ip6_output.c revision 1.25 1 /* $NetBSD: ip6_output.c,v 1.25 2000/08/19 08:15:54 itojun Exp $ */
2 /* $KAME: ip6_output.c,v 1.122 2000/08/19 02:12:02 jinmei Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
66 */
67
68 #include "opt_inet.h"
69 #include "opt_ipsec.h"
70 #include "opt_pfil_hooks.h"
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81
82 #include <net/if.h>
83 #include <net/route.h>
84 #ifdef PFIL_HOOKS
85 #include <net/pfil.h>
86 #endif
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/icmp6.h>
92 #include <netinet6/ip6_var.h>
93 #include <netinet6/in6_pcb.h>
94 #include <netinet6/nd6.h>
95
96 #ifdef IPSEC
97 #include <netinet6/ipsec.h>
98 #include <netkey/key.h>
99 #endif /* IPSEC */
100
101 #include "loop.h"
102
103 #include <net/net_osdep.h>
104
105 #ifdef IPV6FIREWALL
106 #include <netinet6/ip6_fw.h>
107 #endif
108
109 struct ip6_exthdrs {
110 struct mbuf *ip6e_ip6;
111 struct mbuf *ip6e_hbh;
112 struct mbuf *ip6e_dest1;
113 struct mbuf *ip6e_rthdr;
114 struct mbuf *ip6e_dest2;
115 };
116
117 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
118 struct socket *));
119 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
120 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
121 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
122 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
123 struct ip6_frag **));
124 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
125 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
126
127 extern struct ifnet loif[NLOOP];
128
129 /*
130 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
131 * header (with pri, len, nxt, hlim, src, dst).
132 * This function may modify ver and hlim only.
133 * The mbuf chain containing the packet will be freed.
134 * The mbuf opt, if present, will not be freed.
135 */
136 int
137 ip6_output(m0, opt, ro, flags, im6o, ifpp)
138 struct mbuf *m0;
139 struct ip6_pktopts *opt;
140 struct route_in6 *ro;
141 int flags;
142 struct ip6_moptions *im6o;
143 struct ifnet **ifpp; /* XXX: just for statistics */
144 {
145 struct ip6_hdr *ip6, *mhip6;
146 struct ifnet *ifp, *origifp;
147 struct mbuf *m = m0;
148 int hlen, tlen, len, off;
149 struct route_in6 ip6route;
150 struct sockaddr_in6 *dst;
151 int error = 0;
152 struct in6_ifaddr *ia;
153 u_long mtu;
154 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
155 struct ip6_exthdrs exthdrs;
156 struct in6_addr finaldst;
157 struct route_in6 *ro_pmtu = NULL;
158 int hdrsplit = 0;
159 int needipsec = 0;
160 #ifdef PFIL_HOOKS
161 struct packet_filter_hook *pfh;
162 struct mbuf *m1;
163 int rv;
164 #endif /* PFIL_HOOKS */
165 #ifdef IPSEC
166 int needipsectun = 0;
167 struct socket *so;
168 struct secpolicy *sp = NULL;
169
170 /* for AH processing. stupid to have "socket" variable in IP layer... */
171 so = ipsec_getsocket(m);
172 ipsec_setsocket(m, NULL);
173 ip6 = mtod(m, struct ip6_hdr *);
174 #endif /* IPSEC */
175
176 #define MAKE_EXTHDR(hp, mp) \
177 do { \
178 if (hp) { \
179 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
180 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
181 ((eh)->ip6e_len + 1) << 3); \
182 if (error) \
183 goto freehdrs; \
184 } \
185 } while (0)
186
187 bzero(&exthdrs, sizeof(exthdrs));
188 if (opt) {
189 /* Hop-by-Hop options header */
190 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
191 /* Destination options header(1st part) */
192 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
193 /* Routing header */
194 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
195 /* Destination options header(2nd part) */
196 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
197 }
198
199 #ifdef IPSEC
200 /* get a security policy for this packet */
201 if (so == NULL)
202 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
203 else
204 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
205
206 if (sp == NULL) {
207 ipsec6stat.out_inval++;
208 goto freehdrs;
209 }
210
211 error = 0;
212
213 /* check policy */
214 switch (sp->policy) {
215 case IPSEC_POLICY_DISCARD:
216 /*
217 * This packet is just discarded.
218 */
219 ipsec6stat.out_polvio++;
220 goto freehdrs;
221
222 case IPSEC_POLICY_BYPASS:
223 case IPSEC_POLICY_NONE:
224 /* no need to do IPsec. */
225 needipsec = 0;
226 break;
227
228 case IPSEC_POLICY_IPSEC:
229 if (sp->req == NULL) {
230 /* XXX should be panic ? */
231 printf("ip6_output: No IPsec request specified.\n");
232 error = EINVAL;
233 goto freehdrs;
234 }
235 needipsec = 1;
236 break;
237
238 case IPSEC_POLICY_ENTRUST:
239 default:
240 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
241 }
242 #endif /* IPSEC */
243
244 /*
245 * Calculate the total length of the extension header chain.
246 * Keep the length of the unfragmentable part for fragmentation.
247 */
248 optlen = 0;
249 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
250 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
251 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
252 unfragpartlen = optlen + sizeof(struct ip6_hdr);
253 /* NOTE: we don't add AH/ESP length here. do that later. */
254 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
255
256 /*
257 * If we need IPsec, or there is at least one extension header,
258 * separate IP6 header from the payload.
259 */
260 if ((needipsec || optlen) && !hdrsplit) {
261 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
262 m = NULL;
263 goto freehdrs;
264 }
265 m = exthdrs.ip6e_ip6;
266 hdrsplit++;
267 }
268
269 /* adjust pointer */
270 ip6 = mtod(m, struct ip6_hdr *);
271
272 /* adjust mbuf packet header length */
273 m->m_pkthdr.len += optlen;
274 plen = m->m_pkthdr.len - sizeof(*ip6);
275
276 /* If this is a jumbo payload, insert a jumbo payload option. */
277 if (plen > IPV6_MAXPACKET) {
278 if (!hdrsplit) {
279 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
280 m = NULL;
281 goto freehdrs;
282 }
283 m = exthdrs.ip6e_ip6;
284 hdrsplit++;
285 }
286 /* adjust pointer */
287 ip6 = mtod(m, struct ip6_hdr *);
288 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
289 goto freehdrs;
290 ip6->ip6_plen = 0;
291 } else
292 ip6->ip6_plen = htons(plen);
293
294 /*
295 * Concatenate headers and fill in next header fields.
296 * Here we have, on "m"
297 * IPv6 payload
298 * and we insert headers accordingly. Finally, we should be getting:
299 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
300 *
301 * during the header composing process, "m" points to IPv6 header.
302 * "mprev" points to an extension header prior to esp.
303 */
304 {
305 u_char *nexthdrp = &ip6->ip6_nxt;
306 struct mbuf *mprev = m;
307
308 /*
309 * we treat dest2 specially. this makes IPsec processing
310 * much easier.
311 *
312 * result: IPv6 dest2 payload
313 * m and mprev will point to IPv6 header.
314 */
315 if (exthdrs.ip6e_dest2) {
316 if (!hdrsplit)
317 panic("assumption failed: hdr not split");
318 exthdrs.ip6e_dest2->m_next = m->m_next;
319 m->m_next = exthdrs.ip6e_dest2;
320 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
321 ip6->ip6_nxt = IPPROTO_DSTOPTS;
322 }
323
324 #define MAKE_CHAIN(m, mp, p, i)\
325 do {\
326 if (m) {\
327 if (!hdrsplit) \
328 panic("assumption failed: hdr not split"); \
329 *mtod((m), u_char *) = *(p);\
330 *(p) = (i);\
331 p = mtod((m), u_char *);\
332 (m)->m_next = (mp)->m_next;\
333 (mp)->m_next = (m);\
334 (mp) = (m);\
335 }\
336 } while (0)
337 /*
338 * result: IPv6 hbh dest1 rthdr dest2 payload
339 * m will point to IPv6 header. mprev will point to the
340 * extension header prior to dest2 (rthdr in the above case).
