > path mtu
790 *
791 * 2: if user asks us not to fragment (dontfrag == 1)
792 * 2-a: send as is if tlen <= interface mtu
793 * 2-b: error if tlen > interface mtu
794 *
795 * 3: if we always need to attach fragment header (alwaysfrag == 1)
796 * always fragment
797 *
798 * 4: if dontfrag == 1 && alwaysfrag == 1
799 * error, as we cannot handle this conflicting request
800 */
801 tlen = m->m_pkthdr.len;
802 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
803 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
804 dontfrag = 1;
805 else
806 dontfrag = 0;
807
808 if (dontfrag && alwaysfrag) { /* case 4 */
809 /* conflicting request - can't transmit */
810 IP6_STATINC(IP6_STAT_CANTFRAG);
811 error = EMSGSIZE;
812 goto bad;
813 }
814 if (dontfrag && (!tso && tlen > ifp->if_mtu)) { /* case 2-b */
815 /*
816 * Even if the DONTFRAG option is specified, we cannot send the
817 * packet when the data length is larger than the MTU of the
818 * outgoing interface.
819 * Notify the error by sending IPV6_PATHMTU ancillary data as
820 * well as returning an error code (the latter is not described
821 * in the API spec.)
822 */
823 u_int32_t mtu32;
824 struct ip6ctlparam ip6cp;
825
826 mtu32 = (u_int32_t)mtu;
827 memset(&ip6cp, 0, sizeof(ip6cp));
828 ip6cp.ip6c_cmdarg = (void *)&mtu32;
829 pfctlinput2(PRC_MSGSIZE,
830 rtcache_getdst(ro_pmtu), &ip6cp);
831
832 IP6_STATINC(IP6_STAT_CANTFRAG);
833 error = EMSGSIZE;
834 goto bad;
835 }
836
837 /*
838 * transmit packet without fragmentation
839 */
840 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
841 /* case 1-a and 2-a */
842 struct in6_ifaddr *ia6;
843 int sw_csum;
844 int s;
845
846 ip6 = mtod(m, struct ip6_hdr *);
847 s = pserialize_read_enter();
848 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
849 if (ia6) {
850 /* Record statistics for this interface address. */
851 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
852 }
853 pserialize_read_exit(s);
854
855 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
856 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
857 if (IN6_NEED_CHECKSUM(ifp,
858 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
859 in6_undefer_cksum_tcpudp(m);
860 }
861 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
862 }
863
864 KASSERT(dst != NULL);
865 if (__predict_false(sw_csum & M_CSUM_TSOv6)) {
866 /*
867 * TSO6 is required by a packet, but disabled for
868 * the interface.
869 */
870 error = ip6_tso_output(ifp, origifp, m, dst, rt);
871 } else
872 error = ip6_if_output(ifp, origifp, m, dst, rt);
873 goto done;
874 }
875
876 if (tso) {
877 IP6_STATINC(IP6_STAT_CANTFRAG); /* XXX */
878 error = EINVAL; /* XXX */
879 goto bad;
880 }
881
882 /*
883 * try to fragment the packet. case 1-b and 3
884 */
885 if (mtu < IPV6_MMTU) {
886 /* path MTU cannot be less than IPV6_MMTU */
887 IP6_STATINC(IP6_STAT_CANTFRAG);
888 error = EMSGSIZE;
889 in6_ifstat_inc(ifp, ifs6_out_fragfail);
890 goto bad;
891 } else if (ip6->ip6_plen == 0) {
892 /* jumbo payload cannot be fragmented */
893 IP6_STATINC(IP6_STAT_CANTFRAG);
894 error = EMSGSIZE;
895 in6_ifstat_inc(ifp, ifs6_out_fragfail);
896 goto bad;
897 } else {
898 const uint32_t id = ip6_randomid();
899 struct mbuf **mnext, *m_frgpart;
900 const int hlen = unfragpartlen;
901 struct ip6_frag *ip6f;
902 u_char nextproto;
903
904 if (mtu > IPV6_MAXPACKET)
905 mtu = IPV6_MAXPACKET;
906
907 /*
908 * Must be able to put at least 8 bytes per fragment.
909 */
910 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
911 if (len < 8) {
912 IP6_STATINC(IP6_STAT_CANTFRAG);
913 error = EMSGSIZE;
914 in6_ifstat_inc(ifp, ifs6_out_fragfail);
915 goto bad;
916 }
917
918 mnext = &m->m_nextpkt;
919
920 /*
921 * Change the next header field of the last header in the
922 * unfragmentable part.
923 */
924 if (exthdrs.ip6e_rthdr) {
925 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
926 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
927 } else if (exthdrs.ip6e_dest1) {
928 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
929 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
930 } else if (exthdrs.ip6e_hbh) {
931 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
932 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
933 } else {
934 nextproto = ip6->ip6_nxt;
935 ip6->ip6_nxt = IPPROTO_FRAGMENT;
936 }
937
938 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
939 != 0) {
940 if (IN6_NEED_CHECKSUM(ifp,
941 m->m_pkthdr.csum_flags &
942 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
943 in6_undefer_cksum_tcpudp(m);
944 }
945 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
946 }
947
948 /*
949 * Loop through length of segment after first fragment,
950 * make new header and copy data of each part and link onto
951 * chain.
952 */
953 m0 = m;
954 for (off = hlen; off < tlen; off += len) {
955 struct mbuf *mlast;
956
957 MGETHDR(m, M_DONTWAIT, MT_HEADER);
958 if (!m) {
959 error = ENOBUFS;
960 IP6_STATINC(IP6_STAT_ODROPPED);
961 goto sendorfree;
962 }
963 m_reset_rcvif(m);
964 m->m_flags = m0->m_flags & M_COPYFLAGS;
965 *mnext = m;
966 mnext = &m->m_nextpkt;
967 m->m_data += max_linkhdr;
968 mhip6 = mtod(m, struct ip6_hdr *);
969 *mhip6 = *ip6;
970 m->m_len = sizeof(*mhip6);
971
972 ip6f = NULL;
973 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
974 if (error) {
975 IP6_STATINC(IP6_STAT_ODROPPED);
976 goto sendorfree;
977 }
978
979 /* Fill in the Frag6 Header */
980 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
981 if (off + len >= tlen)
982 len = tlen - off;
983 else
984 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
985 ip6f->ip6f_reserved = 0;
986 ip6f->ip6f_ident = id;
987 ip6f->ip6f_nxt = nextproto;
988
989 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
990 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
991 if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) {
992 error = ENOBUFS;
993 IP6_STATINC(IP6_STAT_ODROPPED);
994 goto sendorfree;
995 }
996 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
997 ;
998 mlast->m_next = m_frgpart;
999
1000 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1001 m_reset_rcvif(m);
1002 IP6_STATINC(IP6_STAT_OFRAGMENTS);
1003 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1004 }
1005
1006 in6_ifstat_inc(ifp, ifs6_out_fragok);
1007 }
1008
1009 sendorfree:
1010 m = m0->m_nextpkt;
1011 m0->m_nextpkt = 0;
1012 m_freem(m0);
1013 for (m0 = m; m; m = m0) {
1014 m0 = m->m_nextpkt;
1015 m->m_nextpkt = 0;
1016 if (error == 0) {
1017 struct in6_ifaddr *ia6;
1018 int s;
1019 ip6 = mtod(m, struct ip6_hdr *);
1020 s = pserialize_read_enter();
1021 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1022 if (ia6) {
1023 /*
1024 * Record statistics for this interface
1025 * address.
1026 */
1027 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1028 m->m_pkthdr.len;
1029 }
1030 pserialize_read_exit(s);
1031 KASSERT(dst != NULL);
1032 error = ip6_if_output(ifp, origifp, m, dst, rt);
1033 } else
1034 m_freem(m);
1035 }
1036
1037 if (error == 0)
1038 IP6_STATINC(IP6_STAT_FRAGMENTED);
1039
1040 done:
1041 rtcache_unref(rt, ro);
1042 if (ro == &ip6route)
1043 rtcache_free(&ip6route);
1044 #ifdef IPSEC
1045 if (sp != NULL)
1046 KEY_SP_UNREF(&sp);
1047 #endif
1048 if_put(ifp, &psref);
1049 if (release_psref_ia)
1050 if_put(origifp, &psref_ia);
1051 curlwp_bindx(bound);
1052
1053 return error;
1054
1055 freehdrs:
1056 m_freem(exthdrs.ip6e_hbh);
1057 m_freem(exthdrs.ip6e_dest1);
1058 m_freem(exthdrs.ip6e_rthdr);
1059 m_freem(exthdrs.ip6e_dest2);
1060 /* FALLTHROUGH */
1061 bad:
1062 m_freem(m);
1063 goto done;
1064
1065 badscope:
1066 IP6_STATINC(IP6_STAT_BADSCOPE);
1067 in6_ifstat_inc(origifp, ifs6_out_discard);
1068 if (error == 0)
1069 error = EHOSTUNREACH; /* XXX */
1070 goto bad;
1071 }
1072
1073 static int
1074 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1075 {
1076 struct mbuf *m;
1077
1078 if (hlen > MCLBYTES)
1079 return ENOBUFS; /* XXX */
1080
1081 MGET(m, M_DONTWAIT, MT_DATA);
1082 if (!m)
1083 return ENOBUFS;
1084
1085 if (hlen > MLEN) {
1086 MCLGET(m, M_DONTWAIT);
1087 if ((m->m_flags & M_EXT) == 0) {
1088 m_free(m);
1089 return ENOBUFS;
1090 }
1091 }
1092 m->m_len = hlen;
1093 if (hdr)
1094 memcpy(mtod(m, void *), hdr, hlen);
1095
1096 *mp = m;
1097 return 0;
1098 }
1099
1100 /*
1101 * Insert jumbo payload option.
1102 */
1103 static int
1104 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1105 {
1106 struct mbuf *mopt;
1107 u_int8_t *optbuf;
1108 u_int32_t v;
1109
1110 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1111
1112 /*
1113 * If there is no hop-by-hop options header, allocate new one.
1114 * If there is one but it doesn't have enough space to store the
1115 * jumbo payload option, allocate a cluster to store the whole options.
