ip6_output.c revision 1.34 1 /* $NetBSD: ip6_output.c,v 1.34 2001/03/30 11:08:57 itojun Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
66 */
67
68 #include "opt_inet.h"
69 #include "opt_ipsec.h"
70 #include "opt_pfil_hooks.h"
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81
82 #include <net/if.h>
83 #include <net/route.h>
84 #ifdef PFIL_HOOKS
85 #include <net/pfil.h>
86 #endif
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/icmp6.h>
92 #include <netinet6/ip6_var.h>
93 #include <netinet6/in6_pcb.h>
94 #include <netinet6/nd6.h>
95
96 #ifdef IPSEC
97 #include <netinet6/ipsec.h>
98 #include <netkey/key.h>
99 #endif /* IPSEC */
100
101 #include "loop.h"
102
103 #include <net/net_osdep.h>
104
105 #ifdef IPV6FIREWALL
106 #include <netinet6/ip6_fw.h>
107 #endif
108
109 #ifdef PFIL_HOOKS
110 extern struct pfil_head inet6_pfil_hook; /* XXX */
111 #endif
112
113 struct ip6_exthdrs {
114 struct mbuf *ip6e_ip6;
115 struct mbuf *ip6e_hbh;
116 struct mbuf *ip6e_dest1;
117 struct mbuf *ip6e_rthdr;
118 struct mbuf *ip6e_dest2;
119 };
120
121 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
122 struct socket *));
123 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
124 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
125 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
126 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
127 struct ip6_frag **));
128 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
129 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
130
131 extern struct ifnet loif[NLOOP];
132
133 /*
134 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
135 * header (with pri, len, nxt, hlim, src, dst).
136 * This function may modify ver and hlim only.
137 * The mbuf chain containing the packet will be freed.
138 * The mbuf opt, if present, will not be freed.
139 */
140 int
141 ip6_output(m0, opt, ro, flags, im6o, ifpp)
142 struct mbuf *m0;
143 struct ip6_pktopts *opt;
144 struct route_in6 *ro;
145 int flags;
146 struct ip6_moptions *im6o;
147 struct ifnet **ifpp; /* XXX: just for statistics */
148 {
149 struct ip6_hdr *ip6, *mhip6;
150 struct ifnet *ifp, *origifp;
151 struct mbuf *m = m0;
152 int hlen, tlen, len, off;
153 struct route_in6 ip6route;
154 struct sockaddr_in6 *dst;
155 int error = 0;
156 struct in6_ifaddr *ia;
157 u_long mtu;
158 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
159 struct ip6_exthdrs exthdrs;
160 struct in6_addr finaldst;
161 struct route_in6 *ro_pmtu = NULL;
162 int hdrsplit = 0;
163 int needipsec = 0;
164 #ifdef IPSEC
165 int needipsectun = 0;
166 struct socket *so;
167 struct secpolicy *sp = NULL;
168
169 /* for AH processing. stupid to have "socket" variable in IP layer... */
170 so = ipsec_getsocket(m);
171 (void)ipsec_setsocket(m, NULL);
172 ip6 = mtod(m, struct ip6_hdr *);
173 #endif /* IPSEC */
174
175 #define MAKE_EXTHDR(hp, mp) \
176 do { \
177 if (hp) { \
178 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
179 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
180 ((eh)->ip6e_len + 1) << 3); \
181 if (error) \
182 goto freehdrs; \
183 } \
184 } while (0)
185
186 bzero(&exthdrs, sizeof(exthdrs));
187 if (opt) {
188 /* Hop-by-Hop options header */
189 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
190 /* Destination options header(1st part) */
191 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
192 /* Routing header */
193 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
194 /* Destination options header(2nd part) */
195 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
196 }
197
198 #ifdef IPSEC
199 /* get a security policy for this packet */
200 if (so == NULL)
201 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
202 else
203 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
204
205 if (sp == NULL) {
206 ipsec6stat.out_inval++;
207 goto freehdrs;
208 }
209
210 error = 0;
211
212 /* check policy */
213 switch (sp->policy) {
214 case IPSEC_POLICY_DISCARD:
215 /*
216 * This packet is just discarded.
217 */
218 ipsec6stat.out_polvio++;
219 goto freehdrs;
220
221 case IPSEC_POLICY_BYPASS:
222 case IPSEC_POLICY_NONE:
223 /* no need to do IPsec. */
224 needipsec = 0;
225 break;
226
227 case IPSEC_POLICY_IPSEC:
228 if (sp->req == NULL) {
229 /* XXX should be panic ? */
230 printf("ip6_output: No IPsec request specified.\n");
231 error = EINVAL;
232 goto freehdrs;
233 }
234 needipsec = 1;
235 break;
236
237 case IPSEC_POLICY_ENTRUST:
238 default:
239 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
240 }
241 #endif /* IPSEC */
242
243 /*
244 * Calculate the total length of the extension header chain.
245 * Keep the length of the unfragmentable part for fragmentation.
246 */
247 optlen = 0;
248 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
249 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
250 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
251 unfragpartlen = optlen + sizeof(struct ip6_hdr);
252 /* NOTE: we don't add AH/ESP length here. do that later. */
253 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
254
255 /*
256 * If we need IPsec, or there is at least one extension header,
257 * separate IP6 header from the payload.
258 */
259 if ((needipsec || optlen) && !hdrsplit) {
260 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
261 m = NULL;
262 goto freehdrs;
263 }
264 m = exthdrs.ip6e_ip6;
265 hdrsplit++;
266 }
267
268 /* adjust pointer */
269 ip6 = mtod(m, struct ip6_hdr *);
270
271 /* adjust mbuf packet header length */
272 m->m_pkthdr.len += optlen;
273 plen = m->m_pkthdr.len - sizeof(*ip6);
274
275 /* If this is a jumbo payload, insert a jumbo payload option. */
276 if (plen > IPV6_MAXPACKET) {
277 if (!hdrsplit) {
278 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
279 m = NULL;
280 goto freehdrs;
281 }
282 m = exthdrs.ip6e_ip6;
283 hdrsplit++;
284 }
285 /* adjust pointer */
286 ip6 = mtod(m, struct ip6_hdr *);
287 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
288 goto freehdrs;
289 ip6->ip6_plen = 0;
290 } else
291 ip6->ip6_plen = htons(plen);
292
293 /*
294 * Concatenate headers and fill in next header fields.
295 * Here we have, on "m"
296 * IPv6 payload
297 * and we insert headers accordingly. Finally, we should be getting:
298 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
299 *
300 * during the header composing process, "m" points to IPv6 header.
301 * "mprev" points to an extension header prior to esp.
302 */
303 {
304 u_char *nexthdrp = &ip6->ip6_nxt;
305 struct mbuf *mprev = m;
306
307 /*
308 * we treat dest2 specially. this makes IPsec processing
309 * much easier.
310 *
311 * result: IPv6 dest2 payload
312 * m and mprev will point to IPv6 header.
313 */
314 if (exthdrs.ip6e_dest2) {
315 if (!hdrsplit)
316 panic("assumption failed: hdr not split");
317 exthdrs.ip6e_dest2->m_next = m->m_next;
318 m->m_next = exthdrs.ip6e_dest2;
319 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
320 ip6->ip6_nxt = IPPROTO_DSTOPTS;
321 }
322
323 #define MAKE_CHAIN(m, mp, p, i)\
324 do {\
325 if (m) {\
326 if (!hdrsplit) \
327 panic("assumption failed: hdr not split"); \
328 *mtod((m), u_char *) = *(p);\
329 *(p) = (i);\
330 p = mtod((m), u_char *);\
331 (m)->m_next = (mp)->m_next;\
332 (mp)->m_next = (m);\
333 (mp) = (m);\
334 }\
335 } while (0)
336 /*
337 * result: IPv6 hbh dest1 rthdr dest2 payload
338 * m will point to IPv6 header. mprev will point to the
339 * extension header prior to dest2 (rthdr in the above case).
