ip6_output.c revision 1.43 1 /* $NetBSD: ip6_output.c,v 1.43 2001/12/20 07:26:37 itojun Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.43 2001/12/20 07:26:37 itojun Exp $");
70
71 #include "opt_inet.h"
72 #include "opt_ipsec.h"
73 #include "opt_pfil_hooks.h"
74
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/errno.h>
79 #include <sys/protosw.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84
85 #include <net/if.h>
86 #include <net/route.h>
87 #ifdef PFIL_HOOKS
88 #include <net/pfil.h>
89 #endif
90
91 #include <netinet/in.h>
92 #include <netinet/in_var.h>
93 #include <netinet/ip6.h>
94 #include <netinet/icmp6.h>
95 #include <netinet6/ip6_var.h>
96 #include <netinet6/in6_pcb.h>
97 #include <netinet6/nd6.h>
98
99 #ifdef IPSEC
100 #include <netinet6/ipsec.h>
101 #include <netkey/key.h>
102 #endif /* IPSEC */
103
104 #include "loop.h"
105
106 #include <net/net_osdep.h>
107
108 #ifdef PFIL_HOOKS
109 extern struct pfil_head inet6_pfil_hook; /* XXX */
110 #endif
111
112 struct ip6_exthdrs {
113 struct mbuf *ip6e_ip6;
114 struct mbuf *ip6e_hbh;
115 struct mbuf *ip6e_dest1;
116 struct mbuf *ip6e_rthdr;
117 struct mbuf *ip6e_dest2;
118 };
119
120 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
121 struct socket *));
122 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
123 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
124 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
125 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
126 struct ip6_frag **));
127 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
128 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
129
130 extern struct ifnet loif[NLOOP];
131
132 /*
133 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
134 * header (with pri, len, nxt, hlim, src, dst).
135 * This function may modify ver and hlim only.
136 * The mbuf chain containing the packet will be freed.
137 * The mbuf opt, if present, will not be freed.
138 */
139 int
140 ip6_output(m0, opt, ro, flags, im6o, ifpp)
141 struct mbuf *m0;
142 struct ip6_pktopts *opt;
143 struct route_in6 *ro;
144 int flags;
145 struct ip6_moptions *im6o;
146 struct ifnet **ifpp; /* XXX: just for statistics */
147 {
148 struct ip6_hdr *ip6, *mhip6;
149 struct ifnet *ifp, *origifp;
150 struct mbuf *m = m0;
151 int hlen, tlen, len, off;
152 struct route_in6 ip6route;
153 struct sockaddr_in6 *dst;
154 int error = 0;
155 struct in6_ifaddr *ia;
156 u_long mtu;
157 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
158 struct ip6_exthdrs exthdrs;
159 struct in6_addr finaldst;
160 struct route_in6 *ro_pmtu = NULL;
161 int hdrsplit = 0;
162 int needipsec = 0;
163 #ifdef IPSEC
164 int needipsectun = 0;
165 struct socket *so;
166 struct secpolicy *sp = NULL;
167
168 /* for AH processing. stupid to have "socket" variable in IP layer... */
169 so = ipsec_getsocket(m);
170 (void)ipsec_setsocket(m, NULL);
171 ip6 = mtod(m, struct ip6_hdr *);
172 #endif /* IPSEC */
173
174 #define MAKE_EXTHDR(hp, mp) \
175 do { \
176 if (hp) { \
177 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
178 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
179 ((eh)->ip6e_len + 1) << 3); \
180 if (error) \
181 goto freehdrs; \
182 } \
183 } while (0)
184
185 bzero(&exthdrs, sizeof(exthdrs));
186 if (opt) {
187 /* Hop-by-Hop options header */
188 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
189 /* Destination options header(1st part) */
190 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
191 /* Routing header */
192 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
193 /* Destination options header(2nd part) */
194 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
195 }
196
197 #ifdef IPSEC
198 /* get a security policy for this packet */
199 if (so == NULL)
200 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
201 else
202 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
203
204 if (sp == NULL) {
205 ipsec6stat.out_inval++;
206 goto freehdrs;
207 }
208
209 error = 0;
210
211 /* check policy */
212 switch (sp->policy) {
213 case IPSEC_POLICY_DISCARD:
214 /*
215 * This packet is just discarded.
216 */
217 ipsec6stat.out_polvio++;
218 goto freehdrs;
219
220 case IPSEC_POLICY_BYPASS:
221 case IPSEC_POLICY_NONE:
222 /* no need to do IPsec. */
223 needipsec = 0;
224 break;
225
226 case IPSEC_POLICY_IPSEC:
227 if (sp->req == NULL) {
228 /* XXX should be panic ? */
229 printf("ip6_output: No IPsec request specified.\n");
230 error = EINVAL;
231 goto freehdrs;
232 }
233 needipsec = 1;
234 break;
235
236 case IPSEC_POLICY_ENTRUST:
237 default:
238 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
239 }
240 #endif /* IPSEC */
241
242 /*
243 * Calculate the total length of the extension header chain.
244 * Keep the length of the unfragmentable part for fragmentation.
245 */
246 optlen = 0;
247 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
248 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
249 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
250 unfragpartlen = optlen + sizeof(struct ip6_hdr);
251 /* NOTE: we don't add AH/ESP length here. do that later. */
252 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
253
254 /*
255 * If we need IPsec, or there is at least one extension header,
256 * separate IP6 header from the payload.
257 */
258 if ((needipsec || optlen) && !hdrsplit) {
259 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
260 m = NULL;
261 goto freehdrs;
262 }
263 m = exthdrs.ip6e_ip6;
264 hdrsplit++;
265 }
266
267 /* adjust pointer */
268 ip6 = mtod(m, struct ip6_hdr *);
269
270 /* adjust mbuf packet header length */
271 m->m_pkthdr.len += optlen;
272 plen = m->m_pkthdr.len - sizeof(*ip6);
273
274 /* If this is a jumbo payload, insert a jumbo payload option. */
275 if (plen > IPV6_MAXPACKET) {
276 if (!hdrsplit) {
277 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
278 m = NULL;
279 goto freehdrs;
280 }
281 m = exthdrs.ip6e_ip6;
282 hdrsplit++;
283 }
284 /* adjust pointer */
285 ip6 = mtod(m, struct ip6_hdr *);
286 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
287 goto freehdrs;
288 ip6->ip6_plen = 0;
289 } else
290 ip6->ip6_plen = htons(plen);
291
292 /*
293 * Concatenate headers and fill in next header fields.
294 * Here we have, on "m"
295 * IPv6 payload
296 * and we insert headers accordingly. Finally, we should be getting:
297 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
298 *
299 * during the header composing process, "m" points to IPv6 header.
300 * "mprev" points to an extension header prior to esp.
301 */
302 {
303 u_char *nexthdrp = &ip6->ip6_nxt;
304 struct mbuf *mprev = m;
305
306 /*
307 * we treat dest2 specially. this makes IPsec processing
308 * much easier.
309 *
310 * result: IPv6 dest2 payload
311 * m and mprev will point to IPv6 header.
312 */
313 if (exthdrs.ip6e_dest2) {
314 if (!hdrsplit)
315 panic("assumption failed: hdr not split");
316 exthdrs.ip6e_dest2->m_next = m->m_next;
317 m->m_next = exthdrs.ip6e_dest2;
318 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
319 ip6->ip6_nxt = IPPROTO_DSTOPTS;
320 }
321
322 #define MAKE_CHAIN(m, mp, p, i)\
323 do {\
324 if (m) {\
325 if (!hdrsplit) \
326 panic("assumption failed: hdr not split"); \
327 *mtod((m), u_char *) = *(p);\
328 *(p) = (i);\
329 p = mtod((m), u_char *);\
330 (m)->m_next = (mp)->m_next;\
331 (mp)->m_next = (m);\
332 (mp) = (m);\
333 }\
334 } while (0)
335 /*
336 * result: IPv6 hbh dest1 rthdr dest2 payload
337 * m will point to IPv6 header. mprev will point to the
338 * extension header prior to dest2 (rthdr in the above case).
