Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.233
      1 /*	$NetBSD: ip6_output.c,v 1.233 2023/03/20 09:15:52 ozaki-r Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.233 2023/03/20 09:15:52 ozaki-r Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_inet.h"
     69 #include "opt_inet6.h"
     70 #include "opt_ipsec.h"
     71 #endif
     72 
     73 #include <sys/param.h>
     74 #include <sys/malloc.h>
     75 #include <sys/mbuf.h>
     76 #include <sys/errno.h>
     77 #include <sys/socket.h>
     78 #include <sys/socketvar.h>
     79 #include <sys/syslog.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/kauth.h>
     83 
     84 #include <net/if.h>
     85 #include <net/route.h>
     86 #include <net/pfil.h>
     87 
     88 #include <netinet/in.h>
     89 #include <netinet/in_var.h>
     90 #include <netinet/ip6.h>
     91 #include <netinet/ip_var.h>
     92 #include <netinet/icmp6.h>
     93 #include <netinet/in_offload.h>
     94 #include <netinet/portalgo.h>
     95 #include <netinet6/in6_offload.h>
     96 #include <netinet6/ip6_var.h>
     97 #include <netinet6/ip6_private.h>
     98 #include <netinet6/in6_pcb.h>
     99 #include <netinet6/nd6.h>
    100 #include <netinet6/ip6protosw.h>
    101 #include <netinet6/scope6_var.h>
    102 
    103 #ifdef IPSEC
    104 #include <netipsec/ipsec.h>
    105 #include <netipsec/ipsec6.h>
    106 #include <netipsec/key.h>
    107 #endif
    108 
    109 extern pfil_head_t *inet6_pfil_hook;	/* XXX */
    110 
    111 struct ip6_exthdrs {
    112 	struct mbuf *ip6e_ip6;
    113 	struct mbuf *ip6e_hbh;
    114 	struct mbuf *ip6e_dest1;
    115 	struct mbuf *ip6e_rthdr;
    116 	struct mbuf *ip6e_dest2;
    117 };
    118 
    119 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
    120 	kauth_cred_t, int);
    121 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
    122 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
    123 	int, int, int);
    124 static int ip6_setmoptions(const struct sockopt *, struct inpcb *);
    125 static int ip6_getmoptions(struct sockopt *, struct inpcb *);
    126 static int ip6_copyexthdr(struct mbuf **, void *, int);
    127 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
    128 	struct ip6_frag **);
    129 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
    130 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
    131 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
    132 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
    133 static int ip6_ifaddrvalid(const struct in6_addr *, const struct in6_addr *);
    134 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
    135 
    136 #ifdef RFC2292
    137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
    138 #endif
    139 
    140 static int
    141 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
    142 {
    143 	int error = 0;
    144 
    145 	switch (rh->ip6r_type) {
    146 	case IPV6_RTHDR_TYPE_0:
    147 		/* Dropped, RFC5095. */
    148 	default:	/* is it possible? */
    149 		error = EINVAL;
    150 	}
    151 
    152 	return error;
    153 }
    154 
    155 /*
    156  * Send an IP packet to a host.
    157  */
    158 int
    159 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp,
    160     struct mbuf * const m, const struct sockaddr_in6 * const dst,
    161     const struct rtentry *rt)
    162 {
    163 	int error = 0;
    164 
    165 	if (rt != NULL) {
    166 		error = rt_check_reject_route(rt, ifp);
    167 		if (error != 0) {
    168 			IP6_STATINC(IP6_STAT_RTREJECT);
    169 			m_freem(m);
    170 			return error;
    171 		}
    172 	}
    173 
    174 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
    175 		error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
    176 	else
    177 		error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
    178 	return error;
    179 }
    180 
    181 /*
    182  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    183  * header (with pri, len, nxt, hlim, src, dst).
    184  *
    185  * This function may modify ver and hlim only. The mbuf chain containing the
    186  * packet will be freed. The mbuf opt, if present, will not be freed.
    187  *
    188  * Type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    189  * nd_ifinfo.linkmtu is u_int32_t. So we use u_long to hold largest one,
    190  * which is rt_rmx.rmx_mtu.
    191  */
    192 int
    193 ip6_output(
    194     struct mbuf *m0,
    195     struct ip6_pktopts *opt,
    196     struct route *ro,
    197     int flags,
    198     struct ip6_moptions *im6o,
    199     struct inpcb *inp,
    200     struct ifnet **ifpp		/* XXX: just for statistics */
    201 )
    202 {
    203 	struct ip6_hdr *ip6, *mhip6;
    204 	struct ifnet *ifp = NULL, *origifp = NULL;
    205 	struct mbuf *m = m0;
    206 	int tlen, len, off;
    207 	bool tso;
    208 	struct route ip6route;
    209 	struct rtentry *rt = NULL, *rt_pmtu;
    210 	const struct sockaddr_in6 *dst;
    211 	struct sockaddr_in6 src_sa, dst_sa;
    212 	int error = 0;
    213 	struct in6_ifaddr *ia = NULL;
    214 	u_long mtu;
    215 	int alwaysfrag, dontfrag;
    216 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    217 	struct ip6_exthdrs exthdrs;
    218 	struct in6_addr finaldst, src0, dst0;
    219 	u_int32_t zone;
    220 	struct route *ro_pmtu = NULL;
    221 	int hdrsplit = 0;
    222 	int needipsec = 0;
    223 #ifdef IPSEC
    224 	struct secpolicy *sp = NULL;
    225 #endif
    226 	struct psref psref, psref_ia;
    227 	int bound = curlwp_bind();
    228 	bool release_psref_ia = false;
    229 
    230 #ifdef DIAGNOSTIC
    231 	if ((m->m_flags & M_PKTHDR) == 0)
    232 		panic("ip6_output: no HDR");
    233 	if ((m->m_pkthdr.csum_flags &
    234 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
    235 		panic("ip6_output: IPv4 checksum offload flags: %d",
    236 		    m->m_pkthdr.csum_flags);
    237 	}
    238 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
    239 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
    240 		panic("ip6_output: conflicting checksum offload flags: %d",
    241 		    m->m_pkthdr.csum_flags);
    242 	}
    243 #endif
    244 
    245 	M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    246 
    247 #define MAKE_EXTHDR(hp, mp)						\
    248     do {								\
    249 	if (hp) {							\
    250 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    251 		error = ip6_copyexthdr((mp), (void *)(hp), 		\
    252 		    ((eh)->ip6e_len + 1) << 3);				\
    253 		if (error)						\
    254 			goto freehdrs;					\
    255 	}								\
    256     } while (/*CONSTCOND*/ 0)
    257 
    258 	memset(&exthdrs, 0, sizeof(exthdrs));
    259 	if (opt) {
    260 		/* Hop-by-Hop options header */
    261 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    262 		/* Destination options header (1st part) */
    263 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    264 		/* Routing header */
    265 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    266 		/* Destination options header (2nd part) */
    267 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    268 	}
    269 
    270 	/*
    271 	 * Calculate the total length of the extension header chain.
    272 	 * Keep the length of the unfragmentable part for fragmentation.
    273 	 */
    274 	optlen = 0;
    275 	if (exthdrs.ip6e_hbh)
    276 		optlen += exthdrs.ip6e_hbh->m_len;
    277 	if (exthdrs.ip6e_dest1)
    278 		optlen += exthdrs.ip6e_dest1->m_len;
    279 	if (exthdrs.ip6e_rthdr)
    280 		optlen += exthdrs.ip6e_rthdr->m_len;
    281 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    282 	/* NOTE: we don't add AH/ESP length here. do that later. */
    283 	if (exthdrs.ip6e_dest2)
    284 		optlen += exthdrs.ip6e_dest2->m_len;
    285 
    286 #ifdef IPSEC
    287 	if (ipsec_used) {
    288 		/* Check the security policy (SP) for the packet */
    289 		sp = ipsec6_check_policy(m, inp, flags, &needipsec, &error);
    290 		if (error != 0) {
    291 			/*
    292 			 * Hack: -EINVAL is used to signal that a packet
    293 			 * should be silently discarded.  This is typically
    294 			 * because we asked key management for an SA and
    295 			 * it was delayed (e.g. kicked up to IKE).
    296 			 */
    297 			if (error == -EINVAL)
    298 				error = 0;
    299 			IP6_STATINC(IP6_STAT_IPSECDROP_OUT);
    300 			goto freehdrs;
    301 		}
    302 	}
    303 #endif
    304 
    305 	if (needipsec &&
    306 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    307 		in6_undefer_cksum_tcpudp(m);
    308 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    309 	}
    310 
    311 	/*
    312 	 * If we need IPsec, or there is at least one extension header,
    313 	 * separate IP6 header from the payload.
    314 	 */
    315 	if ((needipsec || optlen) && !hdrsplit) {
    316 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    317 			IP6_STATINC(IP6_STAT_ODROPPED);
    318 			m = NULL;
    319 			goto freehdrs;
    320 		}
    321 		m = exthdrs.ip6e_ip6;
    322 		hdrsplit++;
    323 	}
    324 
    325 	/* adjust pointer */
    326 	ip6 = mtod(m, struct ip6_hdr *);
    327 
    328 	/* adjust mbuf packet header length */
    329 	m->m_pkthdr.len += optlen;
    330 	plen = m->m_pkthdr.len - sizeof(*ip6);
    331 
    332 	/* If this is a jumbo payload, insert a jumbo payload option. */
    333 	if (plen > IPV6_MAXPACKET) {
    334 		if (!hdrsplit) {
    335 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    336 				IP6_STATINC(IP6_STAT_ODROPPED);
    337 				m = NULL;
    338 				goto freehdrs;
    339 			}
    340 			m = exthdrs.ip6e_ip6;
    341 			hdrsplit++;
    342 		}
    343 		/* adjust pointer */
    344 		ip6 = mtod(m, struct ip6_hdr *);
    345 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) {
    346 			IP6_STATINC(IP6_STAT_ODROPPED);
    347 			goto freehdrs;
    348 		}
    349 		optlen += 8; /* XXX JUMBOOPTLEN */
    350 		ip6->ip6_plen = 0;
    351 	} else
    352 		ip6->ip6_plen = htons(plen);
    353 
    354 	/*
    355 	 * Concatenate headers and fill in next header fields.
    356 	 * Here we have, on "m"
    357 	 *	IPv6 payload
    358 	 * and we insert headers accordingly.  Finally, we should be getting:
    359 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    360 	 *
    361 	 * during the header composing process, "m" points to IPv6 header.
    362 	 * "mprev" points to an extension header prior to esp.
    363 	 */
    364 	{
    365 		u_char *nexthdrp = &ip6->ip6_nxt;
    366 		struct mbuf *mprev = m;
    367 
    368 		/*
    369 		 * we treat dest2 specially.  this makes IPsec processing
    370 		 * much easier.  the goal here is to make mprev point the
    371 		 * mbuf prior to dest2.
    372 		 *
    373 		 * result: IPv6 dest2 payload
    374 		 * m and mprev will point to IPv6 header.
    375 		 */
    376 		if (exthdrs.ip6e_dest2) {
    377 			if (!hdrsplit)
    378 				panic("assumption failed: hdr not split");
    379 			exthdrs.ip6e_dest2->m_next = m->m_next;
    380 			m->m_next = exthdrs.ip6e_dest2;
    381 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    382 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    383 		}
    384 
    385 #define MAKE_CHAIN(m, mp, p, i)\
    386     do {\
    387 	if (m) {\
    388 		if (!hdrsplit) \
    389 			panic("assumption failed: hdr not split"); \
    390 		*mtod((m), u_char *) = *(p);\
    391 		*(p) = (i);\
    392 		p = mtod((m), u_char *);\
    393 		(m)->m_next = (mp)->m_next;\
    394 		(mp)->m_next = (m);\
    395 		(mp) = (m);\
    396 	}\
    397     } while (/*CONSTCOND*/ 0)
    398 		/*
    399 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    400 		 * m will point to IPv6 header.  mprev will point to the
    401 		 * extension header prior to dest2 (rthdr in the above case).
    402 		 */
    403 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    404 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    405 		    IPPROTO_DSTOPTS);
    406 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    407 		    IPPROTO_ROUTING);
    408 
    409 		M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data,
    410 		    sizeof(struct ip6_hdr) + optlen);
    411 	}
    412 
    413 	/* Need to save for pmtu */
    414 	finaldst = ip6->ip6_dst;
    415 
    416 	/*
    417 	 * If there is a routing header, replace destination address field
    418 	 * with the first hop of the routing header.
    419 	 */
    420 	if (exthdrs.ip6e_rthdr) {
    421 		struct ip6_rthdr *rh;
    422 
    423 		rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
    424 
    425 		error = ip6_handle_rthdr(rh, ip6);
    426 		if (error != 0) {
    427 			IP6_STATINC(IP6_STAT_ODROPPED);
    428 			goto bad;
    429 		}
    430 	}
    431 
    432 	/* Source address validation */
    433 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    434 	    (flags & IPV6_UNSPECSRC) == 0) {
    435 		error = EOPNOTSUPP;
    436 		IP6_STATINC(IP6_STAT_BADSCOPE);
    437 		goto bad;
    438 	}
    439 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    440 		error = EOPNOTSUPP;
    441 		IP6_STATINC(IP6_STAT_BADSCOPE);
    442 		goto bad;
    443 	}
    444 
    445 	IP6_STATINC(IP6_STAT_LOCALOUT);
    446 
    447 	/*
    448 	 * Route packet.
    449 	 */
    450 	/* initialize cached route */
    451 	if (ro == NULL) {
    452 		memset(&ip6route, 0, sizeof(ip6route));
    453 		ro = &ip6route;
    454 	}
    455 	ro_pmtu = ro;
    456 	if (opt && opt->ip6po_rthdr)
    457 		ro = &opt->ip6po_route;
    458 
    459 	/*
    460 	 * if specified, try to fill in the traffic class field.
    461 	 * do not override if a non-zero value is already set.
    462 	 * we check the diffserv field and the ecn field separately.
    463 	 */
    464 	if (opt && opt->ip6po_tclass >= 0) {
    465 		int mask = 0;
    466 
    467 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    468 			mask |= 0xfc;
    469 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    470 			mask |= 0x03;
    471 		if (mask != 0)
    472 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    473 	}
    474 
    475 	/* fill in or override the hop limit field, if necessary. */
    476 	if (opt && opt->ip6po_hlim != -1)
    477 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    478 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    479 		if (im6o != NULL)
    480 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    481 		else
    482 			ip6->ip6_hlim = ip6_defmcasthlim;
    483 	}
    484 
    485 #ifdef IPSEC
    486 	if (needipsec) {
    487 		error = ipsec6_process_packet(m, sp->req, flags);
    488 
    489 		/*
    490 		 * Preserve KAME behaviour: ENOENT can be returned
    491 		 * when an SA acquire is in progress.  Don't propagate
    492 		 * this to user-level; it confuses applications.