340 */
341 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
342 nexthdrp, IPPROTO_HOPOPTS);
343 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
344 nexthdrp, IPPROTO_DSTOPTS);
345 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
346 nexthdrp, IPPROTO_ROUTING);
347
348 #ifdef IPSEC
349 if (!needipsec)
350 goto skip_ipsec2;
351
352 /*
353 * pointers after IPsec headers are not valid any more.
354 * other pointers need a great care too.
355 * (IPsec routines should not mangle mbufs prior to AH/ESP)
356 */
357 exthdrs.ip6e_dest2 = NULL;
358
359 {
360 struct ip6_rthdr *rh = NULL;
361 int segleft_org = 0;
362 struct ipsec_output_state state;
363
364 if (exthdrs.ip6e_rthdr) {
365 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
366 segleft_org = rh->ip6r_segleft;
367 rh->ip6r_segleft = 0;
368 }
369
370 bzero(&state, sizeof(state));
371 state.m = m;
372 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
373 &needipsectun);
374 m = state.m;
375 if (error) {
376 /* mbuf is already reclaimed in ipsec6_output_trans. */
377 m = NULL;
378 switch (error) {
379 case EHOSTUNREACH:
380 case ENETUNREACH:
381 case EMSGSIZE:
382 case ENOBUFS:
383 case ENOMEM:
384 break;
385 default:
386 printf("ip6_output (ipsec): error code %d\n", error);
387 /*fall through*/
388 case ENOENT:
389 /* don't show these error codes to the user */
390 error = 0;
391 break;
392 }
393 goto bad;
394 }
395 if (exthdrs.ip6e_rthdr) {
396 /* ah6_output doesn't modify mbuf chain */
397 rh->ip6r_segleft = segleft_org;
398 }
399 }
400 skip_ipsec2:;
401 #endif
402 }
403
404 /*
405 * If there is a routing header, replace destination address field
406 * with the first hop of the routing header.
407 */
408 if (exthdrs.ip6e_rthdr) {
409 struct ip6_rthdr *rh =
410 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
411 struct ip6_rthdr *));
412 struct ip6_rthdr0 *rh0;
413
414 finaldst = ip6->ip6_dst;
415 switch (rh->ip6r_type) {
416 case IPV6_RTHDR_TYPE_0:
417 rh0 = (struct ip6_rthdr0 *)rh;
418 ip6->ip6_dst = rh0->ip6r0_addr[0];
419 bcopy((caddr_t)&rh0->ip6r0_addr[1],
420 (caddr_t)&rh0->ip6r0_addr[0],
421 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)
422 );
423 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
424 break;
425 default: /* is it possible? */
426 error = EINVAL;
427 goto bad;
428 }
429 }
430
431 /* Source address validation */
432 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
433 (flags & IPV6_DADOUTPUT) == 0) {
434 error = EOPNOTSUPP;
435 ip6stat.ip6s_badscope++;
436 goto bad;
437 }
438 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
439 error = EOPNOTSUPP;
440 ip6stat.ip6s_badscope++;
441 goto bad;
442 }
443
444 ip6stat.ip6s_localout++;
445
446 /*
447 * Route packet.
448 */
449 if (ro == 0) {
450 ro = &ip6route;
451 bzero((caddr_t)ro, sizeof(*ro));
452 }
453 ro_pmtu = ro;
454 if (opt && opt->ip6po_rthdr)
455 ro = &opt->ip6po_route;
456 dst = (struct sockaddr_in6 *)&ro->ro_dst;
457 /*
458 * If there is a cached route,
459 * check that it is to the same destination
460 * and is still up. If not, free it and try again.
461 */
462 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
463 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
464 RTFREE(ro->ro_rt);
465 ro->ro_rt = (struct rtentry *)0;
466 }
467 if (ro->ro_rt == 0) {
468 bzero(dst, sizeof(*dst));
469 dst->sin6_family = AF_INET6;
470 dst->sin6_len = sizeof(struct sockaddr_in6);
471 dst->sin6_addr = ip6->ip6_dst;
472 }
473 #ifdef IPSEC
474 if (needipsec && needipsectun) {
475 struct ipsec_output_state state;
476
477 /*
478 * All the extension headers will become inaccessible
479 * (since they can be encrypted).
480 * Don't panic, we need no more updates to extension headers
481 * on inner IPv6 packet (since they are now encapsulated).
482 *
483 * IPv6 [ESP|AH] IPv6 [extension headers] payload
484 */
485 bzero(&exthdrs, sizeof(exthdrs));
486 exthdrs.ip6e_ip6 = m;
487
488 bzero(&state, sizeof(state));
489 state.m = m;
490 state.ro = (struct route *)ro;
491 state.dst = (struct sockaddr *)dst;
492
493 error = ipsec6_output_tunnel(&state, sp, flags);
494
495 m = state.m;
496 ro = (struct route_in6 *)state.ro;
497 dst = (struct sockaddr_in6 *)state.dst;
498 if (error) {
499 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
500 m0 = m = NULL;
501 m = NULL;
502 switch (error) {
503 case EHOSTUNREACH:
504 case ENETUNREACH:
505 case EMSGSIZE:
506 case ENOBUFS:
507 case ENOMEM:
508 break;
509 default:
510 printf("ip6_output (ipsec): error code %d\n", error);
511 /*fall through*/
512 case ENOENT:
513 /* don't show these error codes to the user */
514 error = 0;
515 break;
516 }
517 goto bad;
518 }
519
520 exthdrs.ip6e_ip6 = m;
521 }
522 #endif /*IPSEC*/
523
524 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
525 /* Unicast */
526
527 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
528 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
529 /* xxx
530 * interface selection comes here
531 * if an interface is specified from an upper layer,
532 * ifp must point it.
533 */
534 if (ro->ro_rt == 0) {
535 /*
536 * non-bsdi always clone routes, if parent is
537 * PRF_CLONING.
538 */
539 rtalloc((struct route *)ro);
540 }
541 if (ro->ro_rt == 0) {
542 ip6stat.ip6s_noroute++;
543 error = EHOSTUNREACH;
544 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
545 goto bad;
546 }
547 ia = ifatoia6(ro->ro_rt->rt_ifa);
548 ifp = ro->ro_rt->rt_ifp;
549 ro->ro_rt->rt_use++;
550 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
551 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
552 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
553
554 in6_ifstat_inc(ifp, ifs6_out_request);
555
556 /*
557 * Check if the outgoing interface conflicts with
558 * the interface specified by ifi6_ifindex (if specified).
559 * Note that loopback interface is always okay.
560 * (this may happen when we are sending a packet to one of
561 * our own addresses.)
562 */
563 if (opt && opt->ip6po_pktinfo
564 && opt->ip6po_pktinfo->ipi6_ifindex) {
565 if (!(ifp->if_flags & IFF_LOOPBACK)
566 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
567 ip6stat.ip6s_noroute++;
568 in6_ifstat_inc(ifp, ifs6_out_discard);
569 error = EHOSTUNREACH;
570 goto bad;
571 }
572 }
573
574 if (opt && opt->ip6po_hlim != -1)
575 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
576 } else {
577 /* Multicast */
578 struct in6_multi *in6m;
579
580 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
581
582 /*
583 * See if the caller provided any multicast options
584 */
585 ifp = NULL;
586 if (im6o != NULL) {
587 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
588 if (im6o->im6o_multicast_ifp != NULL)
589 ifp = im6o->im6o_multicast_ifp;
590 } else
591 ip6->ip6_hlim = ip6_defmcasthlim;
592
593 /*
594 * See if the caller provided the outgoing interface
595 * as an ancillary data.
596 * Boundary check for ifindex is assumed to be already done.
597 */
598 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
599 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
600
601 /*
602 * If the destination is a node-local scope multicast,
603 * the packet should be loop-backed only.
604 */
605 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
606 /*
607 * If the outgoing interface is already specified,
608 * it should be a loopback interface.
609 */
610 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
611 ip6stat.ip6s_badscope++;
612 error = ENETUNREACH; /* XXX: better error? */
613 /* XXX correct ifp? */
614 in6_ifstat_inc(ifp, ifs6_out_discard);
615 goto bad;
616 } else {
617 ifp = &loif[0];
618 }
619 }
620
621 if (opt && opt->ip6po_hlim != -1)
622 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
623
624 /*
625 * If caller did not provide an interface lookup a
626 * default in the routing table. This is either a
627 * default for the speicfied group (i.e. a host
628 * route), or a multicast default (a route for the
629 * ``net'' ff00::/8).
