ip6_output.c revision 1.37 1 /* $NetBSD: ip6_output.c,v 1.37 2001/10/15 09:51:17 itojun Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
66 */
67
68 #include "opt_inet.h"
69 #include "opt_ipsec.h"
70 #include "opt_pfil_hooks.h"
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81
82 #include <net/if.h>
83 #include <net/route.h>
84 #ifdef PFIL_HOOKS
85 #include <net/pfil.h>
86 #endif
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/icmp6.h>
92 #include <netinet6/ip6_var.h>
93 #include <netinet6/in6_pcb.h>
94 #include <netinet6/nd6.h>
95
96 #ifdef IPSEC
97 #include <netinet6/ipsec.h>
98 #include <netkey/key.h>
99 #endif /* IPSEC */
100
101 #include "loop.h"
102
103 #include <net/net_osdep.h>
104
105 #ifdef PFIL_HOOKS
106 extern struct pfil_head inet6_pfil_hook; /* XXX */
107 #endif
108
109 struct ip6_exthdrs {
110 struct mbuf *ip6e_ip6;
111 struct mbuf *ip6e_hbh;
112 struct mbuf *ip6e_dest1;
113 struct mbuf *ip6e_rthdr;
114 struct mbuf *ip6e_dest2;
115 };
116
117 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
118 struct socket *));
119 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
120 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
121 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
122 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
123 struct ip6_frag **));
124 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
125 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
126
127 extern struct ifnet loif[NLOOP];
128
129 /*
130 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
131 * header (with pri, len, nxt, hlim, src, dst).
132 * This function may modify ver and hlim only.
133 * The mbuf chain containing the packet will be freed.
134 * The mbuf opt, if present, will not be freed.
135 */
136 int
137 ip6_output(m0, opt, ro, flags, im6o, ifpp)
138 struct mbuf *m0;
139 struct ip6_pktopts *opt;
140 struct route_in6 *ro;
141 int flags;
142 struct ip6_moptions *im6o;
143 struct ifnet **ifpp; /* XXX: just for statistics */
144 {
145 struct ip6_hdr *ip6, *mhip6;
146 struct ifnet *ifp, *origifp;
147 struct mbuf *m = m0;
148 int hlen, tlen, len, off;
149 struct route_in6 ip6route;
150 struct sockaddr_in6 *dst;
151 int error = 0;
152 struct in6_ifaddr *ia;
153 u_long mtu;
154 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
155 struct ip6_exthdrs exthdrs;
156 struct in6_addr finaldst;
157 struct route_in6 *ro_pmtu = NULL;
158 int hdrsplit = 0;
159 int needipsec = 0;
160 #ifdef IPSEC
161 int needipsectun = 0;
162 struct socket *so;
163 struct secpolicy *sp = NULL;
164
165 /* for AH processing. stupid to have "socket" variable in IP layer... */
166 so = ipsec_getsocket(m);
167 (void)ipsec_setsocket(m, NULL);
168 ip6 = mtod(m, struct ip6_hdr *);
169 #endif /* IPSEC */
170
171 #define MAKE_EXTHDR(hp, mp) \
172 do { \
173 if (hp) { \
174 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
175 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
176 ((eh)->ip6e_len + 1) << 3); \
177 if (error) \
178 goto freehdrs; \
179 } \
180 } while (0)
181
182 bzero(&exthdrs, sizeof(exthdrs));
183 if (opt) {
184 /* Hop-by-Hop options header */
185 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
186 /* Destination options header(1st part) */
187 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
188 /* Routing header */
189 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
190 /* Destination options header(2nd part) */
191 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
192 }
193
194 #ifdef IPSEC
195 /* get a security policy for this packet */
196 if (so == NULL)
197 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
198 else
199 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
200
201 if (sp == NULL) {
202 ipsec6stat.out_inval++;
203 goto freehdrs;
204 }
205
206 error = 0;
207
208 /* check policy */
209 switch (sp->policy) {
210 case IPSEC_POLICY_DISCARD:
211 /*
212 * This packet is just discarded.
213 */
214 ipsec6stat.out_polvio++;
215 goto freehdrs;
216
217 case IPSEC_POLICY_BYPASS:
218 case IPSEC_POLICY_NONE:
219 /* no need to do IPsec. */
220 needipsec = 0;
221 break;
222
223 case IPSEC_POLICY_IPSEC:
224 if (sp->req == NULL) {
225 /* XXX should be panic ? */
226 printf("ip6_output: No IPsec request specified.\n");
227 error = EINVAL;
228 goto freehdrs;
229 }
230 needipsec = 1;
231 break;
232
233 case IPSEC_POLICY_ENTRUST:
234 default:
235 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
236 }
237 #endif /* IPSEC */
238
239 /*
240 * Calculate the total length of the extension header chain.
241 * Keep the length of the unfragmentable part for fragmentation.
242 */
243 optlen = 0;
244 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
245 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
246 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
247 unfragpartlen = optlen + sizeof(struct ip6_hdr);
248 /* NOTE: we don't add AH/ESP length here. do that later. */
249 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
250
251 /*
252 * If we need IPsec, or there is at least one extension header,
253 * separate IP6 header from the payload.
254 */
255 if ((needipsec || optlen) && !hdrsplit) {
256 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
257 m = NULL;
258 goto freehdrs;
259 }
260 m = exthdrs.ip6e_ip6;
261 hdrsplit++;
262 }
263
264 /* adjust pointer */
265 ip6 = mtod(m, struct ip6_hdr *);
266
267 /* adjust mbuf packet header length */
268 m->m_pkthdr.len += optlen;
269 plen = m->m_pkthdr.len - sizeof(*ip6);
270
271 /* If this is a jumbo payload, insert a jumbo payload option. */
272 if (plen > IPV6_MAXPACKET) {
273 if (!hdrsplit) {
274 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
275 m = NULL;
276 goto freehdrs;
277 }
278 m = exthdrs.ip6e_ip6;
279 hdrsplit++;
280 }
281 /* adjust pointer */
282 ip6 = mtod(m, struct ip6_hdr *);
283 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
284 goto freehdrs;
285 ip6->ip6_plen = 0;
286 } else
287 ip6->ip6_plen = htons(plen);
288
289 /*
290 * Concatenate headers and fill in next header fields.
291 * Here we have, on "m"
292 * IPv6 payload
293 * and we insert headers accordingly. Finally, we should be getting:
294 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
295 *
296 * during the header composing process, "m" points to IPv6 header.
297 * "mprev" points to an extension header prior to esp.
298 */
299 {
300 u_char *nexthdrp = &ip6->ip6_nxt;
301 struct mbuf *mprev = m;
302
303 /*
304 * we treat dest2 specially. this makes IPsec processing
305 * much easier.
306 *
307 * result: IPv6 dest2 payload
308 * m and mprev will point to IPv6 header.
309 */
310 if (exthdrs.ip6e_dest2) {
311 if (!hdrsplit)
312 panic("assumption failed: hdr not split");
313 exthdrs.ip6e_dest2->m_next = m->m_next;
314 m->m_next = exthdrs.ip6e_dest2;
315 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
316 ip6->ip6_nxt = IPPROTO_DSTOPTS;
317 }
318
319 #define MAKE_CHAIN(m, mp, p, i)\
320 do {\
321 if (m) {\
322 if (!hdrsplit) \
323 panic("assumption failed: hdr not split"); \
324 *mtod((m), u_char *) = *(p);\
325 *(p) = (i);\
326 p = mtod((m), u_char *);\
327 (m)->m_next = (mp)->m_next;\
328 (mp)->m_next = (m);\
329 (mp) = (m);\
330 }\
331 } while (0)
332 /*
333 * result: IPv6 hbh dest1 rthdr dest2 payload
334 * m will point to IPv6 header. mprev will point to the
335 * extension header prior to dest2 (rthdr in the above case).
336 */
337 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
338 nexthdrp, IPPROTO_HOPOPTS);
339 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
340 nexthdrp, IPPROTO_DSTOPTS);
341 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
342 nexthdrp, IPPROTO_ROUTING);
343
344 #ifdef IPSEC
345 if (!needipsec)
346 goto skip_ipsec2;
347
348 /*
349 * pointers after IPsec headers are not valid any more.
