ip6_output.c revision 1.48 1 /* $NetBSD: ip6_output.c,v 1.48 2002/06/07 04:18:12 itojun Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.48 2002/06/07 04:18:12 itojun Exp $");
70
71 #include "opt_inet.h"
72 #include "opt_ipsec.h"
73 #include "opt_pfil_hooks.h"
74
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/errno.h>
79 #include <sys/protosw.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84
85 #include <net/if.h>
86 #include <net/route.h>
87 #ifdef PFIL_HOOKS
88 #include <net/pfil.h>
89 #endif
90
91 #include <netinet/in.h>
92 #include <netinet/in_var.h>
93 #include <netinet/ip6.h>
94 #include <netinet/icmp6.h>
95 #include <netinet6/ip6_var.h>
96 #include <netinet6/in6_pcb.h>
97 #include <netinet6/nd6.h>
98
99 #ifdef IPSEC
100 #include <netinet6/ipsec.h>
101 #include <netkey/key.h>
102 #endif /* IPSEC */
103
104 #include "loop.h"
105
106 #include <net/net_osdep.h>
107
108 #ifdef PFIL_HOOKS
109 extern struct pfil_head inet6_pfil_hook; /* XXX */
110 #endif
111
112 struct ip6_exthdrs {
113 struct mbuf *ip6e_ip6;
114 struct mbuf *ip6e_hbh;
115 struct mbuf *ip6e_dest1;
116 struct mbuf *ip6e_rthdr;
117 struct mbuf *ip6e_dest2;
118 };
119
120 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
121 struct socket *));
122 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
123 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
124 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
125 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
126 struct ip6_frag **));
127 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
128 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
129 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
130 struct ifnet *, struct in6_addr *, u_long *));
131
132 extern struct ifnet loif[NLOOP];
133
134 /*
135 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
136 * header (with pri, len, nxt, hlim, src, dst).
137 * This function may modify ver and hlim only.
138 * The mbuf chain containing the packet will be freed.
139 * The mbuf opt, if present, will not be freed.
140 */
141 int
142 ip6_output(m0, opt, ro, flags, im6o, ifpp)
143 struct mbuf *m0;
144 struct ip6_pktopts *opt;
145 struct route_in6 *ro;
146 int flags;
147 struct ip6_moptions *im6o;
148 struct ifnet **ifpp; /* XXX: just for statistics */
149 {
150 struct ip6_hdr *ip6, *mhip6;
151 struct ifnet *ifp, *origifp;
152 struct mbuf *m = m0;
153 int hlen, tlen, len, off;
154 struct route_in6 ip6route;
155 struct sockaddr_in6 *dst;
156 int error = 0;
157 struct in6_ifaddr *ia;
158 u_long mtu;
159 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
160 struct ip6_exthdrs exthdrs;
161 struct in6_addr finaldst;
162 struct route_in6 *ro_pmtu = NULL;
163 int hdrsplit = 0;
164 int needipsec = 0;
165 #ifdef IPSEC
166 int needipsectun = 0;
167 struct socket *so;
168 struct secpolicy *sp = NULL;
169
170 /* for AH processing. stupid to have "socket" variable in IP layer... */
171 so = ipsec_getsocket(m);
172 (void)ipsec_setsocket(m, NULL);
173 ip6 = mtod(m, struct ip6_hdr *);
174 #endif /* IPSEC */
175
176 #define MAKE_EXTHDR(hp, mp) \
177 do { \
178 if (hp) { \
179 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
180 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
181 ((eh)->ip6e_len + 1) << 3); \
182 if (error) \
183 goto freehdrs; \
184 } \
185 } while (0)
186
187 bzero(&exthdrs, sizeof(exthdrs));
188 if (opt) {
189 /* Hop-by-Hop options header */
190 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
191 /* Destination options header(1st part) */
192 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
193 /* Routing header */
194 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
195 /* Destination options header(2nd part) */
196 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
197 }
198
199 #ifdef IPSEC
200 /* get a security policy for this packet */
201 if (so == NULL)
202 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
203 else
204 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
205
206 if (sp == NULL) {
207 ipsec6stat.out_inval++;
208 goto freehdrs;
209 }
210
211 error = 0;
212
213 /* check policy */
214 switch (sp->policy) {
215 case IPSEC_POLICY_DISCARD:
216 /*
217 * This packet is just discarded.
218 */
219 ipsec6stat.out_polvio++;
220 goto freehdrs;
221
222 case IPSEC_POLICY_BYPASS:
223 case IPSEC_POLICY_NONE:
224 /* no need to do IPsec. */
225 needipsec = 0;
226 break;
227
228 case IPSEC_POLICY_IPSEC:
229 if (sp->req == NULL) {
230 /* XXX should be panic ? */
231 printf("ip6_output: No IPsec request specified.\n");
232 error = EINVAL;
233 goto freehdrs;
234 }
235 needipsec = 1;
236 break;
237
238 case IPSEC_POLICY_ENTRUST:
239 default:
240 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
241 }
242 #endif /* IPSEC */
243
244 /*
245 * Calculate the total length of the extension header chain.
246 * Keep the length of the unfragmentable part for fragmentation.
247 */
248 optlen = 0;
249 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
250 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
251 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
252 unfragpartlen = optlen + sizeof(struct ip6_hdr);
253 /* NOTE: we don't add AH/ESP length here. do that later. */
254 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
255
256 /*
257 * If we need IPsec, or there is at least one extension header,
258 * separate IP6 header from the payload.
259 */
260 if ((needipsec || optlen) && !hdrsplit) {
261 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
262 m = NULL;
263 goto freehdrs;
264 }
265 m = exthdrs.ip6e_ip6;
266 hdrsplit++;
267 }
268
269 /* adjust pointer */
270 ip6 = mtod(m, struct ip6_hdr *);
271
272 /* adjust mbuf packet header length */
273 m->m_pkthdr.len += optlen;
274 plen = m->m_pkthdr.len - sizeof(*ip6);
275
276 /* If this is a jumbo payload, insert a jumbo payload option. */
277 if (plen > IPV6_MAXPACKET) {
278 if (!hdrsplit) {
279 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
280 m = NULL;
281 goto freehdrs;
282 }
283 m = exthdrs.ip6e_ip6;
284 hdrsplit++;
285 }
286 /* adjust pointer */
287 ip6 = mtod(m, struct ip6_hdr *);
288 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
289 goto freehdrs;
290 ip6->ip6_plen = 0;
291 } else
292 ip6->ip6_plen = htons(plen);
293
294 /*
295 * Concatenate headers and fill in next header fields.
296 * Here we have, on "m"
297 * IPv6 payload
298 * and we insert headers accordingly. Finally, we should be getting:
299 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
300 *
301 * during the header composing process, "m" points to IPv6 header.
302 * "mprev" points to an extension header prior to esp.
303 */
304 {
305 u_char *nexthdrp = &ip6->ip6_nxt;
306 struct mbuf *mprev = m;
307
308 /*
309 * we treat dest2 specially. this makes IPsec processing
310 * much easier.
311 *
312 * result: IPv6 dest2 payload
313 * m and mprev will point to IPv6 header.
314 */
315 if (exthdrs.ip6e_dest2) {
316 if (!hdrsplit)
317 panic("assumption failed: hdr not split");
318 exthdrs.ip6e_dest2->m_next = m->m_next;
319 m->m_next = exthdrs.ip6e_dest2;
320 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
321 ip6->ip6_nxt = IPPROTO_DSTOPTS;
322 }
323
324 #define MAKE_CHAIN(m, mp, p, i)\
325 do {\
326 if (m) {\
327 if (!hdrsplit) \
328 panic("assumption failed: hdr not split"); \
329 *mtod((m), u_char *) = *(p);\
330 *(p) = (i);\
331 p = mtod((m), u_char *);\
332 (m)->m_next = (mp)->m_next;\
333 (mp)->m_next = (m);\
334 (mp) = (m);\
335 }\
336 } while (0)
337 /*
338 * result: IPv6 hbh dest1 rthdr dest2 payload
339 * m will point to IPv6 header. mprev will point to the
340 * extension header prior to dest2 (rthdr in the above case).