339 */
340 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
341 nexthdrp, IPPROTO_HOPOPTS);
342 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
343 nexthdrp, IPPROTO_DSTOPTS);
344 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
345 nexthdrp, IPPROTO_ROUTING);
346
347 #ifdef IPSEC
348 if (!needipsec)
349 goto skip_ipsec2;
350
351 /*
352 * pointers after IPsec headers are not valid any more.
353 * other pointers need a great care too.
354 * (IPsec routines should not mangle mbufs prior to AH/ESP)
355 */
356 exthdrs.ip6e_dest2 = NULL;
357
358 {
359 struct ip6_rthdr *rh = NULL;
360 int segleft_org = 0;
361 struct ipsec_output_state state;
362
363 if (exthdrs.ip6e_rthdr) {
364 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
365 segleft_org = rh->ip6r_segleft;
366 rh->ip6r_segleft = 0;
367 }
368
369 bzero(&state, sizeof(state));
370 state.m = m;
371 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
372 &needipsectun);
373 m = state.m;
374 if (error) {
375 /* mbuf is already reclaimed in ipsec6_output_trans. */
376 m = NULL;
377 switch (error) {
378 case EHOSTUNREACH:
379 case ENETUNREACH:
380 case EMSGSIZE:
381 case ENOBUFS:
382 case ENOMEM:
383 break;
384 default:
385 printf("ip6_output (ipsec): error code %d\n", error);
386 /* fall through */
387 case ENOENT:
388 /* don't show these error codes to the user */
389 error = 0;
390 break;
391 }
392 goto bad;
393 }
394 if (exthdrs.ip6e_rthdr) {
395 /* ah6_output doesn't modify mbuf chain */
396 rh->ip6r_segleft = segleft_org;
397 }
398 }
399 skip_ipsec2:;
400 #endif
401 }
402
403 /*
404 * If there is a routing header, replace destination address field
405 * with the first hop of the routing header.
406 */
407 if (exthdrs.ip6e_rthdr) {
408 struct ip6_rthdr *rh =
409 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
410 struct ip6_rthdr *));
411 struct ip6_rthdr0 *rh0;
412
413 finaldst = ip6->ip6_dst;
414 switch (rh->ip6r_type) {
415 case IPV6_RTHDR_TYPE_0:
416 rh0 = (struct ip6_rthdr0 *)rh;
417 ip6->ip6_dst = rh0->ip6r0_addr[0];
418 bcopy((caddr_t)&rh0->ip6r0_addr[1],
419 (caddr_t)&rh0->ip6r0_addr[0],
420 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)
421 );
422 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
423 break;
424 default: /* is it possible? */
425 error = EINVAL;
426 goto bad;
427 }
428 }
429
430 /* Source address validation */
431 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
432 (flags & IPV6_DADOUTPUT) == 0) {
433 error = EOPNOTSUPP;
434 ip6stat.ip6s_badscope++;
435 goto bad;
436 }
437 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
438 error = EOPNOTSUPP;
439 ip6stat.ip6s_badscope++;
440 goto bad;
441 }
442
443 ip6stat.ip6s_localout++;
444
445 /*
446 * Route packet.
447 */
448 if (ro == 0) {
449 ro = &ip6route;
450 bzero((caddr_t)ro, sizeof(*ro));
451 }
452 ro_pmtu = ro;
453 if (opt && opt->ip6po_rthdr)
454 ro = &opt->ip6po_route;
455 dst = (struct sockaddr_in6 *)&ro->ro_dst;
456 /*
457 * If there is a cached route,
458 * check that it is to the same destination
459 * and is still up. If not, free it and try again.
460 */
461 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
462 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
463 RTFREE(ro->ro_rt);
464 ro->ro_rt = (struct rtentry *)0;
465 }
466 if (ro->ro_rt == 0) {
467 bzero(dst, sizeof(*dst));
468 dst->sin6_family = AF_INET6;
469 dst->sin6_len = sizeof(struct sockaddr_in6);
470 dst->sin6_addr = ip6->ip6_dst;
471 }
472 #ifdef IPSEC
473 if (needipsec && needipsectun) {
474 struct ipsec_output_state state;
475
476 /*
477 * All the extension headers will become inaccessible
478 * (since they can be encrypted).
479 * Don't panic, we need no more updates to extension headers
480 * on inner IPv6 packet (since they are now encapsulated).
481 *
482 * IPv6 [ESP|AH] IPv6 [extension headers] payload
483 */
484 bzero(&exthdrs, sizeof(exthdrs));
485 exthdrs.ip6e_ip6 = m;
486
487 bzero(&state, sizeof(state));
488 state.m = m;
489 state.ro = (struct route *)ro;
490 state.dst = (struct sockaddr *)dst;
491
492 error = ipsec6_output_tunnel(&state, sp, flags);
493
494 m = state.m;
495 ro = (struct route_in6 *)state.ro;
496 dst = (struct sockaddr_in6 *)state.dst;
497 if (error) {
498 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
499 m0 = m = NULL;
500 m = NULL;
501 switch (error) {
502 case EHOSTUNREACH:
503 case ENETUNREACH:
504 case EMSGSIZE:
505 case ENOBUFS:
506 case ENOMEM:
507 break;
508 default:
509 printf("ip6_output (ipsec): error code %d\n", error);
510 /* fall through */
511 case ENOENT:
512 /* don't show these error codes to the user */
513 error = 0;
514 break;
515 }
516 goto bad;
517 }
518
519 exthdrs.ip6e_ip6 = m;
520 }
521 #endif /* IPSEC */
522
523 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
524 /* Unicast */
525
526 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
527 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
528 /* xxx
529 * interface selection comes here
530 * if an interface is specified from an upper layer,
531 * ifp must point it.
532 */
533 if (ro->ro_rt == 0) {
534 /*
535 * non-bsdi always clone routes, if parent is
536 * PRF_CLONING.
537 */
538 rtalloc((struct route *)ro);
539 }
540 if (ro->ro_rt == 0) {
541 ip6stat.ip6s_noroute++;
542 error = EHOSTUNREACH;
543 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
544 goto bad;
545 }
546 ia = ifatoia6(ro->ro_rt->rt_ifa);
547 ifp = ro->ro_rt->rt_ifp;
548 ro->ro_rt->rt_use++;
549 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
550 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
551 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
552
553 in6_ifstat_inc(ifp, ifs6_out_request);
554
555 /*
556 * Check if the outgoing interface conflicts with
557 * the interface specified by ifi6_ifindex (if specified).
558 * Note that loopback interface is always okay.
559 * (this may happen when we are sending a packet to one of
560 * our own addresses.)
561 */
562 if (opt && opt->ip6po_pktinfo
563 && opt->ip6po_pktinfo->ipi6_ifindex) {
564 if (!(ifp->if_flags & IFF_LOOPBACK)
565 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
566 ip6stat.ip6s_noroute++;
567 in6_ifstat_inc(ifp, ifs6_out_discard);
568 error = EHOSTUNREACH;
569 goto bad;
570 }
571 }
572
573 if (opt && opt->ip6po_hlim != -1)
574 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
575 } else {
576 /* Multicast */
577 struct in6_multi *in6m;
578
579 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
580
581 /*
582 * See if the caller provided any multicast options
583 */
584 ifp = NULL;
585 if (im6o != NULL) {
586 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
587 if (im6o->im6o_multicast_ifp != NULL)
588 ifp = im6o->im6o_multicast_ifp;
589 } else
590 ip6->ip6_hlim = ip6_defmcasthlim;
591
592 /*
593 * See if the caller provided the outgoing interface
594 * as an ancillary data.
595 * Boundary check for ifindex is assumed to be already done.
596 */
597 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
598 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
599
600 /*
601 * If the destination is a node-local scope multicast,
602 * the packet should be loop-backed only.
603 */
604 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
605 /*
606 * If the outgoing interface is already specified,
607 * it should be a loopback interface.