350 * other pointers need a great care too.
351 * (IPsec routines should not mangle mbufs prior to AH/ESP)
352 */
353 exthdrs.ip6e_dest2 = NULL;
354
355 {
356 struct ip6_rthdr *rh = NULL;
357 int segleft_org = 0;
358 struct ipsec_output_state state;
359
360 if (exthdrs.ip6e_rthdr) {
361 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
362 segleft_org = rh->ip6r_segleft;
363 rh->ip6r_segleft = 0;
364 }
365
366 bzero(&state, sizeof(state));
367 state.m = m;
368 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
369 &needipsectun);
370 m = state.m;
371 if (error) {
372 /* mbuf is already reclaimed in ipsec6_output_trans. */
373 m = NULL;
374 switch (error) {
375 case EHOSTUNREACH:
376 case ENETUNREACH:
377 case EMSGSIZE:
378 case ENOBUFS:
379 case ENOMEM:
380 break;
381 default:
382 printf("ip6_output (ipsec): error code %d\n", error);
383 /*fall through*/
384 case ENOENT:
385 /* don't show these error codes to the user */
386 error = 0;
387 break;
388 }
389 goto bad;
390 }
391 if (exthdrs.ip6e_rthdr) {
392 /* ah6_output doesn't modify mbuf chain */
393 rh->ip6r_segleft = segleft_org;
394 }
395 }
396 skip_ipsec2:;
397 #endif
398 }
399
400 /*
401 * If there is a routing header, replace destination address field
402 * with the first hop of the routing header.
403 */
404 if (exthdrs.ip6e_rthdr) {
405 struct ip6_rthdr *rh =
406 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
407 struct ip6_rthdr *));
408 struct ip6_rthdr0 *rh0;
409
410 finaldst = ip6->ip6_dst;
411 switch (rh->ip6r_type) {
412 case IPV6_RTHDR_TYPE_0:
413 rh0 = (struct ip6_rthdr0 *)rh;
414 ip6->ip6_dst = rh0->ip6r0_addr[0];
415 bcopy((caddr_t)&rh0->ip6r0_addr[1],
416 (caddr_t)&rh0->ip6r0_addr[0],
417 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)
418 );
419 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
420 break;
421 default: /* is it possible? */
422 error = EINVAL;
423 goto bad;
424 }
425 }
426
427 /* Source address validation */
428 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
429 (flags & IPV6_DADOUTPUT) == 0) {
430 error = EOPNOTSUPP;
431 ip6stat.ip6s_badscope++;
432 goto bad;
433 }
434 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
435 error = EOPNOTSUPP;
436 ip6stat.ip6s_badscope++;
437 goto bad;
438 }
439
440 ip6stat.ip6s_localout++;
441
442 /*
443 * Route packet.
444 */
445 if (ro == 0) {
446 ro = &ip6route;
447 bzero((caddr_t)ro, sizeof(*ro));
448 }
449 ro_pmtu = ro;
450 if (opt && opt->ip6po_rthdr)
451 ro = &opt->ip6po_route;
452 dst = (struct sockaddr_in6 *)&ro->ro_dst;
453 /*
454 * If there is a cached route,
455 * check that it is to the same destination
456 * and is still up. If not, free it and try again.
457 */
458 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
459 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
460 RTFREE(ro->ro_rt);
461 ro->ro_rt = (struct rtentry *)0;
462 }
463 if (ro->ro_rt == 0) {
464 bzero(dst, sizeof(*dst));
465 dst->sin6_family = AF_INET6;
466 dst->sin6_len = sizeof(struct sockaddr_in6);
467 dst->sin6_addr = ip6->ip6_dst;
468 }
469 #ifdef IPSEC
470 if (needipsec && needipsectun) {
471 struct ipsec_output_state state;
472
473 /*
474 * All the extension headers will become inaccessible
475 * (since they can be encrypted).
476 * Don't panic, we need no more updates to extension headers
477 * on inner IPv6 packet (since they are now encapsulated).
478 *
479 * IPv6 [ESP|AH] IPv6 [extension headers] payload
480 */
481 bzero(&exthdrs, sizeof(exthdrs));
482 exthdrs.ip6e_ip6 = m;
483
484 bzero(&state, sizeof(state));
485 state.m = m;
486 state.ro = (struct route *)ro;
487 state.dst = (struct sockaddr *)dst;
488
489 error = ipsec6_output_tunnel(&state, sp, flags);
490
491 m = state.m;
492 ro = (struct route_in6 *)state.ro;
493 dst = (struct sockaddr_in6 *)state.dst;
494 if (error) {
495 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
496 m0 = m = NULL;
497 m = NULL;
498 switch (error) {
499 case EHOSTUNREACH:
500 case ENETUNREACH:
501 case EMSGSIZE:
502 case ENOBUFS:
503 case ENOMEM:
504 break;
505 default:
506 printf("ip6_output (ipsec): error code %d\n", error);
507 /*fall through*/
508 case ENOENT:
509 /* don't show these error codes to the user */
510 error = 0;
511 break;
512 }
513 goto bad;
514 }
515
516 exthdrs.ip6e_ip6 = m;
517 }
518 #endif /*IPSEC*/
519
520 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
521 /* Unicast */
522
523 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
524 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
525 /* xxx
526 * interface selection comes here
527 * if an interface is specified from an upper layer,
528 * ifp must point it.
529 */
530 if (ro->ro_rt == 0) {
531 /*
532 * non-bsdi always clone routes, if parent is
533 * PRF_CLONING.
534 */
535 rtalloc((struct route *)ro);
536 }
537 if (ro->ro_rt == 0) {
538 ip6stat.ip6s_noroute++;
539 error = EHOSTUNREACH;
540 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
541 goto bad;
542 }
543 ia = ifatoia6(ro->ro_rt->rt_ifa);
544 ifp = ro->ro_rt->rt_ifp;
545 ro->ro_rt->rt_use++;
546 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
547 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
548 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
549
550 in6_ifstat_inc(ifp, ifs6_out_request);
551
552 /*
553 * Check if the outgoing interface conflicts with
554 * the interface specified by ifi6_ifindex (if specified).
555 * Note that loopback interface is always okay.
556 * (this may happen when we are sending a packet to one of
557 * our own addresses.)
558 */
559 if (opt && opt->ip6po_pktinfo
560 && opt->ip6po_pktinfo->ipi6_ifindex) {
561 if (!(ifp->if_flags & IFF_LOOPBACK)
562 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
563 ip6stat.ip6s_noroute++;
564 in6_ifstat_inc(ifp, ifs6_out_discard);
565 error = EHOSTUNREACH;
566 goto bad;
567 }
568 }
569
570 if (opt && opt->ip6po_hlim != -1)
571 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
572 } else {
573 /* Multicast */
574 struct in6_multi *in6m;
575
576 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
577
578 /*
579 * See if the caller provided any multicast options
580 */
581 ifp = NULL;
582 if (im6o != NULL) {
583 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
584 if (im6o->im6o_multicast_ifp != NULL)
585 ifp = im6o->im6o_multicast_ifp;
586 } else
587 ip6->ip6_hlim = ip6_defmcasthlim;
588
589 /*
590 * See if the caller provided the outgoing interface
591 * as an ancillary data.
592 * Boundary check for ifindex is assumed to be already done.
593 */
594 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
595 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
596
597 /*
598 * If the destination is a node-local scope multicast,
599 * the packet should be loop-backed only.
600 */
601 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
602 /*
603 * If the outgoing interface is already specified,
604 * it should be a loopback interface.
605 */
606 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
607 ip6stat.ip6s_badscope++;
608 error = ENETUNREACH; /* XXX: better error? */
609 /* XXX correct ifp? */
610 in6_ifstat_inc(ifp, ifs6_out_discard);
611 goto bad;
612 } else {
613 ifp = &loif[0];
614 }
615 }
616
617 if (opt && opt->ip6po_hlim != -1)
618 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
619
620 /*
621 * If caller did not provide an interface lookup a
622 * default in the routing table. This is either a
623 * default for the speicfied group (i.e. a host
624 * route), or a multicast default (a route for the
625 * ``net'' ff00::/8).