341 */
342 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
343 nexthdrp, IPPROTO_HOPOPTS);
344 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
345 nexthdrp, IPPROTO_DSTOPTS);
346 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
347 nexthdrp, IPPROTO_ROUTING);
348
349 #ifdef IPSEC
350 if (!needipsec)
351 goto skip_ipsec2;
352
353 /*
354 * pointers after IPsec headers are not valid any more.
355 * other pointers need a great care too.
356 * (IPsec routines should not mangle mbufs prior to AH/ESP)
357 */
358 exthdrs.ip6e_dest2 = NULL;
359
360 {
361 struct ip6_rthdr *rh = NULL;
362 int segleft_org = 0;
363 struct ipsec_output_state state;
364
365 if (exthdrs.ip6e_rthdr) {
366 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
367 segleft_org = rh->ip6r_segleft;
368 rh->ip6r_segleft = 0;
369 }
370
371 bzero(&state, sizeof(state));
372 state.m = m;
373 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
374 &needipsectun);
375 m = state.m;
376 if (error) {
377 /* mbuf is already reclaimed in ipsec6_output_trans. */
378 m = NULL;
379 switch (error) {
380 case EHOSTUNREACH:
381 case ENETUNREACH:
382 case EMSGSIZE:
383 case ENOBUFS:
384 case ENOMEM:
385 break;
386 default:
387 printf("ip6_output (ipsec): error code %d\n", error);
388 /* FALLTHROUGH */
389 case ENOENT:
390 /* don't show these error codes to the user */
391 error = 0;
392 break;
393 }
394 goto bad;
395 }
396 if (exthdrs.ip6e_rthdr) {
397 /* ah6_output doesn't modify mbuf chain */
398 rh->ip6r_segleft = segleft_org;
399 }
400 }
401 skip_ipsec2:;
402 #endif
403 }
404
405 /*
406 * If there is a routing header, replace destination address field
407 * with the first hop of the routing header.
408 */
409 if (exthdrs.ip6e_rthdr) {
410 struct ip6_rthdr *rh =
411 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
412 struct ip6_rthdr *));
413 struct ip6_rthdr0 *rh0;
414
415 finaldst = ip6->ip6_dst;
416 switch (rh->ip6r_type) {
417 case IPV6_RTHDR_TYPE_0:
418 rh0 = (struct ip6_rthdr0 *)rh;
419 ip6->ip6_dst = rh0->ip6r0_addr[0];
420 bcopy((caddr_t)&rh0->ip6r0_addr[1],
421 (caddr_t)&rh0->ip6r0_addr[0],
422 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)
423 );
424 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
425 break;
426 default: /* is it possible? */
427 error = EINVAL;
428 goto bad;
429 }
430 }
431
432 /* Source address validation */
433 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
434 (flags & IPV6_DADOUTPUT) == 0) {
435 error = EOPNOTSUPP;
436 ip6stat.ip6s_badscope++;
437 goto bad;
438 }
439 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
440 error = EOPNOTSUPP;
441 ip6stat.ip6s_badscope++;
442 goto bad;
443 }
444
445 ip6stat.ip6s_localout++;
446
447 /*
448 * Route packet.
449 */
450 if (ro == 0) {
451 ro = &ip6route;
452 bzero((caddr_t)ro, sizeof(*ro));
453 }
454 ro_pmtu = ro;
455 if (opt && opt->ip6po_rthdr)
456 ro = &opt->ip6po_route;
457 dst = (struct sockaddr_in6 *)&ro->ro_dst;
458 /*
459 * If there is a cached route,
460 * check that it is to the same destination
461 * and is still up. If not, free it and try again.
462 */
463 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
464 dst->sin6_family != AF_INET6 ||
465 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
466 RTFREE(ro->ro_rt);
467 ro->ro_rt = (struct rtentry *)0;
468 }
469 if (ro->ro_rt == 0) {
470 bzero(dst, sizeof(*dst));
471 dst->sin6_family = AF_INET6;
472 dst->sin6_len = sizeof(struct sockaddr_in6);
473 dst->sin6_addr = ip6->ip6_dst;
474 }
475 #ifdef IPSEC
476 if (needipsec && needipsectun) {
477 struct ipsec_output_state state;
478
479 /*
480 * All the extension headers will become inaccessible
481 * (since they can be encrypted).
482 * Don't panic, we need no more updates to extension headers
483 * on inner IPv6 packet (since they are now encapsulated).
484 *
485 * IPv6 [ESP|AH] IPv6 [extension headers] payload
486 */
487 bzero(&exthdrs, sizeof(exthdrs));
488 exthdrs.ip6e_ip6 = m;
489
490 bzero(&state, sizeof(state));
491 state.m = m;
492 state.ro = (struct route *)ro;
493 state.dst = (struct sockaddr *)dst;
494
495 error = ipsec6_output_tunnel(&state, sp, flags);
496
497 m = state.m;
498 ro = (struct route_in6 *)state.ro;
499 dst = (struct sockaddr_in6 *)state.dst;
500 if (error) {
501 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
502 m0 = m = NULL;
503 m = NULL;
504 switch (error) {
505 case EHOSTUNREACH:
506 case ENETUNREACH:
507 case EMSGSIZE:
508 case ENOBUFS:
509 case ENOMEM:
510 break;
511 default:
512 printf("ip6_output (ipsec): error code %d\n", error);
513 /* FALLTHROUGH */
514 case ENOENT:
515 /* don't show these error codes to the user */
516 error = 0;
517 break;
518 }
519 goto bad;
520 }
521
522 exthdrs.ip6e_ip6 = m;
523 }
524 #endif /* IPSEC */
525
526 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
527 /* Unicast */
528
529 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
530 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
531 /* xxx
532 * interface selection comes here
533 * if an interface is specified from an upper layer,
534 * ifp must point it.
535 */
536 if (ro->ro_rt == 0) {
537 /*
538 * non-bsdi always clone routes, if parent is
539 * PRF_CLONING.
540 */
541 rtalloc((struct route *)ro);
542 }
543 if (ro->ro_rt == 0) {
544 ip6stat.ip6s_noroute++;
545 error = EHOSTUNREACH;
546 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
547 goto bad;
548 }
549 ia = ifatoia6(ro->ro_rt->rt_ifa);
550 ifp = ro->ro_rt->rt_ifp;
551 ro->ro_rt->rt_use++;
552 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
553 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
554 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
555
556 in6_ifstat_inc(ifp, ifs6_out_request);
557
558 /*
559 * Check if the outgoing interface conflicts with
560 * the interface specified by ifi6_ifindex (if specified).
561 * Note that loopback interface is always okay.
562 * (this may happen when we are sending a packet to one of
563 * our own addresses.)
564 */
565 if (opt && opt->ip6po_pktinfo
566 && opt->ip6po_pktinfo->ipi6_ifindex) {
567 if (!(ifp->if_flags & IFF_LOOPBACK)
568 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
569 ip6stat.ip6s_noroute++;
570 in6_ifstat_inc(ifp, ifs6_out_discard);
571 error = EHOSTUNREACH;
572 goto bad;
573 }
574 }
575
576 if (opt && opt->ip6po_hlim != -1)
577 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
578 } else {
579 /* Multicast */
580 struct in6_multi *in6m;
581
582 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
583
584 /*
585 * See if the caller provided any multicast options
586 */
587 ifp = NULL;
588 if (im6o != NULL) {
589 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
590 if (im6o->im6o_multicast_ifp != NULL)
591 ifp = im6o->im6o_multicast_ifp;
592 } else
593 ip6->ip6_hlim = ip6_defmcasthlim;
594
595 /*
596 * See if the caller provided the outgoing interface
597 * as an ancillary data.
598 * Boundary check for ifindex is assumed to be already done.
599 */
600 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
601 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
602
603 /*
604 * If the destination is a node-local scope multicast,
605 * the packet should be loop-backed only.
606 */
607 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
608 /*
609 * If the outgoing interface is already specified,
610 * it should be a loopback interface.
611 */
612 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
613 ip6stat.ip6s_badscope++;
614 error = ENETUNREACH; /* XXX: better error? */
615 /* XXX correct ifp? */
616 in6_ifstat_inc(ifp, ifs6_out_discard);
617 goto bad;
618 } else {
619 ifp = &loif[0];
620 }
621 }
622
623 if (opt && opt->ip6po_hlim != -1)
624 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
625
626 /*
627 * If caller did not provide an interface lookup a
628 * default in the routing table. This is either a
629 * default for the speicfied group (i.e. a host
630 * route), or a multicast default (a route for the
631 * ``net'' ff00::/8).