608 */
609 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
610 ip6stat.ip6s_badscope++;
611 error = ENETUNREACH; /* XXX: better error? */
612 /* XXX correct ifp? */
613 in6_ifstat_inc(ifp, ifs6_out_discard);
614 goto bad;
615 } else {
616 ifp = &loif[0];
617 }
618 }
619
620 if (opt && opt->ip6po_hlim != -1)
621 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
622
623 /*
624 * If caller did not provide an interface lookup a
625 * default in the routing table. This is either a
626 * default for the speicfied group (i.e. a host
627 * route), or a multicast default (a route for the
628 * ``net'' ff00::/8).
629 */
630 if (ifp == NULL) {
631 if (ro->ro_rt == 0) {
632 ro->ro_rt = rtalloc1((struct sockaddr *)
633 &ro->ro_dst, 0
634 );
635 }
636 if (ro->ro_rt == 0) {
637 ip6stat.ip6s_noroute++;
638 error = EHOSTUNREACH;
639 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
640 goto bad;
641 }
642 ia = ifatoia6(ro->ro_rt->rt_ifa);
643 ifp = ro->ro_rt->rt_ifp;
644 ro->ro_rt->rt_use++;
645 }
646
647 if ((flags & IPV6_FORWARDING) == 0)
648 in6_ifstat_inc(ifp, ifs6_out_request);
649 in6_ifstat_inc(ifp, ifs6_out_mcast);
650
651 /*
652 * Confirm that the outgoing interface supports multicast.
653 */
654 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
655 ip6stat.ip6s_noroute++;
656 in6_ifstat_inc(ifp, ifs6_out_discard);
657 error = ENETUNREACH;
658 goto bad;
659 }
660 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
661 if (in6m != NULL &&
662 (im6o == NULL || im6o->im6o_multicast_loop)) {
663 /*
664 * If we belong to the destination multicast group
665 * on the outgoing interface, and the caller did not
666 * forbid loopback, loop back a copy.
667 */
668 ip6_mloopback(ifp, m, dst);
669 } else {
670 /*
671 * If we are acting as a multicast router, perform
672 * multicast forwarding as if the packet had just
673 * arrived on the interface to which we are about
674 * to send. The multicast forwarding function
675 * recursively calls this function, using the
676 * IPV6_FORWARDING flag to prevent infinite recursion.
677 *
678 * Multicasts that are looped back by ip6_mloopback(),
679 * above, will be forwarded by the ip6_input() routine,
680 * if necessary.
681 */
682 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
683 if (ip6_mforward(ip6, ifp, m) != 0) {
684 m_freem(m);
685 goto done;
686 }
687 }
688 }
689 /*
690 * Multicasts with a hoplimit of zero may be looped back,
691 * above, but must not be transmitted on a network.
692 * Also, multicasts addressed to the loopback interface
693 * are not sent -- the above call to ip6_mloopback() will
694 * loop back a copy if this host actually belongs to the
695 * destination group on the loopback interface.
696 */
697 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
698 m_freem(m);
699 goto done;
700 }
701 }
702
703 /*
704 * Fill the outgoing inteface to tell the upper layer
705 * to increment per-interface statistics.
706 */
707 if (ifpp)
708 *ifpp = ifp;
709
710 /*
711 * Determine path MTU.
712 */
713 if (ro_pmtu != ro) {
714 /* The first hop and the final destination may differ. */
715 struct sockaddr_in6 *sin6_fin =
716 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
717 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
718 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
719 &finaldst))) {
720 RTFREE(ro_pmtu->ro_rt);
721 ro_pmtu->ro_rt = (struct rtentry *)0;
722 }
723 if (ro_pmtu->ro_rt == 0) {
724 bzero(sin6_fin, sizeof(*sin6_fin));
725 sin6_fin->sin6_family = AF_INET6;
726 sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
727 sin6_fin->sin6_addr = finaldst;
728
729 rtalloc((struct route *)ro_pmtu);
730 }
731 }
732 if (ro_pmtu->ro_rt != NULL) {
733 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
734
735 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
736 if (mtu > ifmtu || mtu == 0) {
737 /*
738 * The MTU on the route is larger than the MTU on
739 * the interface! This shouldn't happen, unless the
740 * MTU of the interface has been changed after the
741 * interface was brought up. Change the MTU in the
742 * route to match the interface MTU (as long as the
743 * field isn't locked).
744 *
745 * if MTU on the route is 0, we need to fix the MTU.
746 * this case happens with path MTU discovery timeouts.
747 */
748 mtu = ifmtu;
749 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
750 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
751 }
752 } else {
753 mtu = nd_ifinfo[ifp->if_index].linkmtu;
754 }
755
756 if (mtu > IPV6_MMTU &&
757 (flags & IPV6_MINMTU)) {
758 mtu = IPV6_MMTU;
759 }
760
761 /* Fake scoped addresses */
762 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
763 /*
764 * If source or destination address is a scoped address, and
765 * the packet is going to be sent to a loopback interface,
766 * we should keep the original interface.
767 */
768
769 /*
770 * XXX: this is a very experimental and temporary solution.
771 * We eventually have sockaddr_in6 and use the sin6_scope_id
772 * field of the structure here.
773 * We rely on the consistency between two scope zone ids
774 * of source add destination, which should already be assured
775 * Larger scopes than link will be supported in the near
776 * future.
777 */
778 origifp = NULL;
779 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
780 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
781 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
782 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
783 /*
784 * XXX: origifp can be NULL even in those two cases above.
785 * For example, if we remove the (only) link-local address
786 * from the loopback interface, and try to send a link-local
787 * address without link-id information. Then the source
788 * address is ::1, and the destination address is the
789 * link-local address with its s6_addr16[1] being zero.
790 * What is worse, if the packet goes to the loopback interface
791 * by a default rejected route, the null pointer would be
792 * passed to looutput, and the kernel would hang.
793 * The following last resort would prevent such disaster.
794 */
795 if (origifp == NULL)
796 origifp = ifp;
797 }
798 else
799 origifp = ifp;
800 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
801 ip6->ip6_src.s6_addr16[1] = 0;
802 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
803 ip6->ip6_dst.s6_addr16[1] = 0;
804
805 /*
806 * If the outgoing packet contains a hop-by-hop options header,
807 * it must be examined and processed even by the source node.
808 * (RFC 2460, section 4.)
809 */
810 if (exthdrs.ip6e_hbh) {
811 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
812 u_int32_t dummy1; /* XXX unused */
813 u_int32_t dummy2; /* XXX unused */
814
815 /*
816 * XXX: if we have to send an ICMPv6 error to the sender,
817 * we need the M_LOOP flag since icmp6_error() expects
818 * the IPv6 and the hop-by-hop options header are
819 * continuous unless the flag is set.
820 */
821 m->m_flags |= M_LOOP;
822 m->m_pkthdr.rcvif = ifp;
823 if (ip6_process_hopopts(m,
824 (u_int8_t *)(hbh + 1),
825 ((hbh->ip6h_len + 1) << 3) -
826 sizeof(struct ip6_hbh),
827 &dummy1, &dummy2) < 0) {
828 /* m was already freed at this point */
829 error = EINVAL;/* better error? */
830 goto done;
831 }
832 m->m_flags &= ~M_LOOP; /* XXX */
833 m->m_pkthdr.rcvif = NULL;
834 }
835
836 #ifdef PFIL_HOOKS
837 /*
838 * Run through list of hooks for output packets.
839 */
840 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp,
841 PFIL_OUT)) != 0)
842 goto done;
843 if (m == NULL)
844 goto done;
845 ip6 = mtod(m, struct ip6_hdr *);
846 #endif /* PFIL_HOOKS */
847 /*
848 * Send the packet to the outgoing interface.
849 * If necessary, do IPv6 fragmentation before sending.
850 */
851 tlen = m->m_pkthdr.len;
852 if (tlen <= mtu
853 #ifdef notyet
854 /*
855 * On any link that cannot convey a 1280-octet packet in one piece,
856 * link-specific fragmentation and reassembly must be provided at
857 * a layer below IPv6. [RFC 2460, sec.5]
858 * Thus if the interface has ability of link-level fragmentation,
859 * we can just send the packet even if the packet size is
860 * larger than the link's MTU.