630 */
631 if (ifp == NULL) {
632 if (ro->ro_rt == 0) {
633 ro->ro_rt = rtalloc1((struct sockaddr *)
634 &ro->ro_dst, 0
635 );
636 }
637 if (ro->ro_rt == 0) {
638 ip6stat.ip6s_noroute++;
639 error = EHOSTUNREACH;
640 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
641 goto bad;
642 }
643 ia = ifatoia6(ro->ro_rt->rt_ifa);
644 ifp = ro->ro_rt->rt_ifp;
645 ro->ro_rt->rt_use++;
646 }
647
648 if ((flags & IPV6_FORWARDING) == 0)
649 in6_ifstat_inc(ifp, ifs6_out_request);
650 in6_ifstat_inc(ifp, ifs6_out_mcast);
651
652 /*
653 * Confirm that the outgoing interface supports multicast.
654 */
655 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
656 ip6stat.ip6s_noroute++;
657 in6_ifstat_inc(ifp, ifs6_out_discard);
658 error = ENETUNREACH;
659 goto bad;
660 }
661 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
662 if (in6m != NULL &&
663 (im6o == NULL || im6o->im6o_multicast_loop)) {
664 /*
665 * If we belong to the destination multicast group
666 * on the outgoing interface, and the caller did not
667 * forbid loopback, loop back a copy.
668 */
669 ip6_mloopback(ifp, m, dst);
670 } else {
671 /*
672 * If we are acting as a multicast router, perform
673 * multicast forwarding as if the packet had just
674 * arrived on the interface to which we are about
675 * to send. The multicast forwarding function
676 * recursively calls this function, using the
677 * IPV6_FORWARDING flag to prevent infinite recursion.
678 *
679 * Multicasts that are looped back by ip6_mloopback(),
680 * above, will be forwarded by the ip6_input() routine,
681 * if necessary.
682 */
683 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
684 if (ip6_mforward(ip6, ifp, m) != 0) {
685 m_freem(m);
686 goto done;
687 }
688 }
689 }
690 /*
691 * Multicasts with a hoplimit of zero may be looped back,
692 * above, but must not be transmitted on a network.
693 * Also, multicasts addressed to the loopback interface
694 * are not sent -- the above call to ip6_mloopback() will
695 * loop back a copy if this host actually belongs to the
696 * destination group on the loopback interface.
697 */
698 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
699 m_freem(m);
700 goto done;
701 }
702 }
703
704 /*
705 * Fill the outgoing inteface to tell the upper layer
706 * to increment per-interface statistics.
707 */
708 if (ifpp)
709 *ifpp = ifp;
710
711 /*
712 * Determine path MTU.
713 */
714 if (ro_pmtu != ro) {
715 /* The first hop and the final destination may differ. */
716 struct sockaddr_in6 *sin6_fin =
717 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
718 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
719 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
720 &finaldst))) {
721 RTFREE(ro_pmtu->ro_rt);
722 ro_pmtu->ro_rt = (struct rtentry *)0;
723 }
724 if (ro_pmtu->ro_rt == 0) {
725 bzero(sin6_fin, sizeof(*sin6_fin));
726 sin6_fin->sin6_family = AF_INET6;
727 sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
728 sin6_fin->sin6_addr = finaldst;
729
730 rtalloc((struct route *)ro_pmtu);
731 }
732 }
733 if (ro_pmtu->ro_rt != NULL) {
734 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
735
736 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
737 if (mtu > ifmtu || mtu == 0) {
738 /*
739 * The MTU on the route is larger than the MTU on
740 * the interface! This shouldn't happen, unless the
741 * MTU of the interface has been changed after the
742 * interface was brought up. Change the MTU in the
743 * route to match the interface MTU (as long as the
744 * field isn't locked).
745 *
746 * if MTU on the route is 0, we need to fix the MTU.
747 * this case happens with path MTU discovery timeouts.
748 */
749 mtu = ifmtu;
750 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
751 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
752 }
753 } else {
754 mtu = nd_ifinfo[ifp->if_index].linkmtu;
755 }
756
757 /* Fake scoped addresses */
758 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
759 /*
760 * If source or destination address is a scoped address, and
761 * the packet is going to be sent to a loopback interface,
762 * we should keep the original interface.
763 */
764
765 /*
766 * XXX: this is a very experimental and temporary solution.
767 * We eventually have sockaddr_in6 and use the sin6_scope_id
768 * field of the structure here.
769 * We rely on the consistency between two scope zone ids
770 * of source add destination, which should already be assured
771 * Larger scopes than link will be supported in the near
772 * future.
773 */
774 origifp = NULL;
775 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
776 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
777 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
778 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
779 /*
780 * XXX: origifp can be NULL even in those two cases above.
781 * For example, if we remove the (only) link-local address
782 * from the loopback interface, and try to send a link-local
783 * address without link-id information. Then the source
784 * address is ::1, and the destination address is the
785 * link-local address with its s6_addr16[1] being zero.
786 * What is worse, if the packet goes to the loopback interface
787 * by a default rejected route, the null pointer would be
788 * passed to looutput, and the kernel would hang.
789 * The following last resort would prevent such disaster.
790 */
791 if (origifp == NULL)
792 origifp = ifp;
793 }
794 else
795 origifp = ifp;
796 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
797 ip6->ip6_src.s6_addr16[1] = 0;
798 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
799 ip6->ip6_dst.s6_addr16[1] = 0;
800
801 /*
802 * If the outgoing packet contains a hop-by-hop options header,
803 * it must be examined and processed even by the source node.
804 * (RFC 2460, section 4.)
805 */
806 if (exthdrs.ip6e_hbh) {
807 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
808 u_int32_t dummy1; /* XXX unused */
809 u_int32_t dummy2; /* XXX unused */
810
811 /*
812 * XXX: if we have to send an ICMPv6 error to the sender,
813 * we need the M_LOOP flag since icmp6_error() expects
814 * the IPv6 and the hop-by-hop options header are
815 * continuous unless the flag is set.
816 */
817 m->m_flags |= M_LOOP;
818 m->m_pkthdr.rcvif = ifp;
819 if (ip6_process_hopopts(m,
820 (u_int8_t *)(hbh + 1),
821 ((hbh->ip6h_len + 1) << 3) -
822 sizeof(struct ip6_hbh),
823 &dummy1, &dummy2) < 0) {
824 /* m was already freed at this point */
825 error = EINVAL;/* better error? */
826 goto done;
827 }
828 m->m_flags &= ~M_LOOP; /* XXX */
829 m->m_pkthdr.rcvif = NULL;
830 }
831
832 #ifdef PFIL_HOOKS
833 /*
834 * Run through list of hooks for output packets.
835 */
836 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp,
837 PFIL_OUT)) != 0)
838 goto done;
839 if (m == NULL)
840 goto done;
841 ip6 = mtod(m, struct ip6_hdr *);
842 #endif /* PFIL_HOOKS */
843 /*
844 * Send the packet to the outgoing interface.
845 * If necessary, do IPv6 fragmentation before sending.
846 */
847 tlen = m->m_pkthdr.len;
848 if (tlen <= mtu
849 #ifdef notyet
850 /*
851 * On any link that cannot convey a 1280-octet packet in one piece,
852 * link-specific fragmentation and reassembly must be provided at
853 * a layer below IPv6. [RFC 2460, sec.5]
854 * Thus if the interface has ability of link-level fragmentation,
855 * we can just send the packet even if the packet size is
856 * larger than the link's MTU.
