ip6_output.c revision 1.36 1 /* $NetBSD: ip6_output.c,v 1.36 2001/06/11 13:49:18 itojun Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
66 */
67
68 #include "opt_inet.h"
69 #include "opt_ipsec.h"
70 #include "opt_pfil_hooks.h"
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81
82 #include <net/if.h>
83 #include <net/route.h>
84 #ifdef PFIL_HOOKS
85 #include <net/pfil.h>
86 #endif
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/icmp6.h>
92 #include <netinet6/ip6_var.h>
93 #include <netinet6/in6_pcb.h>
94 #include <netinet6/nd6.h>
95
96 #ifdef IPSEC
97 #include <netinet6/ipsec.h>
98 #include <netkey/key.h>
99 #endif /* IPSEC */
100
101 #include "loop.h"
102
103 #include <net/net_osdep.h>
104
105 #ifdef PFIL_HOOKS
106 extern struct pfil_head inet6_pfil_hook; /* XXX */
107 #endif
108
109 struct ip6_exthdrs {
110 struct mbuf *ip6e_ip6;
111 struct mbuf *ip6e_hbh;
112 struct mbuf *ip6e_dest1;
113 struct mbuf *ip6e_rthdr;
114 struct mbuf *ip6e_dest2;
115 };
116
117 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
118 struct socket *));
119 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
120 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
121 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
122 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
123 struct ip6_frag **));
124 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
125 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
126
127 extern struct ifnet loif[NLOOP];
128
129 /*
130 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
131 * header (with pri, len, nxt, hlim, src, dst).
132 * This function may modify ver and hlim only.
133 * The mbuf chain containing the packet will be freed.
134 * The mbuf opt, if present, will not be freed.
135 */
136 int
137 ip6_output(m0, opt, ro, flags, im6o, ifpp)
138 struct mbuf *m0;
139 struct ip6_pktopts *opt;
140 struct route_in6 *ro;
141 int flags;
142 struct ip6_moptions *im6o;
143 struct ifnet **ifpp; /* XXX: just for statistics */
144 {
145 struct ip6_hdr *ip6, *mhip6;
146 struct ifnet *ifp, *origifp;
147 struct mbuf *m = m0;
148 int hlen, tlen, len, off;
149 struct route_in6 ip6route;
150 struct sockaddr_in6 *dst;
151 int error = 0;
152 struct in6_ifaddr *ia;
153 u_long mtu;
154 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
155 struct ip6_exthdrs exthdrs;
156 struct in6_addr finaldst;
157 struct route_in6 *ro_pmtu = NULL;
158 int hdrsplit = 0;
159 int needipsec = 0;
160 #ifdef IPSEC
161 int needipsectun = 0;
162 struct socket *so;
163 struct secpolicy *sp = NULL;
164
165 /* for AH processing. stupid to have "socket" variable in IP layer... */
166 so = ipsec_getsocket(m);
167 (void)ipsec_setsocket(m, NULL);
168 ip6 = mtod(m, struct ip6_hdr *);
169 #endif /* IPSEC */
170
171 #define MAKE_EXTHDR(hp, mp) \
172 do { \
173 if (hp) { \
174 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
175 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
176 ((eh)->ip6e_len + 1) << 3); \
177 if (error) \
178 goto freehdrs; \
179 } \
180 } while (0)
181
182 bzero(&exthdrs, sizeof(exthdrs));
183 if (opt) {
184 /* Hop-by-Hop options header */
185 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
186 /* Destination options header(1st part) */
187 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
188 /* Routing header */
189 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
190 /* Destination options header(2nd part) */
191 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
192 }
193
194 #ifdef IPSEC
195 /* get a security policy for this packet */
196 if (so == NULL)
197 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
198 else
199 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
200
201 if (sp == NULL) {
202 ipsec6stat.out_inval++;
203 goto freehdrs;
204 }
205
206 error = 0;
207
208 /* check policy */
209 switch (sp->policy) {
210 case IPSEC_POLICY_DISCARD:
211 /*
212 * This packet is just discarded.
213 */
214 ipsec6stat.out_polvio++;
215 goto freehdrs;
216
217 case IPSEC_POLICY_BYPASS:
218 case IPSEC_POLICY_NONE:
219 /* no need to do IPsec. */
220 needipsec = 0;
221 break;
222
223 case IPSEC_POLICY_IPSEC:
224 if (sp->req == NULL) {
225 /* XXX should be panic ? */
226 printf("ip6_output: No IPsec request specified.\n");
227 error = EINVAL;
228 goto freehdrs;
229 }
230 needipsec = 1;
231 break;
232
233 case IPSEC_POLICY_ENTRUST:
234 default:
235 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
236 }
237 #endif /* IPSEC */
238
239 /*
240 * Calculate the total length of the extension header chain.
241 * Keep the length of the unfragmentable part for fragmentation.
242 */
243 optlen = 0;
244 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
245 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
246 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
247 unfragpartlen = optlen + sizeof(struct ip6_hdr);
248 /* NOTE: we don't add AH/ESP length here. do that later. */
249 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
250
251 /*
252 * If we need IPsec, or there is at least one extension header,
253 * separate IP6 header from the payload.
254 */
255 if ((needipsec || optlen) && !hdrsplit) {
256 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
257 m = NULL;
258 goto freehdrs;
259 }
260 m = exthdrs.ip6e_ip6;
261 hdrsplit++;
262 }
263
264 /* adjust pointer */
265 ip6 = mtod(m, struct ip6_hdr *);
266
267 /* adjust mbuf packet header length */
268 m->m_pkthdr.len += optlen;
269 plen = m->m_pkthdr.len - sizeof(*ip6);
270
271 /* If this is a jumbo payload, insert a jumbo payload option. */
272 if (plen > IPV6_MAXPACKET) {
273 if (!hdrsplit) {
274 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
275 m = NULL;
276 goto freehdrs;
277 }
278 m = exthdrs.ip6e_ip6;
279 hdrsplit++;
280 }
281 /* adjust pointer */
282 ip6 = mtod(m, struct ip6_hdr *);
283 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
284 goto freehdrs;
285 ip6->ip6_plen = 0;
286 } else
287 ip6->ip6_plen = htons(plen);
288
289 /*
290 * Concatenate headers and fill in next header fields.
291 * Here we have, on "m"
292 * IPv6 payload
293 * and we insert headers accordingly. Finally, we should be getting:
294 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
295 *
296 * during the header composing process, "m" points to IPv6 header.
297 * "mprev" points to an extension header prior to esp.
298 */
299 {
300 u_char *nexthdrp = &ip6->ip6_nxt;
301 struct mbuf *mprev = m;
302
303 /*
304 * we treat dest2 specially. this makes IPsec processing
305 * much easier.
306 *
307 * result: IPv6 dest2 payload
308 * m and mprev will point to IPv6 header.
309 */
310 if (exthdrs.ip6e_dest2) {
311 if (!hdrsplit)
312 panic("assumption failed: hdr not split");
313 exthdrs.ip6e_dest2->m_next = m->m_next;
314 m->m_next = exthdrs.ip6e_dest2;
315 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
316 ip6->ip6_nxt = IPPROTO_DSTOPTS;
317 }
318
319 #define MAKE_CHAIN(m, mp, p, i)\
320 do {\
321 if (m) {\
322 if (!hdrsplit) \
323 panic("assumption failed: hdr not split"); \
324 *mtod((m), u_char *) = *(p);\
325 *(p) = (i);\
326 p = mtod((m), u_char *);\
327 (m)->m_next = (mp)->m_next;\
328 (mp)->m_next = (m);\
329 (mp) = (m);\
330 }\
331 } while (0)
332 /*
333 * result: IPv6 hbh dest1 rthdr dest2 payload
334 * m will point to IPv6 header. mprev will point to the
335 * extension header prior to dest2 (rthdr in the above case).
336 */
337 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
338 nexthdrp, IPPROTO_HOPOPTS);
339 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
340 nexthdrp, IPPROTO_DSTOPTS);
341 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
342 nexthdrp, IPPROTO_ROUTING);
343
344 #ifdef IPSEC
345 if (!needipsec)
346 goto skip_ipsec2;
347
348 /*
349 * pointers after IPsec headers are not valid any more.