861 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
862 */
863
864 || ifp->if_flags & IFF_FRAGMENTABLE
865 #endif
866 )
867 {
868 #ifdef IFA_STATS
869 struct in6_ifaddr *ia6;
870 ip6 = mtod(m, struct ip6_hdr *);
871 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
872 if (ia6) {
873 /* Record statistics for this interface address. */
874 ia6->ia_ifa.ifa_data.ifad_outbytes +=
875 m->m_pkthdr.len;
876 }
877 #endif
878 #ifdef IPSEC
879 /* clean ipsec history once it goes out of the node */
880 ipsec_delaux(m);
881 #endif
882 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
883 goto done;
884 } else if (mtu < IPV6_MMTU) {
885 /*
886 * note that path MTU is never less than IPV6_MMTU
887 * (see icmp6_input).
888 */
889 error = EMSGSIZE;
890 in6_ifstat_inc(ifp, ifs6_out_fragfail);
891 goto bad;
892 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
893 error = EMSGSIZE;
894 in6_ifstat_inc(ifp, ifs6_out_fragfail);
895 goto bad;
896 } else {
897 struct mbuf **mnext, *m_frgpart;
898 struct ip6_frag *ip6f;
899 u_int32_t id = htonl(ip6_id++);
900 u_char nextproto;
901
902 /*
903 * Too large for the destination or interface;
904 * fragment if possible.
905 * Must be able to put at least 8 bytes per fragment.
906 */
907 hlen = unfragpartlen;
908 if (mtu > IPV6_MAXPACKET)
909 mtu = IPV6_MAXPACKET;
910 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
911 if (len < 8) {
912 error = EMSGSIZE;
913 in6_ifstat_inc(ifp, ifs6_out_fragfail);
914 goto bad;
915 }
916
917 mnext = &m->m_nextpkt;
918
919 /*
920 * Change the next header field of the last header in the
921 * unfragmentable part.
922 */
923 if (exthdrs.ip6e_rthdr) {
924 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
925 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
926 } else if (exthdrs.ip6e_dest1) {
927 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
928 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
929 } else if (exthdrs.ip6e_hbh) {
930 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
931 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
932 } else {
933 nextproto = ip6->ip6_nxt;
934 ip6->ip6_nxt = IPPROTO_FRAGMENT;
935 }
936
937 /*
938 * Loop through length of segment after first fragment,
939 * make new header and copy data of each part and link onto
940 * chain.
941 */
942 m0 = m;
943 for (off = hlen; off < tlen; off += len) {
944 MGETHDR(m, M_DONTWAIT, MT_HEADER);
945 if (!m) {
946 error = ENOBUFS;
947 ip6stat.ip6s_odropped++;
948 goto sendorfree;
949 }
950 m->m_flags = m0->m_flags & M_COPYFLAGS;
951 *mnext = m;
952 mnext = &m->m_nextpkt;
953 m->m_data += max_linkhdr;
954 mhip6 = mtod(m, struct ip6_hdr *);
955 *mhip6 = *ip6;
956 m->m_len = sizeof(*mhip6);
957 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
958 if (error) {
959 ip6stat.ip6s_odropped++;
960 goto sendorfree;
961 }
962 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
963 if (off + len >= tlen)
964 len = tlen - off;
965 else
966 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
967 mhip6->ip6_plen = htons((u_short)(len + hlen +
968 sizeof(*ip6f) -
969 sizeof(struct ip6_hdr)));
970 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
971 error = ENOBUFS;
972 ip6stat.ip6s_odropped++;
973 goto sendorfree;
974 }
975 m_cat(m, m_frgpart);
976 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
977 m->m_pkthdr.rcvif = (struct ifnet *)0;
978 ip6f->ip6f_reserved = 0;
979 ip6f->ip6f_ident = id;
980 ip6f->ip6f_nxt = nextproto;
981 ip6stat.ip6s_ofragments++;
982 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
983 }
984
985 in6_ifstat_inc(ifp, ifs6_out_fragok);
986 }
987
988 /*
989 * Remove leading garbages.
990 */
991 sendorfree:
992 m = m0->m_nextpkt;
993 m0->m_nextpkt = 0;
994 m_freem(m0);
995 for (m0 = m; m; m = m0) {
996 m0 = m->m_nextpkt;
997 m->m_nextpkt = 0;
998 if (error == 0) {
999 #ifdef IFA_STATS
1000 struct in6_ifaddr *ia6;
1001 ip6 = mtod(m, struct ip6_hdr *);
1002 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1003 if (ia6) {
1004 /*
1005 * Record statistics for this interface
1006 * address.
1007 */
1008 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1009 m->m_pkthdr.len;
1010 }
1011 #endif
1012 #ifdef IPSEC
1013 /* clean ipsec history once it goes out of the node */
1014 ipsec_delaux(m);
1015 #endif
1016 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1017 } else
1018 m_freem(m);
1019 }
1020
1021 if (error == 0)
1022 ip6stat.ip6s_fragmented++;
1023
1024 done:
1025 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1026 RTFREE(ro->ro_rt);
1027 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1028 RTFREE(ro_pmtu->ro_rt);
1029 }
1030
1031 #ifdef IPSEC
1032 if (sp != NULL)
1033 key_freesp(sp);
1034 #endif /* IPSEC */
1035
1036 return(error);
1037
1038 freehdrs:
1039 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1040 m_freem(exthdrs.ip6e_dest1);
1041 m_freem(exthdrs.ip6e_rthdr);
1042 m_freem(exthdrs.ip6e_dest2);
1043 /* fall through */
1044 bad:
1045 m_freem(m);
1046 goto done;
1047 }
1048
1049 static int
1050 ip6_copyexthdr(mp, hdr, hlen)
1051 struct mbuf **mp;
1052 caddr_t hdr;
1053 int hlen;
1054 {
1055 struct mbuf *m;
1056
1057 if (hlen > MCLBYTES)
1058 return(ENOBUFS); /* XXX */
1059
1060 MGET(m, M_DONTWAIT, MT_DATA);
1061 if (!m)
1062 return(ENOBUFS);
1063
1064 if (hlen > MLEN) {
1065 MCLGET(m, M_DONTWAIT);
1066 if ((m->m_flags & M_EXT) == 0) {
1067 m_free(m);
1068 return(ENOBUFS);
1069 }
1070 }
1071 m->m_len = hlen;
1072 if (hdr)
1073 bcopy(hdr, mtod(m, caddr_t), hlen);
1074
1075 *mp = m;
1076 return(0);
1077 }
1078
1079 /*
1080 * Insert jumbo payload option.
1081 */
1082 static int
1083 ip6_insert_jumboopt(exthdrs, plen)
1084 struct ip6_exthdrs *exthdrs;
1085 u_int32_t plen;
1086 {
1087 struct mbuf *mopt;
1088 u_char *optbuf;
1089 u_int32_t v;
1090
1091 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1092
1093 /*
1094 * If there is no hop-by-hop options header, allocate new one.
1095 * If there is one but it doesn't have enough space to store the
1096 * jumbo payload option, allocate a cluster to store the whole options.
1097 * Otherwise, use it to store the options.
1098 */
1099 if (exthdrs->ip6e_hbh == 0) {
1100 MGET(mopt, M_DONTWAIT, MT_DATA);
1101 if (mopt == 0)
1102 return(ENOBUFS);
1103 mopt->m_len = JUMBOOPTLEN;
1104 optbuf = mtod(mopt, u_char *);
1105 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1106 exthdrs->ip6e_hbh = mopt;
1107 } else {
1108 struct ip6_hbh *hbh;
1109
1110 mopt = exthdrs->ip6e_hbh;
1111 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1112 /*
1113 * XXX assumption:
1114 * - exthdrs->ip6e_hbh is not referenced from places
1115 * other than exthdrs.
1116 * - exthdrs->ip6e_hbh is not an mbuf chain.
1117 */
1118 int oldoptlen = mopt->m_len;
1119 struct mbuf *n;
1120
1121 /*
1122 * XXX: give up if the whole (new) hbh header does
1123 * not fit even in an mbuf cluster.