1116 * Otherwise, use it to store the options.
1117 */
1118 if (exthdrs->ip6e_hbh == NULL) {
1119 MGET(mopt, M_DONTWAIT, MT_DATA);
1120 if (mopt == 0)
1121 return (ENOBUFS);
1122 mopt->m_len = JUMBOOPTLEN;
1123 optbuf = mtod(mopt, u_int8_t *);
1124 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1125 exthdrs->ip6e_hbh = mopt;
1126 } else {
1127 struct ip6_hbh *hbh;
1128
1129 mopt = exthdrs->ip6e_hbh;
1130 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1131 const int oldoptlen = mopt->m_len;
1132 struct mbuf *n;
1133
1134 /*
1135 * Assumptions:
1136 * - exthdrs->ip6e_hbh is not referenced from places
1137 * other than exthdrs.
1138 * - exthdrs->ip6e_hbh is not an mbuf chain.
1139 */
1140 KASSERT(mopt->m_next == NULL);
1141
1142 /*
1143 * Give up if the whole (new) hbh header does not fit
1144 * even in an mbuf cluster.
1145 */
1146 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1147 return ENOBUFS;
1148
1149 /*
1150 * At this point, we must always prepare a cluster.
1151 */
1152 MGET(n, M_DONTWAIT, MT_DATA);
1153 if (n) {
1154 MCLGET(n, M_DONTWAIT);
1155 if ((n->m_flags & M_EXT) == 0) {
1156 m_freem(n);
1157 n = NULL;
1158 }
1159 }
1160 if (!n)
1161 return ENOBUFS;
1162
1163 n->m_len = oldoptlen + JUMBOOPTLEN;
1164 bcopy(mtod(mopt, void *), mtod(n, void *),
1165 oldoptlen);
1166 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1167 m_freem(mopt);
1168 mopt = exthdrs->ip6e_hbh = n;
1169 } else {
1170 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1171 mopt->m_len += JUMBOOPTLEN;
1172 }
1173 optbuf[0] = IP6OPT_PADN;
1174 optbuf[1] = 0;
1175
1176 /*
1177 * Adjust the header length according to the pad and
1178 * the jumbo payload option.
1179 */
1180 hbh = mtod(mopt, struct ip6_hbh *);
1181 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1182 }
1183
1184 /* fill in the option. */
1185 optbuf[2] = IP6OPT_JUMBO;
1186 optbuf[3] = 4;
1187 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1188 memcpy(&optbuf[4], &v, sizeof(u_int32_t));
1189
1190 /* finally, adjust the packet header length */
1191 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1192
1193 return 0;
1194 #undef JUMBOOPTLEN
1195 }
1196
1197 /*
1198 * Insert fragment header and copy unfragmentable header portions.
1199 *
1200 * *frghdrp will not be read, and it is guaranteed that either an
1201 * error is returned or that *frghdrp will point to space allocated
1202 * for the fragment header.
1203 *
1204 * On entry, m contains:
1205 * IPv6 Header
1206 * On exit, it contains:
1207 * IPv6 Header -> Unfragmentable Part -> Frag6 Header
1208 */
1209 static int
1210 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1211 struct ip6_frag **frghdrp)
1212 {
1213 struct mbuf *n, *mlast;
1214
1215 if (hlen > sizeof(struct ip6_hdr)) {
1216 n = m_copym(m0, sizeof(struct ip6_hdr),
1217 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1218 if (n == NULL)
1219 return ENOBUFS;
1220 m->m_next = n;
1221 } else
1222 n = m;
1223
1224 /* Search for the last mbuf of unfragmentable part. */
1225 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1226 ;
1227
1228 if ((mlast->m_flags & M_EXT) == 0 &&
1229 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1230 /* use the trailing space of the last mbuf for the fragment hdr */
1231 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1232 mlast->m_len);
1233 mlast->m_len += sizeof(struct ip6_frag);
1234 } else {
1235 /* allocate a new mbuf for the fragment header */
1236 struct mbuf *mfrg;
1237
1238 MGET(mfrg, M_DONTWAIT, MT_DATA);
1239 if (mfrg == NULL)
1240 return ENOBUFS;
1241 mfrg->m_len = sizeof(struct ip6_frag);
1242 *frghdrp = mtod(mfrg, struct ip6_frag *);
1243 mlast->m_next = mfrg;
1244 }
1245
1246 return 0;
1247 }
1248
1249 static int
1250 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
1251 int *alwaysfragp)
1252 {
1253 u_int32_t mtu = 0;
1254 int alwaysfrag = 0;
1255 int error = 0;
1256
1257 if (rt != NULL) {
1258 if (ifp == NULL)
1259 ifp = rt->rt_ifp;
1260 mtu = rt->rt_rmx.rmx_mtu;
1261 if (mtu == 0)
1262 mtu = ifp->if_mtu;
1263 else if (mtu < IPV6_MMTU) {
1264 /*
1265 * RFC2460 section 5, last paragraph:
1266 * if we record ICMPv6 too big message with
1267 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1268 * or smaller, with fragment header attached.
1269 * (fragment header is needed regardless from the
1270 * packet size, for translators to identify packets)
1271 */
1272 alwaysfrag = 1;
1273 mtu = IPV6_MMTU;
1274 } else if (mtu > ifp->if_mtu) {
1275 /*
1276 * The MTU on the route is larger than the MTU on
1277 * the interface! This shouldn't happen, unless the
1278 * MTU of the interface has been changed after the
1279 * interface was brought up. Change the MTU in the
1280 * route to match the interface MTU (as long as the
1281 * field isn't locked).
1282 */
1283 mtu = ifp->if_mtu;
1284 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1285 rt->rt_rmx.rmx_mtu = mtu;
1286 }
1287 } else if (ifp) {
1288 mtu = ifp->if_mtu;
1289 } else
1290 error = EHOSTUNREACH; /* XXX */
1291
1292 *mtup = mtu;
1293 if (alwaysfragp)
1294 *alwaysfragp = alwaysfrag;
1295 return (error);
1296 }
1297
1298 /*
1299 * IP6 socket option processing.
1300 */
1301 int
1302 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1303 {
1304 int optdatalen, uproto;
1305 void *optdata;
1306 struct inpcb *inp = sotoinpcb(so);
1307 struct ip_moptions **mopts;
1308 int error, optval;
1309 int level, optname;
1310
1311 KASSERT(solocked(so));
1312 KASSERT(sopt != NULL);
1313
1314 level = sopt->sopt_level;
1315 optname = sopt->sopt_name;
1316
1317 error = optval = 0;
1318 uproto = (int)so->so_proto->pr_protocol;
1319
1320 switch (level) {
1321 case IPPROTO_IP:
1322 switch (optname) {
1323 case IP_ADD_MEMBERSHIP:
1324 case IP_DROP_MEMBERSHIP:
1325 case IP_MULTICAST_IF:
1326 case IP_MULTICAST_LOOP:
1327 case IP_MULTICAST_TTL:
1328 mopts = &inp->inp_moptions;
1329 switch (op) {
1330 case PRCO_GETOPT:
1331 return ip_getmoptions(*mopts, sopt);
1332 case PRCO_SETOPT:
1333 return ip_setmoptions(mopts, sopt);
1334 default:
1335 return EINVAL;
1336 }
1337 default:
1338 return ENOPROTOOPT;
1339 }
1340 case IPPROTO_IPV6:
1341 break;
1342 default:
1343 return ENOPROTOOPT;
1344 }
1345 switch (op) {
1346 case PRCO_SETOPT:
1347 switch (optname) {
1348 #ifdef RFC2292
1349 case IPV6_2292PKTOPTIONS:
1350 error = ip6_pcbopts(&in6p_outputopts(inp), so, sopt);
1351 break;
1352 #endif
1353
1354 /*
1355 * Use of some Hop-by-Hop options or some
1356 * Destination options, might require special
1357 * privilege. That is, normal applications
1358 * (without special privilege) might be forbidden
1359 * from setting certain options in outgoing packets,
1360 * and might never see certain options in received
1361 * packets. [RFC 2292 Section 6]
1362 * KAME specific note:
1363 * KAME prevents non-privileged users from sending or
1364 * receiving ANY hbh/dst options in order to avoid
1365 * overhead of parsing options in the kernel.
