ip6_output.c revision 1.31.2.3 1 /* $NetBSD: ip6_output.c,v 1.31.2.3 2001/04/09 01:58:41 nathanw Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
66 */
67
68 #include "opt_inet.h"
69 #include "opt_ipsec.h"
70 #include "opt_pfil_hooks.h"
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/systm.h>
80 #include <sys/lwp.h>
81 #include <sys/proc.h>
82
83 #include <net/if.h>
84 #include <net/route.h>
85 #ifdef PFIL_HOOKS
86 #include <net/pfil.h>
87 #endif
88
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip6.h>
92 #include <netinet/icmp6.h>
93 #include <netinet6/ip6_var.h>
94 #include <netinet6/in6_pcb.h>
95 #include <netinet6/nd6.h>
96
97 #ifdef IPSEC
98 #include <netinet6/ipsec.h>
99 #include <netkey/key.h>
100 #endif /* IPSEC */
101
102 #include "loop.h"
103
104 #include <net/net_osdep.h>
105
106 #ifdef IPV6FIREWALL
107 #include <netinet6/ip6_fw.h>
108 #endif
109
110 #ifdef PFIL_HOOKS
111 extern struct pfil_head inet6_pfil_hook; /* XXX */
112 #endif
113
114 struct ip6_exthdrs {
115 struct mbuf *ip6e_ip6;
116 struct mbuf *ip6e_hbh;
117 struct mbuf *ip6e_dest1;
118 struct mbuf *ip6e_rthdr;
119 struct mbuf *ip6e_dest2;
120 };
121
122 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
123 struct socket *));
124 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
125 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
126 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
127 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
128 struct ip6_frag **));
129 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
130 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
131
132 extern struct ifnet loif[NLOOP];
133
134 /*
135 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
136 * header (with pri, len, nxt, hlim, src, dst).
137 * This function may modify ver and hlim only.
138 * The mbuf chain containing the packet will be freed.
139 * The mbuf opt, if present, will not be freed.
140 */
141 int
142 ip6_output(m0, opt, ro, flags, im6o, ifpp)
143 struct mbuf *m0;
144 struct ip6_pktopts *opt;
145 struct route_in6 *ro;
146 int flags;
147 struct ip6_moptions *im6o;
148 struct ifnet **ifpp; /* XXX: just for statistics */
149 {
150 struct ip6_hdr *ip6, *mhip6;
151 struct ifnet *ifp, *origifp;
152 struct mbuf *m = m0;
153 int hlen, tlen, len, off;
154 struct route_in6 ip6route;
155 struct sockaddr_in6 *dst;
156 int error = 0;
157 struct in6_ifaddr *ia;
158 u_long mtu;
159 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
160 struct ip6_exthdrs exthdrs;
161 struct in6_addr finaldst;
162 struct route_in6 *ro_pmtu = NULL;
163 int hdrsplit = 0;
164 int needipsec = 0;
165 #ifdef IPSEC
166 int needipsectun = 0;
167 struct socket *so;
168 struct secpolicy *sp = NULL;
169
170 /* for AH processing. stupid to have "socket" variable in IP layer... */
171 so = ipsec_getsocket(m);
172 (void)ipsec_setsocket(m, NULL);
173 ip6 = mtod(m, struct ip6_hdr *);
174 #endif /* IPSEC */
175
176 #define MAKE_EXTHDR(hp, mp) \
177 do { \
178 if (hp) { \
179 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
180 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
181 ((eh)->ip6e_len + 1) << 3); \
182 if (error) \
183 goto freehdrs; \
184 } \
185 } while (0)
186
187 bzero(&exthdrs, sizeof(exthdrs));
188 if (opt) {
189 /* Hop-by-Hop options header */
190 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
191 /* Destination options header(1st part) */
192 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
193 /* Routing header */
194 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
195 /* Destination options header(2nd part) */
196 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
197 }
198
199 #ifdef IPSEC
200 /* get a security policy for this packet */
201 if (so == NULL)
202 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
203 else
204 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
205
206 if (sp == NULL) {
207 ipsec6stat.out_inval++;
208 goto freehdrs;
209 }
210
211 error = 0;
212
213 /* check policy */
214 switch (sp->policy) {
215 case IPSEC_POLICY_DISCARD:
216 /*
217 * This packet is just discarded.
218 */
219 ipsec6stat.out_polvio++;
220 goto freehdrs;
221
222 case IPSEC_POLICY_BYPASS:
223 case IPSEC_POLICY_NONE:
224 /* no need to do IPsec. */
225 needipsec = 0;
226 break;
227
228 case IPSEC_POLICY_IPSEC:
229 if (sp->req == NULL) {
230 /* XXX should be panic ? */
231 printf("ip6_output: No IPsec request specified.\n");
232 error = EINVAL;
233 goto freehdrs;
234 }
235 needipsec = 1;
236 break;
237
238 case IPSEC_POLICY_ENTRUST:
239 default:
240 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
241 }
242 #endif /* IPSEC */
243
244 /*
245 * Calculate the total length of the extension header chain.
246 * Keep the length of the unfragmentable part for fragmentation.
247 */
248 optlen = 0;
249 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
250 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
251 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
252 unfragpartlen = optlen + sizeof(struct ip6_hdr);
253 /* NOTE: we don't add AH/ESP length here. do that later. */
254 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
255
256 /*
257 * If we need IPsec, or there is at least one extension header,
258 * separate IP6 header from the payload.
259 */
260 if ((needipsec || optlen) && !hdrsplit) {
261 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
262 m = NULL;
263 goto freehdrs;
264 }
265 m = exthdrs.ip6e_ip6;
266 hdrsplit++;
267 }
268
269 /* adjust pointer */
270 ip6 = mtod(m, struct ip6_hdr *);
271
272 /* adjust mbuf packet header length */
273 m->m_pkthdr.len += optlen;
274 plen = m->m_pkthdr.len - sizeof(*ip6);
275
276 /* If this is a jumbo payload, insert a jumbo payload option. */
277 if (plen > IPV6_MAXPACKET) {
278 if (!hdrsplit) {
279 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
280 m = NULL;
281 goto freehdrs;
282 }
283 m = exthdrs.ip6e_ip6;
284 hdrsplit++;
285 }
286 /* adjust pointer */
287 ip6 = mtod(m, struct ip6_hdr *);
288 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
289 goto freehdrs;
290 ip6->ip6_plen = 0;
291 } else
292 ip6->ip6_plen = htons(plen);
293
294 /*
295 * Concatenate headers and fill in next header fields.
296 * Here we have, on "m"
297 * IPv6 payload
298 * and we insert headers accordingly. Finally, we should be getting:
299 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
300 *
301 * during the header composing process, "m" points to IPv6 header.
302 * "mprev" points to an extension header prior to esp.
303 */
304 {
305 u_char *nexthdrp = &ip6->ip6_nxt;
306 struct mbuf *mprev = m;
307
308 /*
309 * we treat dest2 specially. this makes IPsec processing
310 * much easier.
311 *
312 * result: IPv6 dest2 payload
313 * m and mprev will point to IPv6 header.
314 */
315 if (exthdrs.ip6e_dest2) {
316 if (!hdrsplit)
317 panic("assumption failed: hdr not split");
318 exthdrs.ip6e_dest2->m_next = m->m_next;
319 m->m_next = exthdrs.ip6e_dest2;
320 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
321 ip6->ip6_nxt = IPPROTO_DSTOPTS;
322 }
323
324 #define MAKE_CHAIN(m, mp, p, i)\
325 do {\
326 if (m) {\
327 if (!hdrsplit) \
328 panic("assumption failed: hdr not split"); \
329 *mtod((m), u_char *) = *(p);\
330 *(p) = (i);\
331 p = mtod((m), u_char *);\
332 (m)->m_next = (mp)->m_next;\
333 (mp)->m_next = (m);\
334 (mp) = (m);\
335 }\
336 } while (0)
337 /*
338 * result: IPv6 hbh dest1 rthdr dest2 payload
339 * m will point to IPv6 header. mprev will point to the
340 * extension header prior to dest2 (rthdr in the above case).