350 * other pointers need a great care too.
351 * (IPsec routines should not mangle mbufs prior to AH/ESP)
352 */
353 exthdrs.ip6e_dest2 = NULL;
354
355 {
356 struct ip6_rthdr *rh = NULL;
357 int segleft_org = 0;
358 struct ipsec_output_state state;
359
360 if (exthdrs.ip6e_rthdr) {
361 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
362 segleft_org = rh->ip6r_segleft;
363 rh->ip6r_segleft = 0;
364 }
365
366 bzero(&state, sizeof(state));
367 state.m = m;
368 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
369 &needipsectun);
370 m = state.m;
371 if (error) {
372 /* mbuf is already reclaimed in ipsec6_output_trans. */
373 m = NULL;
374 switch (error) {
375 case EHOSTUNREACH:
376 case ENETUNREACH:
377 case EMSGSIZE:
378 case ENOBUFS:
379 case ENOMEM:
380 break;
381 default:
382 printf("ip6_output (ipsec): error code %d\n", error);
383 /*fall through*/
384 case ENOENT:
385 /* don't show these error codes to the user */
386 error = 0;
387 break;
388 }
389 goto bad;
390 }
391 if (exthdrs.ip6e_rthdr) {
392 /* ah6_output doesn't modify mbuf chain */
393 rh->ip6r_segleft = segleft_org;
394 }
395 }
396 skip_ipsec2:;
397 #endif
398 }
399
400 /*
401 * If there is a routing header, replace destination address field
402 * with the first hop of the routing header.
403 */
404 if (exthdrs.ip6e_rthdr) {
405 struct ip6_rthdr *rh =
406 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
407 struct ip6_rthdr *));
408 struct ip6_rthdr0 *rh0;
409
410 finaldst = ip6->ip6_dst;
411 switch (rh->ip6r_type) {
412 case IPV6_RTHDR_TYPE_0:
413 rh0 = (struct ip6_rthdr0 *)rh;
414 ip6->ip6_dst = rh0->ip6r0_addr[0];
415 bcopy((caddr_t)&rh0->ip6r0_addr[1],
416 (caddr_t)&rh0->ip6r0_addr[0],
417 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)
418 );
419 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
420 break;
421 default: /* is it possible? */
422 error = EINVAL;
423 goto bad;
424 }
425 }
426
427 /* Source address validation */
428 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
429 (flags & IPV6_DADOUTPUT) == 0) {
430 error = EOPNOTSUPP;
431 ip6stat.ip6s_badscope++;
432 goto bad;
433 }
434 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
435 error = EOPNOTSUPP;
436 ip6stat.ip6s_badscope++;
437 goto bad;
438 }
439
440 ip6stat.ip6s_localout++;
441
442 /*
443 * Route packet.
444 */
445 if (ro == 0) {
446 ro = &ip6route;
447 bzero((caddr_t)ro, sizeof(*ro));
448 }
449 ro_pmtu = ro;
450 if (opt && opt->ip6po_rthdr)
451 ro = &opt->ip6po_route;
452 dst = (struct sockaddr_in6 *)&ro->ro_dst;
453 /*
454 * If there is a cached route,
455 * check that it is to the same destination
456 * and is still up. If not, free it and try again.
457 */
458 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
459 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
460 RTFREE(ro->ro_rt);
461 ro->ro_rt = (struct rtentry *)0;
462 }
463 if (ro->ro_rt == 0) {
464 bzero(dst, sizeof(*dst));
465 dst->sin6_family = AF_INET6;
466 dst->sin6_len = sizeof(struct sockaddr_in6);
467 dst->sin6_addr = ip6->ip6_dst;
468 }
469 #ifdef IPSEC
470 if (needipsec && needipsectun) {
471 struct ipsec_output_state state;
472
473 /*
474 * All the extension headers will become inaccessible
475 * (since they can be encrypted).
476 * Don't panic, we need no more updates to extension headers
477 * on inner IPv6 packet (since they are now encapsulated).
478 *
479 * IPv6 [ESP|AH] IPv6 [extension headers] payload
480 */
481 bzero(&exthdrs, sizeof(exthdrs));
482 exthdrs.ip6e_ip6 = m;
483
484 bzero(&state, sizeof(state));
485 state.m = m;
486 state.ro = (struct route *)ro;
487 state.dst = (struct sockaddr *)dst;
488
489 error = ipsec6_output_tunnel(&state, sp, flags);
490
491 m = state.m;
492 ro = (struct route_in6 *)state.ro;
493 dst = (struct sockaddr_in6 *)state.dst;
494 if (error) {
495 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
496 m0 = m = NULL;
497 m = NULL;
498 switch (error) {
499 case EHOSTUNREACH:
500 case ENETUNREACH:
501 case EMSGSIZE:
502 case ENOBUFS:
503 case ENOMEM:
504 break;
505 default:
506 printf("ip6_output (ipsec): error code %d\n", error);
507 /*fall through*/
508 case ENOENT:
509 /* don't show these error codes to the user */
510 error = 0;
511 break;
512 }
513 goto bad;
514 }
515
516 exthdrs.ip6e_ip6 = m;
517 }
518 #endif /*IPSEC*/
519
520 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
521 /* Unicast */
522
523 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
524 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
525 /* xxx
526 * interface selection comes here
527 * if an interface is specified from an upper layer,
528 * ifp must point it.
529 */
530 if (ro->ro_rt == 0) {
531 /*
532 * non-bsdi always clone routes, if parent is
533 * PRF_CLONING.
534 */
535 rtalloc((struct route *)ro);
536 }
537 if (ro->ro_rt == 0) {
538 ip6stat.ip6s_noroute++;
539 error = EHOSTUNREACH;
540 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
541 goto bad;
542 }
543 ia = ifatoia6(ro->ro_rt->rt_ifa);
544 ifp = ro->ro_rt->rt_ifp;
545 ro->ro_rt->rt_use++;
546 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
547 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
548 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
549
550 in6_ifstat_inc(ifp, ifs6_out_request);
551
552 /*
553 * Check if the outgoing interface conflicts with
554 * the interface specified by ifi6_ifindex (if specified).
555 * Note that loopback interface is always okay.
556 * (this may happen when we are sending a packet to one of
557 * our own addresses.)
558 */
559 if (opt && opt->ip6po_pktinfo
560 && opt->ip6po_pktinfo->ipi6_ifindex) {
561 if (!(ifp->if_flags & IFF_LOOPBACK)
562 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
563 ip6stat.ip6s_noroute++;
564 in6_ifstat_inc(ifp, ifs6_out_discard);
565 error = EHOSTUNREACH;
566 goto bad;
567 }
568 }
569
570 if (opt && opt->ip6po_hlim != -1)
571 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
572 } else {
573 /* Multicast */
574 struct in6_multi *in6m;
575
576 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
577
578 /*
579 * See if the caller provided any multicast options
580 */
581 ifp = NULL;
582 if (im6o != NULL) {
583 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
584 if (im6o->im6o_multicast_ifp != NULL)
585 ifp = im6o->im6o_multicast_ifp;
586 } else
587 ip6->ip6_hlim = ip6_defmcasthlim;
588
589 /*
590 * See if the caller provided the outgoing interface
591 * as an ancillary data.
592 * Boundary check for ifindex is assumed to be already done.
593 */
594 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
595 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
596
597 /*
598 * If the destination is a node-local scope multicast,
599 * the packet should be loop-backed only.
600 */
601 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
602 /*
603 * If the outgoing interface is already specified,
604 * it should be a loopback interface.
605 */
606 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
607 ip6stat.ip6s_badscope++;
608 error = ENETUNREACH; /* XXX: better error? */
609 /* XXX correct ifp? */
610 in6_ifstat_inc(ifp, ifs6_out_discard);
611 goto bad;
612 } else {
613 ifp = &loif[0];
614 }
615 }
616
617 if (opt && opt->ip6po_hlim != -1)
618 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
619
620 /*
621 * If caller did not provide an interface lookup a
622 * default in the routing table. This is either a
623 * default for the speicfied group (i.e. a host
624 * route), or a multicast default (a route for the
625 * ``net'' ff00::/8).
