ip6_output.c revision 1.31.2.8 1 /* $NetBSD: ip6_output.c,v 1.31.2.8 2002/04/01 07:48:51 nathanw Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.31.2.8 2002/04/01 07:48:51 nathanw Exp $");
70
71 #include "opt_inet.h"
72 #include "opt_ipsec.h"
73 #include "opt_pfil_hooks.h"
74
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/errno.h>
79 #include <sys/protosw.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82 #include <sys/systm.h>
83 #include <sys/lwp.h>
84 #include <sys/proc.h>
85
86 #include <net/if.h>
87 #include <net/route.h>
88 #ifdef PFIL_HOOKS
89 #include <net/pfil.h>
90 #endif
91
92 #include <netinet/in.h>
93 #include <netinet/in_var.h>
94 #include <netinet/ip6.h>
95 #include <netinet/icmp6.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/in6_pcb.h>
98 #include <netinet6/nd6.h>
99
100 #ifdef IPSEC
101 #include <netinet6/ipsec.h>
102 #include <netkey/key.h>
103 #endif /* IPSEC */
104
105 #include "loop.h"
106
107 #include <net/net_osdep.h>
108
109 #ifdef PFIL_HOOKS
110 extern struct pfil_head inet6_pfil_hook; /* XXX */
111 #endif
112
113 struct ip6_exthdrs {
114 struct mbuf *ip6e_ip6;
115 struct mbuf *ip6e_hbh;
116 struct mbuf *ip6e_dest1;
117 struct mbuf *ip6e_rthdr;
118 struct mbuf *ip6e_dest2;
119 };
120
121 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
122 struct socket *));
123 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
124 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
125 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
126 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
127 struct ip6_frag **));
128 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
129 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
130
131 extern struct ifnet loif[NLOOP];
132
133 /*
134 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
135 * header (with pri, len, nxt, hlim, src, dst).
136 * This function may modify ver and hlim only.
137 * The mbuf chain containing the packet will be freed.
138 * The mbuf opt, if present, will not be freed.
139 */
140 int
141 ip6_output(m0, opt, ro, flags, im6o, ifpp)
142 struct mbuf *m0;
143 struct ip6_pktopts *opt;
144 struct route_in6 *ro;
145 int flags;
146 struct ip6_moptions *im6o;
147 struct ifnet **ifpp; /* XXX: just for statistics */
148 {
149 struct ip6_hdr *ip6, *mhip6;
150 struct ifnet *ifp, *origifp;
151 struct mbuf *m = m0;
152 int hlen, tlen, len, off;
153 struct route_in6 ip6route;
154 struct sockaddr_in6 *dst;
155 int error = 0;
156 struct in6_ifaddr *ia;
157 u_long mtu;
158 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
159 struct ip6_exthdrs exthdrs;
160 struct in6_addr finaldst;
161 struct route_in6 *ro_pmtu = NULL;
162 int hdrsplit = 0;
163 int needipsec = 0;
164 #ifdef IPSEC
165 int needipsectun = 0;
166 struct socket *so;
167 struct secpolicy *sp = NULL;
168
169 /* for AH processing. stupid to have "socket" variable in IP layer... */
170 so = ipsec_getsocket(m);
171 (void)ipsec_setsocket(m, NULL);
172 ip6 = mtod(m, struct ip6_hdr *);
173 #endif /* IPSEC */
174
175 #define MAKE_EXTHDR(hp, mp) \
176 do { \
177 if (hp) { \
178 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
179 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
180 ((eh)->ip6e_len + 1) << 3); \
181 if (error) \
182 goto freehdrs; \
183 } \
184 } while (0)
185
186 bzero(&exthdrs, sizeof(exthdrs));
187 if (opt) {
188 /* Hop-by-Hop options header */
189 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
190 /* Destination options header(1st part) */
191 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
192 /* Routing header */
193 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
194 /* Destination options header(2nd part) */
195 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
196 }
197
198 #ifdef IPSEC
199 /* get a security policy for this packet */
200 if (so == NULL)
201 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
202 else
203 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
204
205 if (sp == NULL) {
206 ipsec6stat.out_inval++;
207 goto freehdrs;
208 }
209
210 error = 0;
211
212 /* check policy */
213 switch (sp->policy) {
214 case IPSEC_POLICY_DISCARD:
215 /*
216 * This packet is just discarded.
217 */
218 ipsec6stat.out_polvio++;
219 goto freehdrs;
220
221 case IPSEC_POLICY_BYPASS:
222 case IPSEC_POLICY_NONE:
223 /* no need to do IPsec. */
224 needipsec = 0;
225 break;
226
227 case IPSEC_POLICY_IPSEC:
228 if (sp->req == NULL) {
229 /* XXX should be panic ? */
230 printf("ip6_output: No IPsec request specified.\n");
231 error = EINVAL;
232 goto freehdrs;
233 }
234 needipsec = 1;
235 break;
236
237 case IPSEC_POLICY_ENTRUST:
238 default:
239 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
240 }
241 #endif /* IPSEC */
242
243 /*
244 * Calculate the total length of the extension header chain.
245 * Keep the length of the unfragmentable part for fragmentation.
246 */
247 optlen = 0;
248 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
249 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
250 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
251 unfragpartlen = optlen + sizeof(struct ip6_hdr);
252 /* NOTE: we don't add AH/ESP length here. do that later. */
253 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
254
255 /*
256 * If we need IPsec, or there is at least one extension header,
257 * separate IP6 header from the payload.
258 */
259 if ((needipsec || optlen) && !hdrsplit) {
260 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
261 m = NULL;
262 goto freehdrs;
263 }
264 m = exthdrs.ip6e_ip6;
265 hdrsplit++;
266 }
267
268 /* adjust pointer */
269 ip6 = mtod(m, struct ip6_hdr *);
270
271 /* adjust mbuf packet header length */
272 m->m_pkthdr.len += optlen;
273 plen = m->m_pkthdr.len - sizeof(*ip6);
274
275 /* If this is a jumbo payload, insert a jumbo payload option. */
276 if (plen > IPV6_MAXPACKET) {
277 if (!hdrsplit) {
278 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
279 m = NULL;
280 goto freehdrs;
281 }
282 m = exthdrs.ip6e_ip6;
283 hdrsplit++;
284 }
285 /* adjust pointer */
286 ip6 = mtod(m, struct ip6_hdr *);
287 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
288 goto freehdrs;
289 ip6->ip6_plen = 0;
290 } else
291 ip6->ip6_plen = htons(plen);
292
293 /*
294 * Concatenate headers and fill in next header fields.
295 * Here we have, on "m"
296 * IPv6 payload
297 * and we insert headers accordingly. Finally, we should be getting:
298 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
299 *
300 * during the header composing process, "m" points to IPv6 header.
301 * "mprev" points to an extension header prior to esp.
302 */
303 {
304 u_char *nexthdrp = &ip6->ip6_nxt;
305 struct mbuf *mprev = m;
306
307 /*
308 * we treat dest2 specially. this makes IPsec processing
309 * much easier.
310 *
311 * result: IPv6 dest2 payload
312 * m and mprev will point to IPv6 header.
313 */
314 if (exthdrs.ip6e_dest2) {
315 if (!hdrsplit)
316 panic("assumption failed: hdr not split");
317 exthdrs.ip6e_dest2->m_next = m->m_next;
318 m->m_next = exthdrs.ip6e_dest2;
319 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
320 ip6->ip6_nxt = IPPROTO_DSTOPTS;
321 }
322
323 #define MAKE_CHAIN(m, mp, p, i)\
324 do {\
325 if (m) {\
326 if (!hdrsplit) \
327 panic("assumption failed: hdr not split"); \
328 *mtod((m), u_char *) = *(p);\
329 *(p) = (i);\
330 p = mtod((m), u_char *);\
331 (m)->m_next = (mp)->m_next;\
332 (mp)->m_next = (m);\
333 (mp) = (m);\
334 }\
335 } while (0)
336 /*
337 * result: IPv6 hbh dest1 rthdr dest2 payload
338 * m will point to IPv6 header. mprev will point to the
339 * extension header prior to dest2 (rthdr in the above case).
