ip6_output.c revision 1.31.2.4 1 /* $NetBSD: ip6_output.c,v 1.31.2.4 2001/06/21 20:08:59 nathanw Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
66 */
67
68 #include "opt_inet.h"
69 #include "opt_ipsec.h"
70 #include "opt_pfil_hooks.h"
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/systm.h>
80 #include <sys/lwp.h>
81 #include <sys/proc.h>
82
83 #include <net/if.h>
84 #include <net/route.h>
85 #ifdef PFIL_HOOKS
86 #include <net/pfil.h>
87 #endif
88
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip6.h>
92 #include <netinet/icmp6.h>
93 #include <netinet6/ip6_var.h>
94 #include <netinet6/in6_pcb.h>
95 #include <netinet6/nd6.h>
96
97 #ifdef IPSEC
98 #include <netinet6/ipsec.h>
99 #include <netkey/key.h>
100 #endif /* IPSEC */
101
102 #include "loop.h"
103
104 #include <net/net_osdep.h>
105
106 #ifdef PFIL_HOOKS
107 extern struct pfil_head inet6_pfil_hook; /* XXX */
108 #endif
109
110 struct ip6_exthdrs {
111 struct mbuf *ip6e_ip6;
112 struct mbuf *ip6e_hbh;
113 struct mbuf *ip6e_dest1;
114 struct mbuf *ip6e_rthdr;
115 struct mbuf *ip6e_dest2;
116 };
117
118 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
119 struct socket *));
120 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
121 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
122 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
123 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
124 struct ip6_frag **));
125 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
126 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
127
128 extern struct ifnet loif[NLOOP];
129
130 /*
131 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
132 * header (with pri, len, nxt, hlim, src, dst).
133 * This function may modify ver and hlim only.
134 * The mbuf chain containing the packet will be freed.
135 * The mbuf opt, if present, will not be freed.
136 */
137 int
138 ip6_output(m0, opt, ro, flags, im6o, ifpp)
139 struct mbuf *m0;
140 struct ip6_pktopts *opt;
141 struct route_in6 *ro;
142 int flags;
143 struct ip6_moptions *im6o;
144 struct ifnet **ifpp; /* XXX: just for statistics */
145 {
146 struct ip6_hdr *ip6, *mhip6;
147 struct ifnet *ifp, *origifp;
148 struct mbuf *m = m0;
149 int hlen, tlen, len, off;
150 struct route_in6 ip6route;
151 struct sockaddr_in6 *dst;
152 int error = 0;
153 struct in6_ifaddr *ia;
154 u_long mtu;
155 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
156 struct ip6_exthdrs exthdrs;
157 struct in6_addr finaldst;
158 struct route_in6 *ro_pmtu = NULL;
159 int hdrsplit = 0;
160 int needipsec = 0;
161 #ifdef IPSEC
162 int needipsectun = 0;
163 struct socket *so;
164 struct secpolicy *sp = NULL;
165
166 /* for AH processing. stupid to have "socket" variable in IP layer... */
167 so = ipsec_getsocket(m);
168 (void)ipsec_setsocket(m, NULL);
169 ip6 = mtod(m, struct ip6_hdr *);
170 #endif /* IPSEC */
171
172 #define MAKE_EXTHDR(hp, mp) \
173 do { \
174 if (hp) { \
175 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
176 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
177 ((eh)->ip6e_len + 1) << 3); \
178 if (error) \
179 goto freehdrs; \
180 } \
181 } while (0)
182
183 bzero(&exthdrs, sizeof(exthdrs));
184 if (opt) {
185 /* Hop-by-Hop options header */
186 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
187 /* Destination options header(1st part) */
188 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
189 /* Routing header */
190 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
191 /* Destination options header(2nd part) */
192 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
193 }
194
195 #ifdef IPSEC
196 /* get a security policy for this packet */
197 if (so == NULL)
198 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
199 else
200 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
201
202 if (sp == NULL) {
203 ipsec6stat.out_inval++;
204 goto freehdrs;
205 }
206
207 error = 0;
208
209 /* check policy */
210 switch (sp->policy) {
211 case IPSEC_POLICY_DISCARD:
212 /*
213 * This packet is just discarded.
214 */
215 ipsec6stat.out_polvio++;
216 goto freehdrs;
217
218 case IPSEC_POLICY_BYPASS:
219 case IPSEC_POLICY_NONE:
220 /* no need to do IPsec. */
221 needipsec = 0;
222 break;
223
224 case IPSEC_POLICY_IPSEC:
225 if (sp->req == NULL) {
226 /* XXX should be panic ? */
227 printf("ip6_output: No IPsec request specified.\n");
228 error = EINVAL;
229 goto freehdrs;
230 }
231 needipsec = 1;
232 break;
233
234 case IPSEC_POLICY_ENTRUST:
235 default:
236 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
237 }
238 #endif /* IPSEC */
239
240 /*
241 * Calculate the total length of the extension header chain.
242 * Keep the length of the unfragmentable part for fragmentation.
243 */
244 optlen = 0;
245 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
246 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
247 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
248 unfragpartlen = optlen + sizeof(struct ip6_hdr);
249 /* NOTE: we don't add AH/ESP length here. do that later. */
250 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
251
252 /*
253 * If we need IPsec, or there is at least one extension header,
254 * separate IP6 header from the payload.
255 */
256 if ((needipsec || optlen) && !hdrsplit) {
257 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
258 m = NULL;
259 goto freehdrs;
260 }
261 m = exthdrs.ip6e_ip6;
262 hdrsplit++;
263 }
264
265 /* adjust pointer */
266 ip6 = mtod(m, struct ip6_hdr *);
267
268 /* adjust mbuf packet header length */
269 m->m_pkthdr.len += optlen;
270 plen = m->m_pkthdr.len - sizeof(*ip6);
271
272 /* If this is a jumbo payload, insert a jumbo payload option. */
273 if (plen > IPV6_MAXPACKET) {
274 if (!hdrsplit) {
275 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
276 m = NULL;
277 goto freehdrs;
278 }
279 m = exthdrs.ip6e_ip6;
280 hdrsplit++;
281 }
282 /* adjust pointer */
283 ip6 = mtod(m, struct ip6_hdr *);
284 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
285 goto freehdrs;
286 ip6->ip6_plen = 0;
287 } else
288 ip6->ip6_plen = htons(plen);
289
290 /*
291 * Concatenate headers and fill in next header fields.
292 * Here we have, on "m"
293 * IPv6 payload
294 * and we insert headers accordingly. Finally, we should be getting:
295 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
296 *
297 * during the header composing process, "m" points to IPv6 header.
298 * "mprev" points to an extension header prior to esp.
299 */
300 {
301 u_char *nexthdrp = &ip6->ip6_nxt;
302 struct mbuf *mprev = m;
303
304 /*
305 * we treat dest2 specially. this makes IPsec processing
306 * much easier.
307 *
308 * result: IPv6 dest2 payload
309 * m and mprev will point to IPv6 header.
310 */
311 if (exthdrs.ip6e_dest2) {
312 if (!hdrsplit)
313 panic("assumption failed: hdr not split");
314 exthdrs.ip6e_dest2->m_next = m->m_next;
315 m->m_next = exthdrs.ip6e_dest2;
316 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
317 ip6->ip6_nxt = IPPROTO_DSTOPTS;
318 }
319
320 #define MAKE_CHAIN(m, mp, p, i)\
321 do {\
322 if (m) {\
323 if (!hdrsplit) \
324 panic("assumption failed: hdr not split"); \
325 *mtod((m), u_char *) = *(p);\
326 *(p) = (i);\
327 p = mtod((m), u_char *);\
328 (m)->m_next = (mp)->m_next;\
329 (mp)->m_next = (m);\
330 (mp) = (m);\
331 }\
332 } while (0)
333 /*
334 * result: IPv6 hbh dest1 rthdr dest2 payload
335 * m will point to IPv6 header. mprev will point to the
336 * extension header prior to dest2 (rthdr in the above case).