1366 */
1367 case IPV6_RECVHOPOPTS:
1368 case IPV6_RECVDSTOPTS:
1369 case IPV6_RECVRTHDRDSTOPTS:
1370 error = kauth_authorize_network(
1371 kauth_cred_get(),
1372 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
1373 NULL, NULL, NULL);
1374 if (error)
1375 break;
1376 /* FALLTHROUGH */
1377 case IPV6_UNICAST_HOPS:
1378 case IPV6_HOPLIMIT:
1379 case IPV6_FAITH:
1380
1381 case IPV6_RECVPKTINFO:
1382 case IPV6_RECVHOPLIMIT:
1383 case IPV6_RECVRTHDR:
1384 case IPV6_RECVPATHMTU:
1385 case IPV6_RECVTCLASS:
1386 case IPV6_V6ONLY:
1387 case IPV6_BINDANY:
1388 error = sockopt_getint(sopt, &optval);
1389 if (error)
1390 break;
1391 switch (optname) {
1392 case IPV6_UNICAST_HOPS:
1393 if (optval < -1 || optval >= 256)
1394 error = EINVAL;
1395 else {
1396 /* -1 = kernel default */
1397 in6p_hops6(inp) = optval;
1398 }
1399 break;
1400 #define OPTSET(bit) \
1401 do { \
1402 if (optval) \
1403 inp->inp_flags |= (bit); \
1404 else \
1405 inp->inp_flags &= ~(bit); \
1406 } while (/*CONSTCOND*/ 0)
1407
1408 #ifdef RFC2292
1409 #define OPTSET2292(bit) \
1410 do { \
1411 inp->inp_flags |= IN6P_RFC2292; \
1412 if (optval) \
1413 inp->inp_flags |= (bit); \
1414 else \
1415 inp->inp_flags &= ~(bit); \
1416 } while (/*CONSTCOND*/ 0)
1417 #endif
1418
1419 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0)
1420
1421 case IPV6_RECVPKTINFO:
1422 #ifdef RFC2292
1423 /* cannot mix with RFC2292 */
1424 if (OPTBIT(IN6P_RFC2292)) {
1425 error = EINVAL;
1426 break;
1427 }
1428 #endif
1429 OPTSET(IN6P_PKTINFO);
1430 break;
1431
1432 case IPV6_HOPLIMIT:
1433 {
1434 struct ip6_pktopts **optp;
1435
1436 #ifdef RFC2292
1437 /* cannot mix with RFC2292 */
1438 if (OPTBIT(IN6P_RFC2292)) {
1439 error = EINVAL;
1440 break;
1441 }
1442 #endif
1443 optp = &in6p_outputopts(inp);
1444 error = ip6_pcbopt(IPV6_HOPLIMIT,
1445 (u_char *)&optval,
1446 sizeof(optval),
1447 optp,
1448 kauth_cred_get(), uproto);
1449 break;
1450 }
1451
1452 case IPV6_RECVHOPLIMIT:
1453 #ifdef RFC2292
1454 /* cannot mix with RFC2292 */
1455 if (OPTBIT(IN6P_RFC2292)) {
1456 error = EINVAL;
1457 break;
1458 }
1459 #endif
1460 OPTSET(IN6P_HOPLIMIT);
1461 break;
1462
1463 case IPV6_RECVHOPOPTS:
1464 #ifdef RFC2292
1465 /* cannot mix with RFC2292 */
1466 if (OPTBIT(IN6P_RFC2292)) {
1467 error = EINVAL;
1468 break;
1469 }
1470 #endif
1471 OPTSET(IN6P_HOPOPTS);
1472 break;
1473
1474 case IPV6_RECVDSTOPTS:
1475 #ifdef RFC2292
1476 /* cannot mix with RFC2292 */
1477 if (OPTBIT(IN6P_RFC2292)) {
1478 error = EINVAL;
1479 break;
1480 }
1481 #endif
1482 OPTSET(IN6P_DSTOPTS);
1483 break;
1484
1485 case IPV6_RECVRTHDRDSTOPTS:
1486 #ifdef RFC2292
1487 /* cannot mix with RFC2292 */
1488 if (OPTBIT(IN6P_RFC2292)) {
1489 error = EINVAL;
1490 break;
1491 }
1492 #endif
1493 OPTSET(IN6P_RTHDRDSTOPTS);
1494 break;
1495
1496 case IPV6_RECVRTHDR:
1497 #ifdef RFC2292
1498 /* cannot mix with RFC2292 */
1499 if (OPTBIT(IN6P_RFC2292)) {
1500 error = EINVAL;
1501 break;
1502 }
1503 #endif
1504 OPTSET(IN6P_RTHDR);
1505 break;
1506
1507 case IPV6_FAITH:
1508 OPTSET(IN6P_FAITH);
1509 break;
1510
1511 case IPV6_RECVPATHMTU:
1512 /*
1513 * We ignore this option for TCP
1514 * sockets.
1515 * (RFC3542 leaves this case
1516 * unspecified.)
1517 */
1518 if (uproto != IPPROTO_TCP)
1519 OPTSET(IN6P_MTU);
1520 break;
1521
1522 case IPV6_V6ONLY:
1523 /*
1524 * make setsockopt(IPV6_V6ONLY)
1525 * available only prior to bind(2).
1526 * see ipng mailing list, Jun 22 2001.
1527 */
1528 if (inp->inp_lport ||
1529 !IN6_IS_ADDR_UNSPECIFIED(&in6p_laddr(inp))) {
1530 error = EINVAL;
1531 break;
1532 }
1533 #ifdef INET6_BINDV6ONLY
1534 if (!optval)
1535 error = EINVAL;
1536 #else
1537 OPTSET(IN6P_IPV6_V6ONLY);
1538 #endif
1539 break;
1540
1541 case IPV6_RECVTCLASS:
1542 #ifdef RFC2292
1543 /* cannot mix with RFC2292 XXX */
1544 if (OPTBIT(IN6P_RFC2292)) {
1545 error = EINVAL;
1546 break;
1547 }
1548 #endif
1549 OPTSET(IN6P_TCLASS);
1550 break;
1551
1552 case IPV6_BINDANY:
1553 error = kauth_authorize_network(
1554 kauth_cred_get(), KAUTH_NETWORK_BIND,
1555 KAUTH_REQ_NETWORK_BIND_ANYADDR, so, NULL,
1556 NULL);
1557 if (error)
1558 break;
1559 OPTSET(IN6P_BINDANY);
1560 break;
1561 }
1562 break;
1563
1564 case IPV6_OTCLASS:
1565 {
1566 struct ip6_pktopts **optp;
1567 u_int8_t tclass;
1568
1569 error = sockopt_get(sopt, &tclass, sizeof(tclass));
1570 if (error)
1571 break;
1572 optp = &in6p_outputopts(inp);
1573 error = ip6_pcbopt(optname,
1574 (u_char *)&tclass,
1575 sizeof(tclass),
1576 optp,
1577 kauth_cred_get(), uproto);
1578 break;
1579 }
1580
1581 case IPV6_TCLASS:
1582 case IPV6_DONTFRAG:
1583 case IPV6_USE_MIN_MTU:
1584 case IPV6_PREFER_TEMPADDR:
1585 error = sockopt_getint(sopt, &optval);
1586 if (error)
1587 break;
1588 {
1589 struct ip6_pktopts **optp;
1590 optp = &in6p_outputopts(inp);
1591 error = ip6_pcbopt(optname,
1592 (u_char *)&optval,
1593 sizeof(optval),
1594 optp,
1595 kauth_cred_get(), uproto);
1596 break;
1597 }
1598
1599 #ifdef RFC2292
1600 case IPV6_2292PKTINFO:
1601 case IPV6_2292HOPLIMIT:
1602 case IPV6_2292HOPOPTS:
1603 case IPV6_2292DSTOPTS:
1604 case IPV6_2292RTHDR:
1605 /* RFC 2292 */
1606 error = sockopt_getint(sopt, &optval);
1607 if (error)
1608 break;
1609
1610 switch (optname) {
1611 case IPV6_2292PKTINFO:
1612 OPTSET2292(IN6P_PKTINFO);
1613 break;
1614 case IPV6_2292HOPLIMIT:
1615 OPTSET2292(IN6P_HOPLIMIT);
1616 break;
1617 case IPV6_2292HOPOPTS:
1618 /*
1619 * Check super-user privilege.
1620 * See comments for IPV6_RECVHOPOPTS.
1621 */
1622 error = kauth_authorize_network(
1623 kauth_cred_get(),
1624 KAUTH_NETWORK_IPV6,
1625 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1626 NULL, NULL);
1627 if (error)
1628 return (error);
1629 OPTSET2292(IN6P_HOPOPTS);
1630 break;
1631 case IPV6_2292DSTOPTS:
1632 error = kauth_authorize_network(
1633 kauth_cred_get(),
1634 KAUTH_NETWORK_IPV6,
1635 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1636 NULL, NULL);
1637 if (error)
1638 return (error);
1639 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1640 break;
1641 case IPV6_2292RTHDR:
1642 OPTSET2292(IN6P_RTHDR);
1643 break;
1644 }
1645 break;
1646 #endif
1647 case IPV6_PKTINFO:
1648 case IPV6_HOPOPTS:
1649 case IPV6_RTHDR:
1650 case IPV6_DSTOPTS:
1651 case IPV6_RTHDRDSTOPTS:
1652 case IPV6_NEXTHOP: {
1653 /* new advanced API (RFC3542) */
1654 void *optbuf;
1655 int optbuflen;
1656 struct ip6_pktopts **optp;
1657
1658 #ifdef RFC2292
1659 /* cannot mix with RFC2292 */
1660 if (OPTBIT(IN6P_RFC2292)) {
1661 error = EINVAL;
1662 break;
1663 }
1664 #endif
1665
1666 optbuflen = sopt->sopt_size;
1667 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1668 if (optbuf == NULL) {
1669 error = ENOBUFS;
1670 break;
1671 }
1672
1673 error = sockopt_get(sopt, optbuf, optbuflen);
1674 if (error) {
1675 free(optbuf, M_IP6OPT);
1676 break;
1677 }
1678 optp = &in6p_outputopts(inp);
1679 error = ip6_pcbopt(optname, optbuf, optbuflen,
1680 optp, kauth_cred_get(), uproto);
1681
1682 free(optbuf, M_IP6OPT);
1683 break;
1684 }
1685 #undef OPTSET
1686
1687 case IPV6_MULTICAST_IF:
1688 case IPV6_MULTICAST_HOPS:
1689 case IPV6_MULTICAST_LOOP:
1690 case IPV6_JOIN_GROUP:
1691 case IPV6_LEAVE_GROUP:
1692 error = ip6_setmoptions(sopt, inp);
1693 break;
1694
1695 case IPV6_PORTRANGE:
1696 error = sockopt_getint(sopt, &optval);
1697 if (error)
1698 break;
1699
1700 switch (optval) {
1701 case IPV6_PORTRANGE_DEFAULT:
1702 inp->inp_flags &= ~(IN6P_LOWPORT);
1703 inp->inp_flags &= ~(IN6P_HIGHPORT);
1704 break;
1705
1706 case IPV6_PORTRANGE_HIGH:
1707 inp->inp_flags &= ~(IN6P_LOWPORT);
1708 inp->inp_flags |= IN6P_HIGHPORT;
1709 break;
1710
1711 case IPV6_PORTRANGE_LOW:
1712 inp->inp_flags &= ~(IN6P_HIGHPORT);
1713 inp->inp_flags |= IN6P_LOWPORT;
1714 break;
1715
1716 default:
1717 error = EINVAL;
1718 break;
1719 }
1720 break;
1721
1722 case IPV6_PORTALGO:
1723 error = sockopt_getint(sopt, &optval);
1724 if (error)
1725 break;
1726
1727 error = portalgo_algo_index_select(inp, optval);
1728 break;
1729
1730 #if defined(IPSEC)
1731 case IPV6_IPSEC_POLICY:
1732 if (ipsec_enabled) {
1733 error = ipsec_set_policy(inp,
1734 sopt->sopt_data, sopt->sopt_size,
1735 kauth_cred_get());
1736 } else
1737 error = ENOPROTOOPT;
1738 break;
1739 #endif /* IPSEC */
1740
1741 default:
1742 error = ENOPROTOOPT;
1743 break;
1744 }
1745 break;
1746
1747 case PRCO_GETOPT:
1748 switch (optname) {
1749 #ifdef RFC2292
1750 case IPV6_2292PKTOPTIONS:
1751 /*
1752 * RFC3542 (effectively) deprecated the
1753 * semantics of the 2292-style pktoptions.
