Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.3
      1 /*	$NetBSD: ip6_output.c,v 1.3 1999/07/03 21:30:19 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed by the University of
     47  *	California, Berkeley and its contributors.
     48  * 4. Neither the name of the University nor the names of its contributors
     49  *    may be used to endorse or promote products derived from this software
     50  *    without specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     62  * SUCH DAMAGE.
     63  *
     64  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     65  */
     66 
     67 #ifdef __FreeBSD__
     68 #include "opt_ip6fw.h"
     69 #endif
     70 #if (defined(__FreeBSD__) && __FreeBSD__ >= 3) || defined(__NetBSD__)
     71 #include "opt_inet.h"
     72 #endif
     73 
     74 #include <sys/param.h>
     75 #include <sys/malloc.h>
     76 #include <sys/mbuf.h>
     77 #include <sys/errno.h>
     78 #include <sys/protosw.h>
     79 #include <sys/socket.h>
     80 #include <sys/socketvar.h>
     81 #include <sys/systm.h>
     82 #include <sys/proc.h>
     83 
     84 #include <net/if.h>
     85 #include <net/route.h>
     86 
     87 #include <netinet/in.h>
     88 #include <netinet/in_var.h>
     89 #include <netinet6/in6_systm.h>
     90 #include <netinet6/ip6.h>
     91 #include <netinet6/icmp6.h>
     92 #if !defined(__FreeBSD__) || __FreeBSD__ < 3
     93 #include <netinet6/in6_pcb.h>
     94 #else
     95 #include <netinet/in_pcb.h>
     96 #endif
     97 #include <netinet6/ip6_var.h>
     98 #include <netinet6/nd6.h>
     99 
    100 #ifdef IPSEC
    101 #include <netinet6/ipsec.h>
    102 #include <netkey/key.h>
    103 #include <netkey/key_debug.h>
    104 #endif /* IPSEC */
    105 
    106 #include "loop.h"
    107 
    108 struct ip6_exthdrs {
    109 	struct mbuf *ip6e_ip6;
    110 	struct mbuf *ip6e_hbh;
    111 	struct mbuf *ip6e_dest1;
    112 	struct mbuf *ip6e_rthdr;
    113 	struct mbuf *ip6e_dest2;
    114 };
    115 
    116 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
    117 			    struct socket *));
    118 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
    119 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
    120 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
    121 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
    122 				  struct ip6_frag **));
    123 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
    124 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
    125 #ifdef __bsdi__
    126 extern struct ifnet loif;
    127 #endif
    128 
    129 #ifdef __NetBSD__
    130 extern struct ifnet **ifindex2ifnet;
    131 extern struct ifnet loif[NLOOP];
    132 #endif
    133 
    134 /*
    135  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    136  * header (with pri, len, nxt, hlim, src, dst).
    137  * This function may modify ver and hlim only.
    138  * The mbuf chain containing the packet will be freed.
    139  * The mbuf opt, if present, will not be freed.
    140  */
    141 int
    142 ip6_output(m0, opt, ro, flags, im6o)
    143 	struct mbuf *m0;
    144 	struct ip6_pktopts *opt;
    145 	struct route_in6 *ro;
    146 	int flags;
    147 	struct ip6_moptions *im6o;
    148 {
    149 	struct ip6_hdr *ip6, *mhip6;
    150 	struct ifnet *ifp;
    151 	struct mbuf *m = m0;
    152 	int hlen, tlen, len, off;
    153 	struct route_in6 ip6route;
    154 	struct sockaddr_in6 *dst;
    155 	int error = 0;
    156 	struct in6_ifaddr *ia;
    157 	u_long mtu;
    158 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    159 	struct ip6_exthdrs exthdrs;
    160 	struct in6_addr finaldst;
    161 	struct route_in6 *ro_pmtu = NULL;
    162 	int hdrsplit = 0;
    163 	int needipsec = 0;
    164 #ifdef IPSEC
    165 	int needipsectun = 0;
    166 	struct socket *so;
    167 	struct secpolicy *sp = NULL;
    168 
    169 	/* for AH processing. stupid to have "socket" variable in IP layer... */
    170 	so = (struct socket *)m->m_pkthdr.rcvif;
    171 	m->m_pkthdr.rcvif = NULL;
    172 	ip6 = mtod(m, struct ip6_hdr *);
    173 #endif /* IPSEC */
    174 
    175 #define MAKE_EXTHDR(hp,mp)						\
    176     {									\
    177 	if (hp) {							\
    178 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    179 		error = ip6_copyexthdr((mp), (caddr_t)(hp), 		\
    180 				       ((eh)->ip6e_len + 1) << 3);	\
    181 		if (error)						\
    182 			goto freehdrs;					\
    183 	}								\
    184     }
    185 
    186 	bzero(&exthdrs, sizeof(exthdrs));
    187 	if (opt) {
    188 		/* Hop-by-Hop options header */
    189 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    190 		/* Destination options header(1st part) */
    191 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    192 		/* Routing header */
    193 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    194 		/* Destination options header(2nd part) */
    195 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    196 	}
    197 
    198 #ifdef IPSEC
    199 	/* get a security policy for this packet */
    200 	if (so == NULL)
    201 		sp = ipsec6_getpolicybyaddr(m, 0, &error);
    202 	else
    203 		sp = ipsec6_getpolicybysock(m, so, &error);
    204 
    205 	if (sp == NULL) {
    206 		ipsec6stat.out_inval++;
    207 		goto bad;
    208 	}
    209 
    210 	error = 0;
    211 
    212 	/* check policy */
    213 	switch (sp->policy) {
    214 	case IPSEC_POLICY_DISCARD:
    215 		/*
    216 		 * This packet is just discarded.
    217 		 */
    218 		ipsec6stat.out_polvio++;
    219 		goto bad;
    220 
    221 	case IPSEC_POLICY_BYPASS:
    222 	case IPSEC_POLICY_NONE:
    223 		/* no need to do IPsec. */
    224 		needipsec = 0;
    225 		break;
    226 
    227 	case IPSEC_POLICY_IPSEC:
    228 		if (sp->req == NULL) {
    229 			/* XXX should be panic ? */
    230 			printf("ip6_output: No IPsec request specified.\n");
    231 			error = EINVAL;
    232 			goto bad;
    233 		}
    234 		needipsec = 1;
    235 		break;
    236 
    237 	case IPSEC_POLICY_ENTRUST:
    238 	default:
    239 		printf("ip6_output: Invalid policy found. %d\n", sp->policy);
    240 	}
    241 #endif /* IPSEC */
    242 
    243 	/*
    244 	 * Calculate the total length of the extension header chain.
    245 	 * Keep the length of the unfragmentable part for fragmentation.
    246 	 */
    247 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    248 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    249 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    250 	unfragpartlen = plen + sizeof(struct ip6_hdr);
    251 	/* NOTE: we don't add AH/ESP length here. do that later. */
    252 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    253 
    254 	/*
    255 	 * If we need IPsec, or there is at least one extension header,
    256 	 * separate IP6 header from the payload.
    257 	 */
    258 	if ((needipsec || optlen) && !hdrsplit) {
    259 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    260 			m = NULL;
    261 			goto freehdrs;
    262 		}
    263 		m = exthdrs.ip6e_ip6;
    264 		hdrsplit++;
    265 	}
    266 
    267 	/* adjust pointer */
    268 	ip6 = mtod(m, struct ip6_hdr *);
    269 
    270 	/* adjust mbuf packet header length */
    271 	m->m_pkthdr.len += optlen;
    272 	plen = m->m_pkthdr.len - sizeof(*ip6);
    273 
    274 	/* If this is a jumbo payload, insert a jumbo payload option. */
    275 	if (plen > IPV6_MAXPACKET) {
    276 		if (!hdrsplit) {
    277 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    278 				m = NULL;
    279 				goto freehdrs;
    280 			}
    281 			m = exthdrs.ip6e_ip6;
    282 			hdrsplit++;
    283 		}
    284 		/* adjust pointer */
    285 		ip6 = mtod(m, struct ip6_hdr *);
    286 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    287 			goto freehdrs;
    288 		ip6->ip6_plen = 0;
    289 	} else
    290 		ip6->ip6_plen = htons(plen);
    291 
    292 	/*
    293 	 * Concatenate headers and fill in next header fields.
    294 	 * Here we have, on "m"
    295 	 *	IPv6 payload  or
    296 	 *	IPv6 [esp* dest2 payload]
    297 	 * and we insert headers accordingly.  Finally, we should be getting:
    298 	 *	IPv6 hbh dest1 rthdr ah* dest2 payload  or
    299 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    300 	 */
    301 	{
    302 		u_char *nexthdrp = &ip6->ip6_nxt;
    303 		struct mbuf *mprev = m;
    304 
    305 		/*
    306 		 * we treat dest2 specially.  this makes IPsec processing
    307 		 * much easier.