857 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
858 */
859
860 || ifp->if_flags & IFF_FRAGMENTABLE
861 #endif
862 )
863 {
864 #ifdef IFA_STATS
865 struct in6_ifaddr *ia6;
866 ip6 = mtod(m, struct ip6_hdr *);
867 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
868 if (ia6) {
869 ia6->ia_ifa.ifa_data.ifad_outbytes +=
870 m->m_pkthdr.len;
871 }
872 #endif
873 #ifdef IPSEC
874 /* clean ipsec history once it goes out of the node */
875 ipsec_delaux(m);
876 #endif
877 #ifdef OLDIP6OUTPUT
878 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst,
879 ro->ro_rt);
880 #else
881 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
882 #endif
883 goto done;
884 } else if (mtu < IPV6_MMTU) {
885 /*
886 * note that path MTU is never less than IPV6_MMTU
887 * (see icmp6_input).
888 */
889 error = EMSGSIZE;
890 in6_ifstat_inc(ifp, ifs6_out_fragfail);
891 goto bad;
892 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
893 error = EMSGSIZE;
894 in6_ifstat_inc(ifp, ifs6_out_fragfail);
895 goto bad;
896 } else {
897 struct mbuf **mnext, *m_frgpart;
898 struct ip6_frag *ip6f;
899 u_int32_t id = htonl(ip6_id++);
900 u_char nextproto;
901
902 /*
903 * Too large for the destination or interface;
904 * fragment if possible.
905 * Must be able to put at least 8 bytes per fragment.
906 */
907 hlen = unfragpartlen;
908 if (mtu > IPV6_MAXPACKET)
909 mtu = IPV6_MAXPACKET;
910 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
911 if (len < 8) {
912 error = EMSGSIZE;
913 in6_ifstat_inc(ifp, ifs6_out_fragfail);
914 goto bad;
915 }
916
917 mnext = &m->m_nextpkt;
918
919 /*
920 * Change the next header field of the last header in the
921 * unfragmentable part.
922 */
923 if (exthdrs.ip6e_rthdr) {
924 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
925 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
926 } else if (exthdrs.ip6e_dest1) {
927 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
928 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
929 } else if (exthdrs.ip6e_hbh) {
930 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
931 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
932 } else {
933 nextproto = ip6->ip6_nxt;
934 ip6->ip6_nxt = IPPROTO_FRAGMENT;
935 }
936
937 /*
938 * Loop through length of segment after first fragment,
939 * make new header and copy data of each part and link onto chain.
940 */
941 m0 = m;
942 for (off = hlen; off < tlen; off += len) {
943 MGETHDR(m, M_DONTWAIT, MT_HEADER);
944 if (!m) {
945 error = ENOBUFS;
946 ip6stat.ip6s_odropped++;
947 goto sendorfree;
948 }
949 m->m_flags = m0->m_flags & M_COPYFLAGS;
950 *mnext = m;
951 mnext = &m->m_nextpkt;
952 m->m_data += max_linkhdr;
953 mhip6 = mtod(m, struct ip6_hdr *);
954 *mhip6 = *ip6;
955 m->m_len = sizeof(*mhip6);
956 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
957 if (error) {
958 ip6stat.ip6s_odropped++;
959 goto sendorfree;
960 }
961 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
962 if (off + len >= tlen)
963 len = tlen - off;
964 else
965 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
966 mhip6->ip6_plen = htons((u_short)(len + hlen +
967 sizeof(*ip6f) -
968 sizeof(struct ip6_hdr)));
969 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
970 error = ENOBUFS;
971 ip6stat.ip6s_odropped++;
972 goto sendorfree;
973 }
974 m_cat(m, m_frgpart);
975 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
976 m->m_pkthdr.rcvif = (struct ifnet *)0;
977 ip6f->ip6f_reserved = 0;
978 ip6f->ip6f_ident = id;
979 ip6f->ip6f_nxt = nextproto;
980 ip6stat.ip6s_ofragments++;
981 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
982 }
983
984 in6_ifstat_inc(ifp, ifs6_out_fragok);
985 }
986
987 /*
988 * Remove leading garbages.
989 */
990 sendorfree:
991 m = m0->m_nextpkt;
992 m0->m_nextpkt = 0;
993 m_freem(m0);
994 for (m0 = m; m; m = m0) {
995 m0 = m->m_nextpkt;
996 m->m_nextpkt = 0;
997 if (error == 0) {
998 #ifdef IFA_STATS
999 struct in6_ifaddr *ia6;
1000 ip6 = mtod(m, struct ip6_hdr *);
1001 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1002 if (ia6) {
1003 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1004 m->m_pkthdr.len;
1005 }
1006 #endif
1007 #ifdef IPSEC
1008 /* clean ipsec history once it goes out of the node */
1009 ipsec_delaux(m);
1010 #endif
1011 #ifdef OLDIP6OUTPUT
1012 error = (*ifp->if_output)(ifp, m,
1013 (struct sockaddr *)dst,
1014 ro->ro_rt);
1015 #else
1016 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1017 #endif
1018 } else
1019 m_freem(m);
1020 }
1021
1022 if (error == 0)
1023 ip6stat.ip6s_fragmented++;
1024
1025 done:
1026 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1027 RTFREE(ro->ro_rt);
1028 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1029 RTFREE(ro_pmtu->ro_rt);
1030 }
1031
1032 #ifdef IPSEC
1033 if (sp != NULL)
1034 key_freesp(sp);
1035 #endif /* IPSEC */
1036
1037 return(error);
1038
1039 freehdrs:
1040 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1041 m_freem(exthdrs.ip6e_dest1);
1042 m_freem(exthdrs.ip6e_rthdr);
1043 m_freem(exthdrs.ip6e_dest2);
1044 /* fall through */
1045 bad:
1046 m_freem(m);
1047 goto done;
1048 }
1049
1050 static int
1051 ip6_copyexthdr(mp, hdr, hlen)
1052 struct mbuf **mp;
1053 caddr_t hdr;
1054 int hlen;
1055 {
1056 struct mbuf *m;
1057
1058 if (hlen > MCLBYTES)
1059 return(ENOBUFS); /* XXX */
1060
1061 MGET(m, M_DONTWAIT, MT_DATA);
1062 if (!m)
1063 return(ENOBUFS);
1064
1065 if (hlen > MLEN) {
1066 MCLGET(m, M_DONTWAIT);
1067 if ((m->m_flags & M_EXT) == 0) {
1068 m_free(m);
1069 return(ENOBUFS);
1070 }
1071 }
1072 m->m_len = hlen;
1073 if (hdr)
1074 bcopy(hdr, mtod(m, caddr_t), hlen);
1075
1076 *mp = m;
1077 return(0);
1078 }
1079
1080 /*
1081 * Insert jumbo payload option.
1082 */
1083 static int
1084 ip6_insert_jumboopt(exthdrs, plen)
1085 struct ip6_exthdrs *exthdrs;
1086 u_int32_t plen;
1087 {
1088 struct mbuf *mopt;
1089 u_char *optbuf;
1090 u_int32_t v;
1091
1092 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1093
1094 /*
1095 * If there is no hop-by-hop options header, allocate new one.
1096 * If there is one but it doesn't have enough space to store the
1097 * jumbo payload option, allocate a cluster to store the whole options.
1098 * Otherwise, use it to store the options.
1099 */
1100 if (exthdrs->ip6e_hbh == 0) {
1101 MGET(mopt, M_DONTWAIT, MT_DATA);
1102 if (mopt == 0)
1103 return(ENOBUFS);
1104 mopt->m_len = JUMBOOPTLEN;
1105 optbuf = mtod(mopt, u_char *);
1106 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1107 exthdrs->ip6e_hbh = mopt;
1108 } else {
1109 struct ip6_hbh *hbh;
1110
1111 mopt = exthdrs->ip6e_hbh;
1112 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1113 /*
1114 * XXX assumption:
1115 * - exthdrs->ip6e_hbh is not referenced from places
1116 * other than exthdrs.
1117 * - exthdrs->ip6e_hbh is not an mbuf chain.
1118 */
1119 int oldoptlen = mopt->m_len;
1120 struct mbuf *n;
1121
1122 /*
1123 * XXX: give up if the whole (new) hbh header does
1124 * not fit even in an mbuf cluster.
1125 */
1126 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1127 return(ENOBUFS);
1128
1129 /*
1130 * As a consequence, we must always prepare a cluster
1131 * at this point.