1124 */
1125 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1126 return(ENOBUFS);
1127
1128 /*
1129 * As a consequence, we must always prepare a cluster
1130 * at this point.
1131 */
1132 MGET(n, M_DONTWAIT, MT_DATA);
1133 if (n) {
1134 MCLGET(n, M_DONTWAIT);
1135 if ((n->m_flags & M_EXT) == 0) {
1136 m_freem(n);
1137 n = NULL;
1138 }
1139 }
1140 if (!n)
1141 return(ENOBUFS);
1142 n->m_len = oldoptlen + JUMBOOPTLEN;
1143 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1144 oldoptlen);
1145 optbuf = mtod(n, caddr_t) + oldoptlen;
1146 m_freem(mopt);
1147 mopt = exthdrs->ip6e_hbh = n;
1148 } else {
1149 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1150 mopt->m_len += JUMBOOPTLEN;
1151 }
1152 optbuf[0] = IP6OPT_PADN;
1153 optbuf[1] = 1;
1154
1155 /*
1156 * Adjust the header length according to the pad and
1157 * the jumbo payload option.
1158 */
1159 hbh = mtod(mopt, struct ip6_hbh *);
1160 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1161 }
1162
1163 /* fill in the option. */
1164 optbuf[2] = IP6OPT_JUMBO;
1165 optbuf[3] = 4;
1166 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1167 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1168
1169 /* finally, adjust the packet header length */
1170 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1171
1172 return(0);
1173 #undef JUMBOOPTLEN
1174 }
1175
1176 /*
1177 * Insert fragment header and copy unfragmentable header portions.
1178 */
1179 static int
1180 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1181 struct mbuf *m0, *m;
1182 int hlen;
1183 struct ip6_frag **frghdrp;
1184 {
1185 struct mbuf *n, *mlast;
1186
1187 if (hlen > sizeof(struct ip6_hdr)) {
1188 n = m_copym(m0, sizeof(struct ip6_hdr),
1189 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1190 if (n == 0)
1191 return(ENOBUFS);
1192 m->m_next = n;
1193 } else
1194 n = m;
1195
1196 /* Search for the last mbuf of unfragmentable part. */
1197 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1198 ;
1199
1200 if ((mlast->m_flags & M_EXT) == 0 &&
1201 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1202 /* use the trailing space of the last mbuf for the fragment hdr */
1203 *frghdrp =
1204 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1205 mlast->m_len += sizeof(struct ip6_frag);
1206 m->m_pkthdr.len += sizeof(struct ip6_frag);
1207 } else {
1208 /* allocate a new mbuf for the fragment header */
1209 struct mbuf *mfrg;
1210
1211 MGET(mfrg, M_DONTWAIT, MT_DATA);
1212 if (mfrg == 0)
1213 return(ENOBUFS);
1214 mfrg->m_len = sizeof(struct ip6_frag);
1215 *frghdrp = mtod(mfrg, struct ip6_frag *);
1216 mlast->m_next = mfrg;
1217 }
1218
1219 return(0);
1220 }
1221
1222 /*
1223 * IP6 socket option processing.
1224 */
1225 int
1226 ip6_ctloutput(op, so, level, optname, mp)
1227 int op;
1228 struct socket *so;
1229 int level, optname;
1230 struct mbuf **mp;
1231 {
1232 struct in6pcb *in6p = sotoin6pcb(so);
1233 struct mbuf *m = *mp;
1234 int optval = 0;
1235 int error = 0;
1236 struct proc *p = curproc; /* XXX */
1237
1238 if (level == IPPROTO_IPV6) {
1239 switch (op) {
1240
1241 case PRCO_SETOPT:
1242 switch (optname) {
1243 case IPV6_PKTOPTIONS:
1244 /* m is freed in ip6_pcbopts */
1245 return(ip6_pcbopts(&in6p->in6p_outputopts,
1246 m, so));
1247 case IPV6_HOPOPTS:
1248 case IPV6_DSTOPTS:
1249 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1250 error = EPERM;
1251 break;
1252 }
1253 /* fall through */
1254 case IPV6_UNICAST_HOPS:
1255 case IPV6_RECVOPTS:
1256 case IPV6_RECVRETOPTS:
1257 case IPV6_RECVDSTADDR:
1258 case IPV6_PKTINFO:
1259 case IPV6_HOPLIMIT:
1260 case IPV6_RTHDR:
1261 case IPV6_FAITH:
1262 case IPV6_V6ONLY:
1263 if (!m || m->m_len != sizeof(int)) {
1264 error = EINVAL;
1265 break;
1266 }
1267 optval = *mtod(m, int *);
1268 switch (optname) {
1269
1270 case IPV6_UNICAST_HOPS:
1271 if (optval < -1 || optval >= 256)
1272 error = EINVAL;
1273 else {
1274 /* -1 = kernel default */
1275 in6p->in6p_hops = optval;
1276 }
1277 break;
1278 #define OPTSET(bit) \
1279 if (optval) \
1280 in6p->in6p_flags |= bit; \
1281 else \
1282 in6p->in6p_flags &= ~bit;
1283
1284 case IPV6_RECVOPTS:
1285 OPTSET(IN6P_RECVOPTS);
1286 break;
1287
1288 case IPV6_RECVRETOPTS:
1289 OPTSET(IN6P_RECVRETOPTS);
1290 break;
1291
1292 case IPV6_RECVDSTADDR:
1293 OPTSET(IN6P_RECVDSTADDR);
1294 break;
1295
1296 case IPV6_PKTINFO:
1297 OPTSET(IN6P_PKTINFO);
1298 break;
1299
1300 case IPV6_HOPLIMIT:
1301 OPTSET(IN6P_HOPLIMIT);
1302 break;
1303
1304 case IPV6_HOPOPTS:
1305 OPTSET(IN6P_HOPOPTS);
1306 break;
1307
1308 case IPV6_DSTOPTS:
1309 OPTSET(IN6P_DSTOPTS);
1310 break;
1311
1312 case IPV6_RTHDR:
1313 OPTSET(IN6P_RTHDR);
1314 break;
1315
1316 case IPV6_FAITH:
1317 OPTSET(IN6P_FAITH);
1318 break;
1319
1320 case IPV6_V6ONLY:
1321 /*
1322 * make setsockopt(IPV6_V6ONLY)
1323 * available only prior to bind(2).
1324 * see ipng mailing list, Jun 22 2001.