340 */
341 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
342 nexthdrp, IPPROTO_HOPOPTS);
343 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
344 nexthdrp, IPPROTO_DSTOPTS);
345 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
346 nexthdrp, IPPROTO_ROUTING);
347
348 #ifdef IPSEC
349 if (!needipsec)
350 goto skip_ipsec2;
351
352 /*
353 * pointers after IPsec headers are not valid any more.
354 * other pointers need a great care too.
355 * (IPsec routines should not mangle mbufs prior to AH/ESP)
356 */
357 exthdrs.ip6e_dest2 = NULL;
358
359 {
360 struct ip6_rthdr *rh = NULL;
361 int segleft_org = 0;
362 struct ipsec_output_state state;
363
364 if (exthdrs.ip6e_rthdr) {
365 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
366 segleft_org = rh->ip6r_segleft;
367 rh->ip6r_segleft = 0;
368 }
369
370 bzero(&state, sizeof(state));
371 state.m = m;
372 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
373 &needipsectun);
374 m = state.m;
375 if (error) {
376 /* mbuf is already reclaimed in ipsec6_output_trans. */
377 m = NULL;
378 switch (error) {
379 case EHOSTUNREACH:
380 case ENETUNREACH:
381 case EMSGSIZE:
382 case ENOBUFS:
383 case ENOMEM:
384 break;
385 default:
386 printf("ip6_output (ipsec): error code %d\n", error);
387 /* fall through */
388 case ENOENT:
389 /* don't show these error codes to the user */
390 error = 0;
391 break;
392 }
393 goto bad;
394 }
395 if (exthdrs.ip6e_rthdr) {
396 /* ah6_output doesn't modify mbuf chain */
397 rh->ip6r_segleft = segleft_org;
398 }
399 }
400 skip_ipsec2:;
401 #endif
402 }
403
404 /*
405 * If there is a routing header, replace destination address field
406 * with the first hop of the routing header.
407 */
408 if (exthdrs.ip6e_rthdr) {
409 struct ip6_rthdr *rh =
410 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
411 struct ip6_rthdr *));
412 struct ip6_rthdr0 *rh0;
413
414 finaldst = ip6->ip6_dst;
415 switch (rh->ip6r_type) {
416 case IPV6_RTHDR_TYPE_0:
417 rh0 = (struct ip6_rthdr0 *)rh;
418 ip6->ip6_dst = rh0->ip6r0_addr[0];
419 bcopy((caddr_t)&rh0->ip6r0_addr[1],
420 (caddr_t)&rh0->ip6r0_addr[0],
421 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)
422 );
423 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
424 break;
425 default: /* is it possible? */
426 error = EINVAL;
427 goto bad;
428 }
429 }
430
431 /* Source address validation */
432 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
433 (flags & IPV6_DADOUTPUT) == 0) {
434 error = EOPNOTSUPP;
435 ip6stat.ip6s_badscope++;
436 goto bad;
437 }
438 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
439 error = EOPNOTSUPP;
440 ip6stat.ip6s_badscope++;
441 goto bad;
442 }
443
444 ip6stat.ip6s_localout++;
445
446 /*
447 * Route packet.
448 */
449 if (ro == 0) {
450 ro = &ip6route;
451 bzero((caddr_t)ro, sizeof(*ro));
452 }
453 ro_pmtu = ro;
454 if (opt && opt->ip6po_rthdr)
455 ro = &opt->ip6po_route;
456 dst = (struct sockaddr_in6 *)&ro->ro_dst;
457 /*
458 * If there is a cached route,
459 * check that it is to the same destination
460 * and is still up. If not, free it and try again.
461 */
462 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
463 dst->sin6_family != AF_INET6 ||
464 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
465 RTFREE(ro->ro_rt);
466 ro->ro_rt = (struct rtentry *)0;
467 }
468 if (ro->ro_rt == 0) {
469 bzero(dst, sizeof(*dst));
470 dst->sin6_family = AF_INET6;
471 dst->sin6_len = sizeof(struct sockaddr_in6);
472 dst->sin6_addr = ip6->ip6_dst;
473 }
474 #ifdef IPSEC
475 if (needipsec && needipsectun) {
476 struct ipsec_output_state state;
477
478 /*
479 * All the extension headers will become inaccessible
480 * (since they can be encrypted).
481 * Don't panic, we need no more updates to extension headers
482 * on inner IPv6 packet (since they are now encapsulated).
483 *
484 * IPv6 [ESP|AH] IPv6 [extension headers] payload
485 */
486 bzero(&exthdrs, sizeof(exthdrs));
487 exthdrs.ip6e_ip6 = m;
488
489 bzero(&state, sizeof(state));
490 state.m = m;
491 state.ro = (struct route *)ro;
492 state.dst = (struct sockaddr *)dst;
493
494 error = ipsec6_output_tunnel(&state, sp, flags);
495
496 m = state.m;
497 ro = (struct route_in6 *)state.ro;
498 dst = (struct sockaddr_in6 *)state.dst;
499 if (error) {
500 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
501 m0 = m = NULL;
502 m = NULL;
503 switch (error) {
504 case EHOSTUNREACH:
505 case ENETUNREACH:
506 case EMSGSIZE:
507 case ENOBUFS:
508 case ENOMEM:
509 break;
510 default:
511 printf("ip6_output (ipsec): error code %d\n", error);
512 /* fall through */
513 case ENOENT:
514 /* don't show these error codes to the user */
515 error = 0;
516 break;
517 }
518 goto bad;
519 }
520
521 exthdrs.ip6e_ip6 = m;
522 }
523 #endif /* IPSEC */
524
525 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
526 /* Unicast */
527
528 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
529 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
530 /* xxx
531 * interface selection comes here
532 * if an interface is specified from an upper layer,
533 * ifp must point it.
534 */
535 if (ro->ro_rt == 0) {
536 /*
537 * non-bsdi always clone routes, if parent is
538 * PRF_CLONING.
539 */
540 rtalloc((struct route *)ro);
541 }
542 if (ro->ro_rt == 0) {
543 ip6stat.ip6s_noroute++;
544 error = EHOSTUNREACH;
545 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
546 goto bad;
547 }
548 ia = ifatoia6(ro->ro_rt->rt_ifa);
549 ifp = ro->ro_rt->rt_ifp;
550 ro->ro_rt->rt_use++;
551 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
552 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
553 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
554
555 in6_ifstat_inc(ifp, ifs6_out_request);
556
557 /*
558 * Check if the outgoing interface conflicts with
559 * the interface specified by ifi6_ifindex (if specified).
560 * Note that loopback interface is always okay.
561 * (this may happen when we are sending a packet to one of
562 * our own addresses.)
563 */
564 if (opt && opt->ip6po_pktinfo
565 && opt->ip6po_pktinfo->ipi6_ifindex) {
566 if (!(ifp->if_flags & IFF_LOOPBACK)
567 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
568 ip6stat.ip6s_noroute++;
569 in6_ifstat_inc(ifp, ifs6_out_discard);
570 error = EHOSTUNREACH;
571 goto bad;
572 }
573 }
574
575 if (opt && opt->ip6po_hlim != -1)
576 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
577 } else {
578 /* Multicast */
579 struct in6_multi *in6m;
580
581 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
582
583 /*
584 * See if the caller provided any multicast options
585 */
586 ifp = NULL;
587 if (im6o != NULL) {
588 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
589 if (im6o->im6o_multicast_ifp != NULL)
590 ifp = im6o->im6o_multicast_ifp;
591 } else
592 ip6->ip6_hlim = ip6_defmcasthlim;
593
594 /*
595 * See if the caller provided the outgoing interface
596 * as an ancillary data.
597 * Boundary check for ifindex is assumed to be already done.
598 */
599 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
600 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
601
602 /*
603 * If the destination is a node-local scope multicast,
604 * the packet should be loop-backed only.
605 */
606 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
607 /*
608 * If the outgoing interface is already specified,
609 * it should be a loopback interface.