1132 */
1133 MGET(n, M_DONTWAIT, MT_DATA);
1134 if (n) {
1135 MCLGET(n, M_DONTWAIT);
1136 if ((n->m_flags & M_EXT) == 0) {
1137 m_freem(n);
1138 n = NULL;
1139 }
1140 }
1141 if (!n)
1142 return(ENOBUFS);
1143 n->m_len = oldoptlen + JUMBOOPTLEN;
1144 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1145 oldoptlen);
1146 optbuf = mtod(n, caddr_t) + oldoptlen;
1147 m_freem(mopt);
1148 mopt = exthdrs->ip6e_hbh = n;
1149 } else {
1150 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1151 mopt->m_len += JUMBOOPTLEN;
1152 }
1153 optbuf[0] = IP6OPT_PADN;
1154 optbuf[1] = 1;
1155
1156 /*
1157 * Adjust the header length according to the pad and
1158 * the jumbo payload option.
1159 */
1160 hbh = mtod(mopt, struct ip6_hbh *);
1161 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1162 }
1163
1164 /* fill in the option. */
1165 optbuf[2] = IP6OPT_JUMBO;
1166 optbuf[3] = 4;
1167 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1168 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1169
1170 /* finally, adjust the packet header length */
1171 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1172
1173 return(0);
1174 #undef JUMBOOPTLEN
1175 }
1176
1177 /*
1178 * Insert fragment header and copy unfragmentable header portions.
1179 */
1180 static int
1181 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1182 struct mbuf *m0, *m;
1183 int hlen;
1184 struct ip6_frag **frghdrp;
1185 {
1186 struct mbuf *n, *mlast;
1187
1188 if (hlen > sizeof(struct ip6_hdr)) {
1189 n = m_copym(m0, sizeof(struct ip6_hdr),
1190 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1191 if (n == 0)
1192 return(ENOBUFS);
1193 m->m_next = n;
1194 } else
1195 n = m;
1196
1197 /* Search for the last mbuf of unfragmentable part. */
1198 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1199 ;
1200
1201 if ((mlast->m_flags & M_EXT) == 0 &&
1202 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1203 /* use the trailing space of the last mbuf for the fragment hdr */
1204 *frghdrp =
1205 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1206 mlast->m_len += sizeof(struct ip6_frag);
1207 m->m_pkthdr.len += sizeof(struct ip6_frag);
1208 } else {
1209 /* allocate a new mbuf for the fragment header */
1210 struct mbuf *mfrg;
1211
1212 MGET(mfrg, M_DONTWAIT, MT_DATA);
1213 if (mfrg == 0)
1214 return(ENOBUFS);
1215 mfrg->m_len = sizeof(struct ip6_frag);
1216 *frghdrp = mtod(mfrg, struct ip6_frag *);
1217 mlast->m_next = mfrg;
1218 }
1219
1220 return(0);
1221 }
1222
1223 /*
1224 * IP6 socket option processing.
1225 */
1226 int
1227 ip6_ctloutput(op, so, level, optname, mp)
1228 int op;
1229 struct socket *so;
1230 int level, optname;
1231 struct mbuf **mp;
1232 {
1233 struct in6pcb *in6p = sotoin6pcb(so);
1234 struct mbuf *m = *mp;
1235 int optval = 0;
1236 int error = 0;
1237 struct proc *p = curproc; /* XXX */
1238
1239 if (level == IPPROTO_IPV6) {
1240 switch (op) {
1241
1242 case PRCO_SETOPT:
1243 switch (optname) {
1244 case IPV6_PKTOPTIONS:
1245 /* m is freed in ip6_pcbopts */
1246 return(ip6_pcbopts(&in6p->in6p_outputopts,
1247 m, so));
1248 case IPV6_HOPOPTS:
1249 case IPV6_DSTOPTS:
1250 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1251 error = EPERM;
1252 break;
1253 }
1254 /* fall through */
1255 case IPV6_UNICAST_HOPS:
1256 case IPV6_RECVOPTS:
1257 case IPV6_RECVRETOPTS:
1258 case IPV6_RECVDSTADDR:
1259 case IPV6_PKTINFO:
1260 case IPV6_HOPLIMIT:
1261 case IPV6_RTHDR:
1262 case IPV6_CHECKSUM:
1263 case IPV6_FAITH:
1264 #ifndef INET6_BINDV6ONLY
1265 case IPV6_BINDV6ONLY:
1266 #endif
1267 if (!m || m->m_len != sizeof(int))
1268 error = EINVAL;
1269 else {
1270 optval = *mtod(m, int *);
1271 switch (optname) {
1272
1273 case IPV6_UNICAST_HOPS:
1274 if (optval < -1 || optval >= 256)
1275 error = EINVAL;
1276 else {
1277 /* -1 = kernel default */
1278 in6p->in6p_hops = optval;
1279 }
1280 break;
1281 #define OPTSET(bit) \
1282 if (optval) \
1283 in6p->in6p_flags |= bit; \
1284 else \
1285 in6p->in6p_flags &= ~bit;
1286
1287 case IPV6_RECVOPTS:
1288 OPTSET(IN6P_RECVOPTS);
1289 break;
1290
1291 case IPV6_RECVRETOPTS:
1292 OPTSET(IN6P_RECVRETOPTS);
1293 break;
1294
1295 case IPV6_RECVDSTADDR:
1296 OPTSET(IN6P_RECVDSTADDR);
1297 break;
1298
1299 case IPV6_PKTINFO:
1300 OPTSET(IN6P_PKTINFO);
1301 break;
1302
1303 case IPV6_HOPLIMIT:
1304 OPTSET(IN6P_HOPLIMIT);
1305 break;
1306
1307 case IPV6_HOPOPTS:
1308 OPTSET(IN6P_HOPOPTS);
1309 break;
1310
1311 case IPV6_DSTOPTS:
1312 OPTSET(IN6P_DSTOPTS);
1313 break;
1314
1315 case IPV6_RTHDR:
1316 OPTSET(IN6P_RTHDR);
1317 break;
1318
1319 case IPV6_CHECKSUM:
1320 in6p->in6p_cksum = optval;
1321 break;
1322
1323 case IPV6_FAITH:
1324 OPTSET(IN6P_FAITH);
1325 break;
1326
1327 #ifndef INET6_BINDV6ONLY
1328 case IPV6_BINDV6ONLY:
1329 OPTSET(IN6P_BINDV6ONLY);
1330 break;
1331 #endif
1332 }
1333 }
1334 break;
1335 #undef OPTSET
1336
1337 case IPV6_MULTICAST_IF:
1338 case IPV6_MULTICAST_HOPS:
1339 case IPV6_MULTICAST_LOOP:
1340 case IPV6_JOIN_GROUP:
1341 case IPV6_LEAVE_GROUP:
1342 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m);
1343 break;
1344
1345 case IPV6_PORTRANGE:
1346 optval = *mtod(m, int *);
1347
1348 switch (optval) {
1349 case IPV6_PORTRANGE_DEFAULT:
1350 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1351 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1352 break;
1353
1354 case IPV6_PORTRANGE_HIGH:
1355 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1356 in6p->in6p_flags |= IN6P_HIGHPORT;
1357 break;
1358
1359 case IPV6_PORTRANGE_LOW:
1360 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1361 in6p->in6p_flags |= IN6P_LOWPORT;
1362 break;
1363
1364 default:
1365 error = EINVAL;
1366 break;
1367 }
1368 break;
1369
1370 #ifdef IPSEC
1371 case IPV6_IPSEC_POLICY:
1372 {
1373 caddr_t req = NULL;
1374 size_t len = 0;
1375
1376 int priv = 0;
1377 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1378 priv = 0;
1379 else
1380 priv = 1;
1381 if (m) {
1382 req = mtod(m, caddr_t);
1383 len = m->m_len;
1384 }
1385 error = ipsec6_set_policy(in6p,
1386 optname, req, len, priv);
1387 }
1388 break;
1389 #endif /* IPSEC */
1390
1391 default:
1392 error = ENOPROTOOPT;
1393 break;
1394 }
1395 if (m)
1396 (void)m_free(m);