626 */
627 if (ifp == NULL) {
628 if (ro->ro_rt == 0) {
629 ro->ro_rt = rtalloc1((struct sockaddr *)
630 &ro->ro_dst, 0
631 );
632 }
633 if (ro->ro_rt == 0) {
634 ip6stat.ip6s_noroute++;
635 error = EHOSTUNREACH;
636 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
637 goto bad;
638 }
639 ia = ifatoia6(ro->ro_rt->rt_ifa);
640 ifp = ro->ro_rt->rt_ifp;
641 ro->ro_rt->rt_use++;
642 }
643
644 if ((flags & IPV6_FORWARDING) == 0)
645 in6_ifstat_inc(ifp, ifs6_out_request);
646 in6_ifstat_inc(ifp, ifs6_out_mcast);
647
648 /*
649 * Confirm that the outgoing interface supports multicast.
650 */
651 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
652 ip6stat.ip6s_noroute++;
653 in6_ifstat_inc(ifp, ifs6_out_discard);
654 error = ENETUNREACH;
655 goto bad;
656 }
657 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
658 if (in6m != NULL &&
659 (im6o == NULL || im6o->im6o_multicast_loop)) {
660 /*
661 * If we belong to the destination multicast group
662 * on the outgoing interface, and the caller did not
663 * forbid loopback, loop back a copy.
664 */
665 ip6_mloopback(ifp, m, dst);
666 } else {
667 /*
668 * If we are acting as a multicast router, perform
669 * multicast forwarding as if the packet had just
670 * arrived on the interface to which we are about
671 * to send. The multicast forwarding function
672 * recursively calls this function, using the
673 * IPV6_FORWARDING flag to prevent infinite recursion.
674 *
675 * Multicasts that are looped back by ip6_mloopback(),
676 * above, will be forwarded by the ip6_input() routine,
677 * if necessary.
678 */
679 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
680 if (ip6_mforward(ip6, ifp, m) != 0) {
681 m_freem(m);
682 goto done;
683 }
684 }
685 }
686 /*
687 * Multicasts with a hoplimit of zero may be looped back,
688 * above, but must not be transmitted on a network.
689 * Also, multicasts addressed to the loopback interface
690 * are not sent -- the above call to ip6_mloopback() will
691 * loop back a copy if this host actually belongs to the
692 * destination group on the loopback interface.
693 */
694 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
695 m_freem(m);
696 goto done;
697 }
698 }
699
700 /*
701 * Fill the outgoing inteface to tell the upper layer
702 * to increment per-interface statistics.
703 */
704 if (ifpp)
705 *ifpp = ifp;
706
707 /*
708 * Determine path MTU.
709 */
710 if (ro_pmtu != ro) {
711 /* The first hop and the final destination may differ. */
712 struct sockaddr_in6 *sin6_fin =
713 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
714 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
715 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
716 &finaldst))) {
717 RTFREE(ro_pmtu->ro_rt);
718 ro_pmtu->ro_rt = (struct rtentry *)0;
719 }
720 if (ro_pmtu->ro_rt == 0) {
721 bzero(sin6_fin, sizeof(*sin6_fin));
722 sin6_fin->sin6_family = AF_INET6;
723 sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
724 sin6_fin->sin6_addr = finaldst;
725
726 rtalloc((struct route *)ro_pmtu);
727 }
728 }
729 if (ro_pmtu->ro_rt != NULL) {
730 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
731
732 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
733 if (mtu > ifmtu || mtu == 0) {
734 /*
735 * The MTU on the route is larger than the MTU on
736 * the interface! This shouldn't happen, unless the
737 * MTU of the interface has been changed after the
738 * interface was brought up. Change the MTU in the
739 * route to match the interface MTU (as long as the
740 * field isn't locked).
741 *
742 * if MTU on the route is 0, we need to fix the MTU.
743 * this case happens with path MTU discovery timeouts.
744 */
745 mtu = ifmtu;
746 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
747 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
748 }
749 } else {
750 mtu = nd_ifinfo[ifp->if_index].linkmtu;
751 }
752
753 /* Fake scoped addresses */
754 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
755 /*
756 * If source or destination address is a scoped address, and
757 * the packet is going to be sent to a loopback interface,
758 * we should keep the original interface.
759 */
760
761 /*
762 * XXX: this is a very experimental and temporary solution.
763 * We eventually have sockaddr_in6 and use the sin6_scope_id
764 * field of the structure here.
765 * We rely on the consistency between two scope zone ids
766 * of source add destination, which should already be assured
767 * Larger scopes than link will be supported in the near
768 * future.
769 */
770 origifp = NULL;
771 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
772 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
773 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
774 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
775 /*
776 * XXX: origifp can be NULL even in those two cases above.
777 * For example, if we remove the (only) link-local address
778 * from the loopback interface, and try to send a link-local
779 * address without link-id information. Then the source
780 * address is ::1, and the destination address is the
781 * link-local address with its s6_addr16[1] being zero.
782 * What is worse, if the packet goes to the loopback interface
783 * by a default rejected route, the null pointer would be
784 * passed to looutput, and the kernel would hang.
785 * The following last resort would prevent such disaster.
786 */
787 if (origifp == NULL)
788 origifp = ifp;
789 }
790 else
791 origifp = ifp;
792 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
793 ip6->ip6_src.s6_addr16[1] = 0;
794 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
795 ip6->ip6_dst.s6_addr16[1] = 0;
796
797 /*
798 * If the outgoing packet contains a hop-by-hop options header,
799 * it must be examined and processed even by the source node.
800 * (RFC 2460, section 4.)
801 */
802 if (exthdrs.ip6e_hbh) {
803 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
804 u_int32_t dummy1; /* XXX unused */
805 u_int32_t dummy2; /* XXX unused */
806
807 /*
808 * XXX: if we have to send an ICMPv6 error to the sender,
809 * we need the M_LOOP flag since icmp6_error() expects
810 * the IPv6 and the hop-by-hop options header are
811 * continuous unless the flag is set.
812 */
813 m->m_flags |= M_LOOP;
814 m->m_pkthdr.rcvif = ifp;
815 if (ip6_process_hopopts(m,
816 (u_int8_t *)(hbh + 1),
817 ((hbh->ip6h_len + 1) << 3) -
818 sizeof(struct ip6_hbh),
819 &dummy1, &dummy2) < 0) {
820 /* m was already freed at this point */
821 error = EINVAL;/* better error? */
822 goto done;
823 }
824 m->m_flags &= ~M_LOOP; /* XXX */
825 m->m_pkthdr.rcvif = NULL;
826 }
827
828 #ifdef PFIL_HOOKS
829 /*
830 * Run through list of hooks for output packets.
831 */
832 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp,
833 PFIL_OUT)) != 0)
834 goto done;
835 if (m == NULL)
836 goto done;
837 ip6 = mtod(m, struct ip6_hdr *);
838 #endif /* PFIL_HOOKS */
839 /*
840 * Send the packet to the outgoing interface.
841 * If necessary, do IPv6 fragmentation before sending.
842 */
843 tlen = m->m_pkthdr.len;
844 if (tlen <= mtu
845 #ifdef notyet
846 /*
847 * On any link that cannot convey a 1280-octet packet in one piece,
848 * link-specific fragmentation and reassembly must be provided at
849 * a layer below IPv6. [RFC 2460, sec.5]
850 * Thus if the interface has ability of link-level fragmentation,
851 * we can just send the packet even if the packet size is
852 * larger than the link's MTU.
853 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
854 */
855
856 || ifp->if_flags & IFF_FRAGMENTABLE
857 #endif
858 )
859 {
860 #ifdef IFA_STATS
861 struct in6_ifaddr *ia6;
862 ip6 = mtod(m, struct ip6_hdr *);
863 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
864 if (ia6) {
865 ia6->ia_ifa.ifa_data.ifad_outbytes +=
866 m->m_pkthdr.len;
867 }
868 #endif
869 #ifdef IPSEC
870 /* clean ipsec history once it goes out of the node */
871 ipsec_delaux(m);
872 #endif
873 #ifdef OLDIP6OUTPUT
874 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst,
875 ro->ro_rt);
876 #else
877 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
878 #endif
879 goto done;
880 } else if (mtu < IPV6_MMTU) {
881 /*
882 * note that path MTU is never less than IPV6_MMTU
883 * (see icmp6_input).