    308 		 */
    309 		if (exthdrs.ip6e_dest2) {
    310 			if (!hdrsplit)
    311 				panic("assumption failed: hdr not split");
    312 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    313 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    314 		}
    315 
    316 #define MAKE_CHAIN(m,mp,p,i)\
    317     {\
    318 	if (m) {\
    319 		if (!hdrsplit) \
    320 			panic("assumption failed: hdr not split"); \
    321 		*mtod((m), u_char *) = *(p);\
    322 		*(p) = (i);\
    323 		p = mtod((m), u_char *);\
    324 		(m)->m_next = (mp)->m_next;\
    325 		(mp)->m_next = (m);\
    326 		(mp) = (m);\
    327 	}\
    328     }
    329 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
    330 			   nexthdrp, IPPROTO_HOPOPTS);
    331 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
    332 			   nexthdrp, IPPROTO_DSTOPTS);
    333 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
    334 			   nexthdrp, IPPROTO_ROUTING);
    335 
    336 #ifdef IPSEC
    337 		if (!needipsec)
    338 			goto skip_ipsec2;
    339 
    340 		/*
    341 		 * pointers after IPsec headers are not valid any more.
    342 		 * other pointers need a great care too.
    343 		 * (IPsec routines should not mangle mbufs prior to AH/ESP)
    344 		 */
    345 		exthdrs.ip6e_dest2 = NULL;
    346 
    347 	    {
    348 		struct ip6_rthdr *rh = NULL;
    349 		int segleft_org = 0;
    350 		struct ipsec_output_state state;
    351 
    352 		if (exthdrs.ip6e_rthdr) {
    353 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
    354 			segleft_org = rh->ip6r_segleft;
    355 			rh->ip6r_segleft = 0;
    356 		}
    357 
    358 		bzero(&state, sizeof(state));
    359 		state.m = m;
    360 		error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
    361 			&needipsectun);
    362 		m = state.m;
    363 		if (error) {
    364 			/* mbuf is already reclaimed in ipsec6_output_trans. */
    365 			m = NULL;
    366 			switch (error) {
    367 			case EHOSTUNREACH:
    368 			case ENETUNREACH:
    369 			case EMSGSIZE:
    370 			case ENOBUFS:
    371 			case ENOMEM:
    372 				break;
    373 			default:
    374 				printf("ip6_output (ipsec): error code %d\n", error);
    375 				/*fall through*/
    376 			case ENOENT:
    377 				/* don't show these error codes to the user */
    378 				error = 0;
    379 				break;
    380 			}
    381 			goto bad;
    382 		}
    383 		if (exthdrs.ip6e_rthdr) {
    384 			/* ah6_output doesn't modify mbuf chain */
    385 			rh->ip6r_segleft = segleft_org;
    386 		}
    387 	    }
    388 skip_ipsec2:;
    389 #endif
    390 	}
    391 
    392 	/*
    393 	 * If there is a routing header, replace destination address field
    394 	 * with the first hop of the routing header.
    395 	 */
    396 	if (exthdrs.ip6e_rthdr) {
    397 		struct ip6_rthdr *rh =
    398 			(struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    399 						  struct ip6_rthdr *));
    400 		struct ip6_rthdr0 *rh0;
    401 
    402 		finaldst = ip6->ip6_dst;
    403 		switch(rh->ip6r_type) {
    404 		case IPV6_RTHDR_TYPE_0:
    405 			 rh0 = (struct ip6_rthdr0 *)rh;
    406 			 ip6->ip6_dst = rh0->ip6r0_addr[0];
    407 			 bcopy((caddr_t)&rh0->ip6r0_addr[1],
    408 				 (caddr_t)&rh0->ip6r0_addr[0],
    409 				 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1)
    410 				 );
    411 			 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
    412 			 break;
    413 		default:	/* is it possible? */
    414 			 error = EINVAL;
    415 			 goto bad;
    416 		}
    417 	}
    418 
    419 	/* Source address validation */
    420 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    421 	    (flags & IPV6_DADOUTPUT) == 0) {
    422 		error = EOPNOTSUPP;
    423 		ip6stat.ip6s_badscope++;
    424 		goto bad;
    425 	}
    426 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    427 		error = EOPNOTSUPP;
    428 		ip6stat.ip6s_badscope++;
    429 		goto bad;
    430 	}
    431 
    432 	ip6stat.ip6s_localout++;
    433 
    434 	/*
    435 	 * Route packet.
    436 	 */
    437 	if (ro == 0) {
    438 		ro = &ip6route;
    439 		bzero((caddr_t)ro, sizeof(*ro));
    440 	}
    441 	ro_pmtu = ro;
    442 	if (opt && opt->ip6po_rthdr)
    443 		ro = &opt->ip6po_route;
    444 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
    445 	/*
    446 	 * If there is a cached route,
    447 	 * check that it is to the same destination
    448 	 * and is still up. If not, free it and try again.
    449 	 */
    450 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
    451 			 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
    452 		RTFREE(ro->ro_rt);
    453 		ro->ro_rt = (struct rtentry *)0;
    454 	}
    455 	if (ro->ro_rt == 0) {
    456 		bzero(dst, sizeof(*dst));
    457 		dst->sin6_family = AF_INET6;
    458 		dst->sin6_len = sizeof(struct sockaddr_in6);
    459 		dst->sin6_addr = ip6->ip6_dst;
    460 	}
    461 #ifdef IPSEC
    462 	if (needipsec && needipsectun) {
    463 		struct ipsec_output_state state;
    464 
    465 		/*
    466 		 * All the extension headers will become inaccessible
    467 		 * (since they can be encrypted).
    468 		 * Don't panic, we need no more updates to extension headers
    469 		 * on inner IPv6 packet (since they are now encapsulated).
    470 		 *
    471 		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
    472 		 */
    473 		bzero(&exthdrs, sizeof(exthdrs));
    474 		exthdrs.ip6e_ip6 = m;
    475 
    476 		bzero(&state, sizeof(state));
    477 		state.m = m;
    478 		state.ro = (struct route *)ro;
    479 		state.dst = (struct sockaddr *)dst;
    480 
    481 		error = ipsec6_output_tunnel(&state, sp, flags);
    482 
    483 		m = state.m;
    484 		ro = (struct route_in6 *)state.ro;
    485 		dst = (struct sockaddr_in6 *)state.dst;
    486 		if (error) {
    487 			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
    488 			m0 = m = NULL;
    489 			m = NULL;
    490 			switch (error) {
    491 			case EHOSTUNREACH:
    492 			case ENETUNREACH:
    493 			case EMSGSIZE:
    494 			case ENOBUFS:
    495 			case ENOMEM:
    496 				break;
    497 			default:
    498 				printf("ip6_output (ipsec): error code %d\n", error);
    499 				/*fall through*/
    500 			case ENOENT:
    501 				/* don't show these error codes to the user */
    502 				error = 0;
    503 				break;
    504 			}
    505 			goto bad;
    506 		}
    507 
    508 		exthdrs.ip6e_ip6 = m;
    509 	}
    510 #endif /*IPESC*/
    511 
    512 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    513 		/* Unicast */
    514 
    515 #define ifatoia6(ifa)	((struct in6_ifaddr *)(ifa))
    516 #define sin6tosa(sin6)	((struct sockaddr *)(sin6))
    517 		/* xxx
    518 		 * interface selection comes here
    519 		 * if an interface is specified from an upper layer,
    520 		 * ifp must point it.
    521 		 */
    522 		if (ro->ro_rt == 0) {
    523 			if (ro == &ip6route)	/* xxx kazu */
    524 				rtalloc((struct route *)ro);
    525 			else
    526 				rtcalloc((struct route *)ro);
    527 		}
    528 		if (ro->ro_rt == 0) {
    529 			ip6stat.ip6s_noroute++;
    530 			error = EHOSTUNREACH;
    531 			goto bad;
    532 		}
    533 		ia = ifatoia6(ro->ro_rt->rt_ifa);
    534 		ifp = ro->ro_rt->rt_ifp;
    535 		ro->ro_rt->rt_use++;
    536 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
    537 			dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
    538 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    539 
    540 		/*
    541 		 * Check if there is the outgoing interface conflicts with
    542 		 * the interface specified by ifi6_ifindex(if specified).
    543 		 * Note that loopback interface is always okay.