1397 break;
1398
1399 case PRCO_GETOPT:
1400 switch (optname) {
1401
1402 case IPV6_OPTIONS:
1403 case IPV6_RETOPTS:
1404 #if 0
1405 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1406 if (in6p->in6p_options) {
1407 m->m_len = in6p->in6p_options->m_len;
1408 bcopy(mtod(in6p->in6p_options, caddr_t),
1409 mtod(m, caddr_t),
1410 (unsigned)m->m_len);
1411 } else
1412 m->m_len = 0;
1413 break;
1414 #else
1415 error = ENOPROTOOPT;
1416 break;
1417 #endif
1418
1419 case IPV6_PKTOPTIONS:
1420 if (in6p->in6p_options) {
1421 *mp = m_copym(in6p->in6p_options, 0,
1422 M_COPYALL, M_WAIT);
1423 } else {
1424 *mp = m_get(M_WAIT, MT_SOOPTS);
1425 (*mp)->m_len = 0;
1426 }
1427 break;
1428
1429 case IPV6_HOPOPTS:
1430 case IPV6_DSTOPTS:
1431 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1432 error = EPERM;
1433 break;
1434 }
1435 /* fall through */
1436 case IPV6_UNICAST_HOPS:
1437 case IPV6_RECVOPTS:
1438 case IPV6_RECVRETOPTS:
1439 case IPV6_RECVDSTADDR:
1440 case IPV6_PORTRANGE:
1441 case IPV6_PKTINFO:
1442 case IPV6_HOPLIMIT:
1443 case IPV6_RTHDR:
1444 case IPV6_CHECKSUM:
1445 case IPV6_FAITH:
1446 #ifndef INET6_BINDV6ONLY
1447 case IPV6_BINDV6ONLY:
1448 #endif
1449 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1450 m->m_len = sizeof(int);
1451 switch (optname) {
1452
1453 case IPV6_UNICAST_HOPS:
1454 optval = in6p->in6p_hops;
1455 break;
1456
1457 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1458
1459 case IPV6_RECVOPTS:
1460 optval = OPTBIT(IN6P_RECVOPTS);
1461 break;
1462
1463 case IPV6_RECVRETOPTS:
1464 optval = OPTBIT(IN6P_RECVRETOPTS);
1465 break;
1466
1467 case IPV6_RECVDSTADDR:
1468 optval = OPTBIT(IN6P_RECVDSTADDR);
1469 break;
1470
1471 case IPV6_PORTRANGE:
1472 {
1473 int flags;
1474 flags = in6p->in6p_flags;
1475 if (flags & IN6P_HIGHPORT)
1476 optval = IPV6_PORTRANGE_HIGH;
1477 else if (flags & IN6P_LOWPORT)
1478 optval = IPV6_PORTRANGE_LOW;
1479 else
1480 optval = 0;
1481 break;
1482 }
1483
1484 case IPV6_PKTINFO:
1485 optval = OPTBIT(IN6P_PKTINFO);
1486 break;
1487
1488 case IPV6_HOPLIMIT:
1489 optval = OPTBIT(IN6P_HOPLIMIT);
1490 break;
1491
1492 case IPV6_HOPOPTS:
1493 optval = OPTBIT(IN6P_HOPOPTS);
1494 break;
1495
1496 case IPV6_DSTOPTS:
1497 optval = OPTBIT(IN6P_DSTOPTS);
1498 break;
1499
1500 case IPV6_RTHDR:
1501 optval = OPTBIT(IN6P_RTHDR);
1502 break;
1503
1504 case IPV6_CHECKSUM:
1505 optval = in6p->in6p_cksum;
1506 break;
1507
1508 case IPV6_FAITH:
1509 optval = OPTBIT(IN6P_FAITH);
1510 break;
1511
1512 #ifndef INET6_BINDV6ONLY
1513 case IPV6_BINDV6ONLY:
1514 optval = OPTBIT(IN6P_BINDV6ONLY);
1515 break;
1516 #endif
1517 }
1518 *mtod(m, int *) = optval;
1519 break;
1520
1521 case IPV6_MULTICAST_IF:
1522 case IPV6_MULTICAST_HOPS:
1523 case IPV6_MULTICAST_LOOP:
1524 case IPV6_JOIN_GROUP:
1525 case IPV6_LEAVE_GROUP:
1526 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1527 break;
1528
1529 #ifdef IPSEC
1530 case IPV6_IPSEC_POLICY:
1531 {
1532 caddr_t req = NULL;
1533 size_t len = 0;
1534
1535 if (m) {
1536 req = mtod(m, caddr_t);
1537 len = m->m_len;
1538 }
1539 error = ipsec6_get_policy(in6p, req, len, mp);
1540 break;
1541 }
1542 #endif /* IPSEC */
1543
1544 default:
1545 error = ENOPROTOOPT;
1546 break;
1547 }
1548 break;
1549 }
1550 } else {
1551 error = EINVAL;
1552 if (op == PRCO_SETOPT && *mp)
1553 (void)m_free(*mp);
1554 }
1555 return(error);
1556 }
1557
1558 /*
1559 * Set up IP6 options in pcb for insertion in output packets.
1560 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1561 * with destination address if source routed.
1562 */
1563 static int
1564 ip6_pcbopts(pktopt, m, so)
1565 struct ip6_pktopts **pktopt;
1566 struct mbuf *m;
1567 struct socket *so;
1568 {
1569 struct ip6_pktopts *opt = *pktopt;
1570 int error = 0;
1571 struct proc *p = curproc; /* XXX */
1572 int priv = 0;
1573
1574 /* turn off any old options. */
1575 if (opt) {
1576 if (opt->ip6po_m)
1577 (void)m_free(opt->ip6po_m);
1578 } else
1579 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1580 *pktopt = 0;
1581
1582 if (!m || m->m_len == 0) {
1583 /*
1584 * Only turning off any previous options.
1585 */
1586 if (opt)
1587 free(opt, M_IP6OPT);
1588 if (m)
1589 (void)m_free(m);
1590 return(0);
1591 }
1592
1593 /* set options specified by user. */
1594 if (p && !suser(p->p_ucred, &p->p_acflag))
1595 priv = 1;
1596 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1597 (void)m_free(m);
1598 return(error);
1599 }
1600 *pktopt = opt;
1601 return(0);
1602 }
1603
1604 /*
1605 * Set the IP6 multicast options in response to user setsockopt().
1606 */
1607 static int
1608 ip6_setmoptions(optname, im6op, m)
1609 int optname;
1610 struct ip6_moptions **im6op;
1611 struct mbuf *m;
1612 {
1613 int error = 0;
1614 u_int loop, ifindex;
1615 struct ipv6_mreq *mreq;
1616 struct ifnet *ifp;
1617 struct ip6_moptions *im6o = *im6op;
1618 struct route_in6 ro;
1619 struct sockaddr_in6 *dst;
1620 struct in6_multi_mship *imm;
1621 struct proc *p = curproc; /* XXX */
1622
1623 if (im6o == NULL) {
1624 /*
1625 * No multicast option buffer attached to the pcb;
1626 * allocate one and initialize to default values.
1627 */
1628 im6o = (struct ip6_moptions *)
1629 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1630
1631 if (im6o == NULL)
1632 return(ENOBUFS);
1633 *im6op = im6o;
1634 im6o->im6o_multicast_ifp = NULL;
1635 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1636 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1637 LIST_INIT(&im6o->im6o_memberships);
1638 }
1639
1640 switch (optname) {
1641
1642 case IPV6_MULTICAST_IF:
1643 /*
1644 * Select the interface for outgoing multicast packets.
1645 */
1646 if (m == NULL || m->m_len != sizeof(u_int)) {
1647 error = EINVAL;
1648 break;
1649 }
1650 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1651 if (ifindex < 0 || if_index < ifindex) {
1652 error = ENXIO; /* XXX EINVAL? */
1653 break;
1654 }
1655 ifp = ifindex2ifnet[ifindex];
1656 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1657 error = EADDRNOTAVAIL;
1658 break;
1659 }
1660 im6o->im6o_multicast_ifp = ifp;
1661 break;
1662
1663 case IPV6_MULTICAST_HOPS:
1664 {
1665 /*
1666 * Set the IP6 hoplimit for outgoing multicast packets.