337 */
338 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
339 nexthdrp, IPPROTO_HOPOPTS);
340 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
341 nexthdrp, IPPROTO_DSTOPTS);
342 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
343 nexthdrp, IPPROTO_ROUTING);
344
345 #ifdef IPSEC
346 if (!needipsec)
347 goto skip_ipsec2;
348
349 /*
350 * pointers after IPsec headers are not valid any more.
351 * other pointers need a great care too.
352 * (IPsec routines should not mangle mbufs prior to AH/ESP)
353 */
354 exthdrs.ip6e_dest2 = NULL;
355
356 {
357 struct ip6_rthdr *rh = NULL;
358 int segleft_org = 0;
359 struct ipsec_output_state state;
360
361 if (exthdrs.ip6e_rthdr) {
362 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
363 segleft_org = rh->ip6r_segleft;
364 rh->ip6r_segleft = 0;
365 }
366
367 bzero(&state, sizeof(state));
368 state.m = m;
369 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
370 &needipsectun);
371 m = state.m;
372 if (error) {
373 /* mbuf is already reclaimed in ipsec6_output_trans. */
374 m = NULL;
375 switch (error) {
376 case EHOSTUNREACH:
377 case ENETUNREACH:
378 case EMSGSIZE:
379 case ENOBUFS:
380 case ENOMEM:
381 break;
382 default:
383 printf("ip6_output (ipsec): error code %d\n", error);
384 /*fall through*/
385 case ENOENT:
386 /* don't show these error codes to the user */
387 error = 0;
388 break;
389 }
390 goto bad;
391 }
392 if (exthdrs.ip6e_rthdr) {
393 /* ah6_output doesn't modify mbuf chain */
394 rh->ip6r_segleft = segleft_org;
395 }
396 }
397 skip_ipsec2:;
398 #endif
399 }
400
401 /*
402 * If there is a routing header, replace destination address field
403 * with the first hop of the routing header.
404 */
405 if (exthdrs.ip6e_rthdr) {
406 struct ip6_rthdr *rh =
407 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
408 struct ip6_rthdr *));
409 struct ip6_rthdr0 *rh0;
410
411 finaldst = ip6->ip6_dst;
412 switch (rh->ip6r_type) {
413 case IPV6_RTHDR_TYPE_0:
414 rh0 = (struct ip6_rthdr0 *)rh;
415 ip6->ip6_dst = rh0->ip6r0_addr[0];
416 bcopy((caddr_t)&rh0->ip6r0_addr[1],
417 (caddr_t)&rh0->ip6r0_addr[0],
418 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)
419 );
420 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
421 break;
422 default: /* is it possible? */
423 error = EINVAL;
424 goto bad;
425 }
426 }
427
428 /* Source address validation */
429 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
430 (flags & IPV6_DADOUTPUT) == 0) {
431 error = EOPNOTSUPP;
432 ip6stat.ip6s_badscope++;
433 goto bad;
434 }
435 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
436 error = EOPNOTSUPP;
437 ip6stat.ip6s_badscope++;
438 goto bad;
439 }
440
441 ip6stat.ip6s_localout++;
442
443 /*
444 * Route packet.
445 */
446 if (ro == 0) {
447 ro = &ip6route;
448 bzero((caddr_t)ro, sizeof(*ro));
449 }
450 ro_pmtu = ro;
451 if (opt && opt->ip6po_rthdr)
452 ro = &opt->ip6po_route;
453 dst = (struct sockaddr_in6 *)&ro->ro_dst;
454 /*
455 * If there is a cached route,
456 * check that it is to the same destination
457 * and is still up. If not, free it and try again.
458 */
459 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
460 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
461 RTFREE(ro->ro_rt);
462 ro->ro_rt = (struct rtentry *)0;
463 }
464 if (ro->ro_rt == 0) {
465 bzero(dst, sizeof(*dst));
466 dst->sin6_family = AF_INET6;
467 dst->sin6_len = sizeof(struct sockaddr_in6);
468 dst->sin6_addr = ip6->ip6_dst;
469 }
470 #ifdef IPSEC
471 if (needipsec && needipsectun) {
472 struct ipsec_output_state state;
473
474 /*
475 * All the extension headers will become inaccessible
476 * (since they can be encrypted).
477 * Don't panic, we need no more updates to extension headers
478 * on inner IPv6 packet (since they are now encapsulated).
479 *
480 * IPv6 [ESP|AH] IPv6 [extension headers] payload
481 */
482 bzero(&exthdrs, sizeof(exthdrs));
483 exthdrs.ip6e_ip6 = m;
484
485 bzero(&state, sizeof(state));
486 state.m = m;
487 state.ro = (struct route *)ro;
488 state.dst = (struct sockaddr *)dst;
489
490 error = ipsec6_output_tunnel(&state, sp, flags);
491
492 m = state.m;
493 ro = (struct route_in6 *)state.ro;
494 dst = (struct sockaddr_in6 *)state.dst;
495 if (error) {
496 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
497 m0 = m = NULL;
498 m = NULL;
499 switch (error) {
500 case EHOSTUNREACH:
501 case ENETUNREACH:
502 case EMSGSIZE:
503 case ENOBUFS:
504 case ENOMEM:
505 break;
506 default:
507 printf("ip6_output (ipsec): error code %d\n", error);
508 /*fall through*/
509 case ENOENT:
510 /* don't show these error codes to the user */
511 error = 0;
512 break;
513 }
514 goto bad;
515 }
516
517 exthdrs.ip6e_ip6 = m;
518 }
519 #endif /*IPSEC*/
520
521 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
522 /* Unicast */
523
524 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
525 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
526 /* xxx
527 * interface selection comes here
528 * if an interface is specified from an upper layer,
529 * ifp must point it.
530 */
531 if (ro->ro_rt == 0) {
532 /*
533 * non-bsdi always clone routes, if parent is
534 * PRF_CLONING.
535 */
536 rtalloc((struct route *)ro);
537 }
538 if (ro->ro_rt == 0) {
539 ip6stat.ip6s_noroute++;
540 error = EHOSTUNREACH;
541 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
542 goto bad;
543 }
544 ia = ifatoia6(ro->ro_rt->rt_ifa);
545 ifp = ro->ro_rt->rt_ifp;
546 ro->ro_rt->rt_use++;
547 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
548 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
549 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
550
551 in6_ifstat_inc(ifp, ifs6_out_request);
552
553 /*
554 * Check if the outgoing interface conflicts with
555 * the interface specified by ifi6_ifindex (if specified).
556 * Note that loopback interface is always okay.
557 * (this may happen when we are sending a packet to one of
558 * our own addresses.)
559 */
560 if (opt && opt->ip6po_pktinfo
561 && opt->ip6po_pktinfo->ipi6_ifindex) {
562 if (!(ifp->if_flags & IFF_LOOPBACK)
563 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
564 ip6stat.ip6s_noroute++;
565 in6_ifstat_inc(ifp, ifs6_out_discard);
566 error = EHOSTUNREACH;
567 goto bad;
568 }
569 }
570
571 if (opt && opt->ip6po_hlim != -1)
572 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
573 } else {
574 /* Multicast */
575 struct in6_multi *in6m;
576
577 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
578
579 /*
580 * See if the caller provided any multicast options
581 */
582 ifp = NULL;
583 if (im6o != NULL) {
584 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
585 if (im6o->im6o_multicast_ifp != NULL)
586 ifp = im6o->im6o_multicast_ifp;
587 } else
588 ip6->ip6_hlim = ip6_defmcasthlim;
589
590 /*
591 * See if the caller provided the outgoing interface
592 * as an ancillary data.
593 * Boundary check for ifindex is assumed to be already done.
594 */
595 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
596 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
597
598 /*
599 * If the destination is a node-local scope multicast,
600 * the packet should be loop-backed only.
601 */
602 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
603 /*
604 * If the outgoing interface is already specified,
605 * it should be a loopback interface.
606 */
607 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
608 ip6stat.ip6s_badscope++;
609 error = ENETUNREACH; /* XXX: better error? */
610 /* XXX correct ifp? */
611 in6_ifstat_inc(ifp, ifs6_out_discard);
612 goto bad;
613 } else {
614 ifp = &loif[0];
615 }
616 }
617
618 if (opt && opt->ip6po_hlim != -1)
619 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
620
621 /*
622 * If caller did not provide an interface lookup a
623 * default in the routing table. This is either a
624 * default for the speicfied group (i.e. a host
625 * route), or a multicast default (a route for the
626 * ``net'' ff00::/8).