341 */
342 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
343 nexthdrp, IPPROTO_HOPOPTS);
344 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
345 nexthdrp, IPPROTO_DSTOPTS);
346 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
347 nexthdrp, IPPROTO_ROUTING);
348
349 #ifdef IPSEC
350 if (!needipsec)
351 goto skip_ipsec2;
352
353 /*
354 * pointers after IPsec headers are not valid any more.
355 * other pointers need a great care too.
356 * (IPsec routines should not mangle mbufs prior to AH/ESP)
357 */
358 exthdrs.ip6e_dest2 = NULL;
359
360 {
361 struct ip6_rthdr *rh = NULL;
362 int segleft_org = 0;
363 struct ipsec_output_state state;
364
365 if (exthdrs.ip6e_rthdr) {
366 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
367 segleft_org = rh->ip6r_segleft;
368 rh->ip6r_segleft = 0;
369 }
370
371 bzero(&state, sizeof(state));
372 state.m = m;
373 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
374 &needipsectun);
375 m = state.m;
376 if (error) {
377 /* mbuf is already reclaimed in ipsec6_output_trans. */
378 m = NULL;
379 switch (error) {
380 case EHOSTUNREACH:
381 case ENETUNREACH:
382 case EMSGSIZE:
383 case ENOBUFS:
384 case ENOMEM:
385 break;
386 default:
387 printf("ip6_output (ipsec): error code %d\n", error);
388 /*fall through*/
389 case ENOENT:
390 /* don't show these error codes to the user */
391 error = 0;
392 break;
393 }
394 goto bad;
395 }
396 if (exthdrs.ip6e_rthdr) {
397 /* ah6_output doesn't modify mbuf chain */
398 rh->ip6r_segleft = segleft_org;
399 }
400 }
401 skip_ipsec2:;
402 #endif
403 }
404
405 /*
406 * If there is a routing header, replace destination address field
407 * with the first hop of the routing header.
408 */
409 if (exthdrs.ip6e_rthdr) {
410 struct ip6_rthdr *rh =
411 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
412 struct ip6_rthdr *));
413 struct ip6_rthdr0 *rh0;
414
415 finaldst = ip6->ip6_dst;
416 switch (rh->ip6r_type) {
417 case IPV6_RTHDR_TYPE_0:
418 rh0 = (struct ip6_rthdr0 *)rh;
419 ip6->ip6_dst = rh0->ip6r0_addr[0];
420 bcopy((caddr_t)&rh0->ip6r0_addr[1],
421 (caddr_t)&rh0->ip6r0_addr[0],
422 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)
423 );
424 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
425 break;
426 default: /* is it possible? */
427 error = EINVAL;
428 goto bad;
429 }
430 }
431
432 /* Source address validation */
433 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
434 (flags & IPV6_DADOUTPUT) == 0) {
435 error = EOPNOTSUPP;
436 ip6stat.ip6s_badscope++;
437 goto bad;
438 }
439 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
440 error = EOPNOTSUPP;
441 ip6stat.ip6s_badscope++;
442 goto bad;
443 }
444
445 ip6stat.ip6s_localout++;
446
447 /*
448 * Route packet.
449 */
450 if (ro == 0) {
451 ro = &ip6route;
452 bzero((caddr_t)ro, sizeof(*ro));
453 }
454 ro_pmtu = ro;
455 if (opt && opt->ip6po_rthdr)
456 ro = &opt->ip6po_route;
457 dst = (struct sockaddr_in6 *)&ro->ro_dst;
458 /*
459 * If there is a cached route,
460 * check that it is to the same destination
461 * and is still up. If not, free it and try again.
462 */
463 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
464 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
465 RTFREE(ro->ro_rt);
466 ro->ro_rt = (struct rtentry *)0;
467 }
468 if (ro->ro_rt == 0) {
469 bzero(dst, sizeof(*dst));
470 dst->sin6_family = AF_INET6;
471 dst->sin6_len = sizeof(struct sockaddr_in6);
472 dst->sin6_addr = ip6->ip6_dst;
473 }
474 #ifdef IPSEC
475 if (needipsec && needipsectun) {
476 struct ipsec_output_state state;
477
478 /*
479 * All the extension headers will become inaccessible
480 * (since they can be encrypted).
481 * Don't panic, we need no more updates to extension headers
482 * on inner IPv6 packet (since they are now encapsulated).
483 *
484 * IPv6 [ESP|AH] IPv6 [extension headers] payload
485 */
486 bzero(&exthdrs, sizeof(exthdrs));
487 exthdrs.ip6e_ip6 = m;
488
489 bzero(&state, sizeof(state));
490 state.m = m;
491 state.ro = (struct route *)ro;
492 state.dst = (struct sockaddr *)dst;
493
494 error = ipsec6_output_tunnel(&state, sp, flags);
495
496 m = state.m;
497 ro = (struct route_in6 *)state.ro;
498 dst = (struct sockaddr_in6 *)state.dst;
499 if (error) {
500 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
501 m0 = m = NULL;
502 m = NULL;
503 switch (error) {
504 case EHOSTUNREACH:
505 case ENETUNREACH:
506 case EMSGSIZE:
507 case ENOBUFS:
508 case ENOMEM:
509 break;
510 default:
511 printf("ip6_output (ipsec): error code %d\n", error);
512 /*fall through*/
513 case ENOENT:
514 /* don't show these error codes to the user */
515 error = 0;
516 break;
517 }
518 goto bad;
519 }
520
521 exthdrs.ip6e_ip6 = m;
522 }
523 #endif /*IPSEC*/
524
525 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
526 /* Unicast */
527
528 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
529 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
530 /* xxx
531 * interface selection comes here
532 * if an interface is specified from an upper layer,
533 * ifp must point it.
534 */
535 if (ro->ro_rt == 0) {
536 /*
537 * non-bsdi always clone routes, if parent is
538 * PRF_CLONING.
539 */
540 rtalloc((struct route *)ro);
541 }
542 if (ro->ro_rt == 0) {
543 ip6stat.ip6s_noroute++;
544 error = EHOSTUNREACH;
545 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
546 goto bad;
547 }
548 ia = ifatoia6(ro->ro_rt->rt_ifa);
549 ifp = ro->ro_rt->rt_ifp;
550 ro->ro_rt->rt_use++;
551 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
552 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
553 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
554
555 in6_ifstat_inc(ifp, ifs6_out_request);
556
557 /*
558 * Check if the outgoing interface conflicts with
559 * the interface specified by ifi6_ifindex (if specified).
560 * Note that loopback interface is always okay.
561 * (this may happen when we are sending a packet to one of
562 * our own addresses.)
563 */
564 if (opt && opt->ip6po_pktinfo
565 && opt->ip6po_pktinfo->ipi6_ifindex) {
566 if (!(ifp->if_flags & IFF_LOOPBACK)
567 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
568 ip6stat.ip6s_noroute++;
569 in6_ifstat_inc(ifp, ifs6_out_discard);
570 error = EHOSTUNREACH;
571 goto bad;
572 }
573 }
574
575 if (opt && opt->ip6po_hlim != -1)
576 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
577 } else {
578 /* Multicast */
579 struct in6_multi *in6m;
580
581 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
582
583 /*
584 * See if the caller provided any multicast options
585 */
586 ifp = NULL;
587 if (im6o != NULL) {
588 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
589 if (im6o->im6o_multicast_ifp != NULL)
590 ifp = im6o->im6o_multicast_ifp;
591 } else
592 ip6->ip6_hlim = ip6_defmcasthlim;
593
594 /*
595 * See if the caller provided the outgoing interface
596 * as an ancillary data.
597 * Boundary check for ifindex is assumed to be already done.
598 */
599 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
600 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
601
602 /*
603 * If the destination is a node-local scope multicast,
604 * the packet should be loop-backed only.
605 */
606 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
607 /*
608 * If the outgoing interface is already specified,
609 * it should be a loopback interface.