1667 */
1668 int optval;
1669 if (m == NULL || m->m_len != sizeof(int)) {
1670 error = EINVAL;
1671 break;
1672 }
1673 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1674 if (optval < -1 || optval >= 256)
1675 error = EINVAL;
1676 else if (optval == -1)
1677 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1678 else
1679 im6o->im6o_multicast_hlim = optval;
1680 break;
1681 }
1682
1683 case IPV6_MULTICAST_LOOP:
1684 /*
1685 * Set the loopback flag for outgoing multicast packets.
1686 * Must be zero or one.
1687 */
1688 if (m == NULL || m->m_len != sizeof(u_int)) {
1689 error = EINVAL;
1690 break;
1691 }
1692 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1693 if (loop > 1) {
1694 error = EINVAL;
1695 break;
1696 }
1697 im6o->im6o_multicast_loop = loop;
1698 break;
1699
1700 case IPV6_JOIN_GROUP:
1701 /*
1702 * Add a multicast group membership.
1703 * Group must be a valid IP6 multicast address.
1704 */
1705 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1706 error = EINVAL;
1707 break;
1708 }
1709 mreq = mtod(m, struct ipv6_mreq *);
1710 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1711 /*
1712 * We use the unspecified address to specify to accept
1713 * all multicast addresses. Only super user is allowed
1714 * to do this.
1715 */
1716 if (suser(p->p_ucred, &p->p_acflag))
1717 {
1718 error = EACCES;
1719 break;
1720 }
1721 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1722 error = EINVAL;
1723 break;
1724 }
1725
1726 /*
1727 * If the interface is specified, validate it.
1728 */
1729 if (mreq->ipv6mr_interface < 0
1730 || if_index < mreq->ipv6mr_interface) {
1731 error = ENXIO; /* XXX EINVAL? */
1732 break;
1733 }
1734 /*
1735 * If no interface was explicitly specified, choose an
1736 * appropriate one according to the given multicast address.
1737 */
1738 if (mreq->ipv6mr_interface == 0) {
1739 /*
1740 * If the multicast address is in node-local scope,
1741 * the interface should be a loopback interface.
1742 * Otherwise, look up the routing table for the
1743 * address, and choose the outgoing interface.
1744 * XXX: is it a good approach?
1745 */
1746 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1747 ifp = &loif[0];
1748 } else {
1749 ro.ro_rt = NULL;
1750 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1751 bzero(dst, sizeof(*dst));
1752 dst->sin6_len = sizeof(struct sockaddr_in6);
1753 dst->sin6_family = AF_INET6;
1754 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1755 rtalloc((struct route *)&ro);
1756 if (ro.ro_rt == NULL) {
1757 error = EADDRNOTAVAIL;
1758 break;
1759 }
1760 ifp = ro.ro_rt->rt_ifp;
1761 rtfree(ro.ro_rt);
1762 }
1763 } else
1764 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1765
1766 /*
1767 * See if we found an interface, and confirm that it
1768 * supports multicast
1769 */
1770 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1771 error = EADDRNOTAVAIL;
1772 break;
1773 }
1774 /*
1775 * Put interface index into the multicast address,
1776 * if the address has link-local scope.
1777 */
1778 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1779 mreq->ipv6mr_multiaddr.s6_addr16[1]
1780 = htons(mreq->ipv6mr_interface);
1781 }
1782 /*
1783 * See if the membership already exists.
1784 */
1785 for (imm = im6o->im6o_memberships.lh_first;
1786 imm != NULL; imm = imm->i6mm_chain.le_next)
1787 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1788 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1789 &mreq->ipv6mr_multiaddr))
1790 break;
1791 if (imm != NULL) {
1792 error = EADDRINUSE;
1793 break;
1794 }
1795 /*
1796 * Everything looks good; add a new record to the multicast
1797 * address list for the given interface.
1798 */
1799 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
1800 if (imm == NULL) {
1801 error = ENOBUFS;
1802 break;
1803 }
1804 if ((imm->i6mm_maddr =
1805 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
1806 free(imm, M_IPMADDR);
1807 break;
1808 }
1809 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1810 break;
1811
1812 case IPV6_LEAVE_GROUP:
1813 /*
1814 * Drop a multicast group membership.
1815 * Group must be a valid IP6 multicast address.
1816 */
1817 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1818 error = EINVAL;
1819 break;
1820 }
1821 mreq = mtod(m, struct ipv6_mreq *);
1822 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1823 if (suser(p->p_ucred, &p->p_acflag))
1824 {
1825 error = EACCES;
1826 break;
1827 }
1828 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1829 error = EINVAL;
1830 break;
1831 }
1832 /*
1833 * If an interface address was specified, get a pointer
1834 * to its ifnet structure.
1835 */
1836 if (mreq->ipv6mr_interface < 0
1837 || if_index < mreq->ipv6mr_interface) {
1838 error = ENXIO; /* XXX EINVAL? */
1839 break;
1840 }
1841 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1842 /*
1843 * Put interface index into the multicast address,
1844 * if the address has link-local scope.
1845 */
1846 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1847 mreq->ipv6mr_multiaddr.s6_addr16[1]
1848 = htons(mreq->ipv6mr_interface);
1849 }
1850 /*
1851 * Find the membership in the membership list.
1852 */
1853 for (imm = im6o->im6o_memberships.lh_first;
1854 imm != NULL; imm = imm->i6mm_chain.le_next) {
1855 if ((ifp == NULL ||
1856 imm->i6mm_maddr->in6m_ifp == ifp) &&
1857 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1858 &mreq->ipv6mr_multiaddr))
1859 break;
1860 }
1861 if (imm == NULL) {
1862 /* Unable to resolve interface */
1863 error = EADDRNOTAVAIL;
1864 break;
1865 }
1866 /*
1867 * Give up the multicast address record to which the
1868 * membership points.
1869 */
1870 LIST_REMOVE(imm, i6mm_chain);
1871 in6_delmulti(imm->i6mm_maddr);
1872 free(imm, M_IPMADDR);
1873 break;
1874
1875 default:
1876 error = EOPNOTSUPP;
1877 break;
1878 }
1879
1880 /*
1881 * If all options have default values, no need to keep the mbuf.
1882 */
1883 if (im6o->im6o_multicast_ifp == NULL &&
1884 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1885 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1886 im6o->im6o_memberships.lh_first == NULL) {
1887 free(*im6op, M_IPMOPTS);
1888 *im6op = NULL;
1889 }
1890
1891 return(error);
1892 }
1893
1894 /*
1895 * Return the IP6 multicast options in response to user getsockopt().
1896 */
1897 static int
1898 ip6_getmoptions(optname, im6o, mp)
1899 int optname;
1900 struct ip6_moptions *im6o;
1901 struct mbuf **mp;
1902 {
1903 u_int *hlim, *loop, *ifindex;
1904
1905 *mp = m_get(M_WAIT, MT_SOOPTS);
1906
1907 switch (optname) {
1908
1909 case IPV6_MULTICAST_IF:
1910 ifindex = mtod(*mp, u_int *);
1911 (*mp)->m_len = sizeof(u_int);
1912 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1913 *ifindex = 0;
1914 else
1915 *ifindex = im6o->im6o_multicast_ifp->if_index;
1916 return(0);
1917
1918 case IPV6_MULTICAST_HOPS:
1919 hlim = mtod(*mp, u_int *);
1920 (*mp)->m_len = sizeof(u_int);
1921 if (im6o == NULL)
1922 *hlim = ip6_defmcasthlim;
1923 else
1924 *hlim = im6o->im6o_multicast_hlim;
1925 return(0);
1926
1927 case IPV6_MULTICAST_LOOP:
1928 loop = mtod(*mp, u_int *);
1929 (*mp)->m_len = sizeof(u_int);
1930 if (im6o == NULL)
1931 *loop = ip6_defmcasthlim;
1932 else
1933 *loop = im6o->im6o_multicast_loop;
1934 return(0);
1935
1936 default:
1937 return(EOPNOTSUPP);
1938 }
1939 }
1940
1941 /*
1942 * Discard the IP6 multicast options.