1325 */
1326 if (in6p->in6p_lport ||
1327 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr))
1328 {
1329 error = EINVAL;
1330 break;
1331 }
1332 #ifdef INET6_BINDV6ONLY
1333 if (!optval)
1334 error = EINVAL;
1335 #else
1336 OPTSET(IN6P_IPV6_V6ONLY);
1337 #endif
1338 break;
1339 }
1340 break;
1341 #undef OPTSET
1342
1343 case IPV6_MULTICAST_IF:
1344 case IPV6_MULTICAST_HOPS:
1345 case IPV6_MULTICAST_LOOP:
1346 case IPV6_JOIN_GROUP:
1347 case IPV6_LEAVE_GROUP:
1348 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m);
1349 break;
1350
1351 case IPV6_PORTRANGE:
1352 optval = *mtod(m, int *);
1353
1354 switch (optval) {
1355 case IPV6_PORTRANGE_DEFAULT:
1356 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1357 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1358 break;
1359
1360 case IPV6_PORTRANGE_HIGH:
1361 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1362 in6p->in6p_flags |= IN6P_HIGHPORT;
1363 break;
1364
1365 case IPV6_PORTRANGE_LOW:
1366 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1367 in6p->in6p_flags |= IN6P_LOWPORT;
1368 break;
1369
1370 default:
1371 error = EINVAL;
1372 break;
1373 }
1374 break;
1375
1376 #ifdef IPSEC
1377 case IPV6_IPSEC_POLICY:
1378 {
1379 caddr_t req = NULL;
1380 size_t len = 0;
1381
1382 int priv = 0;
1383 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1384 priv = 0;
1385 else
1386 priv = 1;
1387 if (m) {
1388 req = mtod(m, caddr_t);
1389 len = m->m_len;
1390 }
1391 error = ipsec6_set_policy(in6p,
1392 optname, req, len, priv);
1393 }
1394 break;
1395 #endif /* IPSEC */
1396
1397 default:
1398 error = ENOPROTOOPT;
1399 break;
1400 }
1401 if (m)
1402 (void)m_free(m);
1403 break;
1404
1405 case PRCO_GETOPT:
1406 switch (optname) {
1407
1408 case IPV6_OPTIONS:
1409 case IPV6_RETOPTS:
1410 #if 0
1411 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1412 if (in6p->in6p_options) {
1413 m->m_len = in6p->in6p_options->m_len;
1414 bcopy(mtod(in6p->in6p_options, caddr_t),
1415 mtod(m, caddr_t),
1416 (unsigned)m->m_len);
1417 } else
1418 m->m_len = 0;
1419 break;
1420 #else
1421 error = ENOPROTOOPT;
1422 break;
1423 #endif
1424
1425 case IPV6_PKTOPTIONS:
1426 if (in6p->in6p_options) {
1427 *mp = m_copym(in6p->in6p_options, 0,
1428 M_COPYALL, M_WAIT);
1429 } else {
1430 *mp = m_get(M_WAIT, MT_SOOPTS);
1431 (*mp)->m_len = 0;
1432 }
1433 break;
1434
1435 case IPV6_HOPOPTS:
1436 case IPV6_DSTOPTS:
1437 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1438 error = EPERM;
1439 break;
1440 }
1441 /* fall through */
1442 case IPV6_UNICAST_HOPS:
1443 case IPV6_RECVOPTS:
1444 case IPV6_RECVRETOPTS:
1445 case IPV6_RECVDSTADDR:
1446 case IPV6_PORTRANGE:
1447 case IPV6_PKTINFO:
1448 case IPV6_HOPLIMIT:
1449 case IPV6_RTHDR:
1450 case IPV6_FAITH:
1451 case IPV6_V6ONLY:
1452 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1453 m->m_len = sizeof(int);
1454 switch (optname) {
1455
1456 case IPV6_UNICAST_HOPS:
1457 optval = in6p->in6p_hops;
1458 break;
1459
1460 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1461
1462 case IPV6_RECVOPTS:
1463 optval = OPTBIT(IN6P_RECVOPTS);
1464 break;
1465
1466 case IPV6_RECVRETOPTS:
1467 optval = OPTBIT(IN6P_RECVRETOPTS);
1468 break;
1469
1470 case IPV6_RECVDSTADDR:
1471 optval = OPTBIT(IN6P_RECVDSTADDR);
1472 break;
1473
1474 case IPV6_PORTRANGE:
1475 {
1476 int flags;
1477 flags = in6p->in6p_flags;
1478 if (flags & IN6P_HIGHPORT)
1479 optval = IPV6_PORTRANGE_HIGH;
1480 else if (flags & IN6P_LOWPORT)
1481 optval = IPV6_PORTRANGE_LOW;
1482 else
1483 optval = 0;
1484 break;
1485 }
1486
1487 case IPV6_PKTINFO:
1488 optval = OPTBIT(IN6P_PKTINFO);
1489 break;
1490
1491 case IPV6_HOPLIMIT:
1492 optval = OPTBIT(IN6P_HOPLIMIT);
1493 break;
1494
1495 case IPV6_HOPOPTS:
1496 optval = OPTBIT(IN6P_HOPOPTS);
1497 break;
1498
1499 case IPV6_DSTOPTS:
1500 optval = OPTBIT(IN6P_DSTOPTS);
1501 break;
1502
1503 case IPV6_RTHDR:
1504 optval = OPTBIT(IN6P_RTHDR);
1505 break;
1506
1507 case IPV6_FAITH:
1508 optval = OPTBIT(IN6P_FAITH);
1509 break;
1510
1511 case IPV6_V6ONLY:
1512 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1513 break;
1514 }
1515 *mtod(m, int *) = optval;
1516 break;
1517
1518 case IPV6_MULTICAST_IF:
1519 case IPV6_MULTICAST_HOPS:
1520 case IPV6_MULTICAST_LOOP:
1521 case IPV6_JOIN_GROUP:
1522 case IPV6_LEAVE_GROUP:
1523 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1524 break;
1525
1526 #ifdef IPSEC
1527 case IPV6_IPSEC_POLICY:
1528 {
1529 caddr_t req = NULL;
1530 size_t len = 0;
1531
1532 if (m) {
1533 req = mtod(m, caddr_t);
1534 len = m->m_len;
1535 }
1536 error = ipsec6_get_policy(in6p, req, len, mp);
1537 break;
1538 }
1539 #endif /* IPSEC */
1540
1541 default:
1542 error = ENOPROTOOPT;
1543 break;
1544 }
1545 break;
1546 }
1547 } else {
1548 error = EINVAL;
1549 if (op == PRCO_SETOPT && *mp)
1550 (void)m_free(*mp);
1551 }
1552 return(error);
1553 }
1554
1555 /*
1556 * Set up IP6 options in pcb for insertion in output packets.
1557 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1558 * with destination address if source routed.
1559 */
1560 static int
1561 ip6_pcbopts(pktopt, m, so)
1562 struct ip6_pktopts **pktopt;
1563 struct mbuf *m;
1564 struct socket *so;
1565 {
1566 struct ip6_pktopts *opt = *pktopt;
1567 int error = 0;
1568 struct proc *p = curproc; /* XXX */
1569 int priv = 0;
1570
1571 /* turn off any old options. */
1572 if (opt) {
1573 if (opt->ip6po_m)
1574 (void)m_free(opt->ip6po_m);
1575 } else
1576 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1577 *pktopt = 0;
1578
1579 if (!m || m->m_len == 0) {
1580 /*
1581 * Only turning off any previous options.
1582 */
1583 if (opt)
1584 free(opt, M_IP6OPT);
1585 if (m)
1586 (void)m_free(m);
1587 return(0);
1588 }
1589
1590 /* set options specified by user. */
1591 if (p && !suser(p->p_ucred, &p->p_acflag))
1592 priv = 1;
1593 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1594 (void)m_free(m);
1595 return(error);
1596 }
1597 *pktopt = opt;
1598 return(0);
1599 }
1600
1601 /*
1602 * Set the IP6 multicast options in response to user setsockopt().
1603 */
1604 static int
1605 ip6_setmoptions(optname, im6op, m)
1606 int optname;
1607 struct ip6_moptions **im6op;
1608 struct mbuf *m;
1609 {
1610 int error = 0;
1611 u_int loop, ifindex;
1612 struct ipv6_mreq *mreq;
1613 struct ifnet *ifp;
1614 struct ip6_moptions *im6o = *im6op;
1615 struct route_in6 ro;
1616 struct sockaddr_in6 *dst;
1617 struct in6_multi_mship *imm;
1618 struct proc *p = curproc; /* XXX */
1619
1620 if (im6o == NULL) {
1621 /*
1622 * No multicast option buffer attached to the pcb;
1623 * allocate one and initialize to default values.
1624 */
1625 im6o = (struct ip6_moptions *)
1626 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1627
1628 if (im6o == NULL)
1629 return(ENOBUFS);
1630 *im6op = im6o;
1631 im6o->im6o_multicast_ifp = NULL;
1632 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1633 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1634 LIST_INIT(&im6o->im6o_memberships);
1635 }
1636
1637 switch (optname) {
1638
1639 case IPV6_MULTICAST_IF:
1640 /*
1641 * Select the interface for outgoing multicast packets.
1642 */
1643 if (m == NULL || m->m_len != sizeof(u_int)) {
1644 error = EINVAL;
1645 break;
1646 }
1647 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1648 if (ifindex < 0 || if_index < ifindex) {
1649 error = ENXIO; /* XXX EINVAL? */
1650 break;
1651 }
1652 ifp = ifindex2ifnet[ifindex];
1653 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1654 error = EADDRNOTAVAIL;
1655 break;
1656 }
1657 im6o->im6o_multicast_ifp = ifp;
1658 break;
1659
1660 case IPV6_MULTICAST_HOPS:
1661 {
1662 /*
1663 * Set the IP6 hoplimit for outgoing multicast packets.