341 */
342 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
343 nexthdrp, IPPROTO_HOPOPTS);
344 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
345 nexthdrp, IPPROTO_DSTOPTS);
346 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
347 nexthdrp, IPPROTO_ROUTING);
348
349 #ifdef IPSEC
350 if (!needipsec)
351 goto skip_ipsec2;
352
353 /*
354 * pointers after IPsec headers are not valid any more.
355 * other pointers need a great care too.
356 * (IPsec routines should not mangle mbufs prior to AH/ESP)
357 */
358 exthdrs.ip6e_dest2 = NULL;
359
360 {
361 struct ip6_rthdr *rh = NULL;
362 int segleft_org = 0;
363 struct ipsec_output_state state;
364
365 if (exthdrs.ip6e_rthdr) {
366 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
367 segleft_org = rh->ip6r_segleft;
368 rh->ip6r_segleft = 0;
369 }
370
371 bzero(&state, sizeof(state));
372 state.m = m;
373 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
374 &needipsectun);
375 m = state.m;
376 if (error) {
377 /* mbuf is already reclaimed in ipsec6_output_trans. */
378 m = NULL;
379 switch (error) {
380 case EHOSTUNREACH:
381 case ENETUNREACH:
382 case EMSGSIZE:
383 case ENOBUFS:
384 case ENOMEM:
385 break;
386 default:
387 printf("ip6_output (ipsec): error code %d\n", error);
388 /*fall through*/
389 case ENOENT:
390 /* don't show these error codes to the user */
391 error = 0;
392 break;
393 }
394 goto bad;
395 }
396 if (exthdrs.ip6e_rthdr) {
397 /* ah6_output doesn't modify mbuf chain */
398 rh->ip6r_segleft = segleft_org;
399 }
400 }
401 skip_ipsec2:;
402 #endif
403 }
404
405 /*
406 * If there is a routing header, replace destination address field
407 * with the first hop of the routing header.
408 */
409 if (exthdrs.ip6e_rthdr) {
410 struct ip6_rthdr *rh =
411 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
412 struct ip6_rthdr *));
413 struct ip6_rthdr0 *rh0;
414
415 finaldst = ip6->ip6_dst;
416 switch(rh->ip6r_type) {
417 case IPV6_RTHDR_TYPE_0:
418 rh0 = (struct ip6_rthdr0 *)rh;
419 ip6->ip6_dst = rh0->ip6r0_addr[0];
420 bcopy((caddr_t)&rh0->ip6r0_addr[1],
421 (caddr_t)&rh0->ip6r0_addr[0],
422 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)
423 );
424 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
425 break;
426 default: /* is it possible? */
427 error = EINVAL;
428 goto bad;
429 }
430 }
431
432 /* Source address validation */
433 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
434 (flags & IPV6_DADOUTPUT) == 0) {
435 error = EOPNOTSUPP;
436 ip6stat.ip6s_badscope++;
437 goto bad;
438 }
439 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
440 error = EOPNOTSUPP;
441 ip6stat.ip6s_badscope++;
442 goto bad;
443 }
444
445 ip6stat.ip6s_localout++;
446
447 /*
448 * Route packet.
449 */
450 if (ro == 0) {
451 ro = &ip6route;
452 bzero((caddr_t)ro, sizeof(*ro));
453 }
454 ro_pmtu = ro;
455 if (opt && opt->ip6po_rthdr)
456 ro = &opt->ip6po_route;
457 dst = (struct sockaddr_in6 *)&ro->ro_dst;
458 /*
459 * If there is a cached route,
460 * check that it is to the same destination
461 * and is still up. If not, free it and try again.
462 */
463 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
464 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
465 RTFREE(ro->ro_rt);
466 ro->ro_rt = (struct rtentry *)0;
467 }
468 if (ro->ro_rt == 0) {
469 bzero(dst, sizeof(*dst));
470 dst->sin6_family = AF_INET6;
471 dst->sin6_len = sizeof(struct sockaddr_in6);
472 dst->sin6_addr = ip6->ip6_dst;
473 }
474 #ifdef IPSEC
475 if (needipsec && needipsectun) {
476 struct ipsec_output_state state;
477
478 /*
479 * All the extension headers will become inaccessible
480 * (since they can be encrypted).
481 * Don't panic, we need no more updates to extension headers
482 * on inner IPv6 packet (since they are now encapsulated).
483 *
484 * IPv6 [ESP|AH] IPv6 [extension headers] payload
485 */
486 bzero(&exthdrs, sizeof(exthdrs));
487 exthdrs.ip6e_ip6 = m;
488
489 bzero(&state, sizeof(state));
490 state.m = m;
491 state.ro = (struct route *)ro;
492 state.dst = (struct sockaddr *)dst;
493
494 error = ipsec6_output_tunnel(&state, sp, flags);
495
496 m = state.m;
497 ro = (struct route_in6 *)state.ro;
498 dst = (struct sockaddr_in6 *)state.dst;
499 if (error) {
500 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
501 m0 = m = NULL;
502 m = NULL;
503 switch (error) {
504 case EHOSTUNREACH:
505 case ENETUNREACH:
506 case EMSGSIZE:
507 case ENOBUFS:
508 case ENOMEM:
509 break;
510 default:
511 printf("ip6_output (ipsec): error code %d\n", error);
512 /*fall through*/
513 case ENOENT:
514 /* don't show these error codes to the user */
515 error = 0;
516 break;
517 }
518 goto bad;
519 }
520
521 exthdrs.ip6e_ip6 = m;
522 }
523 #endif /*IPSEC*/
524
525 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
526 /* Unicast */
527
528 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
529 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
530 /* xxx
531 * interface selection comes here
532 * if an interface is specified from an upper layer,
533 * ifp must point it.
534 */
535 if (ro->ro_rt == 0) {
536 /*
537 * non-bsdi always clone routes, if parent is
538 * PRF_CLONING.
539 */
540 rtalloc((struct route *)ro);
541 }
542 if (ro->ro_rt == 0) {
543 ip6stat.ip6s_noroute++;
544 error = EHOSTUNREACH;
545 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
546 goto bad;
547 }
548 ia = ifatoia6(ro->ro_rt->rt_ifa);
549 ifp = ro->ro_rt->rt_ifp;
550 ro->ro_rt->rt_use++;
551 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
552 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
553 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
554
555 in6_ifstat_inc(ifp, ifs6_out_request);
556
557 /*
558 * Check if the outgoing interface conflicts with
559 * the interface specified by ifi6_ifindex (if specified).
560 * Note that loopback interface is always okay.
561 * (this may happen when we are sending a packet to one of
562 * our own addresses.)
563 */
564 if (opt && opt->ip6po_pktinfo
565 && opt->ip6po_pktinfo->ipi6_ifindex) {
566 if (!(ifp->if_flags & IFF_LOOPBACK)
567 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
568 ip6stat.ip6s_noroute++;
569 in6_ifstat_inc(ifp, ifs6_out_discard);
570 error = EHOSTUNREACH;
571 goto bad;
572 }
573 }
574
575 if (opt && opt->ip6po_hlim != -1)
576 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
577 } else {
578 /* Multicast */
579 struct in6_multi *in6m;
580
581 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
582
583 /*
584 * See if the caller provided any multicast options
585 */
586 ifp = NULL;
587 if (im6o != NULL) {
588 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
589 if (im6o->im6o_multicast_ifp != NULL)
590 ifp = im6o->im6o_multicast_ifp;
591 } else
592 ip6->ip6_hlim = ip6_defmcasthlim;
593
594 /*
595 * See if the caller provided the outgoing interface
596 * as an ancillary data.
597 * Boundary check for ifindex is assumed to be already done.
598 */
599 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
600 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
601
602 /*
603 * If the destination is a node-local scope multicast,
604 * the packet should be loop-backed only.
605 */
606 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
607 /*
608 * If the outgoing interface is already specified,
609 * it should be a loopback interface.