1943 */
1944 void
1945 ip6_freemoptions(im6o)
1946 struct ip6_moptions *im6o;
1947 {
1948 struct in6_multi_mship *imm;
1949
1950 if (im6o == NULL)
1951 return;
1952
1953 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
1954 LIST_REMOVE(imm, i6mm_chain);
1955 if (imm->i6mm_maddr)
1956 in6_delmulti(imm->i6mm_maddr);
1957 free(imm, M_IPMADDR);
1958 }
1959 free(im6o, M_IPMOPTS);
1960 }
1961
1962 /*
1963 * Set IPv6 outgoing packet options based on advanced API.
1964 */
1965 int
1966 ip6_setpktoptions(control, opt, priv)
1967 struct mbuf *control;
1968 struct ip6_pktopts *opt;
1969 int priv;
1970 {
1971 struct cmsghdr *cm = 0;
1972
1973 if (control == 0 || opt == 0)
1974 return(EINVAL);
1975
1976 bzero(opt, sizeof(*opt));
1977 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
1978
1979 /*
1980 * XXX: Currently, we assume all the optional information is stored
1981 * in a single mbuf.
1982 */
1983 if (control->m_next)
1984 return(EINVAL);
1985
1986 opt->ip6po_m = control;
1987
1988 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
1989 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1990 cm = mtod(control, struct cmsghdr *);
1991 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
1992 return(EINVAL);
1993 if (cm->cmsg_level != IPPROTO_IPV6)
1994 continue;
1995
1996 switch (cm->cmsg_type) {
1997 case IPV6_PKTINFO:
1998 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
1999 return(EINVAL);
2000 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
2001 if (opt->ip6po_pktinfo->ipi6_ifindex &&
2002 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
2003 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2004 htons(opt->ip6po_pktinfo->ipi6_ifindex);
2005
2006 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
2007 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
2008 return(ENXIO);
2009 }
2010
2011 /*
2012 * Check if the requested source address is indeed a
2013 * unicast address assigned to the node.
2014 */
2015 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2016 struct ifaddr *ia;
2017 struct sockaddr_in6 sin6;
2018
2019 bzero(&sin6, sizeof(sin6));
2020 sin6.sin6_len = sizeof(sin6);
2021 sin6.sin6_family = AF_INET6;
2022 sin6.sin6_addr =
2023 opt->ip6po_pktinfo->ipi6_addr;
2024 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2025 if (ia == NULL ||
2026 (opt->ip6po_pktinfo->ipi6_ifindex &&
2027 (ia->ifa_ifp->if_index !=
2028 opt->ip6po_pktinfo->ipi6_ifindex))) {
2029 return(EADDRNOTAVAIL);
2030 }
2031 /*
2032 * Check if the requested source address is
2033 * indeed a unicast address assigned to the
2034 * node.
2035 */
2036 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2037 return(EADDRNOTAVAIL);
2038 }
2039 break;
2040
2041 case IPV6_HOPLIMIT:
2042 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2043 return(EINVAL);
2044
2045 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim,
2046 sizeof(opt->ip6po_hlim));
2047 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2048 return(EINVAL);
2049 break;
2050
2051 case IPV6_NEXTHOP:
2052 if (!priv)
2053 return(EPERM);
2054
2055 if (cm->cmsg_len < sizeof(u_char) ||
2056 /* check if cmsg_len is large enough for sa_len */
2057 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2058 return(EINVAL);
2059
2060 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2061
2062 break;
2063
2064 case IPV6_HOPOPTS:
2065 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2066 return(EINVAL);
2067 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2068 if (cm->cmsg_len !=
2069 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
2070 return(EINVAL);
2071 break;
2072
2073 case IPV6_DSTOPTS:
2074 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2075 return(EINVAL);
2076
2077 /*
2078 * If there is no routing header yet, the destination
2079 * options header should be put on the 1st part.
2080 * Otherwise, the header should be on the 2nd part.
2081 * (See RFC 2460, section 4.1)
2082 */
2083 if (opt->ip6po_rthdr == NULL) {
2084 opt->ip6po_dest1 =
2085 (struct ip6_dest *)CMSG_DATA(cm);
2086 if (cm->cmsg_len !=
2087 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
2088 << 3))
2089 return(EINVAL);
2090 }
2091 else {
2092 opt->ip6po_dest2 =
2093 (struct ip6_dest *)CMSG_DATA(cm);
2094 if (cm->cmsg_len !=
2095 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
2096 << 3))
2097 return(EINVAL);
2098 }
2099 break;
2100
2101 case IPV6_RTHDR:
2102 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2103 return(EINVAL);
2104 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
2105 if (cm->cmsg_len !=
2106 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
2107 return(EINVAL);
2108 switch (opt->ip6po_rthdr->ip6r_type) {
2109 case IPV6_RTHDR_TYPE_0:
2110 if (opt->ip6po_rthdr->ip6r_segleft == 0)
2111 return(EINVAL);
2112 break;
2113 default:
2114 return(EINVAL);
2115 }
2116 break;
2117
2118 default:
2119 return(ENOPROTOOPT);
2120 }
2121 }
2122
2123 return(0);
2124 }
2125
2126 /*
2127 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2128 * packet to the input queue of a specified interface. Note that this
2129 * calls the output routine of the loopback "driver", but with an interface
2130 * pointer that might NOT be &loif -- easier than replicating that code here.
2131 */
2132 void
2133 ip6_mloopback(ifp, m, dst)
2134 struct ifnet *ifp;
2135 struct mbuf *m;
2136 struct sockaddr_in6 *dst;
2137 {
2138 struct mbuf *copym;
2139 struct ip6_hdr *ip6;
2140
2141 copym = m_copy(m, 0, M_COPYALL);
2142 if (copym == NULL)
2143 return;
2144
2145 /*
2146 * Make sure to deep-copy IPv6 header portion in case the data
2147 * is in an mbuf cluster, so that we can safely override the IPv6
2148 * header portion later.
2149 */
2150 if ((copym->m_flags & M_EXT) != 0 ||
2151 copym->m_len < sizeof(struct ip6_hdr)) {
2152 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2153 if (copym == NULL)
2154 return;
2155 }
2156
2157 #ifdef DIAGNOSTIC
2158 if (copym->m_len < sizeof(*ip6)) {
2159 m_freem(copym);
2160 return;
2161 }
2162 #endif
2163
2164 ip6 = mtod(copym, struct ip6_hdr *);
2165 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2166 ip6->ip6_src.s6_addr16[1] = 0;
2167 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2168 ip6->ip6_dst.s6_addr16[1] = 0;
2169
2170 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2171 }
2172
2173 /*
2174 * Chop IPv6 header off from the payload.
2175 */
2176 static int
2177 ip6_splithdr(m, exthdrs)
2178 struct mbuf *m;
2179 struct ip6_exthdrs *exthdrs;
2180 {
2181 struct mbuf *mh;
2182 struct ip6_hdr *ip6;
2183
2184 ip6 = mtod(m, struct ip6_hdr *);
2185 if (m->m_len > sizeof(*ip6)) {
2186 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2187 if (mh == 0) {
2188 m_freem(m);
2189 return ENOBUFS;
2190 }
2191 M_COPY_PKTHDR(mh, m);
2192 MH_ALIGN(mh, sizeof(*ip6));
2193 m->m_flags &= ~M_PKTHDR;
2194 m->m_len -= sizeof(*ip6);
2195 m->m_data += sizeof(*ip6);
2196 mh->m_next = m;
2197 m = mh;
2198 m->m_len = sizeof(*ip6);
2199 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2200 }
2201 exthdrs->ip6e_ip6 = m;
2202 return 0;
2203 }
2204
2205 /*
2206 * Compute IPv6 extension header length.
2207 */
2208 int
2209 ip6_optlen(in6p)
2210 struct in6pcb *in6p;
2211 {
2212 int len;
2213
2214 if (!in6p->in6p_outputopts)
2215 return 0;
2216
2217 len = 0;
2218 #define elen(x) \
2219 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2220
2221 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2222 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2223 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2224 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2225 return len;
2226 #undef elen
2227 }
2228