610 */
611 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
612 ip6stat.ip6s_badscope++;
613 error = ENETUNREACH; /* XXX: better error? */
614 /* XXX correct ifp? */
615 in6_ifstat_inc(ifp, ifs6_out_discard);
616 goto bad;
617 } else {
618 ifp = &loif[0];
619 }
620 }
621
622 if (opt && opt->ip6po_hlim != -1)
623 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
624
625 /*
626 * If caller did not provide an interface lookup a
627 * default in the routing table. This is either a
628 * default for the speicfied group (i.e. a host
629 * route), or a multicast default (a route for the
630 * ``net'' ff00::/8).
631 */
632 if (ifp == NULL) {
633 if (ro->ro_rt == 0) {
634 ro->ro_rt = rtalloc1((struct sockaddr *)
635 &ro->ro_dst, 0
636 );
637 }
638 if (ro->ro_rt == 0) {
639 ip6stat.ip6s_noroute++;
640 error = EHOSTUNREACH;
641 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
642 goto bad;
643 }
644 ia = ifatoia6(ro->ro_rt->rt_ifa);
645 ifp = ro->ro_rt->rt_ifp;
646 ro->ro_rt->rt_use++;
647 }
648
649 if ((flags & IPV6_FORWARDING) == 0)
650 in6_ifstat_inc(ifp, ifs6_out_request);
651 in6_ifstat_inc(ifp, ifs6_out_mcast);
652
653 /*
654 * Confirm that the outgoing interface supports multicast.
655 */
656 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
657 ip6stat.ip6s_noroute++;
658 in6_ifstat_inc(ifp, ifs6_out_discard);
659 error = ENETUNREACH;
660 goto bad;
661 }
662 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
663 if (in6m != NULL &&
664 (im6o == NULL || im6o->im6o_multicast_loop)) {
665 /*
666 * If we belong to the destination multicast group
667 * on the outgoing interface, and the caller did not
668 * forbid loopback, loop back a copy.
669 */
670 ip6_mloopback(ifp, m, dst);
671 } else {
672 /*
673 * If we are acting as a multicast router, perform
674 * multicast forwarding as if the packet had just
675 * arrived on the interface to which we are about
676 * to send. The multicast forwarding function
677 * recursively calls this function, using the
678 * IPV6_FORWARDING flag to prevent infinite recursion.
679 *
680 * Multicasts that are looped back by ip6_mloopback(),
681 * above, will be forwarded by the ip6_input() routine,
682 * if necessary.
683 */
684 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
685 if (ip6_mforward(ip6, ifp, m) != 0) {
686 m_freem(m);
687 goto done;
688 }
689 }
690 }
691 /*
692 * Multicasts with a hoplimit of zero may be looped back,
693 * above, but must not be transmitted on a network.
694 * Also, multicasts addressed to the loopback interface
695 * are not sent -- the above call to ip6_mloopback() will
696 * loop back a copy if this host actually belongs to the
697 * destination group on the loopback interface.
698 */
699 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
700 m_freem(m);
701 goto done;
702 }
703 }
704
705 /*
706 * Fill the outgoing inteface to tell the upper layer
707 * to increment per-interface statistics.
708 */
709 if (ifpp)
710 *ifpp = ifp;
711
712 /*
713 * Determine path MTU.
714 */
715 if (ro_pmtu != ro) {
716 /* The first hop and the final destination may differ. */
717 struct sockaddr_in6 *sin6_fin =
718 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
719 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
720 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
721 &finaldst))) {
722 RTFREE(ro_pmtu->ro_rt);
723 ro_pmtu->ro_rt = (struct rtentry *)0;
724 }
725 if (ro_pmtu->ro_rt == 0) {
726 bzero(sin6_fin, sizeof(*sin6_fin));
727 sin6_fin->sin6_family = AF_INET6;
728 sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
729 sin6_fin->sin6_addr = finaldst;
730
731 rtalloc((struct route *)ro_pmtu);
732 }
733 }
734 if (ro_pmtu->ro_rt != NULL) {
735 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
736
737 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
738 if (mtu > ifmtu || mtu == 0) {
739 /*
740 * The MTU on the route is larger than the MTU on
741 * the interface! This shouldn't happen, unless the
742 * MTU of the interface has been changed after the
743 * interface was brought up. Change the MTU in the
744 * route to match the interface MTU (as long as the
745 * field isn't locked).
746 *
747 * if MTU on the route is 0, we need to fix the MTU.
748 * this case happens with path MTU discovery timeouts.
749 */
750 mtu = ifmtu;
751 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
752 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
753 }
754 } else {
755 mtu = nd_ifinfo[ifp->if_index].linkmtu;
756 }
757
758 if (mtu > IPV6_MMTU &&
759 (flags & IPV6_MINMTU)) {
760 mtu = IPV6_MMTU;
761 }
762
763 /* Fake scoped addresses */
764 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
765 /*
766 * If source or destination address is a scoped address, and
767 * the packet is going to be sent to a loopback interface,
768 * we should keep the original interface.
769 */
770
771 /*
772 * XXX: this is a very experimental and temporary solution.
773 * We eventually have sockaddr_in6 and use the sin6_scope_id
774 * field of the structure here.
775 * We rely on the consistency between two scope zone ids
776 * of source add destination, which should already be assured
777 * Larger scopes than link will be supported in the near
778 * future.
779 */
780 origifp = NULL;
781 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
782 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
783 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
784 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
785 /*
786 * XXX: origifp can be NULL even in those two cases above.
787 * For example, if we remove the (only) link-local address
788 * from the loopback interface, and try to send a link-local
789 * address without link-id information. Then the source
790 * address is ::1, and the destination address is the
791 * link-local address with its s6_addr16[1] being zero.
792 * What is worse, if the packet goes to the loopback interface
793 * by a default rejected route, the null pointer would be
794 * passed to looutput, and the kernel would hang.
795 * The following last resort would prevent such disaster.
796 */
797 if (origifp == NULL)
798 origifp = ifp;
799 }
800 else
801 origifp = ifp;
802 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
803 ip6->ip6_src.s6_addr16[1] = 0;
804 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
805 ip6->ip6_dst.s6_addr16[1] = 0;
806
807 /*
808 * If the outgoing packet contains a hop-by-hop options header,
809 * it must be examined and processed even by the source node.
810 * (RFC 2460, section 4.)
811 */
812 if (exthdrs.ip6e_hbh) {
813 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
814 u_int32_t dummy1; /* XXX unused */
815 u_int32_t dummy2; /* XXX unused */
816
817 /*
818 * XXX: if we have to send an ICMPv6 error to the sender,
819 * we need the M_LOOP flag since icmp6_error() expects
820 * the IPv6 and the hop-by-hop options header are
821 * continuous unless the flag is set.
822 */
823 m->m_flags |= M_LOOP;
824 m->m_pkthdr.rcvif = ifp;
825 if (ip6_process_hopopts(m,
826 (u_int8_t *)(hbh + 1),
827 ((hbh->ip6h_len + 1) << 3) -
828 sizeof(struct ip6_hbh),
829 &dummy1, &dummy2) < 0) {
830 /* m was already freed at this point */
831 error = EINVAL;/* better error? */
832 goto done;
833 }
834 m->m_flags &= ~M_LOOP; /* XXX */
835 m->m_pkthdr.rcvif = NULL;
836 }
837
838 #ifdef PFIL_HOOKS
839 /*
840 * Run through list of hooks for output packets.
841 */
842 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp,
843 PFIL_OUT)) != 0)
844 goto done;
845 if (m == NULL)
846 goto done;
847 ip6 = mtod(m, struct ip6_hdr *);
848 #endif /* PFIL_HOOKS */
849 /*
850 * Send the packet to the outgoing interface.
851 * If necessary, do IPv6 fragmentation before sending.
852 */
853 tlen = m->m_pkthdr.len;
854 if (tlen <= mtu
855 #ifdef notyet
856 /*
857 * On any link that cannot convey a 1280-octet packet in one piece,
858 * link-specific fragmentation and reassembly must be provided at
859 * a layer below IPv6. [RFC 2460, sec.5]
860 * Thus if the interface has ability of link-level fragmentation,
861 * we can just send the packet even if the packet size is
862 * larger than the link's MTU.
