ip6_output.c revision 1.44.4.2 1 /* $NetBSD: ip6_output.c,v 1.44.4.2 2002/10/13 22:39:05 lukem Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.44.4.2 2002/10/13 22:39:05 lukem Exp $");
70
71 #include "opt_inet.h"
72 #include "opt_ipsec.h"
73 #include "opt_pfil_hooks.h"
74
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/errno.h>
79 #include <sys/protosw.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84
85 #include <net/if.h>
86 #include <net/route.h>
87 #ifdef PFIL_HOOKS
88 #include <net/pfil.h>
89 #endif
90
91 #include <netinet/in.h>
92 #include <netinet/in_var.h>
93 #include <netinet/ip6.h>
94 #include <netinet/icmp6.h>
95 #include <netinet6/ip6_var.h>
96 #include <netinet6/in6_pcb.h>
97 #include <netinet6/nd6.h>
98
99 #ifdef IPSEC
100 #include <netinet6/ipsec.h>
101 #include <netkey/key.h>
102 #endif /* IPSEC */
103
104 #include "loop.h"
105
106 #include <net/net_osdep.h>
107
108 #ifdef PFIL_HOOKS
109 extern struct pfil_head inet6_pfil_hook; /* XXX */
110 #endif
111
112 struct ip6_exthdrs {
113 struct mbuf *ip6e_ip6;
114 struct mbuf *ip6e_hbh;
115 struct mbuf *ip6e_dest1;
116 struct mbuf *ip6e_rthdr;
117 struct mbuf *ip6e_dest2;
118 };
119
120 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
121 struct socket *));
122 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
123 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
124 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
125 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
126 struct ip6_frag **));
127 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
128 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
129
130 extern struct ifnet loif[NLOOP];
131
132 /*
133 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
134 * header (with pri, len, nxt, hlim, src, dst).
135 * This function may modify ver and hlim only.
136 * The mbuf chain containing the packet will be freed.
137 * The mbuf opt, if present, will not be freed.
138 */
139 int
140 ip6_output(m0, opt, ro, flags, im6o, ifpp)
141 struct mbuf *m0;
142 struct ip6_pktopts *opt;
143 struct route_in6 *ro;
144 int flags;
145 struct ip6_moptions *im6o;
146 struct ifnet **ifpp; /* XXX: just for statistics */
147 {
148 struct ip6_hdr *ip6, *mhip6;
149 struct ifnet *ifp, *origifp;
150 struct mbuf *m = m0;
151 int hlen, tlen, len, off;
152 struct route_in6 ip6route;
153 struct sockaddr_in6 *dst;
154 int error = 0;
155 struct in6_ifaddr *ia;
156 u_long mtu;
157 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
158 struct ip6_exthdrs exthdrs;
159 struct in6_addr finaldst;
160 struct route_in6 *ro_pmtu = NULL;
161 int hdrsplit = 0;
162 int needipsec = 0;
163 #ifdef IPSEC
164 int needipsectun = 0;
165 struct socket *so;
166 struct secpolicy *sp = NULL;
167
168 /* for AH processing. stupid to have "socket" variable in IP layer... */
169 so = ipsec_getsocket(m);
170 (void)ipsec_setsocket(m, NULL);
171 ip6 = mtod(m, struct ip6_hdr *);
172 #endif /* IPSEC */
173
174 #define MAKE_EXTHDR(hp, mp) \
175 do { \
176 if (hp) { \
177 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
178 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
179 ((eh)->ip6e_len + 1) << 3); \
180 if (error) \
181 goto freehdrs; \
182 } \
183 } while (0)
184
185 bzero(&exthdrs, sizeof(exthdrs));
186 if (opt) {
187 /* Hop-by-Hop options header */
188 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
189 /* Destination options header(1st part) */
190 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
191 /* Routing header */
192 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
193 /* Destination options header(2nd part) */
194 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
195 }
196
197 #ifdef IPSEC
198 /* get a security policy for this packet */
199 if (so == NULL)
200 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
201 else
202 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
203
204 if (sp == NULL) {
205 ipsec6stat.out_inval++;
206 goto freehdrs;
207 }
208
209 error = 0;
210
211 /* check policy */
212 switch (sp->policy) {
213 case IPSEC_POLICY_DISCARD:
214 /*
215 * This packet is just discarded.
216 */
217 ipsec6stat.out_polvio++;
218 goto freehdrs;
219
220 case IPSEC_POLICY_BYPASS:
221 case IPSEC_POLICY_NONE:
222 /* no need to do IPsec. */
223 needipsec = 0;
224 break;
225
226 case IPSEC_POLICY_IPSEC:
227 if (sp->req == NULL) {
228 /* XXX should be panic ? */
229 printf("ip6_output: No IPsec request specified.\n");
230 error = EINVAL;
231 goto freehdrs;
232 }
233 needipsec = 1;
234 break;
235
236 case IPSEC_POLICY_ENTRUST:
237 default:
238 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
239 }
240 #endif /* IPSEC */
241
242 /*
243 * Calculate the total length of the extension header chain.
244 * Keep the length of the unfragmentable part for fragmentation.
245 */
246 optlen = 0;
247 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
248 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
249 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
250 unfragpartlen = optlen + sizeof(struct ip6_hdr);
251 /* NOTE: we don't add AH/ESP length here. do that later. */
252 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
253
254 /*
255 * If we need IPsec, or there is at least one extension header,
256 * separate IP6 header from the payload.
257 */
258 if ((needipsec || optlen) && !hdrsplit) {
259 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
260 m = NULL;
261 goto freehdrs;
262 }
263 m = exthdrs.ip6e_ip6;
264 hdrsplit++;
265 }
266
267 /* adjust pointer */
268 ip6 = mtod(m, struct ip6_hdr *);
269
270 /* adjust mbuf packet header length */
271 m->m_pkthdr.len += optlen;
272 plen = m->m_pkthdr.len - sizeof(*ip6);
273
274 /* If this is a jumbo payload, insert a jumbo payload option. */
275 if (plen > IPV6_MAXPACKET) {
276 if (!hdrsplit) {
277 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
278 m = NULL;
279 goto freehdrs;
280 }
281 m = exthdrs.ip6e_ip6;
282 hdrsplit++;
283 }
284 /* adjust pointer */
285 ip6 = mtod(m, struct ip6_hdr *);
286 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
287 goto freehdrs;
288 ip6->ip6_plen = 0;
289 } else
290 ip6->ip6_plen = htons(plen);
291
292 /*
293 * Concatenate headers and fill in next header fields.
294 * Here we have, on "m"
295 * IPv6 payload
296 * and we insert headers accordingly. Finally, we should be getting:
297 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
298 *
299 * during the header composing process, "m" points to IPv6 header.
300 * "mprev" points to an extension header prior to esp.
301 */
302 {
303 u_char *nexthdrp = &ip6->ip6_nxt;
304 struct mbuf *mprev = m;
305
306 /*
307 * we treat dest2 specially. this makes IPsec processing
308 * much easier.
309 *
310 * result: IPv6 dest2 payload
311 * m and mprev will point to IPv6 header.
312 */
313 if (exthdrs.ip6e_dest2) {
314 if (!hdrsplit)
315 panic("assumption failed: hdr not split");
316 exthdrs.ip6e_dest2->m_next = m->m_next;
317 m->m_next = exthdrs.ip6e_dest2;
318 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
319 ip6->ip6_nxt = IPPROTO_DSTOPTS;
320 }
321
322 #define MAKE_CHAIN(m, mp, p, i)\
323 do {\
324 if (m) {\
325 if (!hdrsplit) \
326 panic("assumption failed: hdr not split"); \
327 *mtod((m), u_char *) = *(p);\
328 *(p) = (i);\
329 p = mtod((m), u_char *);\
330 (m)->m_next = (mp)->m_next;\
331 (mp)->m_next = (m);\
332 (mp) = (m);\
333 }\
334 } while (0)
335 /*
336 * result: IPv6 hbh dest1 rthdr dest2 payload
337 * m will point to IPv6 header. mprev will point to the
338 * extension header prior to dest2 (rthdr in the above case).