884 */
885 error = EMSGSIZE;
886 in6_ifstat_inc(ifp, ifs6_out_fragfail);
887 goto bad;
888 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
889 error = EMSGSIZE;
890 in6_ifstat_inc(ifp, ifs6_out_fragfail);
891 goto bad;
892 } else {
893 struct mbuf **mnext, *m_frgpart;
894 struct ip6_frag *ip6f;
895 u_int32_t id = htonl(ip6_id++);
896 u_char nextproto;
897
898 /*
899 * Too large for the destination or interface;
900 * fragment if possible.
901 * Must be able to put at least 8 bytes per fragment.
902 */
903 hlen = unfragpartlen;
904 if (mtu > IPV6_MAXPACKET)
905 mtu = IPV6_MAXPACKET;
906 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
907 if (len < 8) {
908 error = EMSGSIZE;
909 in6_ifstat_inc(ifp, ifs6_out_fragfail);
910 goto bad;
911 }
912
913 mnext = &m->m_nextpkt;
914
915 /*
916 * Change the next header field of the last header in the
917 * unfragmentable part.
918 */
919 if (exthdrs.ip6e_rthdr) {
920 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
921 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
922 } else if (exthdrs.ip6e_dest1) {
923 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
924 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
925 } else if (exthdrs.ip6e_hbh) {
926 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
927 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
928 } else {
929 nextproto = ip6->ip6_nxt;
930 ip6->ip6_nxt = IPPROTO_FRAGMENT;
931 }
932
933 /*
934 * Loop through length of segment after first fragment,
935 * make new header and copy data of each part and link onto chain.
936 */
937 m0 = m;
938 for (off = hlen; off < tlen; off += len) {
939 MGETHDR(m, M_DONTWAIT, MT_HEADER);
940 if (!m) {
941 error = ENOBUFS;
942 ip6stat.ip6s_odropped++;
943 goto sendorfree;
944 }
945 m->m_flags = m0->m_flags & M_COPYFLAGS;
946 *mnext = m;
947 mnext = &m->m_nextpkt;
948 m->m_data += max_linkhdr;
949 mhip6 = mtod(m, struct ip6_hdr *);
950 *mhip6 = *ip6;
951 m->m_len = sizeof(*mhip6);
952 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
953 if (error) {
954 ip6stat.ip6s_odropped++;
955 goto sendorfree;
956 }
957 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
958 if (off + len >= tlen)
959 len = tlen - off;
960 else
961 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
962 mhip6->ip6_plen = htons((u_short)(len + hlen +
963 sizeof(*ip6f) -
964 sizeof(struct ip6_hdr)));
965 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
966 error = ENOBUFS;
967 ip6stat.ip6s_odropped++;
968 goto sendorfree;
969 }
970 m_cat(m, m_frgpart);
971 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
972 m->m_pkthdr.rcvif = (struct ifnet *)0;
973 ip6f->ip6f_reserved = 0;
974 ip6f->ip6f_ident = id;
975 ip6f->ip6f_nxt = nextproto;
976 ip6stat.ip6s_ofragments++;
977 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
978 }
979
980 in6_ifstat_inc(ifp, ifs6_out_fragok);
981 }
982
983 /*
984 * Remove leading garbages.
985 */
986 sendorfree:
987 m = m0->m_nextpkt;
988 m0->m_nextpkt = 0;
989 m_freem(m0);
990 for (m0 = m; m; m = m0) {
991 m0 = m->m_nextpkt;
992 m->m_nextpkt = 0;
993 if (error == 0) {
994 #ifdef IFA_STATS
995 struct in6_ifaddr *ia6;
996 ip6 = mtod(m, struct ip6_hdr *);
997 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
998 if (ia6) {
999 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1000 m->m_pkthdr.len;
1001 }
1002 #endif
1003 #ifdef IPSEC
1004 /* clean ipsec history once it goes out of the node */
1005 ipsec_delaux(m);
1006 #endif
1007 #ifdef OLDIP6OUTPUT
1008 error = (*ifp->if_output)(ifp, m,
1009 (struct sockaddr *)dst,
1010 ro->ro_rt);
1011 #else
1012 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1013 #endif
1014 } else
1015 m_freem(m);
1016 }
1017
1018 if (error == 0)
1019 ip6stat.ip6s_fragmented++;
1020
1021 done:
1022 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1023 RTFREE(ro->ro_rt);
1024 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1025 RTFREE(ro_pmtu->ro_rt);
1026 }
1027
1028 #ifdef IPSEC
1029 if (sp != NULL)
1030 key_freesp(sp);
1031 #endif /* IPSEC */
1032
1033 return(error);
1034
1035 freehdrs:
1036 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1037 m_freem(exthdrs.ip6e_dest1);
1038 m_freem(exthdrs.ip6e_rthdr);
1039 m_freem(exthdrs.ip6e_dest2);
1040 /* fall through */
1041 bad:
1042 m_freem(m);
1043 goto done;
1044 }
1045
1046 static int
1047 ip6_copyexthdr(mp, hdr, hlen)
1048 struct mbuf **mp;
1049 caddr_t hdr;
1050 int hlen;
1051 {
1052 struct mbuf *m;
1053
1054 if (hlen > MCLBYTES)
1055 return(ENOBUFS); /* XXX */
1056
1057 MGET(m, M_DONTWAIT, MT_DATA);
1058 if (!m)
1059 return(ENOBUFS);
1060
1061 if (hlen > MLEN) {
1062 MCLGET(m, M_DONTWAIT);
1063 if ((m->m_flags & M_EXT) == 0) {
1064 m_free(m);
1065 return(ENOBUFS);
1066 }
1067 }
1068 m->m_len = hlen;
1069 if (hdr)
1070 bcopy(hdr, mtod(m, caddr_t), hlen);
1071
1072 *mp = m;
1073 return(0);
1074 }
1075
1076 /*
1077 * Insert jumbo payload option.
1078 */
1079 static int
1080 ip6_insert_jumboopt(exthdrs, plen)
1081 struct ip6_exthdrs *exthdrs;
1082 u_int32_t plen;
1083 {
1084 struct mbuf *mopt;
1085 u_char *optbuf;
1086 u_int32_t v;
1087
1088 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1089
1090 /*
1091 * If there is no hop-by-hop options header, allocate new one.
1092 * If there is one but it doesn't have enough space to store the
1093 * jumbo payload option, allocate a cluster to store the whole options.
1094 * Otherwise, use it to store the options.
1095 */
1096 if (exthdrs->ip6e_hbh == 0) {
1097 MGET(mopt, M_DONTWAIT, MT_DATA);
1098 if (mopt == 0)
1099 return(ENOBUFS);
1100 mopt->m_len = JUMBOOPTLEN;
1101 optbuf = mtod(mopt, u_char *);
1102 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1103 exthdrs->ip6e_hbh = mopt;
1104 } else {
1105 struct ip6_hbh *hbh;
1106
1107 mopt = exthdrs->ip6e_hbh;
1108 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1109 /*
1110 * XXX assumption:
1111 * - exthdrs->ip6e_hbh is not referenced from places
1112 * other than exthdrs.
1113 * - exthdrs->ip6e_hbh is not an mbuf chain.
1114 */
1115 int oldoptlen = mopt->m_len;
1116 struct mbuf *n;
1117
1118 /*
1119 * XXX: give up if the whole (new) hbh header does
1120 * not fit even in an mbuf cluster.
1121 */
1122 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1123 return(ENOBUFS);
1124
1125 /*
1126 * As a consequence, we must always prepare a cluster
1127 * at this point.