610 */
611 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
612 ip6stat.ip6s_badscope++;
613 error = ENETUNREACH; /* XXX: better error? */
614 /* XXX correct ifp? */
615 in6_ifstat_inc(ifp, ifs6_out_discard);
616 goto bad;
617 } else {
618 ifp = &loif[0];
619 }
620 }
621
622 if (opt && opt->ip6po_hlim != -1)
623 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
624
625 /*
626 * If caller did not provide an interface lookup a
627 * default in the routing table. This is either a
628 * default for the speicfied group (i.e. a host
629 * route), or a multicast default (a route for the
630 * ``net'' ff00::/8).
631 */
632 if (ifp == NULL) {
633 if (ro->ro_rt == 0) {
634 ro->ro_rt = rtalloc1((struct sockaddr *)
635 &ro->ro_dst, 0
636 );
637 }
638 if (ro->ro_rt == 0) {
639 ip6stat.ip6s_noroute++;
640 error = EHOSTUNREACH;
641 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
642 goto bad;
643 }
644 ia = ifatoia6(ro->ro_rt->rt_ifa);
645 ifp = ro->ro_rt->rt_ifp;
646 ro->ro_rt->rt_use++;
647 }
648
649 if ((flags & IPV6_FORWARDING) == 0)
650 in6_ifstat_inc(ifp, ifs6_out_request);
651 in6_ifstat_inc(ifp, ifs6_out_mcast);
652
653 /*
654 * Confirm that the outgoing interface supports multicast.
655 */
656 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
657 ip6stat.ip6s_noroute++;
658 in6_ifstat_inc(ifp, ifs6_out_discard);
659 error = ENETUNREACH;
660 goto bad;
661 }
662 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
663 if (in6m != NULL &&
664 (im6o == NULL || im6o->im6o_multicast_loop)) {
665 /*
666 * If we belong to the destination multicast group
667 * on the outgoing interface, and the caller did not
668 * forbid loopback, loop back a copy.
669 */
670 ip6_mloopback(ifp, m, dst);
671 } else {
672 /*
673 * If we are acting as a multicast router, perform
674 * multicast forwarding as if the packet had just
675 * arrived on the interface to which we are about
676 * to send. The multicast forwarding function
677 * recursively calls this function, using the
678 * IPV6_FORWARDING flag to prevent infinite recursion.
679 *
680 * Multicasts that are looped back by ip6_mloopback(),
681 * above, will be forwarded by the ip6_input() routine,
682 * if necessary.
683 */
684 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
685 if (ip6_mforward(ip6, ifp, m) != 0) {
686 m_freem(m);
687 goto done;
688 }
689 }
690 }
691 /*
692 * Multicasts with a hoplimit of zero may be looped back,
693 * above, but must not be transmitted on a network.
694 * Also, multicasts addressed to the loopback interface
695 * are not sent -- the above call to ip6_mloopback() will
696 * loop back a copy if this host actually belongs to the
697 * destination group on the loopback interface.
698 */
699 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
700 m_freem(m);
701 goto done;
702 }
703 }
704
705 /*
706 * Fill the outgoing inteface to tell the upper layer
707 * to increment per-interface statistics.
708 */
709 if (ifpp)
710 *ifpp = ifp;
711
712 /*
713 * Determine path MTU.
714 */
715 if (ro_pmtu != ro) {
716 /* The first hop and the final destination may differ. */
717 struct sockaddr_in6 *sin6_fin =
718 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
719 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
720 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
721 &finaldst))) {
722 RTFREE(ro_pmtu->ro_rt);
723 ro_pmtu->ro_rt = (struct rtentry *)0;
724 }
725 if (ro_pmtu->ro_rt == 0) {
726 bzero(sin6_fin, sizeof(*sin6_fin));
727 sin6_fin->sin6_family = AF_INET6;
728 sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
729 sin6_fin->sin6_addr = finaldst;
730
731 rtalloc((struct route *)ro_pmtu);
732 }
733 }
734 if (ro_pmtu->ro_rt != NULL) {
735 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
736
737 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
738 if (mtu > ifmtu || mtu == 0) {
739 /*
740 * The MTU on the route is larger than the MTU on
741 * the interface! This shouldn't happen, unless the
742 * MTU of the interface has been changed after the
743 * interface was brought up. Change the MTU in the
744 * route to match the interface MTU (as long as the
745 * field isn't locked).
746 *
747 * if MTU on the route is 0, we need to fix the MTU.
748 * this case happens with path MTU discovery timeouts.
749 */
750 mtu = ifmtu;
751 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
752 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
753 }
754 } else {
755 mtu = nd_ifinfo[ifp->if_index].linkmtu;
756 }
757
758 /* Fake scoped addresses */
759 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
760 /*
761 * If source or destination address is a scoped address, and
762 * the packet is going to be sent to a loopback interface,
763 * we should keep the original interface.
764 */
765
766 /*
767 * XXX: this is a very experimental and temporary solution.
768 * We eventually have sockaddr_in6 and use the sin6_scope_id
769 * field of the structure here.
770 * We rely on the consistency between two scope zone ids
771 * of source add destination, which should already be assured
772 * Larger scopes than link will be supported in the near
773 * future.
774 */
775 origifp = NULL;
776 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
777 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
778 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
779 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
780 /*
781 * XXX: origifp can be NULL even in those two cases above.
782 * For example, if we remove the (only) link-local address
783 * from the loopback interface, and try to send a link-local
784 * address without link-id information. Then the source
785 * address is ::1, and the destination address is the
786 * link-local address with its s6_addr16[1] being zero.
787 * What is worse, if the packet goes to the loopback interface
788 * by a default rejected route, the null pointer would be
789 * passed to looutput, and the kernel would hang.
790 * The following last resort would prevent such disaster.
791 */
792 if (origifp == NULL)
793 origifp = ifp;
794 }
795 else
796 origifp = ifp;
797 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
798 ip6->ip6_src.s6_addr16[1] = 0;
799 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
800 ip6->ip6_dst.s6_addr16[1] = 0;
801
802 /*
803 * If the outgoing packet contains a hop-by-hop options header,
804 * it must be examined and processed even by the source node.
805 * (RFC 2460, section 4.)
806 */
807 if (exthdrs.ip6e_hbh) {
808 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
809 u_int32_t dummy1; /* XXX unused */
810 u_int32_t dummy2; /* XXX unused */
811
812 /*
813 * XXX: if we have to send an ICMPv6 error to the sender,
814 * we need the M_LOOP flag since icmp6_error() expects
815 * the IPv6 and the hop-by-hop options header are
816 * continuous unless the flag is set.
817 */
818 m->m_flags |= M_LOOP;
819 m->m_pkthdr.rcvif = ifp;
820 if (ip6_process_hopopts(m,
821 (u_int8_t *)(hbh + 1),
822 ((hbh->ip6h_len + 1) << 3) -
823 sizeof(struct ip6_hbh),
824 &dummy1, &dummy2) < 0) {
825 /* m was already freed at this point */
826 error = EINVAL;/* better error? */
827 goto done;
828 }
829 m->m_flags &= ~M_LOOP; /* XXX */
830 m->m_pkthdr.rcvif = NULL;
831 }
832
833 #ifdef PFIL_HOOKS
834 /*
835 * Run through list of hooks for output packets.
836 */
837 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp,
838 PFIL_OUT)) != 0)
839 goto done;
840 if (m == NULL)
841 goto done;
842 ip6 = mtod(m, struct ip6_hdr *);
843 #endif /* PFIL_HOOKS */
844 /*
845 * Send the packet to the outgoing interface.
846 * If necessary, do IPv6 fragmentation before sending.
847 */
848 tlen = m->m_pkthdr.len;
849 if (tlen <= mtu
850 #ifdef notyet
851 /*
852 * On any link that cannot convey a 1280-octet packet in one piece,
853 * link-specific fragmentation and reassembly must be provided at
854 * a layer below IPv6. [RFC 2460, sec.5]
855 * Thus if the interface has ability of link-level fragmentation,
856 * we can just send the packet even if the packet size is
857 * larger than the link's MTU.