1754 * Since it was not reliable in nature (i.e.,
1755 * applications had to expect the lack of some
1756 * information after all), it would make sense
1757 * to simplify this part by always returning
1758 * empty data.
1759 */
1760 break;
1761 #endif
1762
1763 case IPV6_RECVHOPOPTS:
1764 case IPV6_RECVDSTOPTS:
1765 case IPV6_RECVRTHDRDSTOPTS:
1766 case IPV6_UNICAST_HOPS:
1767 case IPV6_RECVPKTINFO:
1768 case IPV6_RECVHOPLIMIT:
1769 case IPV6_RECVRTHDR:
1770 case IPV6_RECVPATHMTU:
1771
1772 case IPV6_FAITH:
1773 case IPV6_V6ONLY:
1774 case IPV6_PORTRANGE:
1775 case IPV6_RECVTCLASS:
1776 case IPV6_BINDANY:
1777 switch (optname) {
1778
1779 case IPV6_RECVHOPOPTS:
1780 optval = OPTBIT(IN6P_HOPOPTS);
1781 break;
1782
1783 case IPV6_RECVDSTOPTS:
1784 optval = OPTBIT(IN6P_DSTOPTS);
1785 break;
1786
1787 case IPV6_RECVRTHDRDSTOPTS:
1788 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1789 break;
1790
1791 case IPV6_UNICAST_HOPS:
1792 optval = in6p_hops6(inp);
1793 break;
1794
1795 case IPV6_RECVPKTINFO:
1796 optval = OPTBIT(IN6P_PKTINFO);
1797 break;
1798
1799 case IPV6_RECVHOPLIMIT:
1800 optval = OPTBIT(IN6P_HOPLIMIT);
1801 break;
1802
1803 case IPV6_RECVRTHDR:
1804 optval = OPTBIT(IN6P_RTHDR);
1805 break;
1806
1807 case IPV6_RECVPATHMTU:
1808 optval = OPTBIT(IN6P_MTU);
1809 break;
1810
1811 case IPV6_FAITH:
1812 optval = OPTBIT(IN6P_FAITH);
1813 break;
1814
1815 case IPV6_V6ONLY:
1816 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1817 break;
1818
1819 case IPV6_PORTRANGE:
1820 {
1821 int flags;
1822 flags = inp->inp_flags;
1823 if (flags & IN6P_HIGHPORT)
1824 optval = IPV6_PORTRANGE_HIGH;
1825 else if (flags & IN6P_LOWPORT)
1826 optval = IPV6_PORTRANGE_LOW;
1827 else
1828 optval = 0;
1829 break;
1830 }
1831 case IPV6_RECVTCLASS:
1832 optval = OPTBIT(IN6P_TCLASS);
1833 break;
1834
1835 case IPV6_BINDANY:
1836 optval = OPTBIT(IN6P_BINDANY);
1837 break;
1838 }
1839
1840 if (error)
1841 break;
1842 error = sockopt_setint(sopt, optval);
1843 break;
1844
1845 case IPV6_PATHMTU:
1846 {
1847 u_long pmtu = 0;
1848 struct ip6_mtuinfo mtuinfo;
1849 struct route *ro = &inp->inp_route;
1850 struct rtentry *rt;
1851 union {
1852 struct sockaddr dst;
1853 struct sockaddr_in6 dst6;
1854 } u;
1855
1856 if (!(so->so_state & SS_ISCONNECTED))
1857 return (ENOTCONN);
1858 /*
1859 * XXX: we dot not consider the case of source
1860 * routing, or optional information to specify
1861 * the outgoing interface.
1862 */
1863 sockaddr_in6_init(&u.dst6, &in6p_faddr(inp), 0, 0, 0);
1864 rt = rtcache_lookup(ro, &u.dst);
1865 error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
1866 rtcache_unref(rt, ro);
1867 if (error)
1868 break;
1869 if (pmtu > IPV6_MAXPACKET)
1870 pmtu = IPV6_MAXPACKET;
1871
1872 memset(&mtuinfo, 0, sizeof(mtuinfo));
1873 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1874 optdata = (void *)&mtuinfo;
1875 optdatalen = sizeof(mtuinfo);
1876 if (optdatalen > MCLBYTES)
1877 return (EMSGSIZE); /* XXX */
1878 error = sockopt_set(sopt, optdata, optdatalen);
1879 break;
1880 }
1881
1882 #ifdef RFC2292
1883 case IPV6_2292PKTINFO:
1884 case IPV6_2292HOPLIMIT:
1885 case IPV6_2292HOPOPTS:
1886 case IPV6_2292RTHDR:
1887 case IPV6_2292DSTOPTS:
1888 switch (optname) {
1889 case IPV6_2292PKTINFO:
1890 optval = OPTBIT(IN6P_PKTINFO);
1891 break;
1892 case IPV6_2292HOPLIMIT:
1893 optval = OPTBIT(IN6P_HOPLIMIT);
1894 break;
1895 case IPV6_2292HOPOPTS:
1896 optval = OPTBIT(IN6P_HOPOPTS);
1897 break;
1898 case IPV6_2292RTHDR:
1899 optval = OPTBIT(IN6P_RTHDR);
1900 break;
1901 case IPV6_2292DSTOPTS:
1902 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1903 break;
1904 }
1905 error = sockopt_setint(sopt, optval);
1906 break;
1907 #endif
1908 case IPV6_PKTINFO:
1909 case IPV6_HOPOPTS:
1910 case IPV6_RTHDR:
1911 case IPV6_DSTOPTS:
1912 case IPV6_RTHDRDSTOPTS:
1913 case IPV6_NEXTHOP:
1914 case IPV6_OTCLASS:
1915 case IPV6_TCLASS:
1916 case IPV6_DONTFRAG:
1917 case IPV6_USE_MIN_MTU:
1918 case IPV6_PREFER_TEMPADDR:
1919 error = ip6_getpcbopt(in6p_outputopts(inp),
1920 optname, sopt);
1921 break;
1922
1923 case IPV6_MULTICAST_IF:
1924 case IPV6_MULTICAST_HOPS:
1925 case IPV6_MULTICAST_LOOP:
1926 case IPV6_JOIN_GROUP:
1927 case IPV6_LEAVE_GROUP:
1928 error = ip6_getmoptions(sopt, inp);
1929 break;
1930
1931 case IPV6_PORTALGO:
1932 optval = inp->inp_portalgo;
1933 error = sockopt_setint(sopt, optval);
1934 break;
1935
1936 #if defined(IPSEC)
1937 case IPV6_IPSEC_POLICY:
1938 if (ipsec_used) {
1939 struct mbuf *m = NULL;
1940
1941 /*
1942 * XXX: this will return EINVAL as sopt is
1943 * empty
1944 */
1945 error = ipsec_get_policy(inp, sopt->sopt_data,
1946 sopt->sopt_size, &m);
1947 if (!error)
1948 error = sockopt_setmbuf(sopt, m);
1949 } else
1950 error = ENOPROTOOPT;
1951 break;
1952 #endif /* IPSEC */
1953
1954 default:
1955 error = ENOPROTOOPT;
1956 break;
1957 }
1958 break;
1959 }
1960 return (error);
1961 }
1962
1963 int
1964 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1965 {
1966 int error = 0, optval;
1967 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1968 struct inpcb *inp = sotoinpcb(so);
1969 int level, optname;
1970
1971 KASSERT(sopt != NULL);
1972
1973 level = sopt->sopt_level;
1974 optname = sopt->sopt_name;
1975
1976 if (level != IPPROTO_IPV6) {
1977 return ENOPROTOOPT;
1978 }
1979
1980 switch (optname) {
1981 case IPV6_CHECKSUM:
1982 /*
1983 * For ICMPv6 sockets, no modification allowed for checksum
1984 * offset, permit "no change" values to help existing apps.
1985 *
1986 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
1987 * for an ICMPv6 socket will fail." The current
1988 * behavior does not meet RFC3542.
1989 */
1990 switch (op) {
1991 case PRCO_SETOPT:
1992 error = sockopt_getint(sopt, &optval);
1993 if (error)
1994 break;
1995 if (optval < -1 ||
1996 (optval > 0 && (optval % 2) != 0)) {
1997 /*
1998 * The API assumes non-negative even offset
1999 * values or -1 as a special value.
2000 */
2001 error = EINVAL;
2002 } else if (so->so_proto->pr_protocol ==
2003 IPPROTO_ICMPV6) {
2004 if (optval != icmp6off)
2005 error = EINVAL;
2006 } else
2007 in6p_cksum(inp) = optval;
2008 break;
2009
2010 case PRCO_GETOPT:
2011 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2012 optval = icmp6off;
2013 else
2014 optval = in6p_cksum(inp);
2015
2016 error = sockopt_setint(sopt, optval);
2017 break;
2018
2019 default:
2020 error = EINVAL;
2021 break;
2022 }
2023 break;
2024
2025 default:
2026 error = ENOPROTOOPT;
2027 break;
2028 }
2029
2030 return (error);
2031 }
2032
2033 #ifdef RFC2292
2034 /*
2035 * Set up IP6 options in pcb for insertion in output packets or
2036 * specifying behavior of outgoing packets.