1664 */
1665 int optval;
1666 if (m == NULL || m->m_len != sizeof(int)) {
1667 error = EINVAL;
1668 break;
1669 }
1670 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1671 if (optval < -1 || optval >= 256)
1672 error = EINVAL;
1673 else if (optval == -1)
1674 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1675 else
1676 im6o->im6o_multicast_hlim = optval;
1677 break;
1678 }
1679
1680 case IPV6_MULTICAST_LOOP:
1681 /*
1682 * Set the loopback flag for outgoing multicast packets.
1683 * Must be zero or one.
1684 */
1685 if (m == NULL || m->m_len != sizeof(u_int)) {
1686 error = EINVAL;
1687 break;
1688 }
1689 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1690 if (loop > 1) {
1691 error = EINVAL;
1692 break;
1693 }
1694 im6o->im6o_multicast_loop = loop;
1695 break;
1696
1697 case IPV6_JOIN_GROUP:
1698 /*
1699 * Add a multicast group membership.
1700 * Group must be a valid IP6 multicast address.
1701 */
1702 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1703 error = EINVAL;
1704 break;
1705 }
1706 mreq = mtod(m, struct ipv6_mreq *);
1707 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1708 /*
1709 * We use the unspecified address to specify to accept
1710 * all multicast addresses. Only super user is allowed
1711 * to do this.
1712 */
1713 if (suser(p->p_ucred, &p->p_acflag))
1714 {
1715 error = EACCES;
1716 break;
1717 }
1718 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1719 error = EINVAL;
1720 break;
1721 }
1722
1723 /*
1724 * If the interface is specified, validate it.
1725 */
1726 if (mreq->ipv6mr_interface < 0
1727 || if_index < mreq->ipv6mr_interface) {
1728 error = ENXIO; /* XXX EINVAL? */
1729 break;
1730 }
1731 /*
1732 * If no interface was explicitly specified, choose an
1733 * appropriate one according to the given multicast address.
1734 */
1735 if (mreq->ipv6mr_interface == 0) {
1736 /*
1737 * If the multicast address is in node-local scope,
1738 * the interface should be a loopback interface.
1739 * Otherwise, look up the routing table for the
1740 * address, and choose the outgoing interface.
1741 * XXX: is it a good approach?
1742 */
1743 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1744 ifp = &loif[0];
1745 } else {
1746 ro.ro_rt = NULL;
1747 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1748 bzero(dst, sizeof(*dst));
1749 dst->sin6_len = sizeof(struct sockaddr_in6);
1750 dst->sin6_family = AF_INET6;
1751 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1752 rtalloc((struct route *)&ro);
1753 if (ro.ro_rt == NULL) {
1754 error = EADDRNOTAVAIL;
1755 break;
1756 }
1757 ifp = ro.ro_rt->rt_ifp;
1758 rtfree(ro.ro_rt);
1759 }
1760 } else
1761 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1762
1763 /*
1764 * See if we found an interface, and confirm that it
1765 * supports multicast
1766 */
1767 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1768 error = EADDRNOTAVAIL;
1769 break;
1770 }
1771 /*
1772 * Put interface index into the multicast address,
1773 * if the address has link-local scope.
1774 */
1775 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1776 mreq->ipv6mr_multiaddr.s6_addr16[1]
1777 = htons(mreq->ipv6mr_interface);
1778 }
1779 /*
1780 * See if the membership already exists.
1781 */
1782 for (imm = im6o->im6o_memberships.lh_first;
1783 imm != NULL; imm = imm->i6mm_chain.le_next)
1784 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1785 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1786 &mreq->ipv6mr_multiaddr))
1787 break;
1788 if (imm != NULL) {
1789 error = EADDRINUSE;
1790 break;
1791 }
1792 /*
1793 * Everything looks good; add a new record to the multicast
1794 * address list for the given interface.
1795 */
1796 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error);
1797 if (!imm)
1798 break;
1799 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1800 break;
1801
1802 case IPV6_LEAVE_GROUP:
1803 /*
1804 * Drop a multicast group membership.
1805 * Group must be a valid IP6 multicast address.
1806 */
1807 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1808 error = EINVAL;
1809 break;
1810 }
1811 mreq = mtod(m, struct ipv6_mreq *);
1812 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1813 if (suser(p->p_ucred, &p->p_acflag))
1814 {
1815 error = EACCES;
1816 break;
1817 }
1818 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1819 error = EINVAL;
1820 break;
1821 }
1822 /*
1823 * If an interface address was specified, get a pointer
1824 * to its ifnet structure.
1825 */
1826 if (mreq->ipv6mr_interface < 0
1827 || if_index < mreq->ipv6mr_interface) {
1828 error = ENXIO; /* XXX EINVAL? */
1829 break;
1830 }
1831 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1832 /*
1833 * Put interface index into the multicast address,
1834 * if the address has link-local scope.
1835 */
1836 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1837 mreq->ipv6mr_multiaddr.s6_addr16[1]
1838 = htons(mreq->ipv6mr_interface);
1839 }
1840 /*
1841 * Find the membership in the membership list.
1842 */
1843 for (imm = im6o->im6o_memberships.lh_first;
1844 imm != NULL; imm = imm->i6mm_chain.le_next) {
1845 if ((ifp == NULL ||
1846 imm->i6mm_maddr->in6m_ifp == ifp) &&
1847 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1848 &mreq->ipv6mr_multiaddr))
1849 break;
1850 }
1851 if (imm == NULL) {
1852 /* Unable to resolve interface */
1853 error = EADDRNOTAVAIL;
1854 break;
1855 }
1856 /*
1857 * Give up the multicast address record to which the
1858 * membership points.
1859 */
1860 LIST_REMOVE(imm, i6mm_chain);
1861 in6_leavegroup(imm);
1862 break;
1863
1864 default:
1865 error = EOPNOTSUPP;
1866 break;
1867 }
1868
1869 /*
1870 * If all options have default values, no need to keep the mbuf.
1871 */
1872 if (im6o->im6o_multicast_ifp == NULL &&
1873 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1874 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1875 im6o->im6o_memberships.lh_first == NULL) {
1876 free(*im6op, M_IPMOPTS);
1877 *im6op = NULL;
1878 }
1879
1880 return(error);
1881 }
1882
1883 /*
1884 * Return the IP6 multicast options in response to user getsockopt().
1885 */
1886 static int
1887 ip6_getmoptions(optname, im6o, mp)
1888 int optname;
1889 struct ip6_moptions *im6o;
1890 struct mbuf **mp;
1891 {
1892 u_int *hlim, *loop, *ifindex;
1893
1894 *mp = m_get(M_WAIT, MT_SOOPTS);
1895
1896 switch (optname) {
1897
1898 case IPV6_MULTICAST_IF:
1899 ifindex = mtod(*mp, u_int *);
1900 (*mp)->m_len = sizeof(u_int);
1901 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1902 *ifindex = 0;
1903 else
1904 *ifindex = im6o->im6o_multicast_ifp->if_index;
1905 return(0);
1906
1907 case IPV6_MULTICAST_HOPS:
1908 hlim = mtod(*mp, u_int *);
1909 (*mp)->m_len = sizeof(u_int);
1910 if (im6o == NULL)
1911 *hlim = ip6_defmcasthlim;
1912 else
1913 *hlim = im6o->im6o_multicast_hlim;
1914 return(0);
1915
1916 case IPV6_MULTICAST_LOOP:
1917 loop = mtod(*mp, u_int *);
1918 (*mp)->m_len = sizeof(u_int);
1919 if (im6o == NULL)
1920 *loop = ip6_defmcasthlim;
1921 else
1922 *loop = im6o->im6o_multicast_loop;
1923 return(0);
1924
1925 default:
1926 return(EOPNOTSUPP);
1927 }
1928 }
1929
1930 /*
1931 * Discard the IP6 multicast options.