626 */
627 if (ifp == NULL) {
628 if (ro->ro_rt == 0) {
629 ro->ro_rt = rtalloc1((struct sockaddr *)
630 &ro->ro_dst, 0
631 );
632 }
633 if (ro->ro_rt == 0) {
634 ip6stat.ip6s_noroute++;
635 error = EHOSTUNREACH;
636 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
637 goto bad;
638 }
639 ia = ifatoia6(ro->ro_rt->rt_ifa);
640 ifp = ro->ro_rt->rt_ifp;
641 ro->ro_rt->rt_use++;
642 }
643
644 if ((flags & IPV6_FORWARDING) == 0)
645 in6_ifstat_inc(ifp, ifs6_out_request);
646 in6_ifstat_inc(ifp, ifs6_out_mcast);
647
648 /*
649 * Confirm that the outgoing interface supports multicast.
650 */
651 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
652 ip6stat.ip6s_noroute++;
653 in6_ifstat_inc(ifp, ifs6_out_discard);
654 error = ENETUNREACH;
655 goto bad;
656 }
657 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
658 if (in6m != NULL &&
659 (im6o == NULL || im6o->im6o_multicast_loop)) {
660 /*
661 * If we belong to the destination multicast group
662 * on the outgoing interface, and the caller did not
663 * forbid loopback, loop back a copy.
664 */
665 ip6_mloopback(ifp, m, dst);
666 } else {
667 /*
668 * If we are acting as a multicast router, perform
669 * multicast forwarding as if the packet had just
670 * arrived on the interface to which we are about
671 * to send. The multicast forwarding function
672 * recursively calls this function, using the
673 * IPV6_FORWARDING flag to prevent infinite recursion.
674 *
675 * Multicasts that are looped back by ip6_mloopback(),
676 * above, will be forwarded by the ip6_input() routine,
677 * if necessary.
678 */
679 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
680 if (ip6_mforward(ip6, ifp, m) != 0) {
681 m_freem(m);
682 goto done;
683 }
684 }
685 }
686 /*
687 * Multicasts with a hoplimit of zero may be looped back,
688 * above, but must not be transmitted on a network.
689 * Also, multicasts addressed to the loopback interface
690 * are not sent -- the above call to ip6_mloopback() will
691 * loop back a copy if this host actually belongs to the
692 * destination group on the loopback interface.
693 */
694 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
695 m_freem(m);
696 goto done;
697 }
698 }
699
700 /*
701 * Fill the outgoing inteface to tell the upper layer
702 * to increment per-interface statistics.
703 */
704 if (ifpp)
705 *ifpp = ifp;
706
707 /*
708 * Determine path MTU.
709 */
710 if (ro_pmtu != ro) {
711 /* The first hop and the final destination may differ. */
712 struct sockaddr_in6 *sin6_fin =
713 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
714 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
715 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
716 &finaldst))) {
717 RTFREE(ro_pmtu->ro_rt);
718 ro_pmtu->ro_rt = (struct rtentry *)0;
719 }
720 if (ro_pmtu->ro_rt == 0) {
721 bzero(sin6_fin, sizeof(*sin6_fin));
722 sin6_fin->sin6_family = AF_INET6;
723 sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
724 sin6_fin->sin6_addr = finaldst;
725
726 rtalloc((struct route *)ro_pmtu);
727 }
728 }
729 if (ro_pmtu->ro_rt != NULL) {
730 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
731
732 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
733 if (mtu > ifmtu || mtu == 0) {
734 /*
735 * The MTU on the route is larger than the MTU on
736 * the interface! This shouldn't happen, unless the
737 * MTU of the interface has been changed after the
738 * interface was brought up. Change the MTU in the
739 * route to match the interface MTU (as long as the
740 * field isn't locked).
741 *
742 * if MTU on the route is 0, we need to fix the MTU.
743 * this case happens with path MTU discovery timeouts.
744 */
745 mtu = ifmtu;
746 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
747 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
748 }
749 } else {
750 mtu = nd_ifinfo[ifp->if_index].linkmtu;
751 }
752
753 /* Fake scoped addresses */
754 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
755 /*
756 * If source or destination address is a scoped address, and
757 * the packet is going to be sent to a loopback interface,
758 * we should keep the original interface.
759 */
760
761 /*
762 * XXX: this is a very experimental and temporary solution.
763 * We eventually have sockaddr_in6 and use the sin6_scope_id
764 * field of the structure here.
765 * We rely on the consistency between two scope zone ids
766 * of source add destination, which should already be assured
767 * Larger scopes than link will be supported in the near
768 * future.
769 */
770 origifp = NULL;
771 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
772 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
773 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
774 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
775 /*
776 * XXX: origifp can be NULL even in those two cases above.
777 * For example, if we remove the (only) link-local address
778 * from the loopback interface, and try to send a link-local
779 * address without link-id information. Then the source
780 * address is ::1, and the destination address is the
781 * link-local address with its s6_addr16[1] being zero.
782 * What is worse, if the packet goes to the loopback interface
783 * by a default rejected route, the null pointer would be
784 * passed to looutput, and the kernel would hang.
785 * The following last resort would prevent such disaster.
786 */
787 if (origifp == NULL)
788 origifp = ifp;
789 }
790 else
791 origifp = ifp;
792 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
793 ip6->ip6_src.s6_addr16[1] = 0;
794 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
795 ip6->ip6_dst.s6_addr16[1] = 0;
796
797 /*
798 * If the outgoing packet contains a hop-by-hop options header,
799 * it must be examined and processed even by the source node.
800 * (RFC 2460, section 4.)
801 */
802 if (exthdrs.ip6e_hbh) {
803 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
804 u_int32_t dummy1; /* XXX unused */
805 u_int32_t dummy2; /* XXX unused */
806
807 /*
808 * XXX: if we have to send an ICMPv6 error to the sender,
809 * we need the M_LOOP flag since icmp6_error() expects
810 * the IPv6 and the hop-by-hop options header are
811 * continuous unless the flag is set.
812 */
813 m->m_flags |= M_LOOP;
814 m->m_pkthdr.rcvif = ifp;
815 if (ip6_process_hopopts(m,
816 (u_int8_t *)(hbh + 1),
817 ((hbh->ip6h_len + 1) << 3) -
818 sizeof(struct ip6_hbh),
819 &dummy1, &dummy2) < 0) {
820 /* m was already freed at this point */
821 error = EINVAL;/* better error? */
822 goto done;
823 }
824 m->m_flags &= ~M_LOOP; /* XXX */
825 m->m_pkthdr.rcvif = NULL;
826 }
827
828 #ifdef PFIL_HOOKS
829 /*
830 * Run through list of hooks for output packets.
831 */
832 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp,
833 PFIL_OUT)) != 0)
834 goto done;
835 if (m == NULL)
836 goto done;
837 ip6 = mtod(m, struct ip6_hdr *);
838 #endif /* PFIL_HOOKS */
839 /*
840 * Send the packet to the outgoing interface.
841 * If necessary, do IPv6 fragmentation before sending.
842 */
843 tlen = m->m_pkthdr.len;
844 if (tlen <= mtu
845 #ifdef notyet
846 /*
847 * On any link that cannot convey a 1280-octet packet in one piece,
848 * link-specific fragmentation and reassembly must be provided at
849 * a layer below IPv6. [RFC 2460, sec.5]
850 * Thus if the interface has ability of link-level fragmentation,
851 * we can just send the packet even if the packet size is
852 * larger than the link's MTU.
853 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
854 */
855
856 || ifp->if_flags & IFF_FRAGMENTABLE
857 #endif
858 )
859 {
860 #ifdef IFA_STATS
861 struct in6_ifaddr *ia6;
862 ip6 = mtod(m, struct ip6_hdr *);
863 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
864 if (ia6) {
865 ia6->ia_ifa.ifa_data.ifad_outbytes +=
866 m->m_pkthdr.len;
867 }
868 #endif
869 #ifdef IPSEC
870 /* clean ipsec history once it goes out of the node */
871 ipsec_delaux(m);
872 #endif
873 #ifdef OLDIP6OUTPUT
874 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst,
875 ro->ro_rt);
876 #else
877 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
878 #endif
879 goto done;
880 } else if (mtu < IPV6_MMTU) {
881 /*
882 * note that path MTU is never less than IPV6_MMTU
883 * (see icmp6_input).