2037 */
2038 static int
2039 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
2040 struct sockopt *sopt)
2041 {
2042 struct ip6_pktopts *opt = *pktopt;
2043 struct mbuf *m;
2044 int error = 0;
2045
2046 KASSERT(solocked(so));
2047
2048 /* turn off any old options. */
2049 if (opt) {
2050 #ifdef DIAGNOSTIC
2051 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2052 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2053 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2054 printf("ip6_pcbopts: all specified options are cleared.\n");
2055 #endif
2056 ip6_clearpktopts(opt, -1);
2057 } else {
2058 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2059 if (opt == NULL)
2060 return (ENOBUFS);
2061 }
2062 *pktopt = NULL;
2063
2064 if (sopt == NULL || sopt->sopt_size == 0) {
2065 /*
2066 * Only turning off any previous options, regardless of
2067 * whether the opt is just created or given.
2068 */
2069 free(opt, M_IP6OPT);
2070 return (0);
2071 }
2072
2073 /* set options specified by user. */
2074 m = sockopt_getmbuf(sopt);
2075 if (m == NULL) {
2076 free(opt, M_IP6OPT);
2077 return (ENOBUFS);
2078 }
2079
2080 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
2081 so->so_proto->pr_protocol);
2082 m_freem(m);
2083 if (error != 0) {
2084 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2085 free(opt, M_IP6OPT);
2086 return (error);
2087 }
2088 *pktopt = opt;
2089 return (0);
2090 }
2091 #endif
2092
2093 /*
2094 * initialize ip6_pktopts. beware that there are non-zero default values in
2095 * the struct.
2096 */
2097 void
2098 ip6_initpktopts(struct ip6_pktopts *opt)
2099 {
2100
2101 memset(opt, 0, sizeof(*opt));
2102 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2103 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2104 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2105 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2106 }
2107
2108 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2109 static int
2110 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2111 kauth_cred_t cred, int uproto)
2112 {
2113 struct ip6_pktopts *opt;
2114
2115 if (*pktopt == NULL) {
2116 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2117 M_NOWAIT);
2118 if (*pktopt == NULL)
2119 return (ENOBUFS);
2120
2121 ip6_initpktopts(*pktopt);
2122 }
2123 opt = *pktopt;
2124
2125 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2126 }
2127
2128 static int
2129 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2130 {
2131 void *optdata = NULL;
2132 int optdatalen = 0;
2133 struct ip6_ext *ip6e;
2134 int error = 0;
2135 struct in6_pktinfo null_pktinfo;
2136 int deftclass = 0, on;
2137 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2138 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2139
2140 switch (optname) {
2141 case IPV6_PKTINFO:
2142 if (pktopt && pktopt->ip6po_pktinfo)
2143 optdata = (void *)pktopt->ip6po_pktinfo;
2144 else {
2145 /* XXX: we don't have to do this every time... */
2146 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2147 optdata = (void *)&null_pktinfo;
2148 }
2149 optdatalen = sizeof(struct in6_pktinfo);
2150 break;
2151 case IPV6_OTCLASS:
2152 /* XXX */
2153 return (EINVAL);
2154 case IPV6_TCLASS:
2155 if (pktopt && pktopt->ip6po_tclass >= 0)
2156 optdata = (void *)&pktopt->ip6po_tclass;
2157 else
2158 optdata = (void *)&deftclass;
2159 optdatalen = sizeof(int);
2160 break;
2161 case IPV6_HOPOPTS:
2162 if (pktopt && pktopt->ip6po_hbh) {
2163 optdata = (void *)pktopt->ip6po_hbh;
2164 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2165 optdatalen = (ip6e->ip6e_len + 1) << 3;
2166 }
2167 break;
2168 case IPV6_RTHDR:
2169 if (pktopt && pktopt->ip6po_rthdr) {
2170 optdata = (void *)pktopt->ip6po_rthdr;
2171 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2172 optdatalen = (ip6e->ip6e_len + 1) << 3;
2173 }
2174 break;
2175 case IPV6_RTHDRDSTOPTS:
2176 if (pktopt && pktopt->ip6po_dest1) {
2177 optdata = (void *)pktopt->ip6po_dest1;
2178 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2179 optdatalen = (ip6e->ip6e_len + 1) << 3;
2180 }
2181 break;
2182 case IPV6_DSTOPTS:
2183 if (pktopt && pktopt->ip6po_dest2) {
2184 optdata = (void *)pktopt->ip6po_dest2;
2185 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2186 optdatalen = (ip6e->ip6e_len + 1) << 3;
2187 }
2188 break;
2189 case IPV6_NEXTHOP:
2190 if (pktopt && pktopt->ip6po_nexthop) {
2191 optdata = (void *)pktopt->ip6po_nexthop;
2192 optdatalen = pktopt->ip6po_nexthop->sa_len;
2193 }
2194 break;
2195 case IPV6_USE_MIN_MTU:
2196 if (pktopt)
2197 optdata = (void *)&pktopt->ip6po_minmtu;
2198 else
2199 optdata = (void *)&defminmtu;
2200 optdatalen = sizeof(int);
2201 break;
2202 case IPV6_DONTFRAG:
2203 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2204 on = 1;
2205 else
2206 on = 0;
2207 optdata = (void *)&on;
2208 optdatalen = sizeof(on);
2209 break;
2210 case IPV6_PREFER_TEMPADDR:
2211 if (pktopt)
2212 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2213 else
2214 optdata = (void *)&defpreftemp;
2215 optdatalen = sizeof(int);
2216 break;
2217 default: /* should not happen */
2218 #ifdef DIAGNOSTIC
2219 panic("ip6_getpcbopt: unexpected option\n");
2220 #endif
2221 return (ENOPROTOOPT);
2222 }
2223
2224 error = sockopt_set(sopt, optdata, optdatalen);
2225
2226 return (error);
2227 }
2228
2229 void
2230 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2231 {
2232 if (optname == -1 || optname == IPV6_PKTINFO) {
2233 if (pktopt->ip6po_pktinfo)
2234 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2235 pktopt->ip6po_pktinfo = NULL;
2236 }
2237 if (optname == -1 || optname == IPV6_HOPLIMIT)
2238 pktopt->ip6po_hlim = -1;
2239 if (optname == -1 || optname == IPV6_TCLASS)
2240 pktopt->ip6po_tclass = -1;
2241 if (optname == -1 || optname == IPV6_NEXTHOP) {
2242 rtcache_free(&pktopt->ip6po_nextroute);
2243 if (pktopt->ip6po_nexthop)
2244 free(pktopt->ip6po_nexthop, M_IP6OPT);
2245 pktopt->ip6po_nexthop = NULL;
2246 }
2247 if (optname == -1 || optname == IPV6_HOPOPTS) {
2248 if (pktopt->ip6po_hbh)
2249 free(pktopt->ip6po_hbh, M_IP6OPT);
2250 pktopt->ip6po_hbh = NULL;
2251 }
2252 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2253 if (pktopt->ip6po_dest1)
2254 free(pktopt->ip6po_dest1, M_IP6OPT);
2255 pktopt->ip6po_dest1 = NULL;
2256 }
2257 if (optname == -1 || optname == IPV6_RTHDR) {
2258 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2259 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2260 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2261 rtcache_free(&pktopt->ip6po_route);
2262 }
2263 if (optname == -1 || optname == IPV6_DSTOPTS) {
2264 if (pktopt->ip6po_dest2)
2265 free(pktopt->ip6po_dest2, M_IP6OPT);
2266 pktopt->ip6po_dest2 = NULL;
2267 }
2268 }
2269
2270 #define PKTOPT_EXTHDRCPY(type) \
2271 do { \
2272 if (src->type) { \
2273 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2274 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2275 if (dst->type == NULL) \
2276 goto bad; \
2277 memcpy(dst->type, src->type, hlen); \
2278 } \
2279 } while (/*CONSTCOND*/ 0)
2280
2281 static int
2282 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2283 {
2284 dst->ip6po_hlim = src->ip6po_hlim;
2285 dst->ip6po_tclass = src->ip6po_tclass;
2286 dst->ip6po_flags = src->ip6po_flags;
2287 dst->ip6po_minmtu = src->ip6po_minmtu;
2288 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2289 if (src->ip6po_pktinfo) {
2290 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2291 M_IP6OPT, canwait);
2292 if (dst->ip6po_pktinfo == NULL)
2293 goto bad;
2294 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2295 }
2296 if (src->ip6po_nexthop) {
2297 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2298 M_IP6OPT, canwait);
2299 if (dst->ip6po_nexthop == NULL)
2300 goto bad;
2301 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2302 src->ip6po_nexthop->sa_len);
2303 }
2304 PKTOPT_EXTHDRCPY(ip6po_hbh);
2305 PKTOPT_EXTHDRCPY(ip6po_dest1);
2306 PKTOPT_EXTHDRCPY(ip6po_dest2);
2307 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2308 return (0);
2309
2310 bad:
2311 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2312 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2313 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2314 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2315 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2316 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2317
2318 return (ENOBUFS);
2319 }
2320 #undef PKTOPT_EXTHDRCPY
2321
2322 struct ip6_pktopts *
2323 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2324 {
2325 int error;
2326 struct ip6_pktopts *dst;
2327
2328 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2329 if (dst == NULL)
2330 return (NULL);
2331 ip6_initpktopts(dst);
2332
2333 if ((error = copypktopts(dst, src, canwait)) != 0) {
2334 free(dst, M_IP6OPT);
2335 return (NULL);
2336 }
2337
2338 return (dst);
2339 }
2340
2341 void
2342 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2343 {
2344 if (pktopt == NULL)
2345 return;
2346
2347 ip6_clearpktopts(pktopt, -1);
2348
2349 free(pktopt, M_IP6OPT);
2350 }
2351
2352 int
2353 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
2354 struct psref *psref, void *v, size_t l)
2355 {
2356 struct ipv6_mreq mreq;
2357 int error;
2358 struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
2359 struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
2360
2361 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2362 if (error != 0)
2363 return error;
2364
2365 if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
2366 /*
2367 * We use the unspecified address to specify to accept
2368 * all multicast addresses. Only super user is allowed
2369 * to do this.
2370 */
2371 if (kauth_authorize_network(kauth_cred_get(),
2372 KAUTH_NETWORK_IPV6,
2373 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
2374 return EACCES;
2375 } else if (IN6_IS_ADDR_V4MAPPED(ia)) {
2376 // Don't bother if we are not going to use ifp.