339 */
340 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
341 nexthdrp, IPPROTO_HOPOPTS);
342 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
343 nexthdrp, IPPROTO_DSTOPTS);
344 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
345 nexthdrp, IPPROTO_ROUTING);
346
347 #ifdef IPSEC
348 if (!needipsec)
349 goto skip_ipsec2;
350
351 /*
352 * pointers after IPsec headers are not valid any more.
353 * other pointers need a great care too.
354 * (IPsec routines should not mangle mbufs prior to AH/ESP)
355 */
356 exthdrs.ip6e_dest2 = NULL;
357
358 {
359 struct ip6_rthdr *rh = NULL;
360 int segleft_org = 0;
361 struct ipsec_output_state state;
362
363 if (exthdrs.ip6e_rthdr) {
364 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
365 segleft_org = rh->ip6r_segleft;
366 rh->ip6r_segleft = 0;
367 }
368
369 bzero(&state, sizeof(state));
370 state.m = m;
371 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
372 &needipsectun);
373 m = state.m;
374 if (error) {
375 /* mbuf is already reclaimed in ipsec6_output_trans. */
376 m = NULL;
377 switch (error) {
378 case EHOSTUNREACH:
379 case ENETUNREACH:
380 case EMSGSIZE:
381 case ENOBUFS:
382 case ENOMEM:
383 break;
384 default:
385 printf("ip6_output (ipsec): error code %d\n", error);
386 /* fall through */
387 case ENOENT:
388 /* don't show these error codes to the user */
389 error = 0;
390 break;
391 }
392 goto bad;
393 }
394 if (exthdrs.ip6e_rthdr) {
395 /* ah6_output doesn't modify mbuf chain */
396 rh->ip6r_segleft = segleft_org;
397 }
398 }
399 skip_ipsec2:;
400 #endif
401 }
402
403 /*
404 * If there is a routing header, replace destination address field
405 * with the first hop of the routing header.
406 */
407 if (exthdrs.ip6e_rthdr) {
408 struct ip6_rthdr *rh =
409 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
410 struct ip6_rthdr *));
411 struct ip6_rthdr0 *rh0;
412
413 finaldst = ip6->ip6_dst;
414 switch (rh->ip6r_type) {
415 case IPV6_RTHDR_TYPE_0:
416 rh0 = (struct ip6_rthdr0 *)rh;
417 ip6->ip6_dst = rh0->ip6r0_addr[0];
418 bcopy((caddr_t)&rh0->ip6r0_addr[1],
419 (caddr_t)&rh0->ip6r0_addr[0],
420 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)
421 );
422 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
423 break;
424 default: /* is it possible? */
425 error = EINVAL;
426 goto bad;
427 }
428 }
429
430 /* Source address validation */
431 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
432 (flags & IPV6_DADOUTPUT) == 0) {
433 error = EOPNOTSUPP;
434 ip6stat.ip6s_badscope++;
435 goto bad;
436 }
437 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
438 error = EOPNOTSUPP;
439 ip6stat.ip6s_badscope++;
440 goto bad;
441 }
442
443 ip6stat.ip6s_localout++;
444
445 /*
446 * Route packet.
447 */
448 if (ro == 0) {
449 ro = &ip6route;
450 bzero((caddr_t)ro, sizeof(*ro));
451 }
452 ro_pmtu = ro;
453 if (opt && opt->ip6po_rthdr)
454 ro = &opt->ip6po_route;
455 dst = (struct sockaddr_in6 *)&ro->ro_dst;
456 /*
457 * If there is a cached route,
458 * check that it is to the same destination
459 * and is still up. If not, free it and try again.
460 */
461 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
462 dst->sin6_family != AF_INET6 ||
463 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
464 RTFREE(ro->ro_rt);
465 ro->ro_rt = (struct rtentry *)0;
466 }
467 if (ro->ro_rt == 0) {
468 bzero(dst, sizeof(*dst));
469 dst->sin6_family = AF_INET6;
470 dst->sin6_len = sizeof(struct sockaddr_in6);
471 dst->sin6_addr = ip6->ip6_dst;
472 }
473 #ifdef IPSEC
474 if (needipsec && needipsectun) {
475 struct ipsec_output_state state;
476
477 /*
478 * All the extension headers will become inaccessible
479 * (since they can be encrypted).
480 * Don't panic, we need no more updates to extension headers
481 * on inner IPv6 packet (since they are now encapsulated).
482 *
483 * IPv6 [ESP|AH] IPv6 [extension headers] payload
484 */
485 bzero(&exthdrs, sizeof(exthdrs));
486 exthdrs.ip6e_ip6 = m;
487
488 bzero(&state, sizeof(state));
489 state.m = m;
490 state.ro = (struct route *)ro;
491 state.dst = (struct sockaddr *)dst;
492
493 error = ipsec6_output_tunnel(&state, sp, flags);
494
495 m = state.m;
496 ro = (struct route_in6 *)state.ro;
497 dst = (struct sockaddr_in6 *)state.dst;
498 if (error) {
499 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
500 m0 = m = NULL;
501 m = NULL;
502 switch (error) {
503 case EHOSTUNREACH:
504 case ENETUNREACH:
505 case EMSGSIZE:
506 case ENOBUFS:
507 case ENOMEM:
508 break;
509 default:
510 printf("ip6_output (ipsec): error code %d\n", error);
511 /* fall through */
512 case ENOENT:
513 /* don't show these error codes to the user */
514 error = 0;
515 break;
516 }
517 goto bad;
518 }
519
520 exthdrs.ip6e_ip6 = m;
521 }
522 #endif /* IPSEC */
523
524 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
525 /* Unicast */
526
527 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
528 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
529 /* xxx
530 * interface selection comes here
531 * if an interface is specified from an upper layer,
532 * ifp must point it.
533 */
534 if (ro->ro_rt == 0) {
535 /*
536 * non-bsdi always clone routes, if parent is
537 * PRF_CLONING.
538 */
539 rtalloc((struct route *)ro);
540 }
541 if (ro->ro_rt == 0) {
542 ip6stat.ip6s_noroute++;
543 error = EHOSTUNREACH;
544 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
545 goto bad;
546 }
547 ia = ifatoia6(ro->ro_rt->rt_ifa);
548 ifp = ro->ro_rt->rt_ifp;
549 ro->ro_rt->rt_use++;
550 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
551 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
552 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
553
554 in6_ifstat_inc(ifp, ifs6_out_request);
555
556 /*
557 * Check if the outgoing interface conflicts with
558 * the interface specified by ifi6_ifindex (if specified).
559 * Note that loopback interface is always okay.
560 * (this may happen when we are sending a packet to one of
561 * our own addresses.)
562 */
563 if (opt && opt->ip6po_pktinfo
564 && opt->ip6po_pktinfo->ipi6_ifindex) {
565 if (!(ifp->if_flags & IFF_LOOPBACK)
566 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
567 ip6stat.ip6s_noroute++;
568 in6_ifstat_inc(ifp, ifs6_out_discard);
569 error = EHOSTUNREACH;
570 goto bad;
571 }
572 }
573
574 if (opt && opt->ip6po_hlim != -1)
575 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
576 } else {
577 /* Multicast */
578 struct in6_multi *in6m;
579
580 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
581
582 /*
583 * See if the caller provided any multicast options
584 */
585 ifp = NULL;
586 if (im6o != NULL) {
587 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
588 if (im6o->im6o_multicast_ifp != NULL)
589 ifp = im6o->im6o_multicast_ifp;
590 } else
591 ip6->ip6_hlim = ip6_defmcasthlim;
592
593 /*
594 * See if the caller provided the outgoing interface
595 * as an ancillary data.
596 * Boundary check for ifindex is assumed to be already done.
597 */
598 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
599 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
600
601 /*
602 * If the destination is a node-local scope multicast,
603 * the packet should be loop-backed only.
604 */
605 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
606 /*
607 * If the outgoing interface is already specified,
608 * it should be a loopback interface.