627 */
628 if (ifp == NULL) {
629 if (ro->ro_rt == 0) {
630 ro->ro_rt = rtalloc1((struct sockaddr *)
631 &ro->ro_dst, 0
632 );
633 }
634 if (ro->ro_rt == 0) {
635 ip6stat.ip6s_noroute++;
636 error = EHOSTUNREACH;
637 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
638 goto bad;
639 }
640 ia = ifatoia6(ro->ro_rt->rt_ifa);
641 ifp = ro->ro_rt->rt_ifp;
642 ro->ro_rt->rt_use++;
643 }
644
645 if ((flags & IPV6_FORWARDING) == 0)
646 in6_ifstat_inc(ifp, ifs6_out_request);
647 in6_ifstat_inc(ifp, ifs6_out_mcast);
648
649 /*
650 * Confirm that the outgoing interface supports multicast.
651 */
652 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
653 ip6stat.ip6s_noroute++;
654 in6_ifstat_inc(ifp, ifs6_out_discard);
655 error = ENETUNREACH;
656 goto bad;
657 }
658 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
659 if (in6m != NULL &&
660 (im6o == NULL || im6o->im6o_multicast_loop)) {
661 /*
662 * If we belong to the destination multicast group
663 * on the outgoing interface, and the caller did not
664 * forbid loopback, loop back a copy.
665 */
666 ip6_mloopback(ifp, m, dst);
667 } else {
668 /*
669 * If we are acting as a multicast router, perform
670 * multicast forwarding as if the packet had just
671 * arrived on the interface to which we are about
672 * to send. The multicast forwarding function
673 * recursively calls this function, using the
674 * IPV6_FORWARDING flag to prevent infinite recursion.
675 *
676 * Multicasts that are looped back by ip6_mloopback(),
677 * above, will be forwarded by the ip6_input() routine,
678 * if necessary.
679 */
680 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
681 if (ip6_mforward(ip6, ifp, m) != 0) {
682 m_freem(m);
683 goto done;
684 }
685 }
686 }
687 /*
688 * Multicasts with a hoplimit of zero may be looped back,
689 * above, but must not be transmitted on a network.
690 * Also, multicasts addressed to the loopback interface
691 * are not sent -- the above call to ip6_mloopback() will
692 * loop back a copy if this host actually belongs to the
693 * destination group on the loopback interface.
694 */
695 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
696 m_freem(m);
697 goto done;
698 }
699 }
700
701 /*
702 * Fill the outgoing inteface to tell the upper layer
703 * to increment per-interface statistics.
704 */
705 if (ifpp)
706 *ifpp = ifp;
707
708 /*
709 * Determine path MTU.
710 */
711 if (ro_pmtu != ro) {
712 /* The first hop and the final destination may differ. */
713 struct sockaddr_in6 *sin6_fin =
714 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
715 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
716 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
717 &finaldst))) {
718 RTFREE(ro_pmtu->ro_rt);
719 ro_pmtu->ro_rt = (struct rtentry *)0;
720 }
721 if (ro_pmtu->ro_rt == 0) {
722 bzero(sin6_fin, sizeof(*sin6_fin));
723 sin6_fin->sin6_family = AF_INET6;
724 sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
725 sin6_fin->sin6_addr = finaldst;
726
727 rtalloc((struct route *)ro_pmtu);
728 }
729 }
730 if (ro_pmtu->ro_rt != NULL) {
731 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
732
733 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
734 if (mtu > ifmtu || mtu == 0) {
735 /*
736 * The MTU on the route is larger than the MTU on
737 * the interface! This shouldn't happen, unless the
738 * MTU of the interface has been changed after the
739 * interface was brought up. Change the MTU in the
740 * route to match the interface MTU (as long as the
741 * field isn't locked).
742 *
743 * if MTU on the route is 0, we need to fix the MTU.
744 * this case happens with path MTU discovery timeouts.
745 */
746 mtu = ifmtu;
747 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
748 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
749 }
750 } else {
751 mtu = nd_ifinfo[ifp->if_index].linkmtu;
752 }
753
754 /* Fake scoped addresses */
755 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
756 /*
757 * If source or destination address is a scoped address, and
758 * the packet is going to be sent to a loopback interface,
759 * we should keep the original interface.
760 */
761
762 /*
763 * XXX: this is a very experimental and temporary solution.
764 * We eventually have sockaddr_in6 and use the sin6_scope_id
765 * field of the structure here.
766 * We rely on the consistency between two scope zone ids
767 * of source add destination, which should already be assured
768 * Larger scopes than link will be supported in the near
769 * future.
770 */
771 origifp = NULL;
772 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
773 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
774 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
775 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
776 /*
777 * XXX: origifp can be NULL even in those two cases above.
778 * For example, if we remove the (only) link-local address
779 * from the loopback interface, and try to send a link-local
780 * address without link-id information. Then the source
781 * address is ::1, and the destination address is the
782 * link-local address with its s6_addr16[1] being zero.
783 * What is worse, if the packet goes to the loopback interface
784 * by a default rejected route, the null pointer would be
785 * passed to looutput, and the kernel would hang.
786 * The following last resort would prevent such disaster.
787 */
788 if (origifp == NULL)
789 origifp = ifp;
790 }
791 else
792 origifp = ifp;
793 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
794 ip6->ip6_src.s6_addr16[1] = 0;
795 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
796 ip6->ip6_dst.s6_addr16[1] = 0;
797
798 /*
799 * If the outgoing packet contains a hop-by-hop options header,
800 * it must be examined and processed even by the source node.
801 * (RFC 2460, section 4.)
802 */
803 if (exthdrs.ip6e_hbh) {
804 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
805 u_int32_t dummy1; /* XXX unused */
806 u_int32_t dummy2; /* XXX unused */
807
808 /*
809 * XXX: if we have to send an ICMPv6 error to the sender,
810 * we need the M_LOOP flag since icmp6_error() expects
811 * the IPv6 and the hop-by-hop options header are
812 * continuous unless the flag is set.
813 */
814 m->m_flags |= M_LOOP;
815 m->m_pkthdr.rcvif = ifp;
816 if (ip6_process_hopopts(m,
817 (u_int8_t *)(hbh + 1),
818 ((hbh->ip6h_len + 1) << 3) -
819 sizeof(struct ip6_hbh),
820 &dummy1, &dummy2) < 0) {
821 /* m was already freed at this point */
822 error = EINVAL;/* better error? */
823 goto done;
824 }
825 m->m_flags &= ~M_LOOP; /* XXX */
826 m->m_pkthdr.rcvif = NULL;
827 }
828
829 #ifdef PFIL_HOOKS
830 /*
831 * Run through list of hooks for output packets.
832 */
833 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp,
834 PFIL_OUT)) != 0)
835 goto done;
836 if (m == NULL)
837 goto done;
838 ip6 = mtod(m, struct ip6_hdr *);
839 #endif /* PFIL_HOOKS */
840 /*
841 * Send the packet to the outgoing interface.
842 * If necessary, do IPv6 fragmentation before sending.
843 */
844 tlen = m->m_pkthdr.len;
845 if (tlen <= mtu
846 #ifdef notyet
847 /*
848 * On any link that cannot convey a 1280-octet packet in one piece,
849 * link-specific fragmentation and reassembly must be provided at
850 * a layer below IPv6. [RFC 2460, sec.5]
851 * Thus if the interface has ability of link-level fragmentation,
852 * we can just send the packet even if the packet size is
853 * larger than the link's MTU.
854 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
855 */
856
857 || ifp->if_flags & IFF_FRAGMENTABLE
858 #endif
859 )
860 {
861 #ifdef IFA_STATS
862 struct in6_ifaddr *ia6;
863 ip6 = mtod(m, struct ip6_hdr *);
864 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
865 if (ia6) {
866 ia6->ia_ifa.ifa_data.ifad_outbytes +=
867 m->m_pkthdr.len;
868 }
869 #endif
870 #ifdef IPSEC
871 /* clean ipsec history once it goes out of the node */
872 ipsec_delaux(m);
873 #endif
874 #ifdef OLDIP6OUTPUT
875 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst,
876 ro->ro_rt);
877 #else
878 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
879 #endif
880 goto done;
881 } else if (mtu < IPV6_MMTU) {
882 /*
883 * note that path MTU is never less than IPV6_MMTU
884 * (see icmp6_input).