610 */
611 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
612 ip6stat.ip6s_badscope++;
613 error = ENETUNREACH; /* XXX: better error? */
614 /* XXX correct ifp? */
615 in6_ifstat_inc(ifp, ifs6_out_discard);
616 goto bad;
617 } else {
618 ifp = &loif[0];
619 }
620 }
621
622 if (opt && opt->ip6po_hlim != -1)
623 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
624
625 /*
626 * If caller did not provide an interface lookup a
627 * default in the routing table. This is either a
628 * default for the speicfied group (i.e. a host
629 * route), or a multicast default (a route for the
630 * ``net'' ff00::/8).
631 */
632 if (ifp == NULL) {
633 if (ro->ro_rt == 0) {
634 ro->ro_rt = rtalloc1((struct sockaddr *)
635 &ro->ro_dst, 0
636 );
637 }
638 if (ro->ro_rt == 0) {
639 ip6stat.ip6s_noroute++;
640 error = EHOSTUNREACH;
641 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
642 goto bad;
643 }
644 ia = ifatoia6(ro->ro_rt->rt_ifa);
645 ifp = ro->ro_rt->rt_ifp;
646 ro->ro_rt->rt_use++;
647 }
648
649 if ((flags & IPV6_FORWARDING) == 0)
650 in6_ifstat_inc(ifp, ifs6_out_request);
651 in6_ifstat_inc(ifp, ifs6_out_mcast);
652
653 /*
654 * Confirm that the outgoing interface supports multicast.
655 */
656 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
657 ip6stat.ip6s_noroute++;
658 in6_ifstat_inc(ifp, ifs6_out_discard);
659 error = ENETUNREACH;
660 goto bad;
661 }
662 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
663 if (in6m != NULL &&
664 (im6o == NULL || im6o->im6o_multicast_loop)) {
665 /*
666 * If we belong to the destination multicast group
667 * on the outgoing interface, and the caller did not
668 * forbid loopback, loop back a copy.
669 */
670 ip6_mloopback(ifp, m, dst);
671 } else {
672 /*
673 * If we are acting as a multicast router, perform
674 * multicast forwarding as if the packet had just
675 * arrived on the interface to which we are about
676 * to send. The multicast forwarding function
677 * recursively calls this function, using the
678 * IPV6_FORWARDING flag to prevent infinite recursion.
679 *
680 * Multicasts that are looped back by ip6_mloopback(),
681 * above, will be forwarded by the ip6_input() routine,
682 * if necessary.
683 */
684 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
685 if (ip6_mforward(ip6, ifp, m) != 0) {
686 m_freem(m);
687 goto done;
688 }
689 }
690 }
691 /*
692 * Multicasts with a hoplimit of zero may be looped back,
693 * above, but must not be transmitted on a network.
694 * Also, multicasts addressed to the loopback interface
695 * are not sent -- the above call to ip6_mloopback() will
696 * loop back a copy if this host actually belongs to the
697 * destination group on the loopback interface.
698 */
699 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
700 m_freem(m);
701 goto done;
702 }
703 }
704
705 /*
706 * Fill the outgoing inteface to tell the upper layer
707 * to increment per-interface statistics.
708 */
709 if (ifpp)
710 *ifpp = ifp;
711
712 /*
713 * Determine path MTU.
714 */
715 if (ro_pmtu != ro) {
716 /* The first hop and the final destination may differ. */
717 struct sockaddr_in6 *sin6_fin =
718 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
719 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
720 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
721 &finaldst))) {
722 RTFREE(ro_pmtu->ro_rt);
723 ro_pmtu->ro_rt = (struct rtentry *)0;
724 }
725 if (ro_pmtu->ro_rt == 0) {
726 bzero(sin6_fin, sizeof(*sin6_fin));
727 sin6_fin->sin6_family = AF_INET6;
728 sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
729 sin6_fin->sin6_addr = finaldst;
730
731 rtalloc((struct route *)ro_pmtu);
732 }
733 }
734 if (ro_pmtu->ro_rt != NULL) {
735 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
736
737 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
738 if (mtu > ifmtu) {
739 /*
740 * The MTU on the route is larger than the MTU on
741 * the interface! This shouldn't happen, unless the
742 * MTU of the interface has been changed after the
743 * interface was brought up. Change the MTU in the
744 * route to match the interface MTU (as long as the
745 * field isn't locked).
746 */
747 mtu = ifmtu;
748 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
749 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
750 }
751 } else {
752 mtu = nd_ifinfo[ifp->if_index].linkmtu;
753 }
754
755 /* Fake scoped addresses */
756 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
757 /*
758 * If source or destination address is a scoped address, and
759 * the packet is going to be sent to a loopback interface,
760 * we should keep the original interface.
761 */
762
763 /*
764 * XXX: this is a very experimental and temporary solution.
765 * We eventually have sockaddr_in6 and use the sin6_scope_id
766 * field of the structure here.
767 * We rely on the consistency between two scope zone ids
768 * of source add destination, which should already be assured
769 * Larger scopes than link will be supported in the near
770 * future.
771 */
772 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
773 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
774 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
775 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
776 else
777 origifp = ifp;
778 }
779 else
780 origifp = ifp;
781 #ifndef FAKE_LOOPBACK_IF
782 if ((ifp->if_flags & IFF_LOOPBACK) == 0)
783 #else
784 if (1)
785 #endif
786 {
787 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
788 ip6->ip6_src.s6_addr16[1] = 0;
789 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
790 ip6->ip6_dst.s6_addr16[1] = 0;
791 }
792
793 /*
794 * If the outgoing packet contains a hop-by-hop options header,
795 * it must be examined and processed even by the source node.
796 * (RFC 2460, section 4.)
797 */
798 if (exthdrs.ip6e_hbh) {
799 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh,
800 struct ip6_hbh *);
801 u_int32_t dummy1; /* XXX unused */
802 u_int32_t dummy2; /* XXX unused */
803
804 /*
805 * XXX: if we have to send an ICMPv6 error to the sender,
806 * we need the M_LOOP flag since icmp6_error() expects
807 * the IPv6 and the hop-by-hop options header are
808 * continuous unless the flag is set.
809 */
810 m->m_flags |= M_LOOP;
811 m->m_pkthdr.rcvif = ifp;
812 if (ip6_process_hopopts(m,
813 (u_int8_t *)(hbh + 1),
814 ((hbh->ip6h_len + 1) << 3) -
815 sizeof(struct ip6_hbh),
816 &dummy1, &dummy2) < 0) {
817 /* m was already freed at this point */
818 error = EINVAL;/* better error? */
819 goto done;
820 }
821 m->m_flags &= ~M_LOOP; /* XXX */
822 m->m_pkthdr.rcvif = NULL;
823 }
824
825 #ifdef PFIL_HOOKS
826 /*
827 * Run through list of hooks for output packets.
828 */
829 m1 = m;
830 pfh = pfil_hook_get(PFIL_OUT, &inetsw[ip_protox[IPPROTO_IPV6]].pr_pfh);
831 for (; pfh; pfh = pfh->pfil_link.tqe_next)
832 if (pfh->pfil_func) {
833 rv = pfh->pfil_func(ip6, sizeof(*ip6), ifp, 1, &m1);
834 if (rv) {
835 error = EHOSTUNREACH;
836 goto done;
837 }
838 m = m1;
839 if (m == NULL)
840 goto done;
841 ip6 = mtod(m, struct ip6_hdr *);
842 }
843 #endif /* PFIL_HOOKS */
844 /*
845 * Send the packet to the outgoing interface.
846 * If necessary, do IPv6 fragmentation before sending.
847 */
848 tlen = m->m_pkthdr.len;
849 if (tlen <= mtu
850 #ifdef notyet
851 /*
852 * On any link that cannot convey a 1280-octet packet in one piece,
853 * link-specific fragmentation and reassembly must be provided at
854 * a layer below IPv6. [RFC 2460, sec.5]
855 * Thus if the interface has ability of link-level fragmentation,
856 * we can just send the packet even if the packet size is
857 * larger than the link's MTU.