2377 if (l == sizeof(*ia)) {
2378 memcpy(v, ia, l);
2379 return 0;
2380 }
2381 } else if (!IN6_IS_ADDR_MULTICAST(ia)) {
2382 return EINVAL;
2383 }
2384
2385 /*
2386 * If no interface was explicitly specified, choose an
2387 * appropriate one according to the given multicast address.
2388 */
2389 if (mreq.ipv6mr_interface == 0) {
2390 struct rtentry *rt;
2391 union {
2392 struct sockaddr dst;
2393 struct sockaddr_in dst4;
2394 struct sockaddr_in6 dst6;
2395 } u;
2396 struct route ro;
2397
2398 /*
2399 * Look up the routing table for the
2400 * address, and choose the outgoing interface.
2401 * XXX: is it a good approach?
2402 */
2403 memset(&ro, 0, sizeof(ro));
2404 if (IN6_IS_ADDR_V4MAPPED(ia))
2405 sockaddr_in_init(&u.dst4, ia4, 0);
2406 else
2407 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
2408 error = rtcache_setdst(&ro, &u.dst);
2409 if (error != 0)
2410 return error;
2411 rt = rtcache_init(&ro);
2412 *ifp = rt != NULL ?
2413 if_get_byindex(rt->rt_ifp->if_index, psref) : NULL;
2414 rtcache_unref(rt, &ro);
2415 rtcache_free(&ro);
2416 } else {
2417 /*
2418 * If the interface is specified, validate it.
2419 */
2420 *ifp = if_get_byindex(mreq.ipv6mr_interface, psref);
2421 if (*ifp == NULL)
2422 return ENXIO; /* XXX EINVAL? */
2423 }
2424 if (sizeof(*ia) == l)
2425 memcpy(v, ia, l);
2426 else
2427 memcpy(v, ia4, l);
2428 return 0;
2429 }
2430
2431 /*
2432 * Set the IP6 multicast options in response to user setsockopt().
2433 */
2434 static int
2435 ip6_setmoptions(const struct sockopt *sopt, struct inpcb *inp)
2436 {
2437 int error = 0;
2438 u_int loop, ifindex;
2439 struct ipv6_mreq mreq;
2440 struct in6_addr ia;
2441 struct ifnet *ifp;
2442 struct ip6_moptions *im6o = in6p_moptions(inp);
2443 struct in6_multi_mship *imm;
2444
2445 KASSERT(inp_locked(inp));
2446
2447 if (im6o == NULL) {
2448 /*
2449 * No multicast option buffer attached to the pcb;
2450 * allocate one and initialize to default values.
2451 */
2452 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2453 if (im6o == NULL)
2454 return (ENOBUFS);
2455 in6p_moptions(inp) = im6o;
2456 im6o->im6o_multicast_if_index = 0;
2457 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2458 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2459 LIST_INIT(&im6o->im6o_memberships);
2460 }
2461
2462 switch (sopt->sopt_name) {
2463
2464 case IPV6_MULTICAST_IF: {
2465 int s;
2466 /*
2467 * Select the interface for outgoing multicast packets.
2468 */
2469 error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2470 if (error != 0)
2471 break;
2472
2473 s = pserialize_read_enter();
2474 if (ifindex != 0) {
2475 if ((ifp = if_byindex(ifindex)) == NULL) {
2476 pserialize_read_exit(s);
2477 error = ENXIO; /* XXX EINVAL? */
2478 break;
2479 }
2480 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2481 pserialize_read_exit(s);
2482 error = EADDRNOTAVAIL;
2483 break;
2484 }
2485 } else
2486 ifp = NULL;
2487 im6o->im6o_multicast_if_index = if_get_index(ifp);
2488 pserialize_read_exit(s);
2489 break;
2490 }
2491
2492 case IPV6_MULTICAST_HOPS:
2493 {
2494 /*
2495 * Set the IP6 hoplimit for outgoing multicast packets.
2496 */
2497 int optval;
2498
2499 error = sockopt_getint(sopt, &optval);
2500 if (error != 0)
2501 break;
2502
2503 if (optval < -1 || optval >= 256)
2504 error = EINVAL;
2505 else if (optval == -1)
2506 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2507 else
2508 im6o->im6o_multicast_hlim = optval;
2509 break;
2510 }
2511
2512 case IPV6_MULTICAST_LOOP:
2513 /*
2514 * Set the loopback flag for outgoing multicast packets.
2515 * Must be zero or one.
2516 */
2517 error = sockopt_get(sopt, &loop, sizeof(loop));
2518 if (error != 0)
2519 break;
2520 if (loop > 1) {
2521 error = EINVAL;
2522 break;
2523 }
2524 im6o->im6o_multicast_loop = loop;
2525 break;
2526
2527 case IPV6_JOIN_GROUP: {
2528 int bound;
2529 struct psref psref;
2530 /*
2531 * Add a multicast group membership.
2532 * Group must be a valid IP6 multicast address.
2533 */
2534 bound = curlwp_bind();
2535 ifp = NULL;
2536 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
2537 if (error != 0) {
2538 KASSERT(ifp == NULL);
2539 curlwp_bindx(bound);
2540 return error;
2541 }
2542
2543 if (IN6_IS_ADDR_V4MAPPED(&ia)) {
2544 error = ip_setmoptions(&inp->inp_moptions, sopt);
2545 goto put_break;
2546 }
2547 /*
2548 * See if we found an interface, and confirm that it
2549 * supports multicast
2550 */
2551 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2552 error = EADDRNOTAVAIL;
2553 goto put_break;
2554 }
2555
2556 if (in6_setscope(&ia, ifp, NULL)) {
2557 error = EADDRNOTAVAIL; /* XXX: should not happen */
2558 goto put_break;
2559 }
2560
2561 /*
2562 * See if the membership already exists.
2563 */
2564 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2565 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2566 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2567 &ia))
2568 goto put_break;
2569 }
2570 if (imm != NULL) {
2571 error = EADDRINUSE;
2572 goto put_break;
2573 }
2574 /*
2575 * Everything looks good; add a new record to the multicast
2576 * address list for the given interface.
2577 */
2578 imm = in6_joingroup(ifp, &ia, &error, 0);
2579 if (imm == NULL)
2580 goto put_break;
2581 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2582 put_break:
2583 if_put(ifp, &psref);
2584 curlwp_bindx(bound);
2585 break;
2586 }
2587
2588 case IPV6_LEAVE_GROUP: {
2589 /*
2590 * Drop a multicast group membership.
2591 * Group must be a valid IP6 multicast address.
2592 */
2593 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2594 if (error != 0)
2595 break;
2596
2597 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
2598 error = ip_setmoptions(&inp->inp_moptions, sopt);
2599 break;
2600 }
2601 /*
2602 * If an interface address was specified, get a pointer
2603 * to its ifnet structure.
2604 */
2605 if (mreq.ipv6mr_interface != 0) {
2606 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
2607 error = ENXIO; /* XXX EINVAL? */
2608 break;
2609 }
2610 } else
2611 ifp = NULL;
2612
2613 /* Fill in the scope zone ID */
2614 if (ifp) {
2615 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2616 /* XXX: should not happen */
2617 error = EADDRNOTAVAIL;
2618 break;
2619 }
2620 } else if (mreq.ipv6mr_interface != 0) {
2621 /*
2622 * XXX: This case would happens when the (positive)
2623 * index is in the valid range, but the corresponding
2624 * interface has been detached dynamically. The above
2625 * check probably avoids such case to happen here, but
2626 * we check it explicitly for safety.
2627 */
2628 error = EADDRNOTAVAIL;
2629 break;
2630 } else { /* ipv6mr_interface == 0 */
2631 struct sockaddr_in6 sa6_mc;
2632
2633 /*
2634 * The API spec says as follows:
2635 * If the interface index is specified as 0, the
2636 * system may choose a multicast group membership to
2637 * drop by matching the multicast address only.
2638 * On the other hand, we cannot disambiguate the scope
2639 * zone unless an interface is provided. Thus, we
2640 * check if there's ambiguity with the default scope
2641 * zone as the last resort.
2642 */
2643 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2644 0, 0, 0);
2645 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2646 if (error != 0)
2647 break;
2648 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2649 }
2650
2651 /*
2652 * Find the membership in the membership list.
2653 */
2654 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2655 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2656 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2657 &mreq.ipv6mr_multiaddr))
2658 break;
2659 }
2660 if (imm == NULL) {
2661 /* Unable to resolve interface */
2662 error = EADDRNOTAVAIL;
2663 break;
2664 }
2665 /*
2666 * Give up the multicast address record to which the
2667 * membership points.
2668 */
2669 LIST_REMOVE(imm, i6mm_chain);
2670 in6_leavegroup(imm);
2671 /* in6m_ifp should not leave thanks to inp_lock */
2672 break;
2673 }
2674
2675 default:
2676 error = EOPNOTSUPP;
2677 break;
2678 }
2679
2680 /*
2681 * If all options have default values, no need to keep the mbuf.
2682 */
2683 if (im6o->im6o_multicast_if_index == 0 &&
2684 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2685 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2686 LIST_EMPTY(&im6o->im6o_memberships)) {
2687 free(in6p_moptions(inp), M_IPMOPTS);
2688 in6p_moptions(inp) = NULL;
2689 }
2690
2691 return (error);
2692 }
2693
2694 /*
2695 * Return the IP6 multicast options in response to user getsockopt().