885 */
886 error = EMSGSIZE;
887 in6_ifstat_inc(ifp, ifs6_out_fragfail);
888 goto bad;
889 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
890 error = EMSGSIZE;
891 in6_ifstat_inc(ifp, ifs6_out_fragfail);
892 goto bad;
893 } else {
894 struct mbuf **mnext, *m_frgpart;
895 struct ip6_frag *ip6f;
896 u_int32_t id = htonl(ip6_id++);
897 u_char nextproto;
898
899 /*
900 * Too large for the destination or interface;
901 * fragment if possible.
902 * Must be able to put at least 8 bytes per fragment.
903 */
904 hlen = unfragpartlen;
905 if (mtu > IPV6_MAXPACKET)
906 mtu = IPV6_MAXPACKET;
907 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
908 if (len < 8) {
909 error = EMSGSIZE;
910 in6_ifstat_inc(ifp, ifs6_out_fragfail);
911 goto bad;
912 }
913
914 mnext = &m->m_nextpkt;
915
916 /*
917 * Change the next header field of the last header in the
918 * unfragmentable part.
919 */
920 if (exthdrs.ip6e_rthdr) {
921 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
922 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
923 } else if (exthdrs.ip6e_dest1) {
924 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
925 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
926 } else if (exthdrs.ip6e_hbh) {
927 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
928 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
929 } else {
930 nextproto = ip6->ip6_nxt;
931 ip6->ip6_nxt = IPPROTO_FRAGMENT;
932 }
933
934 /*
935 * Loop through length of segment after first fragment,
936 * make new header and copy data of each part and link onto chain.
937 */
938 m0 = m;
939 for (off = hlen; off < tlen; off += len) {
940 MGETHDR(m, M_DONTWAIT, MT_HEADER);
941 if (!m) {
942 error = ENOBUFS;
943 ip6stat.ip6s_odropped++;
944 goto sendorfree;
945 }
946 m->m_flags = m0->m_flags & M_COPYFLAGS;
947 *mnext = m;
948 mnext = &m->m_nextpkt;
949 m->m_data += max_linkhdr;
950 mhip6 = mtod(m, struct ip6_hdr *);
951 *mhip6 = *ip6;
952 m->m_len = sizeof(*mhip6);
953 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
954 if (error) {
955 ip6stat.ip6s_odropped++;
956 goto sendorfree;
957 }
958 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
959 if (off + len >= tlen)
960 len = tlen - off;
961 else
962 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
963 mhip6->ip6_plen = htons((u_short)(len + hlen +
964 sizeof(*ip6f) -
965 sizeof(struct ip6_hdr)));
966 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
967 error = ENOBUFS;
968 ip6stat.ip6s_odropped++;
969 goto sendorfree;
970 }
971 m_cat(m, m_frgpart);
972 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
973 m->m_pkthdr.rcvif = (struct ifnet *)0;
974 ip6f->ip6f_reserved = 0;
975 ip6f->ip6f_ident = id;
976 ip6f->ip6f_nxt = nextproto;
977 ip6stat.ip6s_ofragments++;
978 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
979 }
980
981 in6_ifstat_inc(ifp, ifs6_out_fragok);
982 }
983
984 /*
985 * Remove leading garbages.
986 */
987 sendorfree:
988 m = m0->m_nextpkt;
989 m0->m_nextpkt = 0;
990 m_freem(m0);
991 for (m0 = m; m; m = m0) {
992 m0 = m->m_nextpkt;
993 m->m_nextpkt = 0;
994 if (error == 0) {
995 #ifdef IFA_STATS
996 struct in6_ifaddr *ia6;
997 ip6 = mtod(m, struct ip6_hdr *);
998 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
999 if (ia6) {
1000 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1001 m->m_pkthdr.len;
1002 }
1003 #endif
1004 #ifdef IPSEC
1005 /* clean ipsec history once it goes out of the node */
1006 ipsec_delaux(m);
1007 #endif
1008 #ifdef OLDIP6OUTPUT
1009 error = (*ifp->if_output)(ifp, m,
1010 (struct sockaddr *)dst,
1011 ro->ro_rt);
1012 #else
1013 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1014 #endif
1015 } else
1016 m_freem(m);
1017 }
1018
1019 if (error == 0)
1020 ip6stat.ip6s_fragmented++;
1021
1022 done:
1023 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1024 RTFREE(ro->ro_rt);
1025 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1026 RTFREE(ro_pmtu->ro_rt);
1027 }
1028
1029 #ifdef IPSEC
1030 if (sp != NULL)
1031 key_freesp(sp);
1032 #endif /* IPSEC */
1033
1034 return(error);
1035
1036 freehdrs:
1037 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1038 m_freem(exthdrs.ip6e_dest1);
1039 m_freem(exthdrs.ip6e_rthdr);
1040 m_freem(exthdrs.ip6e_dest2);
1041 /* fall through */
1042 bad:
1043 m_freem(m);
1044 goto done;
1045 }
1046
1047 static int
1048 ip6_copyexthdr(mp, hdr, hlen)
1049 struct mbuf **mp;
1050 caddr_t hdr;
1051 int hlen;
1052 {
1053 struct mbuf *m;
1054
1055 if (hlen > MCLBYTES)
1056 return(ENOBUFS); /* XXX */
1057
1058 MGET(m, M_DONTWAIT, MT_DATA);
1059 if (!m)
1060 return(ENOBUFS);
1061
1062 if (hlen > MLEN) {
1063 MCLGET(m, M_DONTWAIT);
1064 if ((m->m_flags & M_EXT) == 0) {
1065 m_free(m);
1066 return(ENOBUFS);
1067 }
1068 }
1069 m->m_len = hlen;
1070 if (hdr)
1071 bcopy(hdr, mtod(m, caddr_t), hlen);
1072
1073 *mp = m;
1074 return(0);
1075 }
1076
1077 /*
1078 * Insert jumbo payload option.
1079 */
1080 static int
1081 ip6_insert_jumboopt(exthdrs, plen)
1082 struct ip6_exthdrs *exthdrs;
1083 u_int32_t plen;
1084 {
1085 struct mbuf *mopt;
1086 u_char *optbuf;
1087 u_int32_t v;
1088
1089 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1090
1091 /*
1092 * If there is no hop-by-hop options header, allocate new one.
1093 * If there is one but it doesn't have enough space to store the
1094 * jumbo payload option, allocate a cluster to store the whole options.
1095 * Otherwise, use it to store the options.
1096 */
1097 if (exthdrs->ip6e_hbh == 0) {
1098 MGET(mopt, M_DONTWAIT, MT_DATA);
1099 if (mopt == 0)
1100 return(ENOBUFS);
1101 mopt->m_len = JUMBOOPTLEN;
1102 optbuf = mtod(mopt, u_char *);
1103 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1104 exthdrs->ip6e_hbh = mopt;
1105 } else {
1106 struct ip6_hbh *hbh;
1107
1108 mopt = exthdrs->ip6e_hbh;
1109 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1110 /*
1111 * XXX assumption:
1112 * - exthdrs->ip6e_hbh is not referenced from places
1113 * other than exthdrs.
1114 * - exthdrs->ip6e_hbh is not an mbuf chain.
1115 */
1116 int oldoptlen = mopt->m_len;
1117 struct mbuf *n;
1118
1119 /*
1120 * XXX: give up if the whole (new) hbh header does
1121 * not fit even in an mbuf cluster.
1122 */
1123 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1124 return(ENOBUFS);
1125
1126 /*
1127 * As a consequence, we must always prepare a cluster
1128 * at this point.