863 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
864 */
865
866 || ifp->if_flags & IFF_FRAGMENTABLE
867 #endif
868 )
869 {
870 #ifdef IFA_STATS
871 struct in6_ifaddr *ia6;
872 ip6 = mtod(m, struct ip6_hdr *);
873 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
874 if (ia6) {
875 /* Record statistics for this interface address. */
876 ia6->ia_ifa.ifa_data.ifad_outbytes +=
877 m->m_pkthdr.len;
878 }
879 #endif
880 #ifdef IPSEC
881 /* clean ipsec history once it goes out of the node */
882 ipsec_delaux(m);
883 #endif
884 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
885 goto done;
886 } else if (mtu < IPV6_MMTU) {
887 /*
888 * note that path MTU is never less than IPV6_MMTU
889 * (see icmp6_input).
890 */
891 error = EMSGSIZE;
892 in6_ifstat_inc(ifp, ifs6_out_fragfail);
893 goto bad;
894 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
895 error = EMSGSIZE;
896 in6_ifstat_inc(ifp, ifs6_out_fragfail);
897 goto bad;
898 } else {
899 struct mbuf **mnext, *m_frgpart;
900 struct ip6_frag *ip6f;
901 u_int32_t id = htonl(ip6_id++);
902 u_char nextproto;
903
904 /*
905 * Too large for the destination or interface;
906 * fragment if possible.
907 * Must be able to put at least 8 bytes per fragment.
908 */
909 hlen = unfragpartlen;
910 if (mtu > IPV6_MAXPACKET)
911 mtu = IPV6_MAXPACKET;
912 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
913 if (len < 8) {
914 error = EMSGSIZE;
915 in6_ifstat_inc(ifp, ifs6_out_fragfail);
916 goto bad;
917 }
918
919 mnext = &m->m_nextpkt;
920
921 /*
922 * Change the next header field of the last header in the
923 * unfragmentable part.
924 */
925 if (exthdrs.ip6e_rthdr) {
926 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
927 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
928 } else if (exthdrs.ip6e_dest1) {
929 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
930 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
931 } else if (exthdrs.ip6e_hbh) {
932 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
933 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
934 } else {
935 nextproto = ip6->ip6_nxt;
936 ip6->ip6_nxt = IPPROTO_FRAGMENT;
937 }
938
939 /*
940 * Loop through length of segment after first fragment,
941 * make new header and copy data of each part and link onto
942 * chain.
943 */
944 m0 = m;
945 for (off = hlen; off < tlen; off += len) {
946 MGETHDR(m, M_DONTWAIT, MT_HEADER);
947 if (!m) {
948 error = ENOBUFS;
949 ip6stat.ip6s_odropped++;
950 goto sendorfree;
951 }
952 m->m_flags = m0->m_flags & M_COPYFLAGS;
953 *mnext = m;
954 mnext = &m->m_nextpkt;
955 m->m_data += max_linkhdr;
956 mhip6 = mtod(m, struct ip6_hdr *);
957 *mhip6 = *ip6;
958 m->m_len = sizeof(*mhip6);
959 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
960 if (error) {
961 ip6stat.ip6s_odropped++;
962 goto sendorfree;
963 }
964 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
965 if (off + len >= tlen)
966 len = tlen - off;
967 else
968 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
969 mhip6->ip6_plen = htons((u_short)(len + hlen +
970 sizeof(*ip6f) -
971 sizeof(struct ip6_hdr)));
972 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
973 error = ENOBUFS;
974 ip6stat.ip6s_odropped++;
975 goto sendorfree;
976 }
977 m_cat(m, m_frgpart);
978 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
979 m->m_pkthdr.rcvif = (struct ifnet *)0;
980 ip6f->ip6f_reserved = 0;
981 ip6f->ip6f_ident = id;
982 ip6f->ip6f_nxt = nextproto;
983 ip6stat.ip6s_ofragments++;
984 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
985 }
986
987 in6_ifstat_inc(ifp, ifs6_out_fragok);
988 }
989
990 /*
991 * Remove leading garbages.
992 */
993 sendorfree:
994 m = m0->m_nextpkt;
995 m0->m_nextpkt = 0;
996 m_freem(m0);
997 for (m0 = m; m; m = m0) {
998 m0 = m->m_nextpkt;
999 m->m_nextpkt = 0;
1000 if (error == 0) {
1001 #ifdef IFA_STATS
1002 struct in6_ifaddr *ia6;
1003 ip6 = mtod(m, struct ip6_hdr *);
1004 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1005 if (ia6) {
1006 /*
1007 * Record statistics for this interface
1008 * address.
1009 */
1010 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1011 m->m_pkthdr.len;
1012 }
1013 #endif
1014 #ifdef IPSEC
1015 /* clean ipsec history once it goes out of the node */
1016 ipsec_delaux(m);
1017 #endif
1018 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1019 } else
1020 m_freem(m);
1021 }
1022
1023 if (error == 0)
1024 ip6stat.ip6s_fragmented++;
1025
1026 done:
1027 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1028 RTFREE(ro->ro_rt);
1029 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1030 RTFREE(ro_pmtu->ro_rt);
1031 }
1032
1033 #ifdef IPSEC
1034 if (sp != NULL)
1035 key_freesp(sp);
1036 #endif /* IPSEC */
1037
1038 return(error);
1039
1040 freehdrs:
1041 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1042 m_freem(exthdrs.ip6e_dest1);
1043 m_freem(exthdrs.ip6e_rthdr);
1044 m_freem(exthdrs.ip6e_dest2);
1045 /* fall through */
1046 bad:
1047 m_freem(m);
1048 goto done;
1049 }
1050
1051 static int
1052 ip6_copyexthdr(mp, hdr, hlen)
1053 struct mbuf **mp;
1054 caddr_t hdr;
1055 int hlen;
1056 {
1057 struct mbuf *m;
1058
1059 if (hlen > MCLBYTES)
1060 return(ENOBUFS); /* XXX */
1061
1062 MGET(m, M_DONTWAIT, MT_DATA);
1063 if (!m)
1064 return(ENOBUFS);
1065
1066 if (hlen > MLEN) {
1067 MCLGET(m, M_DONTWAIT);
1068 if ((m->m_flags & M_EXT) == 0) {
1069 m_free(m);
1070 return(ENOBUFS);
1071 }
1072 }
1073 m->m_len = hlen;
1074 if (hdr)
1075 bcopy(hdr, mtod(m, caddr_t), hlen);
1076
1077 *mp = m;
1078 return(0);
1079 }
1080
1081 /*
1082 * Insert jumbo payload option.
1083 */
1084 static int
1085 ip6_insert_jumboopt(exthdrs, plen)
1086 struct ip6_exthdrs *exthdrs;
1087 u_int32_t plen;
1088 {
1089 struct mbuf *mopt;
1090 u_char *optbuf;
1091 u_int32_t v;
1092
1093 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1094
1095 /*
1096 * If there is no hop-by-hop options header, allocate new one.
1097 * If there is one but it doesn't have enough space to store the
1098 * jumbo payload option, allocate a cluster to store the whole options.
1099 * Otherwise, use it to store the options.
1100 */
1101 if (exthdrs->ip6e_hbh == 0) {
1102 MGET(mopt, M_DONTWAIT, MT_DATA);
1103 if (mopt == 0)
1104 return(ENOBUFS);
1105 mopt->m_len = JUMBOOPTLEN;
1106 optbuf = mtod(mopt, u_char *);
1107 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1108 exthdrs->ip6e_hbh = mopt;
1109 } else {
1110 struct ip6_hbh *hbh;
1111
1112 mopt = exthdrs->ip6e_hbh;
1113 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1114 /*
1115 * XXX assumption:
1116 * - exthdrs->ip6e_hbh is not referenced from places
1117 * other than exthdrs.
1118 * - exthdrs->ip6e_hbh is not an mbuf chain.
1119 */
1120 int oldoptlen = mopt->m_len;
1121 struct mbuf *n;
1122
1123 /*
1124 * XXX: give up if the whole (new) hbh header does
1125 * not fit even in an mbuf cluster.