609 */
610 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
611 ip6stat.ip6s_badscope++;
612 error = ENETUNREACH; /* XXX: better error? */
613 /* XXX correct ifp? */
614 in6_ifstat_inc(ifp, ifs6_out_discard);
615 goto bad;
616 } else {
617 ifp = &loif[0];
618 }
619 }
620
621 if (opt && opt->ip6po_hlim != -1)
622 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
623
624 /*
625 * If caller did not provide an interface lookup a
626 * default in the routing table. This is either a
627 * default for the speicfied group (i.e. a host
628 * route), or a multicast default (a route for the
629 * ``net'' ff00::/8).
630 */
631 if (ifp == NULL) {
632 if (ro->ro_rt == 0) {
633 ro->ro_rt = rtalloc1((struct sockaddr *)
634 &ro->ro_dst, 0
635 );
636 }
637 if (ro->ro_rt == 0) {
638 ip6stat.ip6s_noroute++;
639 error = EHOSTUNREACH;
640 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
641 goto bad;
642 }
643 ia = ifatoia6(ro->ro_rt->rt_ifa);
644 ifp = ro->ro_rt->rt_ifp;
645 ro->ro_rt->rt_use++;
646 }
647
648 if ((flags & IPV6_FORWARDING) == 0)
649 in6_ifstat_inc(ifp, ifs6_out_request);
650 in6_ifstat_inc(ifp, ifs6_out_mcast);
651
652 /*
653 * Confirm that the outgoing interface supports multicast.
654 */
655 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
656 ip6stat.ip6s_noroute++;
657 in6_ifstat_inc(ifp, ifs6_out_discard);
658 error = ENETUNREACH;
659 goto bad;
660 }
661 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
662 if (in6m != NULL &&
663 (im6o == NULL || im6o->im6o_multicast_loop)) {
664 /*
665 * If we belong to the destination multicast group
666 * on the outgoing interface, and the caller did not
667 * forbid loopback, loop back a copy.
668 */
669 ip6_mloopback(ifp, m, dst);
670 } else {
671 /*
672 * If we are acting as a multicast router, perform
673 * multicast forwarding as if the packet had just
674 * arrived on the interface to which we are about
675 * to send. The multicast forwarding function
676 * recursively calls this function, using the
677 * IPV6_FORWARDING flag to prevent infinite recursion.
678 *
679 * Multicasts that are looped back by ip6_mloopback(),
680 * above, will be forwarded by the ip6_input() routine,
681 * if necessary.
682 */
683 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
684 if (ip6_mforward(ip6, ifp, m) != 0) {
685 m_freem(m);
686 goto done;
687 }
688 }
689 }
690 /*
691 * Multicasts with a hoplimit of zero may be looped back,
692 * above, but must not be transmitted on a network.
693 * Also, multicasts addressed to the loopback interface
694 * are not sent -- the above call to ip6_mloopback() will
695 * loop back a copy if this host actually belongs to the
696 * destination group on the loopback interface.
697 */
698 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
699 m_freem(m);
700 goto done;
701 }
702 }
703
704 /*
705 * Fill the outgoing inteface to tell the upper layer
706 * to increment per-interface statistics.
707 */
708 if (ifpp)
709 *ifpp = ifp;
710
711 /*
712 * Determine path MTU.
713 */
714 if (ro_pmtu != ro) {
715 /* The first hop and the final destination may differ. */
716 struct sockaddr_in6 *sin6_fin =
717 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
718 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
719 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
720 &finaldst))) {
721 RTFREE(ro_pmtu->ro_rt);
722 ro_pmtu->ro_rt = (struct rtentry *)0;
723 }
724 if (ro_pmtu->ro_rt == 0) {
725 bzero(sin6_fin, sizeof(*sin6_fin));
726 sin6_fin->sin6_family = AF_INET6;
727 sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
728 sin6_fin->sin6_addr = finaldst;
729
730 rtalloc((struct route *)ro_pmtu);
731 }
732 }
733 if (ro_pmtu->ro_rt != NULL) {
734 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
735
736 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
737 if (mtu == 0)
738 mtu = ifmtu;
739 else if (mtu > ifmtu) {
740 /*
741 * The MTU on the route is larger than the MTU on
742 * the interface! This shouldn't happen, unless the
743 * MTU of the interface has been changed after the
744 * interface was brought up. Change the MTU in the
745 * route to match the interface MTU (as long as the
746 * field isn't locked).
747 *
748 * if MTU on the route is 0, we need to fix the MTU.
749 * this case happens with path MTU discovery timeouts.
750 */
751 mtu = ifmtu;
752 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
753 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
754 }
755 } else {
756 mtu = nd_ifinfo[ifp->if_index].linkmtu;
757 }
758
759 if (mtu > IPV6_MMTU &&
760 (flags & IPV6_MINMTU)) {
761 mtu = IPV6_MMTU;
762 }
763
764 /* Fake scoped addresses */
765 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
766 /*
767 * If source or destination address is a scoped address, and
768 * the packet is going to be sent to a loopback interface,
769 * we should keep the original interface.
770 */
771
772 /*
773 * XXX: this is a very experimental and temporary solution.
774 * We eventually have sockaddr_in6 and use the sin6_scope_id
775 * field of the structure here.
776 * We rely on the consistency between two scope zone ids
777 * of source add destination, which should already be assured
778 * Larger scopes than link will be supported in the near
779 * future.
780 */
781 origifp = NULL;
782 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
783 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
784 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
785 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
786 /*
787 * XXX: origifp can be NULL even in those two cases above.
788 * For example, if we remove the (only) link-local address
789 * from the loopback interface, and try to send a link-local
790 * address without link-id information. Then the source
791 * address is ::1, and the destination address is the
792 * link-local address with its s6_addr16[1] being zero.
793 * What is worse, if the packet goes to the loopback interface
794 * by a default rejected route, the null pointer would be
795 * passed to looutput, and the kernel would hang.
796 * The following last resort would prevent such disaster.
797 */
798 if (origifp == NULL)
799 origifp = ifp;
800 }
801 else
802 origifp = ifp;
803 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
804 ip6->ip6_src.s6_addr16[1] = 0;
805 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
806 ip6->ip6_dst.s6_addr16[1] = 0;
807
808 /*
809 * If the outgoing packet contains a hop-by-hop options header,
810 * it must be examined and processed even by the source node.
811 * (RFC 2460, section 4.)
812 */
813 if (exthdrs.ip6e_hbh) {
814 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
815 u_int32_t dummy1; /* XXX unused */
816 u_int32_t dummy2; /* XXX unused */
817
818 /*
819 * XXX: if we have to send an ICMPv6 error to the sender,
820 * we need the M_LOOP flag since icmp6_error() expects
821 * the IPv6 and the hop-by-hop options header are
822 * continuous unless the flag is set.
823 */
824 m->m_flags |= M_LOOP;
825 m->m_pkthdr.rcvif = ifp;
826 if (ip6_process_hopopts(m,
827 (u_int8_t *)(hbh + 1),
828 ((hbh->ip6h_len + 1) << 3) -
829 sizeof(struct ip6_hbh),
830 &dummy1, &dummy2) < 0) {
831 /* m was already freed at this point */
832 error = EINVAL;/* better error? */
833 goto done;
834 }
835 m->m_flags &= ~M_LOOP; /* XXX */
836 m->m_pkthdr.rcvif = NULL;
837 }
838
839 #ifdef PFIL_HOOKS
840 /*
841 * Run through list of hooks for output packets.
842 */
843 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp,
844 PFIL_OUT)) != 0)
845 goto done;
846 if (m == NULL)
847 goto done;
848 ip6 = mtod(m, struct ip6_hdr *);
849 #endif /* PFIL_HOOKS */
850 /*
851 * Send the packet to the outgoing interface.
852 * If necessary, do IPv6 fragmentation before sending.
853 */
854 tlen = m->m_pkthdr.len;
855 if (tlen <= mtu
856 #ifdef notyet
857 /*
858 * On any link that cannot convey a 1280-octet packet in one piece,
859 * link-specific fragmentation and reassembly must be provided at
860 * a layer below IPv6. [RFC 2460, sec.5]
861 * Thus if the interface has ability of link-level fragmentation,
862 * we can just send the packet even if the packet size is
863 * larger than the link's MTU.