1129 */
1130 MGET(n, M_DONTWAIT, MT_DATA);
1131 if (n) {
1132 MCLGET(n, M_DONTWAIT);
1133 if ((n->m_flags & M_EXT) == 0) {
1134 m_freem(n);
1135 n = NULL;
1136 }
1137 }
1138 if (!n)
1139 return(ENOBUFS);
1140 n->m_len = oldoptlen + JUMBOOPTLEN;
1141 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1142 oldoptlen);
1143 optbuf = mtod(n, caddr_t) + oldoptlen;
1144 m_freem(mopt);
1145 mopt = exthdrs->ip6e_hbh = n;
1146 } else {
1147 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1148 mopt->m_len += JUMBOOPTLEN;
1149 }
1150 optbuf[0] = IP6OPT_PADN;
1151 optbuf[1] = 1;
1152
1153 /*
1154 * Adjust the header length according to the pad and
1155 * the jumbo payload option.
1156 */
1157 hbh = mtod(mopt, struct ip6_hbh *);
1158 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1159 }
1160
1161 /* fill in the option. */
1162 optbuf[2] = IP6OPT_JUMBO;
1163 optbuf[3] = 4;
1164 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1165 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1166
1167 /* finally, adjust the packet header length */
1168 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1169
1170 return(0);
1171 #undef JUMBOOPTLEN
1172 }
1173
1174 /*
1175 * Insert fragment header and copy unfragmentable header portions.
1176 */
1177 static int
1178 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1179 struct mbuf *m0, *m;
1180 int hlen;
1181 struct ip6_frag **frghdrp;
1182 {
1183 struct mbuf *n, *mlast;
1184
1185 if (hlen > sizeof(struct ip6_hdr)) {
1186 n = m_copym(m0, sizeof(struct ip6_hdr),
1187 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1188 if (n == 0)
1189 return(ENOBUFS);
1190 m->m_next = n;
1191 } else
1192 n = m;
1193
1194 /* Search for the last mbuf of unfragmentable part. */
1195 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1196 ;
1197
1198 if ((mlast->m_flags & M_EXT) == 0 &&
1199 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1200 /* use the trailing space of the last mbuf for the fragment hdr */
1201 *frghdrp =
1202 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1203 mlast->m_len += sizeof(struct ip6_frag);
1204 m->m_pkthdr.len += sizeof(struct ip6_frag);
1205 } else {
1206 /* allocate a new mbuf for the fragment header */
1207 struct mbuf *mfrg;
1208
1209 MGET(mfrg, M_DONTWAIT, MT_DATA);
1210 if (mfrg == 0)
1211 return(ENOBUFS);
1212 mfrg->m_len = sizeof(struct ip6_frag);
1213 *frghdrp = mtod(mfrg, struct ip6_frag *);
1214 mlast->m_next = mfrg;
1215 }
1216
1217 return(0);
1218 }
1219
1220 /*
1221 * IP6 socket option processing.
1222 */
1223 int
1224 ip6_ctloutput(op, so, level, optname, mp)
1225 int op;
1226 struct socket *so;
1227 int level, optname;
1228 struct mbuf **mp;
1229 {
1230 struct in6pcb *in6p = sotoin6pcb(so);
1231 struct mbuf *m = *mp;
1232 int optval = 0;
1233 int error = 0;
1234 struct proc *p = (curproc ? curproc->l_proc : 0); /* XXX */
1235
1236 if (level == IPPROTO_IPV6) {
1237 switch (op) {
1238
1239 case PRCO_SETOPT:
1240 switch (optname) {
1241 case IPV6_PKTOPTIONS:
1242 /* m is freed in ip6_pcbopts */
1243 return(ip6_pcbopts(&in6p->in6p_outputopts,
1244 m, so));
1245 case IPV6_HOPOPTS:
1246 case IPV6_DSTOPTS:
1247 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1248 error = EPERM;
1249 break;
1250 }
1251 /* fall through */
1252 case IPV6_UNICAST_HOPS:
1253 case IPV6_RECVOPTS:
1254 case IPV6_RECVRETOPTS:
1255 case IPV6_RECVDSTADDR:
1256 case IPV6_PKTINFO:
1257 case IPV6_HOPLIMIT:
1258 case IPV6_RTHDR:
1259 case IPV6_CHECKSUM:
1260 case IPV6_FAITH:
1261 #ifndef INET6_BINDV6ONLY
1262 case IPV6_BINDV6ONLY:
1263 #endif
1264 if (!m || m->m_len != sizeof(int))
1265 error = EINVAL;
1266 else {
1267 optval = *mtod(m, int *);
1268 switch (optname) {
1269
1270 case IPV6_UNICAST_HOPS:
1271 if (optval < -1 || optval >= 256)
1272 error = EINVAL;
1273 else {
1274 /* -1 = kernel default */
1275 in6p->in6p_hops = optval;
1276 }
1277 break;
1278 #define OPTSET(bit) \
1279 if (optval) \
1280 in6p->in6p_flags |= bit; \
1281 else \
1282 in6p->in6p_flags &= ~bit;
1283
1284 case IPV6_RECVOPTS:
1285 OPTSET(IN6P_RECVOPTS);
1286 break;
1287
1288 case IPV6_RECVRETOPTS:
1289 OPTSET(IN6P_RECVRETOPTS);
1290 break;
1291
1292 case IPV6_RECVDSTADDR:
1293 OPTSET(IN6P_RECVDSTADDR);
1294 break;
1295
1296 case IPV6_PKTINFO:
1297 OPTSET(IN6P_PKTINFO);
1298 break;
1299
1300 case IPV6_HOPLIMIT:
1301 OPTSET(IN6P_HOPLIMIT);
1302 break;
1303
1304 case IPV6_HOPOPTS:
1305 OPTSET(IN6P_HOPOPTS);
1306 break;
1307
1308 case IPV6_DSTOPTS:
1309 OPTSET(IN6P_DSTOPTS);
1310 break;
1311
1312 case IPV6_RTHDR:
1313 OPTSET(IN6P_RTHDR);
1314 break;
1315
1316 case IPV6_CHECKSUM:
1317 in6p->in6p_cksum = optval;
1318 break;
1319
1320 case IPV6_FAITH:
1321 OPTSET(IN6P_FAITH);
1322 break;
1323
1324 #ifndef INET6_BINDV6ONLY
1325 case IPV6_BINDV6ONLY:
1326 OPTSET(IN6P_BINDV6ONLY);
1327 break;
1328 #endif
1329 }
1330 }
1331 break;
1332 #undef OPTSET
1333
1334 case IPV6_MULTICAST_IF:
1335 case IPV6_MULTICAST_HOPS:
1336 case IPV6_MULTICAST_LOOP:
1337 case IPV6_JOIN_GROUP:
1338 case IPV6_LEAVE_GROUP:
1339 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m);
1340 break;
1341
1342 case IPV6_PORTRANGE:
1343 optval = *mtod(m, int *);
1344
1345 switch (optval) {
1346 case IPV6_PORTRANGE_DEFAULT:
1347 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1348 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1349 break;
1350
1351 case IPV6_PORTRANGE_HIGH:
1352 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1353 in6p->in6p_flags |= IN6P_HIGHPORT;
1354 break;
1355
1356 case IPV6_PORTRANGE_LOW:
1357 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1358 in6p->in6p_flags |= IN6P_LOWPORT;
1359 break;
1360
1361 default:
1362 error = EINVAL;
1363 break;
1364 }
1365 break;
1366
1367 #ifdef IPSEC
1368 case IPV6_IPSEC_POLICY:
1369 {
1370 caddr_t req = NULL;
1371 size_t len = 0;
1372
1373 int priv = 0;
1374 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1375 priv = 0;
1376 else
1377 priv = 1;
1378 if (m) {
1379 req = mtod(m, caddr_t);
1380 len = m->m_len;
1381 }
1382 error = ipsec6_set_policy(in6p,
1383 optname, req, len, priv);
1384 }
1385 break;
1386 #endif /* IPSEC */
1387
1388 default:
1389 error = ENOPROTOOPT;
1390 break;
1391 }
1392 if (m)
1393 (void)m_free(m);