    493 		 * XXX this will go away when the SADB is redone.
    494 		 */
    495 		if (error == ENOENT)
    496 			error = 0;
    497 
    498 		goto done;
    499 	}
    500 #endif
    501 
    502 	/* adjust pointer */
    503 	ip6 = mtod(m, struct ip6_hdr *);
    504 
    505 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    506 
    507 	/* We do not need a route for multicast */
    508 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    509 		struct in6_pktinfo *pi = NULL;
    510 
    511 		/*
    512 		 * If the outgoing interface for the address is specified by
    513 		 * the caller, use it.
    514 		 */
    515 		if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
    516 			/* XXX boundary check is assumed to be already done. */
    517 			ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
    518 		} else if (im6o != NULL) {
    519 			ifp = if_get_byindex(im6o->im6o_multicast_if_index,
    520 			    &psref);
    521 		}
    522 	}
    523 
    524 	if (ifp == NULL) {
    525 		error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
    526 		if (error != 0)
    527 			goto bad;
    528 		ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
    529 	}
    530 
    531 	if (rt == NULL) {
    532 		/*
    533 		 * If in6_selectroute() does not return a route entry,
    534 		 * dst may not have been updated.
    535 		 */
    536 		error = rtcache_setdst(ro, sin6tosa(&dst_sa));
    537 		if (error) {
    538 			IP6_STATINC(IP6_STAT_ODROPPED);
    539 			goto bad;
    540 		}
    541 	}
    542 
    543 	/*
    544 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    545 	 */
    546 	if ((flags & IPV6_FORWARDING) == 0) {
    547 		/* XXX: the FORWARDING flag can be set for mrouting. */
    548 		in6_ifstat_inc(ifp, ifs6_out_request);
    549 	}
    550 	if (rt != NULL) {
    551 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    552 		rt->rt_use++;
    553 	}
    554 
    555 	/*
    556 	 * The outgoing interface must be in the zone of source and
    557 	 * destination addresses.  We should use ia_ifp to support the
    558 	 * case of sending packets to an address of our own.
    559 	 */
    560 	if (ia != NULL) {
    561 		origifp = ia->ia_ifp;
    562 		if (if_is_deactivated(origifp)) {
    563 			IP6_STATINC(IP6_STAT_ODROPPED);
    564 			goto bad;
    565 		}
    566 		if_acquire(origifp, &psref_ia);
    567 		release_psref_ia = true;
    568 	} else
    569 		origifp = ifp;
    570 
    571 	src0 = ip6->ip6_src;
    572 	if (in6_setscope(&src0, origifp, &zone))
    573 		goto badscope;
    574 	sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
    575 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    576 		goto badscope;
    577 
    578 	dst0 = ip6->ip6_dst;
    579 	if (in6_setscope(&dst0, origifp, &zone))
    580 		goto badscope;
    581 	/* re-initialize to be sure */
    582 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    583 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    584 		goto badscope;
    585 
    586 	/* scope check is done. */
    587 
    588 	/* Ensure we only send from a valid address. */
    589 	if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
    590 	    (flags & IPV6_FORWARDING) == 0 &&
    591 	    (error = ip6_ifaddrvalid(&src0, &dst0)) != 0)
    592 	{
    593 		char ip6buf[INET6_ADDRSTRLEN];
    594 		nd6log(LOG_ERR,
    595 		    "refusing to send from invalid address %s (pid %d)\n",
    596 		    IN6_PRINT(ip6buf, &src0), curproc->p_pid);
    597 		IP6_STATINC(IP6_STAT_ODROPPED);
    598 		in6_ifstat_inc(origifp, ifs6_out_discard);
    599 		if (error == 1)
    600 			/*
    601 			 * Address exists, but is tentative or detached.
    602 			 * We can't send from it because it's invalid,
    603 			 * so we drop the packet.
    604 			 */
    605 			error = 0;
    606 		else
    607 			error = EADDRNOTAVAIL;
    608 		goto bad;
    609 	}
    610 
    611 	if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
    612 	    !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    613 		dst = satocsin6(rt->rt_gateway);
    614 	else
    615 		dst = satocsin6(rtcache_getdst(ro));
    616 
    617 	/*
    618 	 * XXXXXX: original code follows:
    619 	 */
    620 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    621 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    622 	else {
    623 		bool ingroup;
    624 
    625 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    626 
    627 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    628 
    629 		/*
    630 		 * Confirm that the outgoing interface supports multicast.
    631 		 */
    632 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    633 			IP6_STATINC(IP6_STAT_NOROUTE);
    634 			in6_ifstat_inc(ifp, ifs6_out_discard);
    635 			error = ENETUNREACH;
    636 			goto bad;
    637 		}
    638 
    639 		ingroup = in6_multi_group(&ip6->ip6_dst, ifp);
    640 		if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) {
    641 			/*
    642 			 * If we belong to the destination multicast group
    643 			 * on the outgoing interface, and the caller did not
    644 			 * forbid loopback, loop back a copy.
    645 			 */
    646 			KASSERT(dst != NULL);
    647 			ip6_mloopback(ifp, m, dst);
    648 		} else {
    649 			/*
    650 			 * If we are acting as a multicast router, perform
    651 			 * multicast forwarding as if the packet had just
    652 			 * arrived on the interface to which we are about
    653 			 * to send.  The multicast forwarding function
    654 			 * recursively calls this function, using the
    655 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    656 			 *
    657 			 * Multicasts that are looped back by ip6_mloopback(),
    658 			 * above, will be forwarded by the ip6_input() routine,
    659 			 * if necessary.
    660 			 */
    661 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    662 				if (ip6_mforward(ip6, ifp, m) != 0) {
    663 					m_freem(m);
    664 					goto done;
    665 				}
    666 			}
    667 		}
    668 		/*
    669 		 * Multicasts with a hoplimit of zero may be looped back,
    670 		 * above, but must not be transmitted on a network.
    671 		 * Also, multicasts addressed to the loopback interface
    672 		 * are not sent -- the above call to ip6_mloopback() will
    673 		 * loop back a copy if this host actually belongs to the
    674 		 * destination group on the loopback interface.
    675 		 */
    676 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    677 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    678 			m_freem(m);
    679 			goto done;
    680 		}
    681 	}
    682 
    683 	/*
    684 	 * Fill the outgoing interface to tell the upper layer
    685 	 * to increment per-interface statistics.
    686 	 */
    687 	if (ifpp)
    688 		*ifpp = ifp;
    689 
    690 	/* Determine path MTU. */
    691 	/*
    692 	 * ro_pmtu represent final destination while
    693 	 * ro might represent immediate destination.
    694 	 * Use ro_pmtu destination since MTU might differ.
    695 	 */
    696 	if (ro_pmtu != ro) {
    697 		union {
    698 			struct sockaddr		dst;
    699 			struct sockaddr_in6	dst6;
    700 		} u;
    701 
    702 		/* ro_pmtu may not have a cache */
    703 		sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
    704 		rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
    705 	} else
    706 		rt_pmtu = rt;
    707 	error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
    708 	if (rt_pmtu != NULL && rt_pmtu != rt)
    709 		rtcache_unref(rt_pmtu, ro_pmtu);
    710 	KASSERT(error == 0); /* ip6_getpmtu never fail if ifp is passed */
    711 
    712 	/*
    713 	 * The caller of this function may specify to use the minimum MTU
    714 	 * in some cases.
    715 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
    716 	 * setting.  The logic is a bit complicated; by default, unicast
    717 	 * packets will follow path MTU while multicast packets will be sent at
    718 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
    719 	 * including unicast ones will be sent at the minimum MTU.  Multicast
    720 	 * packets will always be sent at the minimum MTU unless
    721 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
    722 	 * See RFC 3542 for more details.
    723 	 */
    724 	if (mtu > IPV6_MMTU) {
    725 		if ((flags & IPV6_MINMTU))
    726 			mtu = IPV6_MMTU;
    727 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
    728 			mtu = IPV6_MMTU;
    729 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
    730 			 (opt == NULL ||
    731 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
    732 			mtu = IPV6_MMTU;
    733 		}
    734 	}
    735 
    736 	/*
    737 	 * clear embedded scope identifiers if necessary.
    738 	 * in6_clearscope will touch the addresses only when necessary.
    739 	 */
    740 	in6_clearscope(&ip6->ip6_src);
    741 	in6_clearscope(&ip6->ip6_dst);
    742 
    743 	/*
    744 	 * If the outgoing packet contains a hop-by-hop options header,
    745 	 * it must be examined and processed even by the source node.
    746 	 * (RFC 2460, section 4.)
    747 	 *
    748 	 * XXX Is this really necessary?
    749 	 */
    750 	if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
    751 		u_int32_t dummy1; /* XXX unused */
    752 		u_int32_t dummy2; /* XXX unused */
    753 		int hoff = sizeof(struct ip6_hdr);
    754 
    755 		if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
    756 			/* m was already freed at this point */
    757 			error = EINVAL;
    758 			goto done;
    759 		}
    760 
    761 		ip6 = mtod(m, struct ip6_hdr *);
    762 	}
    763 
    764 	/*
    765 	 * Run through list of hooks for output packets.
    766 	 */
    767 	error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT);
    768 	if (error != 0 || m == NULL) {
    769 		IP6_STATINC(IP6_STAT_PFILDROP_OUT);
    770 		goto done;
    771 	}
    772 	ip6 = mtod(m, struct ip6_hdr *);
    773 
    774 	/*
    775 	 * Send the packet to the outgoing interface.
    776 	 * If necessary, do IPv6 fragmentation before sending.
    777 	 *
    778 	 * the logic here is rather complex:
    779 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    780 	 * 1-a:	send as is if tlen <= path mtu
    781 	 * 1-b:	fragment if tlen > path mtu
    782 	 *
    783 	 * 2: if user asks us not to fragment (dontfrag == 1)
    784 	 * 2-a:	send as is if tlen <= interface mtu
    785 	 * 2-b:	error if tlen > interface mtu
    786 	 *
    787 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    788 	 *	always fragment
    789 	 *
    790 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    791 	 *	error, as we cannot handle this conflicting request
    792 	 */
    793 	tlen = m->m_pkthdr.len;
    794 	tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
    795 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
    796 		dontfrag = 1;
    797 	else
    798 		dontfrag = 0;
    799 
    800 	if (dontfrag && alwaysfrag) {	/* case 4 */
    801 		/* conflicting request - can't transmit */
    802 		IP6_STATINC(IP6_STAT_CANTFRAG);
    803 		error = EMSGSIZE;
    804 		goto bad;
    805 	}
    806 	if (dontfrag && (!tso && tlen > ifp->if_mtu)) {	/* case 2-b */
    807 		/*
    808 		 * Even if the DONTFRAG option is specified, we cannot send the
    809 		 * packet when the data length is larger than the MTU of the
    810 		 * outgoing interface.
    811 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    812 		 * well as returning an error code (the latter is not described
    813 		 * in the API spec.)
    814 		 */
    815 		u_int32_t mtu32;
    816 		struct ip6ctlparam ip6cp;
    817 
    818 		mtu32 = (u_int32_t)mtu;
    819 		memset(&ip6cp, 0, sizeof(ip6cp));
    820 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    821 		pfctlinput2(PRC_MSGSIZE,
    822 		    rtcache_getdst(ro_pmtu), &ip6cp);
    823 
    824 		IP6_STATINC(IP6_STAT_CANTFRAG);
    825 		error = EMSGSIZE;
    826 		goto bad;
    827 	}
    828 
    829 	/*
    830 	 * transmit packet without fragmentation
    831 	 */
    832 	if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
    833 		/* case 1-a and 2-a */
    834 		struct in6_ifaddr *ia6;
    835 		int sw_csum;
    836 		int s;
    837 
    838 		ip6 = mtod(m, struct ip6_hdr *);
    839 		s = pserialize_read_enter();
    840 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    841 		if (ia6) {
    842 			/* Record statistics for this interface address. */
    843 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    844 		}
    845 		pserialize_read_exit(s);
    846 
    847 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    848 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    849 			if (IN6_NEED_CHECKSUM(ifp,
    850 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    851 				in6_undefer_cksum_tcpudp(m);
    852 			}
    853 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    854 		}
    855 
    856 		KASSERT(dst != NULL);
    857 		if (__predict_false(sw_csum & M_CSUM_TSOv6)) {
    858 			/*
    859 			 * TSO6 is required by a packet, but disabled for
    860 			 * the interface.
    861 			 */
    862 			error = ip6_tso_output(ifp, origifp, m, dst, rt);
    863 		} else
    864 			error = ip6_if_output(ifp, origifp, m, dst, rt);
    865 		goto done;
    866 	}
    867 
    868 	if (tso) {
    869 		IP6_STATINC(IP6_STAT_CANTFRAG); /* XXX */
    870 		error = EINVAL; /* XXX */
    871 		goto bad;
    872 	}
    873 
    874 	/*
    875 	 * try to fragment the packet.  case 1-b and 3
    876 	 */
    877 	if (mtu < IPV6_MMTU) {
    878 		/* path MTU cannot be less than IPV6_MMTU */
    879 		IP6_STATINC(IP6_STAT_CANTFRAG);
    880 		error = EMSGSIZE;
    881 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    882 		goto bad;
    883 	} else if (ip6->ip6_plen == 0) {
    884 		/* jumbo payload cannot be fragmented */
    885 		IP6_STATINC(IP6_STAT_CANTFRAG);
    886 		error = EMSGSIZE;
    887 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    888 		goto bad;
    889 	} else {
    890 		const uint32_t id = ip6_randomid();
    891 		struct mbuf **mnext, *m_frgpart;
    892 		const int hlen = unfragpartlen;
    893 		struct ip6_frag *ip6f;
    894 		u_char nextproto;
    895 
    896 		if (mtu > IPV6_MAXPACKET)
    897 			mtu = IPV6_MAXPACKET;
    898 
    899 		/*
    900 		 * Must be able to put at least 8 bytes per fragment.