864 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
865 */
866
867 || ifp->if_flags & IFF_FRAGMENTABLE
868 #endif
869 )
870 {
871 #ifdef IFA_STATS
872 struct in6_ifaddr *ia6;
873 ip6 = mtod(m, struct ip6_hdr *);
874 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
875 if (ia6) {
876 /* Record statistics for this interface address. */
877 ia6->ia_ifa.ifa_data.ifad_outbytes +=
878 m->m_pkthdr.len;
879 }
880 #endif
881 #ifdef IPSEC
882 /* clean ipsec history once it goes out of the node */
883 ipsec_delaux(m);
884 #endif
885 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
886 goto done;
887 } else if (mtu < IPV6_MMTU) {
888 /*
889 * note that path MTU is never less than IPV6_MMTU
890 * (see icmp6_input).
891 */
892 error = EMSGSIZE;
893 in6_ifstat_inc(ifp, ifs6_out_fragfail);
894 goto bad;
895 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
896 error = EMSGSIZE;
897 in6_ifstat_inc(ifp, ifs6_out_fragfail);
898 goto bad;
899 } else {
900 struct mbuf **mnext, *m_frgpart;
901 struct ip6_frag *ip6f;
902 u_int32_t id = htonl(ip6_id++);
903 u_char nextproto;
904
905 /*
906 * Too large for the destination or interface;
907 * fragment if possible.
908 * Must be able to put at least 8 bytes per fragment.
909 */
910 hlen = unfragpartlen;
911 if (mtu > IPV6_MAXPACKET)
912 mtu = IPV6_MAXPACKET;
913 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
914 if (len < 8) {
915 error = EMSGSIZE;
916 in6_ifstat_inc(ifp, ifs6_out_fragfail);
917 goto bad;
918 }
919
920 mnext = &m->m_nextpkt;
921
922 /*
923 * Change the next header field of the last header in the
924 * unfragmentable part.
925 */
926 if (exthdrs.ip6e_rthdr) {
927 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
928 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
929 } else if (exthdrs.ip6e_dest1) {
930 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
931 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
932 } else if (exthdrs.ip6e_hbh) {
933 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
934 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
935 } else {
936 nextproto = ip6->ip6_nxt;
937 ip6->ip6_nxt = IPPROTO_FRAGMENT;
938 }
939
940 /*
941 * Loop through length of segment after first fragment,
942 * make new header and copy data of each part and link onto
943 * chain.
944 */
945 m0 = m;
946 for (off = hlen; off < tlen; off += len) {
947 MGETHDR(m, M_DONTWAIT, MT_HEADER);
948 if (!m) {
949 error = ENOBUFS;
950 ip6stat.ip6s_odropped++;
951 goto sendorfree;
952 }
953 m->m_flags = m0->m_flags & M_COPYFLAGS;
954 *mnext = m;
955 mnext = &m->m_nextpkt;
956 m->m_data += max_linkhdr;
957 mhip6 = mtod(m, struct ip6_hdr *);
958 *mhip6 = *ip6;
959 m->m_len = sizeof(*mhip6);
960 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
961 if (error) {
962 ip6stat.ip6s_odropped++;
963 goto sendorfree;
964 }
965 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
966 if (off + len >= tlen)
967 len = tlen - off;
968 else
969 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
970 mhip6->ip6_plen = htons((u_short)(len + hlen +
971 sizeof(*ip6f) -
972 sizeof(struct ip6_hdr)));
973 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
974 error = ENOBUFS;
975 ip6stat.ip6s_odropped++;
976 goto sendorfree;
977 }
978 m_cat(m, m_frgpart);
979 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
980 m->m_pkthdr.rcvif = (struct ifnet *)0;
981 ip6f->ip6f_reserved = 0;
982 ip6f->ip6f_ident = id;
983 ip6f->ip6f_nxt = nextproto;
984 ip6stat.ip6s_ofragments++;
985 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
986 }
987
988 in6_ifstat_inc(ifp, ifs6_out_fragok);
989 }
990
991 /*
992 * Remove leading garbages.
993 */
994 sendorfree:
995 m = m0->m_nextpkt;
996 m0->m_nextpkt = 0;
997 m_freem(m0);
998 for (m0 = m; m; m = m0) {
999 m0 = m->m_nextpkt;
1000 m->m_nextpkt = 0;
1001 if (error == 0) {
1002 #ifdef IFA_STATS
1003 struct in6_ifaddr *ia6;
1004 ip6 = mtod(m, struct ip6_hdr *);
1005 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1006 if (ia6) {
1007 /*
1008 * Record statistics for this interface
1009 * address.
1010 */
1011 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1012 m->m_pkthdr.len;
1013 }
1014 #endif
1015 #ifdef IPSEC
1016 /* clean ipsec history once it goes out of the node */
1017 ipsec_delaux(m);
1018 #endif
1019 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1020 } else
1021 m_freem(m);
1022 }
1023
1024 if (error == 0)
1025 ip6stat.ip6s_fragmented++;
1026
1027 done:
1028 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1029 RTFREE(ro->ro_rt);
1030 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1031 RTFREE(ro_pmtu->ro_rt);
1032 }
1033
1034 #ifdef IPSEC
1035 if (sp != NULL)
1036 key_freesp(sp);
1037 #endif /* IPSEC */
1038
1039 return(error);
1040
1041 freehdrs:
1042 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1043 m_freem(exthdrs.ip6e_dest1);
1044 m_freem(exthdrs.ip6e_rthdr);
1045 m_freem(exthdrs.ip6e_dest2);
1046 /* fall through */
1047 bad:
1048 m_freem(m);
1049 goto done;
1050 }
1051
1052 static int
1053 ip6_copyexthdr(mp, hdr, hlen)
1054 struct mbuf **mp;
1055 caddr_t hdr;
1056 int hlen;
1057 {
1058 struct mbuf *m;
1059
1060 if (hlen > MCLBYTES)
1061 return(ENOBUFS); /* XXX */
1062
1063 MGET(m, M_DONTWAIT, MT_DATA);
1064 if (!m)
1065 return(ENOBUFS);
1066
1067 if (hlen > MLEN) {
1068 MCLGET(m, M_DONTWAIT);
1069 if ((m->m_flags & M_EXT) == 0) {
1070 m_free(m);
1071 return(ENOBUFS);
1072 }
1073 }
1074 m->m_len = hlen;
1075 if (hdr)
1076 bcopy(hdr, mtod(m, caddr_t), hlen);
1077
1078 *mp = m;
1079 return(0);
1080 }
1081
1082 /*
1083 * Insert jumbo payload option.
1084 */
1085 static int
1086 ip6_insert_jumboopt(exthdrs, plen)
1087 struct ip6_exthdrs *exthdrs;
1088 u_int32_t plen;
1089 {
1090 struct mbuf *mopt;
1091 u_char *optbuf;
1092 u_int32_t v;
1093
1094 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1095
1096 /*
1097 * If there is no hop-by-hop options header, allocate new one.
1098 * If there is one but it doesn't have enough space to store the
1099 * jumbo payload option, allocate a cluster to store the whole options.
1100 * Otherwise, use it to store the options.
1101 */
1102 if (exthdrs->ip6e_hbh == 0) {
1103 MGET(mopt, M_DONTWAIT, MT_DATA);
1104 if (mopt == 0)
1105 return(ENOBUFS);
1106 mopt->m_len = JUMBOOPTLEN;
1107 optbuf = mtod(mopt, u_char *);
1108 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1109 exthdrs->ip6e_hbh = mopt;
1110 } else {
1111 struct ip6_hbh *hbh;
1112
1113 mopt = exthdrs->ip6e_hbh;
1114 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1115 /*
1116 * XXX assumption:
1117 * - exthdrs->ip6e_hbh is not referenced from places
1118 * other than exthdrs.
1119 * - exthdrs->ip6e_hbh is not an mbuf chain.
1120 */
1121 int oldoptlen = mopt->m_len;
1122 struct mbuf *n;
1123
1124 /*
1125 * XXX: give up if the whole (new) hbh header does
1126 * not fit even in an mbuf cluster.