884 */
885 error = EMSGSIZE;
886 in6_ifstat_inc(ifp, ifs6_out_fragfail);
887 goto bad;
888 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
889 error = EMSGSIZE;
890 in6_ifstat_inc(ifp, ifs6_out_fragfail);
891 goto bad;
892 } else {
893 struct mbuf **mnext, *m_frgpart;
894 struct ip6_frag *ip6f;
895 u_int32_t id = htonl(ip6_id++);
896 u_char nextproto;
897
898 /*
899 * Too large for the destination or interface;
900 * fragment if possible.
901 * Must be able to put at least 8 bytes per fragment.
902 */
903 hlen = unfragpartlen;
904 if (mtu > IPV6_MAXPACKET)
905 mtu = IPV6_MAXPACKET;
906 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
907 if (len < 8) {
908 error = EMSGSIZE;
909 in6_ifstat_inc(ifp, ifs6_out_fragfail);
910 goto bad;
911 }
912
913 mnext = &m->m_nextpkt;
914
915 /*
916 * Change the next header field of the last header in the
917 * unfragmentable part.
918 */
919 if (exthdrs.ip6e_rthdr) {
920 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
921 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
922 } else if (exthdrs.ip6e_dest1) {
923 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
924 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
925 } else if (exthdrs.ip6e_hbh) {
926 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
927 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
928 } else {
929 nextproto = ip6->ip6_nxt;
930 ip6->ip6_nxt = IPPROTO_FRAGMENT;
931 }
932
933 /*
934 * Loop through length of segment after first fragment,
935 * make new header and copy data of each part and link onto chain.
936 */
937 m0 = m;
938 for (off = hlen; off < tlen; off += len) {
939 MGETHDR(m, M_DONTWAIT, MT_HEADER);
940 if (!m) {
941 error = ENOBUFS;
942 ip6stat.ip6s_odropped++;
943 goto sendorfree;
944 }
945 m->m_flags = m0->m_flags & M_COPYFLAGS;
946 *mnext = m;
947 mnext = &m->m_nextpkt;
948 m->m_data += max_linkhdr;
949 mhip6 = mtod(m, struct ip6_hdr *);
950 *mhip6 = *ip6;
951 m->m_len = sizeof(*mhip6);
952 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
953 if (error) {
954 ip6stat.ip6s_odropped++;
955 goto sendorfree;
956 }
957 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
958 if (off + len >= tlen)
959 len = tlen - off;
960 else
961 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
962 mhip6->ip6_plen = htons((u_short)(len + hlen +
963 sizeof(*ip6f) -
964 sizeof(struct ip6_hdr)));
965 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
966 error = ENOBUFS;
967 ip6stat.ip6s_odropped++;
968 goto sendorfree;
969 }
970 m_cat(m, m_frgpart);
971 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
972 m->m_pkthdr.rcvif = (struct ifnet *)0;
973 ip6f->ip6f_reserved = 0;
974 ip6f->ip6f_ident = id;
975 ip6f->ip6f_nxt = nextproto;
976 ip6stat.ip6s_ofragments++;
977 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
978 }
979
980 in6_ifstat_inc(ifp, ifs6_out_fragok);
981 }
982
983 /*
984 * Remove leading garbages.
985 */
986 sendorfree:
987 m = m0->m_nextpkt;
988 m0->m_nextpkt = 0;
989 m_freem(m0);
990 for (m0 = m; m; m = m0) {
991 m0 = m->m_nextpkt;
992 m->m_nextpkt = 0;
993 if (error == 0) {
994 #ifdef IFA_STATS
995 struct in6_ifaddr *ia6;
996 ip6 = mtod(m, struct ip6_hdr *);
997 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
998 if (ia6) {
999 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1000 m->m_pkthdr.len;
1001 }
1002 #endif
1003 #ifdef IPSEC
1004 /* clean ipsec history once it goes out of the node */
1005 ipsec_delaux(m);
1006 #endif
1007 #ifdef OLDIP6OUTPUT
1008 error = (*ifp->if_output)(ifp, m,
1009 (struct sockaddr *)dst,
1010 ro->ro_rt);
1011 #else
1012 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1013 #endif
1014 } else
1015 m_freem(m);
1016 }
1017
1018 if (error == 0)
1019 ip6stat.ip6s_fragmented++;
1020
1021 done:
1022 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1023 RTFREE(ro->ro_rt);
1024 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1025 RTFREE(ro_pmtu->ro_rt);
1026 }
1027
1028 #ifdef IPSEC
1029 if (sp != NULL)
1030 key_freesp(sp);
1031 #endif /* IPSEC */
1032
1033 return(error);
1034
1035 freehdrs:
1036 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1037 m_freem(exthdrs.ip6e_dest1);
1038 m_freem(exthdrs.ip6e_rthdr);
1039 m_freem(exthdrs.ip6e_dest2);
1040 /* fall through */
1041 bad:
1042 m_freem(m);
1043 goto done;
1044 }
1045
1046 static int
1047 ip6_copyexthdr(mp, hdr, hlen)
1048 struct mbuf **mp;
1049 caddr_t hdr;
1050 int hlen;
1051 {
1052 struct mbuf *m;
1053
1054 if (hlen > MCLBYTES)
1055 return(ENOBUFS); /* XXX */
1056
1057 MGET(m, M_DONTWAIT, MT_DATA);
1058 if (!m)
1059 return(ENOBUFS);
1060
1061 if (hlen > MLEN) {
1062 MCLGET(m, M_DONTWAIT);
1063 if ((m->m_flags & M_EXT) == 0) {
1064 m_free(m);
1065 return(ENOBUFS);
1066 }
1067 }
1068 m->m_len = hlen;
1069 if (hdr)
1070 bcopy(hdr, mtod(m, caddr_t), hlen);
1071
1072 *mp = m;
1073 return(0);
1074 }
1075
1076 /*
1077 * Insert jumbo payload option.
1078 */
1079 static int
1080 ip6_insert_jumboopt(exthdrs, plen)
1081 struct ip6_exthdrs *exthdrs;
1082 u_int32_t plen;
1083 {
1084 struct mbuf *mopt;
1085 u_char *optbuf;
1086 u_int32_t v;
1087
1088 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1089
1090 /*
1091 * If there is no hop-by-hop options header, allocate new one.
1092 * If there is one but it doesn't have enough space to store the
1093 * jumbo payload option, allocate a cluster to store the whole options.
1094 * Otherwise, use it to store the options.
1095 */
1096 if (exthdrs->ip6e_hbh == 0) {
1097 MGET(mopt, M_DONTWAIT, MT_DATA);
1098 if (mopt == 0)
1099 return(ENOBUFS);
1100 mopt->m_len = JUMBOOPTLEN;
1101 optbuf = mtod(mopt, u_char *);
1102 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1103 exthdrs->ip6e_hbh = mopt;
1104 } else {
1105 struct ip6_hbh *hbh;
1106
1107 mopt = exthdrs->ip6e_hbh;
1108 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1109 /*
1110 * XXX assumption:
1111 * - exthdrs->ip6e_hbh is not referenced from places
1112 * other than exthdrs.
1113 * - exthdrs->ip6e_hbh is not an mbuf chain.
1114 */
1115 int oldoptlen = mopt->m_len;
1116 struct mbuf *n;
1117
1118 /*
1119 * XXX: give up if the whole (new) hbh header does
1120 * not fit even in an mbuf cluster.
1121 */
1122 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1123 return(ENOBUFS);
1124
1125 /*
1126 * As a consequence, we must always prepare a cluster
1127 * at this point.