858 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
859 */
860
861 || ifp->if_flags & IFF_FRAGMENTABLE
862 #endif
863 )
864 {
865 #ifdef IFA_STATS
866 if (IFA_STATS) {
867 struct in6_ifaddr *ia6;
868 ip6 = mtod(m, struct ip6_hdr *);
869 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
870 if (ia6) {
871 ia->ia_ifa.ifa_data.ifad_outbytes +=
872 m->m_pkthdr.len;
873 }
874 }
875 #endif
876 #ifdef OLDIP6OUTPUT
877 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst,
878 ro->ro_rt);
879 #else
880 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
881 #endif
882 goto done;
883 } else if (mtu < IPV6_MMTU) {
884 /*
885 * note that path MTU is never less than IPV6_MMTU
886 * (see icmp6_input).
887 */
888 error = EMSGSIZE;
889 in6_ifstat_inc(ifp, ifs6_out_fragfail);
890 goto bad;
891 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
892 error = EMSGSIZE;
893 in6_ifstat_inc(ifp, ifs6_out_fragfail);
894 goto bad;
895 } else {
896 struct mbuf **mnext, *m_frgpart;
897 struct ip6_frag *ip6f;
898 u_int32_t id = htonl(ip6_id++);
899 u_char nextproto;
900
901 /*
902 * Too large for the destination or interface;
903 * fragment if possible.
904 * Must be able to put at least 8 bytes per fragment.
905 */
906 hlen = unfragpartlen;
907 if (mtu > IPV6_MAXPACKET)
908 mtu = IPV6_MAXPACKET;
909 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
910 if (len < 8) {
911 error = EMSGSIZE;
912 in6_ifstat_inc(ifp, ifs6_out_fragfail);
913 goto bad;
914 }
915
916 mnext = &m->m_nextpkt;
917
918 /*
919 * Change the next header field of the last header in the
920 * unfragmentable part.
921 */
922 if (exthdrs.ip6e_rthdr) {
923 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
924 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
925 } else if (exthdrs.ip6e_dest1) {
926 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
927 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
928 } else if (exthdrs.ip6e_hbh) {
929 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
930 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
931 } else {
932 nextproto = ip6->ip6_nxt;
933 ip6->ip6_nxt = IPPROTO_FRAGMENT;
934 }
935
936 /*
937 * Loop through length of segment after first fragment,
938 * make new header and copy data of each part and link onto chain.
939 */
940 m0 = m;
941 for (off = hlen; off < tlen; off += len) {
942 MGETHDR(m, M_DONTWAIT, MT_HEADER);
943 if (!m) {
944 error = ENOBUFS;
945 ip6stat.ip6s_odropped++;
946 goto sendorfree;
947 }
948 m->m_flags = m0->m_flags & M_COPYFLAGS;
949 *mnext = m;
950 mnext = &m->m_nextpkt;
951 m->m_data += max_linkhdr;
952 mhip6 = mtod(m, struct ip6_hdr *);
953 *mhip6 = *ip6;
954 m->m_len = sizeof(*mhip6);
955 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
956 if (error) {
957 ip6stat.ip6s_odropped++;
958 goto sendorfree;
959 }
960 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
961 if (off + len >= tlen)
962 len = tlen - off;
963 else
964 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
965 mhip6->ip6_plen = htons((u_short)(len + hlen +
966 sizeof(*ip6f) -
967 sizeof(struct ip6_hdr)));
968 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
969 error = ENOBUFS;
970 ip6stat.ip6s_odropped++;
971 goto sendorfree;
972 }
973 m_cat(m, m_frgpart);
974 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
975 m->m_pkthdr.rcvif = (struct ifnet *)0;
976 ip6f->ip6f_reserved = 0;
977 ip6f->ip6f_ident = id;
978 ip6f->ip6f_nxt = nextproto;
979 ip6stat.ip6s_ofragments++;
980 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
981 }
982
983 in6_ifstat_inc(ifp, ifs6_out_fragok);
984 }
985
986 /*
987 * Remove leading garbages.
988 */
989 sendorfree:
990 m = m0->m_nextpkt;
991 m0->m_nextpkt = 0;
992 m_freem(m0);
993 for (m0 = m; m; m = m0) {
994 m0 = m->m_nextpkt;
995 m->m_nextpkt = 0;
996 if (error == 0) {
997 #ifdef IFA_STATS
998 if (IFA_STATS) {
999 struct in6_ifaddr *ia6;
1000 ip6 = mtod(m, struct ip6_hdr *);
1001 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1002 if (ia6) {
1003 ia->ia_ifa.ifa_data.ifad_outbytes +=
1004 m->m_pkthdr.len;
1005 }
1006 }
1007 #endif
1008 #ifdef OLDIP6OUTPUT
1009 error = (*ifp->if_output)(ifp, m,
1010 (struct sockaddr *)dst,
1011 ro->ro_rt);
1012 #else
1013 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1014 #endif
1015 } else
1016 m_freem(m);
1017 }
1018
1019 if (error == 0)
1020 ip6stat.ip6s_fragmented++;
1021
1022 done:
1023 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1024 RTFREE(ro->ro_rt);
1025 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1026 RTFREE(ro_pmtu->ro_rt);
1027 }
1028
1029 #ifdef IPSEC
1030 if (sp != NULL)
1031 key_freesp(sp);
1032 #endif /* IPSEC */
1033
1034 return(error);
1035
1036 freehdrs:
1037 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1038 m_freem(exthdrs.ip6e_dest1);
1039 m_freem(exthdrs.ip6e_rthdr);
1040 m_freem(exthdrs.ip6e_dest2);
1041 /* fall through */
1042 bad:
1043 m_freem(m);
1044 goto done;
1045 }
1046
1047 static int
1048 ip6_copyexthdr(mp, hdr, hlen)
1049 struct mbuf **mp;
1050 caddr_t hdr;
1051 int hlen;
1052 {
1053 struct mbuf *m;
1054
1055 if (hlen > MCLBYTES)
1056 return(ENOBUFS); /* XXX */
1057
1058 MGET(m, M_DONTWAIT, MT_DATA);
1059 if (!m)
1060 return(ENOBUFS);
1061
1062 if (hlen > MLEN) {
1063 MCLGET(m, M_DONTWAIT);
1064 if ((m->m_flags & M_EXT) == 0) {
1065 m_free(m);
1066 return(ENOBUFS);
1067 }
1068 }
1069 m->m_len = hlen;
1070 if (hdr)
1071 bcopy(hdr, mtod(m, caddr_t), hlen);
1072
1073 *mp = m;
1074 return(0);
1075 }
1076
1077 /*
1078 * Insert jumbo payload option.
1079 */
1080 static int
1081 ip6_insert_jumboopt(exthdrs, plen)
1082 struct ip6_exthdrs *exthdrs;
1083 u_int32_t plen;
1084 {
1085 struct mbuf *mopt;
1086 u_char *optbuf;
1087 u_int32_t v;
1088
1089 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1090
1091 /*
1092 * If there is no hop-by-hop options header, allocate new one.
1093 * If there is one but it doesn't have enough space to store the
1094 * jumbo payload option, allocate a cluster to store the whole options.
1095 * Otherwise, use it to store the options.
1096 */
1097 if (exthdrs->ip6e_hbh == 0) {
1098 MGET(mopt, M_DONTWAIT, MT_DATA);
1099 if (mopt == 0)
1100 return(ENOBUFS);
1101 mopt->m_len = JUMBOOPTLEN;
1102 optbuf = mtod(mopt, u_char *);
1103 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1104 exthdrs->ip6e_hbh = mopt;
1105 } else {
1106 struct ip6_hbh *hbh;
1107
1108 mopt = exthdrs->ip6e_hbh;
1109 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1110 /*
1111 * XXX assumption:
1112 * - exthdrs->ip6e_hbh is not referenced from places
1113 * other than exthdrs.
1114 * - exthdrs->ip6e_hbh is not an mbuf chain.
1115 */
1116 int oldoptlen = mopt->m_len;
1117 struct mbuf *n;
1118
1119 /*
1120 * XXX: give up if the whole (new) hbh header does
1121 * not fit even in an mbuf cluster.
1122 */
1123 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1124 return(ENOBUFS);
1125
1126 /*
1127 * As a consequence, we must always prepare a cluster
1128 * at this point.