    901 		 */
    902 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    903 		if (len < 8) {
    904 			IP6_STATINC(IP6_STAT_CANTFRAG);
    905 			error = EMSGSIZE;
    906 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
    907 			goto bad;
    908 		}
    909 
    910 		mnext = &m->m_nextpkt;
    911 
    912 		/*
    913 		 * Change the next header field of the last header in the
    914 		 * unfragmentable part.
    915 		 */
    916 		if (exthdrs.ip6e_rthdr) {
    917 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    918 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    919 		} else if (exthdrs.ip6e_dest1) {
    920 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    921 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    922 		} else if (exthdrs.ip6e_hbh) {
    923 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    924 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    925 		} else {
    926 			nextproto = ip6->ip6_nxt;
    927 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    928 		}
    929 
    930 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
    931 		    != 0) {
    932 			if (IN6_NEED_CHECKSUM(ifp,
    933 			    m->m_pkthdr.csum_flags &
    934 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    935 				in6_undefer_cksum_tcpudp(m);
    936 			}
    937 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    938 		}
    939 
    940 		/*
    941 		 * Loop through length of segment after first fragment,
    942 		 * make new header and copy data of each part and link onto
    943 		 * chain.
    944 		 */
    945 		m0 = m;
    946 		for (off = hlen; off < tlen; off += len) {
    947 			struct mbuf *mlast;
    948 
    949 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
    950 			if (!m) {
    951 				error = ENOBUFS;
    952 				IP6_STATINC(IP6_STAT_ODROPPED);
    953 				goto sendorfree;
    954 			}
    955 			m_reset_rcvif(m);
    956 			m->m_flags = m0->m_flags & M_COPYFLAGS;
    957 			*mnext = m;
    958 			mnext = &m->m_nextpkt;
    959 			m->m_data += max_linkhdr;
    960 			mhip6 = mtod(m, struct ip6_hdr *);
    961 			*mhip6 = *ip6;
    962 			m->m_len = sizeof(*mhip6);
    963 
    964 			ip6f = NULL;
    965 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
    966 			if (error) {
    967 				IP6_STATINC(IP6_STAT_ODROPPED);
    968 				goto sendorfree;
    969 			}
    970 
    971 			/* Fill in the Frag6 Header */
    972 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
    973 			if (off + len >= tlen)
    974 				len = tlen - off;
    975 			else
    976 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
    977 			ip6f->ip6f_reserved = 0;
    978 			ip6f->ip6f_ident = id;
    979 			ip6f->ip6f_nxt = nextproto;
    980 
    981 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
    982 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
    983 			if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) {
    984 				error = ENOBUFS;
    985 				IP6_STATINC(IP6_STAT_ODROPPED);
    986 				goto sendorfree;
    987 			}
    988 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
    989 				;
    990 			mlast->m_next = m_frgpart;
    991 
    992 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
    993 			m_reset_rcvif(m);
    994 			IP6_STATINC(IP6_STAT_OFRAGMENTS);
    995 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
    996 		}
    997 
    998 		in6_ifstat_inc(ifp, ifs6_out_fragok);
    999 	}
   1000 
   1001 sendorfree:
   1002 	m = m0->m_nextpkt;
   1003 	m0->m_nextpkt = 0;
   1004 	m_freem(m0);
   1005 	for (m0 = m; m; m = m0) {
   1006 		m0 = m->m_nextpkt;
   1007 		m->m_nextpkt = 0;
   1008 		if (error == 0) {
   1009 			struct in6_ifaddr *ia6;
   1010 			int s;
   1011 			ip6 = mtod(m, struct ip6_hdr *);
   1012 			s = pserialize_read_enter();
   1013 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
   1014 			if (ia6) {
   1015 				/*
   1016 				 * Record statistics for this interface
   1017 				 * address.
   1018 				 */
   1019 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
   1020 				    m->m_pkthdr.len;
   1021 			}
   1022 			pserialize_read_exit(s);
   1023 			KASSERT(dst != NULL);
   1024 			error = ip6_if_output(ifp, origifp, m, dst, rt);
   1025 		} else
   1026 			m_freem(m);
   1027 	}
   1028 
   1029 	if (error == 0)
   1030 		IP6_STATINC(IP6_STAT_FRAGMENTED);
   1031 
   1032 done:
   1033 	rtcache_unref(rt, ro);
   1034 	if (ro == &ip6route)
   1035 		rtcache_free(&ip6route);
   1036 #ifdef IPSEC
   1037 	if (sp != NULL)
   1038 		KEY_SP_UNREF(&sp);
   1039 #endif
   1040 	if_put(ifp, &psref);
   1041 	if (release_psref_ia)
   1042 		if_put(origifp, &psref_ia);
   1043 	curlwp_bindx(bound);
   1044 
   1045 	return error;
   1046 
   1047 freehdrs:
   1048 	m_freem(exthdrs.ip6e_hbh);
   1049 	m_freem(exthdrs.ip6e_dest1);
   1050 	m_freem(exthdrs.ip6e_rthdr);
   1051 	m_freem(exthdrs.ip6e_dest2);
   1052 	/* FALLTHROUGH */
   1053 bad:
   1054 	m_freem(m);
   1055 	goto done;
   1056 
   1057 badscope:
   1058 	IP6_STATINC(IP6_STAT_BADSCOPE);
   1059 	in6_ifstat_inc(origifp, ifs6_out_discard);
   1060 	if (error == 0)
   1061 		error = EHOSTUNREACH; /* XXX */
   1062 	goto bad;
   1063 }
   1064 
   1065 static int
   1066 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
   1067 {
   1068 	struct mbuf *m;
   1069 
   1070 	if (hlen > MCLBYTES)
   1071 		return ENOBUFS; /* XXX */
   1072 
   1073 	MGET(m, M_DONTWAIT, MT_DATA);
   1074 	if (!m)
   1075 		return ENOBUFS;
   1076 
   1077 	if (hlen > MLEN) {
   1078 		MCLGET(m, M_DONTWAIT);
   1079 		if ((m->m_flags & M_EXT) == 0) {
   1080 			m_free(m);
   1081 			return ENOBUFS;
   1082 		}
   1083 	}
   1084 	m->m_len = hlen;
   1085 	if (hdr)
   1086 		memcpy(mtod(m, void *), hdr, hlen);
   1087 
   1088 	*mp = m;
   1089 	return 0;
   1090 }
   1091 
   1092 /*
   1093  * Insert jumbo payload option.
   1094  */
   1095 static int
   1096 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
   1097 {
   1098 	struct mbuf *mopt;
   1099 	u_int8_t *optbuf;
   1100 	u_int32_t v;
   1101 
   1102 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1103 
   1104 	/*
   1105 	 * If there is no hop-by-hop options header, allocate new one.
   1106 	 * If there is one but it doesn't have enough space to store the
   1107 	 * jumbo payload option, allocate a cluster to store the whole options.
   1108 	 * Otherwise, use it to store the options.
   1109 	 */
   1110 	if (exthdrs->ip6e_hbh == NULL) {
   1111 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1112 		if (mopt == 0)
   1113 			return (ENOBUFS);
   1114 		mopt->m_len = JUMBOOPTLEN;
   1115 		optbuf = mtod(mopt, u_int8_t *);
   1116 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1117 		exthdrs->ip6e_hbh = mopt;
   1118 	} else {
   1119 		struct ip6_hbh *hbh;
   1120 
   1121 		mopt = exthdrs->ip6e_hbh;
   1122 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1123 			const int oldoptlen = mopt->m_len;
   1124 			struct mbuf *n;
   1125 
   1126 			/*
   1127 			 * Assumptions:
   1128 			 * - exthdrs->ip6e_hbh is not referenced from places
   1129 			 *   other than exthdrs.
   1130 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1131 			 */
   1132 			KASSERT(mopt->m_next == NULL);
   1133 
   1134 			/*
   1135 			 * Give up if the whole (new) hbh header does not fit
   1136 			 * even in an mbuf cluster.
   1137 			 */
   1138 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1139 				return ENOBUFS;
   1140 
   1141 			/*
   1142 			 * At this point, we must always prepare a cluster.
   1143 			 */
   1144 			MGET(n, M_DONTWAIT, MT_DATA);
   1145 			if (n) {
   1146 				MCLGET(n, M_DONTWAIT);
   1147 				if ((n->m_flags & M_EXT) == 0) {
   1148 					m_freem(n);
   1149 					n = NULL;
   1150 				}
   1151 			}
   1152 			if (!n)
   1153 				return ENOBUFS;
   1154 
   1155 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1156 			bcopy(mtod(mopt, void *), mtod(n, void *),
   1157 			    oldoptlen);
   1158 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1159 			m_freem(mopt);
   1160 			mopt = exthdrs->ip6e_hbh = n;
   1161 		} else {
   1162 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1163 			mopt->m_len += JUMBOOPTLEN;
   1164 		}
   1165 		optbuf[0] = IP6OPT_PADN;
   1166 		optbuf[1] = 0;
   1167 
   1168 		/*
   1169 		 * Adjust the header length according to the pad and
   1170 		 * the jumbo payload option.
   1171 		 */
   1172 		hbh = mtod(mopt, struct ip6_hbh *);
   1173 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1174 	}
   1175 
   1176 	/* fill in the option. */
   1177 	optbuf[2] = IP6OPT_JUMBO;
   1178 	optbuf[3] = 4;
   1179 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1180 	memcpy(&optbuf[4], &v, sizeof(u_int32_t));
   1181 
   1182 	/* finally, adjust the packet header length */
   1183 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1184 
   1185 	return 0;
   1186 #undef JUMBOOPTLEN
   1187 }
   1188 
   1189 /*
   1190  * Insert fragment header and copy unfragmentable header portions.
   1191  *
   1192  * *frghdrp will not be read, and it is guaranteed that either an
   1193  * error is returned or that *frghdrp will point to space allocated
   1194  * for the fragment header.
   1195  *
   1196  * On entry, m contains:
   1197  *     IPv6 Header
   1198  * On exit, it contains:
   1199  *     IPv6 Header -> Unfragmentable Part -> Frag6 Header
   1200  */
   1201 static int
   1202 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
   1203 	struct ip6_frag **frghdrp)
   1204 {
   1205 	struct mbuf *n, *mlast;
   1206 
   1207 	if (hlen > sizeof(struct ip6_hdr)) {
   1208 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1209 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1210 		if (n == NULL)
   1211 			return ENOBUFS;
   1212 		m->m_next = n;
   1213 	} else
   1214 		n = m;
   1215 
   1216 	/* Search for the last mbuf of unfragmentable part. */
   1217 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1218 		;
   1219 
   1220 	if ((mlast->m_flags & M_EXT) == 0 &&
   1221 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1222 		/* use the trailing space of the last mbuf for the fragment hdr */
   1223 		*frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
   1224 		    mlast->m_len);
   1225 		mlast->m_len += sizeof(struct ip6_frag);
   1226 	} else {
   1227 		/* allocate a new mbuf for the fragment header */
   1228 		struct mbuf *mfrg;
   1229 
   1230 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1231 		if (mfrg == NULL)
   1232 			return ENOBUFS;
   1233 		mfrg->m_len = sizeof(struct ip6_frag);
   1234 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1235 		mlast->m_next = mfrg;
   1236 	}
   1237 
   1238 	return 0;
   1239 }
   1240 
   1241 static int
   1242 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
   1243     int *alwaysfragp)
   1244 {
   1245 	u_int32_t mtu = 0;
   1246 	int alwaysfrag = 0;
   1247 	int error = 0;
   1248 
   1249 	if (rt != NULL) {
   1250 		if (ifp == NULL)
   1251 			ifp = rt->rt_ifp;
   1252 		mtu = rt->rt_rmx.rmx_mtu;
   1253 		if (mtu == 0)
   1254 			mtu = ifp->if_mtu;
   1255 		else if (mtu < IPV6_MMTU) {
   1256 			/*
   1257 			 * RFC2460 section 5, last paragraph:
   1258 			 * if we record ICMPv6 too big message with
   1259 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1260 			 * or smaller, with fragment header attached.
   1261 			 * (fragment header is needed regardless from the
   1262 			 * packet size, for translators to identify packets)
   1263 			 */
   1264 			alwaysfrag = 1;
   1265 			mtu = IPV6_MMTU;
   1266 		} else if (mtu > ifp->if_mtu) {
   1267 			/*
   1268 			 * The MTU on the route is larger than the MTU on
   1269 			 * the interface!  This shouldn't happen, unless the
   1270 			 * MTU of the interface has been changed after the
   1271 			 * interface was brought up.  Change the MTU in the
   1272 			 * route to match the interface MTU (as long as the
   1273 			 * field isn't locked).
   1274 			 */
   1275 			mtu = ifp->if_mtu;
   1276 			if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
   1277 				rt->rt_rmx.rmx_mtu = mtu;
   1278 		}
   1279 	} else if (ifp) {
   1280 		mtu = ifp->if_mtu;
   1281 	} else
   1282 		error = EHOSTUNREACH; /* XXX */
   1283 
   1284 	*mtup = mtu;
   1285 	if (alwaysfragp)
   1286 		*alwaysfragp = alwaysfrag;
   1287 	return (error);
   1288 }
   1289 
   1290 /*
   1291  * IP6 socket option processing.
   1292  */
   1293 int
   1294 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1295 {
   1296 	int optdatalen, uproto;
   1297 	void *optdata;
   1298 	struct inpcb *inp = sotoinpcb(so);
   1299 	struct ip_moptions **mopts;
   1300 	int error, optval;
   1301 	int level, optname;
   1302 
   1303 	KASSERT(solocked(so));
   1304 	KASSERT(sopt != NULL);
   1305 
   1306 	level = sopt->sopt_level;
   1307 	optname = sopt->sopt_name;
   1308 
   1309 	error = optval = 0;
   1310 	uproto = (int)so->so_proto->pr_protocol;
   1311 
   1312 	switch (level) {
   1313 	case IPPROTO_IP:
   1314 		switch (optname) {
   1315 		case IP_ADD_MEMBERSHIP:
   1316 		case IP_DROP_MEMBERSHIP:
   1317 		case IP_MULTICAST_IF:
   1318 		case IP_MULTICAST_LOOP:
   1319 		case IP_MULTICAST_TTL:
   1320 			mopts = &inp->inp_moptions;
   1321 			switch (op) {
   1322 			case PRCO_GETOPT:
   1323 				return ip_getmoptions(*mopts, sopt);
   1324 			case PRCO_SETOPT:
   1325 				return ip_setmoptions(mopts, sopt);
   1326 			default:
   1327 				return EINVAL;
   1328 			}
   1329 		default:
   1330 			return ENOPROTOOPT;
   1331 		}
   1332 	case IPPROTO_IPV6:
   1333 		break;
   1334 	default:
   1335 		return ENOPROTOOPT;
   1336 	}
   1337 	switch (op) {
   1338 	case PRCO_SETOPT:
   1339 		switch (optname) {
   1340 #ifdef RFC2292
   1341 		case IPV6_2292PKTOPTIONS:
   1342 			error = ip6_pcbopts(&in6p_outputopts(inp), so, sopt);
   1343 			break;
   1344 #endif
   1345 
   1346 		/*
   1347 		 * Use of some Hop-by-Hop options or some
   1348 		 * Destination options, might require special
   1349 		 * privilege.  That is, normal applications
   1350 		 * (without special privilege) might be forbidden
   1351 		 * from setting certain options in outgoing packets,
   1352 		 * and might never see certain options in received
   1353 		 * packets. [RFC 2292 Section 6]
   1354 		 * KAME specific note:
   1355 		 *  KAME prevents non-privileged users from sending or
   1356 		 *  receiving ANY hbh/dst options in order to avoid
   1357 		 *  overhead of parsing options in the kernel.