632 */
633 if (ifp == NULL) {
634 if (ro->ro_rt == 0) {
635 ro->ro_rt = rtalloc1((struct sockaddr *)
636 &ro->ro_dst, 0
637 );
638 }
639 if (ro->ro_rt == 0) {
640 ip6stat.ip6s_noroute++;
641 error = EHOSTUNREACH;
642 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
643 goto bad;
644 }
645 ia = ifatoia6(ro->ro_rt->rt_ifa);
646 ifp = ro->ro_rt->rt_ifp;
647 ro->ro_rt->rt_use++;
648 }
649
650 if ((flags & IPV6_FORWARDING) == 0)
651 in6_ifstat_inc(ifp, ifs6_out_request);
652 in6_ifstat_inc(ifp, ifs6_out_mcast);
653
654 /*
655 * Confirm that the outgoing interface supports multicast.
656 */
657 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
658 ip6stat.ip6s_noroute++;
659 in6_ifstat_inc(ifp, ifs6_out_discard);
660 error = ENETUNREACH;
661 goto bad;
662 }
663 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
664 if (in6m != NULL &&
665 (im6o == NULL || im6o->im6o_multicast_loop)) {
666 /*
667 * If we belong to the destination multicast group
668 * on the outgoing interface, and the caller did not
669 * forbid loopback, loop back a copy.
670 */
671 ip6_mloopback(ifp, m, dst);
672 } else {
673 /*
674 * If we are acting as a multicast router, perform
675 * multicast forwarding as if the packet had just
676 * arrived on the interface to which we are about
677 * to send. The multicast forwarding function
678 * recursively calls this function, using the
679 * IPV6_FORWARDING flag to prevent infinite recursion.
680 *
681 * Multicasts that are looped back by ip6_mloopback(),
682 * above, will be forwarded by the ip6_input() routine,
683 * if necessary.
684 */
685 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
686 if (ip6_mforward(ip6, ifp, m) != 0) {
687 m_freem(m);
688 goto done;
689 }
690 }
691 }
692 /*
693 * Multicasts with a hoplimit of zero may be looped back,
694 * above, but must not be transmitted on a network.
695 * Also, multicasts addressed to the loopback interface
696 * are not sent -- the above call to ip6_mloopback() will
697 * loop back a copy if this host actually belongs to the
698 * destination group on the loopback interface.
699 */
700 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
701 m_freem(m);
702 goto done;
703 }
704 }
705
706 /*
707 * Fill the outgoing inteface to tell the upper layer
708 * to increment per-interface statistics.
709 */
710 if (ifpp)
711 *ifpp = ifp;
712
713 /* Determine path MTU. */
714 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu)) != 0)
715 goto bad;
716
717 /*
718 * The caller of this function may specify to use the minimum MTU
719 * in some cases.
720 */
721 if (mtu > IPV6_MMTU) {
722 if ((flags & IPV6_MINMTU))
723 mtu = IPV6_MMTU;
724 }
725
726 /* Fake scoped addresses */
727 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
728 /*
729 * If source or destination address is a scoped address, and
730 * the packet is going to be sent to a loopback interface,
731 * we should keep the original interface.
732 */
733
734 /*
735 * XXX: this is a very experimental and temporary solution.
736 * We eventually have sockaddr_in6 and use the sin6_scope_id
737 * field of the structure here.
738 * We rely on the consistency between two scope zone ids
739 * of source add destination, which should already be assured
740 * Larger scopes than link will be supported in the near
741 * future.
742 */
743 origifp = NULL;
744 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
745 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
746 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
747 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
748 /*
749 * XXX: origifp can be NULL even in those two cases above.
750 * For example, if we remove the (only) link-local address
751 * from the loopback interface, and try to send a link-local
752 * address without link-id information. Then the source
753 * address is ::1, and the destination address is the
754 * link-local address with its s6_addr16[1] being zero.
755 * What is worse, if the packet goes to the loopback interface
756 * by a default rejected route, the null pointer would be
757 * passed to looutput, and the kernel would hang.
758 * The following last resort would prevent such disaster.
759 */
760 if (origifp == NULL)
761 origifp = ifp;
762 }
763 else
764 origifp = ifp;
765 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
766 ip6->ip6_src.s6_addr16[1] = 0;
767 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
768 ip6->ip6_dst.s6_addr16[1] = 0;
769
770 /*
771 * If the outgoing packet contains a hop-by-hop options header,
772 * it must be examined and processed even by the source node.
773 * (RFC 2460, section 4.)
774 */
775 if (exthdrs.ip6e_hbh) {
776 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
777 u_int32_t dummy1; /* XXX unused */
778 u_int32_t dummy2; /* XXX unused */
779
780 /*
781 * XXX: if we have to send an ICMPv6 error to the sender,
782 * we need the M_LOOP flag since icmp6_error() expects
783 * the IPv6 and the hop-by-hop options header are
784 * continuous unless the flag is set.
785 */
786 m->m_flags |= M_LOOP;
787 m->m_pkthdr.rcvif = ifp;
788 if (ip6_process_hopopts(m,
789 (u_int8_t *)(hbh + 1),
790 ((hbh->ip6h_len + 1) << 3) -
791 sizeof(struct ip6_hbh),
792 &dummy1, &dummy2) < 0) {
793 /* m was already freed at this point */
794 error = EINVAL;/* better error? */
795 goto done;
796 }
797 m->m_flags &= ~M_LOOP; /* XXX */
798 m->m_pkthdr.rcvif = NULL;
799 }
800
801 #ifdef PFIL_HOOKS
802 /*
803 * Run through list of hooks for output packets.
804 */
805 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp,
806 PFIL_OUT)) != 0)
807 goto done;
808 if (m == NULL)
809 goto done;
810 ip6 = mtod(m, struct ip6_hdr *);
811 #endif /* PFIL_HOOKS */
812 /*
813 * Send the packet to the outgoing interface.
814 * If necessary, do IPv6 fragmentation before sending.
815 */
816 tlen = m->m_pkthdr.len;
817 if (tlen <= mtu
818 #ifdef notyet
819 /*
820 * On any link that cannot convey a 1280-octet packet in one piece,
821 * link-specific fragmentation and reassembly must be provided at
822 * a layer below IPv6. [RFC 2460, sec.5]
823 * Thus if the interface has ability of link-level fragmentation,
824 * we can just send the packet even if the packet size is
825 * larger than the link's MTU.
826 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
827 */
828
829 || ifp->if_flags & IFF_FRAGMENTABLE
830 #endif
831 )
832 {
833 #ifdef IFA_STATS
834 struct in6_ifaddr *ia6;
835 ip6 = mtod(m, struct ip6_hdr *);
836 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
837 if (ia6) {
838 /* Record statistics for this interface address. */
839 ia6->ia_ifa.ifa_data.ifad_outbytes +=
840 m->m_pkthdr.len;
841 }
842 #endif
843 #ifdef IPSEC
844 /* clean ipsec history once it goes out of the node */
845 ipsec_delaux(m);
846 #endif
847 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
848 goto done;
849 } else if (mtu < IPV6_MMTU) {
850 /*
851 * note that path MTU is never less than IPV6_MMTU
852 * (see icmp6_input).
853 */
854 error = EMSGSIZE;
855 in6_ifstat_inc(ifp, ifs6_out_fragfail);
856 goto bad;
857 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
858 error = EMSGSIZE;
859 in6_ifstat_inc(ifp, ifs6_out_fragfail);
860 goto bad;
861 } else {
862 struct mbuf **mnext, *m_frgpart;
863 struct ip6_frag *ip6f;
864 u_int32_t id = htonl(ip6_id++);
865 u_char nextproto;
866
867 /*
868 * Too large for the destination or interface;
869 * fragment if possible.
870 * Must be able to put at least 8 bytes per fragment.