858 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
859 */
860
861 || ifp->if_flags & IFF_FRAGMENTABLE
862 #endif
863 )
864 {
865 #ifdef IFA_STATS
866 struct in6_ifaddr *ia6;
867 ip6 = mtod(m, struct ip6_hdr *);
868 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
869 if (ia6) {
870 ia6->ia_ifa.ifa_data.ifad_outbytes +=
871 m->m_pkthdr.len;
872 }
873 #endif
874 #ifdef IPSEC
875 /* clean ipsec history once it goes out of the node */
876 ipsec_delaux(m);
877 #endif
878 #ifdef OLDIP6OUTPUT
879 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst,
880 ro->ro_rt);
881 #else
882 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
883 #endif
884 goto done;
885 } else if (mtu < IPV6_MMTU) {
886 /*
887 * note that path MTU is never less than IPV6_MMTU
888 * (see icmp6_input).
889 */
890 error = EMSGSIZE;
891 in6_ifstat_inc(ifp, ifs6_out_fragfail);
892 goto bad;
893 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
894 error = EMSGSIZE;
895 in6_ifstat_inc(ifp, ifs6_out_fragfail);
896 goto bad;
897 } else {
898 struct mbuf **mnext, *m_frgpart;
899 struct ip6_frag *ip6f;
900 u_int32_t id = htonl(ip6_id++);
901 u_char nextproto;
902
903 /*
904 * Too large for the destination or interface;
905 * fragment if possible.
906 * Must be able to put at least 8 bytes per fragment.
907 */
908 hlen = unfragpartlen;
909 if (mtu > IPV6_MAXPACKET)
910 mtu = IPV6_MAXPACKET;
911 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
912 if (len < 8) {
913 error = EMSGSIZE;
914 in6_ifstat_inc(ifp, ifs6_out_fragfail);
915 goto bad;
916 }
917
918 mnext = &m->m_nextpkt;
919
920 /*
921 * Change the next header field of the last header in the
922 * unfragmentable part.
923 */
924 if (exthdrs.ip6e_rthdr) {
925 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
926 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
927 } else if (exthdrs.ip6e_dest1) {
928 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
929 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
930 } else if (exthdrs.ip6e_hbh) {
931 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
932 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
933 } else {
934 nextproto = ip6->ip6_nxt;
935 ip6->ip6_nxt = IPPROTO_FRAGMENT;
936 }
937
938 /*
939 * Loop through length of segment after first fragment,
940 * make new header and copy data of each part and link onto chain.
941 */
942 m0 = m;
943 for (off = hlen; off < tlen; off += len) {
944 MGETHDR(m, M_DONTWAIT, MT_HEADER);
945 if (!m) {
946 error = ENOBUFS;
947 ip6stat.ip6s_odropped++;
948 goto sendorfree;
949 }
950 m->m_flags = m0->m_flags & M_COPYFLAGS;
951 *mnext = m;
952 mnext = &m->m_nextpkt;
953 m->m_data += max_linkhdr;
954 mhip6 = mtod(m, struct ip6_hdr *);
955 *mhip6 = *ip6;
956 m->m_len = sizeof(*mhip6);
957 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
958 if (error) {
959 ip6stat.ip6s_odropped++;
960 goto sendorfree;
961 }
962 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
963 if (off + len >= tlen)
964 len = tlen - off;
965 else
966 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
967 mhip6->ip6_plen = htons((u_short)(len + hlen +
968 sizeof(*ip6f) -
969 sizeof(struct ip6_hdr)));
970 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
971 error = ENOBUFS;
972 ip6stat.ip6s_odropped++;
973 goto sendorfree;
974 }
975 m_cat(m, m_frgpart);
976 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
977 m->m_pkthdr.rcvif = (struct ifnet *)0;
978 ip6f->ip6f_reserved = 0;
979 ip6f->ip6f_ident = id;
980 ip6f->ip6f_nxt = nextproto;
981 ip6stat.ip6s_ofragments++;
982 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
983 }
984
985 in6_ifstat_inc(ifp, ifs6_out_fragok);
986 }
987
988 /*
989 * Remove leading garbages.
990 */
991 sendorfree:
992 m = m0->m_nextpkt;
993 m0->m_nextpkt = 0;
994 m_freem(m0);
995 for (m0 = m; m; m = m0) {
996 m0 = m->m_nextpkt;
997 m->m_nextpkt = 0;
998 if (error == 0) {
999 #ifdef IFA_STATS
1000 struct in6_ifaddr *ia6;
1001 ip6 = mtod(m, struct ip6_hdr *);
1002 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1003 if (ia6) {
1004 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1005 m->m_pkthdr.len;
1006 }
1007 #endif
1008 #ifdef IPSEC
1009 /* clean ipsec history once it goes out of the node */
1010 ipsec_delaux(m);
1011 #endif
1012 #ifdef OLDIP6OUTPUT
1013 error = (*ifp->if_output)(ifp, m,
1014 (struct sockaddr *)dst,
1015 ro->ro_rt);
1016 #else
1017 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1018 #endif
1019 } else
1020 m_freem(m);
1021 }
1022
1023 if (error == 0)
1024 ip6stat.ip6s_fragmented++;
1025
1026 done:
1027 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1028 RTFREE(ro->ro_rt);
1029 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1030 RTFREE(ro_pmtu->ro_rt);
1031 }
1032
1033 #ifdef IPSEC
1034 if (sp != NULL)
1035 key_freesp(sp);
1036 #endif /* IPSEC */
1037
1038 return(error);
1039
1040 freehdrs:
1041 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1042 m_freem(exthdrs.ip6e_dest1);
1043 m_freem(exthdrs.ip6e_rthdr);
1044 m_freem(exthdrs.ip6e_dest2);
1045 /* fall through */
1046 bad:
1047 m_freem(m);
1048 goto done;
1049 }
1050
1051 static int
1052 ip6_copyexthdr(mp, hdr, hlen)
1053 struct mbuf **mp;
1054 caddr_t hdr;
1055 int hlen;
1056 {
1057 struct mbuf *m;
1058
1059 if (hlen > MCLBYTES)
1060 return(ENOBUFS); /* XXX */
1061
1062 MGET(m, M_DONTWAIT, MT_DATA);
1063 if (!m)
1064 return(ENOBUFS);
1065
1066 if (hlen > MLEN) {
1067 MCLGET(m, M_DONTWAIT);
1068 if ((m->m_flags & M_EXT) == 0) {
1069 m_free(m);
1070 return(ENOBUFS);
1071 }
1072 }
1073 m->m_len = hlen;
1074 if (hdr)
1075 bcopy(hdr, mtod(m, caddr_t), hlen);
1076
1077 *mp = m;
1078 return(0);
1079 }
1080
1081 /*
1082 * Insert jumbo payload option.
1083 */
1084 static int
1085 ip6_insert_jumboopt(exthdrs, plen)
1086 struct ip6_exthdrs *exthdrs;
1087 u_int32_t plen;
1088 {
1089 struct mbuf *mopt;
1090 u_char *optbuf;
1091 u_int32_t v;
1092
1093 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1094
1095 /*
1096 * If there is no hop-by-hop options header, allocate new one.
1097 * If there is one but it doesn't have enough space to store the
1098 * jumbo payload option, allocate a cluster to store the whole options.
1099 * Otherwise, use it to store the options.
1100 */
1101 if (exthdrs->ip6e_hbh == 0) {
1102 MGET(mopt, M_DONTWAIT, MT_DATA);
1103 if (mopt == 0)
1104 return(ENOBUFS);
1105 mopt->m_len = JUMBOOPTLEN;
1106 optbuf = mtod(mopt, u_char *);
1107 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1108 exthdrs->ip6e_hbh = mopt;
1109 } else {
1110 struct ip6_hbh *hbh;
1111
1112 mopt = exthdrs->ip6e_hbh;
1113 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1114 /*
1115 * XXX assumption:
1116 * - exthdrs->ip6e_hbh is not referenced from places
1117 * other than exthdrs.
1118 * - exthdrs->ip6e_hbh is not an mbuf chain.
1119 */
1120 int oldoptlen = mopt->m_len;
1121 struct mbuf *n;
1122
1123 /*
1124 * XXX: give up if the whole (new) hbh header does
1125 * not fit even in an mbuf cluster.
1126 */
1127 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1128 return(ENOBUFS);
1129
1130 /*
1131 * As a consequence, we must always prepare a cluster
1132 * at this point.