1128 */
1129 MGET(n, M_DONTWAIT, MT_DATA);
1130 if (n) {
1131 MCLGET(n, M_DONTWAIT);
1132 if ((n->m_flags & M_EXT) == 0) {
1133 m_freem(n);
1134 n = NULL;
1135 }
1136 }
1137 if (!n)
1138 return(ENOBUFS);
1139 n->m_len = oldoptlen + JUMBOOPTLEN;
1140 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1141 oldoptlen);
1142 optbuf = mtod(n, caddr_t) + oldoptlen;
1143 m_freem(mopt);
1144 mopt = exthdrs->ip6e_hbh = n;
1145 } else {
1146 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1147 mopt->m_len += JUMBOOPTLEN;
1148 }
1149 optbuf[0] = IP6OPT_PADN;
1150 optbuf[1] = 1;
1151
1152 /*
1153 * Adjust the header length according to the pad and
1154 * the jumbo payload option.
1155 */
1156 hbh = mtod(mopt, struct ip6_hbh *);
1157 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1158 }
1159
1160 /* fill in the option. */
1161 optbuf[2] = IP6OPT_JUMBO;
1162 optbuf[3] = 4;
1163 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1164 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1165
1166 /* finally, adjust the packet header length */
1167 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1168
1169 return(0);
1170 #undef JUMBOOPTLEN
1171 }
1172
1173 /*
1174 * Insert fragment header and copy unfragmentable header portions.
1175 */
1176 static int
1177 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1178 struct mbuf *m0, *m;
1179 int hlen;
1180 struct ip6_frag **frghdrp;
1181 {
1182 struct mbuf *n, *mlast;
1183
1184 if (hlen > sizeof(struct ip6_hdr)) {
1185 n = m_copym(m0, sizeof(struct ip6_hdr),
1186 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1187 if (n == 0)
1188 return(ENOBUFS);
1189 m->m_next = n;
1190 } else
1191 n = m;
1192
1193 /* Search for the last mbuf of unfragmentable part. */
1194 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1195 ;
1196
1197 if ((mlast->m_flags & M_EXT) == 0 &&
1198 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1199 /* use the trailing space of the last mbuf for the fragment hdr */
1200 *frghdrp =
1201 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1202 mlast->m_len += sizeof(struct ip6_frag);
1203 m->m_pkthdr.len += sizeof(struct ip6_frag);
1204 } else {
1205 /* allocate a new mbuf for the fragment header */
1206 struct mbuf *mfrg;
1207
1208 MGET(mfrg, M_DONTWAIT, MT_DATA);
1209 if (mfrg == 0)
1210 return(ENOBUFS);
1211 mfrg->m_len = sizeof(struct ip6_frag);
1212 *frghdrp = mtod(mfrg, struct ip6_frag *);
1213 mlast->m_next = mfrg;
1214 }
1215
1216 return(0);
1217 }
1218
1219 /*
1220 * IP6 socket option processing.
1221 */
1222 int
1223 ip6_ctloutput(op, so, level, optname, mp)
1224 int op;
1225 struct socket *so;
1226 int level, optname;
1227 struct mbuf **mp;
1228 {
1229 struct in6pcb *in6p = sotoin6pcb(so);
1230 struct mbuf *m = *mp;
1231 int optval = 0;
1232 int error = 0;
1233 struct proc *p = curproc; /* XXX */
1234
1235 if (level == IPPROTO_IPV6) {
1236 switch (op) {
1237
1238 case PRCO_SETOPT:
1239 switch (optname) {
1240 case IPV6_PKTOPTIONS:
1241 /* m is freed in ip6_pcbopts */
1242 return(ip6_pcbopts(&in6p->in6p_outputopts,
1243 m, so));
1244 case IPV6_HOPOPTS:
1245 case IPV6_DSTOPTS:
1246 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1247 error = EPERM;
1248 break;
1249 }
1250 /* fall through */
1251 case IPV6_UNICAST_HOPS:
1252 case IPV6_RECVOPTS:
1253 case IPV6_RECVRETOPTS:
1254 case IPV6_RECVDSTADDR:
1255 case IPV6_PKTINFO:
1256 case IPV6_HOPLIMIT:
1257 case IPV6_RTHDR:
1258 case IPV6_CHECKSUM:
1259 case IPV6_FAITH:
1260 case IPV6_V6ONLY:
1261 if (!m || m->m_len != sizeof(int)) {
1262 error = EINVAL;
1263 break;
1264 }
1265 optval = *mtod(m, int *);
1266 switch (optname) {
1267
1268 case IPV6_UNICAST_HOPS:
1269 if (optval < -1 || optval >= 256)
1270 error = EINVAL;
1271 else {
1272 /* -1 = kernel default */
1273 in6p->in6p_hops = optval;
1274 }
1275 break;
1276 #define OPTSET(bit) \
1277 if (optval) \
1278 in6p->in6p_flags |= bit; \
1279 else \
1280 in6p->in6p_flags &= ~bit;
1281
1282 case IPV6_RECVOPTS:
1283 OPTSET(IN6P_RECVOPTS);
1284 break;
1285
1286 case IPV6_RECVRETOPTS:
1287 OPTSET(IN6P_RECVRETOPTS);
1288 break;
1289
1290 case IPV6_RECVDSTADDR:
1291 OPTSET(IN6P_RECVDSTADDR);
1292 break;
1293
1294 case IPV6_PKTINFO:
1295 OPTSET(IN6P_PKTINFO);
1296 break;
1297
1298 case IPV6_HOPLIMIT:
1299 OPTSET(IN6P_HOPLIMIT);
1300 break;
1301
1302 case IPV6_HOPOPTS:
1303 OPTSET(IN6P_HOPOPTS);
1304 break;
1305
1306 case IPV6_DSTOPTS:
1307 OPTSET(IN6P_DSTOPTS);
1308 break;
1309
1310 case IPV6_RTHDR:
1311 OPTSET(IN6P_RTHDR);
1312 break;
1313
1314 case IPV6_CHECKSUM:
1315 in6p->in6p_cksum = optval;
1316 break;
1317
1318 case IPV6_FAITH:
1319 OPTSET(IN6P_FAITH);
1320 break;
1321
1322 case IPV6_V6ONLY:
1323 /*
1324 * make setsockopt(IPV6_V6ONLY)
1325 * available only prior to bind(2).
1326 * see ipng mailing list, Jun 22 2001.