871 */
872 hlen = unfragpartlen;
873 if (mtu > IPV6_MAXPACKET)
874 mtu = IPV6_MAXPACKET;
875 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
876 if (len < 8) {
877 error = EMSGSIZE;
878 in6_ifstat_inc(ifp, ifs6_out_fragfail);
879 goto bad;
880 }
881
882 mnext = &m->m_nextpkt;
883
884 /*
885 * Change the next header field of the last header in the
886 * unfragmentable part.
887 */
888 if (exthdrs.ip6e_rthdr) {
889 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
890 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
891 } else if (exthdrs.ip6e_dest1) {
892 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
893 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
894 } else if (exthdrs.ip6e_hbh) {
895 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
896 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
897 } else {
898 nextproto = ip6->ip6_nxt;
899 ip6->ip6_nxt = IPPROTO_FRAGMENT;
900 }
901
902 /*
903 * Loop through length of segment after first fragment,
904 * make new header and copy data of each part and link onto
905 * chain.
906 */
907 m0 = m;
908 for (off = hlen; off < tlen; off += len) {
909 MGETHDR(m, M_DONTWAIT, MT_HEADER);
910 if (!m) {
911 error = ENOBUFS;
912 ip6stat.ip6s_odropped++;
913 goto sendorfree;
914 }
915 m->m_flags = m0->m_flags & M_COPYFLAGS;
916 *mnext = m;
917 mnext = &m->m_nextpkt;
918 m->m_data += max_linkhdr;
919 mhip6 = mtod(m, struct ip6_hdr *);
920 *mhip6 = *ip6;
921 m->m_len = sizeof(*mhip6);
922 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
923 if (error) {
924 ip6stat.ip6s_odropped++;
925 goto sendorfree;
926 }
927 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
928 if (off + len >= tlen)
929 len = tlen - off;
930 else
931 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
932 mhip6->ip6_plen = htons((u_short)(len + hlen +
933 sizeof(*ip6f) -
934 sizeof(struct ip6_hdr)));
935 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
936 error = ENOBUFS;
937 ip6stat.ip6s_odropped++;
938 goto sendorfree;
939 }
940 m_cat(m, m_frgpart);
941 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
942 m->m_pkthdr.rcvif = (struct ifnet *)0;
943 ip6f->ip6f_reserved = 0;
944 ip6f->ip6f_ident = id;
945 ip6f->ip6f_nxt = nextproto;
946 ip6stat.ip6s_ofragments++;
947 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
948 }
949
950 in6_ifstat_inc(ifp, ifs6_out_fragok);
951 }
952
953 /*
954 * Remove leading garbages.
955 */
956 sendorfree:
957 m = m0->m_nextpkt;
958 m0->m_nextpkt = 0;
959 m_freem(m0);
960 for (m0 = m; m; m = m0) {
961 m0 = m->m_nextpkt;
962 m->m_nextpkt = 0;
963 if (error == 0) {
964 #ifdef IFA_STATS
965 struct in6_ifaddr *ia6;
966 ip6 = mtod(m, struct ip6_hdr *);
967 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
968 if (ia6) {
969 /*
970 * Record statistics for this interface
971 * address.
972 */
973 ia6->ia_ifa.ifa_data.ifad_outbytes +=
974 m->m_pkthdr.len;
975 }
976 #endif
977 #ifdef IPSEC
978 /* clean ipsec history once it goes out of the node */
979 ipsec_delaux(m);
980 #endif
981 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
982 } else
983 m_freem(m);
984 }
985
986 if (error == 0)
987 ip6stat.ip6s_fragmented++;
988
989 done:
990 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
991 RTFREE(ro->ro_rt);
992 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
993 RTFREE(ro_pmtu->ro_rt);
994 }
995
996 #ifdef IPSEC
997 if (sp != NULL)
998 key_freesp(sp);
999 #endif /* IPSEC */
1000
1001 return(error);
1002
1003 freehdrs:
1004 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1005 m_freem(exthdrs.ip6e_dest1);
1006 m_freem(exthdrs.ip6e_rthdr);
1007 m_freem(exthdrs.ip6e_dest2);
1008 /* FALLTHROUGH */
1009 bad:
1010 m_freem(m);
1011 goto done;
1012 }
1013
1014 static int
1015 ip6_copyexthdr(mp, hdr, hlen)
1016 struct mbuf **mp;
1017 caddr_t hdr;
1018 int hlen;
1019 {
1020 struct mbuf *m;
1021
1022 if (hlen > MCLBYTES)
1023 return(ENOBUFS); /* XXX */
1024
1025 MGET(m, M_DONTWAIT, MT_DATA);
1026 if (!m)
1027 return(ENOBUFS);
1028
1029 if (hlen > MLEN) {
1030 MCLGET(m, M_DONTWAIT);
1031 if ((m->m_flags & M_EXT) == 0) {
1032 m_free(m);
1033 return(ENOBUFS);
1034 }
1035 }
1036 m->m_len = hlen;
1037 if (hdr)
1038 bcopy(hdr, mtod(m, caddr_t), hlen);
1039
1040 *mp = m;
1041 return(0);
1042 }
1043
1044 /*
1045 * Insert jumbo payload option.
1046 */
1047 static int
1048 ip6_insert_jumboopt(exthdrs, plen)
1049 struct ip6_exthdrs *exthdrs;
1050 u_int32_t plen;
1051 {
1052 struct mbuf *mopt;
1053 u_char *optbuf;
1054 u_int32_t v;
1055
1056 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1057
1058 /*
1059 * If there is no hop-by-hop options header, allocate new one.
1060 * If there is one but it doesn't have enough space to store the
1061 * jumbo payload option, allocate a cluster to store the whole options.
1062 * Otherwise, use it to store the options.
1063 */
1064 if (exthdrs->ip6e_hbh == 0) {
1065 MGET(mopt, M_DONTWAIT, MT_DATA);
1066 if (mopt == 0)
1067 return(ENOBUFS);
1068 mopt->m_len = JUMBOOPTLEN;
1069 optbuf = mtod(mopt, u_char *);
1070 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1071 exthdrs->ip6e_hbh = mopt;
1072 } else {
1073 struct ip6_hbh *hbh;
1074
1075 mopt = exthdrs->ip6e_hbh;
1076 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1077 /*
1078 * XXX assumption:
1079 * - exthdrs->ip6e_hbh is not referenced from places
1080 * other than exthdrs.
1081 * - exthdrs->ip6e_hbh is not an mbuf chain.
1082 */
1083 int oldoptlen = mopt->m_len;
1084 struct mbuf *n;
1085
1086 /*
1087 * XXX: give up if the whole (new) hbh header does
1088 * not fit even in an mbuf cluster.
1089 */
1090 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1091 return(ENOBUFS);
1092
1093 /*
1094 * As a consequence, we must always prepare a cluster
1095 * at this point.
1096 */
1097 MGET(n, M_DONTWAIT, MT_DATA);
1098 if (n) {
1099 MCLGET(n, M_DONTWAIT);
1100 if ((n->m_flags & M_EXT) == 0) {
1101 m_freem(n);
1102 n = NULL;
1103 }
1104 }
1105 if (!n)
1106 return(ENOBUFS);
1107 n->m_len = oldoptlen + JUMBOOPTLEN;
1108 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1109 oldoptlen);
1110 optbuf = mtod(n, caddr_t) + oldoptlen;
1111 m_freem(mopt);
1112 mopt = exthdrs->ip6e_hbh = n;
1113 } else {
1114 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1115 mopt->m_len += JUMBOOPTLEN;
1116 }
1117 optbuf[0] = IP6OPT_PADN;
1118 optbuf[1] = 1;
1119
1120 /*
1121 * Adjust the header length according to the pad and
1122 * the jumbo payload option.
1123 */
1124 hbh = mtod(mopt, struct ip6_hbh *);
1125 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1126 }
1127
1128 /* fill in the option. */
1129 optbuf[2] = IP6OPT_JUMBO;
1130 optbuf[3] = 4;
1131 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1132 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1133
1134 /* finally, adjust the packet header length */
1135 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1136
1137 return(0);
1138 #undef JUMBOOPTLEN
1139 }
1140
1141 /*
1142 * Insert fragment header and copy unfragmentable header portions.