1133 */
1134 MGET(n, M_DONTWAIT, MT_DATA);
1135 if (n) {
1136 MCLGET(n, M_DONTWAIT);
1137 if ((n->m_flags & M_EXT) == 0) {
1138 m_freem(n);
1139 n = NULL;
1140 }
1141 }
1142 if (!n)
1143 return(ENOBUFS);
1144 n->m_len = oldoptlen + JUMBOOPTLEN;
1145 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1146 oldoptlen);
1147 optbuf = mtod(n, caddr_t) + oldoptlen;
1148 m_freem(mopt);
1149 mopt = exthdrs->ip6e_hbh = n;
1150 } else {
1151 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1152 mopt->m_len += JUMBOOPTLEN;
1153 }
1154 optbuf[0] = IP6OPT_PADN;
1155 optbuf[1] = 1;
1156
1157 /*
1158 * Adjust the header length according to the pad and
1159 * the jumbo payload option.
1160 */
1161 hbh = mtod(mopt, struct ip6_hbh *);
1162 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1163 }
1164
1165 /* fill in the option. */
1166 optbuf[2] = IP6OPT_JUMBO;
1167 optbuf[3] = 4;
1168 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1169 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1170
1171 /* finally, adjust the packet header length */
1172 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1173
1174 return(0);
1175 #undef JUMBOOPTLEN
1176 }
1177
1178 /*
1179 * Insert fragment header and copy unfragmentable header portions.
1180 */
1181 static int
1182 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1183 struct mbuf *m0, *m;
1184 int hlen;
1185 struct ip6_frag **frghdrp;
1186 {
1187 struct mbuf *n, *mlast;
1188
1189 if (hlen > sizeof(struct ip6_hdr)) {
1190 n = m_copym(m0, sizeof(struct ip6_hdr),
1191 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1192 if (n == 0)
1193 return(ENOBUFS);
1194 m->m_next = n;
1195 } else
1196 n = m;
1197
1198 /* Search for the last mbuf of unfragmentable part. */
1199 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1200 ;
1201
1202 if ((mlast->m_flags & M_EXT) == 0 &&
1203 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1204 /* use the trailing space of the last mbuf for the fragment hdr */
1205 *frghdrp =
1206 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1207 mlast->m_len += sizeof(struct ip6_frag);
1208 m->m_pkthdr.len += sizeof(struct ip6_frag);
1209 } else {
1210 /* allocate a new mbuf for the fragment header */
1211 struct mbuf *mfrg;
1212
1213 MGET(mfrg, M_DONTWAIT, MT_DATA);
1214 if (mfrg == 0)
1215 return(ENOBUFS);
1216 mfrg->m_len = sizeof(struct ip6_frag);
1217 *frghdrp = mtod(mfrg, struct ip6_frag *);
1218 mlast->m_next = mfrg;
1219 }
1220
1221 return(0);
1222 }
1223
1224 /*
1225 * IP6 socket option processing.
1226 */
1227 int
1228 ip6_ctloutput(op, so, level, optname, mp)
1229 int op;
1230 struct socket *so;
1231 int level, optname;
1232 struct mbuf **mp;
1233 {
1234 struct in6pcb *in6p = sotoin6pcb(so);
1235 struct mbuf *m = *mp;
1236 int optval = 0;
1237 int error = 0;
1238 struct proc *p = (curproc ? curproc->l_proc : 0); /* XXX */
1239
1240 if (level == IPPROTO_IPV6) {
1241 switch (op) {
1242
1243 case PRCO_SETOPT:
1244 switch (optname) {
1245 case IPV6_PKTOPTIONS:
1246 /* m is freed in ip6_pcbopts */
1247 return(ip6_pcbopts(&in6p->in6p_outputopts,
1248 m, so));
1249 case IPV6_HOPOPTS:
1250 case IPV6_DSTOPTS:
1251 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1252 error = EPERM;
1253 break;
1254 }
1255 /* fall through */
1256 case IPV6_UNICAST_HOPS:
1257 case IPV6_RECVOPTS:
1258 case IPV6_RECVRETOPTS:
1259 case IPV6_RECVDSTADDR:
1260 case IPV6_PKTINFO:
1261 case IPV6_HOPLIMIT:
1262 case IPV6_RTHDR:
1263 case IPV6_CHECKSUM:
1264 case IPV6_FAITH:
1265 #ifndef INET6_BINDV6ONLY
1266 case IPV6_BINDV6ONLY:
1267 #endif
1268 if (!m || m->m_len != sizeof(int))
1269 error = EINVAL;
1270 else {
1271 optval = *mtod(m, int *);
1272 switch (optname) {
1273
1274 case IPV6_UNICAST_HOPS:
1275 if (optval < -1 || optval >= 256)
1276 error = EINVAL;
1277 else {
1278 /* -1 = kernel default */
1279 in6p->in6p_hops = optval;
1280 }
1281 break;
1282 #define OPTSET(bit) \
1283 if (optval) \
1284 in6p->in6p_flags |= bit; \
1285 else \
1286 in6p->in6p_flags &= ~bit;
1287
1288 case IPV6_RECVOPTS:
1289 OPTSET(IN6P_RECVOPTS);
1290 break;
1291
1292 case IPV6_RECVRETOPTS:
1293 OPTSET(IN6P_RECVRETOPTS);
1294 break;
1295
1296 case IPV6_RECVDSTADDR:
1297 OPTSET(IN6P_RECVDSTADDR);
1298 break;
1299
1300 case IPV6_PKTINFO:
1301 OPTSET(IN6P_PKTINFO);
1302 break;
1303
1304 case IPV6_HOPLIMIT:
1305 OPTSET(IN6P_HOPLIMIT);
1306 break;
1307
1308 case IPV6_HOPOPTS:
1309 OPTSET(IN6P_HOPOPTS);
1310 break;
1311
1312 case IPV6_DSTOPTS:
1313 OPTSET(IN6P_DSTOPTS);
1314 break;
1315
1316 case IPV6_RTHDR:
1317 OPTSET(IN6P_RTHDR);
1318 break;
1319
1320 case IPV6_CHECKSUM:
1321 in6p->in6p_cksum = optval;
1322 break;
1323
1324 case IPV6_FAITH:
1325 OPTSET(IN6P_FAITH);
1326 break;
1327
1328 #ifndef INET6_BINDV6ONLY
1329 case IPV6_BINDV6ONLY:
1330 OPTSET(IN6P_BINDV6ONLY);
1331 break;
1332 #endif
1333 }
1334 }
1335 break;
1336 #undef OPTSET
1337
1338 case IPV6_MULTICAST_IF:
1339 case IPV6_MULTICAST_HOPS:
1340 case IPV6_MULTICAST_LOOP:
1341 case IPV6_JOIN_GROUP:
1342 case IPV6_LEAVE_GROUP:
1343 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m);
1344 break;
1345
1346 case IPV6_PORTRANGE:
1347 optval = *mtod(m, int *);
1348
1349 switch (optval) {
1350 case IPV6_PORTRANGE_DEFAULT:
1351 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1352 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1353 break;
1354
1355 case IPV6_PORTRANGE_HIGH:
1356 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1357 in6p->in6p_flags |= IN6P_HIGHPORT;
1358 break;
1359
1360 case IPV6_PORTRANGE_LOW:
1361 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1362 in6p->in6p_flags |= IN6P_LOWPORT;
1363 break;
1364
1365 default:
1366 error = EINVAL;
1367 break;
1368 }
1369 break;
1370
1371 #ifdef IPSEC
1372 case IPV6_IPSEC_POLICY:
1373 {
1374 caddr_t req = NULL;
1375 size_t len = 0;
1376
1377 int priv = 0;
1378 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1379 priv = 0;
1380 else
1381 priv = 1;
1382 if (m) {
1383 req = mtod(m, caddr_t);
1384 len = m->m_len;
1385 }
1386 error = ipsec6_set_policy(in6p,
1387 optname, req, len, priv);
1388 }
1389 break;
1390 #endif /* IPSEC */
1391
1392 default:
1393 error = ENOPROTOOPT;
1394 break;
1395 }
1396 if (m)
1397 (void)m_free(m);