   1358 		 */
   1359 		case IPV6_RECVHOPOPTS:
   1360 		case IPV6_RECVDSTOPTS:
   1361 		case IPV6_RECVRTHDRDSTOPTS:
   1362 			error = kauth_authorize_network(
   1363 			    kauth_cred_get(),
   1364 			    KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
   1365 			    NULL, NULL, NULL);
   1366 			if (error)
   1367 				break;
   1368 			/* FALLTHROUGH */
   1369 		case IPV6_UNICAST_HOPS:
   1370 		case IPV6_HOPLIMIT:
   1371 		case IPV6_FAITH:
   1372 
   1373 		case IPV6_RECVPKTINFO:
   1374 		case IPV6_RECVHOPLIMIT:
   1375 		case IPV6_RECVRTHDR:
   1376 		case IPV6_RECVPATHMTU:
   1377 		case IPV6_RECVTCLASS:
   1378 		case IPV6_V6ONLY:
   1379 		case IPV6_BINDANY:
   1380 			error = sockopt_getint(sopt, &optval);
   1381 			if (error)
   1382 				break;
   1383 			switch (optname) {
   1384 			case IPV6_UNICAST_HOPS:
   1385 				if (optval < -1 || optval >= 256)
   1386 					error = EINVAL;
   1387 				else {
   1388 					/* -1 = kernel default */
   1389 					in6p_hops6(inp) = optval;
   1390 				}
   1391 				break;
   1392 #define OPTSET(bit) \
   1393 do { \
   1394 if (optval) \
   1395 	inp->inp_flags |= (bit); \
   1396 else \
   1397 	inp->inp_flags &= ~(bit); \
   1398 } while (/*CONSTCOND*/ 0)
   1399 
   1400 #ifdef RFC2292
   1401 #define OPTSET2292(bit) 			\
   1402 do { 						\
   1403 inp->inp_flags |= IN6P_RFC2292; 	\
   1404 if (optval) 				\
   1405 	inp->inp_flags |= (bit); 	\
   1406 else 					\
   1407 	inp->inp_flags &= ~(bit); 	\
   1408 } while (/*CONSTCOND*/ 0)
   1409 #endif
   1410 
   1411 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0)
   1412 
   1413 			case IPV6_RECVPKTINFO:
   1414 #ifdef RFC2292
   1415 				/* cannot mix with RFC2292 */
   1416 				if (OPTBIT(IN6P_RFC2292)) {
   1417 					error = EINVAL;
   1418 					break;
   1419 				}
   1420 #endif
   1421 				OPTSET(IN6P_PKTINFO);
   1422 				break;
   1423 
   1424 			case IPV6_HOPLIMIT:
   1425 			{
   1426 				struct ip6_pktopts **optp;
   1427 
   1428 #ifdef RFC2292
   1429 				/* cannot mix with RFC2292 */
   1430 				if (OPTBIT(IN6P_RFC2292)) {
   1431 					error = EINVAL;
   1432 					break;
   1433 				}
   1434 #endif
   1435 				optp = &in6p_outputopts(inp);
   1436 				error = ip6_pcbopt(IPV6_HOPLIMIT,
   1437 						   (u_char *)&optval,
   1438 						   sizeof(optval),
   1439 						   optp,
   1440 						   kauth_cred_get(), uproto);
   1441 				break;
   1442 			}
   1443 
   1444 			case IPV6_RECVHOPLIMIT:
   1445 #ifdef RFC2292
   1446 				/* cannot mix with RFC2292 */
   1447 				if (OPTBIT(IN6P_RFC2292)) {
   1448 					error = EINVAL;
   1449 					break;
   1450 				}
   1451 #endif
   1452 				OPTSET(IN6P_HOPLIMIT);
   1453 				break;
   1454 
   1455 			case IPV6_RECVHOPOPTS:
   1456 #ifdef RFC2292
   1457 				/* cannot mix with RFC2292 */
   1458 				if (OPTBIT(IN6P_RFC2292)) {
   1459 					error = EINVAL;
   1460 					break;
   1461 				}
   1462 #endif
   1463 				OPTSET(IN6P_HOPOPTS);
   1464 				break;
   1465 
   1466 			case IPV6_RECVDSTOPTS:
   1467 #ifdef RFC2292
   1468 				/* cannot mix with RFC2292 */
   1469 				if (OPTBIT(IN6P_RFC2292)) {
   1470 					error = EINVAL;
   1471 					break;
   1472 				}
   1473 #endif
   1474 				OPTSET(IN6P_DSTOPTS);
   1475 				break;
   1476 
   1477 			case IPV6_RECVRTHDRDSTOPTS:
   1478 #ifdef RFC2292
   1479 				/* cannot mix with RFC2292 */
   1480 				if (OPTBIT(IN6P_RFC2292)) {
   1481 					error = EINVAL;
   1482 					break;
   1483 				}
   1484 #endif
   1485 				OPTSET(IN6P_RTHDRDSTOPTS);
   1486 				break;
   1487 
   1488 			case IPV6_RECVRTHDR:
   1489 #ifdef RFC2292
   1490 				/* cannot mix with RFC2292 */
   1491 				if (OPTBIT(IN6P_RFC2292)) {
   1492 					error = EINVAL;
   1493 					break;
   1494 				}
   1495 #endif
   1496 				OPTSET(IN6P_RTHDR);
   1497 				break;
   1498 
   1499 			case IPV6_FAITH:
   1500 				OPTSET(IN6P_FAITH);
   1501 				break;
   1502 
   1503 			case IPV6_RECVPATHMTU:
   1504 				/*
   1505 				 * We ignore this option for TCP
   1506 				 * sockets.
   1507 				 * (RFC3542 leaves this case
   1508 				 * unspecified.)
   1509 				 */
   1510 				if (uproto != IPPROTO_TCP)
   1511 					OPTSET(IN6P_MTU);
   1512 				break;
   1513 
   1514 			case IPV6_V6ONLY:
   1515 				/*
   1516 				 * make setsockopt(IPV6_V6ONLY)
   1517 				 * available only prior to bind(2).
   1518 				 * see ipng mailing list, Jun 22 2001.
   1519 				 */
   1520 				if (inp->inp_lport ||
   1521 				    !IN6_IS_ADDR_UNSPECIFIED(&in6p_laddr(inp))) {
   1522 					error = EINVAL;
   1523 					break;
   1524 				}
   1525 #ifdef INET6_BINDV6ONLY
   1526 				if (!optval)
   1527 					error = EINVAL;
   1528 #else
   1529 				OPTSET(IN6P_IPV6_V6ONLY);
   1530 #endif
   1531 				break;
   1532 
   1533 			case IPV6_RECVTCLASS:
   1534 #ifdef RFC2292
   1535 				/* cannot mix with RFC2292 XXX */
   1536 				if (OPTBIT(IN6P_RFC2292)) {
   1537 					error = EINVAL;
   1538 					break;
   1539 				}
   1540 #endif
   1541 				OPTSET(IN6P_TCLASS);
   1542 				break;
   1543 
   1544 			case IPV6_BINDANY:
   1545 				error = kauth_authorize_network(
   1546 				    kauth_cred_get(), KAUTH_NETWORK_BIND,
   1547 				    KAUTH_REQ_NETWORK_BIND_ANYADDR, so, NULL,
   1548 				    NULL);
   1549 				if (error)
   1550 					break;
   1551 				OPTSET(IN6P_BINDANY);
   1552 				break;
   1553 			}
   1554 			break;
   1555 
   1556 		case IPV6_OTCLASS:
   1557 		{
   1558 			struct ip6_pktopts **optp;
   1559 			u_int8_t tclass;
   1560 
   1561 			error = sockopt_get(sopt, &tclass, sizeof(tclass));
   1562 			if (error)
   1563 				break;
   1564 			optp = &in6p_outputopts(inp);
   1565 			error = ip6_pcbopt(optname,
   1566 					   (u_char *)&tclass,
   1567 					   sizeof(tclass),
   1568 					   optp,
   1569 					   kauth_cred_get(), uproto);
   1570 			break;
   1571 		}
   1572 
   1573 		case IPV6_TCLASS:
   1574 		case IPV6_DONTFRAG:
   1575 		case IPV6_USE_MIN_MTU:
   1576 		case IPV6_PREFER_TEMPADDR:
   1577 			error = sockopt_getint(sopt, &optval);
   1578 			if (error)
   1579 				break;
   1580 			{
   1581 				struct ip6_pktopts **optp;
   1582 				optp = &in6p_outputopts(inp);
   1583 				error = ip6_pcbopt(optname,
   1584 						   (u_char *)&optval,
   1585 						   sizeof(optval),
   1586 						   optp,
   1587 						   kauth_cred_get(), uproto);
   1588 				break;
   1589 			}
   1590 
   1591 #ifdef RFC2292
   1592 		case IPV6_2292PKTINFO:
   1593 		case IPV6_2292HOPLIMIT:
   1594 		case IPV6_2292HOPOPTS:
   1595 		case IPV6_2292DSTOPTS:
   1596 		case IPV6_2292RTHDR:
   1597 			/* RFC 2292 */
   1598 			error = sockopt_getint(sopt, &optval);
   1599 			if (error)
   1600 				break;
   1601 
   1602 			switch (optname) {
   1603 			case IPV6_2292PKTINFO:
   1604 				OPTSET2292(IN6P_PKTINFO);
   1605 				break;
   1606 			case IPV6_2292HOPLIMIT:
   1607 				OPTSET2292(IN6P_HOPLIMIT);
   1608 				break;
   1609 			case IPV6_2292HOPOPTS:
   1610 				/*
   1611 				 * Check super-user privilege.
   1612 				 * See comments for IPV6_RECVHOPOPTS.
   1613 				 */
   1614 				error = kauth_authorize_network(
   1615 				    kauth_cred_get(),
   1616 				    KAUTH_NETWORK_IPV6,
   1617 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1618 				    NULL, NULL);
   1619 				if (error)
   1620 					return (error);
   1621 				OPTSET2292(IN6P_HOPOPTS);
   1622 				break;
   1623 			case IPV6_2292DSTOPTS:
   1624 				error = kauth_authorize_network(
   1625 				    kauth_cred_get(),
   1626 				    KAUTH_NETWORK_IPV6,
   1627 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1628 				    NULL, NULL);
   1629 				if (error)
   1630 					return (error);
   1631 				OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
   1632 				break;
   1633 			case IPV6_2292RTHDR:
   1634 				OPTSET2292(IN6P_RTHDR);
   1635 				break;
   1636 			}
   1637 			break;
   1638 #endif
   1639 		case IPV6_PKTINFO:
   1640 		case IPV6_HOPOPTS:
   1641 		case IPV6_RTHDR:
   1642 		case IPV6_DSTOPTS:
   1643 		case IPV6_RTHDRDSTOPTS:
   1644 		case IPV6_NEXTHOP: {
   1645 			/* new advanced API (RFC3542) */
   1646 			void *optbuf;
   1647 			int optbuflen;
   1648 			struct ip6_pktopts **optp;
   1649 
   1650 #ifdef RFC2292
   1651 			/* cannot mix with RFC2292 */
   1652 			if (OPTBIT(IN6P_RFC2292)) {
   1653 				error = EINVAL;
   1654 				break;
   1655 			}
   1656 #endif
   1657 
   1658 			optbuflen = sopt->sopt_size;
   1659 			optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
   1660 			if (optbuf == NULL) {
   1661 				error = ENOBUFS;
   1662 				break;
   1663 			}
   1664 
   1665 			error = sockopt_get(sopt, optbuf, optbuflen);
   1666 			if (error) {
   1667 				free(optbuf, M_IP6OPT);
   1668 				break;
   1669 			}
   1670 			optp = &in6p_outputopts(inp);
   1671 			error = ip6_pcbopt(optname, optbuf, optbuflen,
   1672 			    optp, kauth_cred_get(), uproto);
   1673 
   1674 			free(optbuf, M_IP6OPT);
   1675 			break;
   1676 			}
   1677 #undef OPTSET
   1678 
   1679 		case IPV6_MULTICAST_IF:
   1680 		case IPV6_MULTICAST_HOPS:
   1681 		case IPV6_MULTICAST_LOOP:
   1682 		case IPV6_JOIN_GROUP:
   1683 		case IPV6_LEAVE_GROUP:
   1684 			error = ip6_setmoptions(sopt, inp);
   1685 			break;
   1686 
   1687 		case IPV6_PORTRANGE:
   1688 			error = sockopt_getint(sopt, &optval);
   1689 			if (error)
   1690 				break;
   1691 
   1692 			switch (optval) {
   1693 			case IPV6_PORTRANGE_DEFAULT:
   1694 				inp->inp_flags &= ~(IN6P_LOWPORT);
   1695 				inp->inp_flags &= ~(IN6P_HIGHPORT);
   1696 				break;
   1697 
   1698 			case IPV6_PORTRANGE_HIGH:
   1699 				inp->inp_flags &= ~(IN6P_LOWPORT);
   1700 				inp->inp_flags |= IN6P_HIGHPORT;
   1701 				break;
   1702 
   1703 			case IPV6_PORTRANGE_LOW:
   1704 				inp->inp_flags &= ~(IN6P_HIGHPORT);
   1705 				inp->inp_flags |= IN6P_LOWPORT;
   1706 				break;
   1707 
   1708 			default:
   1709 				error = EINVAL;
   1710 				break;
   1711 			}
   1712 			break;
   1713 
   1714 		case IPV6_PORTALGO:
   1715 			error = sockopt_getint(sopt, &optval);
   1716 			if (error)
   1717 				break;
   1718 
   1719 			error = portalgo_algo_index_select(inp, optval);
   1720 			break;
   1721 
   1722 #if defined(IPSEC)
   1723 		case IPV6_IPSEC_POLICY:
   1724 			if (ipsec_enabled) {
   1725 				error = ipsec_set_policy(inp,
   1726 				    sopt->sopt_data, sopt->sopt_size,
   1727 				    kauth_cred_get());
   1728 			} else
   1729 				error = ENOPROTOOPT;
   1730 			break;
   1731 #endif /* IPSEC */
   1732 
   1733 		default:
   1734 			error = ENOPROTOOPT;
   1735 			break;
   1736 		}
   1737 		break;
   1738 
   1739 	case PRCO_GETOPT:
   1740 		switch (optname) {
   1741 #ifdef RFC2292
   1742 		case IPV6_2292PKTOPTIONS:
   1743 			/*
   1744 			 * RFC3542 (effectively) deprecated the
   1745 			 * semantics of the 2292-style pktoptions.