1143 */
1144 static int
1145 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1146 struct mbuf *m0, *m;
1147 int hlen;
1148 struct ip6_frag **frghdrp;
1149 {
1150 struct mbuf *n, *mlast;
1151
1152 if (hlen > sizeof(struct ip6_hdr)) {
1153 n = m_copym(m0, sizeof(struct ip6_hdr),
1154 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1155 if (n == 0)
1156 return(ENOBUFS);
1157 m->m_next = n;
1158 } else
1159 n = m;
1160
1161 /* Search for the last mbuf of unfragmentable part. */
1162 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1163 ;
1164
1165 if ((mlast->m_flags & M_EXT) == 0 &&
1166 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1167 /* use the trailing space of the last mbuf for the fragment hdr */
1168 *frghdrp =
1169 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1170 mlast->m_len += sizeof(struct ip6_frag);
1171 m->m_pkthdr.len += sizeof(struct ip6_frag);
1172 } else {
1173 /* allocate a new mbuf for the fragment header */
1174 struct mbuf *mfrg;
1175
1176 MGET(mfrg, M_DONTWAIT, MT_DATA);
1177 if (mfrg == 0)
1178 return(ENOBUFS);
1179 mfrg->m_len = sizeof(struct ip6_frag);
1180 *frghdrp = mtod(mfrg, struct ip6_frag *);
1181 mlast->m_next = mfrg;
1182 }
1183
1184 return(0);
1185 }
1186
1187 static int
1188 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup)
1189 struct route_in6 *ro_pmtu, *ro;
1190 struct ifnet *ifp;
1191 struct in6_addr *dst;
1192 u_long *mtup;
1193 {
1194 u_int32_t mtu = 0;
1195 int error = 0;
1196
1197 if (ro_pmtu != ro) {
1198 /* The first hop and the final destination may differ. */
1199 struct sockaddr_in6 *sa6_dst =
1200 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1201 if (ro_pmtu->ro_rt &&
1202 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1203 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1204 RTFREE(ro_pmtu->ro_rt);
1205 ro_pmtu->ro_rt = (struct rtentry *)0;
1206 }
1207 if (ro_pmtu->ro_rt == 0) {
1208 bzero(sa6_dst, sizeof(*sa6_dst));
1209 sa6_dst->sin6_family = AF_INET6;
1210 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1211 sa6_dst->sin6_addr = *dst;
1212
1213 rtalloc((struct route *)ro_pmtu);
1214 }
1215 }
1216 if (ro_pmtu->ro_rt) {
1217 u_int32_t ifmtu;
1218
1219 if (ifp == NULL)
1220 ifp = ro_pmtu->ro_rt->rt_ifp;
1221 ifmtu = IN6_LINKMTU(ifp);
1222 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1223 if (mtu == 0)
1224 mtu = ifmtu;
1225 else if (mtu > ifmtu) {
1226 /*
1227 * The MTU on the route is larger than the MTU on
1228 * the interface! This shouldn't happen, unless the
1229 * MTU of the interface has been changed after the
1230 * interface was brought up. Change the MTU in the
1231 * route to match the interface MTU (as long as the
1232 * field isn't locked).
1233 *
1234 * if MTU on the route is 0, we need to fix the MTU.
1235 * this case happens with path MTU discovery timeouts.
1236 */
1237 mtu = ifmtu;
1238 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
1239 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1240 }
1241 } else if (ifp) {
1242 mtu = IN6_LINKMTU(ifp);
1243 } else
1244 error = EHOSTUNREACH; /* XXX */
1245
1246 *mtup = mtu;
1247 return(error);
1248 }
1249
1250 /*
1251 * IP6 socket option processing.
1252 */
1253 int
1254 ip6_ctloutput(op, so, level, optname, mp)
1255 int op;
1256 struct socket *so;
1257 int level, optname;
1258 struct mbuf **mp;
1259 {
1260 struct in6pcb *in6p = sotoin6pcb(so);
1261 struct mbuf *m = *mp;
1262 int optval = 0;
1263 int error = 0;
1264 struct proc *p = curproc; /* XXX */
1265
1266 if (level == IPPROTO_IPV6) {
1267 switch (op) {
1268
1269 case PRCO_SETOPT:
1270 switch (optname) {
1271 case IPV6_PKTOPTIONS:
1272 /* m is freed in ip6_pcbopts */
1273 return(ip6_pcbopts(&in6p->in6p_outputopts,
1274 m, so));
1275 case IPV6_HOPOPTS:
1276 case IPV6_DSTOPTS:
1277 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1278 error = EPERM;
1279 break;
1280 }
1281 /* FALLTHROUGH */
1282 case IPV6_UNICAST_HOPS:
1283 case IPV6_RECVOPTS:
1284 case IPV6_RECVRETOPTS:
1285 case IPV6_RECVDSTADDR:
1286 case IPV6_PKTINFO:
1287 case IPV6_HOPLIMIT:
1288 case IPV6_RTHDR:
1289 case IPV6_FAITH:
1290 case IPV6_V6ONLY:
1291 if (!m || m->m_len != sizeof(int)) {
1292 error = EINVAL;
1293 break;
1294 }
1295 optval = *mtod(m, int *);
1296 switch (optname) {
1297
1298 case IPV6_UNICAST_HOPS:
1299 if (optval < -1 || optval >= 256)
1300 error = EINVAL;
1301 else {
1302 /* -1 = kernel default */
1303 in6p->in6p_hops = optval;
1304 }
1305 break;
1306 #define OPTSET(bit) \
1307 if (optval) \
1308 in6p->in6p_flags |= bit; \
1309 else \
1310 in6p->in6p_flags &= ~bit;
1311
1312 case IPV6_RECVOPTS:
1313 OPTSET(IN6P_RECVOPTS);
1314 break;
1315
1316 case IPV6_RECVRETOPTS:
1317 OPTSET(IN6P_RECVRETOPTS);
1318 break;
1319
1320 case IPV6_RECVDSTADDR:
1321 OPTSET(IN6P_RECVDSTADDR);
1322 break;
1323
1324 case IPV6_PKTINFO:
1325 OPTSET(IN6P_PKTINFO);
1326 break;
1327
1328 case IPV6_HOPLIMIT:
1329 OPTSET(IN6P_HOPLIMIT);
1330 break;
1331
1332 case IPV6_HOPOPTS:
1333 OPTSET(IN6P_HOPOPTS);
1334 break;
1335
1336 case IPV6_DSTOPTS:
1337 OPTSET(IN6P_DSTOPTS);
1338 break;
1339
1340 case IPV6_RTHDR:
1341 OPTSET(IN6P_RTHDR);
1342 break;
1343
1344 case IPV6_FAITH:
1345 OPTSET(IN6P_FAITH);
1346 break;
1347
1348 case IPV6_V6ONLY:
1349 /*
1350 * make setsockopt(IPV6_V6ONLY)
1351 * available only prior to bind(2).
1352 * see ipng mailing list, Jun 22 2001.