1129 */
1130 MGET(n, M_DONTWAIT, MT_DATA);
1131 if (n) {
1132 MCLGET(n, M_DONTWAIT);
1133 if ((n->m_flags & M_EXT) == 0) {
1134 m_freem(n);
1135 n = NULL;
1136 }
1137 }
1138 if (!n)
1139 return(ENOBUFS);
1140 n->m_len = oldoptlen + JUMBOOPTLEN;
1141 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1142 oldoptlen);
1143 optbuf = mtod(n, caddr_t) + oldoptlen;
1144 m_freem(mopt);
1145 exthdrs->ip6e_hbh = n;
1146 } else {
1147 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1148 mopt->m_len += JUMBOOPTLEN;
1149 }
1150 optbuf[0] = IP6OPT_PADN;
1151 optbuf[1] = 1;
1152
1153 /*
1154 * Adjust the header length according to the pad and
1155 * the jumbo payload option.
1156 */
1157 hbh = mtod(mopt, struct ip6_hbh *);
1158 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1159 }
1160
1161 /* fill in the option. */
1162 optbuf[2] = IP6OPT_JUMBO;
1163 optbuf[3] = 4;
1164 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1165 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1166
1167 /* finally, adjust the packet header length */
1168 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1169
1170 return(0);
1171 #undef JUMBOOPTLEN
1172 }
1173
1174 /*
1175 * Insert fragment header and copy unfragmentable header portions.
1176 */
1177 static int
1178 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1179 struct mbuf *m0, *m;
1180 int hlen;
1181 struct ip6_frag **frghdrp;
1182 {
1183 struct mbuf *n, *mlast;
1184
1185 if (hlen > sizeof(struct ip6_hdr)) {
1186 n = m_copym(m0, sizeof(struct ip6_hdr),
1187 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1188 if (n == 0)
1189 return(ENOBUFS);
1190 m->m_next = n;
1191 } else
1192 n = m;
1193
1194 /* Search for the last mbuf of unfragmentable part. */
1195 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1196 ;
1197
1198 if ((mlast->m_flags & M_EXT) == 0 &&
1199 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1200 /* use the trailing space of the last mbuf for the fragment hdr */
1201 *frghdrp =
1202 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1203 mlast->m_len += sizeof(struct ip6_frag);
1204 m->m_pkthdr.len += sizeof(struct ip6_frag);
1205 } else {
1206 /* allocate a new mbuf for the fragment header */
1207 struct mbuf *mfrg;
1208
1209 MGET(mfrg, M_DONTWAIT, MT_DATA);
1210 if (mfrg == 0)
1211 return(ENOBUFS);
1212 mfrg->m_len = sizeof(struct ip6_frag);
1213 *frghdrp = mtod(mfrg, struct ip6_frag *);
1214 mlast->m_next = mfrg;
1215 }
1216
1217 return(0);
1218 }
1219
1220 /*
1221 * IP6 socket option processing.
1222 */
1223 int
1224 ip6_ctloutput(op, so, level, optname, mp)
1225 int op;
1226 struct socket *so;
1227 int level, optname;
1228 struct mbuf **mp;
1229 {
1230 register struct in6pcb *in6p = sotoin6pcb(so);
1231 register struct mbuf *m = *mp;
1232 register int optval = 0;
1233 int error = 0;
1234 struct proc *p = curproc; /* XXX */
1235
1236 if (level == IPPROTO_IPV6) {
1237 switch (op) {
1238
1239 case PRCO_SETOPT:
1240 switch (optname) {
1241 case IPV6_PKTOPTIONS:
1242 /* m is freed in ip6_pcbopts */
1243 return(ip6_pcbopts(&in6p->in6p_outputopts,
1244 m, so));
1245 case IPV6_HOPOPTS:
1246 case IPV6_DSTOPTS:
1247 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1248 error = EPERM;
1249 break;
1250 }
1251 /* fall through */
1252 case IPV6_UNICAST_HOPS:
1253 case IPV6_RECVOPTS:
1254 case IPV6_RECVRETOPTS:
1255 case IPV6_RECVDSTADDR:
1256 case IPV6_PKTINFO:
1257 case IPV6_HOPLIMIT:
1258 case IPV6_RTHDR:
1259 case IPV6_CHECKSUM:
1260 case IPV6_FAITH:
1261 #ifndef INET6_BINDV6ONLY
1262 case IPV6_BINDV6ONLY:
1263 #endif
1264 if (!m || m->m_len != sizeof(int))
1265 error = EINVAL;
1266 else {
1267 optval = *mtod(m, int *);
1268 switch (optname) {
1269
1270 case IPV6_UNICAST_HOPS:
1271 if (optval < -1 || optval >= 256)
1272 error = EINVAL;
1273 else {
1274 /* -1 = kernel default */
1275 in6p->in6p_hops = optval;
1276 }
1277 break;
1278 #define OPTSET(bit) \
1279 if (optval) \
1280 in6p->in6p_flags |= bit; \
1281 else \
1282 in6p->in6p_flags &= ~bit;
1283
1284 case IPV6_RECVOPTS:
1285 OPTSET(IN6P_RECVOPTS);
1286 break;
1287
1288 case IPV6_RECVRETOPTS:
1289 OPTSET(IN6P_RECVRETOPTS);
1290 break;
1291
1292 case IPV6_RECVDSTADDR:
1293 OPTSET(IN6P_RECVDSTADDR);
1294 break;
1295
1296 case IPV6_PKTINFO:
1297 OPTSET(IN6P_PKTINFO);
1298 break;
1299
1300 case IPV6_HOPLIMIT:
1301 OPTSET(IN6P_HOPLIMIT);
1302 break;
1303
1304 case IPV6_HOPOPTS:
1305 OPTSET(IN6P_HOPOPTS);
1306 break;
1307
1308 case IPV6_DSTOPTS:
1309 OPTSET(IN6P_DSTOPTS);
1310 break;
1311
1312 case IPV6_RTHDR:
1313 OPTSET(IN6P_RTHDR);
1314 break;
1315
1316 case IPV6_CHECKSUM:
1317 in6p->in6p_cksum = optval;
1318 break;
1319
1320 case IPV6_FAITH:
1321 OPTSET(IN6P_FAITH);
1322 break;
1323
1324 #ifndef INET6_BINDV6ONLY
1325 case IPV6_BINDV6ONLY:
1326 OPTSET(IN6P_BINDV6ONLY);
1327 break;
1328 #endif
1329 }
1330 }
1331 break;
1332 #undef OPTSET
1333
1334 case IPV6_MULTICAST_IF:
1335 case IPV6_MULTICAST_HOPS:
1336 case IPV6_MULTICAST_LOOP:
1337 case IPV6_JOIN_GROUP:
1338 case IPV6_LEAVE_GROUP:
1339 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m);
1340 break;
1341
1342 case IPV6_PORTRANGE:
1343 optval = *mtod(m, int *);
1344
1345 switch (optval) {
1346 case IPV6_PORTRANGE_DEFAULT:
1347 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1348 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1349 break;
1350
1351 case IPV6_PORTRANGE_HIGH:
1352 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1353 in6p->in6p_flags |= IN6P_HIGHPORT;
1354 break;
1355
1356 case IPV6_PORTRANGE_LOW:
1357 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1358 in6p->in6p_flags |= IN6P_LOWPORT;
1359 break;
1360
1361 default:
1362 error = EINVAL;
1363 break;
1364 }
1365 break;
1366
1367 #ifdef IPSEC
1368 case IPV6_IPSEC_POLICY:
1369 {
1370 caddr_t req = NULL;
1371 size_t len = 0;
1372
1373 int priv = 0;
1374 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1375 priv = 0;
1376 else
1377 priv = 1;
1378 if (m) {
1379 req = mtod(m, caddr_t);
1380 len = m->m_len;
1381 }
1382 error = ipsec6_set_policy(in6p,
1383 optname, req, len, priv);
1384 }
1385 break;
1386 #endif /* IPSEC */
1387
1388 default:
1389 error = ENOPROTOOPT;
1390 break;
1391 }
1392 if (m)
1393 (void)m_free(m);