   1746 			 * Since it was not reliable in nature (i.e.,
   1747 			 * applications had to expect the lack of some
   1748 			 * information after all), it would make sense
   1749 			 * to simplify this part by always returning
   1750 			 * empty data.
   1751 			 */
   1752 			break;
   1753 #endif
   1754 
   1755 		case IPV6_RECVHOPOPTS:
   1756 		case IPV6_RECVDSTOPTS:
   1757 		case IPV6_RECVRTHDRDSTOPTS:
   1758 		case IPV6_UNICAST_HOPS:
   1759 		case IPV6_RECVPKTINFO:
   1760 		case IPV6_RECVHOPLIMIT:
   1761 		case IPV6_RECVRTHDR:
   1762 		case IPV6_RECVPATHMTU:
   1763 
   1764 		case IPV6_FAITH:
   1765 		case IPV6_V6ONLY:
   1766 		case IPV6_PORTRANGE:
   1767 		case IPV6_RECVTCLASS:
   1768 		case IPV6_BINDANY:
   1769 			switch (optname) {
   1770 
   1771 			case IPV6_RECVHOPOPTS:
   1772 				optval = OPTBIT(IN6P_HOPOPTS);
   1773 				break;
   1774 
   1775 			case IPV6_RECVDSTOPTS:
   1776 				optval = OPTBIT(IN6P_DSTOPTS);
   1777 				break;
   1778 
   1779 			case IPV6_RECVRTHDRDSTOPTS:
   1780 				optval = OPTBIT(IN6P_RTHDRDSTOPTS);
   1781 				break;
   1782 
   1783 			case IPV6_UNICAST_HOPS:
   1784 				optval = in6p_hops6(inp);
   1785 				break;
   1786 
   1787 			case IPV6_RECVPKTINFO:
   1788 				optval = OPTBIT(IN6P_PKTINFO);
   1789 				break;
   1790 
   1791 			case IPV6_RECVHOPLIMIT:
   1792 				optval = OPTBIT(IN6P_HOPLIMIT);
   1793 				break;
   1794 
   1795 			case IPV6_RECVRTHDR:
   1796 				optval = OPTBIT(IN6P_RTHDR);
   1797 				break;
   1798 
   1799 			case IPV6_RECVPATHMTU:
   1800 				optval = OPTBIT(IN6P_MTU);
   1801 				break;
   1802 
   1803 			case IPV6_FAITH:
   1804 				optval = OPTBIT(IN6P_FAITH);
   1805 				break;
   1806 
   1807 			case IPV6_V6ONLY:
   1808 				optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1809 				break;
   1810 
   1811 			case IPV6_PORTRANGE:
   1812 			    {
   1813 				int flags;
   1814 				flags = inp->inp_flags;
   1815 				if (flags & IN6P_HIGHPORT)
   1816 					optval = IPV6_PORTRANGE_HIGH;
   1817 				else if (flags & IN6P_LOWPORT)
   1818 					optval = IPV6_PORTRANGE_LOW;
   1819 				else
   1820 					optval = 0;
   1821 				break;
   1822 			    }
   1823 			case IPV6_RECVTCLASS:
   1824 				optval = OPTBIT(IN6P_TCLASS);
   1825 				break;
   1826 
   1827 			case IPV6_BINDANY:
   1828 				optval = OPTBIT(IN6P_BINDANY);
   1829 				break;
   1830 			}
   1831 
   1832 			if (error)
   1833 				break;
   1834 			error = sockopt_setint(sopt, optval);
   1835 			break;
   1836 
   1837 		case IPV6_PATHMTU:
   1838 		    {
   1839 			u_long pmtu = 0;
   1840 			struct ip6_mtuinfo mtuinfo;
   1841 			struct route *ro = &inp->inp_route;
   1842 			struct rtentry *rt;
   1843 			union {
   1844 				struct sockaddr		dst;
   1845 				struct sockaddr_in6	dst6;
   1846 			} u;
   1847 
   1848 			if (!(so->so_state & SS_ISCONNECTED))
   1849 				return (ENOTCONN);
   1850 			/*
   1851 			 * XXX: we dot not consider the case of source
   1852 			 * routing, or optional information to specify
   1853 			 * the outgoing interface.
   1854 			 */
   1855 			sockaddr_in6_init(&u.dst6, &in6p_faddr(inp), 0, 0, 0);
   1856 			rt = rtcache_lookup(ro, &u.dst);
   1857 			error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
   1858 			rtcache_unref(rt, ro);
   1859 			if (error)
   1860 				break;
   1861 			if (pmtu > IPV6_MAXPACKET)
   1862 				pmtu = IPV6_MAXPACKET;
   1863 
   1864 			memset(&mtuinfo, 0, sizeof(mtuinfo));
   1865 			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
   1866 			optdata = (void *)&mtuinfo;
   1867 			optdatalen = sizeof(mtuinfo);
   1868 			if (optdatalen > MCLBYTES)
   1869 				return (EMSGSIZE); /* XXX */
   1870 			error = sockopt_set(sopt, optdata, optdatalen);
   1871 			break;
   1872 		    }
   1873 
   1874 #ifdef RFC2292
   1875 		case IPV6_2292PKTINFO:
   1876 		case IPV6_2292HOPLIMIT:
   1877 		case IPV6_2292HOPOPTS:
   1878 		case IPV6_2292RTHDR:
   1879 		case IPV6_2292DSTOPTS:
   1880 			switch (optname) {
   1881 			case IPV6_2292PKTINFO:
   1882 				optval = OPTBIT(IN6P_PKTINFO);
   1883 				break;
   1884 			case IPV6_2292HOPLIMIT:
   1885 				optval = OPTBIT(IN6P_HOPLIMIT);
   1886 				break;
   1887 			case IPV6_2292HOPOPTS:
   1888 				optval = OPTBIT(IN6P_HOPOPTS);
   1889 				break;
   1890 			case IPV6_2292RTHDR:
   1891 				optval = OPTBIT(IN6P_RTHDR);
   1892 				break;
   1893 			case IPV6_2292DSTOPTS:
   1894 				optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
   1895 				break;
   1896 			}
   1897 			error = sockopt_setint(sopt, optval);
   1898 			break;
   1899 #endif
   1900 		case IPV6_PKTINFO:
   1901 		case IPV6_HOPOPTS:
   1902 		case IPV6_RTHDR:
   1903 		case IPV6_DSTOPTS:
   1904 		case IPV6_RTHDRDSTOPTS:
   1905 		case IPV6_NEXTHOP:
   1906 		case IPV6_OTCLASS:
   1907 		case IPV6_TCLASS:
   1908 		case IPV6_DONTFRAG:
   1909 		case IPV6_USE_MIN_MTU:
   1910 		case IPV6_PREFER_TEMPADDR:
   1911 			error = ip6_getpcbopt(in6p_outputopts(inp),
   1912 			    optname, sopt);
   1913 			break;
   1914 
   1915 		case IPV6_MULTICAST_IF:
   1916 		case IPV6_MULTICAST_HOPS:
   1917 		case IPV6_MULTICAST_LOOP:
   1918 		case IPV6_JOIN_GROUP:
   1919 		case IPV6_LEAVE_GROUP:
   1920 			error = ip6_getmoptions(sopt, inp);
   1921 			break;
   1922 
   1923 		case IPV6_PORTALGO:
   1924 			optval = inp->inp_portalgo;
   1925 			error = sockopt_setint(sopt, optval);
   1926 			break;
   1927 
   1928 #if defined(IPSEC)
   1929 		case IPV6_IPSEC_POLICY:
   1930 			if (ipsec_used) {
   1931 				struct mbuf *m = NULL;
   1932 
   1933 				/*
   1934 				 * XXX: this will return EINVAL as sopt is
   1935 				 * empty
   1936 				 */
   1937 				error = ipsec_get_policy(inp, sopt->sopt_data,
   1938 				    sopt->sopt_size, &m);
   1939 				if (!error)
   1940 					error = sockopt_setmbuf(sopt, m);
   1941 			} else
   1942 				error = ENOPROTOOPT;
   1943 			break;
   1944 #endif /* IPSEC */
   1945 
   1946 		default:
   1947 			error = ENOPROTOOPT;
   1948 			break;
   1949 		}
   1950 		break;
   1951 	}
   1952 	return (error);
   1953 }
   1954 
   1955 int
   1956 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1957 {
   1958 	int error = 0, optval;
   1959 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   1960 	struct inpcb *inp = sotoinpcb(so);
   1961 	int level, optname;
   1962 
   1963 	KASSERT(sopt != NULL);
   1964 
   1965 	level = sopt->sopt_level;
   1966 	optname = sopt->sopt_name;
   1967 
   1968 	if (level != IPPROTO_IPV6) {
   1969 		return ENOPROTOOPT;
   1970 	}
   1971 
   1972 	switch (optname) {
   1973 	case IPV6_CHECKSUM:
   1974 		/*
   1975 		 * For ICMPv6 sockets, no modification allowed for checksum
   1976 		 * offset, permit "no change" values to help existing apps.
   1977 		 *
   1978 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
   1979 		 * for an ICMPv6 socket will fail."  The current
   1980 		 * behavior does not meet RFC3542.
   1981 		 */
   1982 		switch (op) {
   1983 		case PRCO_SETOPT:
   1984 			error = sockopt_getint(sopt, &optval);
   1985 			if (error)
   1986 				break;
   1987 			if (optval < -1 ||
   1988 			    (optval > 0 && (optval % 2) != 0)) {
   1989 				/*
   1990 				 * The API assumes non-negative even offset
   1991 				 * values or -1 as a special value.
   1992 				 */
   1993 				error = EINVAL;
   1994 			} else if (so->so_proto->pr_protocol ==
   1995 			    IPPROTO_ICMPV6) {
   1996 				if (optval != icmp6off)
   1997 					error = EINVAL;
   1998 			} else
   1999 				in6p_cksum(inp) = optval;
   2000 			break;
   2001 
   2002 		case PRCO_GETOPT:
   2003 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   2004 				optval = icmp6off;
   2005 			else
   2006 				optval = in6p_cksum(inp);
   2007 
   2008 			error = sockopt_setint(sopt, optval);
   2009 			break;
   2010 
   2011 		default:
   2012 			error = EINVAL;
   2013 			break;
   2014 		}
   2015 		break;
   2016 
   2017 	default:
   2018 		error = ENOPROTOOPT;
   2019 		break;
   2020 	}
   2021 
   2022 	return (error);
   2023 }
   2024 
   2025 #ifdef RFC2292
   2026 /*
   2027  * Set up IP6 options in pcb for insertion in output packets or
   2028  * specifying behavior of outgoing packets.
   2029  */
   2030 static int
   2031 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
   2032     struct sockopt *sopt)
   2033 {
   2034 	struct ip6_pktopts *opt = *pktopt;
   2035 	struct mbuf *m;
   2036 	int error = 0;
   2037 
   2038 	KASSERT(solocked(so));
   2039 
   2040 	/* turn off any old options. */
   2041 	if (opt) {
   2042 #ifdef DIAGNOSTIC
   2043 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
   2044 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
   2045 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2046 		    printf("ip6_pcbopts: all specified options are cleared.\n");
   2047 #endif
   2048 		ip6_clearpktopts(opt, -1);
   2049 	} else {
   2050 		opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
   2051 		if (opt == NULL)
   2052 			return (ENOBUFS);
   2053 	}
   2054 	*pktopt = NULL;
   2055 
   2056 	if (sopt == NULL || sopt->sopt_size == 0) {
   2057 		/*
   2058 		 * Only turning off any previous options, regardless of
   2059 		 * whether the opt is just created or given.
   2060 		 */
   2061 		free(opt, M_IP6OPT);
   2062 		return (0);
   2063 	}
   2064 
   2065 	/*  set options specified by user. */
   2066 	m = sockopt_getmbuf(sopt);
   2067 	if (m == NULL) {
   2068 		free(opt, M_IP6OPT);
   2069 		return (ENOBUFS);
   2070 	}
   2071 
   2072 	error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
   2073 	    so->so_proto->pr_protocol);
   2074 	m_freem(m);
   2075 	if (error != 0) {
   2076 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
   2077 		free(opt, M_IP6OPT);
   2078 		return (error);
   2079 	}
   2080 	*pktopt = opt;
   2081 	return (0);
   2082 }
   2083 #endif
   2084 
   2085 /*
   2086  * initialize ip6_pktopts.  beware that there are non-zero default values in
   2087  * the struct.