1128 */
1129 MGET(n, M_DONTWAIT, MT_DATA);
1130 if (n) {
1131 MCLGET(n, M_DONTWAIT);
1132 if ((n->m_flags & M_EXT) == 0) {
1133 m_freem(n);
1134 n = NULL;
1135 }
1136 }
1137 if (!n)
1138 return(ENOBUFS);
1139 n->m_len = oldoptlen + JUMBOOPTLEN;
1140 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1141 oldoptlen);
1142 optbuf = mtod(n, caddr_t) + oldoptlen;
1143 m_freem(mopt);
1144 mopt = exthdrs->ip6e_hbh = n;
1145 } else {
1146 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1147 mopt->m_len += JUMBOOPTLEN;
1148 }
1149 optbuf[0] = IP6OPT_PADN;
1150 optbuf[1] = 1;
1151
1152 /*
1153 * Adjust the header length according to the pad and
1154 * the jumbo payload option.
1155 */
1156 hbh = mtod(mopt, struct ip6_hbh *);
1157 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1158 }
1159
1160 /* fill in the option. */
1161 optbuf[2] = IP6OPT_JUMBO;
1162 optbuf[3] = 4;
1163 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1164 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1165
1166 /* finally, adjust the packet header length */
1167 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1168
1169 return(0);
1170 #undef JUMBOOPTLEN
1171 }
1172
1173 /*
1174 * Insert fragment header and copy unfragmentable header portions.
1175 */
1176 static int
1177 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1178 struct mbuf *m0, *m;
1179 int hlen;
1180 struct ip6_frag **frghdrp;
1181 {
1182 struct mbuf *n, *mlast;
1183
1184 if (hlen > sizeof(struct ip6_hdr)) {
1185 n = m_copym(m0, sizeof(struct ip6_hdr),
1186 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1187 if (n == 0)
1188 return(ENOBUFS);
1189 m->m_next = n;
1190 } else
1191 n = m;
1192
1193 /* Search for the last mbuf of unfragmentable part. */
1194 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1195 ;
1196
1197 if ((mlast->m_flags & M_EXT) == 0 &&
1198 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1199 /* use the trailing space of the last mbuf for the fragment hdr */
1200 *frghdrp =
1201 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1202 mlast->m_len += sizeof(struct ip6_frag);
1203 m->m_pkthdr.len += sizeof(struct ip6_frag);
1204 } else {
1205 /* allocate a new mbuf for the fragment header */
1206 struct mbuf *mfrg;
1207
1208 MGET(mfrg, M_DONTWAIT, MT_DATA);
1209 if (mfrg == 0)
1210 return(ENOBUFS);
1211 mfrg->m_len = sizeof(struct ip6_frag);
1212 *frghdrp = mtod(mfrg, struct ip6_frag *);
1213 mlast->m_next = mfrg;
1214 }
1215
1216 return(0);
1217 }
1218
1219 /*
1220 * IP6 socket option processing.
1221 */
1222 int
1223 ip6_ctloutput(op, so, level, optname, mp)
1224 int op;
1225 struct socket *so;
1226 int level, optname;
1227 struct mbuf **mp;
1228 {
1229 struct in6pcb *in6p = sotoin6pcb(so);
1230 struct mbuf *m = *mp;
1231 int optval = 0;
1232 int error = 0;
1233 struct proc *p = curproc; /* XXX */
1234
1235 if (level == IPPROTO_IPV6) {
1236 switch (op) {
1237
1238 case PRCO_SETOPT:
1239 switch (optname) {
1240 case IPV6_PKTOPTIONS:
1241 /* m is freed in ip6_pcbopts */
1242 return(ip6_pcbopts(&in6p->in6p_outputopts,
1243 m, so));
1244 case IPV6_HOPOPTS:
1245 case IPV6_DSTOPTS:
1246 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1247 error = EPERM;
1248 break;
1249 }
1250 /* fall through */
1251 case IPV6_UNICAST_HOPS:
1252 case IPV6_RECVOPTS:
1253 case IPV6_RECVRETOPTS:
1254 case IPV6_RECVDSTADDR:
1255 case IPV6_PKTINFO:
1256 case IPV6_HOPLIMIT:
1257 case IPV6_RTHDR:
1258 case IPV6_CHECKSUM:
1259 case IPV6_FAITH:
1260 #ifndef INET6_BINDV6ONLY
1261 case IPV6_BINDV6ONLY:
1262 #endif
1263 if (!m || m->m_len != sizeof(int))
1264 error = EINVAL;
1265 else {
1266 optval = *mtod(m, int *);
1267 switch (optname) {
1268
1269 case IPV6_UNICAST_HOPS:
1270 if (optval < -1 || optval >= 256)
1271 error = EINVAL;
1272 else {
1273 /* -1 = kernel default */
1274 in6p->in6p_hops = optval;
1275 }
1276 break;
1277 #define OPTSET(bit) \
1278 if (optval) \
1279 in6p->in6p_flags |= bit; \
1280 else \
1281 in6p->in6p_flags &= ~bit;
1282
1283 case IPV6_RECVOPTS:
1284 OPTSET(IN6P_RECVOPTS);
1285 break;
1286
1287 case IPV6_RECVRETOPTS:
1288 OPTSET(IN6P_RECVRETOPTS);
1289 break;
1290
1291 case IPV6_RECVDSTADDR:
1292 OPTSET(IN6P_RECVDSTADDR);
1293 break;
1294
1295 case IPV6_PKTINFO:
1296 OPTSET(IN6P_PKTINFO);
1297 break;
1298
1299 case IPV6_HOPLIMIT:
1300 OPTSET(IN6P_HOPLIMIT);
1301 break;
1302
1303 case IPV6_HOPOPTS:
1304 OPTSET(IN6P_HOPOPTS);
1305 break;
1306
1307 case IPV6_DSTOPTS:
1308 OPTSET(IN6P_DSTOPTS);
1309 break;
1310
1311 case IPV6_RTHDR:
1312 OPTSET(IN6P_RTHDR);
1313 break;
1314
1315 case IPV6_CHECKSUM:
1316 in6p->in6p_cksum = optval;
1317 break;
1318
1319 case IPV6_FAITH:
1320 OPTSET(IN6P_FAITH);
1321 break;
1322
1323 #ifndef INET6_BINDV6ONLY
1324 case IPV6_BINDV6ONLY:
1325 OPTSET(IN6P_BINDV6ONLY);
1326 break;
1327 #endif
1328 }
1329 }
1330 break;
1331 #undef OPTSET
1332
1333 case IPV6_MULTICAST_IF:
1334 case IPV6_MULTICAST_HOPS:
1335 case IPV6_MULTICAST_LOOP:
1336 case IPV6_JOIN_GROUP:
1337 case IPV6_LEAVE_GROUP:
1338 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m);
1339 break;
1340
1341 case IPV6_PORTRANGE:
1342 optval = *mtod(m, int *);
1343
1344 switch (optval) {
1345 case IPV6_PORTRANGE_DEFAULT:
1346 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1347 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1348 break;
1349
1350 case IPV6_PORTRANGE_HIGH:
1351 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1352 in6p->in6p_flags |= IN6P_HIGHPORT;
1353 break;
1354
1355 case IPV6_PORTRANGE_LOW:
1356 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1357 in6p->in6p_flags |= IN6P_LOWPORT;
1358 break;
1359
1360 default:
1361 error = EINVAL;
1362 break;
1363 }
1364 break;
1365
1366 #ifdef IPSEC
1367 case IPV6_IPSEC_POLICY:
1368 {
1369 caddr_t req = NULL;
1370 size_t len = 0;
1371
1372 int priv = 0;
1373 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1374 priv = 0;
1375 else
1376 priv = 1;
1377 if (m) {
1378 req = mtod(m, caddr_t);
1379 len = m->m_len;
1380 }
1381 error = ipsec6_set_policy(in6p,
1382 optname, req, len, priv);
1383 }
1384 break;
1385 #endif /* IPSEC */
1386
1387 default:
1388 error = ENOPROTOOPT;
1389 break;
1390 }
1391 if (m)
1392 (void)m_free(m);