1394 break;
1395
1396 case PRCO_GETOPT:
1397 switch (optname) {
1398
1399 case IPV6_OPTIONS:
1400 case IPV6_RETOPTS:
1401 #if 0
1402 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1403 if (in6p->in6p_options) {
1404 m->m_len = in6p->in6p_options->m_len;
1405 bcopy(mtod(in6p->in6p_options, caddr_t),
1406 mtod(m, caddr_t),
1407 (unsigned)m->m_len);
1408 } else
1409 m->m_len = 0;
1410 break;
1411 #else
1412 error = ENOPROTOOPT;
1413 break;
1414 #endif
1415
1416 case IPV6_PKTOPTIONS:
1417 if (in6p->in6p_options) {
1418 *mp = m_copym(in6p->in6p_options, 0,
1419 M_COPYALL, M_WAIT);
1420 } else {
1421 *mp = m_get(M_WAIT, MT_SOOPTS);
1422 (*mp)->m_len = 0;
1423 }
1424 break;
1425
1426 case IPV6_HOPOPTS:
1427 case IPV6_DSTOPTS:
1428 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1429 error = EPERM;
1430 break;
1431 }
1432 /* fall through */
1433 case IPV6_UNICAST_HOPS:
1434 case IPV6_RECVOPTS:
1435 case IPV6_RECVRETOPTS:
1436 case IPV6_RECVDSTADDR:
1437 case IPV6_PORTRANGE:
1438 case IPV6_PKTINFO:
1439 case IPV6_HOPLIMIT:
1440 case IPV6_RTHDR:
1441 case IPV6_CHECKSUM:
1442 case IPV6_FAITH:
1443 #ifndef INET6_BINDV6ONLY
1444 case IPV6_BINDV6ONLY:
1445 #endif
1446 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1447 m->m_len = sizeof(int);
1448 switch (optname) {
1449
1450 case IPV6_UNICAST_HOPS:
1451 optval = in6p->in6p_hops;
1452 break;
1453
1454 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1455
1456 case IPV6_RECVOPTS:
1457 optval = OPTBIT(IN6P_RECVOPTS);
1458 break;
1459
1460 case IPV6_RECVRETOPTS:
1461 optval = OPTBIT(IN6P_RECVRETOPTS);
1462 break;
1463
1464 case IPV6_RECVDSTADDR:
1465 optval = OPTBIT(IN6P_RECVDSTADDR);
1466 break;
1467
1468 case IPV6_PORTRANGE:
1469 {
1470 int flags;
1471 flags = in6p->in6p_flags;
1472 if (flags & IN6P_HIGHPORT)
1473 optval = IPV6_PORTRANGE_HIGH;
1474 else if (flags & IN6P_LOWPORT)
1475 optval = IPV6_PORTRANGE_LOW;
1476 else
1477 optval = 0;
1478 break;
1479 }
1480
1481 case IPV6_PKTINFO:
1482 optval = OPTBIT(IN6P_PKTINFO);
1483 break;
1484
1485 case IPV6_HOPLIMIT:
1486 optval = OPTBIT(IN6P_HOPLIMIT);
1487 break;
1488
1489 case IPV6_HOPOPTS:
1490 optval = OPTBIT(IN6P_HOPOPTS);
1491 break;
1492
1493 case IPV6_DSTOPTS:
1494 optval = OPTBIT(IN6P_DSTOPTS);
1495 break;
1496
1497 case IPV6_RTHDR:
1498 optval = OPTBIT(IN6P_RTHDR);
1499 break;
1500
1501 case IPV6_CHECKSUM:
1502 optval = in6p->in6p_cksum;
1503 break;
1504
1505 case IPV6_FAITH:
1506 optval = OPTBIT(IN6P_FAITH);
1507 break;
1508
1509 #ifndef INET6_BINDV6ONLY
1510 case IPV6_BINDV6ONLY:
1511 optval = OPTBIT(IN6P_BINDV6ONLY);
1512 break;
1513 #endif
1514 }
1515 *mtod(m, int *) = optval;
1516 break;
1517
1518 case IPV6_MULTICAST_IF:
1519 case IPV6_MULTICAST_HOPS:
1520 case IPV6_MULTICAST_LOOP:
1521 case IPV6_JOIN_GROUP:
1522 case IPV6_LEAVE_GROUP:
1523 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1524 break;
1525
1526 #ifdef IPSEC
1527 case IPV6_IPSEC_POLICY:
1528 {
1529 caddr_t req = NULL;
1530 size_t len = 0;
1531
1532 if (m) {
1533 req = mtod(m, caddr_t);
1534 len = m->m_len;
1535 }
1536 error = ipsec6_get_policy(in6p, req, len, mp);
1537 break;
1538 }
1539 #endif /* IPSEC */
1540
1541 default:
1542 error = ENOPROTOOPT;
1543 break;
1544 }
1545 break;
1546 }
1547 } else {
1548 error = EINVAL;
1549 if (op == PRCO_SETOPT && *mp)
1550 (void)m_free(*mp);
1551 }
1552 return(error);
1553 }
1554
1555 /*
1556 * Set up IP6 options in pcb for insertion in output packets.
1557 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1558 * with destination address if source routed.
1559 */
1560 static int
1561 ip6_pcbopts(pktopt, m, so)
1562 struct ip6_pktopts **pktopt;
1563 register struct mbuf *m;
1564 struct socket *so;
1565 {
1566 register struct ip6_pktopts *opt = *pktopt;
1567 int error = 0;
1568 struct proc *p = curproc; /* XXX */
1569 int priv = 0;
1570
1571 /* turn off any old options. */
1572 if (opt) {
1573 if (opt->ip6po_m)
1574 (void)m_free(opt->ip6po_m);
1575 } else
1576 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1577 *pktopt = 0;
1578
1579 if (!m || m->m_len == 0) {
1580 /*
1581 * Only turning off any previous options.
1582 */
1583 if (opt)
1584 free(opt, M_IP6OPT);
1585 if (m)
1586 (void)m_free(m);
1587 return(0);
1588 }
1589
1590 /* set options specified by user. */
1591 if (p && !suser(p->p_ucred, &p->p_acflag))
1592 priv = 1;
1593 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1594 (void)m_free(m);
1595 return(error);
1596 }
1597 *pktopt = opt;
1598 return(0);
1599 }
1600
1601 /*
1602 * Set the IP6 multicast options in response to user setsockopt().
1603 */
1604 static int
1605 ip6_setmoptions(optname, im6op, m)
1606 int optname;
1607 struct ip6_moptions **im6op;
1608 struct mbuf *m;
1609 {
1610 int error = 0;
1611 u_int loop, ifindex;
1612 struct ipv6_mreq *mreq;
1613 struct ifnet *ifp;
1614 struct ip6_moptions *im6o = *im6op;
1615 struct route_in6 ro;
1616 struct sockaddr_in6 *dst;
1617 struct in6_multi_mship *imm;
1618 struct proc *p = curproc; /* XXX */
1619
1620 if (im6o == NULL) {
1621 /*
1622 * No multicast option buffer attached to the pcb;
1623 * allocate one and initialize to default values.
1624 */
1625 im6o = (struct ip6_moptions *)
1626 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1627
1628 if (im6o == NULL)
1629 return(ENOBUFS);
1630 *im6op = im6o;
1631 im6o->im6o_multicast_ifp = NULL;
1632 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1633 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1634 LIST_INIT(&im6o->im6o_memberships);
1635 }
1636
1637 switch (optname) {
1638
1639 case IPV6_MULTICAST_IF:
1640 /*
1641 * Select the interface for outgoing multicast packets.
1642 */
1643 if (m == NULL || m->m_len != sizeof(u_int)) {
1644 error = EINVAL;
1645 break;
1646 }
1647 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1648 if (ifindex < 0 || if_index < ifindex) {
1649 error = ENXIO; /* XXX EINVAL? */
1650 break;
1651 }
1652 ifp = ifindex2ifnet[ifindex];
1653 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1654 error = EADDRNOTAVAIL;
1655 break;
1656 }
1657 im6o->im6o_multicast_ifp = ifp;
1658 break;
1659
1660 case IPV6_MULTICAST_HOPS:
1661 {
1662 /*
1663 * Set the IP6 hoplimit for outgoing multicast packets.