   2088  */
   2089 void
   2090 ip6_initpktopts(struct ip6_pktopts *opt)
   2091 {
   2092 
   2093 	memset(opt, 0, sizeof(*opt));
   2094 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
   2095 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
   2096 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
   2097 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
   2098 }
   2099 
   2100 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
   2101 static int
   2102 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
   2103     kauth_cred_t cred, int uproto)
   2104 {
   2105 	struct ip6_pktopts *opt;
   2106 
   2107 	if (*pktopt == NULL) {
   2108 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
   2109 		    M_NOWAIT);
   2110 		if (*pktopt == NULL)
   2111 			return (ENOBUFS);
   2112 
   2113 		ip6_initpktopts(*pktopt);
   2114 	}
   2115 	opt = *pktopt;
   2116 
   2117 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
   2118 }
   2119 
   2120 static int
   2121 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
   2122 {
   2123 	void *optdata = NULL;
   2124 	int optdatalen = 0;
   2125 	struct ip6_ext *ip6e;
   2126 	int error = 0;
   2127 	struct in6_pktinfo null_pktinfo;
   2128 	int deftclass = 0, on;
   2129 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
   2130 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
   2131 
   2132 	switch (optname) {
   2133 	case IPV6_PKTINFO:
   2134 		if (pktopt && pktopt->ip6po_pktinfo)
   2135 			optdata = (void *)pktopt->ip6po_pktinfo;
   2136 		else {
   2137 			/* XXX: we don't have to do this every time... */
   2138 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
   2139 			optdata = (void *)&null_pktinfo;
   2140 		}
   2141 		optdatalen = sizeof(struct in6_pktinfo);
   2142 		break;
   2143 	case IPV6_OTCLASS:
   2144 		/* XXX */
   2145 		return (EINVAL);
   2146 	case IPV6_TCLASS:
   2147 		if (pktopt && pktopt->ip6po_tclass >= 0)
   2148 			optdata = (void *)&pktopt->ip6po_tclass;
   2149 		else
   2150 			optdata = (void *)&deftclass;
   2151 		optdatalen = sizeof(int);
   2152 		break;
   2153 	case IPV6_HOPOPTS:
   2154 		if (pktopt && pktopt->ip6po_hbh) {
   2155 			optdata = (void *)pktopt->ip6po_hbh;
   2156 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
   2157 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2158 		}
   2159 		break;
   2160 	case IPV6_RTHDR:
   2161 		if (pktopt && pktopt->ip6po_rthdr) {
   2162 			optdata = (void *)pktopt->ip6po_rthdr;
   2163 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
   2164 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2165 		}
   2166 		break;
   2167 	case IPV6_RTHDRDSTOPTS:
   2168 		if (pktopt && pktopt->ip6po_dest1) {
   2169 			optdata = (void *)pktopt->ip6po_dest1;
   2170 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
   2171 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2172 		}
   2173 		break;
   2174 	case IPV6_DSTOPTS:
   2175 		if (pktopt && pktopt->ip6po_dest2) {
   2176 			optdata = (void *)pktopt->ip6po_dest2;
   2177 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
   2178 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2179 		}
   2180 		break;
   2181 	case IPV6_NEXTHOP:
   2182 		if (pktopt && pktopt->ip6po_nexthop) {
   2183 			optdata = (void *)pktopt->ip6po_nexthop;
   2184 			optdatalen = pktopt->ip6po_nexthop->sa_len;
   2185 		}
   2186 		break;
   2187 	case IPV6_USE_MIN_MTU:
   2188 		if (pktopt)
   2189 			optdata = (void *)&pktopt->ip6po_minmtu;
   2190 		else
   2191 			optdata = (void *)&defminmtu;
   2192 		optdatalen = sizeof(int);
   2193 		break;
   2194 	case IPV6_DONTFRAG:
   2195 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
   2196 			on = 1;
   2197 		else
   2198 			on = 0;
   2199 		optdata = (void *)&on;
   2200 		optdatalen = sizeof(on);
   2201 		break;
   2202 	case IPV6_PREFER_TEMPADDR:
   2203 		if (pktopt)
   2204 			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
   2205 		else
   2206 			optdata = (void *)&defpreftemp;
   2207 		optdatalen = sizeof(int);
   2208 		break;
   2209 	default:		/* should not happen */
   2210 #ifdef DIAGNOSTIC
   2211 		panic("ip6_getpcbopt: unexpected option\n");
   2212 #endif
   2213 		return (ENOPROTOOPT);
   2214 	}
   2215 
   2216 	error = sockopt_set(sopt, optdata, optdatalen);
   2217 
   2218 	return (error);
   2219 }
   2220 
   2221 void
   2222 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
   2223 {
   2224 	if (optname == -1 || optname == IPV6_PKTINFO) {
   2225 		if (pktopt->ip6po_pktinfo)
   2226 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
   2227 		pktopt->ip6po_pktinfo = NULL;
   2228 	}
   2229 	if (optname == -1 || optname == IPV6_HOPLIMIT)
   2230 		pktopt->ip6po_hlim = -1;
   2231 	if (optname == -1 || optname == IPV6_TCLASS)
   2232 		pktopt->ip6po_tclass = -1;
   2233 	if (optname == -1 || optname == IPV6_NEXTHOP) {
   2234 		rtcache_free(&pktopt->ip6po_nextroute);
   2235 		if (pktopt->ip6po_nexthop)
   2236 			free(pktopt->ip6po_nexthop, M_IP6OPT);
   2237 		pktopt->ip6po_nexthop = NULL;
   2238 	}
   2239 	if (optname == -1 || optname == IPV6_HOPOPTS) {
   2240 		if (pktopt->ip6po_hbh)
   2241 			free(pktopt->ip6po_hbh, M_IP6OPT);
   2242 		pktopt->ip6po_hbh = NULL;
   2243 	}
   2244 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
   2245 		if (pktopt->ip6po_dest1)
   2246 			free(pktopt->ip6po_dest1, M_IP6OPT);
   2247 		pktopt->ip6po_dest1 = NULL;
   2248 	}
   2249 	if (optname == -1 || optname == IPV6_RTHDR) {
   2250 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2251 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
   2252 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
   2253 		rtcache_free(&pktopt->ip6po_route);
   2254 	}
   2255 	if (optname == -1 || optname == IPV6_DSTOPTS) {
   2256 		if (pktopt->ip6po_dest2)
   2257 			free(pktopt->ip6po_dest2, M_IP6OPT);
   2258 		pktopt->ip6po_dest2 = NULL;
   2259 	}
   2260 }
   2261 
   2262 #define PKTOPT_EXTHDRCPY(type) 					\
   2263 do {								\
   2264 	if (src->type) {					\
   2265 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
   2266 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
   2267 		if (dst->type == NULL)				\
   2268 			goto bad;				\
   2269 		memcpy(dst->type, src->type, hlen);		\
   2270 	}							\
   2271 } while (/*CONSTCOND*/ 0)
   2272 
   2273 static int
   2274 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
   2275 {
   2276 	dst->ip6po_hlim = src->ip6po_hlim;
   2277 	dst->ip6po_tclass = src->ip6po_tclass;
   2278 	dst->ip6po_flags = src->ip6po_flags;
   2279 	dst->ip6po_minmtu = src->ip6po_minmtu;
   2280 	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
   2281 	if (src->ip6po_pktinfo) {
   2282 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
   2283 		    M_IP6OPT, canwait);
   2284 		if (dst->ip6po_pktinfo == NULL)
   2285 			goto bad;
   2286 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
   2287 	}
   2288 	if (src->ip6po_nexthop) {
   2289 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
   2290 		    M_IP6OPT, canwait);
   2291 		if (dst->ip6po_nexthop == NULL)
   2292 			goto bad;
   2293 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
   2294 		    src->ip6po_nexthop->sa_len);
   2295 	}
   2296 	PKTOPT_EXTHDRCPY(ip6po_hbh);
   2297 	PKTOPT_EXTHDRCPY(ip6po_dest1);
   2298 	PKTOPT_EXTHDRCPY(ip6po_dest2);
   2299 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
   2300 	return (0);
   2301 
   2302   bad:
   2303 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
   2304 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
   2305 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
   2306 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
   2307 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
   2308 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
   2309 
   2310 	return (ENOBUFS);
   2311 }
   2312 #undef PKTOPT_EXTHDRCPY
   2313 
   2314 struct ip6_pktopts *
   2315 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
   2316 {
   2317 	int error;
   2318 	struct ip6_pktopts *dst;
   2319 
   2320 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
   2321 	if (dst == NULL)
   2322 		return (NULL);
   2323 	ip6_initpktopts(dst);
   2324 
   2325 	if ((error = copypktopts(dst, src, canwait)) != 0) {
   2326 		free(dst, M_IP6OPT);
   2327 		return (NULL);
   2328 	}
   2329 
   2330 	return (dst);
   2331 }
   2332 
   2333 void
   2334 ip6_freepcbopts(struct ip6_pktopts *pktopt)
   2335 {
   2336 	if (pktopt == NULL)
   2337 		return;
   2338 
   2339 	ip6_clearpktopts(pktopt, -1);
   2340 
   2341 	free(pktopt, M_IP6OPT);
   2342 }
   2343 
   2344 int
   2345 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
   2346     struct psref *psref, void *v, size_t l)
   2347 {
   2348 	struct ipv6_mreq mreq;
   2349 	int error;
   2350 	struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
   2351 	struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
   2352 
   2353 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2354 	if (error != 0)
   2355 		return error;
   2356 
   2357 	if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
   2358 		/*
   2359 		 * We use the unspecified address to specify to accept
   2360 		 * all multicast addresses. Only super user is allowed
   2361 		 * to do this.
   2362 		 */
   2363 		if (kauth_authorize_network(kauth_cred_get(),
   2364 		    KAUTH_NETWORK_IPV6,
   2365 		    KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
   2366 			return EACCES;
   2367 	} else if (IN6_IS_ADDR_V4MAPPED(ia)) {
   2368 		// Don't bother if we are not going to use ifp.
   2369 		if (l == sizeof(*ia)) {
   2370 			memcpy(v, ia, l);
   2371 			return 0;
   2372 		}
   2373 	} else if (!IN6_IS_ADDR_MULTICAST(ia)) {
   2374 		return EINVAL;
   2375 	}
   2376 
   2377 	/*
   2378 	 * If no interface was explicitly specified, choose an
   2379 	 * appropriate one according to the given multicast address.
   2380 	 */
   2381 	if (mreq.ipv6mr_interface == 0) {
   2382 		struct rtentry *rt;
   2383 		union {
   2384 			struct sockaddr		dst;
   2385 			struct sockaddr_in	dst4;
   2386 			struct sockaddr_in6	dst6;
   2387 		} u;
   2388 		struct route ro;
   2389 
   2390 		/*
   2391 		 * Look up the routing table for the
   2392 		 * address, and choose the outgoing interface.
   2393 		 *   XXX: is it a good approach?
   2394 		 */
   2395 		memset(&ro, 0, sizeof(ro));
   2396 		if (IN6_IS_ADDR_V4MAPPED(ia))
   2397 			sockaddr_in_init(&u.dst4, ia4, 0);
   2398 		else
   2399 			sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
   2400 		error = rtcache_setdst(&ro, &u.dst);
   2401 		if (error != 0)
   2402 			return error;
   2403 		rt = rtcache_init(&ro);
   2404 		*ifp = rt != NULL ?
   2405 		    if_get_byindex(rt->rt_ifp->if_index, psref) : NULL;
   2406 		rtcache_unref(rt, &ro);
   2407 		rtcache_free(&ro);
   2408 	} else {
   2409 		/*
   2410 		 * If the interface is specified, validate it.
   2411 		 */
   2412 		*ifp = if_get_byindex(mreq.ipv6mr_interface, psref);
   2413 		if (*ifp == NULL)
   2414 			return ENXIO;	/* XXX EINVAL? */
   2415 	}
   2416 	if (sizeof(*ia) == l)
   2417 		memcpy(v, ia, l);
   2418 	else
   2419 		memcpy(v, ia4, l);
   2420 	return 0;
   2421 }
   2422 
   2423 /*
   2424  * Set the IP6 multicast options in response to user setsockopt().
   2425  */
   2426 static int
   2427 ip6_setmoptions(const struct sockopt *sopt, struct inpcb *inp)
   2428 {
   2429 	int error = 0;
   2430 	u_int loop, ifindex;
   2431 	struct ipv6_mreq mreq;
   2432 	struct in6_addr ia;
   2433 	struct ifnet *ifp;
   2434 	struct ip6_moptions *im6o = in6p_moptions(inp);
   2435 	struct in6_multi_mship *imm;
   2436 
   2437 	KASSERT(inp_locked(inp));
   2438 
   2439 	if (im6o == NULL) {
   2440 		/*
   2441 		 * No multicast option buffer attached to the pcb;
   2442 		 * allocate one and initialize to default values.
   2443 		 */
   2444 		im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
   2445 		if (im6o == NULL)
   2446 			return (ENOBUFS);
   2447 		in6p_moptions(inp) = im6o;
   2448 		im6o->im6o_multicast_if_index = 0;
   2449 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2450 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   2451 		LIST_INIT(&im6o->im6o_memberships);
   2452 	}
   2453 
   2454 	switch (sopt->sopt_name) {
   2455 
   2456 	case IPV6_MULTICAST_IF: {
   2457 		int s;
   2458 		/*
   2459 		 * Select the interface for outgoing multicast packets.
   2460 		 */
   2461 		error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
   2462 		if (error != 0)
   2463 			break;
   2464 
   2465 		s = pserialize_read_enter();
   2466 		if (ifindex != 0) {
   2467 			if ((ifp = if_byindex(ifindex)) == NULL) {
   2468 				pserialize_read_exit(s);
   2469 				error = ENXIO;	/* XXX EINVAL? */
   2470 				break;
   2471 			}
   2472 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   2473 				pserialize_read_exit(s);
   2474 				error = EADDRNOTAVAIL;
   2475 				break;
   2476 			}
   2477 		} else
   2478 			ifp = NULL;
   2479 		im6o->im6o_multicast_if_index = if_get_index(ifp);
   2480 		pserialize_read_exit(s);
   2481 		break;
   2482 	    }
   2483 
   2484 	case IPV6_MULTICAST_HOPS:
   2485 	    {
   2486 		/*
   2487 		 * Set the IP6 hoplimit for outgoing multicast packets.
   2488 		 */
   2489 		int optval;
   2490 
   2491 		error = sockopt_getint(sopt, &optval);
   2492 		if (error != 0)
   2493 			break;
   2494 
   2495 		if (optval < -1 || optval >= 256)
   2496 			error = EINVAL;
   2497 		else if (optval == -1)
   2498 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2499 		else
   2500 			im6o->im6o_multicast_hlim = optval;
   2501 		break;
   2502 	    }
   2503 
   2504 	case IPV6_MULTICAST_LOOP:
   2505 		/*
   2506 		 * Set the loopback flag for outgoing multicast packets.
   2507 		 * Must be zero or one.
   2508 		 */
   2509 		error = sockopt_get(sopt, &loop, sizeof(loop));
   2510 		if (error != 0)
   2511 			break;
   2512 		if (loop > 1) {
   2513 			error = EINVAL;
   2514 			break;
   2515 		}
   2516 		im6o->im6o_multicast_loop = loop;
   2517 		break;
   2518 
   2519 	case IPV6_JOIN_GROUP: {
   2520 		int bound;
   2521 		struct psref psref;
   2522 		/*
   2523 		 * Add a multicast group membership.