1327 */
1328 if (in6p->in6p_lport ||
1329 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr))
1330 {
1331 error = EINVAL;
1332 break;
1333 }
1334 #ifdef INET6_BINDV6ONLY
1335 if (!optval)
1336 error = EINVAL;
1337 #else
1338 OPTSET(IN6P_IPV6_V6ONLY);
1339 #endif
1340 break;
1341 }
1342 break;
1343 #undef OPTSET
1344
1345 case IPV6_MULTICAST_IF:
1346 case IPV6_MULTICAST_HOPS:
1347 case IPV6_MULTICAST_LOOP:
1348 case IPV6_JOIN_GROUP:
1349 case IPV6_LEAVE_GROUP:
1350 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m);
1351 break;
1352
1353 case IPV6_PORTRANGE:
1354 optval = *mtod(m, int *);
1355
1356 switch (optval) {
1357 case IPV6_PORTRANGE_DEFAULT:
1358 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1359 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1360 break;
1361
1362 case IPV6_PORTRANGE_HIGH:
1363 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1364 in6p->in6p_flags |= IN6P_HIGHPORT;
1365 break;
1366
1367 case IPV6_PORTRANGE_LOW:
1368 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1369 in6p->in6p_flags |= IN6P_LOWPORT;
1370 break;
1371
1372 default:
1373 error = EINVAL;
1374 break;
1375 }
1376 break;
1377
1378 #ifdef IPSEC
1379 case IPV6_IPSEC_POLICY:
1380 {
1381 caddr_t req = NULL;
1382 size_t len = 0;
1383
1384 int priv = 0;
1385 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1386 priv = 0;
1387 else
1388 priv = 1;
1389 if (m) {
1390 req = mtod(m, caddr_t);
1391 len = m->m_len;
1392 }
1393 error = ipsec6_set_policy(in6p,
1394 optname, req, len, priv);
1395 }
1396 break;
1397 #endif /* IPSEC */
1398
1399 default:
1400 error = ENOPROTOOPT;
1401 break;
1402 }
1403 if (m)
1404 (void)m_free(m);
1405 break;
1406
1407 case PRCO_GETOPT:
1408 switch (optname) {
1409
1410 case IPV6_OPTIONS:
1411 case IPV6_RETOPTS:
1412 #if 0
1413 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1414 if (in6p->in6p_options) {
1415 m->m_len = in6p->in6p_options->m_len;
1416 bcopy(mtod(in6p->in6p_options, caddr_t),
1417 mtod(m, caddr_t),
1418 (unsigned)m->m_len);
1419 } else
1420 m->m_len = 0;
1421 break;
1422 #else
1423 error = ENOPROTOOPT;
1424 break;
1425 #endif
1426
1427 case IPV6_PKTOPTIONS:
1428 if (in6p->in6p_options) {
1429 *mp = m_copym(in6p->in6p_options, 0,
1430 M_COPYALL, M_WAIT);
1431 } else {
1432 *mp = m_get(M_WAIT, MT_SOOPTS);
1433 (*mp)->m_len = 0;
1434 }
1435 break;
1436
1437 case IPV6_HOPOPTS:
1438 case IPV6_DSTOPTS:
1439 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1440 error = EPERM;
1441 break;
1442 }
1443 /* fall through */
1444 case IPV6_UNICAST_HOPS:
1445 case IPV6_RECVOPTS:
1446 case IPV6_RECVRETOPTS:
1447 case IPV6_RECVDSTADDR:
1448 case IPV6_PORTRANGE:
1449 case IPV6_PKTINFO:
1450 case IPV6_HOPLIMIT:
1451 case IPV6_RTHDR:
1452 case IPV6_CHECKSUM:
1453 case IPV6_FAITH:
1454 case IPV6_V6ONLY:
1455 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1456 m->m_len = sizeof(int);
1457 switch (optname) {
1458
1459 case IPV6_UNICAST_HOPS:
1460 optval = in6p->in6p_hops;
1461 break;
1462
1463 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1464
1465 case IPV6_RECVOPTS:
1466 optval = OPTBIT(IN6P_RECVOPTS);
1467 break;
1468
1469 case IPV6_RECVRETOPTS:
1470 optval = OPTBIT(IN6P_RECVRETOPTS);
1471 break;
1472
1473 case IPV6_RECVDSTADDR:
1474 optval = OPTBIT(IN6P_RECVDSTADDR);
1475 break;
1476
1477 case IPV6_PORTRANGE:
1478 {
1479 int flags;
1480 flags = in6p->in6p_flags;
1481 if (flags & IN6P_HIGHPORT)
1482 optval = IPV6_PORTRANGE_HIGH;
1483 else if (flags & IN6P_LOWPORT)
1484 optval = IPV6_PORTRANGE_LOW;
1485 else
1486 optval = 0;
1487 break;
1488 }
1489
1490 case IPV6_PKTINFO:
1491 optval = OPTBIT(IN6P_PKTINFO);
1492 break;
1493
1494 case IPV6_HOPLIMIT:
1495 optval = OPTBIT(IN6P_HOPLIMIT);
1496 break;
1497
1498 case IPV6_HOPOPTS:
1499 optval = OPTBIT(IN6P_HOPOPTS);
1500 break;
1501
1502 case IPV6_DSTOPTS:
1503 optval = OPTBIT(IN6P_DSTOPTS);
1504 break;
1505
1506 case IPV6_RTHDR:
1507 optval = OPTBIT(IN6P_RTHDR);
1508 break;
1509
1510 case IPV6_CHECKSUM:
1511 optval = in6p->in6p_cksum;
1512 break;
1513
1514 case IPV6_FAITH:
1515 optval = OPTBIT(IN6P_FAITH);
1516 break;
1517
1518 case IPV6_V6ONLY:
1519 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1520 break;
1521 }
1522 *mtod(m, int *) = optval;
1523 break;
1524
1525 case IPV6_MULTICAST_IF:
1526 case IPV6_MULTICAST_HOPS:
1527 case IPV6_MULTICAST_LOOP:
1528 case IPV6_JOIN_GROUP:
1529 case IPV6_LEAVE_GROUP:
1530 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1531 break;
1532
1533 #ifdef IPSEC
1534 case IPV6_IPSEC_POLICY:
1535 {
1536 caddr_t req = NULL;
1537 size_t len = 0;
1538
1539 if (m) {
1540 req = mtod(m, caddr_t);
1541 len = m->m_len;
1542 }
1543 error = ipsec6_get_policy(in6p, req, len, mp);
1544 break;
1545 }
1546 #endif /* IPSEC */
1547
1548 default:
1549 error = ENOPROTOOPT;
1550 break;
1551 }
1552 break;
1553 }
1554 } else {
1555 error = EINVAL;
1556 if (op == PRCO_SETOPT && *mp)
1557 (void)m_free(*mp);
1558 }
1559 return(error);
1560 }
1561
1562 /*
1563 * Set up IP6 options in pcb for insertion in output packets.
1564 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1565 * with destination address if source routed.
1566 */
1567 static int
1568 ip6_pcbopts(pktopt, m, so)
1569 struct ip6_pktopts **pktopt;
1570 struct mbuf *m;
1571 struct socket *so;
1572 {
1573 struct ip6_pktopts *opt = *pktopt;
1574 int error = 0;
1575 struct proc *p = curproc; /* XXX */
1576 int priv = 0;
1577
1578 /* turn off any old options. */
1579 if (opt) {
1580 if (opt->ip6po_m)
1581 (void)m_free(opt->ip6po_m);
1582 } else
1583 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1584 *pktopt = 0;
1585
1586 if (!m || m->m_len == 0) {
1587 /*
1588 * Only turning off any previous options.
1589 */
1590 if (opt)
1591 free(opt, M_IP6OPT);
1592 if (m)
1593 (void)m_free(m);
1594 return(0);
1595 }
1596
1597 /* set options specified by user. */
1598 if (p && !suser(p->p_ucred, &p->p_acflag))
1599 priv = 1;
1600 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1601 (void)m_free(m);
1602 return(error);
1603 }
1604 *pktopt = opt;
1605 return(0);
1606 }
1607
1608 /*
1609 * Set the IP6 multicast options in response to user setsockopt().
1610 */
1611 static int
1612 ip6_setmoptions(optname, im6op, m)
1613 int optname;
1614 struct ip6_moptions **im6op;
1615 struct mbuf *m;
1616 {
1617 int error = 0;
1618 u_int loop, ifindex;
1619 struct ipv6_mreq *mreq;
1620 struct ifnet *ifp;
1621 struct ip6_moptions *im6o = *im6op;
1622 struct route_in6 ro;
1623 struct sockaddr_in6 *dst;
1624 struct in6_multi_mship *imm;
1625 struct proc *p = curproc; /* XXX */
1626
1627 if (im6o == NULL) {
1628 /*
1629 * No multicast option buffer attached to the pcb;
1630 * allocate one and initialize to default values.
1631 */
1632 im6o = (struct ip6_moptions *)
1633 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1634
1635 if (im6o == NULL)
1636 return(ENOBUFS);
1637 *im6op = im6o;
1638 im6o->im6o_multicast_ifp = NULL;
1639 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1640 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1641 LIST_INIT(&im6o->im6o_memberships);
1642 }
1643
1644 switch (optname) {
1645
1646 case IPV6_MULTICAST_IF:
1647 /*
1648 * Select the interface for outgoing multicast packets.
1649 */
1650 if (m == NULL || m->m_len != sizeof(u_int)) {
1651 error = EINVAL;
1652 break;
1653 }
1654 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1655 if (ifindex < 0 || if_index < ifindex) {
1656 error = ENXIO; /* XXX EINVAL? */
1657 break;
1658 }
1659 ifp = ifindex2ifnet[ifindex];
1660 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1661 error = EADDRNOTAVAIL;
1662 break;
1663 }
1664 im6o->im6o_multicast_ifp = ifp;
1665 break;
1666
1667 case IPV6_MULTICAST_HOPS:
1668 {
1669 /*
1670 * Set the IP6 hoplimit for outgoing multicast packets.