1664 */
1665 int optval;
1666 if (m == NULL || m->m_len != sizeof(int)) {
1667 error = EINVAL;
1668 break;
1669 }
1670 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1671 if (optval < -1 || optval >= 256)
1672 error = EINVAL;
1673 else if (optval == -1)
1674 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1675 else
1676 im6o->im6o_multicast_hlim = optval;
1677 break;
1678 }
1679
1680 case IPV6_MULTICAST_LOOP:
1681 /*
1682 * Set the loopback flag for outgoing multicast packets.
1683 * Must be zero or one.
1684 */
1685 if (m == NULL || m->m_len != sizeof(u_int)) {
1686 error = EINVAL;
1687 break;
1688 }
1689 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1690 if (loop > 1) {
1691 error = EINVAL;
1692 break;
1693 }
1694 im6o->im6o_multicast_loop = loop;
1695 break;
1696
1697 case IPV6_JOIN_GROUP:
1698 /*
1699 * Add a multicast group membership.
1700 * Group must be a valid IP6 multicast address.
1701 */
1702 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1703 error = EINVAL;
1704 break;
1705 }
1706 mreq = mtod(m, struct ipv6_mreq *);
1707 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1708 /*
1709 * We use the unspecified address to specify to accept
1710 * all multicast addresses. Only super user is allowed
1711 * to do this.
1712 */
1713 if (suser(p->p_ucred, &p->p_acflag)) {
1714 error = EACCES;
1715 break;
1716 }
1717 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1718 error = EINVAL;
1719 break;
1720 }
1721
1722 /*
1723 * If the interface is specified, validate it.
1724 */
1725 if (mreq->ipv6mr_interface < 0
1726 || if_index < mreq->ipv6mr_interface) {
1727 error = ENXIO; /* XXX EINVAL? */
1728 break;
1729 }
1730 /*
1731 * If no interface was explicitly specified, choose an
1732 * appropriate one according to the given multicast address.
1733 */
1734 if (mreq->ipv6mr_interface == 0) {
1735 /*
1736 * If the multicast address is in node-local scope,
1737 * the interface should be a loopback interface.
1738 * Otherwise, look up the routing table for the
1739 * address, and choose the outgoing interface.
1740 * XXX: is it a good approach?
1741 */
1742 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1743 ifp = &loif[0];
1744 } else {
1745 ro.ro_rt = NULL;
1746 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1747 bzero(dst, sizeof(*dst));
1748 dst->sin6_len = sizeof(struct sockaddr_in6);
1749 dst->sin6_family = AF_INET6;
1750 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1751 rtalloc((struct route *)&ro);
1752 if (ro.ro_rt == NULL) {
1753 error = EADDRNOTAVAIL;
1754 break;
1755 }
1756 ifp = ro.ro_rt->rt_ifp;
1757 rtfree(ro.ro_rt);
1758 }
1759 } else
1760 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1761
1762 /*
1763 * See if we found an interface, and confirm that it
1764 * supports multicast
1765 */
1766 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1767 error = EADDRNOTAVAIL;
1768 break;
1769 }
1770 /*
1771 * Put interface index into the multicast address,
1772 * if the address has link-local scope.
1773 */
1774 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1775 mreq->ipv6mr_multiaddr.s6_addr16[1]
1776 = htons(mreq->ipv6mr_interface);
1777 }
1778 /*
1779 * See if the membership already exists.
1780 */
1781 for (imm = im6o->im6o_memberships.lh_first;
1782 imm != NULL; imm = imm->i6mm_chain.le_next)
1783 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1784 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1785 &mreq->ipv6mr_multiaddr))
1786 break;
1787 if (imm != NULL) {
1788 error = EADDRINUSE;
1789 break;
1790 }
1791 /*
1792 * Everything looks good; add a new record to the multicast
1793 * address list for the given interface.
1794 */
1795 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
1796 if (imm == NULL) {
1797 error = ENOBUFS;
1798 break;
1799 }
1800 if ((imm->i6mm_maddr =
1801 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
1802 free(imm, M_IPMADDR);
1803 break;
1804 }
1805 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1806 break;
1807
1808 case IPV6_LEAVE_GROUP:
1809 /*
1810 * Drop a multicast group membership.
1811 * Group must be a valid IP6 multicast address.
1812 */
1813 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1814 error = EINVAL;
1815 break;
1816 }
1817 mreq = mtod(m, struct ipv6_mreq *);
1818 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1819 if (suser(p->p_ucred, &p->p_acflag)) {
1820 error = EACCES;
1821 break;
1822 }
1823 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1824 error = EINVAL;
1825 break;
1826 }
1827 /*
1828 * If an interface address was specified, get a pointer
1829 * to its ifnet structure.
1830 */
1831 if (mreq->ipv6mr_interface < 0
1832 || if_index < mreq->ipv6mr_interface) {
1833 error = ENXIO; /* XXX EINVAL? */
1834 break;
1835 }
1836 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1837 /*
1838 * Put interface index into the multicast address,
1839 * if the address has link-local scope.
1840 */
1841 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1842 mreq->ipv6mr_multiaddr.s6_addr16[1]
1843 = htons(mreq->ipv6mr_interface);
1844 }
1845 /*
1846 * Find the membership in the membership list.
1847 */
1848 for (imm = im6o->im6o_memberships.lh_first;
1849 imm != NULL; imm = imm->i6mm_chain.le_next) {
1850 if ((ifp == NULL ||
1851 imm->i6mm_maddr->in6m_ifp == ifp) &&
1852 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1853 &mreq->ipv6mr_multiaddr))
1854 break;
1855 }
1856 if (imm == NULL) {
1857 /* Unable to resolve interface */
1858 error = EADDRNOTAVAIL;
1859 break;
1860 }
1861 /*
1862 * Give up the multicast address record to which the
1863 * membership points.
1864 */
1865 LIST_REMOVE(imm, i6mm_chain);
1866 in6_delmulti(imm->i6mm_maddr);
1867 free(imm, M_IPMADDR);
1868 break;
1869
1870 default:
1871 error = EOPNOTSUPP;
1872 break;
1873 }
1874
1875 /*
1876 * If all options have default values, no need to keep the mbuf.
1877 */
1878 if (im6o->im6o_multicast_ifp == NULL &&
1879 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1880 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1881 im6o->im6o_memberships.lh_first == NULL) {
1882 free(*im6op, M_IPMOPTS);
1883 *im6op = NULL;
1884 }
1885
1886 return(error);
1887 }
1888
1889 /*
1890 * Return the IP6 multicast options in response to user getsockopt().
1891 */
1892 static int
1893 ip6_getmoptions(optname, im6o, mp)
1894 int optname;
1895 register struct ip6_moptions *im6o;
1896 register struct mbuf **mp;
1897 {
1898 u_int *hlim, *loop, *ifindex;
1899
1900 *mp = m_get(M_WAIT, MT_SOOPTS);
1901
1902 switch (optname) {
1903
1904 case IPV6_MULTICAST_IF:
1905 ifindex = mtod(*mp, u_int *);
1906 (*mp)->m_len = sizeof(u_int);
1907 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1908 *ifindex = 0;
1909 else
1910 *ifindex = im6o->im6o_multicast_ifp->if_index;
1911 return(0);
1912
1913 case IPV6_MULTICAST_HOPS:
1914 hlim = mtod(*mp, u_int *);
1915 (*mp)->m_len = sizeof(u_int);
1916 if (im6o == NULL)
1917 *hlim = ip6_defmcasthlim;
1918 else
1919 *hlim = im6o->im6o_multicast_hlim;
1920 return(0);
1921
1922 case IPV6_MULTICAST_LOOP:
1923 loop = mtod(*mp, u_int *);
1924 (*mp)->m_len = sizeof(u_int);
1925 if (im6o == NULL)
1926 *loop = ip6_defmcasthlim;
1927 else
1928 *loop = im6o->im6o_multicast_loop;
1929 return(0);
1930
1931 default:
1932 return(EOPNOTSUPP);
1933 }
1934 }
1935
1936 /*
1937 * Discard the IP6 multicast options.