   2524 		 * Group must be a valid IP6 multicast address.
   2525 		 */
   2526 		bound = curlwp_bind();
   2527 		ifp = NULL;
   2528 		error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
   2529 		if (error != 0) {
   2530 			KASSERT(ifp == NULL);
   2531 			curlwp_bindx(bound);
   2532 			return error;
   2533 		}
   2534 
   2535 		if (IN6_IS_ADDR_V4MAPPED(&ia)) {
   2536 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   2537 			goto put_break;
   2538 		}
   2539 		/*
   2540 		 * See if we found an interface, and confirm that it
   2541 		 * supports multicast
   2542 		 */
   2543 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   2544 			error = EADDRNOTAVAIL;
   2545 			goto put_break;
   2546 		}
   2547 
   2548 		if (in6_setscope(&ia, ifp, NULL)) {
   2549 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   2550 			goto put_break;
   2551 		}
   2552 
   2553 		/*
   2554 		 * See if the membership already exists.
   2555 		 */
   2556 		LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
   2557 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2558 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2559 			    &ia))
   2560 				goto put_break;
   2561 		}
   2562 		if (imm != NULL) {
   2563 			error = EADDRINUSE;
   2564 			goto put_break;
   2565 		}
   2566 		/*
   2567 		 * Everything looks good; add a new record to the multicast
   2568 		 * address list for the given interface.
   2569 		 */
   2570 		imm = in6_joingroup(ifp, &ia, &error, 0);
   2571 		if (imm == NULL)
   2572 			goto put_break;
   2573 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2574 	    put_break:
   2575 		if_put(ifp, &psref);
   2576 		curlwp_bindx(bound);
   2577 		break;
   2578 	    }
   2579 
   2580 	case IPV6_LEAVE_GROUP: {
   2581 		/*
   2582 		 * Drop a multicast group membership.
   2583 		 * Group must be a valid IP6 multicast address.
   2584 		 */
   2585 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2586 		if (error != 0)
   2587 			break;
   2588 
   2589 		if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
   2590 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   2591 			break;
   2592 		}
   2593 		/*
   2594 		 * If an interface address was specified, get a pointer
   2595 		 * to its ifnet structure.
   2596 		 */
   2597 		if (mreq.ipv6mr_interface != 0) {
   2598 			if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
   2599 				error = ENXIO;	/* XXX EINVAL? */
   2600 				break;
   2601 			}
   2602 		} else
   2603 			ifp = NULL;
   2604 
   2605 		/* Fill in the scope zone ID */
   2606 		if (ifp) {
   2607 			if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
   2608 				/* XXX: should not happen */
   2609 				error = EADDRNOTAVAIL;
   2610 				break;
   2611 			}
   2612 		} else if (mreq.ipv6mr_interface != 0) {
   2613 			/*
   2614 			 * XXX: This case would happens when the (positive)
   2615 			 * index is in the valid range, but the corresponding
   2616 			 * interface has been detached dynamically.  The above
   2617 			 * check probably avoids such case to happen here, but
   2618 			 * we check it explicitly for safety.
   2619 			 */
   2620 			error = EADDRNOTAVAIL;
   2621 			break;
   2622 		} else {	/* ipv6mr_interface == 0 */
   2623 			struct sockaddr_in6 sa6_mc;
   2624 
   2625 			/*
   2626 			 * The API spec says as follows:
   2627 			 *  If the interface index is specified as 0, the
   2628 			 *  system may choose a multicast group membership to
   2629 			 *  drop by matching the multicast address only.
   2630 			 * On the other hand, we cannot disambiguate the scope
   2631 			 * zone unless an interface is provided.  Thus, we
   2632 			 * check if there's ambiguity with the default scope
   2633 			 * zone as the last resort.
   2634 			 */
   2635 			sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
   2636 			    0, 0, 0);
   2637 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2638 			if (error != 0)
   2639 				break;
   2640 			mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2641 		}
   2642 
   2643 		/*
   2644 		 * Find the membership in the membership list.
   2645 		 */
   2646 		LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
   2647 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2648 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2649 			    &mreq.ipv6mr_multiaddr))
   2650 				break;
   2651 		}
   2652 		if (imm == NULL) {
   2653 			/* Unable to resolve interface */
   2654 			error = EADDRNOTAVAIL;
   2655 			break;
   2656 		}
   2657 		/*
   2658 		 * Give up the multicast address record to which the
   2659 		 * membership points.
   2660 		 */
   2661 		LIST_REMOVE(imm, i6mm_chain);
   2662 		in6_leavegroup(imm);
   2663 		/* in6m_ifp should not leave thanks to inp_lock */
   2664 		break;
   2665 	    }
   2666 
   2667 	default:
   2668 		error = EOPNOTSUPP;
   2669 		break;
   2670 	}
   2671 
   2672 	/*
   2673 	 * If all options have default values, no need to keep the mbuf.
   2674 	 */
   2675 	if (im6o->im6o_multicast_if_index == 0 &&
   2676 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2677 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2678 	    LIST_EMPTY(&im6o->im6o_memberships)) {
   2679 		free(in6p_moptions(inp), M_IPMOPTS);
   2680 		in6p_moptions(inp) = NULL;
   2681 	}
   2682 
   2683 	return (error);
   2684 }
   2685 
   2686 /*
   2687  * Return the IP6 multicast options in response to user getsockopt().
   2688  */
   2689 static int
   2690 ip6_getmoptions(struct sockopt *sopt, struct inpcb *inp)
   2691 {
   2692 	u_int optval;
   2693 	int error;
   2694 	struct ip6_moptions *im6o = in6p_moptions(inp);
   2695 
   2696 	switch (sopt->sopt_name) {
   2697 	case IPV6_MULTICAST_IF:
   2698 		if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
   2699 			optval = 0;
   2700 		else
   2701 			optval = im6o->im6o_multicast_if_index;
   2702 
   2703 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2704 		break;
   2705 
   2706 	case IPV6_MULTICAST_HOPS:
   2707 		if (im6o == NULL)
   2708 			optval = ip6_defmcasthlim;
   2709 		else
   2710 			optval = im6o->im6o_multicast_hlim;
   2711 
   2712 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2713 		break;
   2714 
   2715 	case IPV6_MULTICAST_LOOP:
   2716 		if (im6o == NULL)
   2717 			optval = IPV6_DEFAULT_MULTICAST_LOOP;
   2718 		else
   2719 			optval = im6o->im6o_multicast_loop;
   2720 
   2721 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2722 		break;
   2723 
   2724 	default:
   2725 		error = EOPNOTSUPP;
   2726 	}
   2727 
   2728 	return (error);
   2729 }
   2730 
   2731 /*
   2732  * Discard the IP6 multicast options.
   2733  */
   2734 void
   2735 ip6_freemoptions(struct ip6_moptions *im6o)
   2736 {
   2737 	struct in6_multi_mship *imm, *nimm;
   2738 
   2739 	if (im6o == NULL)
   2740 		return;
   2741 
   2742 	/* The owner of im6o (inp) should be protected by solock */
   2743 	LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) {
   2744 		LIST_REMOVE(imm, i6mm_chain);
   2745 		in6_leavegroup(imm);
   2746 	}
   2747 	free(im6o, M_IPMOPTS);
   2748 }
   2749 
   2750 /*
   2751  * Set IPv6 outgoing packet options based on advanced API.
   2752  */
   2753 int
   2754 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
   2755 	struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
   2756 {
   2757 	struct cmsghdr *cm = 0;
   2758 
   2759 	if (control == NULL || opt == NULL)
   2760 		return (EINVAL);
   2761 
   2762 	ip6_initpktopts(opt);
   2763 	if (stickyopt) {
   2764 		int error;
   2765 
   2766 		/*
   2767 		 * If stickyopt is provided, make a local copy of the options
   2768 		 * for this particular packet, then override them by ancillary
   2769 		 * objects.
   2770 		 * XXX: copypktopts() does not copy the cached route to a next
   2771 		 * hop (if any).  This is not very good in terms of efficiency,
   2772 		 * but we can allow this since this option should be rarely
   2773 		 * used.
   2774 		 */
   2775 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
   2776 			return (error);
   2777 	}
   2778 
   2779 	/*
   2780 	 * XXX: Currently, we assume all the optional information is stored
   2781 	 * in a single mbuf.
   2782 	 */
   2783 	if (control->m_next)
   2784 		return (EINVAL);
   2785 
   2786 	/* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
   2787 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2788 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2789 		int error;
   2790 
   2791 		if (control->m_len < CMSG_LEN(0))
   2792 			return (EINVAL);
   2793 
   2794 		cm = mtod(control, struct cmsghdr *);
   2795 		if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > control->m_len)
   2796 			return (EINVAL);
   2797 		if (cm->cmsg_level != IPPROTO_IPV6)
   2798 			continue;
   2799 
   2800 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
   2801 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
   2802 		if (error)
   2803 			return (error);
   2804 	}
   2805 
   2806 	return (0);
   2807 }
   2808 
   2809 /*
   2810  * Set a particular packet option, as a sticky option or an ancillary data
   2811  * item.  "len" can be 0 only when it's a sticky option.
   2812  * We have 4 cases of combination of "sticky" and "cmsg":
   2813  * "sticky=0, cmsg=0": impossible
   2814  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
   2815  * "sticky=1, cmsg=0": RFC3542 socket option
   2816  * "sticky=1, cmsg=1": RFC2292 socket option
   2817  */
   2818 static int
   2819 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
   2820     kauth_cred_t cred, int sticky, int cmsg, int uproto)
   2821 {
   2822 	int minmtupolicy;
   2823 	int error;
   2824 
   2825 	if (!sticky && !cmsg) {
   2826 #ifdef DIAGNOSTIC
   2827 		printf("ip6_setpktopt: impossible case\n");
   2828 #endif
   2829 		return (EINVAL);
   2830 	}
   2831 
   2832 	/*
   2833 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
   2834 	 * not be specified in the context of RFC3542.  Conversely,
   2835 	 * RFC3542 types should not be specified in the context of RFC2292.
   2836 	 */
   2837 	if (!cmsg) {
   2838 		switch (optname) {
   2839 		case IPV6_2292PKTINFO:
   2840 		case IPV6_2292HOPLIMIT:
   2841 		case IPV6_2292NEXTHOP:
   2842 		case IPV6_2292HOPOPTS:
   2843 		case IPV6_2292DSTOPTS:
   2844 		case IPV6_2292RTHDR:
   2845 		case IPV6_2292PKTOPTIONS:
   2846 			return (ENOPROTOOPT);
   2847 		}
   2848 	}
   2849 	if (sticky && cmsg) {
   2850 		switch (optname) {
   2851 		case IPV6_PKTINFO:
   2852 		case IPV6_HOPLIMIT:
   2853 		case IPV6_NEXTHOP:
   2854 		case IPV6_HOPOPTS:
   2855 		case IPV6_DSTOPTS:
   2856 		case IPV6_RTHDRDSTOPTS:
   2857 		case IPV6_RTHDR:
   2858 		case IPV6_USE_MIN_MTU:
   2859 		case IPV6_DONTFRAG:
   2860 		case IPV6_OTCLASS:
   2861 		case IPV6_TCLASS:
   2862 		case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
   2863 			return (ENOPROTOOPT);
   2864 		}
   2865 	}
   2866 
   2867 	switch (optname) {
   2868 #ifdef RFC2292
   2869 	case IPV6_2292PKTINFO:
   2870 #endif
   2871 	case IPV6_PKTINFO:
   2872 	{
   2873 		struct in6_pktinfo *pktinfo;
   2874 
   2875 		if (len != sizeof(struct in6_pktinfo))
   2876 			return (EINVAL);
   2877 
   2878 		pktinfo = (struct in6_pktinfo *)buf;
   2879 
   2880 		/*
   2881 		 * An application can clear any sticky IPV6_PKTINFO option by
   2882 		 * doing a "regular" setsockopt with ipi6_addr being
   2883 		 * in6addr_any and ipi6_ifindex being zero.
   2884 		 * [RFC 3542, Section 6]
   2885 		 */
   2886 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
   2887 		    pktinfo->ipi6_ifindex == 0 &&
   2888 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2889 			ip6_clearpktopts(opt, optname);
   2890 			break;
   2891 		}
   2892 
   2893 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
   2894 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2895 			return (EINVAL);
   2896 		}
   2897 
   2898 		/* Validate the interface index if specified. */
   2899 		if (pktinfo->ipi6_ifindex) {
   2900 			struct ifnet *ifp;
   2901 			int s = pserialize_read_enter();
   2902 			ifp = if_byindex(pktinfo->ipi6_ifindex);
   2903 			if (ifp == NULL) {
   2904 				pserialize_read_exit(s);
   2905 				return ENXIO;
   2906 			}
   2907 			pserialize_read_exit(s);
   2908 		}
   2909 
   2910 		/*
   2911 		 * We store the address anyway, and let in6_selectsrc()
   2912 		 * validate the specified address.  This is because ipi6_addr
   2913 		 * may not have enough information about its scope zone, and
   2914 		 * we may need additional information (such as outgoing
   2915 		 * interface or the scope zone of a destination address) to
   2916 		 * disambiguate the scope.
   2917 		 * XXX: the delay of the validation may confuse the
   2918 		 * application when it is used as a sticky option.
   2919 		 */
   2920 		if (opt->ip6po_pktinfo == NULL) {
   2921 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
   2922 			    M_IP6OPT, M_NOWAIT);
   2923 			if (opt->ip6po_pktinfo == NULL)
   2924 				return (ENOBUFS);
   2925 		}
   2926 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
   2927 		break;
   2928 	}
   2929 
   2930 #ifdef RFC2292
   2931 	case IPV6_2292HOPLIMIT:
   2932 #endif
   2933 	case IPV6_HOPLIMIT:
   2934 	{
   2935 		int *hlimp;
   2936 
   2937 		/*
   2938 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
   2939 		 * to simplify the ordering among hoplimit options.