    544 		 * (this happens when we are sending packet toward my
    545 		 * interface)
    546 		 */
    547 		if (opt && opt->ip6po_pktinfo
    548 		 && opt->ip6po_pktinfo->ipi6_ifindex) {
    549 			if (!(ifp->if_flags & IFF_LOOPBACK)
    550 			 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
    551 				ip6stat.ip6s_noroute++;
    552 				error = EHOSTUNREACH;
    553 				goto bad;
    554 			}
    555 		}
    556 
    557 		if (opt && opt->ip6po_hlim != -1)
    558 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    559 	} else {
    560 		/* Multicast */
    561 		struct	in6_multi *in6m;
    562 
    563 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    564 
    565 		/*
    566 		 * See if the caller provided any multicast options
    567 		 */
    568 		ifp = NULL;
    569 		if (im6o != NULL) {
    570 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    571 			if (im6o->im6o_multicast_ifp != NULL)
    572 				ifp = im6o->im6o_multicast_ifp;
    573 		} else
    574 			ip6->ip6_hlim = ip6_defmcasthlim;
    575 
    576 		/*
    577 		 * See if the caller provided the outgoing interface
    578 		 * as an ancillary data.
    579 		 * Boundary check for ifindex is assumed to be already done.
    580 		 */
    581 		if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
    582 			ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
    583 
    584 		/*
    585 		 * If the destination is a node-local scope multicast,
    586 		 * the packet should be loop-backed only.
    587 		 */
    588 		if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
    589 			/*
    590 			 * If the outgoing interface is already specified,
    591 			 * it should be a loopback interface.
    592 			 */
    593 			if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
    594 				ip6stat.ip6s_badscope++;
    595 				error = ENETUNREACH; /* XXX: better error? */
    596 				goto bad;
    597 			}
    598 			else {
    599 #ifdef __bsdi__
    600 				ifp = &loif;
    601 #else
    602 				ifp = &loif[0];
    603 #endif
    604 			}
    605 		}
    606 
    607 		if (opt && opt->ip6po_hlim != -1)
    608 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    609 
    610 		/*
    611 		 * If caller did not provide an interface lookup a
    612 		 * default in the routing table.  This is either a
    613 		 * default for the speicfied group (i.e. a host
    614 		 * route), or a multicast default (a route for the
    615 		 * ``net'' ff00::/8).
    616 		 */
    617 		if (ifp == NULL) {
    618 			if (ro->ro_rt == 0) {
    619 #ifdef __FreeBSD__
    620 				ro->ro_rt = rtalloc1((struct sockaddr *)
    621 						&ro->ro_dst, 0, 0UL);
    622 #endif /*__FreeBSD__*/
    623 #if defined(__bsdi__) || defined(__NetBSD__)
    624 				ro->ro_rt = rtalloc1((struct sockaddr *)
    625 						&ro->ro_dst, 0);
    626 #endif /*__bsdi__*/
    627 			}
    628 			if (ro->ro_rt == 0) {
    629 				ip6stat.ip6s_noroute++;
    630 				error = EHOSTUNREACH;
    631 				goto bad;
    632 			}
    633 			ia = ifatoia6(ro->ro_rt->rt_ifa);
    634 			ifp = ro->ro_rt->rt_ifp;
    635 			ro->ro_rt->rt_use++;
    636 		}
    637 		/*
    638 		 * Confirm that the outgoing interface supports multicast.
    639 		 */
    640 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
    641 			ip6stat.ip6s_noroute++;
    642 			error = ENETUNREACH;
    643 			goto bad;
    644 		}
    645 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
    646 		if (in6m != NULL &&
    647 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    648 			/*
    649 			 * If we belong to the destination multicast group
    650 			 * on the outgoing interface, and the caller did not
    651 			 * forbid loopback, loop back a copy.
    652 			 */
    653 			ip6_mloopback(ifp, m, dst);
    654 		} else {
    655 			/*
    656 			 * If we are acting as a multicast router, perform
    657 			 * multicast forwarding as if the packet had just
    658 			 * arrived on the interface to which we are about
    659 			 * to send.  The multicast forwarding function
    660 			 * recursively calls this function, using the
    661 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    662 			 *
    663 			 * Multicasts that are looped back by ip6_mloopback(),
    664 			 * above, will be forwarded by the ip6_input() routine,
    665 			 * if necessary.
    666 			 */
    667 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    668 				if (ip6_mforward(ip6, ifp, m) != NULL) {
    669 					m_freem(m);
    670 					goto done;
    671 				}
    672 			}
    673 		}
    674 		/*
    675 		 * Multicasts with a hoplimit of zero may be looped back,
    676 		 * above, but must not be transmitted on a network.
    677 		 * Also, multicasts addressed to the loopback interface
    678 		 * are not sent -- the above call to ip6_mloopback() will
    679 		 * loop back a copy if this host actually belongs to the
    680 		 * destination group on the loopback interface.
    681 		 */
    682 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
    683 			m_freem(m);
    684 			goto done;
    685 		}
    686 	}
    687 
    688 	/*
    689 	 * Determine path MTU.
    690 	 */
    691 	if (ro_pmtu != ro) {
    692 		/* The first hop and the final destination may differ. */
    693 		struct sockaddr_in6 *sin6_fin =
    694 			(struct sockaddr_in6 *)&ro_pmtu->ro_dst;
    695 		if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
    696 				       !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
    697 							   &finaldst))) {
    698 			RTFREE(ro_pmtu->ro_rt);
    699 			ro_pmtu->ro_rt = (struct rtentry *)0;
    700 		}
    701 		if (ro_pmtu->ro_rt == 0) {
    702 			bzero(sin6_fin, sizeof(*sin6_fin));
    703 			sin6_fin->sin6_family = AF_INET6;
    704 			sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
    705 			sin6_fin->sin6_addr = finaldst;
    706 
    707 #if 0
    708 			rtcalloc((struct route *)ro_pmtu);
    709 #else
    710 			rtalloc((struct route *)ro_pmtu);
    711 #endif
    712 		}
    713 	}
    714 	if (ro_pmtu->ro_rt != NULL) {
    715 		u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
    716 
    717 		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
    718 		if (mtu > ifmtu) {
    719 			/*
    720 			 * The MTU on the route is larger than the MTU on
    721 			 * the interface!  This shouldn't happen, unless the
    722 			 * MTU of the interface has been changed after the
    723 			 * interface was brought up.  Change the MTU in the
    724 			 * route to match the interface MTU (as long as the
    725 			 * field isn't locked).
    726 			 */
    727 			 mtu = ifmtu;
    728 			 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    729 				 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
    730 		}
    731 	} else {
    732 		mtu = nd_ifinfo[ifp->if_index].linkmtu;
    733 	}
    734 
    735 	/*
    736 	 * Fake link-local scope-class addresses
    737 	 */
    738 	if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
    739 		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
    740 			ip6->ip6_src.s6_addr16[1] = 0;
    741 		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
    742 			ip6->ip6_dst.s6_addr16[1] = 0;
    743 	}
    744 
    745 	/*
    746 	 * If the outgoing packet contains a hop-by-hop options header,
    747 	 * it must be examined and processed even by the source node.
    748 	 * (RFC 2460, section 4.)
    749 	 */
    750 	if (exthdrs.ip6e_hbh) {
    751 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh,
    752 					   struct ip6_hbh *);
    753 		long dummy1;	/* XXX unused */
    754 		u_int32_t dummy2; /* XXX unused */
    755 
    756 		/*
    757 		 *  XXX: if we have to send an ICMPv6 error to the sender,
    758 		 *       we need the M_LOOP flag since icmp6_error() expects
    759 		 *       the IPv6 and the hop-by-hop options header are
    760 		 *       continuous unless the flag is set.
    761 		 */
    762 		m->m_flags |= M_LOOP;
    763 		m->m_pkthdr.rcvif = ifp;
    764 		if (ip6_process_hopopts(m,
    765 					(u_int8_t *)(hbh + 1),
    766 					((hbh->ip6h_len + 1) << 3) -
    767 					sizeof(struct ip6_hbh),
    768 					&dummy1, &dummy2) < 0) {
    769 			/* m was already freed at this point */
    770 			error = EINVAL;/* better error? */
    771 			goto done;
    772 		}
    773 		m->m_flags &= ~M_LOOP; /* XXX */
    774 		m->m_pkthdr.rcvif = NULL;
    775 	}
    776 
    777 	/*
    778 	 * Send the packet to the outgoing interface.
    779 	 * If necessary, do IPv6 fragmentation before sending.