1393 break;
1394
1395 case PRCO_GETOPT:
1396 switch (optname) {
1397
1398 case IPV6_OPTIONS:
1399 case IPV6_RETOPTS:
1400 #if 0
1401 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1402 if (in6p->in6p_options) {
1403 m->m_len = in6p->in6p_options->m_len;
1404 bcopy(mtod(in6p->in6p_options, caddr_t),
1405 mtod(m, caddr_t),
1406 (unsigned)m->m_len);
1407 } else
1408 m->m_len = 0;
1409 break;
1410 #else
1411 error = ENOPROTOOPT;
1412 break;
1413 #endif
1414
1415 case IPV6_PKTOPTIONS:
1416 if (in6p->in6p_options) {
1417 *mp = m_copym(in6p->in6p_options, 0,
1418 M_COPYALL, M_WAIT);
1419 } else {
1420 *mp = m_get(M_WAIT, MT_SOOPTS);
1421 (*mp)->m_len = 0;
1422 }
1423 break;
1424
1425 case IPV6_HOPOPTS:
1426 case IPV6_DSTOPTS:
1427 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1428 error = EPERM;
1429 break;
1430 }
1431 /* fall through */
1432 case IPV6_UNICAST_HOPS:
1433 case IPV6_RECVOPTS:
1434 case IPV6_RECVRETOPTS:
1435 case IPV6_RECVDSTADDR:
1436 case IPV6_PORTRANGE:
1437 case IPV6_PKTINFO:
1438 case IPV6_HOPLIMIT:
1439 case IPV6_RTHDR:
1440 case IPV6_CHECKSUM:
1441 case IPV6_FAITH:
1442 #ifndef INET6_BINDV6ONLY
1443 case IPV6_BINDV6ONLY:
1444 #endif
1445 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1446 m->m_len = sizeof(int);
1447 switch (optname) {
1448
1449 case IPV6_UNICAST_HOPS:
1450 optval = in6p->in6p_hops;
1451 break;
1452
1453 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1454
1455 case IPV6_RECVOPTS:
1456 optval = OPTBIT(IN6P_RECVOPTS);
1457 break;
1458
1459 case IPV6_RECVRETOPTS:
1460 optval = OPTBIT(IN6P_RECVRETOPTS);
1461 break;
1462
1463 case IPV6_RECVDSTADDR:
1464 optval = OPTBIT(IN6P_RECVDSTADDR);
1465 break;
1466
1467 case IPV6_PORTRANGE:
1468 {
1469 int flags;
1470 flags = in6p->in6p_flags;
1471 if (flags & IN6P_HIGHPORT)
1472 optval = IPV6_PORTRANGE_HIGH;
1473 else if (flags & IN6P_LOWPORT)
1474 optval = IPV6_PORTRANGE_LOW;
1475 else
1476 optval = 0;
1477 break;
1478 }
1479
1480 case IPV6_PKTINFO:
1481 optval = OPTBIT(IN6P_PKTINFO);
1482 break;
1483
1484 case IPV6_HOPLIMIT:
1485 optval = OPTBIT(IN6P_HOPLIMIT);
1486 break;
1487
1488 case IPV6_HOPOPTS:
1489 optval = OPTBIT(IN6P_HOPOPTS);
1490 break;
1491
1492 case IPV6_DSTOPTS:
1493 optval = OPTBIT(IN6P_DSTOPTS);
1494 break;
1495
1496 case IPV6_RTHDR:
1497 optval = OPTBIT(IN6P_RTHDR);
1498 break;
1499
1500 case IPV6_CHECKSUM:
1501 optval = in6p->in6p_cksum;
1502 break;
1503
1504 case IPV6_FAITH:
1505 optval = OPTBIT(IN6P_FAITH);
1506 break;
1507
1508 #ifndef INET6_BINDV6ONLY
1509 case IPV6_BINDV6ONLY:
1510 optval = OPTBIT(IN6P_BINDV6ONLY);
1511 break;
1512 #endif
1513 }
1514 *mtod(m, int *) = optval;
1515 break;
1516
1517 case IPV6_MULTICAST_IF:
1518 case IPV6_MULTICAST_HOPS:
1519 case IPV6_MULTICAST_LOOP:
1520 case IPV6_JOIN_GROUP:
1521 case IPV6_LEAVE_GROUP:
1522 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1523 break;
1524
1525 #ifdef IPSEC
1526 case IPV6_IPSEC_POLICY:
1527 {
1528 caddr_t req = NULL;
1529 size_t len = 0;
1530
1531 if (m) {
1532 req = mtod(m, caddr_t);
1533 len = m->m_len;
1534 }
1535 error = ipsec6_get_policy(in6p, req, len, mp);
1536 break;
1537 }
1538 #endif /* IPSEC */
1539
1540 default:
1541 error = ENOPROTOOPT;
1542 break;
1543 }
1544 break;
1545 }
1546 } else {
1547 error = EINVAL;
1548 if (op == PRCO_SETOPT && *mp)
1549 (void)m_free(*mp);
1550 }
1551 return(error);
1552 }
1553
1554 /*
1555 * Set up IP6 options in pcb for insertion in output packets.
1556 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1557 * with destination address if source routed.
1558 */
1559 static int
1560 ip6_pcbopts(pktopt, m, so)
1561 struct ip6_pktopts **pktopt;
1562 struct mbuf *m;
1563 struct socket *so;
1564 {
1565 struct ip6_pktopts *opt = *pktopt;
1566 int error = 0;
1567 struct proc *p = curproc; /* XXX */
1568 int priv = 0;
1569
1570 /* turn off any old options. */
1571 if (opt) {
1572 if (opt->ip6po_m)
1573 (void)m_free(opt->ip6po_m);
1574 } else
1575 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1576 *pktopt = 0;
1577
1578 if (!m || m->m_len == 0) {
1579 /*
1580 * Only turning off any previous options.
1581 */
1582 if (opt)
1583 free(opt, M_IP6OPT);
1584 if (m)
1585 (void)m_free(m);
1586 return(0);
1587 }
1588
1589 /* set options specified by user. */
1590 if (p && !suser(p->p_ucred, &p->p_acflag))
1591 priv = 1;
1592 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1593 (void)m_free(m);
1594 return(error);
1595 }
1596 *pktopt = opt;
1597 return(0);
1598 }
1599
1600 /*
1601 * Set the IP6 multicast options in response to user setsockopt().
1602 */
1603 static int
1604 ip6_setmoptions(optname, im6op, m)
1605 int optname;
1606 struct ip6_moptions **im6op;
1607 struct mbuf *m;
1608 {
1609 int error = 0;
1610 u_int loop, ifindex;
1611 struct ipv6_mreq *mreq;
1612 struct ifnet *ifp;
1613 struct ip6_moptions *im6o = *im6op;
1614 struct route_in6 ro;
1615 struct sockaddr_in6 *dst;
1616 struct in6_multi_mship *imm;
1617 struct proc *p = curproc; /* XXX */
1618
1619 if (im6o == NULL) {
1620 /*
1621 * No multicast option buffer attached to the pcb;
1622 * allocate one and initialize to default values.
1623 */
1624 im6o = (struct ip6_moptions *)
1625 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1626
1627 if (im6o == NULL)
1628 return(ENOBUFS);
1629 *im6op = im6o;
1630 im6o->im6o_multicast_ifp = NULL;
1631 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1632 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1633 LIST_INIT(&im6o->im6o_memberships);
1634 }
1635
1636 switch (optname) {
1637
1638 case IPV6_MULTICAST_IF:
1639 /*
1640 * Select the interface for outgoing multicast packets.
1641 */
1642 if (m == NULL || m->m_len != sizeof(u_int)) {
1643 error = EINVAL;
1644 break;
1645 }
1646 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1647 if (ifindex < 0 || if_index < ifindex) {
1648 error = ENXIO; /* XXX EINVAL? */
1649 break;
1650 }
1651 ifp = ifindex2ifnet[ifindex];
1652 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1653 error = EADDRNOTAVAIL;
1654 break;
1655 }
1656 im6o->im6o_multicast_ifp = ifp;
1657 break;
1658
1659 case IPV6_MULTICAST_HOPS:
1660 {
1661 /*
1662 * Set the IP6 hoplimit for outgoing multicast packets.