1126 */
1127 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1128 return(ENOBUFS);
1129
1130 /*
1131 * As a consequence, we must always prepare a cluster
1132 * at this point.
1133 */
1134 MGET(n, M_DONTWAIT, MT_DATA);
1135 if (n) {
1136 MCLGET(n, M_DONTWAIT);
1137 if ((n->m_flags & M_EXT) == 0) {
1138 m_freem(n);
1139 n = NULL;
1140 }
1141 }
1142 if (!n)
1143 return(ENOBUFS);
1144 n->m_len = oldoptlen + JUMBOOPTLEN;
1145 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1146 oldoptlen);
1147 optbuf = mtod(n, caddr_t) + oldoptlen;
1148 m_freem(mopt);
1149 mopt = exthdrs->ip6e_hbh = n;
1150 } else {
1151 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1152 mopt->m_len += JUMBOOPTLEN;
1153 }
1154 optbuf[0] = IP6OPT_PADN;
1155 optbuf[1] = 1;
1156
1157 /*
1158 * Adjust the header length according to the pad and
1159 * the jumbo payload option.
1160 */
1161 hbh = mtod(mopt, struct ip6_hbh *);
1162 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1163 }
1164
1165 /* fill in the option. */
1166 optbuf[2] = IP6OPT_JUMBO;
1167 optbuf[3] = 4;
1168 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1169 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1170
1171 /* finally, adjust the packet header length */
1172 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1173
1174 return(0);
1175 #undef JUMBOOPTLEN
1176 }
1177
1178 /*
1179 * Insert fragment header and copy unfragmentable header portions.
1180 */
1181 static int
1182 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1183 struct mbuf *m0, *m;
1184 int hlen;
1185 struct ip6_frag **frghdrp;
1186 {
1187 struct mbuf *n, *mlast;
1188
1189 if (hlen > sizeof(struct ip6_hdr)) {
1190 n = m_copym(m0, sizeof(struct ip6_hdr),
1191 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1192 if (n == 0)
1193 return(ENOBUFS);
1194 m->m_next = n;
1195 } else
1196 n = m;
1197
1198 /* Search for the last mbuf of unfragmentable part. */
1199 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1200 ;
1201
1202 if ((mlast->m_flags & M_EXT) == 0 &&
1203 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1204 /* use the trailing space of the last mbuf for the fragment hdr */
1205 *frghdrp =
1206 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1207 mlast->m_len += sizeof(struct ip6_frag);
1208 m->m_pkthdr.len += sizeof(struct ip6_frag);
1209 } else {
1210 /* allocate a new mbuf for the fragment header */
1211 struct mbuf *mfrg;
1212
1213 MGET(mfrg, M_DONTWAIT, MT_DATA);
1214 if (mfrg == 0)
1215 return(ENOBUFS);
1216 mfrg->m_len = sizeof(struct ip6_frag);
1217 *frghdrp = mtod(mfrg, struct ip6_frag *);
1218 mlast->m_next = mfrg;
1219 }
1220
1221 return(0);
1222 }
1223
1224 /*
1225 * IP6 socket option processing.
1226 */
1227 int
1228 ip6_ctloutput(op, so, level, optname, mp)
1229 int op;
1230 struct socket *so;
1231 int level, optname;
1232 struct mbuf **mp;
1233 {
1234 struct in6pcb *in6p = sotoin6pcb(so);
1235 struct mbuf *m = *mp;
1236 int optval = 0;
1237 int error = 0;
1238 struct proc *p = (curproc ? curproc->l_proc : 0); /* XXX */
1239
1240 if (level == IPPROTO_IPV6) {
1241 switch (op) {
1242
1243 case PRCO_SETOPT:
1244 switch (optname) {
1245 case IPV6_PKTOPTIONS:
1246 /* m is freed in ip6_pcbopts */
1247 return(ip6_pcbopts(&in6p->in6p_outputopts,
1248 m, so));
1249 case IPV6_HOPOPTS:
1250 case IPV6_DSTOPTS:
1251 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1252 error = EPERM;
1253 break;
1254 }
1255 /* fall through */
1256 case IPV6_UNICAST_HOPS:
1257 case IPV6_RECVOPTS:
1258 case IPV6_RECVRETOPTS:
1259 case IPV6_RECVDSTADDR:
1260 case IPV6_PKTINFO:
1261 case IPV6_HOPLIMIT:
1262 case IPV6_RTHDR:
1263 case IPV6_FAITH:
1264 case IPV6_V6ONLY:
1265 if (!m || m->m_len != sizeof(int)) {
1266 error = EINVAL;
1267 break;
1268 }
1269 optval = *mtod(m, int *);
1270 switch (optname) {
1271
1272 case IPV6_UNICAST_HOPS:
1273 if (optval < -1 || optval >= 256)
1274 error = EINVAL;
1275 else {
1276 /* -1 = kernel default */
1277 in6p->in6p_hops = optval;
1278 }
1279 break;
1280 #define OPTSET(bit) \
1281 if (optval) \
1282 in6p->in6p_flags |= bit; \
1283 else \
1284 in6p->in6p_flags &= ~bit;
1285
1286 case IPV6_RECVOPTS:
1287 OPTSET(IN6P_RECVOPTS);
1288 break;
1289
1290 case IPV6_RECVRETOPTS:
1291 OPTSET(IN6P_RECVRETOPTS);
1292 break;
1293
1294 case IPV6_RECVDSTADDR:
1295 OPTSET(IN6P_RECVDSTADDR);
1296 break;
1297
1298 case IPV6_PKTINFO:
1299 OPTSET(IN6P_PKTINFO);
1300 break;
1301
1302 case IPV6_HOPLIMIT:
1303 OPTSET(IN6P_HOPLIMIT);
1304 break;
1305
1306 case IPV6_HOPOPTS:
1307 OPTSET(IN6P_HOPOPTS);
1308 break;
1309
1310 case IPV6_DSTOPTS:
1311 OPTSET(IN6P_DSTOPTS);
1312 break;
1313
1314 case IPV6_RTHDR:
1315 OPTSET(IN6P_RTHDR);
1316 break;
1317
1318 case IPV6_FAITH:
1319 OPTSET(IN6P_FAITH);
1320 break;
1321
1322 case IPV6_V6ONLY:
1323 /*
1324 * make setsockopt(IPV6_V6ONLY)
1325 * available only prior to bind(2).
1326 * see ipng mailing list, Jun 22 2001.