1932 */
1933 void
1934 ip6_freemoptions(im6o)
1935 struct ip6_moptions *im6o;
1936 {
1937 struct in6_multi_mship *imm;
1938
1939 if (im6o == NULL)
1940 return;
1941
1942 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
1943 LIST_REMOVE(imm, i6mm_chain);
1944 in6_leavegroup(imm);
1945 }
1946 free(im6o, M_IPMOPTS);
1947 }
1948
1949 /*
1950 * Set IPv6 outgoing packet options based on advanced API.
1951 */
1952 int
1953 ip6_setpktoptions(control, opt, priv)
1954 struct mbuf *control;
1955 struct ip6_pktopts *opt;
1956 int priv;
1957 {
1958 struct cmsghdr *cm = 0;
1959
1960 if (control == 0 || opt == 0)
1961 return(EINVAL);
1962
1963 bzero(opt, sizeof(*opt));
1964 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
1965
1966 /*
1967 * XXX: Currently, we assume all the optional information is stored
1968 * in a single mbuf.
1969 */
1970 if (control->m_next)
1971 return(EINVAL);
1972
1973 opt->ip6po_m = control;
1974
1975 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
1976 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1977 cm = mtod(control, struct cmsghdr *);
1978 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
1979 return(EINVAL);
1980 if (cm->cmsg_level != IPPROTO_IPV6)
1981 continue;
1982
1983 switch (cm->cmsg_type) {
1984 case IPV6_PKTINFO:
1985 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
1986 return(EINVAL);
1987 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1988 if (opt->ip6po_pktinfo->ipi6_ifindex &&
1989 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
1990 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
1991 htons(opt->ip6po_pktinfo->ipi6_ifindex);
1992
1993 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
1994 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
1995 return(ENXIO);
1996 }
1997
1998 /*
1999 * Check if the requested source address is indeed a
2000 * unicast address assigned to the node, and can be
2001 * used as the packet's source address.
2002 */
2003 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2004 struct ifaddr *ia;
2005 struct in6_ifaddr *ia6;
2006 struct sockaddr_in6 sin6;
2007
2008 bzero(&sin6, sizeof(sin6));
2009 sin6.sin6_len = sizeof(sin6);
2010 sin6.sin6_family = AF_INET6;
2011 sin6.sin6_addr =
2012 opt->ip6po_pktinfo->ipi6_addr;
2013 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2014 if (ia == NULL ||
2015 (opt->ip6po_pktinfo->ipi6_ifindex &&
2016 (ia->ifa_ifp->if_index !=
2017 opt->ip6po_pktinfo->ipi6_ifindex))) {
2018 return(EADDRNOTAVAIL);
2019 }
2020 ia6 = (struct in6_ifaddr *)ia;
2021 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
2022 return(EADDRNOTAVAIL);
2023 }
2024
2025 /*
2026 * Check if the requested source address is
2027 * indeed a unicast address assigned to the
2028 * node.
2029 */
2030 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2031 return(EADDRNOTAVAIL);
2032 }
2033 break;
2034
2035 case IPV6_HOPLIMIT:
2036 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2037 return(EINVAL);
2038
2039 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim,
2040 sizeof(opt->ip6po_hlim));
2041 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2042 return(EINVAL);
2043 break;
2044
2045 case IPV6_NEXTHOP:
2046 if (!priv)
2047 return(EPERM);
2048
2049 if (cm->cmsg_len < sizeof(u_char) ||
2050 /* check if cmsg_len is large enough for sa_len */
2051 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2052 return(EINVAL);
2053
2054 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2055
2056 break;
2057
2058 case IPV6_HOPOPTS:
2059 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2060 return(EINVAL);
2061 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2062 if (cm->cmsg_len !=
2063 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
2064 return(EINVAL);
2065 break;
2066
2067 case IPV6_DSTOPTS:
2068 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2069 return(EINVAL);
2070
2071 /*
2072 * If there is no routing header yet, the destination
2073 * options header should be put on the 1st part.
2074 * Otherwise, the header should be on the 2nd part.
2075 * (See RFC 2460, section 4.1)
2076 */
2077 if (opt->ip6po_rthdr == NULL) {
2078 opt->ip6po_dest1 =
2079 (struct ip6_dest *)CMSG_DATA(cm);
2080 if (cm->cmsg_len !=
2081 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
2082 << 3))
2083 return(EINVAL);
2084 }
2085 else {
2086 opt->ip6po_dest2 =
2087 (struct ip6_dest *)CMSG_DATA(cm);
2088 if (cm->cmsg_len !=
2089 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
2090 << 3))
2091 return(EINVAL);
2092 }
2093 break;
2094
2095 case IPV6_RTHDR:
2096 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2097 return(EINVAL);
2098 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
2099 if (cm->cmsg_len !=
2100 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
2101 return(EINVAL);
2102 switch (opt->ip6po_rthdr->ip6r_type) {
2103 case IPV6_RTHDR_TYPE_0:
2104 if (opt->ip6po_rthdr->ip6r_segleft == 0)
2105 return(EINVAL);
2106 break;
2107 default:
2108 return(EINVAL);
2109 }
2110 break;
2111
2112 default:
2113 return(ENOPROTOOPT);
2114 }
2115 }
2116
2117 return(0);
2118 }
2119
2120 /*
2121 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2122 * packet to the input queue of a specified interface. Note that this
2123 * calls the output routine of the loopback "driver", but with an interface
2124 * pointer that might NOT be &loif -- easier than replicating that code here.
2125 */
2126 void
2127 ip6_mloopback(ifp, m, dst)
2128 struct ifnet *ifp;
2129 struct mbuf *m;
2130 struct sockaddr_in6 *dst;
2131 {
2132 struct mbuf *copym;
2133 struct ip6_hdr *ip6;
2134
2135 copym = m_copy(m, 0, M_COPYALL);
2136 if (copym == NULL)
2137 return;
2138
2139 /*
2140 * Make sure to deep-copy IPv6 header portion in case the data
2141 * is in an mbuf cluster, so that we can safely override the IPv6
2142 * header portion later.
2143 */
2144 if ((copym->m_flags & M_EXT) != 0 ||
2145 copym->m_len < sizeof(struct ip6_hdr)) {
2146 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2147 if (copym == NULL)
2148 return;
2149 }
2150
2151 #ifdef DIAGNOSTIC
2152 if (copym->m_len < sizeof(*ip6)) {
2153 m_freem(copym);
2154 return;
2155 }
2156 #endif
2157
2158 ip6 = mtod(copym, struct ip6_hdr *);
2159 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2160 ip6->ip6_src.s6_addr16[1] = 0;
2161 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2162 ip6->ip6_dst.s6_addr16[1] = 0;
2163
2164 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2165 }
2166
2167 /*
2168 * Chop IPv6 header off from the payload.
2169 */
2170 static int
2171 ip6_splithdr(m, exthdrs)
2172 struct mbuf *m;
2173 struct ip6_exthdrs *exthdrs;
2174 {
2175 struct mbuf *mh;
2176 struct ip6_hdr *ip6;
2177
2178 ip6 = mtod(m, struct ip6_hdr *);
2179 if (m->m_len > sizeof(*ip6)) {
2180 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2181 if (mh == 0) {
2182 m_freem(m);
2183 return ENOBUFS;
2184 }
2185 M_COPY_PKTHDR(mh, m);
2186 MH_ALIGN(mh, sizeof(*ip6));
2187 m->m_flags &= ~M_PKTHDR;
2188 m->m_len -= sizeof(*ip6);
2189 m->m_data += sizeof(*ip6);
2190 mh->m_next = m;
2191 m = mh;
2192 m->m_len = sizeof(*ip6);
2193 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2194 }
2195 exthdrs->ip6e_ip6 = m;
2196 return 0;
2197 }
2198
2199 /*
2200 * Compute IPv6 extension header length.
2201 */
2202 int
2203 ip6_optlen(in6p)
2204 struct in6pcb *in6p;
2205 {
2206 int len;
2207
2208 if (!in6p->in6p_outputopts)
2209 return 0;
2210
2211 len = 0;
2212 #define elen(x) \
2213 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2214
2215 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2216 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2217 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2218 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2219 return len;
2220 #undef elen
2221 }
2222