1663 */
1664 int optval;
1665 if (m == NULL || m->m_len != sizeof(int)) {
1666 error = EINVAL;
1667 break;
1668 }
1669 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1670 if (optval < -1 || optval >= 256)
1671 error = EINVAL;
1672 else if (optval == -1)
1673 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1674 else
1675 im6o->im6o_multicast_hlim = optval;
1676 break;
1677 }
1678
1679 case IPV6_MULTICAST_LOOP:
1680 /*
1681 * Set the loopback flag for outgoing multicast packets.
1682 * Must be zero or one.
1683 */
1684 if (m == NULL || m->m_len != sizeof(u_int)) {
1685 error = EINVAL;
1686 break;
1687 }
1688 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1689 if (loop > 1) {
1690 error = EINVAL;
1691 break;
1692 }
1693 im6o->im6o_multicast_loop = loop;
1694 break;
1695
1696 case IPV6_JOIN_GROUP:
1697 /*
1698 * Add a multicast group membership.
1699 * Group must be a valid IP6 multicast address.
1700 */
1701 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1702 error = EINVAL;
1703 break;
1704 }
1705 mreq = mtod(m, struct ipv6_mreq *);
1706 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1707 /*
1708 * We use the unspecified address to specify to accept
1709 * all multicast addresses. Only super user is allowed
1710 * to do this.
1711 */
1712 if (suser(p->p_ucred, &p->p_acflag))
1713 {
1714 error = EACCES;
1715 break;
1716 }
1717 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1718 error = EINVAL;
1719 break;
1720 }
1721
1722 /*
1723 * If the interface is specified, validate it.
1724 */
1725 if (mreq->ipv6mr_interface < 0
1726 || if_index < mreq->ipv6mr_interface) {
1727 error = ENXIO; /* XXX EINVAL? */
1728 break;
1729 }
1730 /*
1731 * If no interface was explicitly specified, choose an
1732 * appropriate one according to the given multicast address.
1733 */
1734 if (mreq->ipv6mr_interface == 0) {
1735 /*
1736 * If the multicast address is in node-local scope,
1737 * the interface should be a loopback interface.
1738 * Otherwise, look up the routing table for the
1739 * address, and choose the outgoing interface.
1740 * XXX: is it a good approach?
1741 */
1742 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1743 ifp = &loif[0];
1744 } else {
1745 ro.ro_rt = NULL;
1746 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1747 bzero(dst, sizeof(*dst));
1748 dst->sin6_len = sizeof(struct sockaddr_in6);
1749 dst->sin6_family = AF_INET6;
1750 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1751 rtalloc((struct route *)&ro);
1752 if (ro.ro_rt == NULL) {
1753 error = EADDRNOTAVAIL;
1754 break;
1755 }
1756 ifp = ro.ro_rt->rt_ifp;
1757 rtfree(ro.ro_rt);
1758 }
1759 } else
1760 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1761
1762 /*
1763 * See if we found an interface, and confirm that it
1764 * supports multicast
1765 */
1766 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1767 error = EADDRNOTAVAIL;
1768 break;
1769 }
1770 /*
1771 * Put interface index into the multicast address,
1772 * if the address has link-local scope.
1773 */
1774 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1775 mreq->ipv6mr_multiaddr.s6_addr16[1]
1776 = htons(mreq->ipv6mr_interface);
1777 }
1778 /*
1779 * See if the membership already exists.
1780 */
1781 for (imm = im6o->im6o_memberships.lh_first;
1782 imm != NULL; imm = imm->i6mm_chain.le_next)
1783 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1784 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1785 &mreq->ipv6mr_multiaddr))
1786 break;
1787 if (imm != NULL) {
1788 error = EADDRINUSE;
1789 break;
1790 }
1791 /*
1792 * Everything looks good; add a new record to the multicast
1793 * address list for the given interface.
1794 */
1795 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
1796 if (imm == NULL) {
1797 error = ENOBUFS;
1798 break;
1799 }
1800 if ((imm->i6mm_maddr =
1801 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
1802 free(imm, M_IPMADDR);
1803 break;
1804 }
1805 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1806 break;
1807
1808 case IPV6_LEAVE_GROUP:
1809 /*
1810 * Drop a multicast group membership.
1811 * Group must be a valid IP6 multicast address.
1812 */
1813 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1814 error = EINVAL;
1815 break;
1816 }
1817 mreq = mtod(m, struct ipv6_mreq *);
1818 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1819 if (suser(p->p_ucred, &p->p_acflag))
1820 {
1821 error = EACCES;
1822 break;
1823 }
1824 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1825 error = EINVAL;
1826 break;
1827 }
1828 /*
1829 * If an interface address was specified, get a pointer
1830 * to its ifnet structure.
1831 */
1832 if (mreq->ipv6mr_interface < 0
1833 || if_index < mreq->ipv6mr_interface) {
1834 error = ENXIO; /* XXX EINVAL? */
1835 break;
1836 }
1837 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1838 /*
1839 * Put interface index into the multicast address,
1840 * if the address has link-local scope.
1841 */
1842 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1843 mreq->ipv6mr_multiaddr.s6_addr16[1]
1844 = htons(mreq->ipv6mr_interface);
1845 }
1846 /*
1847 * Find the membership in the membership list.
1848 */
1849 for (imm = im6o->im6o_memberships.lh_first;
1850 imm != NULL; imm = imm->i6mm_chain.le_next) {
1851 if ((ifp == NULL ||
1852 imm->i6mm_maddr->in6m_ifp == ifp) &&
1853 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1854 &mreq->ipv6mr_multiaddr))
1855 break;
1856 }
1857 if (imm == NULL) {
1858 /* Unable to resolve interface */
1859 error = EADDRNOTAVAIL;
1860 break;
1861 }
1862 /*
1863 * Give up the multicast address record to which the
1864 * membership points.
1865 */
1866 LIST_REMOVE(imm, i6mm_chain);
1867 in6_delmulti(imm->i6mm_maddr);
1868 free(imm, M_IPMADDR);
1869 break;
1870
1871 default:
1872 error = EOPNOTSUPP;
1873 break;
1874 }
1875
1876 /*
1877 * If all options have default values, no need to keep the mbuf.
1878 */
1879 if (im6o->im6o_multicast_ifp == NULL &&
1880 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1881 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1882 im6o->im6o_memberships.lh_first == NULL) {
1883 free(*im6op, M_IPMOPTS);
1884 *im6op = NULL;
1885 }
1886
1887 return(error);
1888 }
1889
1890 /*
1891 * Return the IP6 multicast options in response to user getsockopt().
1892 */
1893 static int
1894 ip6_getmoptions(optname, im6o, mp)
1895 int optname;
1896 struct ip6_moptions *im6o;
1897 struct mbuf **mp;
1898 {
1899 u_int *hlim, *loop, *ifindex;
1900
1901 *mp = m_get(M_WAIT, MT_SOOPTS);
1902
1903 switch (optname) {
1904
1905 case IPV6_MULTICAST_IF:
1906 ifindex = mtod(*mp, u_int *);
1907 (*mp)->m_len = sizeof(u_int);
1908 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1909 *ifindex = 0;
1910 else
1911 *ifindex = im6o->im6o_multicast_ifp->if_index;
1912 return(0);
1913
1914 case IPV6_MULTICAST_HOPS:
1915 hlim = mtod(*mp, u_int *);
1916 (*mp)->m_len = sizeof(u_int);
1917 if (im6o == NULL)
1918 *hlim = ip6_defmcasthlim;
1919 else
1920 *hlim = im6o->im6o_multicast_hlim;
1921 return(0);
1922
1923 case IPV6_MULTICAST_LOOP:
1924 loop = mtod(*mp, u_int *);
1925 (*mp)->m_len = sizeof(u_int);
1926 if (im6o == NULL)
1927 *loop = ip6_defmcasthlim;
1928 else
1929 *loop = im6o->im6o_multicast_loop;
1930 return(0);
1931
1932 default:
1933 return(EOPNOTSUPP);
1934 }
1935 }
1936
1937 /*
1938 * Discard the IP6 multicast options.