1398 break;
1399
1400 case PRCO_GETOPT:
1401 switch (optname) {
1402
1403 case IPV6_OPTIONS:
1404 case IPV6_RETOPTS:
1405 #if 0
1406 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1407 if (in6p->in6p_options) {
1408 m->m_len = in6p->in6p_options->m_len;
1409 bcopy(mtod(in6p->in6p_options, caddr_t),
1410 mtod(m, caddr_t),
1411 (unsigned)m->m_len);
1412 } else
1413 m->m_len = 0;
1414 break;
1415 #else
1416 error = ENOPROTOOPT;
1417 break;
1418 #endif
1419
1420 case IPV6_PKTOPTIONS:
1421 if (in6p->in6p_options) {
1422 *mp = m_copym(in6p->in6p_options, 0,
1423 M_COPYALL, M_WAIT);
1424 } else {
1425 *mp = m_get(M_WAIT, MT_SOOPTS);
1426 (*mp)->m_len = 0;
1427 }
1428 break;
1429
1430 case IPV6_HOPOPTS:
1431 case IPV6_DSTOPTS:
1432 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1433 error = EPERM;
1434 break;
1435 }
1436 /* fall through */
1437 case IPV6_UNICAST_HOPS:
1438 case IPV6_RECVOPTS:
1439 case IPV6_RECVRETOPTS:
1440 case IPV6_RECVDSTADDR:
1441 case IPV6_PORTRANGE:
1442 case IPV6_PKTINFO:
1443 case IPV6_HOPLIMIT:
1444 case IPV6_RTHDR:
1445 case IPV6_CHECKSUM:
1446 case IPV6_FAITH:
1447 #ifndef INET6_BINDV6ONLY
1448 case IPV6_BINDV6ONLY:
1449 #endif
1450 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1451 m->m_len = sizeof(int);
1452 switch (optname) {
1453
1454 case IPV6_UNICAST_HOPS:
1455 optval = in6p->in6p_hops;
1456 break;
1457
1458 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1459
1460 case IPV6_RECVOPTS:
1461 optval = OPTBIT(IN6P_RECVOPTS);
1462 break;
1463
1464 case IPV6_RECVRETOPTS:
1465 optval = OPTBIT(IN6P_RECVRETOPTS);
1466 break;
1467
1468 case IPV6_RECVDSTADDR:
1469 optval = OPTBIT(IN6P_RECVDSTADDR);
1470 break;
1471
1472 case IPV6_PORTRANGE:
1473 {
1474 int flags;
1475 flags = in6p->in6p_flags;
1476 if (flags & IN6P_HIGHPORT)
1477 optval = IPV6_PORTRANGE_HIGH;
1478 else if (flags & IN6P_LOWPORT)
1479 optval = IPV6_PORTRANGE_LOW;
1480 else
1481 optval = 0;
1482 break;
1483 }
1484
1485 case IPV6_PKTINFO:
1486 optval = OPTBIT(IN6P_PKTINFO);
1487 break;
1488
1489 case IPV6_HOPLIMIT:
1490 optval = OPTBIT(IN6P_HOPLIMIT);
1491 break;
1492
1493 case IPV6_HOPOPTS:
1494 optval = OPTBIT(IN6P_HOPOPTS);
1495 break;
1496
1497 case IPV6_DSTOPTS:
1498 optval = OPTBIT(IN6P_DSTOPTS);
1499 break;
1500
1501 case IPV6_RTHDR:
1502 optval = OPTBIT(IN6P_RTHDR);
1503 break;
1504
1505 case IPV6_CHECKSUM:
1506 optval = in6p->in6p_cksum;
1507 break;
1508
1509 case IPV6_FAITH:
1510 optval = OPTBIT(IN6P_FAITH);
1511 break;
1512
1513 #ifndef INET6_BINDV6ONLY
1514 case IPV6_BINDV6ONLY:
1515 optval = OPTBIT(IN6P_BINDV6ONLY);
1516 break;
1517 #endif
1518 }
1519 *mtod(m, int *) = optval;
1520 break;
1521
1522 case IPV6_MULTICAST_IF:
1523 case IPV6_MULTICAST_HOPS:
1524 case IPV6_MULTICAST_LOOP:
1525 case IPV6_JOIN_GROUP:
1526 case IPV6_LEAVE_GROUP:
1527 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1528 break;
1529
1530 #ifdef IPSEC
1531 case IPV6_IPSEC_POLICY:
1532 {
1533 caddr_t req = NULL;
1534 size_t len = 0;
1535
1536 if (m) {
1537 req = mtod(m, caddr_t);
1538 len = m->m_len;
1539 }
1540 error = ipsec6_get_policy(in6p, req, len, mp);
1541 break;
1542 }
1543 #endif /* IPSEC */
1544
1545 default:
1546 error = ENOPROTOOPT;
1547 break;
1548 }
1549 break;
1550 }
1551 } else {
1552 error = EINVAL;
1553 if (op == PRCO_SETOPT && *mp)
1554 (void)m_free(*mp);
1555 }
1556 return(error);
1557 }
1558
1559 /*
1560 * Set up IP6 options in pcb for insertion in output packets.
1561 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1562 * with destination address if source routed.
1563 */
1564 static int
1565 ip6_pcbopts(pktopt, m, so)
1566 struct ip6_pktopts **pktopt;
1567 struct mbuf *m;
1568 struct socket *so;
1569 {
1570 struct ip6_pktopts *opt = *pktopt;
1571 int error = 0;
1572 struct proc *p = (curproc ? curproc->l_proc : 0); /* XXX */
1573 int priv = 0;
1574
1575 /* turn off any old options. */
1576 if (opt) {
1577 if (opt->ip6po_m)
1578 (void)m_free(opt->ip6po_m);
1579 } else
1580 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1581 *pktopt = 0;
1582
1583 if (!m || m->m_len == 0) {
1584 /*
1585 * Only turning off any previous options.
1586 */
1587 if (opt)
1588 free(opt, M_IP6OPT);
1589 if (m)
1590 (void)m_free(m);
1591 return(0);
1592 }
1593
1594 /* set options specified by user. */
1595 if (p && !suser(p->p_ucred, &p->p_acflag))
1596 priv = 1;
1597 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1598 (void)m_free(m);
1599 return(error);
1600 }
1601 *pktopt = opt;
1602 return(0);
1603 }
1604
1605 /*
1606 * Set the IP6 multicast options in response to user setsockopt().
1607 */
1608 static int
1609 ip6_setmoptions(optname, im6op, m)
1610 int optname;
1611 struct ip6_moptions **im6op;
1612 struct mbuf *m;
1613 {
1614 int error = 0;
1615 u_int loop, ifindex;
1616 struct ipv6_mreq *mreq;
1617 struct ifnet *ifp;
1618 struct ip6_moptions *im6o = *im6op;
1619 struct route_in6 ro;
1620 struct sockaddr_in6 *dst;
1621 struct in6_multi_mship *imm;
1622 struct proc *p = curproc->l_proc; /* XXX */
1623
1624 if (im6o == NULL) {
1625 /*
1626 * No multicast option buffer attached to the pcb;
1627 * allocate one and initialize to default values.
1628 */
1629 im6o = (struct ip6_moptions *)
1630 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1631
1632 if (im6o == NULL)
1633 return(ENOBUFS);
1634 *im6op = im6o;
1635 im6o->im6o_multicast_ifp = NULL;
1636 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1637 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1638 LIST_INIT(&im6o->im6o_memberships);
1639 }
1640
1641 switch (optname) {
1642
1643 case IPV6_MULTICAST_IF:
1644 /*
1645 * Select the interface for outgoing multicast packets.
1646 */
1647 if (m == NULL || m->m_len != sizeof(u_int)) {
1648 error = EINVAL;
1649 break;
1650 }
1651 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1652 if (ifindex < 0 || if_index < ifindex) {
1653 error = ENXIO; /* XXX EINVAL? */
1654 break;
1655 }
1656 ifp = ifindex2ifnet[ifindex];
1657 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1658 error = EADDRNOTAVAIL;
1659 break;
1660 }
1661 im6o->im6o_multicast_ifp = ifp;
1662 break;
1663
1664 case IPV6_MULTICAST_HOPS:
1665 {
1666 /*
1667 * Set the IP6 hoplimit for outgoing multicast packets.