1671 */
1672 int optval;
1673 if (m == NULL || m->m_len != sizeof(int)) {
1674 error = EINVAL;
1675 break;
1676 }
1677 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1678 if (optval < -1 || optval >= 256)
1679 error = EINVAL;
1680 else if (optval == -1)
1681 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1682 else
1683 im6o->im6o_multicast_hlim = optval;
1684 break;
1685 }
1686
1687 case IPV6_MULTICAST_LOOP:
1688 /*
1689 * Set the loopback flag for outgoing multicast packets.
1690 * Must be zero or one.
1691 */
1692 if (m == NULL || m->m_len != sizeof(u_int)) {
1693 error = EINVAL;
1694 break;
1695 }
1696 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1697 if (loop > 1) {
1698 error = EINVAL;
1699 break;
1700 }
1701 im6o->im6o_multicast_loop = loop;
1702 break;
1703
1704 case IPV6_JOIN_GROUP:
1705 /*
1706 * Add a multicast group membership.
1707 * Group must be a valid IP6 multicast address.
1708 */
1709 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1710 error = EINVAL;
1711 break;
1712 }
1713 mreq = mtod(m, struct ipv6_mreq *);
1714 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1715 /*
1716 * We use the unspecified address to specify to accept
1717 * all multicast addresses. Only super user is allowed
1718 * to do this.
1719 */
1720 if (suser(p->p_ucred, &p->p_acflag))
1721 {
1722 error = EACCES;
1723 break;
1724 }
1725 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1726 error = EINVAL;
1727 break;
1728 }
1729
1730 /*
1731 * If the interface is specified, validate it.
1732 */
1733 if (mreq->ipv6mr_interface < 0
1734 || if_index < mreq->ipv6mr_interface) {
1735 error = ENXIO; /* XXX EINVAL? */
1736 break;
1737 }
1738 /*
1739 * If no interface was explicitly specified, choose an
1740 * appropriate one according to the given multicast address.
1741 */
1742 if (mreq->ipv6mr_interface == 0) {
1743 /*
1744 * If the multicast address is in node-local scope,
1745 * the interface should be a loopback interface.
1746 * Otherwise, look up the routing table for the
1747 * address, and choose the outgoing interface.
1748 * XXX: is it a good approach?
1749 */
1750 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1751 ifp = &loif[0];
1752 } else {
1753 ro.ro_rt = NULL;
1754 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1755 bzero(dst, sizeof(*dst));
1756 dst->sin6_len = sizeof(struct sockaddr_in6);
1757 dst->sin6_family = AF_INET6;
1758 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1759 rtalloc((struct route *)&ro);
1760 if (ro.ro_rt == NULL) {
1761 error = EADDRNOTAVAIL;
1762 break;
1763 }
1764 ifp = ro.ro_rt->rt_ifp;
1765 rtfree(ro.ro_rt);
1766 }
1767 } else
1768 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1769
1770 /*
1771 * See if we found an interface, and confirm that it
1772 * supports multicast
1773 */
1774 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1775 error = EADDRNOTAVAIL;
1776 break;
1777 }
1778 /*
1779 * Put interface index into the multicast address,
1780 * if the address has link-local scope.
1781 */
1782 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1783 mreq->ipv6mr_multiaddr.s6_addr16[1]
1784 = htons(mreq->ipv6mr_interface);
1785 }
1786 /*
1787 * See if the membership already exists.
1788 */
1789 for (imm = im6o->im6o_memberships.lh_first;
1790 imm != NULL; imm = imm->i6mm_chain.le_next)
1791 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1792 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1793 &mreq->ipv6mr_multiaddr))
1794 break;
1795 if (imm != NULL) {
1796 error = EADDRINUSE;
1797 break;
1798 }
1799 /*
1800 * Everything looks good; add a new record to the multicast
1801 * address list for the given interface.
1802 */
1803 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
1804 if (imm == NULL) {
1805 error = ENOBUFS;
1806 break;
1807 }
1808 if ((imm->i6mm_maddr =
1809 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
1810 free(imm, M_IPMADDR);
1811 break;
1812 }
1813 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1814 break;
1815
1816 case IPV6_LEAVE_GROUP:
1817 /*
1818 * Drop a multicast group membership.
1819 * Group must be a valid IP6 multicast address.
1820 */
1821 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1822 error = EINVAL;
1823 break;
1824 }
1825 mreq = mtod(m, struct ipv6_mreq *);
1826 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1827 if (suser(p->p_ucred, &p->p_acflag))
1828 {
1829 error = EACCES;
1830 break;
1831 }
1832 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1833 error = EINVAL;
1834 break;
1835 }
1836 /*
1837 * If an interface address was specified, get a pointer
1838 * to its ifnet structure.
1839 */
1840 if (mreq->ipv6mr_interface < 0
1841 || if_index < mreq->ipv6mr_interface) {
1842 error = ENXIO; /* XXX EINVAL? */
1843 break;
1844 }
1845 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1846 /*
1847 * Put interface index into the multicast address,
1848 * if the address has link-local scope.
1849 */
1850 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1851 mreq->ipv6mr_multiaddr.s6_addr16[1]
1852 = htons(mreq->ipv6mr_interface);
1853 }
1854 /*
1855 * Find the membership in the membership list.
1856 */
1857 for (imm = im6o->im6o_memberships.lh_first;
1858 imm != NULL; imm = imm->i6mm_chain.le_next) {
1859 if ((ifp == NULL ||
1860 imm->i6mm_maddr->in6m_ifp == ifp) &&
1861 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1862 &mreq->ipv6mr_multiaddr))
1863 break;
1864 }
1865 if (imm == NULL) {
1866 /* Unable to resolve interface */
1867 error = EADDRNOTAVAIL;
1868 break;
1869 }
1870 /*
1871 * Give up the multicast address record to which the
1872 * membership points.
1873 */
1874 LIST_REMOVE(imm, i6mm_chain);
1875 in6_delmulti(imm->i6mm_maddr);
1876 free(imm, M_IPMADDR);
1877 break;
1878
1879 default:
1880 error = EOPNOTSUPP;
1881 break;
1882 }
1883
1884 /*
1885 * If all options have default values, no need to keep the mbuf.
1886 */
1887 if (im6o->im6o_multicast_ifp == NULL &&
1888 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1889 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1890 im6o->im6o_memberships.lh_first == NULL) {
1891 free(*im6op, M_IPMOPTS);
1892 *im6op = NULL;
1893 }
1894
1895 return(error);
1896 }
1897
1898 /*
1899 * Return the IP6 multicast options in response to user getsockopt().
1900 */
1901 static int
1902 ip6_getmoptions(optname, im6o, mp)
1903 int optname;
1904 struct ip6_moptions *im6o;
1905 struct mbuf **mp;
1906 {
1907 u_int *hlim, *loop, *ifindex;
1908
1909 *mp = m_get(M_WAIT, MT_SOOPTS);
1910
1911 switch (optname) {
1912
1913 case IPV6_MULTICAST_IF:
1914 ifindex = mtod(*mp, u_int *);
1915 (*mp)->m_len = sizeof(u_int);
1916 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1917 *ifindex = 0;
1918 else
1919 *ifindex = im6o->im6o_multicast_ifp->if_index;
1920 return(0);
1921
1922 case IPV6_MULTICAST_HOPS:
1923 hlim = mtod(*mp, u_int *);
1924 (*mp)->m_len = sizeof(u_int);
1925 if (im6o == NULL)
1926 *hlim = ip6_defmcasthlim;
1927 else
1928 *hlim = im6o->im6o_multicast_hlim;
1929 return(0);
1930
1931 case IPV6_MULTICAST_LOOP:
1932 loop = mtod(*mp, u_int *);
1933 (*mp)->m_len = sizeof(u_int);
1934 if (im6o == NULL)
1935 *loop = ip6_defmcasthlim;
1936 else
1937 *loop = im6o->im6o_multicast_loop;
1938 return(0);
1939
1940 default:
1941 return(EOPNOTSUPP);
1942 }
1943 }
1944
1945 /*
1946 * Discard the IP6 multicast options.