1327 */
1328 if (in6p->in6p_lport ||
1329 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr))
1330 {
1331 error = EINVAL;
1332 break;
1333 }
1334 #ifdef INET6_BINDV6ONLY
1335 if (!optval)
1336 error = EINVAL;
1337 #else
1338 OPTSET(IN6P_IPV6_V6ONLY);
1339 #endif
1340 break;
1341 }
1342 break;
1343 #undef OPTSET
1344
1345 case IPV6_MULTICAST_IF:
1346 case IPV6_MULTICAST_HOPS:
1347 case IPV6_MULTICAST_LOOP:
1348 case IPV6_JOIN_GROUP:
1349 case IPV6_LEAVE_GROUP:
1350 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m);
1351 break;
1352
1353 case IPV6_PORTRANGE:
1354 optval = *mtod(m, int *);
1355
1356 switch (optval) {
1357 case IPV6_PORTRANGE_DEFAULT:
1358 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1359 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1360 break;
1361
1362 case IPV6_PORTRANGE_HIGH:
1363 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1364 in6p->in6p_flags |= IN6P_HIGHPORT;
1365 break;
1366
1367 case IPV6_PORTRANGE_LOW:
1368 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1369 in6p->in6p_flags |= IN6P_LOWPORT;
1370 break;
1371
1372 default:
1373 error = EINVAL;
1374 break;
1375 }
1376 break;
1377
1378 #ifdef IPSEC
1379 case IPV6_IPSEC_POLICY:
1380 {
1381 caddr_t req = NULL;
1382 size_t len = 0;
1383
1384 int priv = 0;
1385 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1386 priv = 0;
1387 else
1388 priv = 1;
1389 if (m) {
1390 req = mtod(m, caddr_t);
1391 len = m->m_len;
1392 }
1393 error = ipsec6_set_policy(in6p,
1394 optname, req, len, priv);
1395 }
1396 break;
1397 #endif /* IPSEC */
1398
1399 default:
1400 error = ENOPROTOOPT;
1401 break;
1402 }
1403 if (m)
1404 (void)m_free(m);
1405 break;
1406
1407 case PRCO_GETOPT:
1408 switch (optname) {
1409
1410 case IPV6_OPTIONS:
1411 case IPV6_RETOPTS:
1412 #if 0
1413 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1414 if (in6p->in6p_options) {
1415 m->m_len = in6p->in6p_options->m_len;
1416 bcopy(mtod(in6p->in6p_options, caddr_t),
1417 mtod(m, caddr_t),
1418 (unsigned)m->m_len);
1419 } else
1420 m->m_len = 0;
1421 break;
1422 #else
1423 error = ENOPROTOOPT;
1424 break;
1425 #endif
1426
1427 case IPV6_PKTOPTIONS:
1428 if (in6p->in6p_options) {
1429 *mp = m_copym(in6p->in6p_options, 0,
1430 M_COPYALL, M_WAIT);
1431 } else {
1432 *mp = m_get(M_WAIT, MT_SOOPTS);
1433 (*mp)->m_len = 0;
1434 }
1435 break;
1436
1437 case IPV6_HOPOPTS:
1438 case IPV6_DSTOPTS:
1439 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1440 error = EPERM;
1441 break;
1442 }
1443 /* fall through */
1444 case IPV6_UNICAST_HOPS:
1445 case IPV6_RECVOPTS:
1446 case IPV6_RECVRETOPTS:
1447 case IPV6_RECVDSTADDR:
1448 case IPV6_PORTRANGE:
1449 case IPV6_PKTINFO:
1450 case IPV6_HOPLIMIT:
1451 case IPV6_RTHDR:
1452 case IPV6_FAITH:
1453 case IPV6_V6ONLY:
1454 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1455 m->m_len = sizeof(int);
1456 switch (optname) {
1457
1458 case IPV6_UNICAST_HOPS:
1459 optval = in6p->in6p_hops;
1460 break;
1461
1462 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1463
1464 case IPV6_RECVOPTS:
1465 optval = OPTBIT(IN6P_RECVOPTS);
1466 break;
1467
1468 case IPV6_RECVRETOPTS:
1469 optval = OPTBIT(IN6P_RECVRETOPTS);
1470 break;
1471
1472 case IPV6_RECVDSTADDR:
1473 optval = OPTBIT(IN6P_RECVDSTADDR);
1474 break;
1475
1476 case IPV6_PORTRANGE:
1477 {
1478 int flags;
1479 flags = in6p->in6p_flags;
1480 if (flags & IN6P_HIGHPORT)
1481 optval = IPV6_PORTRANGE_HIGH;
1482 else if (flags & IN6P_LOWPORT)
1483 optval = IPV6_PORTRANGE_LOW;
1484 else
1485 optval = 0;
1486 break;
1487 }
1488
1489 case IPV6_PKTINFO:
1490 optval = OPTBIT(IN6P_PKTINFO);
1491 break;
1492
1493 case IPV6_HOPLIMIT:
1494 optval = OPTBIT(IN6P_HOPLIMIT);
1495 break;
1496
1497 case IPV6_HOPOPTS:
1498 optval = OPTBIT(IN6P_HOPOPTS);
1499 break;
1500
1501 case IPV6_DSTOPTS:
1502 optval = OPTBIT(IN6P_DSTOPTS);
1503 break;
1504
1505 case IPV6_RTHDR:
1506 optval = OPTBIT(IN6P_RTHDR);
1507 break;
1508
1509 case IPV6_FAITH:
1510 optval = OPTBIT(IN6P_FAITH);
1511 break;
1512
1513 case IPV6_V6ONLY:
1514 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1515 break;
1516 }
1517 *mtod(m, int *) = optval;
1518 break;
1519
1520 case IPV6_MULTICAST_IF:
1521 case IPV6_MULTICAST_HOPS:
1522 case IPV6_MULTICAST_LOOP:
1523 case IPV6_JOIN_GROUP:
1524 case IPV6_LEAVE_GROUP:
1525 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1526 break;
1527
1528 #ifdef IPSEC
1529 case IPV6_IPSEC_POLICY:
1530 {
1531 caddr_t req = NULL;
1532 size_t len = 0;
1533
1534 if (m) {
1535 req = mtod(m, caddr_t);
1536 len = m->m_len;
1537 }
1538 error = ipsec6_get_policy(in6p, req, len, mp);
1539 break;
1540 }
1541 #endif /* IPSEC */
1542
1543 default:
1544 error = ENOPROTOOPT;
1545 break;
1546 }
1547 break;
1548 }
1549 } else {
1550 error = EINVAL;
1551 if (op == PRCO_SETOPT && *mp)
1552 (void)m_free(*mp);
1553 }
1554 return(error);
1555 }
1556
1557 /*
1558 * Set up IP6 options in pcb for insertion in output packets.
1559 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1560 * with destination address if source routed.
1561 */
1562 static int
1563 ip6_pcbopts(pktopt, m, so)
1564 struct ip6_pktopts **pktopt;
1565 struct mbuf *m;
1566 struct socket *so;
1567 {
1568 struct ip6_pktopts *opt = *pktopt;
1569 int error = 0;
1570 struct proc *p = (curproc ? curproc->l_proc : 0); /* XXX */
1571 int priv = 0;
1572
1573 /* turn off any old options. */
1574 if (opt) {
1575 if (opt->ip6po_m)
1576 (void)m_free(opt->ip6po_m);
1577 } else
1578 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1579 *pktopt = 0;
1580
1581 if (!m || m->m_len == 0) {
1582 /*
1583 * Only turning off any previous options.
1584 */
1585 if (opt)
1586 free(opt, M_IP6OPT);
1587 if (m)
1588 (void)m_free(m);
1589 return(0);
1590 }
1591
1592 /* set options specified by user. */
1593 if (p && !suser(p->p_ucred, &p->p_acflag))
1594 priv = 1;
1595 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1596 (void)m_free(m);
1597 return(error);
1598 }
1599 *pktopt = opt;
1600 return(0);
1601 }
1602
1603 /*
1604 * Set the IP6 multicast options in response to user setsockopt().
1605 */
1606 static int
1607 ip6_setmoptions(optname, im6op, m)
1608 int optname;
1609 struct ip6_moptions **im6op;
1610 struct mbuf *m;
1611 {
1612 int error = 0;
1613 u_int loop, ifindex;
1614 struct ipv6_mreq *mreq;
1615 struct ifnet *ifp;
1616 struct ip6_moptions *im6o = *im6op;
1617 struct route_in6 ro;
1618 struct sockaddr_in6 *dst;
1619 struct in6_multi_mship *imm;
1620 struct proc *p = curproc->l_proc; /* XXX */
1621
1622 if (im6o == NULL) {
1623 /*
1624 * No multicast option buffer attached to the pcb;
1625 * allocate one and initialize to default values.
1626 */
1627 im6o = (struct ip6_moptions *)
1628 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1629
1630 if (im6o == NULL)
1631 return(ENOBUFS);
1632 *im6op = im6o;
1633 im6o->im6o_multicast_ifp = NULL;
1634 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1635 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1636 LIST_INIT(&im6o->im6o_memberships);
1637 }
1638
1639 switch (optname) {
1640
1641 case IPV6_MULTICAST_IF:
1642 /*
1643 * Select the interface for outgoing multicast packets.
1644 */
1645 if (m == NULL || m->m_len != sizeof(u_int)) {
1646 error = EINVAL;
1647 break;
1648 }
1649 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1650 if (ifindex < 0 || if_index < ifindex) {
1651 error = ENXIO; /* XXX EINVAL? */
1652 break;
1653 }
1654 ifp = ifindex2ifnet[ifindex];
1655 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1656 error = EADDRNOTAVAIL;
1657 break;
1658 }
1659 im6o->im6o_multicast_ifp = ifp;
1660 break;
1661
1662 case IPV6_MULTICAST_HOPS:
1663 {
1664 /*
1665 * Set the IP6 hoplimit for outgoing multicast packets.