1668 */
1669 int optval;
1670 if (m == NULL || m->m_len != sizeof(int)) {
1671 error = EINVAL;
1672 break;
1673 }
1674 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1675 if (optval < -1 || optval >= 256)
1676 error = EINVAL;
1677 else if (optval == -1)
1678 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1679 else
1680 im6o->im6o_multicast_hlim = optval;
1681 break;
1682 }
1683
1684 case IPV6_MULTICAST_LOOP:
1685 /*
1686 * Set the loopback flag for outgoing multicast packets.
1687 * Must be zero or one.
1688 */
1689 if (m == NULL || m->m_len != sizeof(u_int)) {
1690 error = EINVAL;
1691 break;
1692 }
1693 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1694 if (loop > 1) {
1695 error = EINVAL;
1696 break;
1697 }
1698 im6o->im6o_multicast_loop = loop;
1699 break;
1700
1701 case IPV6_JOIN_GROUP:
1702 /*
1703 * Add a multicast group membership.
1704 * Group must be a valid IP6 multicast address.
1705 */
1706 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1707 error = EINVAL;
1708 break;
1709 }
1710 mreq = mtod(m, struct ipv6_mreq *);
1711 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1712 /*
1713 * We use the unspecified address to specify to accept
1714 * all multicast addresses. Only super user is allowed
1715 * to do this.
1716 */
1717 if (suser(p->p_ucred, &p->p_acflag))
1718 {
1719 error = EACCES;
1720 break;
1721 }
1722 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1723 error = EINVAL;
1724 break;
1725 }
1726
1727 /*
1728 * If the interface is specified, validate it.
1729 */
1730 if (mreq->ipv6mr_interface < 0
1731 || if_index < mreq->ipv6mr_interface) {
1732 error = ENXIO; /* XXX EINVAL? */
1733 break;
1734 }
1735 /*
1736 * If no interface was explicitly specified, choose an
1737 * appropriate one according to the given multicast address.
1738 */
1739 if (mreq->ipv6mr_interface == 0) {
1740 /*
1741 * If the multicast address is in node-local scope,
1742 * the interface should be a loopback interface.
1743 * Otherwise, look up the routing table for the
1744 * address, and choose the outgoing interface.
1745 * XXX: is it a good approach?
1746 */
1747 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1748 ifp = &loif[0];
1749 } else {
1750 ro.ro_rt = NULL;
1751 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1752 bzero(dst, sizeof(*dst));
1753 dst->sin6_len = sizeof(struct sockaddr_in6);
1754 dst->sin6_family = AF_INET6;
1755 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1756 rtalloc((struct route *)&ro);
1757 if (ro.ro_rt == NULL) {
1758 error = EADDRNOTAVAIL;
1759 break;
1760 }
1761 ifp = ro.ro_rt->rt_ifp;
1762 rtfree(ro.ro_rt);
1763 }
1764 } else
1765 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1766
1767 /*
1768 * See if we found an interface, and confirm that it
1769 * supports multicast
1770 */
1771 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1772 error = EADDRNOTAVAIL;
1773 break;
1774 }
1775 /*
1776 * Put interface index into the multicast address,
1777 * if the address has link-local scope.
1778 */
1779 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1780 mreq->ipv6mr_multiaddr.s6_addr16[1]
1781 = htons(mreq->ipv6mr_interface);
1782 }
1783 /*
1784 * See if the membership already exists.
1785 */
1786 for (imm = im6o->im6o_memberships.lh_first;
1787 imm != NULL; imm = imm->i6mm_chain.le_next)
1788 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1789 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1790 &mreq->ipv6mr_multiaddr))
1791 break;
1792 if (imm != NULL) {
1793 error = EADDRINUSE;
1794 break;
1795 }
1796 /*
1797 * Everything looks good; add a new record to the multicast
1798 * address list for the given interface.
1799 */
1800 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
1801 if (imm == NULL) {
1802 error = ENOBUFS;
1803 break;
1804 }
1805 if ((imm->i6mm_maddr =
1806 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
1807 free(imm, M_IPMADDR);
1808 break;
1809 }
1810 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1811 break;
1812
1813 case IPV6_LEAVE_GROUP:
1814 /*
1815 * Drop a multicast group membership.
1816 * Group must be a valid IP6 multicast address.
1817 */
1818 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1819 error = EINVAL;
1820 break;
1821 }
1822 mreq = mtod(m, struct ipv6_mreq *);
1823 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1824 if (suser(p->p_ucred, &p->p_acflag))
1825 {
1826 error = EACCES;
1827 break;
1828 }
1829 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1830 error = EINVAL;
1831 break;
1832 }
1833 /*
1834 * If an interface address was specified, get a pointer
1835 * to its ifnet structure.
1836 */
1837 if (mreq->ipv6mr_interface < 0
1838 || if_index < mreq->ipv6mr_interface) {
1839 error = ENXIO; /* XXX EINVAL? */
1840 break;
1841 }
1842 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1843 /*
1844 * Put interface index into the multicast address,
1845 * if the address has link-local scope.
1846 */
1847 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1848 mreq->ipv6mr_multiaddr.s6_addr16[1]
1849 = htons(mreq->ipv6mr_interface);
1850 }
1851 /*
1852 * Find the membership in the membership list.
1853 */
1854 for (imm = im6o->im6o_memberships.lh_first;
1855 imm != NULL; imm = imm->i6mm_chain.le_next) {
1856 if ((ifp == NULL ||
1857 imm->i6mm_maddr->in6m_ifp == ifp) &&
1858 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1859 &mreq->ipv6mr_multiaddr))
1860 break;
1861 }
1862 if (imm == NULL) {
1863 /* Unable to resolve interface */
1864 error = EADDRNOTAVAIL;
1865 break;
1866 }
1867 /*
1868 * Give up the multicast address record to which the
1869 * membership points.
1870 */
1871 LIST_REMOVE(imm, i6mm_chain);
1872 in6_delmulti(imm->i6mm_maddr);
1873 free(imm, M_IPMADDR);
1874 break;
1875
1876 default:
1877 error = EOPNOTSUPP;
1878 break;
1879 }
1880
1881 /*
1882 * If all options have default values, no need to keep the mbuf.
1883 */
1884 if (im6o->im6o_multicast_ifp == NULL &&
1885 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1886 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1887 im6o->im6o_memberships.lh_first == NULL) {
1888 free(*im6op, M_IPMOPTS);
1889 *im6op = NULL;
1890 }
1891
1892 return(error);
1893 }
1894
1895 /*
1896 * Return the IP6 multicast options in response to user getsockopt().
1897 */
1898 static int
1899 ip6_getmoptions(optname, im6o, mp)
1900 int optname;
1901 struct ip6_moptions *im6o;
1902 struct mbuf **mp;
1903 {
1904 u_int *hlim, *loop, *ifindex;
1905
1906 *mp = m_get(M_WAIT, MT_SOOPTS);
1907
1908 switch (optname) {
1909
1910 case IPV6_MULTICAST_IF:
1911 ifindex = mtod(*mp, u_int *);
1912 (*mp)->m_len = sizeof(u_int);
1913 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1914 *ifindex = 0;
1915 else
1916 *ifindex = im6o->im6o_multicast_ifp->if_index;
1917 return(0);
1918
1919 case IPV6_MULTICAST_HOPS:
1920 hlim = mtod(*mp, u_int *);
1921 (*mp)->m_len = sizeof(u_int);
1922 if (im6o == NULL)
1923 *hlim = ip6_defmcasthlim;
1924 else
1925 *hlim = im6o->im6o_multicast_hlim;
1926 return(0);
1927
1928 case IPV6_MULTICAST_LOOP:
1929 loop = mtod(*mp, u_int *);
1930 (*mp)->m_len = sizeof(u_int);
1931 if (im6o == NULL)
1932 *loop = ip6_defmcasthlim;
1933 else
1934 *loop = im6o->im6o_multicast_loop;
1935 return(0);
1936
1937 default:
1938 return(EOPNOTSUPP);
1939 }
1940 }
1941
1942 /*
1943 * Discard the IP6 multicast options.