1127 */
1128 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1129 return(ENOBUFS);
1130
1131 /*
1132 * As a consequence, we must always prepare a cluster
1133 * at this point.
1134 */
1135 MGET(n, M_DONTWAIT, MT_DATA);
1136 if (n) {
1137 MCLGET(n, M_DONTWAIT);
1138 if ((n->m_flags & M_EXT) == 0) {
1139 m_freem(n);
1140 n = NULL;
1141 }
1142 }
1143 if (!n)
1144 return(ENOBUFS);
1145 n->m_len = oldoptlen + JUMBOOPTLEN;
1146 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1147 oldoptlen);
1148 optbuf = mtod(n, caddr_t) + oldoptlen;
1149 m_freem(mopt);
1150 mopt = exthdrs->ip6e_hbh = n;
1151 } else {
1152 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1153 mopt->m_len += JUMBOOPTLEN;
1154 }
1155 optbuf[0] = IP6OPT_PADN;
1156 optbuf[1] = 0;
1157
1158 /*
1159 * Adjust the header length according to the pad and
1160 * the jumbo payload option.
1161 */
1162 hbh = mtod(mopt, struct ip6_hbh *);
1163 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1164 }
1165
1166 /* fill in the option. */
1167 optbuf[2] = IP6OPT_JUMBO;
1168 optbuf[3] = 4;
1169 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1170 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1171
1172 /* finally, adjust the packet header length */
1173 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1174
1175 return(0);
1176 #undef JUMBOOPTLEN
1177 }
1178
1179 /*
1180 * Insert fragment header and copy unfragmentable header portions.
1181 */
1182 static int
1183 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1184 struct mbuf *m0, *m;
1185 int hlen;
1186 struct ip6_frag **frghdrp;
1187 {
1188 struct mbuf *n, *mlast;
1189
1190 if (hlen > sizeof(struct ip6_hdr)) {
1191 n = m_copym(m0, sizeof(struct ip6_hdr),
1192 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1193 if (n == 0)
1194 return(ENOBUFS);
1195 m->m_next = n;
1196 } else
1197 n = m;
1198
1199 /* Search for the last mbuf of unfragmentable part. */
1200 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1201 ;
1202
1203 if ((mlast->m_flags & M_EXT) == 0 &&
1204 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1205 /* use the trailing space of the last mbuf for the fragment hdr */
1206 *frghdrp =
1207 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1208 mlast->m_len += sizeof(struct ip6_frag);
1209 m->m_pkthdr.len += sizeof(struct ip6_frag);
1210 } else {
1211 /* allocate a new mbuf for the fragment header */
1212 struct mbuf *mfrg;
1213
1214 MGET(mfrg, M_DONTWAIT, MT_DATA);
1215 if (mfrg == 0)
1216 return(ENOBUFS);
1217 mfrg->m_len = sizeof(struct ip6_frag);
1218 *frghdrp = mtod(mfrg, struct ip6_frag *);
1219 mlast->m_next = mfrg;
1220 }
1221
1222 return(0);
1223 }
1224
1225 /*
1226 * IP6 socket option processing.
1227 */
1228 int
1229 ip6_ctloutput(op, so, level, optname, mp)
1230 int op;
1231 struct socket *so;
1232 int level, optname;
1233 struct mbuf **mp;
1234 {
1235 struct in6pcb *in6p = sotoin6pcb(so);
1236 struct mbuf *m = *mp;
1237 int optval = 0;
1238 int error = 0;
1239 struct proc *p = curproc; /* XXX */
1240
1241 if (level == IPPROTO_IPV6) {
1242 switch (op) {
1243
1244 case PRCO_SETOPT:
1245 switch (optname) {
1246 case IPV6_PKTOPTIONS:
1247 /* m is freed in ip6_pcbopts */
1248 return(ip6_pcbopts(&in6p->in6p_outputopts,
1249 m, so));
1250 case IPV6_HOPOPTS:
1251 case IPV6_DSTOPTS:
1252 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1253 error = EPERM;
1254 break;
1255 }
1256 /* fall through */
1257 case IPV6_UNICAST_HOPS:
1258 case IPV6_RECVOPTS:
1259 case IPV6_RECVRETOPTS:
1260 case IPV6_RECVDSTADDR:
1261 case IPV6_PKTINFO:
1262 case IPV6_HOPLIMIT:
1263 case IPV6_RTHDR:
1264 case IPV6_FAITH:
1265 case IPV6_V6ONLY:
1266 if (!m || m->m_len != sizeof(int)) {
1267 error = EINVAL;
1268 break;
1269 }
1270 optval = *mtod(m, int *);
1271 switch (optname) {
1272
1273 case IPV6_UNICAST_HOPS:
1274 if (optval < -1 || optval >= 256)
1275 error = EINVAL;
1276 else {
1277 /* -1 = kernel default */
1278 in6p->in6p_hops = optval;
1279 }
1280 break;
1281 #define OPTSET(bit) \
1282 if (optval) \
1283 in6p->in6p_flags |= bit; \
1284 else \
1285 in6p->in6p_flags &= ~bit;
1286
1287 case IPV6_RECVOPTS:
1288 OPTSET(IN6P_RECVOPTS);
1289 break;
1290
1291 case IPV6_RECVRETOPTS:
1292 OPTSET(IN6P_RECVRETOPTS);
1293 break;
1294
1295 case IPV6_RECVDSTADDR:
1296 OPTSET(IN6P_RECVDSTADDR);
1297 break;
1298
1299 case IPV6_PKTINFO:
1300 OPTSET(IN6P_PKTINFO);
1301 break;
1302
1303 case IPV6_HOPLIMIT:
1304 OPTSET(IN6P_HOPLIMIT);
1305 break;
1306
1307 case IPV6_HOPOPTS:
1308 OPTSET(IN6P_HOPOPTS);
1309 break;
1310
1311 case IPV6_DSTOPTS:
1312 OPTSET(IN6P_DSTOPTS);
1313 break;
1314
1315 case IPV6_RTHDR:
1316 OPTSET(IN6P_RTHDR);
1317 break;
1318
1319 case IPV6_FAITH:
1320 OPTSET(IN6P_FAITH);
1321 break;
1322
1323 case IPV6_V6ONLY:
1324 /*
1325 * make setsockopt(IPV6_V6ONLY)
1326 * available only prior to bind(2).
1327 * see ipng mailing list, Jun 22 2001.