1353 */
1354 if (in6p->in6p_lport ||
1355 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr))
1356 {
1357 error = EINVAL;
1358 break;
1359 }
1360 #ifdef INET6_BINDV6ONLY
1361 if (!optval)
1362 error = EINVAL;
1363 #else
1364 OPTSET(IN6P_IPV6_V6ONLY);
1365 #endif
1366 break;
1367 }
1368 break;
1369 #undef OPTSET
1370
1371 case IPV6_MULTICAST_IF:
1372 case IPV6_MULTICAST_HOPS:
1373 case IPV6_MULTICAST_LOOP:
1374 case IPV6_JOIN_GROUP:
1375 case IPV6_LEAVE_GROUP:
1376 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m);
1377 break;
1378
1379 case IPV6_PORTRANGE:
1380 optval = *mtod(m, int *);
1381
1382 switch (optval) {
1383 case IPV6_PORTRANGE_DEFAULT:
1384 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1385 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1386 break;
1387
1388 case IPV6_PORTRANGE_HIGH:
1389 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1390 in6p->in6p_flags |= IN6P_HIGHPORT;
1391 break;
1392
1393 case IPV6_PORTRANGE_LOW:
1394 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1395 in6p->in6p_flags |= IN6P_LOWPORT;
1396 break;
1397
1398 default:
1399 error = EINVAL;
1400 break;
1401 }
1402 break;
1403
1404 #ifdef IPSEC
1405 case IPV6_IPSEC_POLICY:
1406 {
1407 caddr_t req = NULL;
1408 size_t len = 0;
1409
1410 int priv = 0;
1411 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1412 priv = 0;
1413 else
1414 priv = 1;
1415 if (m) {
1416 req = mtod(m, caddr_t);
1417 len = m->m_len;
1418 }
1419 error = ipsec6_set_policy(in6p,
1420 optname, req, len, priv);
1421 }
1422 break;
1423 #endif /* IPSEC */
1424
1425 default:
1426 error = ENOPROTOOPT;
1427 break;
1428 }
1429 if (m)
1430 (void)m_free(m);
1431 break;
1432
1433 case PRCO_GETOPT:
1434 switch (optname) {
1435
1436 case IPV6_OPTIONS:
1437 case IPV6_RETOPTS:
1438 #if 0
1439 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1440 if (in6p->in6p_options) {
1441 m->m_len = in6p->in6p_options->m_len;
1442 bcopy(mtod(in6p->in6p_options, caddr_t),
1443 mtod(m, caddr_t),
1444 (unsigned)m->m_len);
1445 } else
1446 m->m_len = 0;
1447 break;
1448 #else
1449 error = ENOPROTOOPT;
1450 break;
1451 #endif
1452
1453 case IPV6_PKTOPTIONS:
1454 if (in6p->in6p_options) {
1455 *mp = m_copym(in6p->in6p_options, 0,
1456 M_COPYALL, M_WAIT);
1457 } else {
1458 *mp = m_get(M_WAIT, MT_SOOPTS);
1459 (*mp)->m_len = 0;
1460 }
1461 break;
1462
1463 case IPV6_HOPOPTS:
1464 case IPV6_DSTOPTS:
1465 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1466 error = EPERM;
1467 break;
1468 }
1469 /* FALLTHROUGH */
1470 case IPV6_UNICAST_HOPS:
1471 case IPV6_RECVOPTS:
1472 case IPV6_RECVRETOPTS:
1473 case IPV6_RECVDSTADDR:
1474 case IPV6_PORTRANGE:
1475 case IPV6_PKTINFO:
1476 case IPV6_HOPLIMIT:
1477 case IPV6_RTHDR:
1478 case IPV6_FAITH:
1479 case IPV6_V6ONLY:
1480 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1481 m->m_len = sizeof(int);
1482 switch (optname) {
1483
1484 case IPV6_UNICAST_HOPS:
1485 optval = in6p->in6p_hops;
1486 break;
1487
1488 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1489
1490 case IPV6_RECVOPTS:
1491 optval = OPTBIT(IN6P_RECVOPTS);
1492 break;
1493
1494 case IPV6_RECVRETOPTS:
1495 optval = OPTBIT(IN6P_RECVRETOPTS);
1496 break;
1497
1498 case IPV6_RECVDSTADDR:
1499 optval = OPTBIT(IN6P_RECVDSTADDR);
1500 break;
1501
1502 case IPV6_PORTRANGE:
1503 {
1504 int flags;
1505 flags = in6p->in6p_flags;
1506 if (flags & IN6P_HIGHPORT)
1507 optval = IPV6_PORTRANGE_HIGH;
1508 else if (flags & IN6P_LOWPORT)
1509 optval = IPV6_PORTRANGE_LOW;
1510 else
1511 optval = 0;
1512 break;
1513 }
1514
1515 case IPV6_PKTINFO:
1516 optval = OPTBIT(IN6P_PKTINFO);
1517 break;
1518
1519 case IPV6_HOPLIMIT:
1520 optval = OPTBIT(IN6P_HOPLIMIT);
1521 break;
1522
1523 case IPV6_HOPOPTS:
1524 optval = OPTBIT(IN6P_HOPOPTS);
1525 break;
1526
1527 case IPV6_DSTOPTS:
1528 optval = OPTBIT(IN6P_DSTOPTS);
1529 break;
1530
1531 case IPV6_RTHDR:
1532 optval = OPTBIT(IN6P_RTHDR);
1533 break;
1534
1535 case IPV6_FAITH:
1536 optval = OPTBIT(IN6P_FAITH);
1537 break;
1538
1539 case IPV6_V6ONLY:
1540 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1541 break;
1542 }
1543 *mtod(m, int *) = optval;
1544 break;
1545
1546 case IPV6_MULTICAST_IF:
1547 case IPV6_MULTICAST_HOPS:
1548 case IPV6_MULTICAST_LOOP:
1549 case IPV6_JOIN_GROUP:
1550 case IPV6_LEAVE_GROUP:
1551 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1552 break;
1553
1554 #ifdef IPSEC
1555 case IPV6_IPSEC_POLICY:
1556 {
1557 caddr_t req = NULL;
1558 size_t len = 0;
1559
1560 if (m) {
1561 req = mtod(m, caddr_t);
1562 len = m->m_len;
1563 }
1564 error = ipsec6_get_policy(in6p, req, len, mp);
1565 break;
1566 }
1567 #endif /* IPSEC */
1568
1569 default:
1570 error = ENOPROTOOPT;
1571 break;
1572 }
1573 break;
1574 }
1575 } else {
1576 error = EINVAL;
1577 if (op == PRCO_SETOPT && *mp)
1578 (void)m_free(*mp);
1579 }
1580 return(error);
1581 }
1582
1583 /*
1584 * Set up IP6 options in pcb for insertion in output packets.
1585 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1586 * with destination address if source routed.
1587 */
1588 static int
1589 ip6_pcbopts(pktopt, m, so)
1590 struct ip6_pktopts **pktopt;
1591 struct mbuf *m;
1592 struct socket *so;
1593 {
1594 struct ip6_pktopts *opt = *pktopt;
1595 int error = 0;
1596 struct proc *p = curproc; /* XXX */
1597 int priv = 0;
1598
1599 /* turn off any old options. */
1600 if (opt) {
1601 if (opt->ip6po_m)
1602 (void)m_free(opt->ip6po_m);
1603 } else
1604 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1605 *pktopt = 0;
1606
1607 if (!m || m->m_len == 0) {
1608 /*
1609 * Only turning off any previous options.
1610 */
1611 if (opt)
1612 free(opt, M_IP6OPT);
1613 if (m)
1614 (void)m_free(m);
1615 return(0);
1616 }
1617
1618 /* set options specified by user. */
1619 if (p && !suser(p->p_ucred, &p->p_acflag))
1620 priv = 1;
1621 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1622 (void)m_free(m);
1623 return(error);
1624 }
1625 *pktopt = opt;
1626 return(0);
1627 }
1628
1629 /*
1630 * Set the IP6 multicast options in response to user setsockopt().
1631 */
1632 static int
1633 ip6_setmoptions(optname, im6op, m)
1634 int optname;
1635 struct ip6_moptions **im6op;
1636 struct mbuf *m;
1637 {
1638 int error = 0;
1639 u_int loop, ifindex;
1640 struct ipv6_mreq *mreq;
1641 struct ifnet *ifp;
1642 struct ip6_moptions *im6o = *im6op;
1643 struct route_in6 ro;
1644 struct sockaddr_in6 *dst;
1645 struct in6_multi_mship *imm;
1646 struct proc *p = curproc; /* XXX */
1647
1648 if (im6o == NULL) {
1649 /*
1650 * No multicast option buffer attached to the pcb;
1651 * allocate one and initialize to default values.
1652 */
1653 im6o = (struct ip6_moptions *)
1654 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1655
1656 if (im6o == NULL)
1657 return(ENOBUFS);
1658 *im6op = im6o;
1659 im6o->im6o_multicast_ifp = NULL;
1660 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1661 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1662 LIST_INIT(&im6o->im6o_memberships);
1663 }
1664
1665 switch (optname) {
1666
1667 case IPV6_MULTICAST_IF:
1668 /*
1669 * Select the interface for outgoing multicast packets.