2696 */
2697 static int
2698 ip6_getmoptions(struct sockopt *sopt, struct inpcb *inp)
2699 {
2700 u_int optval;
2701 int error;
2702 struct ip6_moptions *im6o = in6p_moptions(inp);
2703
2704 switch (sopt->sopt_name) {
2705 case IPV6_MULTICAST_IF:
2706 if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
2707 optval = 0;
2708 else
2709 optval = im6o->im6o_multicast_if_index;
2710
2711 error = sockopt_set(sopt, &optval, sizeof(optval));
2712 break;
2713
2714 case IPV6_MULTICAST_HOPS:
2715 if (im6o == NULL)
2716 optval = ip6_defmcasthlim;
2717 else
2718 optval = im6o->im6o_multicast_hlim;
2719
2720 error = sockopt_set(sopt, &optval, sizeof(optval));
2721 break;
2722
2723 case IPV6_MULTICAST_LOOP:
2724 if (im6o == NULL)
2725 optval = IPV6_DEFAULT_MULTICAST_LOOP;
2726 else
2727 optval = im6o->im6o_multicast_loop;
2728
2729 error = sockopt_set(sopt, &optval, sizeof(optval));
2730 break;
2731
2732 default:
2733 error = EOPNOTSUPP;
2734 }
2735
2736 return (error);
2737 }
2738
2739 /*
2740 * Discard the IP6 multicast options.
2741 */
2742 void
2743 ip6_freemoptions(struct ip6_moptions *im6o)
2744 {
2745 struct in6_multi_mship *imm, *nimm;
2746
2747 if (im6o == NULL)
2748 return;
2749
2750 /* The owner of im6o (inp) should be protected by solock */
2751 LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) {
2752 LIST_REMOVE(imm, i6mm_chain);
2753 in6_leavegroup(imm);
2754 }
2755 free(im6o, M_IPMOPTS);
2756 }
2757
2758 /*
2759 * Set IPv6 outgoing packet options based on advanced API.
2760 */
2761 int
2762 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2763 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2764 {
2765 struct cmsghdr *cm = 0;
2766
2767 if (control == NULL || opt == NULL)
2768 return (EINVAL);
2769
2770 ip6_initpktopts(opt);
2771 if (stickyopt) {
2772 int error;
2773
2774 /*
2775 * If stickyopt is provided, make a local copy of the options
2776 * for this particular packet, then override them by ancillary
2777 * objects.
2778 * XXX: copypktopts() does not copy the cached route to a next
2779 * hop (if any). This is not very good in terms of efficiency,
2780 * but we can allow this since this option should be rarely
2781 * used.
2782 */
2783 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2784 return (error);
2785 }
2786
2787 /*
2788 * XXX: Currently, we assume all the optional information is stored
2789 * in a single mbuf.
2790 */
2791 if (control->m_next)
2792 return (EINVAL);
2793
2794 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2795 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2796 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2797 int error;
2798
2799 if (control->m_len < CMSG_LEN(0))
2800 return (EINVAL);
2801
2802 cm = mtod(control, struct cmsghdr *);
2803 if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > control->m_len)
2804 return (EINVAL);
2805 if (cm->cmsg_level != IPPROTO_IPV6)
2806 continue;
2807
2808 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2809 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2810 if (error)
2811 return (error);
2812 }
2813
2814 return (0);
2815 }
2816
2817 /*
2818 * Set a particular packet option, as a sticky option or an ancillary data
2819 * item. "len" can be 0 only when it's a sticky option.
2820 * We have 4 cases of combination of "sticky" and "cmsg":
2821 * "sticky=0, cmsg=0": impossible
2822 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2823 * "sticky=1, cmsg=0": RFC3542 socket option
2824 * "sticky=1, cmsg=1": RFC2292 socket option
2825 */
2826 static int
2827 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2828 kauth_cred_t cred, int sticky, int cmsg, int uproto)
2829 {
2830 int minmtupolicy;
2831 int error;
2832
2833 if (!sticky && !cmsg) {
2834 #ifdef DIAGNOSTIC
2835 printf("ip6_setpktopt: impossible case\n");
2836 #endif
2837 return (EINVAL);
2838 }
2839
2840 /*
2841 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2842 * not be specified in the context of RFC3542. Conversely,
2843 * RFC3542 types should not be specified in the context of RFC2292.
2844 */
2845 if (!cmsg) {
2846 switch (optname) {
2847 case IPV6_2292PKTINFO:
2848 case IPV6_2292HOPLIMIT:
2849 case IPV6_2292NEXTHOP:
2850 case IPV6_2292HOPOPTS:
2851 case IPV6_2292DSTOPTS:
2852 case IPV6_2292RTHDR:
2853 case IPV6_2292PKTOPTIONS:
2854 return (ENOPROTOOPT);
2855 }
2856 }
2857 if (sticky && cmsg) {
2858 switch (optname) {
2859 case IPV6_PKTINFO:
2860 case IPV6_HOPLIMIT:
2861 case IPV6_NEXTHOP:
2862 case IPV6_HOPOPTS:
2863 case IPV6_DSTOPTS:
2864 case IPV6_RTHDRDSTOPTS:
2865 case IPV6_RTHDR:
2866 case IPV6_USE_MIN_MTU:
2867 case IPV6_DONTFRAG:
2868 case IPV6_OTCLASS:
2869 case IPV6_TCLASS:
2870 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
2871 return (ENOPROTOOPT);
2872 }
2873 }
2874
2875 switch (optname) {
2876 #ifdef RFC2292
2877 case IPV6_2292PKTINFO:
2878 #endif
2879 case IPV6_PKTINFO:
2880 {
2881 struct in6_pktinfo *pktinfo;
2882
2883 if (len != sizeof(struct in6_pktinfo))
2884 return (EINVAL);
2885
2886 pktinfo = (struct in6_pktinfo *)buf;
2887
2888 /*
2889 * An application can clear any sticky IPV6_PKTINFO option by
2890 * doing a "regular" setsockopt with ipi6_addr being
2891 * in6addr_any and ipi6_ifindex being zero.
2892 * [RFC 3542, Section 6]
2893 */
2894 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2895 pktinfo->ipi6_ifindex == 0 &&
2896 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2897 ip6_clearpktopts(opt, optname);
2898 break;
2899 }
2900
2901 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2902 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2903 return (EINVAL);
2904 }
2905
2906 /* Validate the interface index if specified. */
2907 if (pktinfo->ipi6_ifindex) {
2908 struct ifnet *ifp;
2909 int s = pserialize_read_enter();
2910 ifp = if_byindex(pktinfo->ipi6_ifindex);
2911 if (ifp == NULL) {
2912 pserialize_read_exit(s);
2913 return ENXIO;
2914 }
2915 pserialize_read_exit(s);
2916 }
2917
2918 /*
2919 * We store the address anyway, and let in6_selectsrc()
2920 * validate the specified address. This is because ipi6_addr
2921 * may not have enough information about its scope zone, and
2922 * we may need additional information (such as outgoing
2923 * interface or the scope zone of a destination address) to
2924 * disambiguate the scope.
2925 * XXX: the delay of the validation may confuse the
2926 * application when it is used as a sticky option.
2927 */
2928 if (opt->ip6po_pktinfo == NULL) {
2929 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2930 M_IP6OPT, M_NOWAIT);
2931 if (opt->ip6po_pktinfo == NULL)
2932 return (ENOBUFS);
2933 }
2934 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2935 break;
2936 }
2937
2938 #ifdef RFC2292
2939 case IPV6_2292HOPLIMIT:
2940 #endif
2941 case IPV6_HOPLIMIT:
2942 {
2943 int *hlimp;
2944
2945 /*
2946 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2947 * to simplify the ordering among hoplimit options.
2948 */
2949 if (optname == IPV6_HOPLIMIT && sticky)
2950 return (ENOPROTOOPT);
2951
2952 if (len != sizeof(int))
2953 return (EINVAL);
2954 hlimp = (int *)buf;
2955 if (*hlimp < -1 || *hlimp > 255)
2956 return (EINVAL);
2957
2958 opt->ip6po_hlim = *hlimp;
2959 break;
2960 }
2961
2962 case IPV6_OTCLASS:
2963 if (len != sizeof(u_int8_t))
2964 return (EINVAL);
2965
2966 opt->ip6po_tclass = *(u_int8_t *)buf;
2967 break;
2968
2969 case IPV6_TCLASS:
2970 {
2971 int tclass;
2972
2973 if (len != sizeof(int))
2974 return (EINVAL);
2975 tclass = *(int *)buf;
2976 if (tclass < -1 || tclass > 255)
2977 return (EINVAL);
2978
2979 opt->ip6po_tclass = tclass;
2980 break;
2981 }
2982
2983 #ifdef RFC2292
2984 case IPV6_2292NEXTHOP:
2985 #endif
2986 case IPV6_NEXTHOP:
2987 error = kauth_authorize_network(cred,
2988 KAUTH_NETWORK_IPV6,
2989 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2990 if (error)
2991 return (error);
2992
2993 if (len == 0) { /* just remove the option */
2994 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2995 break;
2996 }
2997
2998 /* check if cmsg_len is large enough for sa_len */
2999 if (len < sizeof(struct sockaddr) || len < *buf)
3000 return (EINVAL);
3001
3002 switch (((struct sockaddr *)buf)->sa_family) {
3003 case AF_INET6:
3004 {
3005 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3006
3007 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3008 return (EINVAL);
3009
3010 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3011 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3012 return (EINVAL);
3013 }
3014 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
3015 != 0) {
3016 return (error);
3017 }
3018 break;
3019 }
3020 case AF_LINK: /* eventually be supported? */
3021 default:
3022 return (EAFNOSUPPORT);
3023 }
3024
3025 /* turn off the previous option, then set the new option. */
3026 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3027 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3028 if (opt->ip6po_nexthop == NULL)
3029 return (ENOBUFS);
3030 memcpy(opt->ip6po_nexthop, buf, *buf);
3031 break;
3032
3033 #ifdef RFC2292
3034 case IPV6_2292HOPOPTS:
3035 #endif
3036 case IPV6_HOPOPTS:
3037 {
3038 struct ip6_hbh *hbh;
3039 int hbhlen;
3040
3041 /*
3042 * XXX: We don't allow a non-privileged user to set ANY HbH
3043 * options, since per-option restriction has too much
3044 * overhead.