1939 */
1940 void
1941 ip6_freemoptions(im6o)
1942 struct ip6_moptions *im6o;
1943 {
1944 struct in6_multi_mship *imm;
1945
1946 if (im6o == NULL)
1947 return;
1948
1949 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
1950 LIST_REMOVE(imm, i6mm_chain);
1951 if (imm->i6mm_maddr)
1952 in6_delmulti(imm->i6mm_maddr);
1953 free(imm, M_IPMADDR);
1954 }
1955 free(im6o, M_IPMOPTS);
1956 }
1957
1958 /*
1959 * Set IPv6 outgoing packet options based on advanced API.
1960 */
1961 int
1962 ip6_setpktoptions(control, opt, priv)
1963 struct mbuf *control;
1964 struct ip6_pktopts *opt;
1965 int priv;
1966 {
1967 struct cmsghdr *cm = 0;
1968
1969 if (control == 0 || opt == 0)
1970 return(EINVAL);
1971
1972 bzero(opt, sizeof(*opt));
1973 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
1974
1975 /*
1976 * XXX: Currently, we assume all the optional information is stored
1977 * in a single mbuf.
1978 */
1979 if (control->m_next)
1980 return(EINVAL);
1981
1982 opt->ip6po_m = control;
1983
1984 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
1985 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1986 cm = mtod(control, struct cmsghdr *);
1987 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
1988 return(EINVAL);
1989 if (cm->cmsg_level != IPPROTO_IPV6)
1990 continue;
1991
1992 switch (cm->cmsg_type) {
1993 case IPV6_PKTINFO:
1994 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
1995 return(EINVAL);
1996 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1997 if (opt->ip6po_pktinfo->ipi6_ifindex &&
1998 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
1999 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2000 htons(opt->ip6po_pktinfo->ipi6_ifindex);
2001
2002 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
2003 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
2004 return(ENXIO);
2005 }
2006
2007 /*
2008 * Check if the requested source address is indeed a
2009 * unicast address assigned to the node, and can be
2010 * used as the packet's source address.
2011 */
2012 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2013 struct ifaddr *ia;
2014 struct in6_ifaddr *ia6;
2015 struct sockaddr_in6 sin6;
2016
2017 bzero(&sin6, sizeof(sin6));
2018 sin6.sin6_len = sizeof(sin6);
2019 sin6.sin6_family = AF_INET6;
2020 sin6.sin6_addr =
2021 opt->ip6po_pktinfo->ipi6_addr;
2022 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2023 if (ia == NULL ||
2024 (opt->ip6po_pktinfo->ipi6_ifindex &&
2025 (ia->ifa_ifp->if_index !=
2026 opt->ip6po_pktinfo->ipi6_ifindex))) {
2027 return(EADDRNOTAVAIL);
2028 }
2029 ia6 = (struct in6_ifaddr *)ia;
2030 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
2031 return(EADDRNOTAVAIL);
2032 }
2033
2034 /*
2035 * Check if the requested source address is
2036 * indeed a unicast address assigned to the
2037 * node.
2038 */
2039 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2040 return(EADDRNOTAVAIL);
2041 }
2042 break;
2043
2044 case IPV6_HOPLIMIT:
2045 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2046 return(EINVAL);
2047
2048 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim,
2049 sizeof(opt->ip6po_hlim));
2050 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2051 return(EINVAL);
2052 break;
2053
2054 case IPV6_NEXTHOP:
2055 if (!priv)
2056 return(EPERM);
2057
2058 if (cm->cmsg_len < sizeof(u_char) ||
2059 /* check if cmsg_len is large enough for sa_len */
2060 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2061 return(EINVAL);
2062
2063 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2064
2065 break;
2066
2067 case IPV6_HOPOPTS:
2068 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2069 return(EINVAL);
2070 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2071 if (cm->cmsg_len !=
2072 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
2073 return(EINVAL);
2074 break;
2075
2076 case IPV6_DSTOPTS:
2077 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2078 return(EINVAL);
2079
2080 /*
2081 * If there is no routing header yet, the destination
2082 * options header should be put on the 1st part.
2083 * Otherwise, the header should be on the 2nd part.
2084 * (See RFC 2460, section 4.1)
2085 */
2086 if (opt->ip6po_rthdr == NULL) {
2087 opt->ip6po_dest1 =
2088 (struct ip6_dest *)CMSG_DATA(cm);
2089 if (cm->cmsg_len !=
2090 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
2091 << 3))
2092 return(EINVAL);
2093 }
2094 else {
2095 opt->ip6po_dest2 =
2096 (struct ip6_dest *)CMSG_DATA(cm);
2097 if (cm->cmsg_len !=
2098 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
2099 << 3))
2100 return(EINVAL);
2101 }
2102 break;
2103
2104 case IPV6_RTHDR:
2105 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2106 return(EINVAL);
2107 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
2108 if (cm->cmsg_len !=
2109 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
2110 return(EINVAL);
2111 switch (opt->ip6po_rthdr->ip6r_type) {
2112 case IPV6_RTHDR_TYPE_0:
2113 if (opt->ip6po_rthdr->ip6r_segleft == 0)
2114 return(EINVAL);
2115 break;
2116 default:
2117 return(EINVAL);
2118 }
2119 break;
2120
2121 default:
2122 return(ENOPROTOOPT);
2123 }
2124 }
2125
2126 return(0);
2127 }
2128
2129 /*
2130 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2131 * packet to the input queue of a specified interface. Note that this
2132 * calls the output routine of the loopback "driver", but with an interface
2133 * pointer that might NOT be &loif -- easier than replicating that code here.
2134 */
2135 void
2136 ip6_mloopback(ifp, m, dst)
2137 struct ifnet *ifp;
2138 struct mbuf *m;
2139 struct sockaddr_in6 *dst;
2140 {
2141 struct mbuf *copym;
2142 struct ip6_hdr *ip6;
2143
2144 copym = m_copy(m, 0, M_COPYALL);
2145 if (copym == NULL)
2146 return;
2147
2148 /*
2149 * Make sure to deep-copy IPv6 header portion in case the data
2150 * is in an mbuf cluster, so that we can safely override the IPv6
2151 * header portion later.
2152 */
2153 if ((copym->m_flags & M_EXT) != 0 ||
2154 copym->m_len < sizeof(struct ip6_hdr)) {
2155 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2156 if (copym == NULL)
2157 return;
2158 }
2159
2160 #ifdef DIAGNOSTIC
2161 if (copym->m_len < sizeof(*ip6)) {
2162 m_freem(copym);
2163 return;
2164 }
2165 #endif
2166
2167 ip6 = mtod(copym, struct ip6_hdr *);
2168 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2169 ip6->ip6_src.s6_addr16[1] = 0;
2170 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2171 ip6->ip6_dst.s6_addr16[1] = 0;
2172
2173 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2174 }
2175
2176 /*
2177 * Chop IPv6 header off from the payload.
2178 */
2179 static int
2180 ip6_splithdr(m, exthdrs)
2181 struct mbuf *m;
2182 struct ip6_exthdrs *exthdrs;
2183 {
2184 struct mbuf *mh;
2185 struct ip6_hdr *ip6;
2186
2187 ip6 = mtod(m, struct ip6_hdr *);
2188 if (m->m_len > sizeof(*ip6)) {
2189 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2190 if (mh == 0) {
2191 m_freem(m);
2192 return ENOBUFS;
2193 }
2194 M_COPY_PKTHDR(mh, m);
2195 MH_ALIGN(mh, sizeof(*ip6));
2196 m->m_flags &= ~M_PKTHDR;
2197 m->m_len -= sizeof(*ip6);
2198 m->m_data += sizeof(*ip6);
2199 mh->m_next = m;
2200 m = mh;
2201 m->m_len = sizeof(*ip6);
2202 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2203 }
2204 exthdrs->ip6e_ip6 = m;
2205 return 0;
2206 }
2207
2208 /*
2209 * Compute IPv6 extension header length.
2210 */
2211 int
2212 ip6_optlen(in6p)
2213 struct in6pcb *in6p;
2214 {
2215 int len;
2216
2217 if (!in6p->in6p_outputopts)
2218 return 0;
2219
2220 len = 0;
2221 #define elen(x) \
2222 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2223
2224 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2225 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2226 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2227 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2228 return len;
2229 #undef elen
2230 }
2231