1670 */
1671 if (m == NULL || m->m_len != sizeof(u_int)) {
1672 error = EINVAL;
1673 break;
1674 }
1675 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1676 if (ifindex < 0 || if_index < ifindex) {
1677 error = ENXIO; /* XXX EINVAL? */
1678 break;
1679 }
1680 ifp = ifindex2ifnet[ifindex];
1681 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1682 error = EADDRNOTAVAIL;
1683 break;
1684 }
1685 im6o->im6o_multicast_ifp = ifp;
1686 break;
1687
1688 case IPV6_MULTICAST_HOPS:
1689 {
1690 /*
1691 * Set the IP6 hoplimit for outgoing multicast packets.
1692 */
1693 int optval;
1694 if (m == NULL || m->m_len != sizeof(int)) {
1695 error = EINVAL;
1696 break;
1697 }
1698 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1699 if (optval < -1 || optval >= 256)
1700 error = EINVAL;
1701 else if (optval == -1)
1702 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1703 else
1704 im6o->im6o_multicast_hlim = optval;
1705 break;
1706 }
1707
1708 case IPV6_MULTICAST_LOOP:
1709 /*
1710 * Set the loopback flag for outgoing multicast packets.
1711 * Must be zero or one.
1712 */
1713 if (m == NULL || m->m_len != sizeof(u_int)) {
1714 error = EINVAL;
1715 break;
1716 }
1717 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1718 if (loop > 1) {
1719 error = EINVAL;
1720 break;
1721 }
1722 im6o->im6o_multicast_loop = loop;
1723 break;
1724
1725 case IPV6_JOIN_GROUP:
1726 /*
1727 * Add a multicast group membership.
1728 * Group must be a valid IP6 multicast address.
1729 */
1730 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1731 error = EINVAL;
1732 break;
1733 }
1734 mreq = mtod(m, struct ipv6_mreq *);
1735 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1736 /*
1737 * We use the unspecified address to specify to accept
1738 * all multicast addresses. Only super user is allowed
1739 * to do this.
1740 */
1741 if (suser(p->p_ucred, &p->p_acflag))
1742 {
1743 error = EACCES;
1744 break;
1745 }
1746 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1747 error = EINVAL;
1748 break;
1749 }
1750
1751 /*
1752 * If the interface is specified, validate it.
1753 */
1754 if (mreq->ipv6mr_interface < 0
1755 || if_index < mreq->ipv6mr_interface) {
1756 error = ENXIO; /* XXX EINVAL? */
1757 break;
1758 }
1759 /*
1760 * If no interface was explicitly specified, choose an
1761 * appropriate one according to the given multicast address.
1762 */
1763 if (mreq->ipv6mr_interface == 0) {
1764 /*
1765 * If the multicast address is in node-local scope,
1766 * the interface should be a loopback interface.
1767 * Otherwise, look up the routing table for the
1768 * address, and choose the outgoing interface.
1769 * XXX: is it a good approach?
1770 */
1771 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1772 ifp = &loif[0];
1773 } else {
1774 ro.ro_rt = NULL;
1775 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1776 bzero(dst, sizeof(*dst));
1777 dst->sin6_len = sizeof(struct sockaddr_in6);
1778 dst->sin6_family = AF_INET6;
1779 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1780 rtalloc((struct route *)&ro);
1781 if (ro.ro_rt == NULL) {
1782 error = EADDRNOTAVAIL;
1783 break;
1784 }
1785 ifp = ro.ro_rt->rt_ifp;
1786 rtfree(ro.ro_rt);
1787 }
1788 } else
1789 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1790
1791 /*
1792 * See if we found an interface, and confirm that it
1793 * supports multicast
1794 */
1795 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1796 error = EADDRNOTAVAIL;
1797 break;
1798 }
1799 /*
1800 * Put interface index into the multicast address,
1801 * if the address has link-local scope.
1802 */
1803 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1804 mreq->ipv6mr_multiaddr.s6_addr16[1]
1805 = htons(mreq->ipv6mr_interface);
1806 }
1807 /*
1808 * See if the membership already exists.
1809 */
1810 for (imm = im6o->im6o_memberships.lh_first;
1811 imm != NULL; imm = imm->i6mm_chain.le_next)
1812 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1813 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1814 &mreq->ipv6mr_multiaddr))
1815 break;
1816 if (imm != NULL) {
1817 error = EADDRINUSE;
1818 break;
1819 }
1820 /*
1821 * Everything looks good; add a new record to the multicast
1822 * address list for the given interface.
1823 */
1824 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error);
1825 if (!imm)
1826 break;
1827 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1828 break;
1829
1830 case IPV6_LEAVE_GROUP:
1831 /*
1832 * Drop a multicast group membership.
1833 * Group must be a valid IP6 multicast address.
1834 */
1835 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1836 error = EINVAL;
1837 break;
1838 }
1839 mreq = mtod(m, struct ipv6_mreq *);
1840 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1841 if (suser(p->p_ucred, &p->p_acflag))
1842 {
1843 error = EACCES;
1844 break;
1845 }
1846 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1847 error = EINVAL;
1848 break;
1849 }
1850 /*
1851 * If an interface address was specified, get a pointer
1852 * to its ifnet structure.
1853 */
1854 if (mreq->ipv6mr_interface < 0
1855 || if_index < mreq->ipv6mr_interface) {
1856 error = ENXIO; /* XXX EINVAL? */
1857 break;
1858 }
1859 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1860 /*
1861 * Put interface index into the multicast address,
1862 * if the address has link-local scope.
1863 */
1864 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1865 mreq->ipv6mr_multiaddr.s6_addr16[1]
1866 = htons(mreq->ipv6mr_interface);
1867 }
1868 /*
1869 * Find the membership in the membership list.
1870 */
1871 for (imm = im6o->im6o_memberships.lh_first;
1872 imm != NULL; imm = imm->i6mm_chain.le_next) {
1873 if ((ifp == NULL ||
1874 imm->i6mm_maddr->in6m_ifp == ifp) &&
1875 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1876 &mreq->ipv6mr_multiaddr))
1877 break;
1878 }
1879 if (imm == NULL) {
1880 /* Unable to resolve interface */
1881 error = EADDRNOTAVAIL;
1882 break;
1883 }
1884 /*
1885 * Give up the multicast address record to which the
1886 * membership points.
1887 */
1888 LIST_REMOVE(imm, i6mm_chain);
1889 in6_leavegroup(imm);
1890 break;
1891
1892 default:
1893 error = EOPNOTSUPP;
1894 break;
1895 }
1896
1897 /*
1898 * If all options have default values, no need to keep the mbuf.
1899 */
1900 if (im6o->im6o_multicast_ifp == NULL &&
1901 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1902 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1903 im6o->im6o_memberships.lh_first == NULL) {
1904 free(*im6op, M_IPMOPTS);
1905 *im6op = NULL;
1906 }
1907
1908 return(error);
1909 }
1910
1911 /*
1912 * Return the IP6 multicast options in response to user getsockopt().
1913 */
1914 static int
1915 ip6_getmoptions(optname, im6o, mp)
1916 int optname;
1917 struct ip6_moptions *im6o;
1918 struct mbuf **mp;
1919 {
1920 u_int *hlim, *loop, *ifindex;
1921
1922 *mp = m_get(M_WAIT, MT_SOOPTS);
1923
1924 switch (optname) {
1925
1926 case IPV6_MULTICAST_IF:
1927 ifindex = mtod(*mp, u_int *);
1928 (*mp)->m_len = sizeof(u_int);
1929 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1930 *ifindex = 0;
1931 else
1932 *ifindex = im6o->im6o_multicast_ifp->if_index;
1933 return(0);
1934
1935 case IPV6_MULTICAST_HOPS:
1936 hlim = mtod(*mp, u_int *);
1937 (*mp)->m_len = sizeof(u_int);
1938 if (im6o == NULL)
1939 *hlim = ip6_defmcasthlim;
1940 else
1941 *hlim = im6o->im6o_multicast_hlim;
1942 return(0);
1943
1944 case IPV6_MULTICAST_LOOP:
1945 loop = mtod(*mp, u_int *);
1946 (*mp)->m_len = sizeof(u_int);
1947 if (im6o == NULL)
1948 *loop = ip6_defmcasthlim;
1949 else
1950 *loop = im6o->im6o_multicast_loop;
1951 return(0);
1952
1953 default:
1954 return(EOPNOTSUPP);
1955 }
1956 }
1957
1958 /*
1959 * Discard the IP6 multicast options.