    780 	 */
    781 	tlen = m->m_pkthdr.len;
    782 	if (tlen <= mtu
    783 #ifdef notyet
    784 	    /*
    785 	     * On any link that cannot convey a 1280-octet packet in one piece,
    786 	     * link-specific fragmentation and reassembly must be provided at
    787 	     * a layer below IPv6. [RFC 2460, sec.5]
    788 	     * Thus if the interface has ability of link-level fragmentation,
    789 	     * we can just send the packet even if the packet size is
    790 	     * larger than the link's MTU.
    791 	     * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
    792 	     */
    793 
    794 	    || ifp->if_flags & IFF_FRAGMENTABLE
    795 #endif
    796 	    )
    797 	{
    798 #ifdef NEWIP6OUTPUT
    799 		error = nd6_output(ifp, m, dst, ro->ro_rt);
    800 #else
    801 		error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst,
    802 					  ro->ro_rt);
    803 #endif
    804 		goto done;
    805 	} else if (mtu < IPV6_MMTU) {
    806 		/*
    807 		 * note that path MTU is never less than IPV6_MMTU
    808 		 * (see icmp6_input).
    809 		 */
    810 		error = EMSGSIZE;
    811 		goto bad;
    812 	} else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
    813 		error = EMSGSIZE;
    814 		goto bad;
    815 	} else {
    816 		struct mbuf **mnext, *m_frgpart;
    817 		struct ip6_frag *ip6f;
    818 		u_long id = htonl(ip6_id++);
    819 		u_char nextproto;
    820 
    821 		/*
    822 		 * Too large for the destination or interface;
    823 		 * fragment if possible.
    824 		 * Must be able to put at least 8 bytes per fragment.
    825 		 */
    826 		hlen = unfragpartlen;
    827 		if (mtu > IPV6_MAXPACKET)
    828 			mtu = IPV6_MAXPACKET;
    829 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    830 		if (len < 8) {
    831 			error = EMSGSIZE;
    832 			goto bad;
    833 		}
    834 
    835 		mnext = &m->m_nextpkt;
    836 
    837 		/*
    838 		 * Change the next header field of the last header in the
    839 		 * unfragmentable part.
    840 		 */
    841 		if (exthdrs.ip6e_rthdr) {
    842 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    843 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    844 		}
    845 		else if (exthdrs.ip6e_dest1) {
    846 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    847 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    848 		}
    849 		else if (exthdrs.ip6e_hbh) {
    850 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    851 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    852 		}
    853 		else {
    854 			nextproto = ip6->ip6_nxt;
    855 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    856 		}
    857 
    858 		/*
    859 		 * Loop through length of segment after first fragment,
    860 		 * make new header and copy data of each part and link onto chain.
    861 		 */
    862 		m0 = m;
    863 		for (off = hlen; off < tlen; off += len) {
    864 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
    865 			if (!m) {
    866 				error = ENOBUFS;
    867 				ip6stat.ip6s_odropped++;
    868 				goto sendorfree;
    869 			}
    870 			m->m_flags = m0->m_flags & M_COPYFLAGS;
    871 			*mnext = m;
    872 			mnext = &m->m_nextpkt;
    873 			m->m_data += max_linkhdr;
    874 			mhip6 = mtod(m, struct ip6_hdr *);
    875 			*mhip6 = *ip6;
    876 			m->m_len = sizeof(*mhip6);
    877  			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
    878  			if (error) {
    879 				ip6stat.ip6s_odropped++;
    880 				goto sendorfree;
    881 			}
    882 			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
    883 			if (off + len >= tlen)
    884 				len = tlen - off;
    885 			else
    886 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
    887 			mhip6->ip6_plen = htons((u_short)(len + hlen +
    888 							  sizeof(*ip6f) -
    889 							  sizeof(struct ip6_hdr)));
    890 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
    891 				error = ENOBUFS;
    892 				ip6stat.ip6s_odropped++;
    893 				goto sendorfree;
    894 			}
    895 			m_cat(m, m_frgpart);
    896 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
    897 			m->m_pkthdr.rcvif = (struct ifnet *)0;
    898 			ip6f->ip6f_reserved = 0;
    899 			ip6f->ip6f_ident = id;
    900 			ip6f->ip6f_nxt = nextproto;
    901 			ip6stat.ip6s_ofragments++;
    902 		}
    903 	}
    904 
    905 	/*
    906 	 * Remove leading garbages.
    907 	 */
    908 sendorfree:
    909 	m = m0->m_nextpkt;
    910 	m0->m_nextpkt = 0;
    911 	m_freem(m0);
    912 	for (m0 = m; m; m = m0) {
    913 		m0 = m->m_nextpkt;
    914 		m->m_nextpkt = 0;
    915 		if (error == 0) {
    916 #ifdef NEWIP6OUTPUT
    917 			error = nd6_output(ifp, m, dst, ro->ro_rt);
    918 #else
    919 			error = (*ifp->if_output)(ifp, m,
    920 						  (struct sockaddr *)dst,
    921 						  ro->ro_rt);
    922 #endif
    923 		}
    924 		else
    925 			m_freem(m);
    926 	}
    927 
    928 	if (error == 0)
    929 		ip6stat.ip6s_fragmented++;
    930 
    931 done:
    932 	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
    933 		RTFREE(ro->ro_rt);
    934 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
    935 		RTFREE(ro_pmtu->ro_rt);
    936 	}
    937 
    938 #ifdef IPSEC
    939 	if (sp != NULL)
    940 		key_freesp(sp);
    941 #endif /* IPSEC */
    942 
    943 	return(error);
    944 
    945 freehdrs:
    946 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
    947 	m_freem(exthdrs.ip6e_dest1);
    948 	m_freem(exthdrs.ip6e_rthdr);
    949 	m_freem(exthdrs.ip6e_dest2);
    950 	/* fall through */
    951 bad:
    952 	m_freem(m);
    953 	goto done;
    954 }
    955 
    956 static int
    957 ip6_copyexthdr(mp, hdr, hlen)
    958 	struct mbuf **mp;
    959 	caddr_t hdr;
    960 	int hlen;
    961 {
    962 	struct mbuf *m;
    963 
    964 	if (hlen > MCLBYTES)
    965 		return(ENOBUFS); /* XXX */
    966 
    967 	MGET(m, M_DONTWAIT, MT_DATA);
    968 	if (!m)
    969 		return(ENOBUFS);
    970 
    971 	if (hlen > MLEN) {
    972 		MCLGET(m, M_DONTWAIT);
    973 		if ((m->m_flags & M_EXT) == 0) {
    974 			m_free(m);
    975 			return(ENOBUFS);
    976 		}
    977 	}
    978 	m->m_len = hlen;
    979 	if (hdr)
    980 		bcopy(hdr, mtod(m, caddr_t), hlen);
    981 
    982 	*mp = m;
    983 	return(0);
    984 }
    985 
    986 /*
    987  * Insert jumbo payload option.
    988  */
    989 static int
    990 ip6_insert_jumboopt(exthdrs, plen)
    991 	struct ip6_exthdrs *exthdrs;
    992 	u_int32_t plen;
    993 {
    994 	struct mbuf *mopt;
    995 	u_char *optbuf;
    996 
    997 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
    998 
    999 	/*
   1000 	 * If there is no hop-by-hop options header, allocate new one.
   1001 	 * If there is one but it doesn't have enough space to store the
   1002 	 * jumbo payload option, allocate a cluster to store the whole options.
   1003 	 * Otherwise, use it to store the options.
   1004 	 */
   1005 	if (exthdrs->ip6e_hbh == 0) {
   1006 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1007 		if (mopt == 0)
   1008 			return(ENOBUFS);
   1009 		mopt->m_len = JUMBOOPTLEN;
   1010 		optbuf = mtod(mopt, u_char *);
   1011 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1012 		exthdrs->ip6e_hbh = mopt;
   1013 	}
   1014 	else {
   1015 		struct ip6_hbh *hbh;
   1016 
   1017 		mopt = exthdrs->ip6e_hbh;
   1018 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1019 			caddr_t oldoptp = mtod(mopt, caddr_t);
   1020 			int oldoptlen = mopt->m_len;
   1021 
   1022 			if (mopt->m_flags & M_EXT)
   1023 				return(ENOBUFS); /* XXX */
   1024 			MCLGET(mopt, M_DONTWAIT);
   1025 			if ((mopt->m_flags & M_EXT) == 0)
   1026 				return(ENOBUFS);
   1027 
   1028 			bcopy(oldoptp, mtod(mopt, caddr_t), oldoptlen);
   1029 			optbuf = mtod(mopt, caddr_t) + oldoptlen;
   1030 			mopt->m_len = oldoptlen + JUMBOOPTLEN;
   1031 		}
   1032 		else {
   1033 			optbuf = mtod(mopt, u_char *) + mopt->m_len;
   1034 			mopt->m_len += JUMBOOPTLEN;
   1035 		}
   1036 		optbuf[0] = IP6OPT_PADN;
   1037 		optbuf[1] = 1;
   1038 
   1039 		/*
   1040 		 * Adjust the header length according to the pad and
   1041 		 * the jumbo payload option.