1394 break;
1395
1396 case PRCO_GETOPT:
1397 switch (optname) {
1398
1399 case IPV6_OPTIONS:
1400 case IPV6_RETOPTS:
1401 #if 0
1402 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1403 if (in6p->in6p_options) {
1404 m->m_len = in6p->in6p_options->m_len;
1405 bcopy(mtod(in6p->in6p_options, caddr_t),
1406 mtod(m, caddr_t),
1407 (unsigned)m->m_len);
1408 } else
1409 m->m_len = 0;
1410 break;
1411 #else
1412 error = ENOPROTOOPT;
1413 break;
1414 #endif
1415
1416 case IPV6_PKTOPTIONS:
1417 if (in6p->in6p_options) {
1418 *mp = m_copym(in6p->in6p_options, 0,
1419 M_COPYALL, M_WAIT);
1420 } else {
1421 *mp = m_get(M_WAIT, MT_SOOPTS);
1422 (*mp)->m_len = 0;
1423 }
1424 break;
1425
1426 case IPV6_HOPOPTS:
1427 case IPV6_DSTOPTS:
1428 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1429 error = EPERM;
1430 break;
1431 }
1432 /* fall through */
1433 case IPV6_UNICAST_HOPS:
1434 case IPV6_RECVOPTS:
1435 case IPV6_RECVRETOPTS:
1436 case IPV6_RECVDSTADDR:
1437 case IPV6_PORTRANGE:
1438 case IPV6_PKTINFO:
1439 case IPV6_HOPLIMIT:
1440 case IPV6_RTHDR:
1441 case IPV6_CHECKSUM:
1442 case IPV6_FAITH:
1443 #ifndef INET6_BINDV6ONLY
1444 case IPV6_BINDV6ONLY:
1445 #endif
1446 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1447 m->m_len = sizeof(int);
1448 switch (optname) {
1449
1450 case IPV6_UNICAST_HOPS:
1451 optval = in6p->in6p_hops;
1452 break;
1453
1454 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1455
1456 case IPV6_RECVOPTS:
1457 optval = OPTBIT(IN6P_RECVOPTS);
1458 break;
1459
1460 case IPV6_RECVRETOPTS:
1461 optval = OPTBIT(IN6P_RECVRETOPTS);
1462 break;
1463
1464 case IPV6_RECVDSTADDR:
1465 optval = OPTBIT(IN6P_RECVDSTADDR);
1466 break;
1467
1468 case IPV6_PORTRANGE:
1469 {
1470 int flags;
1471 flags = in6p->in6p_flags;
1472 if (flags & IN6P_HIGHPORT)
1473 optval = IPV6_PORTRANGE_HIGH;
1474 else if (flags & IN6P_LOWPORT)
1475 optval = IPV6_PORTRANGE_LOW;
1476 else
1477 optval = 0;
1478 break;
1479 }
1480
1481 case IPV6_PKTINFO:
1482 optval = OPTBIT(IN6P_PKTINFO);
1483 break;
1484
1485 case IPV6_HOPLIMIT:
1486 optval = OPTBIT(IN6P_HOPLIMIT);
1487 break;
1488
1489 case IPV6_HOPOPTS:
1490 optval = OPTBIT(IN6P_HOPOPTS);
1491 break;
1492
1493 case IPV6_DSTOPTS:
1494 optval = OPTBIT(IN6P_DSTOPTS);
1495 break;
1496
1497 case IPV6_RTHDR:
1498 optval = OPTBIT(IN6P_RTHDR);
1499 break;
1500
1501 case IPV6_CHECKSUM:
1502 optval = in6p->in6p_cksum;
1503 break;
1504
1505 case IPV6_FAITH:
1506 optval = OPTBIT(IN6P_FAITH);
1507 break;
1508
1509 #ifndef INET6_BINDV6ONLY
1510 case IPV6_BINDV6ONLY:
1511 optval = OPTBIT(IN6P_BINDV6ONLY);
1512 break;
1513 #endif
1514 }
1515 *mtod(m, int *) = optval;
1516 break;
1517
1518 case IPV6_MULTICAST_IF:
1519 case IPV6_MULTICAST_HOPS:
1520 case IPV6_MULTICAST_LOOP:
1521 case IPV6_JOIN_GROUP:
1522 case IPV6_LEAVE_GROUP:
1523 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1524 break;
1525
1526 #ifdef IPSEC
1527 case IPV6_IPSEC_POLICY:
1528 {
1529 caddr_t req = NULL;
1530 size_t len = 0;
1531
1532 if (m) {
1533 req = mtod(m, caddr_t);
1534 len = m->m_len;
1535 }
1536 error = ipsec6_get_policy(in6p, req, len, mp);
1537 break;
1538 }
1539 #endif /* IPSEC */
1540
1541 default:
1542 error = ENOPROTOOPT;
1543 break;
1544 }
1545 break;
1546 }
1547 } else {
1548 error = EINVAL;
1549 if (op == PRCO_SETOPT && *mp)
1550 (void)m_free(*mp);
1551 }
1552 return(error);
1553 }
1554
1555 /*
1556 * Set up IP6 options in pcb for insertion in output packets.
1557 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1558 * with destination address if source routed.
1559 */
1560 static int
1561 ip6_pcbopts(pktopt, m, so)
1562 struct ip6_pktopts **pktopt;
1563 struct mbuf *m;
1564 struct socket *so;
1565 {
1566 struct ip6_pktopts *opt = *pktopt;
1567 int error = 0;
1568 struct proc *p = (curproc ? curproc->l_proc : 0); /* XXX */
1569 int priv = 0;
1570
1571 /* turn off any old options. */
1572 if (opt) {
1573 if (opt->ip6po_m)
1574 (void)m_free(opt->ip6po_m);
1575 } else
1576 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1577 *pktopt = 0;
1578
1579 if (!m || m->m_len == 0) {
1580 /*
1581 * Only turning off any previous options.
1582 */
1583 if (opt)
1584 free(opt, M_IP6OPT);
1585 if (m)
1586 (void)m_free(m);
1587 return(0);
1588 }
1589
1590 /* set options specified by user. */
1591 if (p && !suser(p->p_ucred, &p->p_acflag))
1592 priv = 1;
1593 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1594 (void)m_free(m);
1595 return(error);
1596 }
1597 *pktopt = opt;
1598 return(0);
1599 }
1600
1601 /*
1602 * Set the IP6 multicast options in response to user setsockopt().
1603 */
1604 static int
1605 ip6_setmoptions(optname, im6op, m)
1606 int optname;
1607 struct ip6_moptions **im6op;
1608 struct mbuf *m;
1609 {
1610 int error = 0;
1611 u_int loop, ifindex;
1612 struct ipv6_mreq *mreq;
1613 struct ifnet *ifp;
1614 struct ip6_moptions *im6o = *im6op;
1615 struct route_in6 ro;
1616 struct sockaddr_in6 *dst;
1617 struct in6_multi_mship *imm;
1618 struct proc *p = curproc->l_proc; /* XXX */
1619
1620 if (im6o == NULL) {
1621 /*
1622 * No multicast option buffer attached to the pcb;
1623 * allocate one and initialize to default values.
1624 */
1625 im6o = (struct ip6_moptions *)
1626 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1627
1628 if (im6o == NULL)
1629 return(ENOBUFS);
1630 *im6op = im6o;
1631 im6o->im6o_multicast_ifp = NULL;
1632 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1633 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1634 LIST_INIT(&im6o->im6o_memberships);
1635 }
1636
1637 switch (optname) {
1638
1639 case IPV6_MULTICAST_IF:
1640 /*
1641 * Select the interface for outgoing multicast packets.
1642 */
1643 if (m == NULL || m->m_len != sizeof(u_int)) {
1644 error = EINVAL;
1645 break;
1646 }
1647 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1648 if (ifindex < 0 || if_index < ifindex) {
1649 error = ENXIO; /* XXX EINVAL? */
1650 break;
1651 }
1652 ifp = ifindex2ifnet[ifindex];
1653 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1654 error = EADDRNOTAVAIL;
1655 break;
1656 }
1657 im6o->im6o_multicast_ifp = ifp;
1658 break;
1659
1660 case IPV6_MULTICAST_HOPS:
1661 {
1662 /*
1663 * Set the IP6 hoplimit for outgoing multicast packets.