1960 */
1961 void
1962 ip6_freemoptions(im6o)
1963 struct ip6_moptions *im6o;
1964 {
1965 struct in6_multi_mship *imm;
1966
1967 if (im6o == NULL)
1968 return;
1969
1970 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
1971 LIST_REMOVE(imm, i6mm_chain);
1972 in6_leavegroup(imm);
1973 }
1974 free(im6o, M_IPMOPTS);
1975 }
1976
1977 /*
1978 * Set IPv6 outgoing packet options based on advanced API.
1979 */
1980 int
1981 ip6_setpktoptions(control, opt, priv)
1982 struct mbuf *control;
1983 struct ip6_pktopts *opt;
1984 int priv;
1985 {
1986 struct cmsghdr *cm = 0;
1987
1988 if (control == 0 || opt == 0)
1989 return(EINVAL);
1990
1991 bzero(opt, sizeof(*opt));
1992 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
1993
1994 /*
1995 * XXX: Currently, we assume all the optional information is stored
1996 * in a single mbuf.
1997 */
1998 if (control->m_next)
1999 return(EINVAL);
2000
2001 opt->ip6po_m = control;
2002
2003 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2004 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2005 cm = mtod(control, struct cmsghdr *);
2006 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2007 return(EINVAL);
2008 if (cm->cmsg_level != IPPROTO_IPV6)
2009 continue;
2010
2011 switch (cm->cmsg_type) {
2012 case IPV6_PKTINFO:
2013 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
2014 return(EINVAL);
2015 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
2016 if (opt->ip6po_pktinfo->ipi6_ifindex &&
2017 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
2018 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2019 htons(opt->ip6po_pktinfo->ipi6_ifindex);
2020
2021 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
2022 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
2023 return(ENXIO);
2024 }
2025
2026 /*
2027 * Check if the requested source address is indeed a
2028 * unicast address assigned to the node, and can be
2029 * used as the packet's source address.
2030 */
2031 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2032 struct ifaddr *ia;
2033 struct in6_ifaddr *ia6;
2034 struct sockaddr_in6 sin6;
2035
2036 bzero(&sin6, sizeof(sin6));
2037 sin6.sin6_len = sizeof(sin6);
2038 sin6.sin6_family = AF_INET6;
2039 sin6.sin6_addr =
2040 opt->ip6po_pktinfo->ipi6_addr;
2041 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2042 if (ia == NULL ||
2043 (opt->ip6po_pktinfo->ipi6_ifindex &&
2044 (ia->ifa_ifp->if_index !=
2045 opt->ip6po_pktinfo->ipi6_ifindex))) {
2046 return(EADDRNOTAVAIL);
2047 }
2048 ia6 = (struct in6_ifaddr *)ia;
2049 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
2050 return(EADDRNOTAVAIL);
2051 }
2052
2053 /*
2054 * Check if the requested source address is
2055 * indeed a unicast address assigned to the
2056 * node.
2057 */
2058 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2059 return(EADDRNOTAVAIL);
2060 }
2061 break;
2062
2063 case IPV6_HOPLIMIT:
2064 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2065 return(EINVAL);
2066
2067 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim,
2068 sizeof(opt->ip6po_hlim));
2069 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2070 return(EINVAL);
2071 break;
2072
2073 case IPV6_NEXTHOP:
2074 if (!priv)
2075 return(EPERM);
2076
2077 if (cm->cmsg_len < sizeof(u_char) ||
2078 /* check if cmsg_len is large enough for sa_len */
2079 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2080 return(EINVAL);
2081
2082 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2083
2084 break;
2085
2086 case IPV6_HOPOPTS:
2087 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2088 return(EINVAL);
2089 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2090 if (cm->cmsg_len !=
2091 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
2092 return(EINVAL);
2093 break;
2094
2095 case IPV6_DSTOPTS:
2096 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2097 return(EINVAL);
2098
2099 /*
2100 * If there is no routing header yet, the destination
2101 * options header should be put on the 1st part.
2102 * Otherwise, the header should be on the 2nd part.
2103 * (See RFC 2460, section 4.1)
2104 */
2105 if (opt->ip6po_rthdr == NULL) {
2106 opt->ip6po_dest1 =
2107 (struct ip6_dest *)CMSG_DATA(cm);
2108 if (cm->cmsg_len !=
2109 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
2110 << 3))
2111 return(EINVAL);
2112 }
2113 else {
2114 opt->ip6po_dest2 =
2115 (struct ip6_dest *)CMSG_DATA(cm);
2116 if (cm->cmsg_len !=
2117 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
2118 << 3))
2119 return(EINVAL);
2120 }
2121 break;
2122
2123 case IPV6_RTHDR:
2124 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2125 return(EINVAL);
2126 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
2127 if (cm->cmsg_len !=
2128 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
2129 return(EINVAL);
2130 switch (opt->ip6po_rthdr->ip6r_type) {
2131 case IPV6_RTHDR_TYPE_0:
2132 if (opt->ip6po_rthdr->ip6r_segleft == 0)
2133 return(EINVAL);
2134 break;
2135 default:
2136 return(EINVAL);
2137 }
2138 break;
2139
2140 default:
2141 return(ENOPROTOOPT);
2142 }
2143 }
2144
2145 return(0);
2146 }
2147
2148 /*
2149 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2150 * packet to the input queue of a specified interface. Note that this
2151 * calls the output routine of the loopback "driver", but with an interface
2152 * pointer that might NOT be &loif -- easier than replicating that code here.
2153 */
2154 void
2155 ip6_mloopback(ifp, m, dst)
2156 struct ifnet *ifp;
2157 struct mbuf *m;
2158 struct sockaddr_in6 *dst;
2159 {
2160 struct mbuf *copym;
2161 struct ip6_hdr *ip6;
2162
2163 copym = m_copy(m, 0, M_COPYALL);
2164 if (copym == NULL)
2165 return;
2166
2167 /*
2168 * Make sure to deep-copy IPv6 header portion in case the data
2169 * is in an mbuf cluster, so that we can safely override the IPv6
2170 * header portion later.
2171 */
2172 if ((copym->m_flags & M_EXT) != 0 ||
2173 copym->m_len < sizeof(struct ip6_hdr)) {
2174 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2175 if (copym == NULL)
2176 return;
2177 }
2178
2179 #ifdef DIAGNOSTIC
2180 if (copym->m_len < sizeof(*ip6)) {
2181 m_freem(copym);
2182 return;
2183 }
2184 #endif
2185
2186 ip6 = mtod(copym, struct ip6_hdr *);
2187 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2188 ip6->ip6_src.s6_addr16[1] = 0;
2189 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2190 ip6->ip6_dst.s6_addr16[1] = 0;
2191
2192 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2193 }
2194
2195 /*
2196 * Chop IPv6 header off from the payload.
2197 */
2198 static int
2199 ip6_splithdr(m, exthdrs)
2200 struct mbuf *m;
2201 struct ip6_exthdrs *exthdrs;
2202 {
2203 struct mbuf *mh;
2204 struct ip6_hdr *ip6;
2205
2206 ip6 = mtod(m, struct ip6_hdr *);
2207 if (m->m_len > sizeof(*ip6)) {
2208 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2209 if (mh == 0) {
2210 m_freem(m);
2211 return ENOBUFS;
2212 }
2213 M_COPY_PKTHDR(mh, m);
2214 MH_ALIGN(mh, sizeof(*ip6));
2215 m->m_flags &= ~M_PKTHDR;
2216 m->m_len -= sizeof(*ip6);
2217 m->m_data += sizeof(*ip6);
2218 mh->m_next = m;
2219 m = mh;
2220 m->m_len = sizeof(*ip6);
2221 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2222 }
2223 exthdrs->ip6e_ip6 = m;
2224 return 0;
2225 }
2226
2227 /*
2228 * Compute IPv6 extension header length.
2229 */
2230 int
2231 ip6_optlen(in6p)
2232 struct in6pcb *in6p;
2233 {
2234 int len;
2235
2236 if (!in6p->in6p_outputopts)
2237 return 0;
2238
2239 len = 0;
2240 #define elen(x) \
2241 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2242
2243 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2244 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2245 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2246 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2247 return len;
2248 #undef elen
2249 }
2250