1328 */
1329 if (in6p->in6p_lport ||
1330 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr))
1331 {
1332 error = EINVAL;
1333 break;
1334 }
1335 #ifdef INET6_BINDV6ONLY
1336 if (!optval)
1337 error = EINVAL;
1338 #else
1339 OPTSET(IN6P_IPV6_V6ONLY);
1340 #endif
1341 break;
1342 }
1343 break;
1344 #undef OPTSET
1345
1346 case IPV6_MULTICAST_IF:
1347 case IPV6_MULTICAST_HOPS:
1348 case IPV6_MULTICAST_LOOP:
1349 case IPV6_JOIN_GROUP:
1350 case IPV6_LEAVE_GROUP:
1351 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m);
1352 break;
1353
1354 case IPV6_PORTRANGE:
1355 optval = *mtod(m, int *);
1356
1357 switch (optval) {
1358 case IPV6_PORTRANGE_DEFAULT:
1359 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1360 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1361 break;
1362
1363 case IPV6_PORTRANGE_HIGH:
1364 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1365 in6p->in6p_flags |= IN6P_HIGHPORT;
1366 break;
1367
1368 case IPV6_PORTRANGE_LOW:
1369 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1370 in6p->in6p_flags |= IN6P_LOWPORT;
1371 break;
1372
1373 default:
1374 error = EINVAL;
1375 break;
1376 }
1377 break;
1378
1379 #ifdef IPSEC
1380 case IPV6_IPSEC_POLICY:
1381 {
1382 caddr_t req = NULL;
1383 size_t len = 0;
1384
1385 int priv = 0;
1386 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1387 priv = 0;
1388 else
1389 priv = 1;
1390 if (m) {
1391 req = mtod(m, caddr_t);
1392 len = m->m_len;
1393 }
1394 error = ipsec6_set_policy(in6p,
1395 optname, req, len, priv);
1396 }
1397 break;
1398 #endif /* IPSEC */
1399
1400 default:
1401 error = ENOPROTOOPT;
1402 break;
1403 }
1404 if (m)
1405 (void)m_free(m);
1406 break;
1407
1408 case PRCO_GETOPT:
1409 switch (optname) {
1410
1411 case IPV6_OPTIONS:
1412 case IPV6_RETOPTS:
1413 #if 0
1414 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1415 if (in6p->in6p_options) {
1416 m->m_len = in6p->in6p_options->m_len;
1417 bcopy(mtod(in6p->in6p_options, caddr_t),
1418 mtod(m, caddr_t),
1419 (unsigned)m->m_len);
1420 } else
1421 m->m_len = 0;
1422 break;
1423 #else
1424 error = ENOPROTOOPT;
1425 break;
1426 #endif
1427
1428 case IPV6_PKTOPTIONS:
1429 if (in6p->in6p_options) {
1430 *mp = m_copym(in6p->in6p_options, 0,
1431 M_COPYALL, M_WAIT);
1432 } else {
1433 *mp = m_get(M_WAIT, MT_SOOPTS);
1434 (*mp)->m_len = 0;
1435 }
1436 break;
1437
1438 case IPV6_HOPOPTS:
1439 case IPV6_DSTOPTS:
1440 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1441 error = EPERM;
1442 break;
1443 }
1444 /* fall through */
1445 case IPV6_UNICAST_HOPS:
1446 case IPV6_RECVOPTS:
1447 case IPV6_RECVRETOPTS:
1448 case IPV6_RECVDSTADDR:
1449 case IPV6_PORTRANGE:
1450 case IPV6_PKTINFO:
1451 case IPV6_HOPLIMIT:
1452 case IPV6_RTHDR:
1453 case IPV6_FAITH:
1454 case IPV6_V6ONLY:
1455 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1456 m->m_len = sizeof(int);
1457 switch (optname) {
1458
1459 case IPV6_UNICAST_HOPS:
1460 optval = in6p->in6p_hops;
1461 break;
1462
1463 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1464
1465 case IPV6_RECVOPTS:
1466 optval = OPTBIT(IN6P_RECVOPTS);
1467 break;
1468
1469 case IPV6_RECVRETOPTS:
1470 optval = OPTBIT(IN6P_RECVRETOPTS);
1471 break;
1472
1473 case IPV6_RECVDSTADDR:
1474 optval = OPTBIT(IN6P_RECVDSTADDR);
1475 break;
1476
1477 case IPV6_PORTRANGE:
1478 {
1479 int flags;
1480 flags = in6p->in6p_flags;
1481 if (flags & IN6P_HIGHPORT)
1482 optval = IPV6_PORTRANGE_HIGH;
1483 else if (flags & IN6P_LOWPORT)
1484 optval = IPV6_PORTRANGE_LOW;
1485 else
1486 optval = 0;
1487 break;
1488 }
1489
1490 case IPV6_PKTINFO:
1491 optval = OPTBIT(IN6P_PKTINFO);
1492 break;
1493
1494 case IPV6_HOPLIMIT:
1495 optval = OPTBIT(IN6P_HOPLIMIT);
1496 break;
1497
1498 case IPV6_HOPOPTS:
1499 optval = OPTBIT(IN6P_HOPOPTS);
1500 break;
1501
1502 case IPV6_DSTOPTS:
1503 optval = OPTBIT(IN6P_DSTOPTS);
1504 break;
1505
1506 case IPV6_RTHDR:
1507 optval = OPTBIT(IN6P_RTHDR);
1508 break;
1509
1510 case IPV6_FAITH:
1511 optval = OPTBIT(IN6P_FAITH);
1512 break;
1513
1514 case IPV6_V6ONLY:
1515 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1516 break;
1517 }
1518 *mtod(m, int *) = optval;
1519 break;
1520
1521 case IPV6_MULTICAST_IF:
1522 case IPV6_MULTICAST_HOPS:
1523 case IPV6_MULTICAST_LOOP:
1524 case IPV6_JOIN_GROUP:
1525 case IPV6_LEAVE_GROUP:
1526 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1527 break;
1528
1529 #ifdef IPSEC
1530 case IPV6_IPSEC_POLICY:
1531 {
1532 caddr_t req = NULL;
1533 size_t len = 0;
1534
1535 if (m) {
1536 req = mtod(m, caddr_t);
1537 len = m->m_len;
1538 }
1539 error = ipsec6_get_policy(in6p, req, len, mp);
1540 break;
1541 }
1542 #endif /* IPSEC */
1543
1544 default:
1545 error = ENOPROTOOPT;
1546 break;
1547 }
1548 break;
1549 }
1550 } else {
1551 error = EINVAL;
1552 if (op == PRCO_SETOPT && *mp)
1553 (void)m_free(*mp);
1554 }
1555 return(error);
1556 }
1557
1558 /*
1559 * Set up IP6 options in pcb for insertion in output packets.
1560 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1561 * with destination address if source routed.
1562 */
1563 static int
1564 ip6_pcbopts(pktopt, m, so)
1565 struct ip6_pktopts **pktopt;
1566 struct mbuf *m;
1567 struct socket *so;
1568 {
1569 struct ip6_pktopts *opt = *pktopt;
1570 int error = 0;
1571 struct proc *p = curproc; /* XXX */
1572 int priv = 0;
1573
1574 /* turn off any old options. */
1575 if (opt) {
1576 if (opt->ip6po_m)
1577 (void)m_free(opt->ip6po_m);
1578 } else
1579 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1580 *pktopt = 0;
1581
1582 if (!m || m->m_len == 0) {
1583 /*
1584 * Only turning off any previous options.
1585 */
1586 if (opt)
1587 free(opt, M_IP6OPT);
1588 if (m)
1589 (void)m_free(m);
1590 return(0);
1591 }
1592
1593 /* set options specified by user. */
1594 if (p && !suser(p->p_ucred, &p->p_acflag))
1595 priv = 1;
1596 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1597 (void)m_free(m);
1598 return(error);
1599 }
1600 *pktopt = opt;
1601 return(0);
1602 }
1603
1604 /*
1605 * Set the IP6 multicast options in response to user setsockopt().
1606 */
1607 static int
1608 ip6_setmoptions(optname, im6op, m)
1609 int optname;
1610 struct ip6_moptions **im6op;
1611 struct mbuf *m;
1612 {
1613 int error = 0;
1614 u_int loop, ifindex;
1615 struct ipv6_mreq *mreq;
1616 struct ifnet *ifp;
1617 struct ip6_moptions *im6o = *im6op;
1618 struct route_in6 ro;
1619 struct sockaddr_in6 *dst;
1620 struct in6_multi_mship *imm;
1621 struct proc *p = curproc; /* XXX */
1622
1623 if (im6o == NULL) {
1624 /*
1625 * No multicast option buffer attached to the pcb;
1626 * allocate one and initialize to default values.
1627 */
1628 im6o = (struct ip6_moptions *)
1629 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1630
1631 if (im6o == NULL)
1632 return(ENOBUFS);
1633 *im6op = im6o;
1634 im6o->im6o_multicast_ifp = NULL;
1635 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1636 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1637 LIST_INIT(&im6o->im6o_memberships);
1638 }
1639
1640 switch (optname) {
1641
1642 case IPV6_MULTICAST_IF:
1643 /*
1644 * Select the interface for outgoing multicast packets.
1645 */
1646 if (m == NULL || m->m_len != sizeof(u_int)) {
1647 error = EINVAL;
1648 break;
1649 }
1650 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1651 if (ifindex < 0 || if_index < ifindex) {
1652 error = ENXIO; /* XXX EINVAL? */
1653 break;
1654 }
1655 ifp = ifindex2ifnet[ifindex];
1656 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1657 error = EADDRNOTAVAIL;
1658 break;
1659 }
1660 im6o->im6o_multicast_ifp = ifp;
1661 break;
1662
1663 case IPV6_MULTICAST_HOPS:
1664 {
1665 /*
1666 * Set the IP6 hoplimit for outgoing multicast packets.