1944 */
1945 void
1946 ip6_freemoptions(im6o)
1947 struct ip6_moptions *im6o;
1948 {
1949 struct in6_multi_mship *imm;
1950
1951 if (im6o == NULL)
1952 return;
1953
1954 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
1955 LIST_REMOVE(imm, i6mm_chain);
1956 if (imm->i6mm_maddr)
1957 in6_delmulti(imm->i6mm_maddr);
1958 free(imm, M_IPMADDR);
1959 }
1960 free(im6o, M_IPMOPTS);
1961 }
1962
1963 /*
1964 * Set IPv6 outgoing packet options based on advanced API.
1965 */
1966 int
1967 ip6_setpktoptions(control, opt, priv)
1968 struct mbuf *control;
1969 struct ip6_pktopts *opt;
1970 int priv;
1971 {
1972 struct cmsghdr *cm = 0;
1973
1974 if (control == 0 || opt == 0)
1975 return(EINVAL);
1976
1977 bzero(opt, sizeof(*opt));
1978 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
1979
1980 /*
1981 * XXX: Currently, we assume all the optional information is stored
1982 * in a single mbuf.
1983 */
1984 if (control->m_next)
1985 return(EINVAL);
1986
1987 opt->ip6po_m = control;
1988
1989 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
1990 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1991 cm = mtod(control, struct cmsghdr *);
1992 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
1993 return(EINVAL);
1994 if (cm->cmsg_level != IPPROTO_IPV6)
1995 continue;
1996
1997 switch (cm->cmsg_type) {
1998 case IPV6_PKTINFO:
1999 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
2000 return(EINVAL);
2001 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
2002 if (opt->ip6po_pktinfo->ipi6_ifindex &&
2003 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
2004 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2005 htons(opt->ip6po_pktinfo->ipi6_ifindex);
2006
2007 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
2008 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
2009 return(ENXIO);
2010 }
2011
2012 /*
2013 * Check if the requested source address is indeed a
2014 * unicast address assigned to the node.
2015 */
2016 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2017 struct ifaddr *ia;
2018 struct sockaddr_in6 sin6;
2019
2020 bzero(&sin6, sizeof(sin6));
2021 sin6.sin6_len = sizeof(sin6);
2022 sin6.sin6_family = AF_INET6;
2023 sin6.sin6_addr =
2024 opt->ip6po_pktinfo->ipi6_addr;
2025 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2026 if (ia == NULL ||
2027 (opt->ip6po_pktinfo->ipi6_ifindex &&
2028 (ia->ifa_ifp->if_index !=
2029 opt->ip6po_pktinfo->ipi6_ifindex))) {
2030 return(EADDRNOTAVAIL);
2031 }
2032 /*
2033 * Check if the requested source address is
2034 * indeed a unicast address assigned to the
2035 * node.
2036 */
2037 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2038 return(EADDRNOTAVAIL);
2039 }
2040 break;
2041
2042 case IPV6_HOPLIMIT:
2043 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2044 return(EINVAL);
2045
2046 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim,
2047 sizeof(opt->ip6po_hlim));
2048 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2049 return(EINVAL);
2050 break;
2051
2052 case IPV6_NEXTHOP:
2053 if (!priv)
2054 return(EPERM);
2055
2056 if (cm->cmsg_len < sizeof(u_char) ||
2057 /* check if cmsg_len is large enough for sa_len */
2058 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2059 return(EINVAL);
2060
2061 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2062
2063 break;
2064
2065 case IPV6_HOPOPTS:
2066 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2067 return(EINVAL);
2068 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2069 if (cm->cmsg_len !=
2070 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
2071 return(EINVAL);
2072 break;
2073
2074 case IPV6_DSTOPTS:
2075 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2076 return(EINVAL);
2077
2078 /*
2079 * If there is no routing header yet, the destination
2080 * options header should be put on the 1st part.
2081 * Otherwise, the header should be on the 2nd part.
2082 * (See RFC 2460, section 4.1)
2083 */
2084 if (opt->ip6po_rthdr == NULL) {
2085 opt->ip6po_dest1 =
2086 (struct ip6_dest *)CMSG_DATA(cm);
2087 if (cm->cmsg_len !=
2088 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
2089 << 3))
2090 return(EINVAL);
2091 }
2092 else {
2093 opt->ip6po_dest2 =
2094 (struct ip6_dest *)CMSG_DATA(cm);
2095 if (cm->cmsg_len !=
2096 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
2097 << 3))
2098 return(EINVAL);
2099 }
2100 break;
2101
2102 case IPV6_RTHDR:
2103 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2104 return(EINVAL);
2105 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
2106 if (cm->cmsg_len !=
2107 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
2108 return(EINVAL);
2109 switch (opt->ip6po_rthdr->ip6r_type) {
2110 case IPV6_RTHDR_TYPE_0:
2111 if (opt->ip6po_rthdr->ip6r_segleft == 0)
2112 return(EINVAL);
2113 break;
2114 default:
2115 return(EINVAL);
2116 }
2117 break;
2118
2119 default:
2120 return(ENOPROTOOPT);
2121 }
2122 }
2123
2124 return(0);
2125 }
2126
2127 /*
2128 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2129 * packet to the input queue of a specified interface. Note that this
2130 * calls the output routine of the loopback "driver", but with an interface
2131 * pointer that might NOT be &loif -- easier than replicating that code here.
2132 */
2133 void
2134 ip6_mloopback(ifp, m, dst)
2135 struct ifnet *ifp;
2136 struct mbuf *m;
2137 struct sockaddr_in6 *dst;
2138 {
2139 struct mbuf *copym;
2140 struct ip6_hdr *ip6;
2141
2142 copym = m_copy(m, 0, M_COPYALL);
2143 if (copym == NULL)
2144 return;
2145
2146 /*
2147 * Make sure to deep-copy IPv6 header portion in case the data
2148 * is in an mbuf cluster, so that we can safely override the IPv6
2149 * header portion later.
2150 */
2151 if ((copym->m_flags & M_EXT) != 0 ||
2152 copym->m_len < sizeof(struct ip6_hdr)) {
2153 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2154 if (copym == NULL)
2155 return;
2156 }
2157
2158 #ifdef DIAGNOSTIC
2159 if (copym->m_len < sizeof(*ip6)) {
2160 m_freem(copym);
2161 return;
2162 }
2163 #endif
2164
2165 ip6 = mtod(copym, struct ip6_hdr *);
2166 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2167 ip6->ip6_src.s6_addr16[1] = 0;
2168 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2169 ip6->ip6_dst.s6_addr16[1] = 0;
2170
2171 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2172 }
2173
2174 /*
2175 * Chop IPv6 header off from the payload.
2176 */
2177 static int
2178 ip6_splithdr(m, exthdrs)
2179 struct mbuf *m;
2180 struct ip6_exthdrs *exthdrs;
2181 {
2182 struct mbuf *mh;
2183 struct ip6_hdr *ip6;
2184
2185 ip6 = mtod(m, struct ip6_hdr *);
2186 if (m->m_len > sizeof(*ip6)) {
2187 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2188 if (mh == 0) {
2189 m_freem(m);
2190 return ENOBUFS;
2191 }
2192 M_COPY_PKTHDR(mh, m);
2193 MH_ALIGN(mh, sizeof(*ip6));
2194 m->m_flags &= ~M_PKTHDR;
2195 m->m_len -= sizeof(*ip6);
2196 m->m_data += sizeof(*ip6);
2197 mh->m_next = m;
2198 m = mh;
2199 m->m_len = sizeof(*ip6);
2200 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2201 }
2202 exthdrs->ip6e_ip6 = m;
2203 return 0;
2204 }
2205
2206 /*
2207 * Compute IPv6 extension header length.
2208 */
2209 int
2210 ip6_optlen(in6p)
2211 struct in6pcb *in6p;
2212 {
2213 int len;
2214
2215 if (!in6p->in6p_outputopts)
2216 return 0;
2217
2218 len = 0;
2219 #define elen(x) \
2220 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2221
2222 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2223 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2224 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2225 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2226 return len;
2227 #undef elen
2228 }
2229