1664 */
1665 int optval;
1666 if (m == NULL || m->m_len != sizeof(int)) {
1667 error = EINVAL;
1668 break;
1669 }
1670 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1671 if (optval < -1 || optval >= 256)
1672 error = EINVAL;
1673 else if (optval == -1)
1674 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1675 else
1676 im6o->im6o_multicast_hlim = optval;
1677 break;
1678 }
1679
1680 case IPV6_MULTICAST_LOOP:
1681 /*
1682 * Set the loopback flag for outgoing multicast packets.
1683 * Must be zero or one.
1684 */
1685 if (m == NULL || m->m_len != sizeof(u_int)) {
1686 error = EINVAL;
1687 break;
1688 }
1689 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1690 if (loop > 1) {
1691 error = EINVAL;
1692 break;
1693 }
1694 im6o->im6o_multicast_loop = loop;
1695 break;
1696
1697 case IPV6_JOIN_GROUP:
1698 /*
1699 * Add a multicast group membership.
1700 * Group must be a valid IP6 multicast address.
1701 */
1702 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1703 error = EINVAL;
1704 break;
1705 }
1706 mreq = mtod(m, struct ipv6_mreq *);
1707 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1708 /*
1709 * We use the unspecified address to specify to accept
1710 * all multicast addresses. Only super user is allowed
1711 * to do this.
1712 */
1713 if (suser(p->p_ucred, &p->p_acflag))
1714 {
1715 error = EACCES;
1716 break;
1717 }
1718 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1719 error = EINVAL;
1720 break;
1721 }
1722
1723 /*
1724 * If the interface is specified, validate it.
1725 */
1726 if (mreq->ipv6mr_interface < 0
1727 || if_index < mreq->ipv6mr_interface) {
1728 error = ENXIO; /* XXX EINVAL? */
1729 break;
1730 }
1731 /*
1732 * If no interface was explicitly specified, choose an
1733 * appropriate one according to the given multicast address.
1734 */
1735 if (mreq->ipv6mr_interface == 0) {
1736 /*
1737 * If the multicast address is in node-local scope,
1738 * the interface should be a loopback interface.
1739 * Otherwise, look up the routing table for the
1740 * address, and choose the outgoing interface.
1741 * XXX: is it a good approach?
1742 */
1743 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1744 ifp = &loif[0];
1745 } else {
1746 ro.ro_rt = NULL;
1747 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1748 bzero(dst, sizeof(*dst));
1749 dst->sin6_len = sizeof(struct sockaddr_in6);
1750 dst->sin6_family = AF_INET6;
1751 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1752 rtalloc((struct route *)&ro);
1753 if (ro.ro_rt == NULL) {
1754 error = EADDRNOTAVAIL;
1755 break;
1756 }
1757 ifp = ro.ro_rt->rt_ifp;
1758 rtfree(ro.ro_rt);
1759 }
1760 } else
1761 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1762
1763 /*
1764 * See if we found an interface, and confirm that it
1765 * supports multicast
1766 */
1767 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1768 error = EADDRNOTAVAIL;
1769 break;
1770 }
1771 /*
1772 * Put interface index into the multicast address,
1773 * if the address has link-local scope.
1774 */
1775 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1776 mreq->ipv6mr_multiaddr.s6_addr16[1]
1777 = htons(mreq->ipv6mr_interface);
1778 }
1779 /*
1780 * See if the membership already exists.
1781 */
1782 for (imm = im6o->im6o_memberships.lh_first;
1783 imm != NULL; imm = imm->i6mm_chain.le_next)
1784 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1785 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1786 &mreq->ipv6mr_multiaddr))
1787 break;
1788 if (imm != NULL) {
1789 error = EADDRINUSE;
1790 break;
1791 }
1792 /*
1793 * Everything looks good; add a new record to the multicast
1794 * address list for the given interface.
1795 */
1796 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
1797 if (imm == NULL) {
1798 error = ENOBUFS;
1799 break;
1800 }
1801 if ((imm->i6mm_maddr =
1802 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
1803 free(imm, M_IPMADDR);
1804 break;
1805 }
1806 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1807 break;
1808
1809 case IPV6_LEAVE_GROUP:
1810 /*
1811 * Drop a multicast group membership.
1812 * Group must be a valid IP6 multicast address.
1813 */
1814 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1815 error = EINVAL;
1816 break;
1817 }
1818 mreq = mtod(m, struct ipv6_mreq *);
1819 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1820 if (suser(p->p_ucred, &p->p_acflag))
1821 {
1822 error = EACCES;
1823 break;
1824 }
1825 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1826 error = EINVAL;
1827 break;
1828 }
1829 /*
1830 * If an interface address was specified, get a pointer
1831 * to its ifnet structure.
1832 */
1833 if (mreq->ipv6mr_interface < 0
1834 || if_index < mreq->ipv6mr_interface) {
1835 error = ENXIO; /* XXX EINVAL? */
1836 break;
1837 }
1838 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1839 /*
1840 * Put interface index into the multicast address,
1841 * if the address has link-local scope.
1842 */
1843 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1844 mreq->ipv6mr_multiaddr.s6_addr16[1]
1845 = htons(mreq->ipv6mr_interface);
1846 }
1847 /*
1848 * Find the membership in the membership list.
1849 */
1850 for (imm = im6o->im6o_memberships.lh_first;
1851 imm != NULL; imm = imm->i6mm_chain.le_next) {
1852 if ((ifp == NULL ||
1853 imm->i6mm_maddr->in6m_ifp == ifp) &&
1854 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1855 &mreq->ipv6mr_multiaddr))
1856 break;
1857 }
1858 if (imm == NULL) {
1859 /* Unable to resolve interface */
1860 error = EADDRNOTAVAIL;
1861 break;
1862 }
1863 /*
1864 * Give up the multicast address record to which the
1865 * membership points.
1866 */
1867 LIST_REMOVE(imm, i6mm_chain);
1868 in6_delmulti(imm->i6mm_maddr);
1869 free(imm, M_IPMADDR);
1870 break;
1871
1872 default:
1873 error = EOPNOTSUPP;
1874 break;
1875 }
1876
1877 /*
1878 * If all options have default values, no need to keep the mbuf.
1879 */
1880 if (im6o->im6o_multicast_ifp == NULL &&
1881 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1882 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1883 im6o->im6o_memberships.lh_first == NULL) {
1884 free(*im6op, M_IPMOPTS);
1885 *im6op = NULL;
1886 }
1887
1888 return(error);
1889 }
1890
1891 /*
1892 * Return the IP6 multicast options in response to user getsockopt().
1893 */
1894 static int
1895 ip6_getmoptions(optname, im6o, mp)
1896 int optname;
1897 struct ip6_moptions *im6o;
1898 struct mbuf **mp;
1899 {
1900 u_int *hlim, *loop, *ifindex;
1901
1902 *mp = m_get(M_WAIT, MT_SOOPTS);
1903
1904 switch (optname) {
1905
1906 case IPV6_MULTICAST_IF:
1907 ifindex = mtod(*mp, u_int *);
1908 (*mp)->m_len = sizeof(u_int);
1909 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1910 *ifindex = 0;
1911 else
1912 *ifindex = im6o->im6o_multicast_ifp->if_index;
1913 return(0);
1914
1915 case IPV6_MULTICAST_HOPS:
1916 hlim = mtod(*mp, u_int *);
1917 (*mp)->m_len = sizeof(u_int);
1918 if (im6o == NULL)
1919 *hlim = ip6_defmcasthlim;
1920 else
1921 *hlim = im6o->im6o_multicast_hlim;
1922 return(0);
1923
1924 case IPV6_MULTICAST_LOOP:
1925 loop = mtod(*mp, u_int *);
1926 (*mp)->m_len = sizeof(u_int);
1927 if (im6o == NULL)
1928 *loop = ip6_defmcasthlim;
1929 else
1930 *loop = im6o->im6o_multicast_loop;
1931 return(0);
1932
1933 default:
1934 return(EOPNOTSUPP);
1935 }
1936 }
1937
1938 /*
1939 * Discard the IP6 multicast options.