1938 */
1939 void
1940 ip6_freemoptions(im6o)
1941 register struct ip6_moptions *im6o;
1942 {
1943 struct in6_multi_mship *imm;
1944
1945 if (im6o == NULL)
1946 return;
1947
1948 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
1949 LIST_REMOVE(imm, i6mm_chain);
1950 if (imm->i6mm_maddr)
1951 in6_delmulti(imm->i6mm_maddr);
1952 free(imm, M_IPMADDR);
1953 }
1954 free(im6o, M_IPMOPTS);
1955 }
1956
1957 /*
1958 * Set IPv6 outgoing packet options based on advanced API.
1959 */
1960 int
1961 ip6_setpktoptions(control, opt, priv)
1962 struct mbuf *control;
1963 struct ip6_pktopts *opt;
1964 int priv;
1965 {
1966 register struct cmsghdr *cm = 0;
1967
1968 if (control == 0 || opt == 0)
1969 return(EINVAL);
1970
1971 bzero(opt, sizeof(*opt));
1972 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
1973
1974 /*
1975 * XXX: Currently, we assume all the optional information is stored
1976 * in a single mbuf.
1977 */
1978 if (control->m_next)
1979 return(EINVAL);
1980
1981 opt->ip6po_m = control;
1982
1983 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
1984 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1985 cm = mtod(control, struct cmsghdr *);
1986 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
1987 return(EINVAL);
1988 if (cm->cmsg_level != IPPROTO_IPV6)
1989 continue;
1990
1991 switch(cm->cmsg_type) {
1992 case IPV6_PKTINFO:
1993 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
1994 return(EINVAL);
1995 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1996 if (opt->ip6po_pktinfo->ipi6_ifindex &&
1997 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
1998 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
1999 htons(opt->ip6po_pktinfo->ipi6_ifindex);
2000
2001 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
2002 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
2003 return(ENXIO);
2004 }
2005
2006 /*
2007 * Check if the requested source address is indeed a
2008 * unicast address assigned to the node.
2009 */
2010 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2011 struct ifaddr *ia;
2012 struct sockaddr_in6 sin6;
2013
2014 bzero(&sin6, sizeof(sin6));
2015 sin6.sin6_len = sizeof(sin6);
2016 sin6.sin6_family = AF_INET6;
2017 sin6.sin6_addr =
2018 opt->ip6po_pktinfo->ipi6_addr;
2019 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2020 if (ia == NULL ||
2021 (opt->ip6po_pktinfo->ipi6_ifindex &&
2022 (ia->ifa_ifp->if_index !=
2023 opt->ip6po_pktinfo->ipi6_ifindex))) {
2024 return(EADDRNOTAVAIL);
2025 }
2026 /*
2027 * Check if the requested source address is
2028 * indeed a unicast address assigned to the
2029 * node.
2030 */
2031 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2032 return(EADDRNOTAVAIL);
2033 }
2034 break;
2035
2036 case IPV6_HOPLIMIT:
2037 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2038 return(EINVAL);
2039
2040 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim,
2041 sizeof(opt->ip6po_hlim));
2042 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2043 return(EINVAL);
2044 break;
2045
2046 case IPV6_NEXTHOP:
2047 if (!priv)
2048 return(EPERM);
2049
2050 if (cm->cmsg_len < sizeof(u_char) ||
2051 /* check if cmsg_len is large enough for sa_len */
2052 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2053 return(EINVAL);
2054
2055 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2056
2057 break;
2058
2059 case IPV6_HOPOPTS:
2060 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2061 return(EINVAL);
2062 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2063 if (cm->cmsg_len !=
2064 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
2065 return(EINVAL);
2066 break;
2067
2068 case IPV6_DSTOPTS:
2069 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2070 return(EINVAL);
2071
2072 /*
2073 * If there is no routing header yet, the destination
2074 * options header should be put on the 1st part.
2075 * Otherwise, the header should be on the 2nd part.
2076 * (See RFC 2460, section 4.1)
2077 */
2078 if (opt->ip6po_rthdr == NULL) {
2079 opt->ip6po_dest1 =
2080 (struct ip6_dest *)CMSG_DATA(cm);
2081 if (cm->cmsg_len !=
2082 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
2083 << 3))
2084 return(EINVAL);
2085 }
2086 else {
2087 opt->ip6po_dest2 =
2088 (struct ip6_dest *)CMSG_DATA(cm);
2089 if (cm->cmsg_len !=
2090 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
2091 << 3))
2092 return(EINVAL);
2093 }
2094 break;
2095
2096 case IPV6_RTHDR:
2097 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2098 return(EINVAL);
2099 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
2100 if (cm->cmsg_len !=
2101 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
2102 return(EINVAL);
2103 switch(opt->ip6po_rthdr->ip6r_type) {
2104 case IPV6_RTHDR_TYPE_0:
2105 if (opt->ip6po_rthdr->ip6r_segleft == 0)
2106 return(EINVAL);
2107 break;
2108 default:
2109 return(EINVAL);
2110 }
2111 break;
2112
2113 default:
2114 return(ENOPROTOOPT);
2115 }
2116 }
2117
2118 return(0);
2119 }
2120
2121 /*
2122 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2123 * packet to the input queue of a specified interface. Note that this
2124 * calls the output routine of the loopback "driver", but with an interface
2125 * pointer that might NOT be &loif -- easier than replicating that code here.
2126 */
2127 void
2128 ip6_mloopback(ifp, m, dst)
2129 struct ifnet *ifp;
2130 register struct mbuf *m;
2131 register struct sockaddr_in6 *dst;
2132 {
2133 struct mbuf *copym;
2134 struct ip6_hdr *ip6;
2135
2136 copym = m_copy(m, 0, M_COPYALL);
2137 if (copym == NULL)
2138 return;
2139
2140 /*
2141 * Make sure to deep-copy IPv6 header portion in case the data
2142 * is in an mbuf cluster, so that we can safely override the IPv6
2143 * header portion later.
2144 */
2145 if ((copym->m_flags & M_EXT) != 0 ||
2146 copym->m_len < sizeof(struct ip6_hdr)) {
2147 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2148 if (copym == NULL)
2149 return;
2150 }
2151
2152 #ifdef DIAGNOSTIC
2153 if (copym->m_len < sizeof(*ip6)) {
2154 m_freem(copym);
2155 return;
2156 }
2157 #endif
2158
2159 #ifndef FAKE_LOOPBACK_IF
2160 if ((ifp->if_flags & IFF_LOOPBACK) == 0)
2161 #else
2162 if (1)
2163 #endif
2164 {
2165 ip6 = mtod(copym, struct ip6_hdr *);
2166 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2167 ip6->ip6_src.s6_addr16[1] = 0;
2168 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2169 ip6->ip6_dst.s6_addr16[1] = 0;
2170 }
2171
2172 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2173 }
2174
2175 /*
2176 * Chop IPv6 header off from the payload.
2177 */
2178 static int
2179 ip6_splithdr(m, exthdrs)
2180 struct mbuf *m;
2181 struct ip6_exthdrs *exthdrs;
2182 {
2183 struct mbuf *mh;
2184 struct ip6_hdr *ip6;
2185
2186 ip6 = mtod(m, struct ip6_hdr *);
2187 if (m->m_len > sizeof(*ip6)) {
2188 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2189 if (mh == 0) {
2190 m_freem(m);
2191 return ENOBUFS;
2192 }
2193 M_COPY_PKTHDR(mh, m);
2194 MH_ALIGN(mh, sizeof(*ip6));
2195 m->m_flags &= ~M_PKTHDR;
2196 m->m_len -= sizeof(*ip6);
2197 m->m_data += sizeof(*ip6);
2198 mh->m_next = m;
2199 m = mh;
2200 m->m_len = sizeof(*ip6);
2201 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2202 }
2203 exthdrs->ip6e_ip6 = m;
2204 return 0;
2205 }
2206
2207 /*
2208 * Compute IPv6 extension header length.
2209 */
2210 int
2211 ip6_optlen(in6p)
2212 struct in6pcb *in6p;
2213 {
2214 int len;
2215
2216 if (!in6p->in6p_outputopts)
2217 return 0;
2218
2219 len = 0;
2220 #define elen(x) \
2221 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2222
2223 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2224 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2225 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2226 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2227 return len;
2228 #undef elen
2229 }
2230