1667 */
1668 int optval;
1669 if (m == NULL || m->m_len != sizeof(int)) {
1670 error = EINVAL;
1671 break;
1672 }
1673 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1674 if (optval < -1 || optval >= 256)
1675 error = EINVAL;
1676 else if (optval == -1)
1677 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1678 else
1679 im6o->im6o_multicast_hlim = optval;
1680 break;
1681 }
1682
1683 case IPV6_MULTICAST_LOOP:
1684 /*
1685 * Set the loopback flag for outgoing multicast packets.
1686 * Must be zero or one.
1687 */
1688 if (m == NULL || m->m_len != sizeof(u_int)) {
1689 error = EINVAL;
1690 break;
1691 }
1692 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1693 if (loop > 1) {
1694 error = EINVAL;
1695 break;
1696 }
1697 im6o->im6o_multicast_loop = loop;
1698 break;
1699
1700 case IPV6_JOIN_GROUP:
1701 /*
1702 * Add a multicast group membership.
1703 * Group must be a valid IP6 multicast address.
1704 */
1705 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1706 error = EINVAL;
1707 break;
1708 }
1709 mreq = mtod(m, struct ipv6_mreq *);
1710 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1711 /*
1712 * We use the unspecified address to specify to accept
1713 * all multicast addresses. Only super user is allowed
1714 * to do this.
1715 */
1716 if (suser(p->p_ucred, &p->p_acflag))
1717 {
1718 error = EACCES;
1719 break;
1720 }
1721 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1722 error = EINVAL;
1723 break;
1724 }
1725
1726 /*
1727 * If the interface is specified, validate it.
1728 */
1729 if (mreq->ipv6mr_interface < 0
1730 || if_index < mreq->ipv6mr_interface) {
1731 error = ENXIO; /* XXX EINVAL? */
1732 break;
1733 }
1734 /*
1735 * If no interface was explicitly specified, choose an
1736 * appropriate one according to the given multicast address.
1737 */
1738 if (mreq->ipv6mr_interface == 0) {
1739 /*
1740 * If the multicast address is in node-local scope,
1741 * the interface should be a loopback interface.
1742 * Otherwise, look up the routing table for the
1743 * address, and choose the outgoing interface.
1744 * XXX: is it a good approach?
1745 */
1746 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1747 ifp = &loif[0];
1748 } else {
1749 ro.ro_rt = NULL;
1750 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1751 bzero(dst, sizeof(*dst));
1752 dst->sin6_len = sizeof(struct sockaddr_in6);
1753 dst->sin6_family = AF_INET6;
1754 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1755 rtalloc((struct route *)&ro);
1756 if (ro.ro_rt == NULL) {
1757 error = EADDRNOTAVAIL;
1758 break;
1759 }
1760 ifp = ro.ro_rt->rt_ifp;
1761 rtfree(ro.ro_rt);
1762 }
1763 } else
1764 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1765
1766 /*
1767 * See if we found an interface, and confirm that it
1768 * supports multicast
1769 */
1770 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1771 error = EADDRNOTAVAIL;
1772 break;
1773 }
1774 /*
1775 * Put interface index into the multicast address,
1776 * if the address has link-local scope.
1777 */
1778 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1779 mreq->ipv6mr_multiaddr.s6_addr16[1]
1780 = htons(mreq->ipv6mr_interface);
1781 }
1782 /*
1783 * See if the membership already exists.
1784 */
1785 for (imm = im6o->im6o_memberships.lh_first;
1786 imm != NULL; imm = imm->i6mm_chain.le_next)
1787 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1788 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1789 &mreq->ipv6mr_multiaddr))
1790 break;
1791 if (imm != NULL) {
1792 error = EADDRINUSE;
1793 break;
1794 }
1795 /*
1796 * Everything looks good; add a new record to the multicast
1797 * address list for the given interface.
1798 */
1799 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error);
1800 if (!imm)
1801 break;
1802 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1803 break;
1804
1805 case IPV6_LEAVE_GROUP:
1806 /*
1807 * Drop a multicast group membership.
1808 * Group must be a valid IP6 multicast address.
1809 */
1810 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1811 error = EINVAL;
1812 break;
1813 }
1814 mreq = mtod(m, struct ipv6_mreq *);
1815 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1816 if (suser(p->p_ucred, &p->p_acflag))
1817 {
1818 error = EACCES;
1819 break;
1820 }
1821 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1822 error = EINVAL;
1823 break;
1824 }
1825 /*
1826 * If an interface address was specified, get a pointer
1827 * to its ifnet structure.
1828 */
1829 if (mreq->ipv6mr_interface < 0
1830 || if_index < mreq->ipv6mr_interface) {
1831 error = ENXIO; /* XXX EINVAL? */
1832 break;
1833 }
1834 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1835 /*
1836 * Put interface index into the multicast address,
1837 * if the address has link-local scope.
1838 */
1839 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1840 mreq->ipv6mr_multiaddr.s6_addr16[1]
1841 = htons(mreq->ipv6mr_interface);
1842 }
1843 /*
1844 * Find the membership in the membership list.
1845 */
1846 for (imm = im6o->im6o_memberships.lh_first;
1847 imm != NULL; imm = imm->i6mm_chain.le_next) {
1848 if ((ifp == NULL ||
1849 imm->i6mm_maddr->in6m_ifp == ifp) &&
1850 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1851 &mreq->ipv6mr_multiaddr))
1852 break;
1853 }
1854 if (imm == NULL) {
1855 /* Unable to resolve interface */
1856 error = EADDRNOTAVAIL;
1857 break;
1858 }
1859 /*
1860 * Give up the multicast address record to which the
1861 * membership points.
1862 */
1863 LIST_REMOVE(imm, i6mm_chain);
1864 in6_leavegroup(imm);
1865 break;
1866
1867 default:
1868 error = EOPNOTSUPP;
1869 break;
1870 }
1871
1872 /*
1873 * If all options have default values, no need to keep the mbuf.
1874 */
1875 if (im6o->im6o_multicast_ifp == NULL &&
1876 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1877 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1878 im6o->im6o_memberships.lh_first == NULL) {
1879 free(*im6op, M_IPMOPTS);
1880 *im6op = NULL;
1881 }
1882
1883 return(error);
1884 }
1885
1886 /*
1887 * Return the IP6 multicast options in response to user getsockopt().
1888 */
1889 static int
1890 ip6_getmoptions(optname, im6o, mp)
1891 int optname;
1892 struct ip6_moptions *im6o;
1893 struct mbuf **mp;
1894 {
1895 u_int *hlim, *loop, *ifindex;
1896
1897 *mp = m_get(M_WAIT, MT_SOOPTS);
1898
1899 switch (optname) {
1900
1901 case IPV6_MULTICAST_IF:
1902 ifindex = mtod(*mp, u_int *);
1903 (*mp)->m_len = sizeof(u_int);
1904 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1905 *ifindex = 0;
1906 else
1907 *ifindex = im6o->im6o_multicast_ifp->if_index;
1908 return(0);
1909
1910 case IPV6_MULTICAST_HOPS:
1911 hlim = mtod(*mp, u_int *);
1912 (*mp)->m_len = sizeof(u_int);
1913 if (im6o == NULL)
1914 *hlim = ip6_defmcasthlim;
1915 else
1916 *hlim = im6o->im6o_multicast_hlim;
1917 return(0);
1918
1919 case IPV6_MULTICAST_LOOP:
1920 loop = mtod(*mp, u_int *);
1921 (*mp)->m_len = sizeof(u_int);
1922 if (im6o == NULL)
1923 *loop = ip6_defmcasthlim;
1924 else
1925 *loop = im6o->im6o_multicast_loop;
1926 return(0);
1927
1928 default:
1929 return(EOPNOTSUPP);
1930 }
1931 }
1932
1933 /*
1934 * Discard the IP6 multicast options.