1666 */
1667 int optval;
1668 if (m == NULL || m->m_len != sizeof(int)) {
1669 error = EINVAL;
1670 break;
1671 }
1672 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1673 if (optval < -1 || optval >= 256)
1674 error = EINVAL;
1675 else if (optval == -1)
1676 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1677 else
1678 im6o->im6o_multicast_hlim = optval;
1679 break;
1680 }
1681
1682 case IPV6_MULTICAST_LOOP:
1683 /*
1684 * Set the loopback flag for outgoing multicast packets.
1685 * Must be zero or one.
1686 */
1687 if (m == NULL || m->m_len != sizeof(u_int)) {
1688 error = EINVAL;
1689 break;
1690 }
1691 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1692 if (loop > 1) {
1693 error = EINVAL;
1694 break;
1695 }
1696 im6o->im6o_multicast_loop = loop;
1697 break;
1698
1699 case IPV6_JOIN_GROUP:
1700 /*
1701 * Add a multicast group membership.
1702 * Group must be a valid IP6 multicast address.
1703 */
1704 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1705 error = EINVAL;
1706 break;
1707 }
1708 mreq = mtod(m, struct ipv6_mreq *);
1709 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1710 /*
1711 * We use the unspecified address to specify to accept
1712 * all multicast addresses. Only super user is allowed
1713 * to do this.
1714 */
1715 if (suser(p->p_ucred, &p->p_acflag))
1716 {
1717 error = EACCES;
1718 break;
1719 }
1720 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1721 error = EINVAL;
1722 break;
1723 }
1724
1725 /*
1726 * If the interface is specified, validate it.
1727 */
1728 if (mreq->ipv6mr_interface < 0
1729 || if_index < mreq->ipv6mr_interface) {
1730 error = ENXIO; /* XXX EINVAL? */
1731 break;
1732 }
1733 /*
1734 * If no interface was explicitly specified, choose an
1735 * appropriate one according to the given multicast address.
1736 */
1737 if (mreq->ipv6mr_interface == 0) {
1738 /*
1739 * If the multicast address is in node-local scope,
1740 * the interface should be a loopback interface.
1741 * Otherwise, look up the routing table for the
1742 * address, and choose the outgoing interface.
1743 * XXX: is it a good approach?
1744 */
1745 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1746 ifp = &loif[0];
1747 } else {
1748 ro.ro_rt = NULL;
1749 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1750 bzero(dst, sizeof(*dst));
1751 dst->sin6_len = sizeof(struct sockaddr_in6);
1752 dst->sin6_family = AF_INET6;
1753 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1754 rtalloc((struct route *)&ro);
1755 if (ro.ro_rt == NULL) {
1756 error = EADDRNOTAVAIL;
1757 break;
1758 }
1759 ifp = ro.ro_rt->rt_ifp;
1760 rtfree(ro.ro_rt);
1761 }
1762 } else
1763 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1764
1765 /*
1766 * See if we found an interface, and confirm that it
1767 * supports multicast
1768 */
1769 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1770 error = EADDRNOTAVAIL;
1771 break;
1772 }
1773 /*
1774 * Put interface index into the multicast address,
1775 * if the address has link-local scope.
1776 */
1777 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1778 mreq->ipv6mr_multiaddr.s6_addr16[1]
1779 = htons(mreq->ipv6mr_interface);
1780 }
1781 /*
1782 * See if the membership already exists.
1783 */
1784 for (imm = im6o->im6o_memberships.lh_first;
1785 imm != NULL; imm = imm->i6mm_chain.le_next)
1786 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1787 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1788 &mreq->ipv6mr_multiaddr))
1789 break;
1790 if (imm != NULL) {
1791 error = EADDRINUSE;
1792 break;
1793 }
1794 /*
1795 * Everything looks good; add a new record to the multicast
1796 * address list for the given interface.
1797 */
1798 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error);
1799 if (!imm)
1800 break;
1801 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1802 break;
1803
1804 case IPV6_LEAVE_GROUP:
1805 /*
1806 * Drop a multicast group membership.
1807 * Group must be a valid IP6 multicast address.
1808 */
1809 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1810 error = EINVAL;
1811 break;
1812 }
1813 mreq = mtod(m, struct ipv6_mreq *);
1814 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1815 if (suser(p->p_ucred, &p->p_acflag))
1816 {
1817 error = EACCES;
1818 break;
1819 }
1820 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1821 error = EINVAL;
1822 break;
1823 }
1824 /*
1825 * If an interface address was specified, get a pointer
1826 * to its ifnet structure.
1827 */
1828 if (mreq->ipv6mr_interface < 0
1829 || if_index < mreq->ipv6mr_interface) {
1830 error = ENXIO; /* XXX EINVAL? */
1831 break;
1832 }
1833 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1834 /*
1835 * Put interface index into the multicast address,
1836 * if the address has link-local scope.
1837 */
1838 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1839 mreq->ipv6mr_multiaddr.s6_addr16[1]
1840 = htons(mreq->ipv6mr_interface);
1841 }
1842 /*
1843 * Find the membership in the membership list.
1844 */
1845 for (imm = im6o->im6o_memberships.lh_first;
1846 imm != NULL; imm = imm->i6mm_chain.le_next) {
1847 if ((ifp == NULL ||
1848 imm->i6mm_maddr->in6m_ifp == ifp) &&
1849 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1850 &mreq->ipv6mr_multiaddr))
1851 break;
1852 }
1853 if (imm == NULL) {
1854 /* Unable to resolve interface */
1855 error = EADDRNOTAVAIL;
1856 break;
1857 }
1858 /*
1859 * Give up the multicast address record to which the
1860 * membership points.
1861 */
1862 LIST_REMOVE(imm, i6mm_chain);
1863 in6_leavegroup(imm);
1864 break;
1865
1866 default:
1867 error = EOPNOTSUPP;
1868 break;
1869 }
1870
1871 /*
1872 * If all options have default values, no need to keep the mbuf.
1873 */
1874 if (im6o->im6o_multicast_ifp == NULL &&
1875 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1876 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1877 im6o->im6o_memberships.lh_first == NULL) {
1878 free(*im6op, M_IPMOPTS);
1879 *im6op = NULL;
1880 }
1881
1882 return(error);
1883 }
1884
1885 /*
1886 * Return the IP6 multicast options in response to user getsockopt().
1887 */
1888 static int
1889 ip6_getmoptions(optname, im6o, mp)
1890 int optname;
1891 struct ip6_moptions *im6o;
1892 struct mbuf **mp;
1893 {
1894 u_int *hlim, *loop, *ifindex;
1895
1896 *mp = m_get(M_WAIT, MT_SOOPTS);
1897
1898 switch (optname) {
1899
1900 case IPV6_MULTICAST_IF:
1901 ifindex = mtod(*mp, u_int *);
1902 (*mp)->m_len = sizeof(u_int);
1903 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1904 *ifindex = 0;
1905 else
1906 *ifindex = im6o->im6o_multicast_ifp->if_index;
1907 return(0);
1908
1909 case IPV6_MULTICAST_HOPS:
1910 hlim = mtod(*mp, u_int *);
1911 (*mp)->m_len = sizeof(u_int);
1912 if (im6o == NULL)
1913 *hlim = ip6_defmcasthlim;
1914 else
1915 *hlim = im6o->im6o_multicast_hlim;
1916 return(0);
1917
1918 case IPV6_MULTICAST_LOOP:
1919 loop = mtod(*mp, u_int *);
1920 (*mp)->m_len = sizeof(u_int);
1921 if (im6o == NULL)
1922 *loop = ip6_defmcasthlim;
1923 else
1924 *loop = im6o->im6o_multicast_loop;
1925 return(0);
1926
1927 default:
1928 return(EOPNOTSUPP);
1929 }
1930 }
1931
1932 /*
1933 * Discard the IP6 multicast options.