   2940 		 */
   2941 		if (optname == IPV6_HOPLIMIT && sticky)
   2942 			return (ENOPROTOOPT);
   2943 
   2944 		if (len != sizeof(int))
   2945 			return (EINVAL);
   2946 		hlimp = (int *)buf;
   2947 		if (*hlimp < -1 || *hlimp > 255)
   2948 			return (EINVAL);
   2949 
   2950 		opt->ip6po_hlim = *hlimp;
   2951 		break;
   2952 	}
   2953 
   2954 	case IPV6_OTCLASS:
   2955 		if (len != sizeof(u_int8_t))
   2956 			return (EINVAL);
   2957 
   2958 		opt->ip6po_tclass = *(u_int8_t *)buf;
   2959 		break;
   2960 
   2961 	case IPV6_TCLASS:
   2962 	{
   2963 		int tclass;
   2964 
   2965 		if (len != sizeof(int))
   2966 			return (EINVAL);
   2967 		tclass = *(int *)buf;
   2968 		if (tclass < -1 || tclass > 255)
   2969 			return (EINVAL);
   2970 
   2971 		opt->ip6po_tclass = tclass;
   2972 		break;
   2973 	}
   2974 
   2975 #ifdef RFC2292
   2976 	case IPV6_2292NEXTHOP:
   2977 #endif
   2978 	case IPV6_NEXTHOP:
   2979 		error = kauth_authorize_network(cred,
   2980 		    KAUTH_NETWORK_IPV6,
   2981 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2982 		if (error)
   2983 			return (error);
   2984 
   2985 		if (len == 0) {	/* just remove the option */
   2986 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
   2987 			break;
   2988 		}
   2989 
   2990 		/* check if cmsg_len is large enough for sa_len */
   2991 		if (len < sizeof(struct sockaddr) || len < *buf)
   2992 			return (EINVAL);
   2993 
   2994 		switch (((struct sockaddr *)buf)->sa_family) {
   2995 		case AF_INET6:
   2996 		{
   2997 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
   2998 
   2999 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
   3000 				return (EINVAL);
   3001 
   3002 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
   3003 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
   3004 				return (EINVAL);
   3005 			}
   3006 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
   3007 			    != 0) {
   3008 				return (error);
   3009 			}
   3010 			break;
   3011 		}
   3012 		case AF_LINK:	/* eventually be supported? */
   3013 		default:
   3014 			return (EAFNOSUPPORT);
   3015 		}
   3016 
   3017 		/* turn off the previous option, then set the new option. */
   3018 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
   3019 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
   3020 		if (opt->ip6po_nexthop == NULL)
   3021 			return (ENOBUFS);
   3022 		memcpy(opt->ip6po_nexthop, buf, *buf);
   3023 		break;
   3024 
   3025 #ifdef RFC2292
   3026 	case IPV6_2292HOPOPTS:
   3027 #endif
   3028 	case IPV6_HOPOPTS:
   3029 	{
   3030 		struct ip6_hbh *hbh;
   3031 		int hbhlen;
   3032 
   3033 		/*
   3034 		 * XXX: We don't allow a non-privileged user to set ANY HbH
   3035 		 * options, since per-option restriction has too much
   3036 		 * overhead.
   3037 		 */
   3038 		error = kauth_authorize_network(cred,
   3039 		    KAUTH_NETWORK_IPV6,
   3040 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   3041 		if (error)
   3042 			return (error);
   3043 
   3044 		if (len == 0) {
   3045 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3046 			break;	/* just remove the option */
   3047 		}
   3048 
   3049 		/* message length validation */
   3050 		if (len < sizeof(struct ip6_hbh))
   3051 			return (EINVAL);
   3052 		hbh = (struct ip6_hbh *)buf;
   3053 		hbhlen = (hbh->ip6h_len + 1) << 3;
   3054 		if (len != hbhlen)
   3055 			return (EINVAL);
   3056 
   3057 		/* turn off the previous option, then set the new option. */
   3058 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3059 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
   3060 		if (opt->ip6po_hbh == NULL)
   3061 			return (ENOBUFS);
   3062 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
   3063 
   3064 		break;
   3065 	}
   3066 
   3067 #ifdef RFC2292
   3068 	case IPV6_2292DSTOPTS:
   3069 #endif
   3070 	case IPV6_DSTOPTS:
   3071 	case IPV6_RTHDRDSTOPTS:
   3072 	{
   3073 		struct ip6_dest *dest, **newdest = NULL;
   3074 		int destlen;
   3075 
   3076 		/* XXX: see the comment for IPV6_HOPOPTS */
   3077 		error = kauth_authorize_network(cred,
   3078 		    KAUTH_NETWORK_IPV6,
   3079 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   3080 		if (error)
   3081 			return (error);
   3082 
   3083 		if (len == 0) {
   3084 			ip6_clearpktopts(opt, optname);
   3085 			break;	/* just remove the option */
   3086 		}
   3087 
   3088 		/* message length validation */
   3089 		if (len < sizeof(struct ip6_dest))
   3090 			return (EINVAL);
   3091 		dest = (struct ip6_dest *)buf;
   3092 		destlen = (dest->ip6d_len + 1) << 3;
   3093 		if (len != destlen)
   3094 			return (EINVAL);
   3095 		/*
   3096 		 * Determine the position that the destination options header
   3097 		 * should be inserted; before or after the routing header.
   3098 		 */
   3099 		switch (optname) {
   3100 		case IPV6_2292DSTOPTS:
   3101 			/*
   3102 			 * The old advanced API is ambiguous on this point.
   3103 			 * Our approach is to determine the position based
   3104 			 * according to the existence of a routing header.
   3105 			 * Note, however, that this depends on the order of the
   3106 			 * extension headers in the ancillary data; the 1st
   3107 			 * part of the destination options header must appear
   3108 			 * before the routing header in the ancillary data,
   3109 			 * too.
   3110 			 * RFC3542 solved the ambiguity by introducing
   3111 			 * separate ancillary data or option types.
   3112 			 */
   3113 			if (opt->ip6po_rthdr == NULL)
   3114 				newdest = &opt->ip6po_dest1;
   3115 			else
   3116 				newdest = &opt->ip6po_dest2;
   3117 			break;
   3118 		case IPV6_RTHDRDSTOPTS:
   3119 			newdest = &opt->ip6po_dest1;
   3120 			break;
   3121 		case IPV6_DSTOPTS:
   3122 			newdest = &opt->ip6po_dest2;
   3123 			break;
   3124 		}
   3125 
   3126 		/* turn off the previous option, then set the new option. */
   3127 		ip6_clearpktopts(opt, optname);
   3128 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
   3129 		if (*newdest == NULL)
   3130 			return (ENOBUFS);
   3131 		memcpy(*newdest, dest, destlen);
   3132 
   3133 		break;
   3134 	}
   3135 
   3136 #ifdef RFC2292
   3137 	case IPV6_2292RTHDR:
   3138 #endif
   3139 	case IPV6_RTHDR:
   3140 	{
   3141 		struct ip6_rthdr *rth;
   3142 		int rthlen;
   3143 
   3144 		if (len == 0) {
   3145 			ip6_clearpktopts(opt, IPV6_RTHDR);
   3146 			break;	/* just remove the option */
   3147 		}
   3148 
   3149 		/* message length validation */
   3150 		if (len < sizeof(struct ip6_rthdr))
   3151 			return (EINVAL);
   3152 		rth = (struct ip6_rthdr *)buf;
   3153 		rthlen = (rth->ip6r_len + 1) << 3;
   3154 		if (len != rthlen)
   3155 			return (EINVAL);
   3156 		switch (rth->ip6r_type) {
   3157 		case IPV6_RTHDR_TYPE_0:
   3158 			/* Dropped, RFC5095. */
   3159 		default:
   3160 			return (EINVAL);	/* not supported */
   3161 		}
   3162 		/* turn off the previous option */
   3163 		ip6_clearpktopts(opt, IPV6_RTHDR);
   3164 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
   3165 		if (opt->ip6po_rthdr == NULL)
   3166 			return (ENOBUFS);
   3167 		memcpy(opt->ip6po_rthdr, rth, rthlen);
   3168 		break;
   3169 	}
   3170 
   3171 	case IPV6_USE_MIN_MTU:
   3172 		if (len != sizeof(int))
   3173 			return (EINVAL);
   3174 		minmtupolicy = *(int *)buf;
   3175 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
   3176 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
   3177 		    minmtupolicy != IP6PO_MINMTU_ALL) {
   3178 			return (EINVAL);
   3179 		}
   3180 		opt->ip6po_minmtu = minmtupolicy;
   3181 		break;
   3182 
   3183 	case IPV6_DONTFRAG:
   3184 		if (len != sizeof(int))
   3185 			return (EINVAL);
   3186 
   3187 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
   3188 			/*
   3189 			 * we ignore this option for TCP sockets.
   3190 			 * (RFC3542 leaves this case unspecified.)
   3191 			 */
   3192 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
   3193 		} else
   3194 			opt->ip6po_flags |= IP6PO_DONTFRAG;
   3195 		break;
   3196 
   3197 	case IPV6_PREFER_TEMPADDR:
   3198 	{
   3199 		int preftemp;
   3200 
   3201 		if (len != sizeof(int))
   3202 			return (EINVAL);
   3203 		preftemp = *(int *)buf;
   3204 		switch (preftemp) {
   3205 		case IP6PO_TEMPADDR_SYSTEM:
   3206 		case IP6PO_TEMPADDR_NOTPREFER:
   3207 		case IP6PO_TEMPADDR_PREFER:
   3208 			break;
   3209 		default:
   3210 			return (EINVAL);
   3211 		}
   3212 		opt->ip6po_prefer_tempaddr = preftemp;
   3213 		break;
   3214 	}
   3215 
   3216 	default:
   3217 		return (ENOPROTOOPT);
   3218 	} /* end of switch */
   3219 
   3220 	return (0);
   3221 }
   3222 
   3223 /*
   3224  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   3225  * packet to the input queue of a specified interface.  Note that this
   3226  * calls the output routine of the loopback "driver", but with an interface
   3227  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   3228  */
   3229 void
   3230 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
   3231 	const struct sockaddr_in6 *dst)
   3232 {
   3233 	struct mbuf *copym;
   3234 	struct ip6_hdr *ip6;
   3235 
   3236 	copym = m_copypacket(m, M_DONTWAIT);
   3237 	if (copym == NULL)
   3238 		return;
   3239 
   3240 	/*
   3241 	 * Make sure to deep-copy IPv6 header portion in case the data
   3242 	 * is in an mbuf cluster, so that we can safely override the IPv6
   3243 	 * header portion later.
   3244 	 */
   3245 	if ((copym->m_flags & M_EXT) != 0 ||
   3246 	    copym->m_len < sizeof(struct ip6_hdr)) {
   3247 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   3248 		if (copym == NULL)
   3249 			return;
   3250 	}
   3251 
   3252 #ifdef DIAGNOSTIC
   3253 	if (copym->m_len < sizeof(*ip6)) {
   3254 		m_freem(copym);
   3255 		return;
   3256 	}
   3257 #endif
   3258 
   3259 	ip6 = mtod(copym, struct ip6_hdr *);
   3260 	/*
   3261 	 * clear embedded scope identifiers if necessary.
   3262 	 * in6_clearscope will touch the addresses only when necessary.
   3263 	 */
   3264 	in6_clearscope(&ip6->ip6_src);
   3265 	in6_clearscope(&ip6->ip6_dst);
   3266 
   3267 	(void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
   3268 }
   3269 
   3270 /*
   3271  * Chop IPv6 header off from the payload.
   3272  */
   3273 static int
   3274 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
   3275 {
   3276 	struct mbuf *mh;
   3277 	struct ip6_hdr *ip6;
   3278 
   3279 	ip6 = mtod(m, struct ip6_hdr *);
   3280 	if (m->m_len > sizeof(*ip6)) {
   3281 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   3282 		if (mh == NULL) {
   3283 			m_freem(m);
   3284 			return ENOBUFS;
   3285 		}
   3286 		m_move_pkthdr(mh, m);
   3287 		m_align(mh, sizeof(*ip6));
   3288 		m->m_len -= sizeof(*ip6);
   3289 		m->m_data += sizeof(*ip6);
   3290 		mh->m_next = m;
   3291 		mh->m_len = sizeof(*ip6);
   3292 		memcpy(mtod(mh, void *), (void *)ip6, sizeof(*ip6));
   3293 		m = mh;
   3294 	}
   3295 	exthdrs->ip6e_ip6 = m;
   3296 	return 0;
   3297 }
   3298 
   3299 /*
   3300  * Compute IPv6 extension header length.
   3301  */
   3302 int
   3303 ip6_optlen(struct inpcb *inp)
   3304 {
   3305 	int len;
   3306 
   3307 	if (!in6p_outputopts(inp))
   3308 		return 0;
   3309 
   3310 	len = 0;
   3311 #define elen(x) \
   3312     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   3313 
   3314 	len += elen(in6p_outputopts(inp)->ip6po_hbh);
   3315 	len += elen(in6p_outputopts(inp)->ip6po_dest1);
   3316 	len += elen(in6p_outputopts(inp)->ip6po_rthdr);
   3317 	len += elen(in6p_outputopts(inp)->ip6po_dest2);
   3318 	return len;
   3319 #undef elen
   3320 }
   3321 
   3322 /*
   3323  * Ensure sending address is valid.
   3324  * Returns 0 on success, -1 if an error should be sent back or 1
   3325  * if the packet could be dropped without error (protocol dependent).
   3326  */
   3327 static int
   3328 ip6_ifaddrvalid(const struct in6_addr *src, const struct in6_addr *dst)
   3329 {
   3330 	struct sockaddr_in6 sin6;
   3331 	int s, error;
   3332 	struct ifaddr *ifa;
   3333 	struct in6_ifaddr *ia6;
   3334 
   3335 	if (IN6_IS_ADDR_UNSPECIFIED(src))
   3336 		return 0;
   3337 
   3338 	memset(&sin6, 0, sizeof(sin6));
   3339 	sin6.sin6_family = AF_INET6;
   3340 	sin6.sin6_len = sizeof(sin6);
   3341 	sin6.sin6_addr = *src;
   3342 
   3343 	s = pserialize_read_enter();
   3344 	ifa = ifa_ifwithaddr(sin6tosa(&sin6));
   3345 	if ((ia6 = ifatoia6(ifa)) == NULL ||
   3346 	    ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
   3347 		error = -1;
   3348 	else if (ia6->ia6_flags & IN6_IFF_TENTATIVE)
   3349 		error = 1;
   3350 	else if (ia6->ia6_flags & IN6_IFF_DETACHED &&
   3351 	    (sin6.sin6_addr = *dst, ifa_ifwithaddr(sin6tosa(&sin6)) == NULL))
   3352 		/* Allow internal traffic to DETACHED addresses */
   3353 		error = 1;
   3354 	else
   3355 		error = 0;
   3356 	pserialize_read_exit(s);
   3357 
   3358 	return error;
   3359 }
   3360