1935 */
1936 void
1937 ip6_freemoptions(im6o)
1938 struct ip6_moptions *im6o;
1939 {
1940 struct in6_multi_mship *imm;
1941
1942 if (im6o == NULL)
1943 return;
1944
1945 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
1946 LIST_REMOVE(imm, i6mm_chain);
1947 in6_leavegroup(imm);
1948 }
1949 free(im6o, M_IPMOPTS);
1950 }
1951
1952 /*
1953 * Set IPv6 outgoing packet options based on advanced API.
1954 */
1955 int
1956 ip6_setpktoptions(control, opt, priv)
1957 struct mbuf *control;
1958 struct ip6_pktopts *opt;
1959 int priv;
1960 {
1961 struct cmsghdr *cm = 0;
1962
1963 if (control == 0 || opt == 0)
1964 return(EINVAL);
1965
1966 bzero(opt, sizeof(*opt));
1967 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
1968
1969 /*
1970 * XXX: Currently, we assume all the optional information is stored
1971 * in a single mbuf.
1972 */
1973 if (control->m_next)
1974 return(EINVAL);
1975
1976 opt->ip6po_m = control;
1977
1978 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
1979 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1980 cm = mtod(control, struct cmsghdr *);
1981 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
1982 return(EINVAL);
1983 if (cm->cmsg_level != IPPROTO_IPV6)
1984 continue;
1985
1986 switch (cm->cmsg_type) {
1987 case IPV6_PKTINFO:
1988 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
1989 return(EINVAL);
1990 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1991 if (opt->ip6po_pktinfo->ipi6_ifindex &&
1992 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
1993 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
1994 htons(opt->ip6po_pktinfo->ipi6_ifindex);
1995
1996 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
1997 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
1998 return(ENXIO);
1999 }
2000
2001 /*
2002 * Check if the requested source address is indeed a
2003 * unicast address assigned to the node, and can be
2004 * used as the packet's source address.
2005 */
2006 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2007 struct ifaddr *ia;
2008 struct in6_ifaddr *ia6;
2009 struct sockaddr_in6 sin6;
2010
2011 bzero(&sin6, sizeof(sin6));
2012 sin6.sin6_len = sizeof(sin6);
2013 sin6.sin6_family = AF_INET6;
2014 sin6.sin6_addr =
2015 opt->ip6po_pktinfo->ipi6_addr;
2016 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2017 if (ia == NULL ||
2018 (opt->ip6po_pktinfo->ipi6_ifindex &&
2019 (ia->ifa_ifp->if_index !=
2020 opt->ip6po_pktinfo->ipi6_ifindex))) {
2021 return(EADDRNOTAVAIL);
2022 }
2023 ia6 = (struct in6_ifaddr *)ia;
2024 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
2025 return(EADDRNOTAVAIL);
2026 }
2027
2028 /*
2029 * Check if the requested source address is
2030 * indeed a unicast address assigned to the
2031 * node.
2032 */
2033 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2034 return(EADDRNOTAVAIL);
2035 }
2036 break;
2037
2038 case IPV6_HOPLIMIT:
2039 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2040 return(EINVAL);
2041
2042 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim,
2043 sizeof(opt->ip6po_hlim));
2044 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2045 return(EINVAL);
2046 break;
2047
2048 case IPV6_NEXTHOP:
2049 if (!priv)
2050 return(EPERM);
2051
2052 if (cm->cmsg_len < sizeof(u_char) ||
2053 /* check if cmsg_len is large enough for sa_len */
2054 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2055 return(EINVAL);
2056
2057 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2058
2059 break;
2060
2061 case IPV6_HOPOPTS:
2062 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2063 return(EINVAL);
2064 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2065 if (cm->cmsg_len !=
2066 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
2067 return(EINVAL);
2068 break;
2069
2070 case IPV6_DSTOPTS:
2071 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2072 return(EINVAL);
2073
2074 /*
2075 * If there is no routing header yet, the destination
2076 * options header should be put on the 1st part.
2077 * Otherwise, the header should be on the 2nd part.
2078 * (See RFC 2460, section 4.1)
2079 */
2080 if (opt->ip6po_rthdr == NULL) {
2081 opt->ip6po_dest1 =
2082 (struct ip6_dest *)CMSG_DATA(cm);
2083 if (cm->cmsg_len !=
2084 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
2085 << 3))
2086 return(EINVAL);
2087 }
2088 else {
2089 opt->ip6po_dest2 =
2090 (struct ip6_dest *)CMSG_DATA(cm);
2091 if (cm->cmsg_len !=
2092 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
2093 << 3))
2094 return(EINVAL);
2095 }
2096 break;
2097
2098 case IPV6_RTHDR:
2099 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2100 return(EINVAL);
2101 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
2102 if (cm->cmsg_len !=
2103 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
2104 return(EINVAL);
2105 switch (opt->ip6po_rthdr->ip6r_type) {
2106 case IPV6_RTHDR_TYPE_0:
2107 if (opt->ip6po_rthdr->ip6r_segleft == 0)
2108 return(EINVAL);
2109 break;
2110 default:
2111 return(EINVAL);
2112 }
2113 break;
2114
2115 default:
2116 return(ENOPROTOOPT);
2117 }
2118 }
2119
2120 return(0);
2121 }
2122
2123 /*
2124 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2125 * packet to the input queue of a specified interface. Note that this
2126 * calls the output routine of the loopback "driver", but with an interface
2127 * pointer that might NOT be &loif -- easier than replicating that code here.
2128 */
2129 void
2130 ip6_mloopback(ifp, m, dst)
2131 struct ifnet *ifp;
2132 struct mbuf *m;
2133 struct sockaddr_in6 *dst;
2134 {
2135 struct mbuf *copym;
2136 struct ip6_hdr *ip6;
2137
2138 copym = m_copy(m, 0, M_COPYALL);
2139 if (copym == NULL)
2140 return;
2141
2142 /*
2143 * Make sure to deep-copy IPv6 header portion in case the data
2144 * is in an mbuf cluster, so that we can safely override the IPv6
2145 * header portion later.
2146 */
2147 if ((copym->m_flags & M_EXT) != 0 ||
2148 copym->m_len < sizeof(struct ip6_hdr)) {
2149 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2150 if (copym == NULL)
2151 return;
2152 }
2153
2154 #ifdef DIAGNOSTIC
2155 if (copym->m_len < sizeof(*ip6)) {
2156 m_freem(copym);
2157 return;
2158 }
2159 #endif
2160
2161 ip6 = mtod(copym, struct ip6_hdr *);
2162 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2163 ip6->ip6_src.s6_addr16[1] = 0;
2164 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2165 ip6->ip6_dst.s6_addr16[1] = 0;
2166
2167 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2168 }
2169
2170 /*
2171 * Chop IPv6 header off from the payload.
2172 */
2173 static int
2174 ip6_splithdr(m, exthdrs)
2175 struct mbuf *m;
2176 struct ip6_exthdrs *exthdrs;
2177 {
2178 struct mbuf *mh;
2179 struct ip6_hdr *ip6;
2180
2181 ip6 = mtod(m, struct ip6_hdr *);
2182 if (m->m_len > sizeof(*ip6)) {
2183 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2184 if (mh == 0) {
2185 m_freem(m);
2186 return ENOBUFS;
2187 }
2188 M_COPY_PKTHDR(mh, m);
2189 MH_ALIGN(mh, sizeof(*ip6));
2190 m->m_flags &= ~M_PKTHDR;
2191 m->m_len -= sizeof(*ip6);
2192 m->m_data += sizeof(*ip6);
2193 mh->m_next = m;
2194 m = mh;
2195 m->m_len = sizeof(*ip6);
2196 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2197 }
2198 exthdrs->ip6e_ip6 = m;
2199 return 0;
2200 }
2201
2202 /*
2203 * Compute IPv6 extension header length.
2204 */
2205 int
2206 ip6_optlen(in6p)
2207 struct in6pcb *in6p;
2208 {
2209 int len;
2210
2211 if (!in6p->in6p_outputopts)
2212 return 0;
2213
2214 len = 0;
2215 #define elen(x) \
2216 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2217
2218 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2219 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2220 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2221 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2222 return len;
2223 #undef elen
2224 }
2225