1934 */
1935 void
1936 ip6_freemoptions(im6o)
1937 struct ip6_moptions *im6o;
1938 {
1939 struct in6_multi_mship *imm;
1940
1941 if (im6o == NULL)
1942 return;
1943
1944 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
1945 LIST_REMOVE(imm, i6mm_chain);
1946 in6_leavegroup(imm);
1947 }
1948 free(im6o, M_IPMOPTS);
1949 }
1950
1951 /*
1952 * Set IPv6 outgoing packet options based on advanced API.
1953 */
1954 int
1955 ip6_setpktoptions(control, opt, priv)
1956 struct mbuf *control;
1957 struct ip6_pktopts *opt;
1958 int priv;
1959 {
1960 struct cmsghdr *cm = 0;
1961
1962 if (control == 0 || opt == 0)
1963 return(EINVAL);
1964
1965 bzero(opt, sizeof(*opt));
1966 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
1967
1968 /*
1969 * XXX: Currently, we assume all the optional information is stored
1970 * in a single mbuf.
1971 */
1972 if (control->m_next)
1973 return(EINVAL);
1974
1975 opt->ip6po_m = control;
1976
1977 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
1978 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1979 cm = mtod(control, struct cmsghdr *);
1980 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
1981 return(EINVAL);
1982 if (cm->cmsg_level != IPPROTO_IPV6)
1983 continue;
1984
1985 switch (cm->cmsg_type) {
1986 case IPV6_PKTINFO:
1987 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
1988 return(EINVAL);
1989 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1990 if (opt->ip6po_pktinfo->ipi6_ifindex &&
1991 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
1992 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
1993 htons(opt->ip6po_pktinfo->ipi6_ifindex);
1994
1995 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
1996 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
1997 return(ENXIO);
1998 }
1999
2000 /*
2001 * Check if the requested source address is indeed a
2002 * unicast address assigned to the node, and can be
2003 * used as the packet's source address.
2004 */
2005 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2006 struct ifaddr *ia;
2007 struct in6_ifaddr *ia6;
2008 struct sockaddr_in6 sin6;
2009
2010 bzero(&sin6, sizeof(sin6));
2011 sin6.sin6_len = sizeof(sin6);
2012 sin6.sin6_family = AF_INET6;
2013 sin6.sin6_addr =
2014 opt->ip6po_pktinfo->ipi6_addr;
2015 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2016 if (ia == NULL ||
2017 (opt->ip6po_pktinfo->ipi6_ifindex &&
2018 (ia->ifa_ifp->if_index !=
2019 opt->ip6po_pktinfo->ipi6_ifindex))) {
2020 return(EADDRNOTAVAIL);
2021 }
2022 ia6 = (struct in6_ifaddr *)ia;
2023 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
2024 return(EADDRNOTAVAIL);
2025 }
2026
2027 /*
2028 * Check if the requested source address is
2029 * indeed a unicast address assigned to the
2030 * node.
2031 */
2032 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2033 return(EADDRNOTAVAIL);
2034 }
2035 break;
2036
2037 case IPV6_HOPLIMIT:
2038 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2039 return(EINVAL);
2040
2041 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim,
2042 sizeof(opt->ip6po_hlim));
2043 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2044 return(EINVAL);
2045 break;
2046
2047 case IPV6_NEXTHOP:
2048 if (!priv)
2049 return(EPERM);
2050
2051 if (cm->cmsg_len < sizeof(u_char) ||
2052 /* check if cmsg_len is large enough for sa_len */
2053 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2054 return(EINVAL);
2055
2056 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2057
2058 break;
2059
2060 case IPV6_HOPOPTS:
2061 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2062 return(EINVAL);
2063 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2064 if (cm->cmsg_len !=
2065 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
2066 return(EINVAL);
2067 break;
2068
2069 case IPV6_DSTOPTS:
2070 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2071 return(EINVAL);
2072
2073 /*
2074 * If there is no routing header yet, the destination
2075 * options header should be put on the 1st part.
2076 * Otherwise, the header should be on the 2nd part.
2077 * (See RFC 2460, section 4.1)
2078 */
2079 if (opt->ip6po_rthdr == NULL) {
2080 opt->ip6po_dest1 =
2081 (struct ip6_dest *)CMSG_DATA(cm);
2082 if (cm->cmsg_len !=
2083 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
2084 << 3))
2085 return(EINVAL);
2086 }
2087 else {
2088 opt->ip6po_dest2 =
2089 (struct ip6_dest *)CMSG_DATA(cm);
2090 if (cm->cmsg_len !=
2091 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
2092 << 3))
2093 return(EINVAL);
2094 }
2095 break;
2096
2097 case IPV6_RTHDR:
2098 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2099 return(EINVAL);
2100 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
2101 if (cm->cmsg_len !=
2102 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
2103 return(EINVAL);
2104 switch (opt->ip6po_rthdr->ip6r_type) {
2105 case IPV6_RTHDR_TYPE_0:
2106 if (opt->ip6po_rthdr->ip6r_segleft == 0)
2107 return(EINVAL);
2108 break;
2109 default:
2110 return(EINVAL);
2111 }
2112 break;
2113
2114 default:
2115 return(ENOPROTOOPT);
2116 }
2117 }
2118
2119 return(0);
2120 }
2121
2122 /*
2123 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2124 * packet to the input queue of a specified interface. Note that this
2125 * calls the output routine of the loopback "driver", but with an interface
2126 * pointer that might NOT be &loif -- easier than replicating that code here.
2127 */
2128 void
2129 ip6_mloopback(ifp, m, dst)
2130 struct ifnet *ifp;
2131 struct mbuf *m;
2132 struct sockaddr_in6 *dst;
2133 {
2134 struct mbuf *copym;
2135 struct ip6_hdr *ip6;
2136
2137 copym = m_copy(m, 0, M_COPYALL);
2138 if (copym == NULL)
2139 return;
2140
2141 /*
2142 * Make sure to deep-copy IPv6 header portion in case the data
2143 * is in an mbuf cluster, so that we can safely override the IPv6
2144 * header portion later.
2145 */
2146 if ((copym->m_flags & M_EXT) != 0 ||
2147 copym->m_len < sizeof(struct ip6_hdr)) {
2148 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2149 if (copym == NULL)
2150 return;
2151 }
2152
2153 #ifdef DIAGNOSTIC
2154 if (copym->m_len < sizeof(*ip6)) {
2155 m_freem(copym);
2156 return;
2157 }
2158 #endif
2159
2160 ip6 = mtod(copym, struct ip6_hdr *);
2161 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2162 ip6->ip6_src.s6_addr16[1] = 0;
2163 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2164 ip6->ip6_dst.s6_addr16[1] = 0;
2165
2166 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2167 }
2168
2169 /*
2170 * Chop IPv6 header off from the payload.
2171 */
2172 static int
2173 ip6_splithdr(m, exthdrs)
2174 struct mbuf *m;
2175 struct ip6_exthdrs *exthdrs;
2176 {
2177 struct mbuf *mh;
2178 struct ip6_hdr *ip6;
2179
2180 ip6 = mtod(m, struct ip6_hdr *);
2181 if (m->m_len > sizeof(*ip6)) {
2182 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2183 if (mh == 0) {
2184 m_freem(m);
2185 return ENOBUFS;
2186 }
2187 M_COPY_PKTHDR(mh, m);
2188 MH_ALIGN(mh, sizeof(*ip6));
2189 m->m_flags &= ~M_PKTHDR;
2190 m->m_len -= sizeof(*ip6);
2191 m->m_data += sizeof(*ip6);
2192 mh->m_next = m;
2193 m = mh;
2194 m->m_len = sizeof(*ip6);
2195 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2196 }
2197 exthdrs->ip6e_ip6 = m;
2198 return 0;
2199 }
2200
2201 /*
2202 * Compute IPv6 extension header length.
2203 */
2204 int
2205 ip6_optlen(in6p)
2206 struct in6pcb *in6p;
2207 {
2208 int len;
2209
2210 if (!in6p->in6p_outputopts)
2211 return 0;
2212
2213 len = 0;
2214 #define elen(x) \
2215 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2216
2217 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2218 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2219 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2220 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2221 return len;
2222 #undef elen
2223 }
2224