   1042 		 */
   1043 		hbh = mtod(mopt, struct ip6_hbh *);
   1044 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1045 	}
   1046 
   1047 	/* fill in the option. */
   1048 	optbuf[2] = IP6OPT_JUMBO;
   1049 	optbuf[3] = 4;
   1050 	*(u_int32_t *)&optbuf[4] = htonl(plen + JUMBOOPTLEN);
   1051 
   1052 	/* finally, adjust the packet header length */
   1053 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1054 
   1055 	return(0);
   1056 #undef JUMBOOPTLEN
   1057 }
   1058 
   1059 /*
   1060  * Insert fragment header and copy unfragmentable header portions.
   1061  */
   1062 static int
   1063 ip6_insertfraghdr(m0, m, hlen, frghdrp)
   1064 	struct mbuf *m0, *m;
   1065 	int hlen;
   1066 	struct ip6_frag **frghdrp;
   1067 {
   1068 	struct mbuf *n, *mlast;
   1069 
   1070 	if (hlen > sizeof(struct ip6_hdr)) {
   1071 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1072 			    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1073 		if (n == 0)
   1074 			return(ENOBUFS);
   1075 		m->m_next = n;
   1076 	}
   1077 	else
   1078 		n = m;
   1079 
   1080 	/* Search for the last mbuf of unfragmentable part. */
   1081 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1082 		;
   1083 
   1084 	if ((mlast->m_flags & M_EXT) == 0 &&
   1085 	    M_TRAILINGSPACE(mlast) < sizeof(struct ip6_frag)) {
   1086 		/* use the trailing space of the last mbuf for the fragment hdr */
   1087 		*frghdrp =
   1088 			(struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
   1089 		mlast->m_len += sizeof(struct ip6_frag);
   1090 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1091 	}
   1092 	else {
   1093 		/* allocate a new mbuf for the fragment header */
   1094 		struct mbuf *mfrg;
   1095 
   1096 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1097 		if (mfrg == 0)
   1098 			return(ENOBUFS);
   1099 		mfrg->m_len = sizeof(struct ip6_frag);
   1100 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1101 		mlast->m_next = mfrg;
   1102 	}
   1103 
   1104 	return(0);
   1105 }
   1106 
   1107 /*
   1108  * IP6 socket option processing.
   1109  */
   1110 int
   1111 ip6_ctloutput(op, so, level, optname, mp)
   1112 	int op;
   1113 	struct socket *so;
   1114 	int level, optname;
   1115 	struct mbuf **mp;
   1116 {
   1117 	register struct in6pcb *in6p = sotoin6pcb(so);
   1118 	register struct mbuf *m = *mp;
   1119 	register int optval = 0;
   1120 	int error = 0;
   1121 	struct proc *p = curproc;	/* XXX */
   1122 
   1123 	if (level == IPPROTO_IPV6)
   1124 		switch (op) {
   1125 
   1126 		case PRCO_SETOPT:
   1127 			switch (optname) {
   1128 			case IPV6_PKTOPTIONS:
   1129 				return(ip6_pcbopts(&in6p->in6p_outputopts,
   1130 						   m, so));
   1131 			case IPV6_HOPOPTS:
   1132 			case IPV6_DSTOPTS:
   1133 				if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
   1134 					error = EPERM;
   1135 					break;
   1136 				}
   1137 				/* fall through */
   1138 			case IPV6_UNICAST_HOPS:
   1139 			case IPV6_RECVOPTS:
   1140 			case IPV6_RECVRETOPTS:
   1141 			case IPV6_RECVDSTADDR:
   1142 			case IPV6_PKTINFO:
   1143 			case IPV6_HOPLIMIT:
   1144 			case IPV6_RTHDR:
   1145 			case IPV6_CHECKSUM:
   1146 			case IPV6_FAITH:
   1147 				if (!m || m->m_len != sizeof(int))
   1148 					error = EINVAL;
   1149 				else {
   1150 					optval = *mtod(m, int *);
   1151 					switch (optname) {
   1152 
   1153 					case IPV6_UNICAST_HOPS:
   1154 						if (optval < -1 || optval >= 256)
   1155 							error = EINVAL;
   1156 						else {
   1157 							/* -1 = kernel default */
   1158 							in6p->in6p_hops = optval;
   1159 						}
   1160 						break;
   1161 #define OPTSET(bit) \
   1162 	if (optval) \
   1163 		in6p->in6p_flags |= bit; \
   1164 	else \
   1165 		in6p->in6p_flags &= ~bit;
   1166 
   1167 					case IPV6_RECVOPTS:
   1168 						OPTSET(IN6P_RECVOPTS);
   1169 						break;
   1170 
   1171 					case IPV6_RECVRETOPTS:
   1172 						OPTSET(IN6P_RECVRETOPTS);
   1173 						break;
   1174 
   1175 					case IPV6_RECVDSTADDR:
   1176 						OPTSET(IN6P_RECVDSTADDR);
   1177 						break;
   1178 
   1179 					case IPV6_PKTINFO:
   1180 						OPTSET(IN6P_PKTINFO);
   1181 						break;
   1182 
   1183 					case IPV6_HOPLIMIT:
   1184 						OPTSET(IN6P_HOPLIMIT);
   1185 						break;
   1186 
   1187 					case IPV6_HOPOPTS:
   1188 						OPTSET(IN6P_HOPOPTS);
   1189 						break;
   1190 
   1191 					case IPV6_DSTOPTS:
   1192 						OPTSET(IN6P_DSTOPTS);
   1193 						break;
   1194 
   1195 					case IPV6_RTHDR:
   1196 						OPTSET(IN6P_RTHDR);
   1197 						break;
   1198 
   1199 					case IPV6_CHECKSUM:
   1200 						in6p->in6p_cksum = optval;
   1201 						break;
   1202 
   1203 					case IPV6_FAITH:
   1204 						OPTSET(IN6P_FAITH);
   1205 						break;
   1206 					}
   1207 				}
   1208 				break;
   1209 #undef OPTSET
   1210 
   1211 			case IPV6_MULTICAST_IF:
   1212 			case IPV6_MULTICAST_HOPS:
   1213 			case IPV6_MULTICAST_LOOP:
   1214 			case IPV6_JOIN_GROUP:
   1215 			case IPV6_LEAVE_GROUP:
   1216 				error =	ip6_setmoptions(optname, &in6p->in6p_moptions, m);
   1217 				break;
   1218 
   1219 #ifdef IPSEC
   1220 			case IPV6_IPSEC_POLICY:
   1221 			    {
   1222 				caddr_t req = NULL;
   1223 				int len = 0;
   1224 				int priv = 0;
   1225 #ifdef __NetBSD__
   1226 				if (p == 0 || suser(p->p_ucred, &p->p_acflag))
   1227 					priv = 0;
   1228 				else
   1229 					priv = 1;
   1230 #else
   1231 				priv = (in6p->in6p_socket->so_state & SS_PRIV);
   1232 #endif
   1233 				if (m != 0) {
   1234 					req = mtod(m, caddr_t);
   1235 					len = m->m_len;
   1236 				}
   1237 				error = ipsec_set_policy(&in6p->in6p_sp,
   1238 				                   optname, req, len,
   1239 				                   priv);
   1240 			    }
   1241 				break;
   1242 #endif /* IPSEC */
   1243 
   1244 			default:
   1245 				error = ENOPROTOOPT;
   1246 				break;
   1247 			}
   1248 			if (m)
   1249 				(void)m_free(m);
   1250 			break;
   1251 
   1252 		case PRCO_GETOPT:
   1253 			switch (optname) {
   1254 
   1255 			case IPV6_OPTIONS:
   1256 			case IPV6_RETOPTS:
   1257 #if 0
   1258 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1259 				if (in6p->in6p_options) {
   1260 					m->m_len = in6p->in6p_options->m_len;
   1261 					bcopy(mtod(in6p->in6p_options, caddr_t),
   1262 					      mtod(m, caddr_t),
   1263 					      (unsigned)m->m_len);
   1264 				} else
   1265 					m->m_len = 0;
   1266 				break;
   1267 #else
   1268 				error = ENOPROTOOPT;
   1269 				break;
   1270 #endif
   1271 
   1272 			case IPV6_PKTOPTIONS:
   1273 				if (in6p->in6p_options) {
   1274 					*mp = m_copym(in6p->in6p_options, 0,
   1275 						      M_COPYALL, M_WAIT);
   1276 				} else {
   1277 					*mp = m_get(M_WAIT, MT_SOOPTS);
   1278 					(*mp)->m_len = 0;
   1279 				}
   1280 				break;
   1281 