3045 */
3046 error = kauth_authorize_network(cred,
3047 KAUTH_NETWORK_IPV6,
3048 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3049 if (error)
3050 return (error);
3051
3052 if (len == 0) {
3053 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3054 break; /* just remove the option */
3055 }
3056
3057 /* message length validation */
3058 if (len < sizeof(struct ip6_hbh))
3059 return (EINVAL);
3060 hbh = (struct ip6_hbh *)buf;
3061 hbhlen = (hbh->ip6h_len + 1) << 3;
3062 if (len != hbhlen)
3063 return (EINVAL);
3064
3065 /* turn off the previous option, then set the new option. */
3066 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3067 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3068 if (opt->ip6po_hbh == NULL)
3069 return (ENOBUFS);
3070 memcpy(opt->ip6po_hbh, hbh, hbhlen);
3071
3072 break;
3073 }
3074
3075 #ifdef RFC2292
3076 case IPV6_2292DSTOPTS:
3077 #endif
3078 case IPV6_DSTOPTS:
3079 case IPV6_RTHDRDSTOPTS:
3080 {
3081 struct ip6_dest *dest, **newdest = NULL;
3082 int destlen;
3083
3084 /* XXX: see the comment for IPV6_HOPOPTS */
3085 error = kauth_authorize_network(cred,
3086 KAUTH_NETWORK_IPV6,
3087 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3088 if (error)
3089 return (error);
3090
3091 if (len == 0) {
3092 ip6_clearpktopts(opt, optname);
3093 break; /* just remove the option */
3094 }
3095
3096 /* message length validation */
3097 if (len < sizeof(struct ip6_dest))
3098 return (EINVAL);
3099 dest = (struct ip6_dest *)buf;
3100 destlen = (dest->ip6d_len + 1) << 3;
3101 if (len != destlen)
3102 return (EINVAL);
3103 /*
3104 * Determine the position that the destination options header
3105 * should be inserted; before or after the routing header.
3106 */
3107 switch (optname) {
3108 case IPV6_2292DSTOPTS:
3109 /*
3110 * The old advanced API is ambiguous on this point.
3111 * Our approach is to determine the position based
3112 * according to the existence of a routing header.
3113 * Note, however, that this depends on the order of the
3114 * extension headers in the ancillary data; the 1st
3115 * part of the destination options header must appear
3116 * before the routing header in the ancillary data,
3117 * too.
3118 * RFC3542 solved the ambiguity by introducing
3119 * separate ancillary data or option types.
3120 */
3121 if (opt->ip6po_rthdr == NULL)
3122 newdest = &opt->ip6po_dest1;
3123 else
3124 newdest = &opt->ip6po_dest2;
3125 break;
3126 case IPV6_RTHDRDSTOPTS:
3127 newdest = &opt->ip6po_dest1;
3128 break;
3129 case IPV6_DSTOPTS:
3130 newdest = &opt->ip6po_dest2;
3131 break;
3132 }
3133
3134 /* turn off the previous option, then set the new option. */
3135 ip6_clearpktopts(opt, optname);
3136 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3137 if (*newdest == NULL)
3138 return (ENOBUFS);
3139 memcpy(*newdest, dest, destlen);
3140
3141 break;
3142 }
3143
3144 #ifdef RFC2292
3145 case IPV6_2292RTHDR:
3146 #endif
3147 case IPV6_RTHDR:
3148 {
3149 struct ip6_rthdr *rth;
3150 int rthlen;
3151
3152 if (len == 0) {
3153 ip6_clearpktopts(opt, IPV6_RTHDR);
3154 break; /* just remove the option */
3155 }
3156
3157 /* message length validation */
3158 if (len < sizeof(struct ip6_rthdr))
3159 return (EINVAL);
3160 rth = (struct ip6_rthdr *)buf;
3161 rthlen = (rth->ip6r_len + 1) << 3;
3162 if (len != rthlen)
3163 return (EINVAL);
3164 switch (rth->ip6r_type) {
3165 case IPV6_RTHDR_TYPE_0:
3166 /* Dropped, RFC5095. */
3167 default:
3168 return (EINVAL); /* not supported */
3169 }
3170 /* turn off the previous option */
3171 ip6_clearpktopts(opt, IPV6_RTHDR);
3172 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3173 if (opt->ip6po_rthdr == NULL)
3174 return (ENOBUFS);
3175 memcpy(opt->ip6po_rthdr, rth, rthlen);
3176 break;
3177 }
3178
3179 case IPV6_USE_MIN_MTU:
3180 if (len != sizeof(int))
3181 return (EINVAL);
3182 minmtupolicy = *(int *)buf;
3183 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3184 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3185 minmtupolicy != IP6PO_MINMTU_ALL) {
3186 return (EINVAL);
3187 }
3188 opt->ip6po_minmtu = minmtupolicy;
3189 break;
3190
3191 case IPV6_DONTFRAG:
3192 if (len != sizeof(int))
3193 return (EINVAL);
3194
3195 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3196 /*
3197 * we ignore this option for TCP sockets.
3198 * (RFC3542 leaves this case unspecified.)
3199 */
3200 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3201 } else
3202 opt->ip6po_flags |= IP6PO_DONTFRAG;
3203 break;
3204
3205 case IPV6_PREFER_TEMPADDR:
3206 {
3207 int preftemp;
3208
3209 if (len != sizeof(int))
3210 return (EINVAL);
3211 preftemp = *(int *)buf;
3212 switch (preftemp) {
3213 case IP6PO_TEMPADDR_SYSTEM:
3214 case IP6PO_TEMPADDR_NOTPREFER:
3215 case IP6PO_TEMPADDR_PREFER:
3216 break;
3217 default:
3218 return (EINVAL);
3219 }
3220 opt->ip6po_prefer_tempaddr = preftemp;
3221 break;
3222 }
3223
3224 default:
3225 return (ENOPROTOOPT);
3226 } /* end of switch */
3227
3228 return (0);
3229 }
3230
3231 /*
3232 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3233 * packet to the input queue of a specified interface. Note that this
3234 * calls the output routine of the loopback "driver", but with an interface
3235 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3236 */
3237 void
3238 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3239 const struct sockaddr_in6 *dst)
3240 {
3241 struct mbuf *copym;
3242 struct ip6_hdr *ip6;
3243
3244 copym = m_copypacket(m, M_DONTWAIT);
3245 if (copym == NULL)
3246 return;
3247
3248 /*
3249 * Make sure to deep-copy IPv6 header portion in case the data
3250 * is in an mbuf cluster, so that we can safely override the IPv6
3251 * header portion later.
3252 */
3253 if ((copym->m_flags & M_EXT) != 0 ||
3254 copym->m_len < sizeof(struct ip6_hdr)) {
3255 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3256 if (copym == NULL)
3257 return;
3258 }
3259
3260 #ifdef DIAGNOSTIC
3261 if (copym->m_len < sizeof(*ip6)) {
3262 m_freem(copym);
3263 return;
3264 }
3265 #endif
3266
3267 ip6 = mtod(copym, struct ip6_hdr *);
3268 /*
3269 * clear embedded scope identifiers if necessary.
3270 * in6_clearscope will touch the addresses only when necessary.
3271 */
3272 in6_clearscope(&ip6->ip6_src);
3273 in6_clearscope(&ip6->ip6_dst);
3274
3275 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3276 }
3277
3278 /*
3279 * Chop IPv6 header off from the payload.
3280 */
3281 static int
3282 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3283 {
3284 struct mbuf *mh;
3285 struct ip6_hdr *ip6;
3286
3287 ip6 = mtod(m, struct ip6_hdr *);
3288 if (m->m_len > sizeof(*ip6)) {
3289 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3290 if (mh == NULL) {
3291 m_freem(m);
3292 return ENOBUFS;
3293 }
3294 m_move_pkthdr(mh, m);
3295 m_align(mh, sizeof(*ip6));
3296 m->m_len -= sizeof(*ip6);
3297 m->m_data += sizeof(*ip6);
3298 mh->m_next = m;
3299 mh->m_len = sizeof(*ip6);
3300 memcpy(mtod(mh, void *), (void *)ip6, sizeof(*ip6));
3301 m = mh;
3302 }
3303 exthdrs->ip6e_ip6 = m;
3304 return 0;
3305 }
3306
3307 /*
3308 * Compute IPv6 extension header length.
3309 */
3310 int
3311 ip6_optlen(struct inpcb *inp)
3312 {
3313 int len;
3314
3315 if (!in6p_outputopts(inp))
3316 return 0;
3317
3318 len = 0;
3319 #define elen(x) \
3320 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3321
3322 len += elen(in6p_outputopts(inp)->ip6po_hbh);
3323 len += elen(in6p_outputopts(inp)->ip6po_dest1);
3324 len += elen(in6p_outputopts(inp)->ip6po_rthdr);
3325 len += elen(in6p_outputopts(inp)->ip6po_dest2);
3326 return len;
3327 #undef elen
3328 }
3329
3330 /*
3331 * Ensure sending address is valid.
3332 * Returns 0 on success, -1 if an error should be sent back or 1
3333 * if the packet could be dropped without error (protocol dependent).
3334 */
3335 static int
3336 ip6_ifaddrvalid(const struct in6_addr *src, const struct in6_addr *dst)
3337 {
3338 struct sockaddr_in6 sin6;
3339 int s, error;
3340 struct ifaddr *ifa;
3341 struct in6_ifaddr *ia6;
3342
3343 if (IN6_IS_ADDR_UNSPECIFIED(src))
3344 return 0;
3345
3346 memset(&sin6, 0, sizeof(sin6));
3347 sin6.sin6_family = AF_INET6;
3348 sin6.sin6_len = sizeof(sin6);
3349 sin6.sin6_addr = *src;
3350
3351 s = pserialize_read_enter();
3352 ifa = ifa_ifwithaddr(sin6tosa(&sin6));
3353 if ((ia6 = ifatoia6(ifa)) == NULL ||
3354 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
3355 error = -1;
3356 else if (ia6->ia6_flags & IN6_IFF_TENTATIVE)
3357 error = 1;
3358 else if (ia6->ia6_flags & IN6_IFF_DETACHED &&
3359 (sin6.sin6_addr = *dst, ifa_ifwithaddr(sin6tosa(&sin6)) == NULL))
3360 /* Allow internal traffic to DETACHED addresses */
3361 error = 1;
3362 else
3363 error = 0;
3364 pserialize_read_exit(s);
3365
3366 return error;
3367 }
3368