1947 */
1948 void
1949 ip6_freemoptions(im6o)
1950 struct ip6_moptions *im6o;
1951 {
1952 struct in6_multi_mship *imm;
1953
1954 if (im6o == NULL)
1955 return;
1956
1957 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
1958 LIST_REMOVE(imm, i6mm_chain);
1959 if (imm->i6mm_maddr)
1960 in6_delmulti(imm->i6mm_maddr);
1961 free(imm, M_IPMADDR);
1962 }
1963 free(im6o, M_IPMOPTS);
1964 }
1965
1966 /*
1967 * Set IPv6 outgoing packet options based on advanced API.
1968 */
1969 int
1970 ip6_setpktoptions(control, opt, priv)
1971 struct mbuf *control;
1972 struct ip6_pktopts *opt;
1973 int priv;
1974 {
1975 struct cmsghdr *cm = 0;
1976
1977 if (control == 0 || opt == 0)
1978 return(EINVAL);
1979
1980 bzero(opt, sizeof(*opt));
1981 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
1982
1983 /*
1984 * XXX: Currently, we assume all the optional information is stored
1985 * in a single mbuf.
1986 */
1987 if (control->m_next)
1988 return(EINVAL);
1989
1990 opt->ip6po_m = control;
1991
1992 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
1993 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1994 cm = mtod(control, struct cmsghdr *);
1995 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
1996 return(EINVAL);
1997 if (cm->cmsg_level != IPPROTO_IPV6)
1998 continue;
1999
2000 switch (cm->cmsg_type) {
2001 case IPV6_PKTINFO:
2002 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
2003 return(EINVAL);
2004 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
2005 if (opt->ip6po_pktinfo->ipi6_ifindex &&
2006 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
2007 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2008 htons(opt->ip6po_pktinfo->ipi6_ifindex);
2009
2010 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
2011 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
2012 return(ENXIO);
2013 }
2014
2015 /*
2016 * Check if the requested source address is indeed a
2017 * unicast address assigned to the node, and can be
2018 * used as the packet's source address.
2019 */
2020 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2021 struct ifaddr *ia;
2022 struct in6_ifaddr *ia6;
2023 struct sockaddr_in6 sin6;
2024
2025 bzero(&sin6, sizeof(sin6));
2026 sin6.sin6_len = sizeof(sin6);
2027 sin6.sin6_family = AF_INET6;
2028 sin6.sin6_addr =
2029 opt->ip6po_pktinfo->ipi6_addr;
2030 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2031 if (ia == NULL ||
2032 (opt->ip6po_pktinfo->ipi6_ifindex &&
2033 (ia->ifa_ifp->if_index !=
2034 opt->ip6po_pktinfo->ipi6_ifindex))) {
2035 return(EADDRNOTAVAIL);
2036 }
2037 ia6 = (struct in6_ifaddr *)ia;
2038 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
2039 return(EADDRNOTAVAIL);
2040 }
2041
2042 /*
2043 * Check if the requested source address is
2044 * indeed a unicast address assigned to the
2045 * node.
2046 */
2047 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2048 return(EADDRNOTAVAIL);
2049 }
2050 break;
2051
2052 case IPV6_HOPLIMIT:
2053 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2054 return(EINVAL);
2055
2056 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim,
2057 sizeof(opt->ip6po_hlim));
2058 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2059 return(EINVAL);
2060 break;
2061
2062 case IPV6_NEXTHOP:
2063 if (!priv)
2064 return(EPERM);
2065
2066 if (cm->cmsg_len < sizeof(u_char) ||
2067 /* check if cmsg_len is large enough for sa_len */
2068 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2069 return(EINVAL);
2070
2071 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2072
2073 break;
2074
2075 case IPV6_HOPOPTS:
2076 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2077 return(EINVAL);
2078 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2079 if (cm->cmsg_len !=
2080 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
2081 return(EINVAL);
2082 break;
2083
2084 case IPV6_DSTOPTS:
2085 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2086 return(EINVAL);
2087
2088 /*
2089 * If there is no routing header yet, the destination
2090 * options header should be put on the 1st part.
2091 * Otherwise, the header should be on the 2nd part.
2092 * (See RFC 2460, section 4.1)
2093 */
2094 if (opt->ip6po_rthdr == NULL) {
2095 opt->ip6po_dest1 =
2096 (struct ip6_dest *)CMSG_DATA(cm);
2097 if (cm->cmsg_len !=
2098 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
2099 << 3))
2100 return(EINVAL);
2101 }
2102 else {
2103 opt->ip6po_dest2 =
2104 (struct ip6_dest *)CMSG_DATA(cm);
2105 if (cm->cmsg_len !=
2106 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
2107 << 3))
2108 return(EINVAL);
2109 }
2110 break;
2111
2112 case IPV6_RTHDR:
2113 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2114 return(EINVAL);
2115 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
2116 if (cm->cmsg_len !=
2117 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
2118 return(EINVAL);
2119 switch (opt->ip6po_rthdr->ip6r_type) {
2120 case IPV6_RTHDR_TYPE_0:
2121 if (opt->ip6po_rthdr->ip6r_segleft == 0)
2122 return(EINVAL);
2123 break;
2124 default:
2125 return(EINVAL);
2126 }
2127 break;
2128
2129 default:
2130 return(ENOPROTOOPT);
2131 }
2132 }
2133
2134 return(0);
2135 }
2136
2137 /*
2138 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2139 * packet to the input queue of a specified interface. Note that this
2140 * calls the output routine of the loopback "driver", but with an interface
2141 * pointer that might NOT be &loif -- easier than replicating that code here.
2142 */
2143 void
2144 ip6_mloopback(ifp, m, dst)
2145 struct ifnet *ifp;
2146 struct mbuf *m;
2147 struct sockaddr_in6 *dst;
2148 {
2149 struct mbuf *copym;
2150 struct ip6_hdr *ip6;
2151
2152 copym = m_copy(m, 0, M_COPYALL);
2153 if (copym == NULL)
2154 return;
2155
2156 /*
2157 * Make sure to deep-copy IPv6 header portion in case the data
2158 * is in an mbuf cluster, so that we can safely override the IPv6
2159 * header portion later.
2160 */
2161 if ((copym->m_flags & M_EXT) != 0 ||
2162 copym->m_len < sizeof(struct ip6_hdr)) {
2163 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2164 if (copym == NULL)
2165 return;
2166 }
2167
2168 #ifdef DIAGNOSTIC
2169 if (copym->m_len < sizeof(*ip6)) {
2170 m_freem(copym);
2171 return;
2172 }
2173 #endif
2174
2175 ip6 = mtod(copym, struct ip6_hdr *);
2176 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2177 ip6->ip6_src.s6_addr16[1] = 0;
2178 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2179 ip6->ip6_dst.s6_addr16[1] = 0;
2180
2181 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2182 }
2183
2184 /*
2185 * Chop IPv6 header off from the payload.
2186 */
2187 static int
2188 ip6_splithdr(m, exthdrs)
2189 struct mbuf *m;
2190 struct ip6_exthdrs *exthdrs;
2191 {
2192 struct mbuf *mh;
2193 struct ip6_hdr *ip6;
2194
2195 ip6 = mtod(m, struct ip6_hdr *);
2196 if (m->m_len > sizeof(*ip6)) {
2197 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2198 if (mh == 0) {
2199 m_freem(m);
2200 return ENOBUFS;
2201 }
2202 M_COPY_PKTHDR(mh, m);
2203 MH_ALIGN(mh, sizeof(*ip6));
2204 m->m_flags &= ~M_PKTHDR;
2205 m->m_len -= sizeof(*ip6);
2206 m->m_data += sizeof(*ip6);
2207 mh->m_next = m;
2208 m = mh;
2209 m->m_len = sizeof(*ip6);
2210 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2211 }
2212 exthdrs->ip6e_ip6 = m;
2213 return 0;
2214 }
2215
2216 /*
2217 * Compute IPv6 extension header length.
2218 */
2219 int
2220 ip6_optlen(in6p)
2221 struct in6pcb *in6p;
2222 {
2223 int len;
2224
2225 if (!in6p->in6p_outputopts)
2226 return 0;
2227
2228 len = 0;
2229 #define elen(x) \
2230 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2231
2232 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2233 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2234 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2235 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2236 return len;
2237 #undef elen
2238 }
2239