   1282 			case IPV6_HOPOPTS:
   1283 			case IPV6_DSTOPTS:
   1284 				if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
   1285 					error = EPERM;
   1286 					break;
   1287 				}
   1288 				/* fall through */
   1289 			case IPV6_UNICAST_HOPS:
   1290 			case IPV6_RECVOPTS:
   1291 			case IPV6_RECVRETOPTS:
   1292 			case IPV6_RECVDSTADDR:
   1293 			case IPV6_PKTINFO:
   1294 			case IPV6_HOPLIMIT:
   1295 			case IPV6_RTHDR:
   1296 			case IPV6_CHECKSUM:
   1297 			case IPV6_FAITH:
   1298 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1299 				m->m_len = sizeof(int);
   1300 				switch (optname) {
   1301 
   1302 				case IPV6_UNICAST_HOPS:
   1303 					optval = in6p->in6p_hops;
   1304 					break;
   1305 
   1306 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
   1307 
   1308 				case IPV6_RECVOPTS:
   1309 					optval = OPTBIT(IN6P_RECVOPTS);
   1310 					break;
   1311 
   1312 				case IPV6_RECVRETOPTS:
   1313 					optval = OPTBIT(IN6P_RECVRETOPTS);
   1314 					break;
   1315 
   1316 				case IPV6_RECVDSTADDR:
   1317 					optval = OPTBIT(IN6P_RECVDSTADDR);
   1318 					break;
   1319 
   1320 				case IPV6_PKTINFO:
   1321 					optval = OPTBIT(IN6P_PKTINFO);
   1322 					break;
   1323 
   1324 				case IPV6_HOPLIMIT:
   1325 					optval = OPTBIT(IN6P_HOPLIMIT);
   1326 					break;
   1327 
   1328 				case IPV6_HOPOPTS:
   1329 					optval = OPTBIT(IN6P_HOPOPTS);
   1330 					break;
   1331 
   1332 				case IPV6_DSTOPTS:
   1333 					optval = OPTBIT(IN6P_DSTOPTS);
   1334 					break;
   1335 
   1336 				case IPV6_RTHDR:
   1337 					optval = OPTBIT(IN6P_RTHDR);
   1338 					break;
   1339 
   1340 				case IPV6_CHECKSUM:
   1341 					optval = in6p->in6p_cksum;
   1342 					break;
   1343 
   1344 				case IPV6_FAITH:
   1345 					optval = OPTBIT(IN6P_FAITH);
   1346 					break;
   1347 				}
   1348 				*mtod(m, int *) = optval;
   1349 				break;
   1350 
   1351 			case IPV6_MULTICAST_IF:
   1352 			case IPV6_MULTICAST_HOPS:
   1353 			case IPV6_MULTICAST_LOOP:
   1354 			case IPV6_JOIN_GROUP:
   1355 			case IPV6_LEAVE_GROUP:
   1356 				error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
   1357 				break;
   1358 
   1359 #ifdef IPSEC
   1360 			case IPV6_IPSEC_POLICY:
   1361 				error = ipsec_get_policy(in6p->in6p_sp, mp);
   1362 				break;
   1363 #endif /* IPSEC */
   1364 
   1365 			default:
   1366 				error = ENOPROTOOPT;
   1367 				break;
   1368 			}
   1369 			break;
   1370 		}
   1371 	else {
   1372 		error = EINVAL;
   1373 		if (op == PRCO_SETOPT && *mp)
   1374 			(void)m_free(*mp);
   1375 	}
   1376 	return(error);
   1377 }
   1378 
   1379 /*
   1380  * Set up IP6 options in pcb for insertion in output packets.
   1381  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1382  * with destination address if source routed.
   1383  */
   1384 static int
   1385 ip6_pcbopts(pktopt, m, so)
   1386 	struct ip6_pktopts **pktopt;
   1387 	register struct mbuf *m;
   1388 	struct socket *so;
   1389 {
   1390 	register struct ip6_pktopts *opt = *pktopt;
   1391 	int error = 0;
   1392 	struct proc *p = curproc;	/* XXX */
   1393 	int priv = 0;
   1394 
   1395 	/* turn off any old options. */
   1396 	if (opt) {
   1397 		if (opt->ip6po_m)
   1398 			(void)m_free(opt->ip6po_m);
   1399 	}
   1400 	else
   1401 		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
   1402 	*pktopt = 0;
   1403 
   1404 	if (!m || m->m_len == 0) {
   1405 		/*
   1406 		 * Only turning off any previous options.
   1407 		 */
   1408 		if (opt)
   1409 			free(opt, M_IP6OPT);
   1410 		if (m)
   1411 			(void)m_free(m);
   1412 		return(0);
   1413 	}
   1414 
   1415 	/*  set options specified by user. */
   1416 	if (p && !suser(p->p_ucred, &p->p_acflag))
   1417 		priv = 1;
   1418 	if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
   1419 		(void)m_free(m);
   1420 		return(error);
   1421 	}
   1422 	*pktopt = opt;
   1423 	return(0);
   1424 }
   1425 
   1426 /*
   1427  * Set the IP6 multicast options in response to user setsockopt().
   1428  */
   1429 static int
   1430 ip6_setmoptions(optname, im6op, m)
   1431 	int optname;
   1432 	struct ip6_moptions **im6op;
   1433 	struct mbuf *m;
   1434 {
   1435 	int error = 0;
   1436 	u_int loop, ifindex;
   1437 	struct ipv6_mreq *mreq;
   1438 	struct ifnet *ifp;
   1439 	struct ip6_moptions *im6o = *im6op;
   1440 	struct route_in6 ro;
   1441 	struct sockaddr_in6 *dst;
   1442 	struct in6_multi_mship *imm;
   1443 	struct proc *p = curproc;	/* XXX */
   1444 
   1445 	if (im6o == NULL) {
   1446 		/*
   1447 		 * No multicast option buffer attached to the pcb;
   1448 		 * allocate one and initialize to default values.
   1449 		 */
   1450 		im6o = (struct ip6_moptions *)
   1451 			malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
   1452 
   1453 		if (im6o == NULL)
   1454 			return(ENOBUFS);
   1455 		*im6op = im6o;
   1456 		im6o->im6o_multicast_ifp = NULL;
   1457 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   1458 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   1459 		LIST_INIT(&im6o->im6o_memberships);
   1460 	}
   1461 
   1462 	switch (optname) {
   1463 
   1464 	case IPV6_MULTICAST_IF:
   1465 		/*
   1466 		 * Select the interface for outgoing multicast packets.
   1467 		 */
   1468 		if (m == NULL || m->m_len != sizeof(u_int)) {
   1469 			error = EINVAL;
   1470 			break;
   1471 		}
   1472 		ifindex = *(mtod(m, u_int *));
   1473 		if (ifindex < 0 || if_index < ifindex) {
   1474 			error = ENXIO;	/* XXX EINVAL? */
   1475 			break;
   1476 		}
   1477 		ifp = ifindex2ifnet[ifindex];
   1478 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1479 			error = EADDRNOTAVAIL;
   1480 			break;
   1481 		}
   1482 		im6o->im6o_multicast_ifp = ifp;
   1483 		break;
   1484 
   1485 	case IPV6_MULTICAST_HOPS:
   1486 	    {
   1487 		/*
   1488 		 * Set the IP6 hoplimit for outgoing multicast packets.
   1489 		 */
   1490 		int optval;
   1491 		if (m == NULL || m->m_len != sizeof(int)) {
   1492 			error = EINVAL;
   1493 			break;
   1494 		}
   1495 		optval = *(mtod(m, u_int *));
   1496 		if (optval < -1 || optval >= 256)
   1497 			error = EINVAL;
   1498 		else if (optval == -1)
   1499 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   1500 		else
   1501 			im6o->im6o_multicast_hlim = optval;
   1502 		break;
   1503 	    }
   1504 
   1505 	case IPV6_MULTICAST_LOOP:
   1506 		/*
   1507 		 * Set the loopback flag for outgoing multicast packets.
   1508 		 * Must be zero or one.
   1509 		 */
   1510 		if (m == NULL || m->m_len != sizeof(u_int) ||
   1511 		   (loop = *(mtod(m, u_int *))) > 1) {
   1512 			error = EINVAL;
   1513 			break;
   1514 		}
   1515 		im6o->im6o_multicast_loop = loop;
   1516 		break;
   1517 
   1518 	case IPV6_JOIN_GROUP:
   1519 		/*
   1520 		 * Add a multicast group membership.