1940 */
1941 void
1942 ip6_freemoptions(im6o)
1943 struct ip6_moptions *im6o;
1944 {
1945 struct in6_multi_mship *imm;
1946
1947 if (im6o == NULL)
1948 return;
1949
1950 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
1951 LIST_REMOVE(imm, i6mm_chain);
1952 if (imm->i6mm_maddr)
1953 in6_delmulti(imm->i6mm_maddr);
1954 free(imm, M_IPMADDR);
1955 }
1956 free(im6o, M_IPMOPTS);
1957 }
1958
1959 /*
1960 * Set IPv6 outgoing packet options based on advanced API.
1961 */
1962 int
1963 ip6_setpktoptions(control, opt, priv)
1964 struct mbuf *control;
1965 struct ip6_pktopts *opt;
1966 int priv;
1967 {
1968 struct cmsghdr *cm = 0;
1969
1970 if (control == 0 || opt == 0)
1971 return(EINVAL);
1972
1973 bzero(opt, sizeof(*opt));
1974 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
1975
1976 /*
1977 * XXX: Currently, we assume all the optional information is stored
1978 * in a single mbuf.
1979 */
1980 if (control->m_next)
1981 return(EINVAL);
1982
1983 opt->ip6po_m = control;
1984
1985 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
1986 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1987 cm = mtod(control, struct cmsghdr *);
1988 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
1989 return(EINVAL);
1990 if (cm->cmsg_level != IPPROTO_IPV6)
1991 continue;
1992
1993 switch (cm->cmsg_type) {
1994 case IPV6_PKTINFO:
1995 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
1996 return(EINVAL);
1997 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1998 if (opt->ip6po_pktinfo->ipi6_ifindex &&
1999 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
2000 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2001 htons(opt->ip6po_pktinfo->ipi6_ifindex);
2002
2003 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
2004 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
2005 return(ENXIO);
2006 }
2007
2008 /*
2009 * Check if the requested source address is indeed a
2010 * unicast address assigned to the node, and can be
2011 * used as the packet's source address.
2012 */
2013 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2014 struct ifaddr *ia;
2015 struct in6_ifaddr *ia6;
2016 struct sockaddr_in6 sin6;
2017
2018 bzero(&sin6, sizeof(sin6));
2019 sin6.sin6_len = sizeof(sin6);
2020 sin6.sin6_family = AF_INET6;
2021 sin6.sin6_addr =
2022 opt->ip6po_pktinfo->ipi6_addr;
2023 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2024 if (ia == NULL ||
2025 (opt->ip6po_pktinfo->ipi6_ifindex &&
2026 (ia->ifa_ifp->if_index !=
2027 opt->ip6po_pktinfo->ipi6_ifindex))) {
2028 return(EADDRNOTAVAIL);
2029 }
2030 ia6 = (struct in6_ifaddr *)ia;
2031 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
2032 return(EADDRNOTAVAIL);
2033 }
2034
2035 /*
2036 * Check if the requested source address is
2037 * indeed a unicast address assigned to the
2038 * node.
2039 */
2040 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2041 return(EADDRNOTAVAIL);
2042 }
2043 break;
2044
2045 case IPV6_HOPLIMIT:
2046 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2047 return(EINVAL);
2048
2049 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim,
2050 sizeof(opt->ip6po_hlim));
2051 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2052 return(EINVAL);
2053 break;
2054
2055 case IPV6_NEXTHOP:
2056 if (!priv)
2057 return(EPERM);
2058
2059 if (cm->cmsg_len < sizeof(u_char) ||
2060 /* check if cmsg_len is large enough for sa_len */
2061 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2062 return(EINVAL);
2063
2064 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2065
2066 break;
2067
2068 case IPV6_HOPOPTS:
2069 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2070 return(EINVAL);
2071 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2072 if (cm->cmsg_len !=
2073 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
2074 return(EINVAL);
2075 break;
2076
2077 case IPV6_DSTOPTS:
2078 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2079 return(EINVAL);
2080
2081 /*
2082 * If there is no routing header yet, the destination
2083 * options header should be put on the 1st part.
2084 * Otherwise, the header should be on the 2nd part.
2085 * (See RFC 2460, section 4.1)
2086 */
2087 if (opt->ip6po_rthdr == NULL) {
2088 opt->ip6po_dest1 =
2089 (struct ip6_dest *)CMSG_DATA(cm);
2090 if (cm->cmsg_len !=
2091 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
2092 << 3))
2093 return(EINVAL);
2094 }
2095 else {
2096 opt->ip6po_dest2 =
2097 (struct ip6_dest *)CMSG_DATA(cm);
2098 if (cm->cmsg_len !=
2099 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
2100 << 3))
2101 return(EINVAL);
2102 }
2103 break;
2104
2105 case IPV6_RTHDR:
2106 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2107 return(EINVAL);
2108 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
2109 if (cm->cmsg_len !=
2110 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
2111 return(EINVAL);
2112 switch (opt->ip6po_rthdr->ip6r_type) {
2113 case IPV6_RTHDR_TYPE_0:
2114 if (opt->ip6po_rthdr->ip6r_segleft == 0)
2115 return(EINVAL);
2116 break;
2117 default:
2118 return(EINVAL);
2119 }
2120 break;
2121
2122 default:
2123 return(ENOPROTOOPT);
2124 }
2125 }
2126
2127 return(0);
2128 }
2129
2130 /*
2131 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2132 * packet to the input queue of a specified interface. Note that this
2133 * calls the output routine of the loopback "driver", but with an interface
2134 * pointer that might NOT be &loif -- easier than replicating that code here.
2135 */
2136 void
2137 ip6_mloopback(ifp, m, dst)
2138 struct ifnet *ifp;
2139 struct mbuf *m;
2140 struct sockaddr_in6 *dst;
2141 {
2142 struct mbuf *copym;
2143 struct ip6_hdr *ip6;
2144
2145 copym = m_copy(m, 0, M_COPYALL);
2146 if (copym == NULL)
2147 return;
2148
2149 /*
2150 * Make sure to deep-copy IPv6 header portion in case the data
2151 * is in an mbuf cluster, so that we can safely override the IPv6
2152 * header portion later.
2153 */
2154 if ((copym->m_flags & M_EXT) != 0 ||
2155 copym->m_len < sizeof(struct ip6_hdr)) {
2156 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2157 if (copym == NULL)
2158 return;
2159 }
2160
2161 #ifdef DIAGNOSTIC
2162 if (copym->m_len < sizeof(*ip6)) {
2163 m_freem(copym);
2164 return;
2165 }
2166 #endif
2167
2168 ip6 = mtod(copym, struct ip6_hdr *);
2169 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2170 ip6->ip6_src.s6_addr16[1] = 0;
2171 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2172 ip6->ip6_dst.s6_addr16[1] = 0;
2173
2174 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2175 }
2176
2177 /*
2178 * Chop IPv6 header off from the payload.
2179 */
2180 static int
2181 ip6_splithdr(m, exthdrs)
2182 struct mbuf *m;
2183 struct ip6_exthdrs *exthdrs;
2184 {
2185 struct mbuf *mh;
2186 struct ip6_hdr *ip6;
2187
2188 ip6 = mtod(m, struct ip6_hdr *);
2189 if (m->m_len > sizeof(*ip6)) {
2190 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2191 if (mh == 0) {
2192 m_freem(m);
2193 return ENOBUFS;
2194 }
2195 M_COPY_PKTHDR(mh, m);
2196 MH_ALIGN(mh, sizeof(*ip6));
2197 m->m_flags &= ~M_PKTHDR;
2198 m->m_len -= sizeof(*ip6);
2199 m->m_data += sizeof(*ip6);
2200 mh->m_next = m;
2201 m = mh;
2202 m->m_len = sizeof(*ip6);
2203 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2204 }
2205 exthdrs->ip6e_ip6 = m;
2206 return 0;
2207 }
2208
2209 /*
2210 * Compute IPv6 extension header length.
2211 */
2212 int
2213 ip6_optlen(in6p)
2214 struct in6pcb *in6p;
2215 {
2216 int len;
2217
2218 if (!in6p->in6p_outputopts)
2219 return 0;
2220
2221 len = 0;
2222 #define elen(x) \
2223 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2224
2225 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2226 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2227 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2228 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2229 return len;
2230 #undef elen
2231 }
2232