   1521 		 * Group must be a valid IP6 multicast address.
   1522 		 */
   1523 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   1524 			error = EINVAL;
   1525 			break;
   1526 		}
   1527 		mreq = mtod(m, struct ipv6_mreq *);
   1528 		if (IN6_IS_ADDR_ANY(&mreq->ipv6mr_multiaddr)) {
   1529 			/*
   1530 			 * We use the unspecified address to specify to accept
   1531 			 * all multicast addresses. Only super user is allowed
   1532 			 * to do this.
   1533 			 */
   1534 			if (suser(p->p_ucred, &p->p_acflag)) {
   1535 				error = EACCES;
   1536 				break;
   1537 			}
   1538 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
   1539 			error = EINVAL;
   1540 			break;
   1541 		}
   1542 
   1543 		/*
   1544 		 * If the interface is specified, validate it.
   1545 		 */
   1546 		if (mreq->ipv6mr_interface < 0
   1547 		 || if_index < mreq->ipv6mr_interface) {
   1548 			error = ENXIO;	/* XXX EINVAL? */
   1549 			break;
   1550 		}
   1551 		/*
   1552 		 * If no interface was explicitly specified, choose an
   1553 		 * appropriate one according to the given multicast address.
   1554 		 */
   1555 		if (mreq->ipv6mr_interface == 0) {
   1556 			/*
   1557 			 * If the multicast address is in node-local scope,
   1558 			 * the interface should be a loopback interface.
   1559 			 * Otherwise, look up the routing table for the
   1560 			 * address, and choose the outgoing interface.
   1561 			 *   XXX: is it a good approach?
   1562 			 */
   1563 			if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
   1564 #ifdef __bsdi__
   1565 				ifp = &loif;
   1566 #else
   1567 				ifp = &loif[0];
   1568 #endif
   1569 			}
   1570 			else {
   1571 				ro.ro_rt = NULL;
   1572 				dst = (struct sockaddr_in6 *)&ro.ro_dst;
   1573 				bzero(dst, sizeof(*dst));
   1574 				dst->sin6_len = sizeof(struct sockaddr_in6);
   1575 				dst->sin6_family = AF_INET6;
   1576 				dst->sin6_addr = mreq->ipv6mr_multiaddr;
   1577 				rtalloc((struct route *)&ro);
   1578 				if (ro.ro_rt == NULL) {
   1579 					error = EADDRNOTAVAIL;
   1580 					break;
   1581 				}
   1582 				ifp = ro.ro_rt->rt_ifp;
   1583 				rtfree(ro.ro_rt);
   1584 			}
   1585 		} else
   1586 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   1587 
   1588 		/*
   1589 		 * See if we found an interface, and confirm that it
   1590 		 * supports multicast
   1591 		 */
   1592 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1593 			error = EADDRNOTAVAIL;
   1594 			break;
   1595 		}
   1596 		/*
   1597 		 * Put interface index into the multicast address,
   1598 		 * if the address has link-local scope.
   1599 		 */
   1600 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
   1601 			mreq->ipv6mr_multiaddr.s6_addr16[1]
   1602 				= htons(mreq->ipv6mr_interface);
   1603 		}
   1604 		/*
   1605 		 * See if the membership already exists.
   1606 		 */
   1607 		for (imm = im6o->im6o_memberships.lh_first;
   1608 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   1609 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   1610 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   1611 					       &mreq->ipv6mr_multiaddr))
   1612 				break;
   1613 		if (imm != NULL) {
   1614 			error = EADDRINUSE;
   1615 			break;
   1616 		}
   1617 		/*
   1618 		 * Everything looks good; add a new record to the multicast
   1619 		 * address list for the given interface.
   1620 		 */
   1621 		imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
   1622 		if (imm == NULL) {
   1623 			error = ENOBUFS;
   1624 			break;
   1625 		}
   1626 		if ((imm->i6mm_maddr =
   1627 		     in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
   1628 			free(imm, M_IPMADDR);
   1629 			break;
   1630 		}
   1631 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   1632 		break;
   1633 
   1634 	case IPV6_LEAVE_GROUP:
   1635 		/*
   1636 		 * Drop a multicast group membership.
   1637 		 * Group must be a valid IP6 multicast address.
   1638 		 */
   1639 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   1640 			error = EINVAL;
   1641 			break;
   1642 		}
   1643 		mreq = mtod(m, struct ipv6_mreq *);
   1644 		if (IN6_IS_ADDR_ANY(&mreq->ipv6mr_multiaddr)) {
   1645 			if (suser(p->p_ucred, &p->p_acflag)) {
   1646 				error = EACCES;
   1647 				break;
   1648 			}
   1649 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
   1650 			error = EINVAL;
   1651 			break;
   1652 		}
   1653 		/*
   1654 		 * If an interface address was specified, get a pointer
   1655 		 * to its ifnet structure.
   1656 		 */
   1657 		if (mreq->ipv6mr_interface < 0
   1658 		 || if_index < mreq->ipv6mr_interface) {
   1659 			error = ENXIO;	/* XXX EINVAL? */
   1660 			break;
   1661 		}
   1662 		ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   1663 		/*
   1664 		 * Put interface index into the multicast address,
   1665 		 * if the address has link-local scope.
   1666 		 */
   1667 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
   1668 			mreq->ipv6mr_multiaddr.s6_addr16[1]
   1669 				= htons(mreq->ipv6mr_interface);
   1670 		}
   1671 		/*
   1672 		 * Find the membership in the membership list.
   1673 		 */
   1674 		for (imm = im6o->im6o_memberships.lh_first;
   1675 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   1676 			if ((ifp == NULL ||
   1677 			     imm->i6mm_maddr->in6m_ifp == ifp) &&
   1678 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   1679 					       &mreq->ipv6mr_multiaddr))
   1680 				break;
   1681 		}
   1682 		if (imm == NULL) {
   1683 			/* Unable to resolve interface */
   1684 			error = EADDRNOTAVAIL;
   1685 			break;
   1686 		}
   1687 		/*
   1688 		 * Give up the multicast address record to which the
   1689 		 * membership points.
   1690 		 */
   1691 		LIST_REMOVE(imm, i6mm_chain);
   1692 		in6_delmulti(imm->i6mm_maddr);
   1693 		free(imm, M_IPMADDR);
   1694 		break;
   1695 
   1696 	default:
   1697 		error = EOPNOTSUPP;
   1698 		break;
   1699 	}
   1700 
   1701 	/*
   1702 	 * If all options have default values, no need to keep the mbuf.
   1703 	 */
   1704 	if (im6o->im6o_multicast_ifp == NULL &&
   1705 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   1706 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   1707 	    im6o->im6o_memberships.lh_first == NULL) {
   1708 		free(*im6op, M_IPMOPTS);
   1709 		*im6op = NULL;
   1710 	}
   1711 
   1712 	return(error);
   1713 }
   1714 
   1715 /*
   1716  * Return the IP6 multicast options in response to user getsockopt().
   1717  */
   1718 static int
   1719 ip6_getmoptions(optname, im6o, mp)
   1720 	int optname;
   1721 	register struct ip6_moptions *im6o;
   1722 	register struct mbuf **mp;
   1723 {
   1724 	u_int *hlim, *loop, *ifindex;
   1725 
   1726 	*mp = m_get(M_WAIT, MT_SOOPTS);
   1727 
   1728 	switch (optname) {
   1729 
   1730 	case IPV6_MULTICAST_IF:
   1731 		ifindex = mtod(*mp, u_int *);
   1732 		(*mp)->m_len = sizeof(u_int);
   1733 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
   1734 			*ifindex = 0;
   1735 		else
   1736 			*ifindex = im6o->im6o_multicast_ifp->if_index;
   1737 		return(0);
   1738 
   1739 	case IPV6_MULTICAST_HOPS:
   1740 		hlim = mtod(*mp, u_int *);
   1741 		(*mp)->m_len = sizeof(u_int);
   1742 		if (im6o == NULL)
   1743 			*hlim = ip6_defmcasthlim;
   1744 		else
   1745 			*hlim = im6o->im6o_multicast_hlim;
   1746 		return(0);
   1747 
   1748 	case IPV6_MULTICAST_LOOP:
   1749 		loop = mtod(*mp, u_int *);
   1750 		(*mp)->m_len = sizeof(u_int);
   1751 		if (im6o == NULL)
   1752 			*loop = ip6_defmcasthlim;
   1753 		else
   1754 			*loop = im6o->im6o_multicast_loop;
   1755 		return(0);
   1756 
   1757 	default:
   1758 		return(EOPNOTSUPP);
   1759 	}
   1760 }
   1761 
   1762 /*
   1763  * Discard the IP6 multicast options.
   1764  */
   1765 void
   1766 ip6_freemoptions(im6o)
   1767 	register struct ip6_moptions *im6o;
   1768 {
   1769 	struct in6_multi_mship *imm;
   1770 
   1771 	if (im6o == NULL)
   1772 		return;
   1773 
   1774 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   1775 		LIST_REMOVE(imm, i6mm_chain);
   1776 		if (imm->i6mm_maddr)
   1777 			in6_delmulti(imm->i6mm_maddr);
   1778 		free(imm, M_IPMADDR);
   1779 	}
   1780 	free(im6o, M_IPMOPTS);
   1781 }
   1782 
   1783 /*
   1784  * Set IPv6 outgoing packet options based on advanced API.
   1785  */
   1786 int
   1787 ip6_setpktoptions(control, opt, priv)
   1788 	struct mbuf *control;
   1789 	struct ip6_pktopts *opt;
   1790 	int priv;
   1791 {
   1792 	register struct cmsghdr *cm = 0;
   1793 
   1794 	if (control == 0 || opt == 0)
   1795 		return(EINVAL);
   1796 
   1797 	bzero(opt, sizeof(*opt));
   1798 	opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
   1799 
   1800 	/*
   1801 	 * XXX: Currently, we assume all the optional information is stored
   1802 	 * in a single mbuf.
   1803 	 */
   1804 	if (control->m_next)
   1805 		return(EINVAL);
   1806 
   1807 	opt->ip6po_m = control;
   1808 
   1809 	for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   1810 		     control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   1811 		cm = mtod(control, struct cmsghdr *);
   1812 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   1813 			return(EINVAL);
   1814 		if (cm->cmsg_level != IPPROTO_IPV6)
   1815 			continue;
   1816 
   1817 		switch(cm->cmsg_type) {
   1818 		case IPV6_PKTINFO:
   1819 			if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
   1820 				return(EINVAL);
   1821 			opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
   1822 			if (opt->ip6po_pktinfo->ipi6_ifindex &&
   1823 			    IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
   1824 				opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
   1825 					htons(opt->ip6po_pktinfo->ipi6_ifindex);
   1826 
   1827 			if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
   1828 			 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
   1829 				return(ENXIO);
   1830 			}
   1831 
   1832 			if (!IN6_IS_ADDR_ANY(&opt->ip6po_pktinfo->ipi6_addr)) {
   1833 				struct ifaddr *ia;
   1834 				struct sockaddr_in6 sin6;
   1835 
   1836 				bzero(&sin6, sizeof(sin6));
   1837 				sin6.sin6_len = sizeof(sin6);
   1838 				sin6.sin6_family = AF_INET6;
   1839 				sin6.sin6_addr =
   1840 					opt->ip6po_pktinfo->ipi6_addr;
   1841 				ia = ifa_ifwithaddr(sin6tosa(&sin6));
   1842 				if (ia == NULL ||
   1843 				    (opt->ip6po_pktinfo->ipi6_ifindex &&
   1844 				     (ia->ifa_ifp->if_index !=
   1845 				      opt->ip6po_pktinfo->ipi6_ifindex))) {
   1846 					return(EADDRNOTAVAIL);
   1847 				}
   1848 				/*
   1849 				 * Check if the requested source address is
   1850 				 * indeed a unicast address assigned to the
   1851 				 * node.
   1852 				 */
   1853 				if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
   1854 					return(EADDRNOTAVAIL);
   1855 			}
   1856 			break;
   1857 
   1858 		case IPV6_HOPLIMIT:
   1859 			if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
   1860 				return(EINVAL);
   1861 
   1862 			opt->ip6po_hlim = *(int *)CMSG_DATA(cm);
   1863 			if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
   1864 				return(EINVAL);
   1865 			break;
   1866 
   1867 		case IPV6_NEXTHOP:
   1868 			if (!priv)
   1869 				return(EPERM);
   1870 			if (cm->cmsg_len < sizeof(u_char) ||
   1871 			    cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
   1872 				return(EINVAL);
   1873 
   1874 			opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
   1875 
   1876 			break;
   1877 
   1878 		case IPV6_HOPOPTS:
   1879 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
   1880 				return(EINVAL);
   1881 			opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
   1882 			if (cm->cmsg_len !=
   1883 			    CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
   1884 				return(EINVAL);
   1885 			break;
   1886 
   1887 		case IPV6_DSTOPTS:
   1888 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
   1889 				return(EINVAL);
   1890 
   1891 			/*
   1892 			 * If there is no routing header yet, the destination
   1893 			 * options header should be put on the 1st part.
   1894 			 * Otherwise, the header should be on the 2nd part.
   1895 			 * (See RFC 2460, section 4.1)
   1896 			 */
   1897 			if (opt->ip6po_rthdr == NULL) {
   1898 				opt->ip6po_dest1 =
   1899 					(struct ip6_dest *)CMSG_DATA(cm);
   1900 				if (cm->cmsg_len !=
   1901 				    CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
   1902 					     << 3))
   1903 					return(EINVAL);
   1904 			}
   1905 			else {
   1906 				opt->ip6po_dest2 =
   1907 					(struct ip6_dest *)CMSG_DATA(cm);
   1908 				if (cm->cmsg_len !=
   1909 				    CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
   1910 					     << 3))
   1911 					return(EINVAL);
   1912 			}
   1913 			break;
   1914 
   1915 		case IPV6_RTHDR:
   1916 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
   1917 				return(EINVAL);
   1918 			opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
   1919 			if (cm->cmsg_len !=
   1920 			    CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
   1921 				return(EINVAL);
   1922 			switch(opt->ip6po_rthdr->ip6r_type) {
   1923 			case IPV6_RTHDR_TYPE_0:
   1924 				if (opt->ip6po_rthdr->ip6r_segleft == 0)
   1925 					return(EINVAL);
   1926 				break;
   1927 			default:
   1928 				return(EINVAL);
   1929 			}
   1930 			break;
   1931 
   1932 		default:
   1933 			return(ENOPROTOOPT);
   1934 		}
   1935 	}
   1936 
   1937 	return(0);
   1938 }
   1939 
   1940 /*
   1941  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   1942  * packet to the input queue of a specified interface.  Note that this
   1943  * calls the output routine of the loopback "driver", but with an interface
   1944  * pointer that might NOT be &loif -- easier than replicating that code here.
   1945  */
   1946 void
   1947 ip6_mloopback(ifp, m, dst)
   1948 	struct ifnet *ifp;
   1949 	register struct mbuf *m;
   1950 	register struct sockaddr_in6 *dst;
   1951 {
   1952 	struct	mbuf *copym;
   1953 
   1954 	copym = m_copy(m, 0, M_COPYALL);
   1955 	if (copym != NULL)
   1956 		(void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
   1957 }
   1958 
   1959 /*
   1960  * Chop IPv6 header off from the payload.
   1961  */
   1962 static int
   1963 ip6_splithdr(m, exthdrs)
   1964 	struct mbuf *m;
   1965 	struct ip6_exthdrs *exthdrs;
   1966 {
   1967 	struct mbuf *mh;
   1968 	struct ip6_hdr *ip6;
   1969 
   1970 	ip6 = mtod(m, struct ip6_hdr *);
   1971 	if (m->m_len > sizeof(*ip6)) {
   1972 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   1973 		if (mh == 0) {
   1974 			m_freem(m);
   1975 			return ENOBUFS;
   1976 		}
   1977 		M_COPY_PKTHDR(mh, m);
   1978 		MH_ALIGN(mh, sizeof(*ip6));
   1979 		m->m_flags &= ~M_PKTHDR;
   1980 		m->m_len -= sizeof(*ip6);
   1981 		m->m_data += sizeof(*ip6);
   1982 		mh->m_next = m;
   1983 		m = mh;
   1984 		m->m_len = sizeof(*ip6);
   1985 		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
   1986 	}
   1987 	exthdrs->ip6e_ip6 = m;
   1988 	return 0;
   1989 }
   1990 
   1991 /*
   1992  * Compute IPv6 extension header length.
   1993  */
   1994 int
   1995 ip6_optlen(in6p)
   1996 	struct in6pcb *in6p;
   1997 {
   1998 	int len;
   1999 
   2000 	if (!in6p->in6p_outputopts)
   2001 		return 0;
   2002 
   2003 	len = 0;
   2004 #define elen(x) \
   2005     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   2006 
   2007 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   2008 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   2009 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   2010 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   2011 	return len;
   2012 #undef elen
   2013 }
   2014